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ABSTRACT

ENHANCING HIGH-GAIN-OBSERVER PERFORMANCE IN THE
PRESENCE OF MEASUREMENT NOISE

By

Alexis A. Ball

High-gain observers are a prevalent and an important topic in state estimation

and output feedback control of nonlinear systems. In the absence of measurement

noise, this technique robustly estimates the derivatives of the output while achieving

fast convergence. Moreover, for a sufficiently fast observer and a globally bounded

controller, the high-gain observer is able to recover the system performance achieved

under state feedback control.

However, in the presence of measurement noise, a tradeoff exists between the mea-

surement noise sensitivity and the speed of state reconstruction. As the observer gain

is increased, the bandwidth of the observer is extended. As the bandwidth increases,

the high-gain observer asymptotically approaches the behavior of a differentiator,

exacerbating the presence of measurement noise.

This dissertation addresses the challenging performance issues that arise when

implementing high-gain observers in the presence of measurement noise. In particu-

lar, we focus on the tradeoff between fast state reconstruction, minimizing the bound

on the steady-state estimation error, and rejecting the model uncertainty. The ob-

server design and analysis is approached through three major thrust areas: observer

structure, tracking performance and filtering.
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Chapter 1

Introduction

High-gain observers are an important tool in state estimation and output feedback

control. Some of the earlier research performed in the spirit of high-gain observers

can be viewed in [23] and [22]; see also [37], [44] and [31] for recent results. Yet, even

in early works such as [22], it was noted that noise in the system sensors can cause a

noticeable (and undesirable) effect on the system dynamics. Thus, the focus of this

dissertation is to analyze and address the issues associated with high-gain observer

performance degradation in the presence of measurement noise.

1.1 Feedback Control

Before describing the high-gain observer form, it is important to lay the foundation for

the types of systems that are considered in this body of work. Namely, the nonlinear
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system

ż = ψ(x, z, ς, u) (1.1)

ẋ = Ax+Bφ(x, z, ς, u) (1.2)

y = Cx (1.3)

w = Θ(x, z, ς) , (1.4)

where z ∈ R
l and x ∈ R

n are the system states, y ∈ R and w ∈ R
s are

the measured outputs, u ∈ R is the control input and ς(t) ∈ R
p represents the

exogenous signals. To create a more realistic problem, the function φ(x, z, ς, u) is

assumed to be unknown; however, this does not excluded problems where the system

model may be known. The system matrices take the form

A =



















0 1 · · · · · · 0

0 0 1 · · · 0
...

. . .
...

0 · · · · 0 1

0 0 · · · · · · 0



















, B =



















0

0
...

0

1



















and

C =
[

1 0 · · · · · · 0
]

,

where A ∈ R
n×n, B ∈ R

n×1 and C ∈ R
1×n. Logically, the system is assumed

to have dimension n ≥ 2. In the event that the dimension condition is not met, the

construction of an observer is unnecessary; the measured output y is simply used.

The structure for the model (1.1)-(1.4) includes mechanical systems, electrome-

chanical systems and systems that can be placed in the normal form satisfying the

conditions of input-output linearization [30]. Some examples of mechanical and elec-

tromechanical systems where the displacements are measured, but not their deriva-

2



tives can be found in [3, 28, 33] for an induction motor, a rotational/translational

actuator and a smart material application, respectively. Furthermore, the additional

measurement w may not be needed in every model. In this case, (1.4) can be re-

moved from the system representation. Yet, many models utilize the extra output.

For instance, consider a system in which the dynamics are extended by adding inte-

grators; see [30]. Furthermore, the classic example of the magnetically suspended ball

is modeled such that the ball position and current are measurement outputs. The

position fits the chain of integrators form (in x), whereas the current becomes the

state variable w. Hence, many relevant and interesting systems are encapsulated in

the types of models of interest in this dissertation.

Assumption 1.1:

• ς(t) is continuously differential and bounded;

• ς(t) ∈ D ⊂ R
p, where D is compact;

• φ, ψ, and Θ are locally Lipschitz in their arguments, uniformly in ς , over the

domain of interest; that is, for each compact subset of (x, z, u) in the domain of

interest, the functions satisfy the Lipschitz inequality with a Lipschitz constant

independent of ς for all ς ∈ D.

The static state feedback controller takes the following form

u = γ(x, w, ς) (1.5)

and is designed to meet the desired performance objectives. In practice, the controller

(1.5) cannot be implemented as written. Recall that only the first state is accessible.

Therefore, the controller cannot require values for any state beyond x1 and remain

useful. Given the full state measurement is not available, an alternative method

3



is necessary to obtain the desired state information. One option is to construct an

observer that will estimate the system states from the available measurement y, which

leads to a dynamic output feedback controller of the form

u = γ(x̂, w, ς) , (1.6)

where the state x is replaced by the estimate x̂. For the class of systems defined by

(1.1)-(1.4), we consider the high-gain observer

˙̂x = Ax̂+ Bφ0(x̂, w, ς, u) + h(y − x̂1) . (1.7)

Typically, the gain function is defined as

h(y − x̂1) = H(y − x̂1) , (1.8)

where

H =
[α1
ε

α2
ε2

· · · · · · αn
εn

]T
. (1.9)

The αi’s are designed such that the roots of

sn + α1s
n−1 + · · ·+ αn−1s+ αn = 0 (1.10)

have negative real parts. The function φ0 is locally Lipschitz and a known nominal

model of φ, which initially appears in (1.2). However, this is not the end of the story.

In general, the separation principle does not hold uniformly for nonlinear systems;

namely, maintaining the ability to design the state feedback controller independently

from the observer, with the result being a stable closed-loop system. The first sep-

aration principle for high-gain observers was reported in [50], followed by a more

comprehensive theorem in [6]. The stipulation is that the state feedback controller

4



be globally bounded and the observer parameter ε be chosen sufficiently small. If

the state feedback controller is designed to achieve global stabilization, then it can

be shown that the output feedback controller utilizing the high-gain observer in (1.7)

realizes semiglobal stabilization.

Another important detail is the nature of the stability properties. Let the closed-

loop system (1.1)-(1.4) under the state feedback controller (1.5) be denoted as

χ̇ = fr(χ, ς) , (1.11)

where

χ =

[

x

z

]

∈ R
N and fr(χ, ς) =

[

Ax+Bφ(x, z, ς, u)

ψ(x, z, ς, u)

]

.

Instead of stabilizing an equilibrium point of the system, the problem is posed as

rendering a certain compact set positively invariant and asymptotically attractive.

The allure of formulating the results in this fashion, is that the separation principle is

no longer limited to stabilization of an equilibrium point [5]. Some examples include

servomechanisms [25, 29] and finite time convergence to a set [20]. The regulation

problem for servomechanisms, for example, requires that the trajectories of the system

reach an invariant manifold where the tracking error is zero, usually called the zero-

error manifold. Instead of regulating the system about an equilibrium point, we desire

to study the dynamics on the manifold. Therefore, the set that we wish to render

positively invariant and asymptotically attractive is the zero-error manifold.

As stated in [4], uniform asymptotic stability with respect to a set A, uniformly

in ς , stipulates the following:

• Uniform Stability - For each ǫ > 0 there is a δ = δ(ǫ) such that

|χ(t0)|A ≤ δ ⇒ |χ(t)|A < ǫ, ∀ t ≥ t0 ≥ 0, ∀ ς(t) ∈ D.
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• Uniform Attraction - There is a constant c > 0, independent of t0 and ς(t),

and for each ǫ > 0 there is T = T (ǫ) such that

|χ(t)|A < ǫ, ∀ t ≥ t0 + T , ∀ |χ(t0)|A < c, ∀ ς(t) ∈ D.

The expression |χ|A = infν∈A ‖χ−ν‖ is the distance with respect toA. Further-

more, the system is said to be globally uniformly asymptotically stable with respect

to A, if the uniform stability property holds with a class K∞ function δ, and the

uniform attraction property holds for any r > 0 with T = T (ǫ, r). By extend-

ing the definition of stability to a compact positively invariant set instead of just an

equilibrium point, a wider variety of problem formulations can be encapsulated in

the above setup. Clearly, we can still address stabilization of the origin by defining

A = 0. However, we can just as easily structure the control objective as a regula-

tion or tracking problem. For additional examples of control problems that can be

formulated as stabilization with respect to a set, see [4].

Assumption 1.2:

• The closed-loop system (1.11) is globally uniformly asymptotically stable with

respect to a compact positively invariant set A, uniformly in ς ;

• φ(x, z, ς, u) is zero in A, uniformly in ς .

To uncover some of the interesting properties inherent to high-gain observers,

consider the scaled estimation error

ηi =
xi − x̂i
εn−i

. (1.12)
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For a second-order system the scaled estimation errors are

η1 =
x1 − x̂1

ε
(1.13)

η2 = x2 − x̂2 , (1.14)

which satisfy the singularly perturbed equation

εη̇1 = −α1η1 + η2 (1.15)

εη̇2 = −α2η1 + εδ(x, z, ς, u) , (1.16)

where δ = φ − φ0. As the value of ε is decreased, the effect of δ in (1.16) is

diminished. Hence, high-gain observers have the ability to reject the error due to

modeling uncertainty as ε approaches zero. The smaller the value of ε, the faster

the time-scale of the observer relative to the plant (or system in x). This difference

in time-scale leads to the possibility of peaking behavior. If there is any difference

in the initial conditions between the state x1 and the estimate x̂1, then the initial

condition of η1 will be O(1/ε). This peaking phenomenon is a by-product of the

observer gain structure in (1.9) and leads to a term of the form

a

ε
exp(−at/ε) (1.17)

in the transient response of the solution to (1.15)-(1.16), where a > 0. Given the

term will decay rapidly, the effects will be seen primarily in the transient response.

However, as ε tends to zero, (1.17) approaches the behavior of an impulse function,

where its amplitude peaks at a value O(1/ε). Before the impulse-like behavior of

the term can subside, this exponential mode has the ability to not only induce an un-

acceptable transient response, but destabilize the closed-loop nonlinear system. The

destabilizing effect of peaking interacting with the nonlinear feedback control was

7



first observed in [21]. Furthermore, the solution of saturating the control and/or the

state estimates outside a compact region of interest to achieve a globally bounded con-

troller, and designing the nominal function φ̂ to be globally bounded in the estimates,

protects the system plant from the destabilizing behavior during the peaking period.

Notice that the peaking period shrinks to zero as ε tends to zero. Moreover, the

system trajectories under output feedback come arbitrarily close to the trajectories

under state feedback as the value of ε approaches zero. This amounts to recovering

the system performance in addition to the stability properties of the system under

state feedback control; see [6].

1.2 High-Gain Observers and Measurement Noise

Return to the singularly perturbed representation of the derivative of the scaled es-

timation errors in (1.15)-(1.16). By adding noise into the system measurement such

that

y = x1 + v

becomes the output and v is the additive measurement noise, (1.15)-(1.16) is altered

in the following manner

εη̇1 = −α1η1 + η2 − (α1/ε)v (1.18)

εη̇2 = −α2η1 + εδ(x, z, ς, u)− (α2/ε)v , (1.19)

where reducing the amount of error in the estimation is no longer as simple as decreas-

ing ε. Unlike the system without measurement noise there exists a tradeoff between

the steady-state errors due to the model uncertainty, captured in the function δ, and

the measurement noise v. In [2], the norm on the state vector η and, ultimately, the

8



estimation error satisfies the inequality

‖x(t)− x̂(t)‖ ≤ c1ε+ c2
µ

εn−1
, ∀t ≥ T (1.20)

for an n-dimensional system with positive constants c1, c2 and T . The measurement

noise v is assumed to be bounded by the positive constant µ. Furthermore, another

tradeoff exists between the speed of state recovery and the accuracy of that estimate

in steady-state. Moreover, it is crucial that the observer be sufficiently faster than

the dynamics of the plant in order to ensure recovery of the state feedback controller

performance. Therefore, choosing smaller values of ε results in better rejection of the

modeling uncertainty, faster reconstruction of the system states and recovery of the

performance under state feedback control. However, the presence of measurement

noise prevents ε from being chosen arbitrarily small. Hence, the work in this disser-

tation seeks to further analyze the effects of measurement noise, while quantifying

and reducing the manifestations of the tradeoff in the system states.

1.3 Organization

The purpose of this dissertation is to tackle the challenging performance issues that

arise when implementing high-gain observers in the presence of measurement noise.

Thus, the work herein approaches observer design and analysis in the presence of

measurement noise through three major thrust areas: observer structure, tracking

performance and filtering. The divisions addressing those areas are briefly summa-

rized below.

The first attempt at minimizing the tradeoffs present in the high-gain observer

are done through manipulating the observer gain structure. The gain is designed

as a function of the estimation error in the first state. Therefore, the gain function

9



responds to the value of this estimation error, such that the observer experiences a

larger gain during the transient period and a lower gain afterwards. By designing

the function in this fashion, the closed-loop system is able to obtain reasonably fast

state estimation and attenuate a larger portion of the measurement noise in steady-

state. One may interpret this result as minimizing the classic tradeoff of speed versus

accuracy present in observer design.

However, the effect of measurement noise on the tracking error is less significant

than on the estimation error. Simulation observations suggest that pushing the ob-

server gain too large can noticeably compromise the estimation error and, ultimately,

the system performance. Yet, such issues are not as apparent for control problems

that are formulated in the tracking framework. The effect that the measurement

noise has on the system tracking error is analyzed for linear systems and a class of

nonlinear systems.

In addition to augmenting the observer form with nonlinearities, the observer per-

formance can potentially be improved by filtering out the measurement noise before

feeding the output to the observer. Typically, a lowpass filter is used to remove the

noise from signals in the feedback loop. However, depending on the order of the fil-

ter, unacceptable phase lag can be introduced with the potential for destabilizing the

system. In the interest of providing an alternative to the classic lowpass filter, the

feasibility of wavelets for denoising is studied in Chapter 4. The idea of using wavelets

to remove noise is not a new one, however, incorporating them into the feedback loop

for online denoising is a recent development. Historically, all of the signal is available

when the denoising algorithm is applied. Naturally, all of the past and present signal

values will not be available in the feedback loop. This is just one of the complications

introduced by attempting to denoise the output signal online. Overall, the investi-

gation is carried out using wavelets to design various pre-filters, while comparing the

results to the lowpass filter. The final chapter speculates on possible future work and

10



provides some concluding remarks.
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Chapter 2

Nonlinear-Gain High-Gain

Observers

2.1 Introduction

High-gain observers have developed into an important topic in state estimation and

output feedback control of nonlinear systems, beginning with papers such as [21]

and [22]. In the absence of measurement noise, this technique robustly estimates

the derivatives of the output while achieving fast convergence [21]. Moreover, for

a sufficiently high observer gain and a globally bounded controller, the high-gain

observer is able to recover the system performance achieved with the state feedback

control. Refer to [31] for a survey on high-gain observers.

However, observer theory reveals that a tradeoff exists between the measurement

noise sensitivity and the speed of state reconstruction [38]. As the observer gain is

increased, the bandwidth of the observer is extended. As the bandwidth increases

the high-gain observer asymptotically approaches the behavior of a differentiator,

exacerbating the presence of measurement noise. The authors of [43], in the con-

text of discrete-time models, exploited this knowledge by designing a switched filter
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composed of two linear filters (one for the transient response and the other for the

steady-state response); the value of the estimation error determines which filter is

active. The idea is to use a large filter gain (increasing the filter bandwidth) dur-

ing the transient behavior to elicit a fast recovery of the state estimates. The filter

with the smaller gain is active once the estimation error has reached a steady-state

threshold, reducing the filter bandwidth and preventing a large magnification of the

measurement noise. In [52], the authors seek to minimize the effect quantization error

has on shaft encoder measurements by introducing a dead-zone nonlinearity into the

state estimation scheme. The dead-zone nonlinearity is used to alternate “smoothly”

between varying filter bandwidths to initially achieve fast state estimation and, ulti-

mately, minimize the quantization error.

Recently, others have addressed the issue of measurement noise and observers

in [8,45,47]. The work in [47] investigates a high-gain observer with a sign-indefinite

gain adaptation for systems with potentially nonlocal Lipschitz functions and noisy

output. However, this approach often leads to highly oscillatory, although bounded,

behavior in the state estimates. In [8], the authors propose an extended Kalman filter

that utilizes an adaptive high-gain parameter to achieve noise rejection and global

convergence of the estimated state when careful tuning is exercised. More generally,

the work in [45] analyzes observers with improved transient performance for both

linear and nonlinear systems; the effects of measurement noise are briefly considered

for one high-gain observer design.

The effect of measurement noise in high-gain observers has been studied in [2,53].

It is shown in [2] that the steady-state estimation error has a component due to

modeling uncertainty, which can be attenuated by increasing the gain. Furthermore,

the error has a component due to measurement noise that is amplified by increasing

the gain. This tradeoff constrains the observer gain, which reduces the observer’s

ability to quickly reconstruct the states. In [2], the authors construct an observer
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to diminish the manifestations of the tradeoff in the system states. A switched-gain

observer is proposed in [2] to force a large gain during the transient period for fast

state reconstruction, and allow for a smaller gain once the states are satisfactorily

estimated to reduce the effect of noise on the steady-state performance. However, a

number of complications are generally associated with a switched system. The time

in which the gains are switched, trigger threshold, and system peaking are all design

issues that must be addressed. Both from an analysis and design/implementation

prospective, using a switched observer can be tedious.

The purpose of this chapter is to construct high-gain observers containing a non-

linear gain that takes the form of a piecewise linear function with two or three dis-

tinct linear regions. The regions are chosen to correspond to the desired transient

and steady-state responses, respectively. By constructing the observer gain in this

manner, we can achieve fast state estimation and reduced steady-state error. Fur-

thermore, the observer is devised such that the behavior of the innovation process can

be controlled separately from the other estimation errors. This is accomplished by

assigning one fast eigenvalue with the remaining eigenvalues chosen relatively slow.

Without this key step, the stability analysis for the proposed observers is unattain-

able. The analysis focuses on the proposed high-gain observer and the closed-loop

system dynamics. The discussion concludes with a simulation comparing the system

performance under the linear, nonlinear, and switched high-gain observer designs.

In particular, it is demonstrated that the nonlinear-gain observers are sufficient in

obtaining the desired estimation error dynamics, while reducing the implementation

complexity necessary with the switched gain observer.
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2.2 Problem Formulation and System Description

Consider the nonlinear system

ż = ψ(x, z, ς, u) (2.1)

ẋ = Ax+Bφ(x, z, ς, u) (2.2)

y = Cx+ v (2.3)

w = Θ(x, z, ς) , (2.4)

where z ∈ R
l and x ∈ R

n are the system states, y ∈ R and w ∈ R
s are the

measured outputs, u ∈ R is the control input, ς(t) ∈ R
p represents the exogenous

signals and v(t) ∈ R is the measurement noise. The function φ(x, z, ς, u) may not

be known. We do not explicitly define noise in the output w, given the purpose of

this work is to study how measurement noise directly enters the high-gain observer

from y, and mitigate the resulting effects. The triple (A, B, C) represents a chain

of n integrators, where it is assumed that n ≥ 2. Possible sources for the model

(2.1)-(2.4) include mechanical systems, electromechanical systems and systems that

can be placed in the normal form satisfying the conditions of input-output lineariza-

tion.

Assumption 2.1:

• ς(t) is continuously differential and bounded;

• ς(t) ∈ D ⊂ R
p, where D is compact;

• v(t) is a measurable function of t and bounded, where the bound is defined as

|v(t)| ≤ µ;

• φ, ψ, and Θ are locally Lipschitz in their arguments, uniformly in ς , over the
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domain of interest; that is, for each compact subset of (x, z, u) in the domain of

interest, the functions satisfy the Lipschitz inequality with a Lipschitz constant

independent of ς for all ς ∈ D.

The state feedback controller takes the following form

θ̇ = Γ(θ, x, w, ς) (2.5)

u = γ(θ, x, w, ς) (2.6)

and meets the requirements listed in Assumption 2.2.

Assumption 2.2:

• Γ and γ are locally Lipschitz functions in their arguments, uniformly in ς , over

the domain of interest;

• Γ and γ are globally bounded functions of x. The necessity for this assumption

is detailed in Chapter 1.

Let the closed-loop system (2.1)-(2.4) under the state feedback controller (2.5)-(2.6)

be denoted as

χ̇ = fr(χ, ς) , (2.7)

where

χ =









x

z

θ









∈ R
N and fr(χ, ς) =









Ax+Bφ(x, z, ς, γ)

ψ(x, z, ς, γ)

Γ(θ, x, w, ς)









.
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Assumption 2.3:

• The closed-loop system (2.7) is globally uniformly asymptotically stable with

respect to a compact positively invariant set A, uniformly in ς ;

• φ(x, z, ς, γ) is zero in A, uniformly in ς .

Instead of stabilizing an equilibrium point of the system, the problem is posed as

rendering a certain compact set positively invariant and asymptotically attractive.

The allure of formulating the results in this fashion, is that the separation principle

is no longer limited to stabilization of an equilibrium point [5]; further details are

provided in Chapter 1. As stated in [4], uniform asymptotic stability with respect to

a set A, uniformly in ς , stipulates the following:

• Uniform Stability - For each ǫ > 0 there is a δ = δ(ǫ) such that

|χ(t0)|A ≤ δ ⇒ |χ(t)|A < ǫ, ∀ t ≥ t0 ≥ 0, ∀ ς(t) ∈ D.

• Uniform Attraction - There is a constant c > 0, independent of t0 and ς(t),

and for each ǫ > 0 there is T = T (ǫ) such that

|χ(t)|A < ǫ, ∀ t ≥ t0 + T , ∀ |χ(t0)|A < c, ∀ ς(t) ∈ D.

The expression |χ|A = infν∈A ‖χ−ν‖ is the distance with respect toA. Further-

more, the system is said to be globally uniformly asymptotically stable with respect

to A, if the uniform stability property holds with a class K∞ function δ, and the

uniform attraction property holds for any r > 0 with T = T (ǫ, r). By extend-

ing the definition of stability to a compact positively invariant set instead of just an

equilibrium point, a wider variety of problem formulations can be encapsulated in

the above setup. Clearly, we can still address stabilization of the origin by defining
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A = 0. However, we can just as easily structure the control objective as a regulation

or tracking problem. For examples of control problems that can be formulated as

stabilization with respect to a set, see [4] and Chapter 1.

2.3 Observer Dynamics

The intuition behind the nonlinear observer gain is the following:

• Achieve the desired (fast) state reconstruction with ε1 without sacrificing the

steady-state performance;

• Reduce the steady-state estimation error with ε2 while maintaining an accept-

able rate of convergence in the estimates.

For a visual of the two-piece nonlinear-gain, see Figure 2.1. However, when exam-

ining the two-piece structure, it appears as if the slope (through the origin) g1 is not

equivalent to the slope g1 in the linear-gain observer, as shown in Figure 2.2. Hence,

it may be prudent to also investigate an observer constructed with a three-piece non-

linear gain; see Figure 2.3.
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Figure 2.1: Plot of the two-piece nonlinear-gain function.
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Figure 2.2: Plot of the two-piece nonlinear-gain function compared with the linear-
gain (g1).
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Figure 2.3: Plot of the three-piece nonlinear-gain function.

The high-gain observer is defined as

˙̂x = Ax̂+ Bφ0(x̂, w, ς, u) + h(y − x̂1) , (2.8)

where the nonlinear gain is

hi(y − x̂1) = αi

[

gi1(y − x̂1) + d(gi2 − gi1)sat

(

y − x̂1
d

)]

(2.9)
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for the two-piece structure and

hi(y − x̂1) = αi

[

gi1(y − x̂1) + d(gi2 − gci)sat

(

y − x̂1
d

)

+ d2(gci − gi1)sat

(

y − x̂1
d2

)] (2.10)

for the three-piece version. The representations of the piecewise linear functions

shown in (2.9) and (2.10) are derived using Proposition 1 of [24], which states that

a piecewise linear function can be written as a summation of a linear function with

multiple saturation functions. The function “sat” denotes the saturation function

defined as

sat(e) =







e, if |e| ≤ 1

sign(e), if |e| > 1
. (2.11)

The expression for gci is given as

gci =
d2g

i
1 − d1g

i
2

d2 − d
,

where the observer gains are defined as

g1 = 1/ε1 and g2 = 1/ε2, where ε1 < ε2

and chosen to correspond to the desired transient and steady-state responses, respec-

tively. Both ε1 and ε2 are small positive parameters. The parameter d is defined such

that the observer gain is the smaller value g2 for |x1 − x̂1| ≤ d and d2 > d > µ.

The function φ0 is a nominal model of φ.
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Assumption 2.4:

• φ0 is locally Lipschitz in its arguments, uniformly in ς , over the domain of

interest;

• φ0 is globally bounded in x and zero in A.

The αi’s are designed such that the roots of

sn + α1s
n−1 + · · ·+ αn−1s+ αn = 0 (2.12)

are real and negative, with one fast root and (n − 1) slow real roots. In this case,

(2.12) is written as

(sn−1 + β1s
n−2 + · · ·+ βn−2s+ βn−1)(s+ λ) = 0 , (2.13)

where the first polynomial is Hurwitz with O(1) real roots and λ ≫ 1. Relating

(2.12) to (2.13), it can be seen that α1 = λ+ β1, αi = βi−1λ+ βi ∀ 1 < i < n

and αn = βn−1λ. The output feedback controller is obtained by replacing x in

(2.5)-(2.6) with x̂.

2.4 Closed-Loop System Analysis

For the closed-loop system analysis, the observer dynamics are replaced by the equiv-

alent dynamics of the scaled estimation error

η = D(ε1)(x− x̂) , (2.14)
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where D(ε1) = diag[1, ε1, · · · , εn−1
1 ]. The closed-loop system under the output

feedback controller can be written as

χ̇ = f(χ, ς,D−1(ε1)η)

=









Ax+Bφ(x, z, ς, γ(θ, x−D−1(ε1)η, w, ε))

ψ(x, z, ς, γ(θ, x−D−1(ε1)η, w, ε))

Γ(θ, x−D−1(ε1)η, w, ε)









(2.15)

ε1η̇ = A0η +B0v + εn1Bδ(χ, ς, w,D
−1(ε1)η) + h̄δ1(η1 + v) , (2.16)

where

A0 =



















−α1 1 · · · · · · 0

−α2 0 1 · · · 0
...

. . .
...

−αn−1 · · · · · · 0 1

−αn · · · · · · · · · 0



















, B0 =



















−α1
−α2
...

−αn−1

−αn



















,

h̄i = αi

[

1−
(

ε1
ε2

)i
]

and

δ1(η1 + v) =











sat

(

η1+v
d

)

d, two-piece gain

dd2
d2−d

(

sat

(

η1+v
d

)

− sat

(

η1+v
d2

))

, three-piece gain

where the value of δ1 depends on the form of the nonlinear gain. Yet, regardless

the structure of the gain, |δ1| ≤ d. The function δ(χ, ς, w,D−1(ε1)η) is de-
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fined as φ(x, z, ς, γ(θ, x̂, w, ς))− φ0(x̂, w, ς, γ(θ, x̂, w, ς)), and the matrix A0

is Hurwitz. The equations (2.15)-(2.16) resemble a model appearing in the standard

singularly perturbed form, as shown in [35]. The primary difference between this

system and the standard form is the presence of the negative powers of ε1 in the

termD−1(ε1)η. However, δ is a globally bounded function in x̂, implying that it is

also globally bounded in D−1(ε1)η. This property allows us to extend the analysis

associated with standard singularly perturbed systems to the case involving (2.15)-

(2.16). The slow dynamics of (2.15) can be approximated by defining ε1/ε2 , εf ,

setting ε2 = 0 and keeping εf 6= 0, which yields η = 0. This reduces (2.15) to the

closed-loop system (2.7) under the state feedback controller (2.5)-(2.6). Moreover,

the system is globally uniformly asymptotically stable with respect to the compact

positively invariant set A. Then, according to a converse Lyapunov theorem in [39],

there exists a smooth Lyapunov function V (χ), two classK∞ functions U1 and U2,

and a class K function U3 such that

U1(‖χ‖A) ≤ V (χ) ≤ U2(‖χ‖A) (2.17)

∂V

∂χ
f(χ, ς, 0) ≤ −U3(‖χ‖A) (2.18)

for all ς ∈ D.

Theorem 2.1: Let Assumptions 2.1 through 2.4 hold and consider the closed-loop

system (2.7) with the observer (2.8). Moreover, let M be any compact set in R
N

and N be any compact subset of Rn, where χ(t0) ∈ M and x̂(t0) ∈ N . Then,

given the positive constant εf = ε1/ε2 < 1, there is a positive constant λ∗ such

that for λ > λ∗, the following properties hold:

• There exist positive constants µ∗ and ca such that for µ < µ∗ there is a

constant εa = εa(µ) > caµ
1/n with limµ→0 εa(µ) = ε∗2 > 0, such
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that for each ε2 ∈ (caµ
1/n, εa] the trajectories of the closed-loop system are

bounded for all t ≥ 0.

• There exists µ∗2 > 0 and a class K function ρ1 such that for every µ < µ∗2
and every Υ1 > ρ1(µ), there are constants TΥ = TΥ(Υ1) ≥ 0 and εb =

εb(µ,Υ1) > caµ
1/n, with limµ→0 εb(µ,Υ1) = ε∗b(Υ1) > 0, such that

for each ε2 ∈ (caµ
1/n, εb]

max{|χ(t)|A, ‖x(t)− x̂(t)‖} ≤ Υ1, ∀t ≥ TΥ . (2.19)

• There exist µ∗3 > 0 and a class K function ρ2 such that for every µ < µ∗3
and every Υ2 > ρ2(µ), there is a constant εc = εc(µ,Υ2) > caµ

1/n, with

limµ→0 εc(µ,Υ2) = ε∗c(Υ2) > 0, such that for each ε2 ∈ (caµ
1/n, εc]

‖χ(t)− χr(t)‖ ≤ Υ2, ∀t ≥ t0 (2.20)

where χr(t) is the solution of (2.7) with χr(t0) = χ(t0).

The last two bullet items are similar to Theorem 1 of [2].

Remark 2.1: The procedure for choosing the design parameters ε1, ε2 and d is

fairly simple. Initially, the observer gain ε1 should be chosen to correspond to the

desired transient behavior in the estimation error dynamics; the approximate results

can be seen by running the chosen value in a linear observer. Without violating the

condition on the ratio of the ε’s, the value of the parameter ε2 is set to achieve the

desired steady-state estimation error dynamics. Finally, the value of d should be

chosen as small as possible, while respecting the lower bound d > µ, imposed by the

measurement noise. By choosing the value of d small, the nonlinear observer is able

to maximize the use of ε1 during the transient phase. In the case of the three-piece
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nonlinear gain, the additional parameter d2 should be chosen as close as possible to d.

Proof: In order to place the set M in the interior of Ωc = {V (χ) ≤ c} ⊂ R
N ,

choose c > maxχ∈M V (χ). The set Ωc is compact for any choice of c. We have

already established that δ is a globally bounded function in D−1(ε1)η. Therefore,

there is a constant Lδ > 0, independent of ε1, such that ‖δ‖ ≤ Lδ for all χ ∈ Ωc

and η ∈ R
n.

Consider the fast equation (2.16) for χ ∈ Ωc. This equation possesses both

slow and fast variables due to the choice of the eigenvalues shown in (2.13). To

transform (2.16) into the singularly perturbed form, A0 and B0 are represented as

A0 = A01λ+A02 and B0 = B01λ+B02. The procedure from [35] is used with

the change of coordinates

[

ζ

η1

]

= Tη , (2.21)

where

T =

[

Y

Z

]

=



















−β1 1 0 · · · 0

−β2 0 1 · · · 0
...

. . .
...

−βn−1 0 · · · · · · 1

1 0 · · · · · · 0



















and T−1 =
[

M N
]

withM ∈ R
n×(n−1) and Y ∈ R

(n−1)×n. Applying this

change of coordinates to (2.16) yields

ε1ζ̇ = Y A02Mζ + Y B02v + εn1Y Bδ + Y h̄δ1 (2.22)
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ε1η̇1 = −λη1 + ζ1 − (λ+ β1)v + (λ+ β1)

(

1− ε1
ε2

)

δ1 , (2.23)

where

Y h̄ =









−β1 1 · · · 0
...

. . .
...

−βn−1 0 · · · 1

































(λ+ β1)

(

1− ε1
ε2

)

(λβ1 + β2)

(

1−
(

ε1
ε2

)2
)

...

λβn−1

(

1−
(

ε1
ε2

)n)

























= λ
ε1
ε2
a+ b,

a =



























β1

(

1− ε1
ε2

)

β2

(

1−
(

ε1
ε2

)2
)

...

βn−1

(

1−
(

ε1
ε2

)n−1
)



























,

b =



























−β21
(

1− ε1
ε2

)

+ β2

(

1−
(

ε1
ε2

)2
)

−β1β2
(

1− ε1
ε2

)

+ β3

(

1−
(

ε1
ε2

)3
)

...

−βn−1β1

(

1− ε1
ε2

)



























,

Y A01 = 0, Y B01 = 0, ZA01M = 0, ZA01N = −1,

ZA02M =
[

1 0 · · · 0
]

∈ R
1×(n−1),
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A02N = 0, and Y A02M is by design a Hurwitz matrix. The solution matrix

P to the Lyapunov equation PY A02M + (Y A02M)TP = −I is symmetric

and positive definite. Let the Lyapunov function candidate for (2.22) be chosen as

W1 = ζTPζ . It can be shown that

Ẇ1 ≤ − 1

ε1
‖ζ‖2 + 2

ε1
‖ζ‖ (‖PY B02‖µ+ εn1‖PY B‖Lδ

+ ‖P‖
(

ε1
ε2
λ‖a‖+ ‖b‖

)

d).
(2.24)

It follows that

Ẇ1 ≤ − 1

2ε1‖P‖
W1, ∀W1 ≥ LW (2.25)

for

LW = 4‖PY B02‖µ+ εn14‖PY B‖Lδ

+ 4‖P‖
(

ε1
ε2
λ‖a‖+ ‖b‖

)

d.
(2.26)

Thus, the ζ states are bounded. The bound (2.26) is reached within the interval

[t0, t0 + T1(ε1)], where

T1(ε1) = 4‖P‖ε1 ln
(

k2w1
σ1ε

n
1

)

→ 0 as ε1 → 0 (2.27)

and kw1 > 0 is a constant independent of ε1 and ε2, and

σ1 =
√

‖P‖‖PY B‖Lδ.

Meanwhile, the next step is to show that the trajectories of (2.23) reach a positively

invariant strip defined as

{|x1 − x̂1| ≤ L} , (2.28)

where 0 < L < d. Using the Lyapunov function W2 =
1

2
η21, it can be shown that
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Ẇ2 = − λ

ε2
η1(η1 + v)− λ

(

1

ε1
− 1

ε2

)

η1(η1 + v − δ1)

+ η1

[

β1

(

1

ε1
− 1

ε2

)

δ1 −
1

ε1
β1v +

1

ε1
ζ1

]

.

(2.29)

It follows from d > |v| that sign(η1) = sign(η1+ v) whenever |η1+ v| ≥ d and

−λ
(

1

ε1
− 1

ε2

)

η1(η1 + v − δ1) ≤ 0.

To ensure that the condition in (2.28) is satisfied, we require a tighter bound on the

state ζ1 than what is provided in (2.25). Thus, the ultimate bound on |ζ1| is denoted
as

c0 + k1µ+ k2ε
n
1Lδ + k3

ε1
ε2
λd+ k4d , (2.30)

where c0, a constant due to initial conditions, can be made arbitrarily small for t

large enough; k1, k2, k3, and k4 are positive constants. Using the ultimate bound

in (2.30), after t0 + T1(ε1),

Ẇ2 ≤ −(1− θ)λ

ε2
|η1|2, ∀ |η1| ≥ U (2.31)

for

U =
µ

θ
+
ε2
ε1

(

c1µ+ c2d+ c0 + k2ε
n
1Lδ

λθ

)

+
k3d

θ
, (2.32)

where c1 = β1 + k1, c2 = β1

(

1− ε1
ε2

)

+ k4 and ε1 ≤ 1. The parameter

θ ∈ (0, 1) will be chosen in a later step.

To ensure that (2.28) implies

|x1 − x̂1 + v| ≤ d , (2.33)
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d is chosen as d > L+µ. In order for the strip (2.28) to be positively invariant, we

require the choice of L to be greater than U . This requirement leads to the inequality

U < L < d−µ. We rewrite the foregoing inequality as U +µ < d, and revisit U

defined in (2.32). Recall that the terms in U containing µ in the numerator and/or λ

in the denominator can be made sufficiently small. However, the third term, k3d/θ,

does not immediately appear to be necessarily small. To ensure that the inequality

U+µ < d is satisfied, the constant k3 needs to be handled with care. In particular,

we need k3/θ < 1 to avoid violating the foregoing inequality. According to Lemma

1 of [53], the constant k3 arises from the response of the system

ε1
˙̄ζ = Y A02Mζ̄ + aλ

ε1
ε2

and is given by

k3 =

∫ ∞

0
|C̄eY A02Mta|dt (2.34)

for C̄ = [1 0 · · · 0]. Define

G(s) = C̄(sI − Y A02M)−1a . (2.35)

Then, by selecting the poles and zeros of G(s) to be real and distinct such that

G(s) = K

(

m̄
∏

i=1

s+ z̄i
s+ p̄i

)





n̄
∏

j=m̄+1

1

s+ p̄i



 ,

where m̄ ≤ n̄, z̄i > p̄i for i = 1, ...m̄, the impulse response of (2.34) is nonnega-

tive; see [26] for the proof. This assumption can always be satisfied by an appropriate

31



choice of β1, · · · , βn−1 and ε1/ε2; see Appendix A for examples. Hence,

k3 =

∫ ∞

0
C̄eY A02Mtadt = G(s)

∣

∣

∣

∣

s=0
(2.36)

where solving for k3 leads to

Y A02M =



















−β1 1 0 . . . 0

−β2 0 1 . . . 0
...

. . .
...

−βn−2 0 . . . . . . 1

−βn−1 0 . . . . . . 0



















,

C̄(sI − Y A02M)−1a =

β1

(

1− ε1
ε2

)

sn−2 + · · ·+ βn−1

(

1−
(

ε1
ε2

)n−1
)

sn−1 + β1sn−2 + · · ·+ βn−1

and k3 = 1−
(

ε1
ε2

)n−1

. Therefore,

U + µ =
µ

θ
+ µ+

c1µ+ c2d+ c0 + k2ε
n
1Lδ

εfλθ
+

(1− εn−1
f )d

θ
.

Recall that µ must be small enough and λ chosen large enough to ensure that U +

µ < d. Let

µ∗1 =
(1− k)εn−1

f d

2− kεn−1
f

,

λ∗ =
c1µ

∗
1 + c2d+ k2Lδ

εnf [(1− k)d+ kµ∗1]− 2εfµ
∗
1
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and require that µ ∈ (0, µ∗1), λ > λ∗ and k ∈ (0, 1). Substituting the upper

bound µ∗1 and the lower bound λ∗ into the expression for U + µ leads to

U + µ <
µ∗1
θ

+ µ∗1 +
1

θ
[εn−1
f (1− k)d+ εn−1

f kµ∗1 − 2µ∗1] +
(1− εn−1

f )d

θ

=
1

θ
[(1 + θ + εn−1

f k − 2)µ∗1 + (εn−1
f (1− k) + 1− εn−1

f )d]

=
1

θ
[(1 + θ + εn−1

f k − 2)µ∗1 + (1− εn−1
f k)d].

By choosing θ = 1− kεn−1
f and ε1 ≤ 1, the condition U + µ < d is satisfied.

We will now show that all trajectories reach the strip (2.28) in finite time. The

following inequality originates from (2.31)

Ẇ2 ≤ −λ
2kεnf
ε1

W2, ∀W2 ≥
1

2
L2. (2.37)

Therefore, the set

Σ2 = {W2 ≤
1

2
L2} = {|η1| ≤ L} (2.38)

is positively invariant. If η1(t0) is outside of Σ2, then from (2.37)

W2(η1(t)) ≤ W2(η1(t0))exp

(

−λ
2kεnf
ε1

(t− t0)

)

. (2.39)

From the scaling equation (2.14), it can be seen that whenever x(t0) and x̂(t0) are

bounded, there exists a constant kw2 > 0, independent of ε1 and ε2, such that

W2(η1(t0)) ≤ k2w2. From (2.38) and (2.39), it can be seen that η1 reaches the set

Σ2 within the time interval [t0, t0 + T2(ε1)], where
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T2(ε1) =
ε1
λkεnf

ln











kw2
√

1

2
L











→ 0 as ε1 → 0. (2.40)

At this point, η1 is inside the strip (2.28) and cannot leave the strip for all future

time. Inside the strip, the parameter ε2 is driving the dynamics of the high-gain

observer, not ε1. Therefore, it is appropriate to alter the scaling equation (2.14) to

obtain

ξ = D(ε2)(x− x̂) , (2.41)

where D(ε2) = diag[1, ε2, · · · , εn−1
2 ]. Then, the error dynamics become

ε2ξ̇ = A0ξ + εn2Bδ +B0v , (2.42)

which is valid for trajectories inside the strip. Take the Lyapunov function candidate

asW3 = ξTSξ, where S is the positive definite symmetric solution to the Lyapunov

equation SA0 + AT0 S = −I . Then, it can be shown that

Ẇ3 ≤ − 1

2ε2‖S‖
W3, ∀W3 ≥ (σ2ε

n
2 + σ3µ)

2
, (2.43)

where σ2 = 4‖SB‖Lδ
√

‖S‖ and σ3 = 4‖SB0‖
√

‖S‖. Therefore, the set

Σ3 = {W3 ≤ (σ2ε
n
2 + σ3µ)

2} (2.44)

is positively invariant. For ξ(t0) outside Σ3, it can be seen from (2.43) that

W3(ξ(t)) ≤ W3(ξ(t0))exp

(

−(t− t0)

2ε2‖S‖

)

. (2.45)
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From the scaling equation in (2.41), for bounded x(t0), x̂(t0) and ε2, there exists a

constant kw3 > 0, independent of ε2, such thatW3(ξ(t0)) ≤ k2w3. It follows from

(2.44) and (2.45) that ξ reaches the set Σ3 within the time interval [t0, t0+T3(ε2)],

where

T3(ε2) = 4ε2‖S‖ ln
(

kw3
σ2ε

n
2

)

→ 0 as ε2 → 0. (2.46)

Inside the set Σ3

‖x(t)− x̂(t)‖ = ‖D−1(ε2)ξ(t)‖ ≤ ε2γ1 +
µ

εn−1
2

γ2 , Fr(ε2, µ) (2.47)

for γ1 = σ2/
√

λmin(S) and γ2 = σ3/
√

λmin(S). Therefore, all of the trajec-

tories are traveling towards the positively invariant set Σ = {Σ2 ∩Σ3}. Moreover,

the set Σ is reached within the time interval

T (ε1, ε2) = T1(ε1) + T2(ε1) + T3(ε2) → 0 as ε2 → 0 , (2.48)

where the times are defined in (2.27), (2.40) and (2.46). Recall that ε1 < ε2,

meaning that decreasing ε2 will eventually correspond to a decrease in ε1. Hence,

only the reduction of ε2 is explicitly listed in (2.48).

We will now address the remaining arguments (including the slow vector χ) for

the boundness of all trajectories, ultimate boundness where the trajectories come

close to the set A×{x− x̂ = 0} and closeness of trajectories. A similar approach

for the slow states χ can be found in [2].

For (χ, η) ∈ Ωc × Σ the vector χ can be represented as

χ̇ = f(χ, ς,D−1(ε2)ξ). (2.49)

The function f is globally bounded in D−1(ε2)ξ, because it is globally bounded in
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x̂ and the term D−1(ε2)ξ results from substituting x−D−1(ε2)ξ for x̂. Hence,

there exists a positive constant kf , independent of ε2, such that

‖f(χ, ς,D−1(ε2)ξ)‖ ≤ kf . (2.50)

The following lemma originally appeared in [2] and is included here for convenience;

see [2] for the proof.

Lemma 1: The function Fr(ε2, µ) has the following properties for ε2 > 0 and

µ ≥ 0. First, Fr(ε2, µ) has a global minimum at

ε2 = [(n− 1)γ2µ/γ1]
(1/n) , caµ

1/n

and

min
ε2>0

Fr(ε2, µ) = (c1ca + γ2/c
n−1
a )µ1/n , kaµ

1/n .

For ε2 > caµ
1/n, Fr(ε2, µ) is a strictly increasing function of ε2 and Fr(ε2, µ) ≤

kbε2, where kb = γ1 + γ2/c
n
a . Then, given kr > 0, for every µ ∈ [0, (kr/ka)

n)

there exist εm = εm(µ, kr) ≥ 0 and εM = εM (µ, kr) > caµ
1/n, with

εm ≤ min{caµ1/n, (µγ2n/kr)1/(n−1)}

and

lim
µ→0

εM (µ, kr) = kr/γ1 ,

such that Fr(ε2, µ) ≤ kr for all ε2 ∈ (εm, εM ].

With η = 0, the output feedback expression in (2.15) reduces to the state feed-

back representation shown in (2.7). Then, for ε2 ∈ (caµ
1/n, ε∗2) and µ < µ∗1,
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there is a positive constant L1, independent of ε2, such that the following Lipschitz

condition is satisfied

‖f(χ, ς,D−1(ε2)ξ)− f(χ, ς, 0)‖ ≤ L1‖D−1(ε2)ξ‖ (2.51)

for all (χ, η) ∈ Ωc×Σ, where the lower bound on ε2 is chosen according to Lemma

1. Taking the derivative of the smooth Lyapunov function V (χ) yields

V̇ =
∂V

∂χ
f(χ, ς,D−1(ε2)ξ) +

∂V

∂χ
f(χ, ς, 0)− ∂V

∂χ
f(χ, ς, 0)

=
∂V

∂χ
f(χ, ς, 0) +

∂V

∂χ

[

f(χ, ς,D−1(ε2)ξ)− f(χ, ς, 0)
]

≤ −U3(χ) +
∥

∥

∥

∥

∂V

∂χ

∥

∥

∥

∥

‖f(χ, ς,D−1(ε2)ξ)− f(χ, ς, 0)‖.

Let L2 be an upper bound on ‖∂V/∂χ‖ over Ωc. Then,

V̇ ≤ −U3(χ) + L2L1‖x− x̂‖ , −U3(χ) + LrFr(ε2, µ) (2.52)

for all (χ, η) ∈ Ωc × Σ. Let L3 = (1/Lr)minχ∈∂Ωc U3(χ) and apply

Lemma 1 with kr = L3 and set µ∗4 = (kr/ka)
n. Then, for µ < µ∗4 and

ε2 ∈ (caµ
1/n, εM ], we have V̇ ≤ 0 for all (χ, η) ∈ ∂Ωc × Σ. From the

previous analysis, we have that Ẇ3 ≤ 0 for all (χ, η) ∈ Ωc × ∂Σ. Therefore, the

set Ωc × Σ is positively invariant, which implies that the set Ωc × Σ is positively

invariant.

Given χ(t0) is in the interior of Ωc, we have

χ(t)− χ(t0) =

∫ t

t0

f(χ(τ), u(τ))dτ .

Considering that f is continuous and its arguments are bounded, ‖f(χ, u)‖ ≤ k1
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for all χ(t) ∈ Ωc, where k1 is independent of ε2 . Hence,

‖χ(t)− χ(t0)‖ ≤ k1(t− t0) (2.53)

as long as χ(t) ∈ Ωc. Therefore, there exists a finite time T ∗, independent of

ε2, such that χ(t) ∈ Ωc for all t ∈ [t0, t0 + T ∗]. The previous analysis showed

that η enters the set Σ during the finite time period [t0, t0 + T (ε1, ε2)], where

T (ε1, ε2) → 0 as ε2 → 0. Thus, there exists εu such that for all 0 < ε2 ≤ εu,

T (ε1, ε2) ≤ T ∗. Thus, choosing µ∗5 small enough that ca(µ
∗
5)
1/n < εu and

setting µ∗ = min{µ∗1, µ∗4, µ∗5} and εa = min{εM , εu}, we conclude that for

0 ≤ µ < µ∗ and caµ
1/n < ε2 ≤ εa, the trajectory (χ, η) enters the set Ωc×Ω

during the finite time period [t0, t0 + T (ε1, ε2)] and stays there for the remainder

of time. Prior to entering the set, χ(t) and η(t) are bounded by (2.53) and (2.45),

respectively. Therefore, the closed-loop trajectories are bounded.

Ultimate Boundness: The proof for ultimate boundness utilizes the dynamics of

the ξ vector inside the strip (2.28).

Apply Lemma 1 to the expressions (2.47) and (2.52) by setting kr = τ , where

τ ∈ (kaµ
1/n, L3] and set εb = min{εa, εM}; the equations (2.47) and (2.52)

are satisfied for all t ≥ t0 + T ∗. Thus, for ε2 ∈ (caµ
1/n, εb] the function

Fr(ε2, µ) ≤ τ . Then, from (2.52)

V̇ ≤ −U3(χ) + Lrτ = −1

2
U3(χ)−

1

2
U3(χ) + Lrτ .

This results in

V̇ ≤ −1

2
U3(χ)

for all χ /∈ {U3(χ) ≤ 2Lrτ}. Given U3(χ) is positive definite and continuous,

there is a positive constant τ∗ < L3 such that the set U3(χ) ≤ 2Lrτ is compact
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for τ ≤ τ∗. Let co(τ) = maxU3≤2Lrτ{V (χ)}, then co(τ) is a nondecreasing

function that tends to zero as τ → 0. Choose a class K function ϕ(τ) such that

ϕ ≥ co(τ). Then, for ϕ(τ) ≤ V (χ) ≤ c

V̇ ≤ −1

2
U3(χ).

Therefore, there exists a time Tϕ = Tϕ(τ) ≥ 0 such that

V̇ (χ(t)) ≤ ϕ(τ)

for all t ≥ t0 + T ∗ + Tϕ(τ). It follows from (2.17) that

|χ(t)|A ≤ U−1
1 (ϕ(τ)) , ρa(τ)

for all t ≥ t0 + T ∗ + Tϕ(τ). Moreover,

max{|χ(t)|A, ‖x(t)− x̂(t)‖} ≤ max{τ, ρa(τ)} , ρb(τ)

where ρb is a class K∞ function. Define ρ1 as ρ1(µ) = ρb(kaµ
1/n) with µ <

µ∗2 = min{µ∗, (τ∗/ka)n}, where ρ1 is a class K∞. Given Υ1 > ρ1(µ), take

τ = min{τ∗, ρ−1
b (Υ1)} and set TΥ = t0+T

∗+Tϕ(τ) to achieve the inequality

in (2.19).

Closeness of Trajectories: Using the fact that the closed-loop system under state

feedback is uniformly asymptotically stable with respect to the set A and the in-

equality in (2.19), given Υ2 > 2ρ1(µ), there exists a time TΥ2
= TΥ2

(Υ2) > 0,

independent of ε2, such that

|χ(t)|A ≤ Υ2

2
(2.54)
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and

|χr(t)|A ≤ Υ2

2
(2.55)

for all t ≥ TΥ2
for ε2 ∈ (caµ

1/n, εb]. Then,

‖χ(t)− χr(t)‖ ≤ ‖χ(t)− x‖+ ‖χr(t)− x‖ (2.56)

for all t ≥ TΥ2
and x ∈ A. Then, we take the infimum of the right-hand side of

(2.56), over all x ∈ A, and substitute the values in (2.54) and (2.55). This results

in the following

‖χ(t)− χr(t)‖ ≤ |χ(t)|A + |χr(t)|A ≤ Υ2 (2.57)

for all t ≥ TΥ2
. Furthermore, we can see from (2.53) that

‖χ(t)− χ(t0)‖ ≤ k1(t− t0) (2.58)

and similarly

‖χr(t)− χ(t0)‖ ≤ k1(t− t0) (2.59)

for all t ∈ [t0, t0 + T (ε1, ε2)]. Therefore,

‖χ(t)− χr(t)‖ ≤ 2k1T (ε1, ε2) (2.60)

for all t ∈ [t0, t0 + T (ε1, ε2)]. Viewing the closed-loop system under output feed-

back as a perturbation of the closed-loop system under state feedback and applying

Theorem 3.4 of [30] over the interval [t0 + T (ε1, ε2), TΥ2
] gives the following

‖χ(t)− χr(t)‖ ≤ 2k1c3T (ε1, ε2) + c4Fr(ε2, µ) (2.61)
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for some constants c3 ≥ 1 and c4 > 0, independent from ε1 and ε2. It can be

seen from (2.60) and (2.61) that the time for which (2.61) is valid can be simplified

to [t0, TΥ2
]. Furthermore, it can be verified that T (ε1, ε2) is a class K function of

ε2 for ε2 ≤ (1/e)(kw3/σ2)
1/n , ε̄2. The inequality ca(µ

∗
6)
1/n < ε̄2 can be

satisfied for a sufficiently small µ∗6. Then, for each µ < µ∗6 the following statement

holds

min
ε2∈(caµ1/n,ε̄2]

{2k1c3T (ε1, ε2) + c4Fr(ε2, µ)}

= 2k1c3T (εfcaµ
1/n, caµ

1/n) + c4kaµ
1/n

, ρ3(µ).

(2.62)

Moreover, it can be shown that ρ3(µ) is a class K function. For each Υ2 > ρ3(µ),

there exists ε̄c = ε̄c(µ,Υ2) > caµ
1/n with the limµ→0 ε̄c(µ,Υ2) = ε̄∗c(Υ2) >

0 such that for all ε2 ∈ (caµ
1/n, ε̄c]

2k1c3T (ε1, ε2) + c4Fr(ε2, µ) ≤ Υ2 (2.63)

is satisfied. The inequality in (2.20) can be found by taking

ρ2(µ) = max{2ρ1(µ), ρ3(µ)}, µ∗3 = min{µ∗2, µ∗6} and εc = min{εb, ε̄c, ε̄2},
in combination with (2.57), (2.61) with the simplified time and (2.63).

2.5 Simulation: Field Controlled DC Motor

The system under consideration is a field controlled DC motor [30], where it is desired

that the shaft angular velocity track a reference signal as shown in Figure 2.4. The
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system is represented as

ẋ1 = x2 (2.64)

ẋ2 = φ(x, z, u) (2.65)

ż = ψ(x, z, u) (2.66)

y = x1 + v (2.67)

w = z , (2.68)

where x1 is the rotor position, x2 the rotor angular velocity and z the armature

current. Notice that the available measurements are the rotor position and the cur-

rent. Moreover, the current measurement is not an output resulting from the chain

of integrators.
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Figure 2.4: Velocity reference trajectory (ṙ).

The field current is used as the source of control and is denoted by u. The

controller expression is u =
10

w
(0.11x̂2+ r̈− 100(y− r)− 20(x̂2− ṙ)), where

feedback linearization is applied. The functions above are defined as φ(x, z, u) =

−0.1x2 + 0.1zu and ψ(x, z, u) = −2z − 0.2x2u + 200. The estimate x̂2
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is saturated outside [-100, 100]. The saturation values are chosen such that the

saturation is never active when the system is under state feedback control. The

nominal value for φ used in the observer is φ0(x̂, w, u) = −0.11x2+0.1wu. The

state z is measured and need not be estimated; thus, the observer is second-order. The

gains for the observers are chosen as ε1 = 0.0005 and ε2 = 0.01. The remaining

parameters are chosen as α1 = 71 and α2 = 70. The initial conditions are set at

x1(0) = x2(0) = x̂2(0) = 0, x̂1(0) = 0.02 and z(0) = 100 to match values

consistent with the physical system. The initial conditions are deliberately chosen to

be unequal to ensure peaking in the transient response of the system, lending itself to

a more realistic scenario. The measurement noise v is generated using the Simulink

block “Uniform Random Number”, where the magnitude is limited to [-0.0016, 0.0016]

and the sampling time is set at 0.0008 seconds. The noise magnitude is based on a

1000 c/r encoder. The value of d for the switched observer threshold is 0.005. The

parameters for the nonlinear-gain observers are d = 0.0035 and d2 = 0.05. For the

switched observer, it was shown in [2] that if the system switches before the transient

response of the estimates of the higher order derivatives has subsided and entered

a positively invariant set, the other transients can take (y − x̂1) out of the strip

and subsequently cause the value of ε to switch. If this occurs, the system could be

susceptible to multiple switching until all of the trajectories recover from peaking.

Thus, the switched observer requires the additional component of a switching timer,

based on the peaking period, that prevents the observer from switching before the

trajectories of the estimation error have reached a positively invariant set. The delay

timer is set for 0.15 seconds; details on how to choose this value can be found in [2].

Figure 2.5 shows the transient response of the error x2 − x̂2. As expected, the

switched observer captures the behavior of the linear observer with the parameter ε1.

Unlike the switched observer, the two-piece nonlinear-gain observer does not wait for

the transients to subside in both states before entering the strip. Therefore, the
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system utilizing the nonlinear-gain observer does not perfectly mimic the transient

response of the system with the linear observer shown in Figure 2.5(c). However, the

nonlinear-gain observer is able to recover the performance of the observer in Figure

2.5(d) faster than the switched observer. As a result, the presence of noise is more

noticeable in the estimation error generated with the switched observer than with

the nonlinear-gain observer. Figure 2.6 compares the transient performance of the

three-piece nonlinear-gain observer with the two-piece and two linear-gain high-gain

observers. Clearly, there is no appreciable difference in the estimation error x2− x̂2

between the two nonlinear-gain observers.
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Figure 2.5: Transient response of the error x2 − x̂2 vs. time for a (a) Two-Piece
Nonlinear, (b) Switched, (c) Linear ε1 and (d) Linear ε2 gain high-gain observer.

In Figures 2.7 and 2.8, the estimation error steady-state behavior is practically

identical for all observers shown, with the exception of the linear ε1 observer.

Figure 2.9 shows the tracking error x2 − ṙ during the transient response of

the observer dynamics. The transient response resulting from the system using the

nonlinear-gain observers is faster than both linear observers. As shown in Figures
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Figure 2.6: Transient response of the error x2 − x̂2 vs. time for a (a) Two-Piece
Nonlinear, (b) Three-Piece Nonlinear, (c) Linear ε1 and (d) Linear ε2 gain high-gain
observer.

2.11 and 2.12, the steady-state response of the tracking errors are nearly identical for

four out of the five observers. The nonlinear gain observers exhibit similar system

behavior, as reported in Figure 2.10 and Figure 2.12.

Overall, the nonlinear-gain observers are able to achieve better system perfor-

mance than the two linear-gain observers, while bypassing the complications typically

associated with switching. In general, the two-piece observer is able to perform just

as well as an observer with three distinct gain regions.

45



0 5 10
−5

0

5

(a)

0 5 10
−5

0

5

E
st

im
at

io
n 

E
rr

or

(c)
0 5 10

−5

0

5

(d)

0 5 10
−5

0

5

(b)

Time

Figure 2.7: Steady-state response of the error x2 − x̂2 vs. time for a (a) Two-Piece
Nonlinear, (b) Switched, (c) Linear ε1 and (d) Linear ε2 gain high-gain observer.
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Figure 2.8: State-state response of the error x2 − x̂2 vs. time for a (a) Two-Piece
Nonlinear, (b) Three-Piece Nonlinear, (c) Linear ε1 and (d) Linear ε2 gain high-gain
observer.
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Figure 2.9: Transient response of the tracking error x2 − ṙ vs. time for a
(a) Two-Piece Nonlinear, (b) Switched, (c) Linear ε1 and (d) Linear ε2 gain high-gain
observer.
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Figure 2.10: Transient response of the tracking error x2 − ṙ vs. time for a (a) Two-
Piece Nonlinear, (b) Three-Piece Nonlinear, (c) Linear ε1 and (d) Linear ε2 gain
high-gain observer.
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Figure 2.11: Steady-state response of the tracking error x2 − ṙ vs. time for a
(a) Two-Piece Nonlinear, (b) Switched, (c) Linear ε1 and (d) Linear ε2 gain high-gain
observer.
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Figure 2.12: Steady-state response of the tracking error x2 − ṙ vs. time for a
(a) Two-Piece Nonlinear, (b) Three-Piece Nonlinear, (c) Linear ε1 and (d) Linear ε2
gain high-gain observer.
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2.6 Conclusions

When high-gain observers are utilized in the presence of measurement noise, there

exists a tradeoff between fast state reconstruction and a reasonable state estimation

error. The nonlinear-gain high-gain observers adequately captured the transient and

steady-state performance seen in comparable linear-gain observers. Specifically, the

nonlinearity was chosen to have a higher observer gain during the transient period

and a lower gain afterwards, thus overcoming the tradeoff between fast state recon-

struction and measurement noise attenuation. It appears as if altering the number

of piecewise linear regions in the nonlinear gain function do not have an appreciable

effect on the system performance, at least for the types of systems considered. More-

over, it was assumed that all assumptions hold globally, allowing the use of a converse

Lyapunov theorem of [39] in the proof. By a slight modification of the proof, it is

also possible to require the assumptions to hold only in a given region of the state

space and invoke the converse Lyapunov theorem of [7], which is a regional version

of the theorem of [39]. In particular, the first derivative of the exogenous signals, ς̇ ,

is required to be bounded.
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Chapter 3

High-Gain-Observer Tracking

Performance in the Presence of

Measurement Noise

3.1 Introduction

Prior to this chapter, a significant amount of emphasis has been placed on the per-

formance of the estimation error in the presence of measurement noise. Likewise, the

literature on high-gain observers subjected to measurement noise primarily focuses

on qualifying the system performance and quantifying potential bounds on the esti-

mation error. However, there are many practical problems that seek to achieve more

than just stabilization; namely, path following and other goals that can be worked

into a tracking structure. This is not to suggest that the estimation error becomes a

moot point, however, given the observer estimates will be used in the feedback con-

trol. Yet, a greater insight into the challenges associated with measurement noise can

be gained by investigating the coupling between the observer design choices and the

effects on the tracking performance. For instance, simulation studies have suggested
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that the effect of measurement noise on the tracking error is significantly less than

the effect manifested in the estimation error. If this can be shown mathematically,

even for just a special class of systems, designers may be able to achieve additional

leeway in constructing the high-gain observer and enhanced performance.

In order to explicitly show the importance and prevalence of this topic, Section

3.2 begins the discussion with a nonlinear example. Section 3.3 poses the questions

motivated by the previous section. Next, the class of systems investigated are defined

in Section 3.4. Before delving into the complexity that arises when dealing with

nonlinear systems, Section 3.5 investigates the effect of measurement noise on the

tracking error from a linear systems perspective. The result obtained from the linear

system analysis is extended to a class of nonlinear systems in Section 3.6, utilizing

the framework provided by ordinary differential equations and the unique properties

of multi-time scale systems. Ultimately, the tracking error is shown to be uniformly

bounded in the observer parameter ε.

3.2 Motivation

Consider the example found in [30]

ẋ1 = x2 (3.1)

ẋ2 = x32 + u (3.2)

y = x1 + v , (3.3)

where the xi’s are the the system states, y the output, u the control and v the

measurement noise. The control objective is to have the state x1 track a sinusoid

with an amplitude of 0.1 and a frequency of 0.3 rad/s. Using standard feedback

linearization techniques, the state feedback control is chosen as u = −x32 − (x1 −
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r)− (x2− ṙ)+ r̈. However, only the first state is available for use in the controller.

Therefore, the output feedback control is constructed by replacing the system state

x2 with the estimate obtained from the high-gain observer defined as

˙̂x1 = x̂2 +
2

ε
(y − x̂1) (3.4)

˙̂x2 =
1

ε2
(y − x̂1) . (3.5)

Given the choice of output feedback, in order to prevent peaking in the plant during

the transient period, the controller is saturated outside [-1, 1]. The bounds on the

controller are chosen such that the saturation is not active under state feedback

control. The initial conditions are set at x1(0) = 0.1 and x2(0) = x̂1(0) =

x̂2(0) = 0. Note that x1(0) and x̂1(0) are deliberately chosen to be unequal

to depict a more realistic scenario. Additionally, when the initial conditions for the

system and observer differ, peaking is induced and appears in the transient response.

The measurement noise v is generated using the Simulink block “Uniform Random

Number”, where the magnitude is limited to [-0.00011, 0.00011] and the sampling time

is set at 0.00005 seconds. In order to compare the effect the observer parameter ε

has on the estimation and tracking error, two separate trials are run with ε = 0.001

and ε = 0.0005.

Figure 3.1 shows the steady-state response of the estimation error x2− x̂2 for the

linear observers. In particular, as the value of the observer parameter ε is decreased,

the magnitude of the error significantly increases. However, the error in tracking

the reference signal, displayed in Figure 3.2, shows no appreciable change as ε is

decreased. In fact, for values of ε ∈ [0.0005, 0.01], the steady-state response of the

tracking error is restricted to the range [−0.000029, 0.00011]. Hence, the tracking

error is uniformly bounded in ε. The same phenomenon is exhibited in linear systems

with measurement noise, and will be investigated in a subsequent section.
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Figure 3.1: Steady-state response of the error x2 − x̂2 vs. time for a high-gain
observer with (a) ε = 0.001 and (b) ε = 0.0005.
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Figure 3.2: Steady-state response of the tracking error x2 − x̂2 vs. time for a
high-gain observer with (a) ε = 0.001 and (b) ε = 0.0005.
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3.3 Tracking Performance

This section prepares the reader for the class of systems investigated, and poses the

questions motivated by Section 3.2. Referring back to the example in Section 3.2, the

simulation results suggest that the tracking error, x1 − r, is uniformly bounded in

ε. Let’s investigate this claim further.

Unlike nonlinear representations, the transfer functions of a linear system can

reveal how the measurement noise impacts the tracking error. Before delving into the

details of a time domain analysis, consider the third-order system

ẋ1 = x2 (3.6)

ẋ2 = x3 (3.7)

ẋ3 = a1x1 + a2x2 + a3x3 + bu (3.8)

y = x1 + v , (3.9)

where the xi’s are the system states, y the output and u the control. The variable v

is the measurement noise. Tracking can be achieved by the state feedback controller

u =
1

b
[−k1(x1 − r)− k2(x2 − r(1))− k3(x3 − r(2)) + r(3)] , (3.10)

where r(t) and r(j)(t) are the tracking signal and jth derivative of tracking signal,

respectively. The coefficients k1, k2, and k3 are chosen such that

s3 + (k3 − a3)s
2 + (k2 − a2)s+ (k1 − a1) (3.11)

is Hurwitz. The state estimates for the output feedback control are generated with
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the linear high-gain observer

˙̂x1 = x̂2 +
α1
ε
(y − x̂1) (3.12)

˙̂x2 = x̂3 +
α2
ε2

(y − x̂1) (3.13)

˙̂x3 =
α3
ε3

(y − x̂1) , (3.14)

where the αi’s are designed such that

s3 + α1s
2 + α2s+ α3 (3.15)

is Hurwitz. The output feedback control is constructed by substituting the state

estimates, generated by (3.12)-(3.14), for the states x that appear in (3.10). In this

discussion the control is not saturated, as typically employed to avoid peaking in the

plant during the transient response. In the case of tracking performance, the analysis

is concerned with the system behavior in steady-state, where the saturation is not

active.

Define the change of variables

e1 = x1 − r (3.16)

e2 = x2 − r(1) (3.17)

e3 = x3 − r(2) (3.18)

for the tracking error.
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The transfer functions from the noise to the tracking errors are

E

V
=









E1
V
E2
V
E3
V









=









H1

H2

H3









, (3.19)

where

H1 = −∆2

∆1
H2 = sH1

H3 = s2H1

and

∆1 = ε3s6 + (ε2α1 − ε3a3)s
5

+ (εα2 − ε2a3α1 − ε3a2)s
4

+ (α3 − εa3α2 − ε2a2α1 − a1ε
3)s3

+ (−a1ε2α1 − a3α3 − εa2α2 + α1ε
2k1 + α2k2ε+ α3k3)s

2

+ (−a2α3 − a1εα2 + α2k1ε+ α3k2)s+ (α3k1 − a1α3)

∆2 = (α1ε
2k1 + α2k2ε+ α3k3)s

2 + (α2k1ε+ α3k2)s+ α3k1.

The transfer functionsH1 andH2 are two-frequency-scale transfer functions accord-

ing to the definition of [40]. Therefore, their H∞ norms are of order O(1), i.e. they

are bounded uniformly in ε. The transfer function H3 is not two-frequency-scale,

because setting ε = 0 results in an improper transfer function. However, H3 can be

written as

H3 =
1

ε
H̄3 , (3.20)
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where H̄3 is a two-frequency-scale transfer function. Hence, the H∞ norm of H̄3 is

O(1). This shows that theH∞ norm ofH3 is O(1/ε). Furthermore, for any noise

that is an L2 signal of order O(µ), the output will also be an L2 signal of order

O(µ).

Can a similar result be shown without the aid of frequency domain tools for linear

and nonlinear systems? What happens to the other states in the state vector e for a

system of dimension n? The next two sections seek to answer these questions.

3.4 Problem Formulation

Consider the class of nonlinear systems that can be represented in the form

ẋ = Ax+B[bx(x) + au] (3.21)

y = Cx+ v(t) , (3.22)

where x ∈ R
n is the system states, y ∈ R the measured output, u ∈ R the control

input and v(t) ∈ R the measurement noise. The matrices A ∈ R
n×n, B ∈ R

n

and C ∈ R
1×n are defined as

A =



















0 1 · · · · · · 0

0 0 1 · · · 0
...

. . .
...

0 · · · · · · 0 1

0 · · · · · · · · · 0



















, B =



















0

0
...

0

1



















and

C =
[

1 0 · · · · · · 0
]

,
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where it is assumed that n ≥ 2, which implies that the relative degree of the system

is greater than or equal to two. If this condition is not met, the construction of an

observer is unnecessary; the measured output y is simply used. The function bx(x)

may not be known, and a > 0. The measurement noise is assumed to be a bounded

measurable function, |v(t)| ≤ µ. Given the purpose of this chapter is to investigate

the effects of measurement noise on the high-gain observer manifested in the tracking

error, the following change of variables is defined

ei =







xi − r(t) for i = 1

xi − r(i−1)(t) for 1 < i ≤ n
, (3.23)

where r(t) and r(j)(t) are the tracking signal and its jth derivative. Then, ap-

plying the change of variables in (3.23) to the system (3.21)-(3.22) results in the

representation

ė = Ae+B[b(t, e) + au] (3.24)

y = Ce+ v(t) , (3.25)

where b(t, e) replaces bx(x).

The state feedback controller takes the following form

u = −Ke , (3.26)

where the values of the vectorK are chosen such that the origin of closed-loop system

is asymptotically stable. However, this does not exclude the possibility of employing a

nonlinear control technique. For instance, a continuously-implemented sliding mode

control is one type of nonlinear control scheme that will fit the controller form in

58



(3.26). For instance, the control

u = −βsat
(

k1e1 + k2e2 + · · ·+ kn−1en−1 + en
ρ

)

takes the form u = −Ke inside the boundary layer. It is appropriate to consider

the controller form inside the boundary layer, given the focus is on the steady-state

behavior of the tracking error.

The high-gain observer used to estimate the derivatives of the tracking error is

defined as

˙̂e = Aê+H(y − Cê) (3.27)

and the gain is given by

HT =
[α1
ε

α2
ε2

· · · αn
εn

]

.

Consider the scaled estimation error

zi =
ei − êi
εn−i

, 1 ≤ i ≤ n (3.28)

that when differentiated becomes

εż = A0z + εBδ − B0
1

εn−1
v , (3.29)

where

A0 =



















−α1 1 · · · · · · 0

−α2 0 1 · · · 0
...

. . .
...

−αn−1 · · · · · · 0 1

−αn · · · · · · · · · 0



















, B0 =



















α1

α2
...

αn−1

αn



















(3.30)
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and δ = b(t, e) + au.

The output feedback controller takes the form

u = −Kê = −Ke+KDz , (3.31)

where D = diag[εn−1, εn−2, · · · , 1]. Then, the closed-loop system under the

output feedback control (3.31) can be written in the following form

ė = Ae+B[γ(t, e) + aKDz] (3.32)

εż = A0z + εB[γ(t, e) + aKDz]− 1

εn−1
B0v , (3.33)

where γ(t, e) = b(t, e)− aKe.

To examine the dynamics of the “slow” system (3.32) separately from the dynamics

of the “fast” system (3.33), a decoupled form is necessary. Given the noise enters ż in

(3.33), and z enters ė in (3.32), z should be removed from (3.32). If z is not removed

from ė, the noise entering ż will lead to a more conservative bound on e. The next

two sections address this concern as the bound on the tracking error is constructed.

3.5 Linear Systems Exploration

To adapt the general form given in (3.32)-(3.33) to a class of linear systems, we

require that b(t, e) = b1(t)+ θT e be linear in e and γ(t, e) = b1(t)+ γ̄e, where

γ̄ = θT − aK . In preparation for the change of variables that will decouple the

differential equations, write (3.32)-(3.33) as

ė = A11e+ A12z +Bb1(t) (3.34)

εż = A21e+ A22z + εBb1(t)−
1

εn−1
B0v , (3.35)
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where

A11 = A+Bγ̄ =



















0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 · · · · · · 0 1

θ1 − ak1 θ2 − ak2 · · · · · · θn − akn



















,

A12 = BaKD =



















0 0 · · · · · · 0

0 0 · · · · · · 0
...

...

0 · · · · · · 0 0

εn−1ak1 εn−2ak2 · · · · · · akn



















,

A21 = εBγ̄ = ε



















0 0 · · · · · · 0

0 0 · · · · · · 0
...

...

0 · · · · · · 0 0

θ1 − ak1 θ2 − ak2 · · · · · · θn − akn



















and

A22 = A0 + εBaKD =



















−α1 1 0 · · · 0

−α2 0 1 · · · 0
...

. . .
...

−αn−1 · · · · · · 0 1

−αn + εnak1 εn−1ak2 · · · · · · −εakn



















.

In order to remove the “fast” dynamics from the “slow” system, and vis versa, the

singularly perturbed system (3.34)-(3.35) is transformed into a block-diagonal form

provided in [35]; see Appendix B for further details. The change of variables, that
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will provide the desired setup is

ψ = e− εMφ (3.36)

εφ = εz + εL(ε)e (3.37)

and exist for matrices M and L that satisfy the linear algebraic equations

0 = ε(A11 − A12L)M −M(A22 + εLA12) + A12 (3.38)

0 = A21 − A22L+ εL(A11 − A12L), (3.39)

respectively. Alternatively, (3.38)-(3.39) can be written as

0 = ε(A+BθT − BaK − BaKDL)M

−M(A0 + εBaKD + εLBaKD)

+BaKD

(3.40)

0 = −εBaK−(A0+εBaKD)L+εL(A+BθT−BaK−BaKDL), (3.41)

and is the form that will be used for all subsequent derivations. Rewrite (3.40) as

MA0 = BaKD + ε(A+BθT − BaK − BaKDL)M

− εM(I + L)BaKD

and bring A0 to the right-hand side

M = BaKDA−1
0 + ε(A+ BθT − BaK − BaKDL)MA−1

0

− εM(I + L)BaKDA−1
0 .

(3.42)
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Hence, for sufficiently small ε, (3.42) is a contraction mapping. Therefore, we can

solve for M using successive approximations [30]. Define

Mk+1 = BaKDA−1
0 + ε(A+BθT − BaK − BaKDL)MkA

−1
0

− εMk(I + L)BaKDA−1
0 .

(3.43)

According to [35], after k iterations the exact solution M is approximated to within

O(εk) error. Differentiating (3.36) yields

ψ̇ = ė−M(εφ̇)

= (· · · )− 1

εn−1
MB0v .

Therefore, we need MB0 = O(εn−1) to eliminate the negative powers of ε from

ψ̇. Note the following properties

A−1
0 B0 =



















0 0 · · · · · · − 1
αn

1 0 · · · · · · −α1
αn

0 1 0 · · · −α2
αn

...
. . .

...

0 0 0 1 −αn−1
αn





































α1

α2
...

αn−1

αn



















=



















−1

0
...

...

0



















,

A−2
0 B0 =



















0

−1

0
...

0



















and
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DA−1
0 B0 =



















εn−1 0 · · · · · · 0

0 εn−2 0 · · · 0
...

. . .
...

0 · · · · · · ε 0

0 · · · · · · 0 1



















.

As the matrix A0 is raised to progressively higher powers and multiplied by B0, the

only nonzero element in the product moves down the vector.

Now, show that MB0 = O(εn−1) with the following argument:

M0 = (· · · )DA−1
0

M1 = (· · · )DA−1
0 + ε(· · · )DA−2

0

M2 = (· · · )DA−1
0 + ε(· · · )DA−2

0 + ε2(· · · )DA−3
0

M3 = (· · · )DA−1
0 + ε(· · · )DA−2

0 + ε2(· · · )DA−3
0 + ε3(· · · )DA−4

0

Mn−2 = (· · · )DA−1
0 + ε(· · · )DA−2

0 + · · ·+ εn−2(· · · )DA−(n−1)
0

+ εn−1(· · · ) .

Then,

MB0 = (· · · )DA−1
0 B0 + ε(· · · )DA−2

0 B0 + · · ·

+ εn−2(· · · )DA−(n−1)
0 B0 + εn−1(· · · )B0

=Mn−2B0 +O(εn−1)

and

DA−i
0 B0 = O(εn−i)

implying that

MB0 = O(εn−1) . (3.44)

This shows that ψ is O(µ).
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Alternatively, we have

M0 = B(· · · )
M1 = B(· · · ) + εAB(· · · )
M2 = B(· · · ) + εAB(· · · ) + ε2A2B(· · · )

Mn−2 = B(· · · ) + εAB(· · · ) + · · ·+ εn−2An−2B(· · · )
+ εn−1(· · · ) ,

where

B =



















0
...

0

0

1



















, AB =



















0
...

0

1

0



















, A2B =



















0
...

1

0

0



















and An−2B =



















0

1

0
...

0



















.

Then,

M =Mn−2 +O(εn−1)

and

M =



















O(εn−1)

O(εn−2)
...

O(ε)

O(1)



















. (3.45)

As a consequence of linearity,

φ = O
( µ

εn−1

)

. (3.46)
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Then, combining (3.45) and (3.46) results in

εMφ =





















O(εµ)

O(µ)

O
(µ

ε

)

...

O
( µ

εn−2

)





















. (3.47)

Given ψ is O(µ), we can see that both e1 and e2 are O(µ), while the other com-

ponents of e are of the order O(µ/εi) with increasing powers of i.

Theorem 3.1: Consider the closed-loop system in (3.32)-(3.33), where b(t, e) is

assumed to be linear in e. Then, for a linear system of dimension n, the tracking

error and subsequent derivatives satisfy

|ei(t)| = O(µ), ∀i = 1, 2 (3.48)

|ei(t)| = O
( µ

εi−2

)

, ∀2 < i ≤ n (3.49)

for v ≤ µ.

3.6 Nonlinear Systems Extension

To isolate the dynamics of the tracking error, the decomposition method proposed in

[49] is utilized to eliminate the fast states, z, from the slow equation (3.32). In general,

the decomposition is valid for singularly perturbed differential systems. The goal of

the change of variables is to transform the system (3.32)-(3.33) into the following
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form

ψ̇ = F (t, ψ, ε) (3.50)

εφ̇ = G(t, ψ, φ, ε) . (3.51)

The change of variables that achieves the transformation (3.50)-(3.51) is found by

setting v = 0 in (3.32)-(3.33) and following the method of [49]; see Appendix C.

Note that the change of variables is actually applied to (3.32)-(3.33) for v 6= 0. Let

f(t, e, z, ε) = Ae+B[γ(t, e) + aKDz] (3.52)

g(t, e, z, ε) = A0z + εB[γ(t, e) + aKDz] . (3.53)

The integral manifold is defined as z = h(t, e, ε); see Appendix C for a definition

of an integral manifold. A valid expression for h(t, e, ε) is found by satisfying the

equation

ε
∂h

∂t
+ ε

∂h

∂e
f(t, e, h, ε) = g(t, e, h, ε)

or, equivalently,

ε
∂h

∂t
+ε

∂h

∂e
[Ae+Bγ(t, e)+BaKDh] = A0h+εB[γ(t, e)+aKDh] . (3.54)

Furthermore, the function h can be represented as a Taylor series in ε, i.e. h =

h0(t, e) + εh1(t, e) + · · · . The expressions for the hi’s can be found by substi-

tuting the expansion for h into the partial differential equation (3.54). Matching the

coefficients of like powers of ε, it can be shown that the first set of coefficients are

h0 = 0

h1 = −A−1
0 Bγ(t, e) ,
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where Ei is defined as an n × n diagonal matrix, whose ith diagonal element is 1.

Let φ = z − h(t, e, ε) and w = e− ψ. Then,

ψ̇ = Aψ + B[γ(t, ψ) + aKDh(t, ψ, ε)]

, f(t, ψ, h(t, ψ, ε), ε)
(3.55)

ẇ = f(t, ψ + w, φ+ h(t, ψ + w, ε), ε)− f(t, ψ, h(t, ψ, ε), ε)

= Aw +B[γ(t, ψ + w)− γ(t, ψ)

+ aKD[φ+ h(t, ψ + w, ε)− h(t, ψ, ε)]]

, f1(t, ψ, w, φ, ε)

(3.56)

εφ̇ = g(t, ψ + w, φ+ h(t, ψ + w, ε), ε)

− g(t, ψ + w, h(t, ψ + w, ε), ε)

− ε
∂h(t, ψ + w, ε)

∂e
[f(t, ψ + w, φ+ h(t, ψ + w, ε), ε)

−f(t, ψ + w, h(t, ψ + w, ε), ε)]

=

[

A0 + εBaKD − ε
∂h

∂e
BaKD

]

φ

, Z(t, ψ, w, φ, ε) .

(3.57)

Define

F (t, ψ, ε) = f(t, ψ, h(t, ψ, ε), ε)

= Aψ +Bγ(t, ψ) +BaKDh(t, ψ, ε)

G(t, ψ, φ, ε) = Z(t, ψ, εH(t, ψ, φ, ε), φ, ε)

=

[

A0 + εBaKD + ε
∂h(t, ψ + εH, ε)

∂e
BaKD

]

φ
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introduced in (3.50)-(3.51). According to [49], H(t, ψ, φ, ε) satisfies the equation

0 = ε
∂H

∂t
+ ε

∂H

∂ψ
F (t, ψ, ε) +

∂H

∂φ
Z(t, ψ, εH, φ, ε)

− f1(t, ψ, εH, φ, ε)

(3.58)

and has the asymptotic expansion H = H1 + εH2 + ε2H3 + · · · , where Hi =
Hi(t, ψ, φ). Expanding the function f1 as a power series in ε results in

f1(t, ψ, εH, φ, ε) = f01 (t, ψ, φ) + εf11 (t, ψ, φ) + · · · .

Solving for the coefficient f01 yields the expression

f01 (t, ψ, φ) = f1(t, ψ, 0, φ, 0) = aBKEnφ . (3.59)

Solving for the coefficient f11

f11 (t, ψ, φ) =
∂f1(t, ψ, 0, φ, 0)

∂w
H1 +

∂f1(t, ψ, 0, φ, 0)

∂ε

=

[

A+B
∂γ(t, ψ)

∂e
+BaKEn

∂h(t, ψ, 0)

∂e

]

H1

+BaKEn−1φ .

However, consider that

h(t, e, ε) = εh1(t, e) + ε2h2(t, e) + · · ·
∂h(t, e, ε)

∂e
= ε

∂h1
∂e

+ ε2
∂h2
∂e

+ · · ·
∂h(t, e, 0)

∂e
= 0 .
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Further simplifying the right-hand side of f11

f11 (t, ψ, φ) =

[

A+ B
∂γ(t, ψ)

∂e

]

H1 +BaKEn−1φ . (3.60)

Next, the coefficient f21 requires the following calculations

f21 (t, ψ, φ) =
1

2

[

d2f1(t, ψ, εH(t, ψ, φ, ε), φ, ε)

dε2

]∣

∣

∣

∣

ε=0

= AH2 +BaKEn−2φ

+
1

2
B
d2

dε2
[γ(t, ψ + εH) + aKDh(t, ψ + εH, ε)

−aKDh(t, ψ, ε)]

Realize that

h(t, ψ + εH, ε)− h(t, ψ, ε) = ε[h1(t, ψ + εH)− h1(t, ψ)]

+ ε2[h2(t, ψ + εH)− h2(t, ψ)] + · · ·

is a valid expansion, where h0 = 0. Then,

h1(t, ψ + εH) = h01(t, ψ + εH) + εh11(t, ψ + εH) + · · ·

= h1(t, ψ) +
∂h1(t, ψ)

∂e
H1 + · · ·

leading to the conclusion that

h(t, ψ + εH, ε)− h(t, ψ, ε) = ε2
∂h1(t, ψ)

∂e
H1 + · · · .
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With a few more calculations

dγ(t, ψ + εH)

dε
=
dγ(t, ψ + εH1 + ε2H2 + · · · )

dε

=
∂γ(t, ψ + εH1 + ε2H2 + · · · )

∂e
(H1 + 2εH2 + · · · )

and
d2γ

dε2

∣

∣

∣

∣

ε=0
= HT

1 Γh(t, ψ)H1 + 2
∂γ(t, ψ)

∂e
H2 ,

where Γh is the Hessian matrix of γ with respect to e. Ultimately,

f21 (t, ψ, φ) = AH2 +BaKEn−2φ

+B

[

∂γ(t, e)

∂e
H2 + aKEn

∂h1(t, ψ)

∂e
H1

]

.
(3.61)

The remaining terms in the asymptotic expansion of f1 can be found in a similar

manner.

Return to (3.58), substitute in the expansion for H(t, ψ, φ, ε) and solve for the

Hi’s by matching the coefficients of like powers of ε. To obtain the expression for

H1, gather the coefficients of (3.58) that do not contain ε and set that equation to

zero. For the remaining Hi’s, gather the coefficients that contain εi−1 and set the

resulting equation to zero to solve for Hi. For H1

0 =
∂H1

∂φ
A0φ− BaKEnφ ,

where the coefficients without ε are included, and the equation set to zero. Solving

for H1

H1 = BaKEnA
−1
0 φ . (3.62)
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For H2

0 = BaKEnA
−1
0 BaKEnφ+

∂H2

∂φ
A0φ− ABaKEnA

−1
0 φ

− B
∂γ(t, ψ)

∂e
BaKEnA

−1
0 φ

− BaKEn−1φ ,

where the coefficients of ε are included and the equation set to zero. Solving for H2

H2 = [ABaKEnA
−1
0 +B

∂γ(t, ψ)

∂e
BaKEnA

−1
0

+BaKEn−1

− BaKEnA
−1
0 BaKEn]A

−1
0 φ .

(3.63)

The coefficients of ε2 set to zero are

0 =
∂H2

∂t
+
∂H2

∂ψ
[Aψ +Bγ(t, ψ)]

+
∂H3

∂φ
A0φ+

∂H2

∂φ
BaKEnφ

+
∂H1

∂φ

[

BaKEn−1 +
∂h1(t, ψ)

∂e
BaKEn

]

φ

− AH2 − BAKEn−2φ

− B

[

1

2
HT
1 Γh(t, ψ)H1 +

∂γ(t, ψ)

∂e
H2

+aKEn
∂h1(t, ψ)

∂e
H1

]

,

(3.64)

where
∂H2

∂ψ
=

∂

∂ψ

[

B
∂γ(t, ψ)

∂e
BaKEnA

−2
0 φ

]

,
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∂γ

∂e
B =

∂γ

∂en
,

∂H2

∂t
= B

∂

∂t

[

∂γ(t, ψ)

∂en

]

aKEnA
−2
0 φ

and aKEnA
−2
0 φ is a scalar. Substituting in the values above into (3.64) reveals

that all terms, except one, have the vector φ only on the very right most side of the

expression. The term that is the exception is

−1

2
BφTA−T

0 EnK
TaBTΓh(t, ψ)BaKEnA

−1
0 φ , (3.65)

where the vector φ appears in two locations. Aside from (3.65), the vector φ always

appears paired with aKEnA
−2
0 and becomes a scalar quantity; dividing both sides

of the equation by the scalar quantity eliminates φ from all terms except (3.65). To

solve forH3, the integral, with respect to φ, is taken of (3.64). However, the solution

supplied by the term in (3.65) is unclear. To eliminate (3.65) from (3.64), notice that

BTΓh(t, ψ)B =
∂2γ(t, ψ)

∂e2n

and require that the function b be linear in en. This requirement implies that

∂2b

∂e2n
= 0 .

Then, the term (3.65) is zero. For higher-order systems, more complicated terms like

(3.65) appear. However, there is no obvious way in which to eliminate their presence,

and solve for the remaining Hi’s. Therefore, the remainder of this discussion will

focus on the case for n = 3, where H3 will not appear in the expansion of H and

no additional restrictions are placed on the system structure.
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According to [49],

e = ψ + εH(t, ψ, φ, ε) (3.66)

z = φ+ εh̄(t, ψ + εH(t, ψ, φ, ε), ε) (3.67)

exists for choices of H and h that satisfy the partial differential equations (3.58) and

(3.54), respectively. Moreover, for (3.32)-(3.33), the right-hand side of (3.67) can be

written with εh̄ instead of h, because h0 = 0. Hence, the inverse transformation

must also take the form of an O(ε) perturbation, namely

ψ = e+ εQ(t, e, z, ε) (3.68)

φ = z + εq(t, e, z, ε) . (3.69)

Taking the derivative of (3.68) and (3.69) yields

ψ̇ = ė+ ε
∂Q

∂t
+ ε

∂Q

∂e
ė+

∂Q

∂z
ż

= F (t, ψ, ε)
(3.70)

εφ̇ = εż + ε2
∂q

∂t
+ ε2

∂q

∂e
ė+ ε

∂q

∂z
ż

= G(t, ψ, φ, ε) ,

(3.71)

where v = 0 in the expressions for ė and ż in (3.32) and (3.33), respectively. For

v 6= 0

ψ̇ = F (t, ψ, ε)− 1

εn−1

∂Q

∂z
B0v (3.72)

εφ̇ = G(t, ψ, φ, ε)− 1

εn−1

[

I +
∂q

∂z

]

B0v (3.73)

which reveals that the fast states are eliminated from the slow equation, and the
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presence of measurement noise adds an additional term multiplied by the noise.

For a system with dimension n = 3,

H = H1 + εH2 + ε2HR , (3.74)

where HR = HR(t, ψ, φ, ε) and is O(1). The change of variables in (3.66)-(3.67)

can be written as

e = ψ + εH1 + ε2H2 + ε3HR

= ψ + εBaKE3A
−1
0 φ

+ ε2
[

ABaKE3A
−1
0 +B

∂γ(t, ψ)

∂e
BaKE3A

−1
0

+BaKE2 − BaKE3A
−1
0 BaKE3

]

A−1
0 φ

+ ε3(· · · )

(3.75)

z = φ+ εh̄(t, ψ + εH(t, ψ, φ, ε), ε)

= φ+ εh1(t, ψ + εH) + ε2h2(t, ψ + εH) + ε3(· · · )

= φ+ εh1(t, ψ) + ε2
∂h1(t, ψ)

∂e
H1 + ε2h2(t, ψ) + ε3(· · · ) .

(3.76)

Applying (3.76) to (3.33), for v 6= 0, results in

εż = A0z + εB[γ(t, e) + aKDz]− 1

ε2
B0v

= εφ̇+ ε2
[

∂h1
∂t

+
∂h1
∂ψ

ψ̇

]

+ ε2
∂h1
∂e

BaKE3A
−1
0 (εφ̇) + ε3(· · · )

(3.77)
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and solving for εφ yields

εφ̇ = −
[

I + ε2
∂h1(t, ψ)

∂e
BaKE3A

−1
0

]−1

P , (3.78)

where

P = ε2
[

∂h1
∂t

+
∂h1
∂ψ

ψ̇

]

− A0z − εB [γ(t, e) + aKDz]

+
1

ε2
B0v + ε3(· · · ) .

The term of interest contains the measurement noise, and can be represented as

[

−I + ε2
∂h1(t, ψ)

∂e
BaKE3A

−1
0 + ε3(· · · )

]

1

ε2
B0v , (3.79)

where the matrix identity (I + L)−1 = I − L+ L2 − L3 + · · · is used. Notice

that E3A
−1
0 B0 = [0 0 · · · 0]T . Hence, (3.79) reduces to

− 1

ε2
B0v + ε(· · · )v

showing that

φ = O
( µ

εn−1

)

= O
( µ

ε2

)

. (3.80)

Move ψ̇ to the left-hand side and take the derivative of (3.75). Then, according to

(3.72),

ψ̇ = F (t, ψ, ε)+
1

ε2
BaKE3A

−1
0 B0v

+
1

ε

[

ABaKE3A
−1
0 + B

∂γ(t, ψ)

∂e
BaKE3A

−1
0

+BaKE2 − BaKE3A
−1
0 BaKE3

]

A−1
0 B0v

+ ε2(· · ·+ 1

ε2
B0v + · · · ) .

(3.81)
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The first two terms in (3.81) with εφ̇ are eliminated, due to the propertyE3A
−1
0 B0 =

E3A
−2
0 B0 = E2A

−1
0 B0 = 0. However, the ε2 term does not possess this prop-

erty and remains present in (3.81). Given the origin of the closed-loop system in

(3.32)-(3.33) is designed to be exponentially stable and the last term in (3.81) is

O(µ), ψ = O(µ). Repeating the argument from Section 3.5,

B =









0

0

1









, AB =









0

1

0









and A2B =









1

0

0









showing that raising the A matrix to a power determines which terms of (3.75) enter

each component of the e vector.

Proposition 3.1: For a closed-loop nonlinear system of the form (3.32)-(3.33), with

bounded measurement noise v ≤ µ, the tracking error, first derivative of the track-

ing error and second derivative of the tracking error are of the following orders of

magnitude

e1 = ψ1 + ε3(· · · ) = O(µ) (3.82)

e2 = ψ2 + ε2(· · · )φ+ ε3(· · · ) = O(µ) (3.83)

e3 = ψ3 + ε(· · · )φ+ ε3(· · · ) = O
(µ

ε

)

, (3.84)

where the expression in (3.75) is used.

Moreover, the relationship shown in (3.48)-(3.49) for the linear system explored

in Section 3.5 holds for a nonlinear system of dimension n = 3.
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3.7 Conclusions

When high-gain observers are employed in the presence of measurement noise, there

exists a tradeoff between fast state reconstruction and a reasonable state estimation

error. However, this sort of compromise does not exist when the primary interest

is in the system tracking error. It was argued by constructing the system transfer

functions from the noise to the tracking error and its derivatives, that the error and

its first derivative are bounded uniformly in ε. Using singular perturbation analysis,

the results were extended to a class of linear systems of dimension n. After the

tracking error and its first derivative, all remaining derivatives of the tracking error

are inversely proportional to increasing powers of ε. Subsequently, a similar result

was derived for a class of nonlinear systems using the special features of singularly

perturbed systems, further generalizing the results reported for linear systems. Due

to the form of the nonlinearity, the result for nonlinear systems is restricted to a

third-order system.

Although it has been shown that the tracking error is more immune to the effects of

measurement noise than the estimation error for both the linear and nonlinear forms

considered, this does not mean ε can be made arbitrarily small. It is important to keep

in mind that the estimates of the states will still be used in the controller. However,

the control may be able to tolerate a larger amount of error than the state estimates,

providing some additional flexibility in choosing the value of ε when tracking is the

focus.
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Chapter 4

Enhancing High-Gain Observer

Performance with Wavelet

Denoising

Using wavelets to extract various signal components for compression, feature detection

and denoising is a common approach in offline signal processing; see [17, 18, 36, 42]

and the references therein. Recently, the techniques for signal denoising offline have

been extended to produce acceptable results for online systems, [10, 34].

The goal of this chapter is to explore the role of wavelet denoising in improving

the performance of high-gain observers subjected to measurement noise. In order

to provide a basis for understanding the complexity of wavelets, the chapter begins

with a brief introduction in Section 4.1. Section 4.2 is intended to familiarize the

reader with the issues commonly addressed in designing a denoising algorithm with

wavelets. The discussion in Section 4.2 is extended to include the intricacies associated

with a real-time wavelet filter in Section 4.3. A simulation investigating the design

parameters, their varying success in denoising the measurement and a comparison

with the traditional lowpass filter is provided in Section 4.4. The last section addresses
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directions for future work.

4.1 A Wavelet Introduction

Often times, we ignore the existence of noise in our systems to live in an idealized

world where control algorithms are simplified, proofs are elegant and assumptions

are abundant. However, a system with no noise is hardly a realistic scenario. When

noise is accounted for, it is generally assumed to have some special characteristics

that allow us to apply a particular type of filter (i.e. Kalman, lowpass, bandpass,

etc.). Yet, what if the noise is not so easily compartmentalized? The noise may

not be localized within a particular bandwidth, or may occupy the same frequency

space as the signal. When this occurs, traditional denoising techniques only utilizing

the temporal or frequency data cannot successfully remove the presence of noise

without causing attenuation of the desired signal. Moreover, if an algorithm could

localize in time and frequency where the noise occurs, a more thorough removal of

the undesirable signal components can be accomplished. Frequently, the noise is not

obviously periodic, and a non-stationary approach is necessary. This leads to the

introduction of wavelets.

Wavelets, like Fourier analysis, provide another domain in which to analyze sig-

nals. In Fourier analysis, a Fourier transform is used to decompose the signal into its

frequency components. Similarly, a wavelet can also be used to transform a signal into

the frequency domain. The primary difference is that a wavelet transform provides

the concentration of frequencies at each time instant. To follow the development of

the wavelet transform from the Fourier perspective, see [42]. Another mathematically

formal history of wavelets can be found in [14]. Some concerns that should be ad-

dressed when approaching the task of denoising with wavelets include how the noise

enters the system (additive, multiplicative), the noise profile (smooth, erratic, impul-

80



sive, etc.) and the signal to noise ratio (SNR), see [54] and [9]. Moreover, it is not

necessarily trivial to find the optimal wavelet and denoising technique pair; however,

it can be done for certain classes of problems, for instance [36].

4.1.1 The Anatomy of a Wavelet Transform:

Continuous-Time

A wavelet system is composed of two components: the wavelet function, known as

the mother wavelet and the scaling function. The scaling function is used to shift,

compress and stretch the mother wavelet. In particular, the wavelet expansion is

used to transform the signal into a domain where both time and frequency are lo-

calized. Moreover, the representation of the signal is compressed into a few wavelet

(expansion) coefficients. Then, these altered versions of the mother wavelet paired

with the transform coefficients can be used to reconstruct the original signal. This

idea is analogous to the the Fourier series using sinusoids to build a desired signal.

Unlike the expansion set (sinusoids) for the Fourier series, there is no definite form for

the mother wavelet function. In fact, there is an infinite number of choices available.

This chapter will focus on the most commonly used wavelets to cleanly capture

the signal multi-scale behavior; Haar, Daubechies, Coiflets and Symlets. The Haar

wavelet is part of the well-known and commonly used Daubechies family and is equiv-

alent to the Daubechies order 1 transform. Some properties beyond simplicity, in the

case of the Haar wavelet, that make these wavelets prime candidates for signal de-

noising, is that all are compactly supported, orthogonal and have discrete implemen-

tations. Moreover, the transforms not only conserve the signal energy, but compress

it into a small number of coefficients; this is an important characteristic in the ap-

plication of denoising. Furthermore, the least amount of asymmetry appears in the

Symlet wavelets. The discrete wavelet transform contains the mother wavelet
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Ψj,k(t) = 2j/2Ψ(2jt− k) (4.1)

and the scaling function

Φj,k(t) = 2j/2Φ(2jt− k) , (4.2)

where j ∈ Z and k ∈ Z. The variables j and k are used to manipulate the

mother wavelet. From a practical standpoint, the value of j controls the resolution

of the signal (as interpreted by the scaling function). For j > 0 the scaling function

becomes narrower; this translates to capturing smaller details of the signal under the

transform. Conversely, for j < 0 the information provided by the wavelet transform

is coarser. The notion of multiple scales is at the heart of what makes wavelets

so attractive for denoising and compression applications. The fact that the signal

components can be separated, and represented on different time scales, allows us to

single out the various frequencies occurring at different times. The variable k simply

shifts the functions to cover the entire signal space. Specifically, the Haar mother

wavelet and the scaling functions are, respectively,

Ψ(t) =























1, 0 ≤ t <
1

2

−1,
1

2
≤ t < 1

0, else

(4.3)

and

Φ(t) =







1, 0 ≤ t < 1

0, else
. (4.4)

A closed-form expression is not available for all wavelet families, or necessarily as
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easy to express in a clear fashion. For illustration and ease of understanding, the

expression for the Haar wavelet is provided.

Hence, the above functions can be used to form an orthonormal and compact

support basis for the signal of interest. The original signal f(t) can be represented

as

f(t) =

∞
∑

k=−∞
aj0(k)Φj0,k(t) +

∞
∑

k=−∞

∞
∑

j=j0

dj(k)Ψj,k(t) , (4.5)

where the integer j0 dictates the coarsest scale whose space is spanned by the scaling

function; in general, the choice of j0 depends on the signal itself and the desired

resolution. In the context of this work, f(t) always refers to the output signal y

corrupted by measurement noise. The approximation or average (low frequency)

coefficients are

aj0(k) =

∫ ∞

−∞
f(t)Φj0,k(t)dt (4.6)

and the fluctuation or detail (high frequency) coefficients are

dj(k) =

∫ ∞

−∞
f(t)Ψj,k(t)dt . (4.7)

It should be noted that the above notation is intended for a discrete wavelet, even

though the function itself is piecewise continuous. In general, discrete wavelets are not

actually discrete in terms of the time variable. Rather, the dilation and translation

effects are discrete. The analysis and synthesis equations listed above assume that

the signal is infinite, and that all calculations are performed offline. Naturally, a finite

and truly discrete model is necessary to implement this in real-time and digitally.
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4.1.2 The Anatomy of a Wavelet Transform: Discrete-Time

We will now proceed to discuss the discrete-time wavelet implementation, focusing on

the Haar wavelet. However, the process for Daubechies order 4 wavelet is similar. As

the above discussion implies, the information contained in the signal is encapsulated

by the wavelet transform coefficients (4.6) and (4.7), and the basis provided by the

functions shown in (4.1) and (4.2). The discrete-time representations for the Haar

wavelet approximation and detail coefficients are, respectively,

a(n) =
f̂(2n− 1) + f̂(2n)√

2
(4.8)

and

d(n) =
f̂(2n− 1)− f̂(2n)√

2
, (4.9)

where f̂ is the sampled signal with a sampling period of T , and n ∈ [1,
N

2
] where

N is the total number of samples. The inverse mapping is

f̂(n) =















a(n) + d(n)√
2

, ∀n odd

a(n)− d(n)√
2

, ∀n even

. (4.10)

At this point, we could easily take (4.8) through (4.10) and construct the necessary

matrices to transform the desired signal into the time-frequency (“wavelet”) domain,

and back into the time-domain. However, the expressions for the approximation and

detail coefficients given in (4.8) and (4.9) are generally not that simplistic nor in-

formative. We seek to divide the coefficients into separate frequency scales, where

the signal is separated into its frequency subbands via a filter bank. The perspec-

tive gained from multiresolution analysis, via filter banks, will subsequently provide
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invaluable insight when choosing a denoising scheme.

Typically, filter banks are chosen to implement discrete wavelet transforms, be-

cause they provide a relatively fast computation time (O(N) complexity), reduced

data storage and convenient signal processing interpretation. With filter banks in

mind, the average coefficients are now represented as a convolution

a(n) = f̂ ∗ l̄[2n] (4.11)

between the signal of interest and the lowpass filter l̄. The detail coefficients

d(n) = f̂ ∗ h̄[2n] (4.12)

are found via a convolution between the signal and the highpass filter h̄. Moreover,

both sets of coefficients are down-sampled by 2, given the process of filtering with both

a lowpass and highpass filter creates twice the information necessary to reconstruct

the original signal. These analysis filters are wavelet transform dependent, and are

constructed using the mother wavelet (4.1) and scaling (4.2) functions defined above.

Specifically, the lowpass filter in (4.11) is calculated from

Φ(t) =
∑

m

l(m)
√
2Φ(2t−m) , (4.13)

where l̄[n] = l[−n], and the highpass filter in (4.12) is calculated from

Ψ(t) =
∑

m

h̄(m)
√
2Φ(2t−m) , (4.14)

where h̄[n] = h[n]. For a Haar filter l = [

√
2

2
,

√
2

2
] and h = [−

√
2

2
,

√
2

2
].

Thus, the implementation of the discrete wavelet transform can be viewed as nothing

more than FIR filter design, generally referred to as conjugate mirror filters. The
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reconstructed signal is given by

f̂(n) = ǎ ∗ l̃[n] + ď ∗ h̃[n] . (4.15)

The coefficients (4.11) and (4.12) are up-sampled by 2, resulting in ǎ and ď, re-

spectively. The details concerning the construction of lowpass and highpass synthesis

filters l̃ and h̃, along with the necessary and sufficient conditions on the analysis and

synthesis filter pairs, is available in [42]. For this discussion, the synthesis filters for

a Haar transform are l̃ = [

√
2

2
,

√
2

2
] and h̃ = [

√
2

2
, −

√
2

2
]. These filter pairs

allow for a perfect reconstruction of the original signal, barring any intentional ma-

nipulation of the wavelet coefficients in between applying the analysis and synthesis

filters.

Lifting is another widely used method. Lifting seeks to improve the wavelet prop-

erties, in the context of perfect reconstruction filters (the methodology used above). It

can be used to both design the form of the wavelets, in addition to implementing the

discrete wavelet transform. Lifting tends to generate filter implementations that re-

sult in a faster runtime, when compared to other approaches. In theory, every perfect

reconstructible filter bank can be expressed in terms of lifting, [27,42]. In the context

of this work, we did not employ lifting techniques, given perfect reconstruction filters

yielded satisfactory results.

4.2 Denoising: Offline

The material covered thus far is a small portion of the entire picture. Unfortunately,

the above ideas in isolation do not guarantee a successful implementation of a real-

time discrete-time wavelet transform. Thus, before tackling the construction of a real-

time filter, we first address the components associated with wavelet denoising that

are necessary for both offline and real-time denoising applications. In this section,
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we will temporarily neglect the issues that arise when implementing the filter in real-

time. Details not covered here on wavelet denoising, and wavelet packet denoising,

are discussed in [15].

4.2.1 Wavelet Type

The first step in developing a wavelet denoising algorithm, is to settle on a wavelet

type. There are a plethora of mother wavelets and scaling functions available; in some

cases, you may even want to create your own. The more common wavelet families

include Daubechies, Symlets, Coiflets, Meyer and other biorthogonal functions, to

name a few. For a more lengthy discussion on the various wavelet families available

and their numerous properties, see [9, 14, 42]. Although we have focused on the first

three transform families in this work, that does not preclude the inclusion of another

type of wavelet. In fact, a different choice may achieve a smaller bound on the error in

steady-state than what can be achieved with the wavelets presented. However, there

will most likely be a tradeoff in the complexity. The authors of [11, 41, 51] suggest a

number of tools that can help determine the best wavelet for a given system. However,

only [41] and [11] also consider whether or not the choice will result in effective

denoising.

The type of wavelet function is heavily dependent on the type of noise in the

system, and potentially the signal itself. If the goal is to remove short and sporadic

noise, a wavelet function that captures this type of behavior is more appropriate. For

noise that is relatively smooth and omnipresent, a continuous and sufficiently smooth

wavelet is better suited, [9] and [54].
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4.2.2 Wavelet Transform Levels

The number of levels is the number of times the signal is concurrently subjected to the

wavelet transform. For instance, recall the filter bank implementation of the discrete

wavelet transform. Initially, the output is simultaneously passed through a lowpass

(L) and highpass (H) filter, then down-sampled. This generates the level-1 coeffi-

cients. If the approximation coefficients (from the lowpass filter) are subsequently

passed through another set of low and highpass filters, followed by down-sampling,

the resultant would be the level-2 coefficients. We could repeat these steps for a

N-level wavelet transform, where N is the number of cascaded filter banks. This

technique is displayed in Figure 4.1.

Figure 4.1: Diagram of a discrete wavelet transform implementation.

Each subsequent level results in a more detailed scale of the signal behavior. The

first level is always the coarsest approximation of the signal. The coefficients from

the remaining levels are intended to add finer detail to the signal reconstruction. It

is worth noting, that different signal characteristics will appear under different scales
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of the transform. Thus, the idea of multiresolution is to capture the majority of the

noise within a finite number of scales. Hence, more scales does not always mean better

results. In fact, the fewer number of coefficients necessary to capture the majority

of the signal energy, the better the chance of removing the noise without eliminating

significant features of the desired signal. The goal is to isolate the signal energy in

a limited number of (relatively) large coefficients, while eliminating the remaining

coefficients that are likely to contain the noise.

4.2.3 Thresholding Scheme

The basic premise behind thresholding, involves eliminating wavelet coefficients con-

taining noise; analogously, keeping coefficients with a high percentage of the signal

energy. There are numerous ways in which to accomplish this task; some complex,

others remarkably simple. The first attempt at formalizing the wavelet coefficient

thresholding for removal of additive noise from deterministic signals was recorded

in [18].

Two of the most common (and simple) thresholding schemes are referred to as

soft and hard thresholding; incidentally, terms that tend to have loose definitions.

For a precise definition and interpretation of soft thresholding, see [16]. Both soft

and hard thresholding eliminate coefficients that are below a chosen threshold. In

hard thresholding, all values above the threshold are kept. Figure 4.2 is an example

of a hard thresholding function, where x is the coefficient input and y the adjusted

coefficient after thresholding is applied. In soft thresholding, the coefficients at or

above the threshold value are altered (typically decreased) in some predefined fashion

(i.e. dead-zone nonlinearity). Figure 4.3 is an example of a soft thresholding function,

where x is the coefficient input and y the adjusted coefficient after thresholding is

applied. Hard thresholding is a poor choice when the signal and noise coefficients

are close in magnitude. Hard thresholding is not continuous, so it exaggerates even
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Figure 4.2: Potential hard thresholding function.

Figure 4.3: Potential soft thresholding function.
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the slightest difference in coefficients near the threshold value. This can cause unde-

sired discontinuities/artifacts in the reconstructed signal. For a smoother transition

between the various signal transform components, soft thresholding is a valid choice.

This form of thresholding is not sensitive to coefficient values near the thresholding

value. However, soft thresholding decreases coefficients that contain a large percent

of the signal energy, regardless the proximity to the threshold. Meaning that no

coefficient remains unchanged after leaving the thresholding stage.

Another important detail of thresholding is the cutoff value. The cutoff value de-

termines which coefficients are left untouched, and the others that will be diminished

or removed. Common ways to determine an appropriate thresholding cutoff include

Stein’s Unbiased Risk, the universal threshold and minimax thresholding. In this

work, comparable values were generated with all three methods. Hence, the remain-

ing discussions (unless otherwise specified) will focus on the minimax principle, given

this is an approach commonly used in statistics when designing optimal estimators, in

the mean square error sense. Essentially, the minimax principle is used to predict the

likelihood that a coefficient contains mostly noise or signal information; a minimum

bound is found, and the threshold is chosen to respect that bound.

4.3 Denoising: Real-time

This section builds on the knowledge presented for offline denoising by adapting the

algorithms for real-time implementation.

4.3.1 Delay

One of the key obstacles in real-time implementation is time delay. In [12], the authors

investigate the use of wavelet denoising to attenuate the rotor vibration caused by

step changes in sinusoidal forcing for a flexible rotor-magnetic bearing system. They
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observed that the system states experience lag that originates between the signal

measurement and the generation of the wavelet coefficients (prior to entering the

controller). One suggestion to reduce the delay is to choose wavelets that are more

asymmetric (relative to the Daubechies family). Given Daubechies wavelets tend to

be localized around the center of their time duration, the denoising performance is

reduced. A wavelet transform that is concentrated more towards the current point in

time will produce a more immediate response in the coefficients, and hence allow a

higher bandwidth of disturbance attenuation.

Another method to reduce delay is restricting the wavelet transform to the neg-

ative axis [10]. This allows the wavelet transform to only operate on past values

of the signal. In utilizing an average-interpolation method, the authors discovered

that taking estimates of the signal near the current time, and not precisely at the

time of interest, resulted in a more fruitful noise removal. However, an additional

amount of delay is introduced into the system that is proportional to the distance

of the measurement taken from the current estimate. The authors were also able

to increase the signal to noise ratio by using a redundant transform algorithm that

rendered the wavelet transitionally invariant; the coefficients remain the same regard-

less of the point in time the calculation is made. This is accomplished though cycle

spinning [17], which averages the coefficient results found at various time shifts of the

signal.

In [1], the authors used wavelet filtering in an adaptive controller for a structural

system, where the denoising does not take place in the feedback loop; thus, delay is

not a primary concern. In [19], wavelets are used to remove noise from process data

resulting from slowly-varying systems. In particular, they use wavelets to denoise

signals from a pilot-scale distillation column, where the process signals are updated

every 5 seconds. Although this algorithm is in real-time, the time scale is fairly slow.

Not surprisingly, increasing the wavelet levels can lead to an increase in the system
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latency [34]. This is particularly the case when using filter banks that operate on the

same time-scale as the system itself, and/or when the discrete wavelet transform is

viewed as its own dynamic system [48].

4.3.2 Thresholding Scheme

If the bound on the measurement noise is unknown, the technique of coefficient thresh-

olding, or wavelet shrinkage, can still be successful in eliminating noise. The central

idea is to avoid setting a constant threshold value a priori, and allow the evolution of

the system to define the threshold value. In this case, a larger window size (without

introducing a detrimental amount of delay) would probably yield better results. We

have not explored such methods in this work, given the level of complexity for those

algorithms and the potential of the excessive time-delay destabilizing the closed-loop

system.

4.3.3 Windowing

Given the denoising scheme is implemented online, we do not have access to the

entire signal at once. Thus, we must choose to view and manipulate only a portion

of that signal at anytime. This notion will be referred to as windowing. The size

of the window is limited by the design choices made in the previous sections. The

number of samples chosen dictates how high of a resolution the signal coefficients can

be (level), and what kind of thresholding scheme is appropriate. Moreover, if data

size is an issue (which it typically is in hardware implementation), the number of

samples necessary to complete a satisfactory denoising should be minimized.

One windowing approach taken in [46], suggests that the window should increase

as the number of data points increases; the interpretation is that by the time the last

data point is reached, the entire data set should be encapsulated in the window.
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4.4 Example

This section investigates the performance of high-gain observers utilizing wavelet

denoising techniques.

4.4.1 Simulation

Consider the following simple pendulum stabilization problem

ẋ1 = x2 (4.16)

ẋ2 = − sin (x1 + θr) + u , (4.17)

where the pendulum arm is to be regulated at a constant reference signal of θr, by

the control u. The state variable x1 is defined as the difference between the actual

angular position, θ, and the desired angular position, θr; x2 is the velocity of the

pendulum arm. The state feedback controller

u = sin(x1 + θr)− 29x1 − 10x2 (4.18)

is used to linearize the system and assign the closed-loop eigenvalues at −5 ± 2j.

To obtain a globally bounded control, we saturate x1 at ±1.2 and x2 at ±1.7. The

bounds on the controller are chosen such that the saturation is never active when the

system is under state feedback control. Assuming the only measurement is x1, the

linear high-gain observer will take the following form
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ẋ1 = x̂2 +
2

ε
(y − x̂1) (4.19)

ẋ2 =
1

ε2
(y − x̂1) , (4.20)

where the measurement y is corrupted by a bounded noise v, i.e. y = x1 + v; the

observer eigenvalues are assigned to −1

ε
and −1

ε
. In the interest of exploring a more

realistic approach, this setup will be studied in the context of a sampled-data output

feedback controller. The actual implementation of the control algorithm is in discrete-

time, modeled after the problem explored in [32]. The control is sampled using a

zero-order-hold, where the control in (4.18) is held constant in-between the uniformly

spaced sampling points. The continuous-time observer (4.19)-(4.20) is discretized

using the Bilinear-Transformation method. The sampling period is chosen according

to the guidelines presented in [13]. Namely, the sampling period T is designed as

T = αε, where 0 < r1 < α < r2 < ∞ for some positive constants r1 and r2,

independent of ε. For this example, α = 1 and T = ε.

The discrete-time observer is taken as

q(k + 1) = Adq(k) +Bdy(k) (4.21)

x̂(k) = D−1[Cdq(k) +Ddy(k)] , (4.22)

where

Ad =
1

9

[

−1 4

−4 7

]

, Bd =
2

9

[

5

2

]

, Cd =
2

9

[

2 1

−1 4

]

and Dd =
1

9

[

5

2

]

.
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The sampled-data output feedback control is given by

u(k) = sin (x̂1(k) + θr)− 29 sat1.2(x̂1(k))− 10 sat1.7(x̂2(k)) ,

where satk(z) = min {|z|,k}sign(z). The initial states are taken as x1(0) = −1,

x2(0) = 0, q1(0) = 0 and q2(0) = 0.

The noise is generated using the “Uniform Random Number” block in Simulink,

where the bound is selected as ±0.01 with a sample time of 0.001 seconds. The

high-gain observer parameter, ε, is set to 0.02. Figure 4.4 shows the system states

for both the continuous and sampled-data output feedback controllers.
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Figure 4.4: Comparison of the trajectories under (a) continuous-time, (b) sampled-
data, (c) continuous-time and (d) sampled-data output feedback.

The difference in the signal magnitudes at steady-state is due to aliasing intro-

duced via the discretization. Hence, an anti-aliasing filter (i.e. Butterworth order

8 and cutoff frequency of 25Hz) can be used to remove the aliasing introduced by

sampling the control. As shown in [32], the pre-filter will reduced some of the noise.
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The goal is to further reduce the noise level via wavelet denoising.

Consider the addition of a wavelet filter after the zero-order-hold sampling of y,

but before y is injected into the high-gain observer. The filter is constructed from

a Haar wavelet level 2 transform and performed on 4 samples (window length) at a

time. A soft threshold with a dead-zone nonlinearity is used. The threshold value

is chosen as the maximum value of the noise wavelet coefficients, and is the same

for all levels of the transform. In Figure 4.5, it is evident that the filter is indirectly

improving the performance of the state variables by eliminating a significant amount

of the remaining noise from the signal injected into the high-gain observer.
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Figure 4.5: Comparison of the trajectories in steady-state (a) without wavelet denois-
ing, (b) with wavelet denoising, (c) without wavelet denoising and (d) with wavelet
denoising.

The nonlinear-gain observer developed in Chapter 2 was designed to attenuate the

measurement noise in steady-state, while maintaining fast state reconstruction in the

transient period. The notion of using a wavelet pre-filter is intended to remove some

of the noise from the output before entering the high-gain observer. However, these
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two techniques are not mutually exclusive. The wavelet scheme can be used to filter

out additional noise from the measurement y before the signal reaches the high-gain

observer with the nonlinear-gain. In fact, using these methods in a cascade fashion

can result in the ability to choose smaller values of ε, consequently increasing the

speed of the estimator. Consider the nonlinear-gain high-gain observer introduced

in Chapter 2, where ε1 = 0.001, ε2 = 0.02 and d = 0.2. Figure 4.6 shows the

transient performance of the state x2, where the waveforms for the system with and

without the wavelet pre-filter look identical. The steady-state value of x2 for the

system utilizing the nonlinear-gain observer with the wavelet pre-filter is significantly

reduced when compared to the system without the benefit of the pre-filter; see Figure

4.7. Clearly, the denoising algorithm further reduces the noise in the steady-state

trajectories.
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Figure 4.6: Transient performance comparison of the nonlinear-gain high-gain ob-
server (a) without a wavelet pre-filter and (b) with a wavelet pre-filter.
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Figure 4.7: Steady-state performance comparison of the nonlinear-gain high-gain ob-
server (a) without a wavelet pre-filter and (b) with a wavelet pre-filter.

4.4.2 Altering the Wavelet

Suppose we chose a different type of wavelet; perhaps a smoother set of functions,

while leaving the level at 2, window size at 4 and thresholding soft. Figure 4.8, where

the wavelet filter is active, shows that the steady-state values of the state x2 contain

more noise as the order of the Daubechies wavelet increases. For this example, the

smoother the wavelet the poorer the noise approximation and subsequent removal.

Most likely, the decreased performance is due to the increasing length of support

as the order of the wavelet increases. In other words, more data (larger window)

may be required to properly utilize the higher-order wavelets. We have limited this

comparison to the Daubechies family, given the Haar transform is the lowest order

transform available in the Daubechies subset of functions.

Consider that the signal at steady-state is presumably constant (or almost con-

stant) for a stabilization problem. An interpretation for the successful denoising with

this algorithm is that the shape of the Haar function can be used to approximate
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Figure 4.8: Denoising performance in steady-state with the (a) Daubechies 1,
(b) Daubechies 4, (c) Daubechies 10 and (d) Daubechies 20 wavelets.

the signal on multiple scales, and separate it from the varying (non-constant) noise

signal. In this case, the noise profile greatly differs from that of the signal, and the

wavelet is able to distinguish that difference. Hence, the signal characteristics will

still be clustered into a few large value wavelet coefficients, whereas the noise will

occupy a larger number of small detail coefficients. This discovery is welcomed, given

the Haar wavelet is one of the simplest to manipulate and implement, as previously

noted.

However, we would be remiss to not compare the denoising performance of wavelets

outside of the Daubechies family. Figure 4.9 provides a comparison of the steady-

state denoising performance for order 2 Daubechies, Coiflets and Symlets wavelet.

The level is set at 1, window size 10 and thresholding soft; the Matlab “thselect”

function is used with the “minimax” option to determine the cutoff value. Clearly, all

three families produce similar denoising results. Comparing Figure 4.8 with Figure

4.9, suggests that the ad-hoc method of determining the cutoff threshold may be more
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Figure 4.9: Denoising performance in steady-state with the (a) Daubechies 2,
(b) Coiflets 2 and (c) Symlets 2 wavelets.

effective than the minimax method for smaller windows.

4.4.3 Levels

Although level 1 and level 2 transforms were chosen, we could have chosen a setup

that would provide us with a larger number of detail coefficients. Yet, in the case

of this feedback control stabilization problem, more detail is not more accuracy. In

fact, Figure 4.10 shows that as additional levels are added, the level of noise in

the state x2 increases to more than twofold the amount seen with a level 1 Haar

transform; the window size is 16 and the thresholding type is a dead-zone nonlinearity

for the simulation considered. This result is partially a by-product from the way the

thresholding value was chosen. The bound on the measurement noise was known a

priori, implying that a bound on the wavelet coefficients is also known. The bound on

the coefficients was used as the threshold in this example, meaning that all wavelet

coefficients at or above that threshold will be eliminated before reconstructing the
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Figure 4.10: Denoising performance in steady-state with Haar (a) level 1, (b) level 2,
(c) level 3 and (d) level 4 wavelet transforms.

signal. If this approach is taken with a low level wavelet transform (i.e. 2 or lower),

the measurement signal can be recovered with minimal noise. However, even using an

online algorithm to determine the cutoff value still results in a decreased performance

as the level increases, although not as significantly as in the fixed threshold case; in

this work the minimax method is used to determine a cutoff value online.

We did not observe any obvious delay effects irrespective of the level. Unlike

the papers previously mentioned, the wavelet transforms in the denoising algorithms

discussed in this work were implemented as algebraic calculations.

4.4.4 Thresholding Logic

For stabilization problems with bounded measurement noise, soft thresholding reduces

the ultimate bound on the estimation error more so than hard thresholding; this

is in the context of choosing the threshold value a priori from the bound on the

measurement error. Figure 4.11 provides a comparison between a hard and soft
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Figure 4.11: Denoising performance in steady-state with (a) soft thresholding and
(b) hard thresholding.

thresholding approach for a Haar, window size 4, 1 level denoising scheme. Clearly,

the bound on the error in x2 is larger for the hard thresholding scheme. Thus, soft

thresholding does a better job of preserving the signal, and eliminating the noise.

4.4.5 Windowing

As an example, the minimum number of samples (per window) for a n-level Haar

transform is 2n. If more sophisticated (online) methods are used to determine the

threshold value, a larger window size can be required to achieve an accurate estimate

of the noise mean and variance; otherwise large portions of the signal could be removed

in error. This is not something previously addressed, given the measurement noise is

a bounded uniformly distributed value, where the bound is known a priori.

Given that past values are used to construct the sample set, the window must

utilize some set of initial conditions. These values could be significantly different

from the true values, and will remain in the window until pushed out. After (k− 1)
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samples, where k is the sample size, the window will be populated with the true

system values. If too large of a window is chosen, latency may be introduced into the

system. For the system discussed here, there is no appreciable difference in system

performance for a larger versus a smaller window size (in the range of 2 samples

to 16 samples). This appears to be the case, given all algorithms are implemented

algebraically.

4.5 Lowpass Filters

Lowpass filters are a simple and common way to eliminate high-frequency noise.

However, if the frequency band of the signal overlaps that of the noise, eliminating

the noise can also remove a significant portion of the signal we wish to preserve.

Moreover, to produce a smoother denoised signal, we may want to increase the order

of the filter. However, the higher the order the greater the phase lag introduced

into the feedback loop. Thus, wavelets should have the potential to surpass lowpass

filters in noise removable; otherwise, the additional complexity cannot be justified.

However, this is not to suggest that all wavelet denoising schemes will outperform

the classic lowpass filter. In fact, some schemes shown in this chapter do not remove

more noise than a first-order lowpass filter. Thus, the many factors discussed in

this chapter must be carefully considered when constructing an appropriate wavelet

denoising scheme.

Consider an order eight digital Butterworth lowpass filter with a normalized cutoff

frequency of 0.9. This filter is realized by entering the order and normalized cutoff

frequency in the Matlab function “butter”. Next, a wavelet denoising scheme is

constructed for a level 2, window size 4, soft thresholding setup with an ad-hoc cutoff

value. For the sake of argument the simplest waveform, the Haar wavelet, is chosen.

Figure 4.12 shows the denoising performance for the Butterworth filter and the Haar
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Figure 4.12: Steady-state performance comparison of a (a) Haar wavelet denoising
scheme and (b) Butterworth filter.
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Figure 4.13: Transient performance comparison of a (a) Haar wavelet denoising
scheme and (b) Butterworth filter.
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wavelet denoising scheme for the steady-state signal of x2. Clearly, the Haar wavelet

is able to remove more of the noise from the system state than the Butterworth filter.

Furthermore, Figure 4.13 shows that the high-gain observer utilizing the wavelet

denoising scheme results in the system state x2 having a slightly faster settling time

than the observer using the Butterworth filter.

4.6 Conclusions

This chapter provided a simulation-based feasibility study on wavelet denoising to

reduce the amount of measurement noise entering the high-gain observer. Logically,

the wavelet design can greatly affect the system performance. We found that for

denoising schemes with a relatively small window (small data set), an increase in

the wavelet order leads to an increase in the amount of noise in the system states.

To alleviate this deficiency, while maintaining the same wavelet function, a larger

window size can be chosen. However, if there is a limit on the amount of data

that can be stored, a different family of wavelets with a smaller support length is a

viable option. Moreover, if data storage is a primary concern, extra attention will

have to be taken in choosing the proper wavelet. It was shown that fewer wavelet

coefficients are necessary to reconstruct the output signal for a wavelet that quickly

captures the behavior of the noise. Moreover, excessive levels can lead to a decrease

in performance, given the signal energy is being distributed across a larger number

of coefficients that will likely be effected by the thresholding scheme. For the type of

system and bounded measurement noise investigated in this work, the way in which

we arrived at the cutoff value for the thresholding scheme appeared to have little to

no effect on the denoising outcome. However, the soft thresholding function resulted

in smoother and less noisy signals than the hard thresholding approach.

The ample degrees of freedom in wavelet design allow this denoising approach to be
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extremely versatile. However, it is this flexibility that makes the problem incredibly

challenging. Overall, the simplistic Haar transform was shown to provide superior

steady-state and transient performance when compared to a lowpass Butterworth

filter, for additive bounded measurement noise.
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Chapter 5

Conclusions

It is a well-known fact that high-gain observers are susceptible to measurement noise.

In particular, we discussed the tradeoff between fast state reconstruction, minimizing

the bound on the steady-state estimation error and rejecting the model uncertainty.

Hence, the focus of this dissertation has been to address issues concerned with observer

design and analysis in the presence of measurement noise through three major thrust

areas: observer structure, tracking performance and filtering.

Initially, a nonlinear-gain high-gain observer was constructed to capture the tran-

sient and steady-state performance present in comparable linear-gain observers. Specif-

ically, the nonlinearity was chosen to have a higher observer gain during the transient

period and a lower gain afterwards. Throughout the course of the investigation,

we considered altering the number of piecewise linear regions in the nonlinear-gain

function. However, we concluded that a two-piece function produced satisfactory

results, suggesting that altering the number of piecewise linear regions is generally

unnecessary. This approach allowed us to reduce the tradeoff between fast state re-

construction and measurement noise attenuation. The stability of the closed-loop

system was proven for the case where all assumptions hold globally. Although, it

was noted in Chapter 2 that a slight modification would specialize the proof for a
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regional version of the theorem provided. Through the simulation results, we showed

that the new gain structure successfully addresses the criticism encountered when

implementing high-gain observers in systems with measurement noise.

The compromise between the transient and steady-state performance obvious in

the estimation error is not apparent in the system tracking error. Motivating this no-

tion with a nonlinear example, it became apparent that the tracking error is uniformly

bounded in ε for systems without zero dynamics. Before attempting to confirm this

phenomenon rigorously, it was argued by constructing the system transfer functions

from the noise to the tracking error and its derivatives, that the error and its first

derivative are bounded uniformly in ε for a third-order nonlinear system. Using sin-

gular perturbation analysis, the results were extended to a class of linear systems

of dimension n. In particular, aside from the tracking error and its first derivative,

all remaining derivatives of the tracking error are inversely proportional to increasing

powers of ε. Subsequently, a similar result was derived for a class of nonlinear systems

using the special features of singularly perturbed systems, further generalizing the re-

sults reported for linear systems. Due to the form of the nonlinearity, the result for

nonlinear systems was restricted to a third-order system. Although it has been shown

that the tracking error is more immune to the effects of measurement noise than the

estimation error for both the linear and nonlinear forms considered, this does not

mean that ε can be made arbitrarily small. It is important to keep in mind that the

estimates of the states will still be used in the controller. However, the control may

not be sensitive to a slight increase in the state estimation error, meaning we acquire

some additional flexibility in choosing the value of ε when the tracking performance

is the primary focus. This work can be extended to included nonlinear systems with

dimension greater than three, additional control structures and the inclusion of zero

dynamics.

In order to maximize the performance possible with the newly developed nonlinear-
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gain high-gain observer, we performed a simulation-based feasibility study on wavelet

denoising. The idea was to reduce the amount of measurement noise entering the

high-gain observer from the on-set. We found that for denoising schemes with a rel-

atively small window (small data set), an increase in the wavelet order leads to an

increase in the amount of noise in the system states. To alleviate this deficiency,

while maintaining the same wavelet function, a larger window size can be chosen.

However, if there is a limit on the amount of data that can be stored, a different fam-

ily of wavelets with a smaller support length was a viable option. Moreover, if data

storage is a primary concern, extra attention will have to be taken in choosing the

proper wavelet. It was shown that for a wavelet that quickly captures the behavior

of the noisy signal, fewer wavelet coefficients are necessary to reconstruct the system

output. Interestingly, iterating the wavelet transform excessively lead to a decrease

in performance, because the signal energy was distributed across a larger number of

coefficients that were reduced in the thresholding phase. Overall, the simplistic Haar

transform was shown to provide superior steady-state and transient performance when

compared to a lowpass Butterworth filter, for additive bounded measurement noise.

The ample degrees of freedom in wavelet design allow this denoising approach to be

extremely versatile. However, it is this flexibility that makes the problem incredibly

challenging. There are many possibilities for future work. Namely, generalizing the

results in Chapter 4 to a broader class of nonlinear systems, finding the ideal con-

struction for an online wavelet denoising scheme and extending the work to include

the noise statistics in the filter design.
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Appendix A

Nonnegative Impulse Response

Consider the transfer function

G(s) =

β1

(

1− ε1
ε2

)

sn−2 + · · ·+ βn−1

(

1−
(

ε1
ε2

)n−1
)

sn−1 + β1sn−2 + · · ·+ βn−1
. (A.1)

The poles and zeros of G(s) can always be chosen real and distinct such that

G(s) = K

(

m̄
∏

i=1

s+ z̄i
s+ p̄i

)





n̄
∏

j=m̄+1

1

s+ p̄i



 (A.2)

for an appropriate choice of β1, · · · , βn−1 and ε1/ε2, where m̄ ≤ n̄, z̄i > p̄i for

i = 1, ...m̄.
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Example 1: System with relative degree 3 (i.e. n = 3)

For n = 3, (A.1) becomes

G(s) =

β1

(

1− ε1
ε2

)

+ β2

(

1−
(

ε1
ε2

)2
)

s2 + β1s+ β2
. (A.3)

By matching like terms of (A.3) to (A.2) we see that

(s+ p1)(s+ p2) = s2 + β1s+ β2 (A.4)

p2 > p1 > 0 (A.5)

meaning

β1 = p1 + p2 (A.6)

β2 = p1p2 . (A.7)

Then,

G(s) =

β1

(

1− ε1
ε2

)[

s+
β2
β1

(

1 +
ε1
ε2

)]

(s+ p1)(s+ p2)

=

β1

(

1− ε1
ε2

)

(s+ z)

(s+ p1)(s+ p2)
,

(A.8)

where

z =
β2
β1

(

1 +
ε1
ε2

)

=
p1p2
p1 + p2

(

1 +
ε1
ε2

)

.
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Suppose ε1/ε2 ≥ p1/p2. Then,

z ≥ p1p2
p1 + p2

(

1 +
p1
p2

)

= p1 . (A.9)

Therefore, choose p1 = µ, p2 = 1, ε1/ε2 = µ < 1 and z =
µ

1 + µ
(1 + µ).

With these choices, G(s) can be written as

G(s) =
(1 + µ)(1− µ)

s+ 1

=
1− µ2

s+ 1
,

(A.10)

where the condition in (A.2) is satisfied, and the poles and zeros of G(s) are real

and distinct.

Example 2: System with relative degree 4 (i.e. n = 4)

For n = 4, (A.1) becomes

G(s) =

β1

(

1− ε1
ε2

)

s2 + β2

(

1−
(

ε1
ε2

)2
)

s+ β3

(

1−
(

ε1
ε2

)3
)

s3 + β1s2 + β2s+ β3
.

(A.11)

Choose the poles of (A.11) as −µ2p, −µp and −p. The denominator of (A.11) can

be written as

(s+ µ2p)(s+ µp)(s+ p) = s3 + (1 + µ+ µ2)ps2

+ (1 + µ+ µ2)µp2s+ µ3p3 ,
(A.12)
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where µ < 1. From (A.12), we can see that β1 = (1+µ+µ2)p, β2 = (1+µ+

µ2)µp2 and β3 = µ3p3. Focusing on the numerator,

β1

(

1− ε1
ε2

)

s2 + β2

(

1−
(

ε1
ε2

)2
)

s+ β3

(

1−
(

ε1
ε2

)3
)

=

= β1

(

1− ε1
ε2

)[

s2 +
β2
β1

(

1 +
ε1
ε2

)

s

+
β3
β1

(

1 +
ε1
ε2

+

(

ε1
ε2

)2
)]

,

(A.13)

where

β2
β1

(

1 +
ε1
ε2

)

= µp

(

1 +
ε1
ε2

)

β3
β1

(

1 +
ε1
ε2

+

(

ε1
ε2

)2
)

=

µ3p3

(

1 +
ε1
ε2

+

(

ε1
ε2

)2
)

(1 + µ+ µ2)p
.

Take p = 1 and ε1/ε2 = µ. Then, (A.13) becomes

(1 + µ+ µ2)(1− µ)(s+ µ)(s+ µ2) . (A.14)

Hence, G(s) can be written as

G(s) =
(1 + µ+ µ2)(1− µ)(s+ µ)(s+ µ2)

(s+ 1)(s+ µ)(s+ µ2)
=

1− µ3

s+ 1
, (A.15)

where the condition in (A.2) is satisfied, and the poles and zeros of G(s) are real

and distinct.
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Example 3: System with relative degree 5 (i.e. n = 5)

For n = 5, (A.1) becomes

G(s) =

β1

(

1− ε1
ε2

)

s3 + β2

(

1−
(

ε1
ε2

)2
)

s2

s4 + β1s3 + β2s2 + β3s+ β4

+

β3

(

1−
(

ε1
ε2

)3
)

s+ β4

(

1−
(

ε1
ε2

)4
)

s4 + β1s3 + β2s2 + β3s+ β4
.

(A.16)

Choose the poles of (A.16) as −µ3, −µ2, −µ, −1 and set ε1/ε2 = µ. The

denominator of (A.16) can be written as

(s+ µ3)(s+ µ2)(s+ µ)(s+ 1)

= s4 + (1 + µ)(1 + µ2)s3

+ (µ5 + µ2(1 + µ)2 + µ)s2

+ µ3(1 + µ)(1 + µ2)s+ µ6 .

(A.17)

From (A.17), we can see that β1 = (1+µ)(1+µ2), β2 = (µ5+µ2(1+µ)2+µ),

β3 = µ3(1+µ)(1+µ2) and β4 = µ6. The numerator in (A.16) can be represented

as

β1 (1− µ)

[

s3 +
β2
β1

(1 + µ)s2 +
β3
β1

(1 + µ+ µ2)s

+
β4
β1

(µ3 + µ2 + µ+ 1)

]

,

(A.18)

where substituting in the values for the βi’s in the bracketed term results in

s3 + µ(µ2 + µ+ 1)s2 + µ3(µ2 + µ+ 1)s+ µ6 . (A.19)
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Thus, G(s) is

G(s) =
β1(1− µ)(s+ µ)(s+ µ2)(s+ µ3)

(s+ 1)(s+ µ)(s+ µ2)(s+ µ3)
=

1− µ4

s+ 1
, (A.20)

where the condition in (A.2) is satisfied, and the poles and zeros of G(s) are real

and distinct.
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Appendix B

A Block-Diagonal Form for Linear

Systems

The ideas in this section are borrowed from [35]. Consider the following linear two-

time-scale system

ẋ = A11x+ A12z (B.1)

εż = A21x+ A22z (B.2)

for 0 < ε < 1. Before transforming (B.1)-(B.1) into a block-diagonal form, we first

seek to bring the system into a block-triangular form. In particular, the change of

variables

η(t) = z(t) + L(ε)x(t) (B.3)

will bring the system into what is known as actuator form. Essentially, actuator form

means that the states of the “slow” equation (B.1) are removed from the dynamics of

the “fast” equation (B.2). This similarity transform will bring the system (B.1)-(B.2)
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into the form

[

ẋ(t)

εη̇(t)

]

=

[

A11 − A12L A12

R(L, ε) A22 + εLA12

][

x(t)

η(t)

]

, (B.4)

where the matrix R(L, ε) must be zero for the state x to be removed from the

η̇ equation. In order for R(L, ε) to be zero, the matrix L(ε) should satisfy the

algebraic equation

R(L, ε) = A21 − A22L+ εLA11 − εLA12L = 0 . (B.5)

The system (B.1)-(B.2) is partially decoupled, providing a separate fast subsystem

εη̇(t) = (A22 + εLA12)η(t) , (B.6)

where x does not appear.

However, another change of variables is necessary to achieve a complete separation

of the fast and slow states of the system (B.1)-(B.2), leading to a block-diagonal form.

Applying the change of variables

ζ(t) = x(t)− εMη(t) (B.7)

results in

[

ζ̇(t)

εη̇(t)

]

=

[

A11 − A12L S(M, ε)

0 A22 + εLA12

][

ζ(t)

η(t)

]

, (B.8)

where the matrix M is required to satisfy the linear algebraic equation

S(M, ε) = ε(A11 − A12L)M −M(A22 + εLA12) + A12 = 0 . (B.9)
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The exact slow system is given by

ζ̇ = (A11 − A12L)ζ(t) . (B.10)

Therefore, the system (B.1)-(B.2) assumes the block-diagonal form

[

ζ̇(t)

εη̇(t)

]

=

[

A11 − A12L 0

0 A22 + εLA12

][

ζ(t)

η(t)

]

(B.11)

and is completely decoupled. Moreover, (B.11) has a unique solution for sufficiently

small ε.
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Appendix C

Decomposition of Nonlinear

Singularly Perturbed Systems

The block-diagonal form for linear systems presented in Appendix B completely de-

couples the system dynamics of the “fast” and “slow” states. An analogous block-

diagonal form does not exist for nonlinear singularly perturbed systems. However,

there is a nonstandard change of variables that can accomplish partial decoupling of

the states. The decomposition method presented in [49] begins by removing the slow

input from the fast equation, resulting in an upper triangular form. When an addi-

tional change of variables is applied to remove the fast input from the slow equation,

some of the slow input is reintroduced into the fast equation; this results in a lower

triangular form. Ultimately, the complete transformation is able to eliminate the fast

input from the slow equation, but not the slow input from the fast equation. This

section contains additional details concerning the decomposition process.

For convenience, when referring to the original work, the naming conventions
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in [49] are adopted here. Consider the following singularly perturbed system

ẋ = f(t, x, y, ε) (C.1)

εẏ = g(t, x, y, ε) (C.2)

for 0 < ε < 1. The goal of this transform is to bring the system (C.1)-(C.2) into a

block-triangular form. In particular, the transform should reduce the system to

u̇ = F (t, u, ε) (C.3)

εv̇ = G(t, u, v, ε) , (C.4)

where the “fast” input v is eliminated from the “slow” equation (C.3). The change

of variables that will take the system into the desired form is

x = u+ εH(t, u, v, ε) (C.5)

y = v + h(t, x, ε) = v + h(t, u+ εH(t, u, v, ε), ε) . (C.6)

Under the assumptions listed in [49], the system (C.1)-(C.2) has an integral manifold

defined as y = h(t, x, ε). Those assumptions for t ∈ R and x ∈ R
n are:

• The function g(t, x, y, ε) in (C.2) evaluated at ε = 0 is zero, and has the

isolated solution y = h0(t, x);

• The functions f , g and h0 are twice continuously differentiable for |y −
h0(t, x)| ≤ ρ and 0 ≤ ε ≤ ε0;

• The eigenvalues of
∂g

∂y
(t, x, h0(t, x), 0)

are negative.
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In Chapter 3, the system (3.32)-(3.33) satisfies all of the above conditions.

Definition: Integral Manifold

Consider the differential equation

ẋ = X(t, x)

where x,X ∈ R
n. The set S ⊂ R × R

n is said to be an integral manifold if for

(t0, x0) ∈ S , the solution (t, x(t)), x(t0) = x0 is in S for t ∈ R.

Referring back to the system of interest (C.1)-(C.2), the dynamics on the manifold

can be described by the differential equation

ẋ = f(t, x, h(t, x, ε), ε) , (C.7)

where the state y is replaced by the continuously differentiable function h. For

convenience when solving for h, the asymptotic expansion

h = h0(t, x) + εh1(t, x) + ε2h2(t, x) + · · · (C.8)

is defined, where h(t, x, 0) = h0. In order for the transform in (C.5)-(C.6) to exist,

h must satisfy the partial differential equation

ε
∂h

∂t
+ ε

∂h

∂x
f(t, x, h, ε) = g(t, x, h, ε) . (C.9)

The coefficients of the expansion of h in (C.8) can be found by matching like powers

of ε in (C.9). Define the variables z = y − h(t, x, ε) and w = x − u. Then,
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consider the functions

f1 = f(t, u+ w, z + h(t, u+ w, ε), ε)− f(t, u, h(t, u, ε), ε) (C.10)

Z(t, u, w, z, ε) = g(t, u+ w, z + h(t, u+ w, ε), ε)

− g(t, u+ w, h(t, u+ w, ε), ε)

− ε
∂h

∂x
(t, u+ w, ε)[f(t, u+ w, z + h(t, u+ w, ε), ε)

− f(t, u+ w, h(t, u+ w, ε), ε)]
(C.11)

for the auxiliary differential system

u̇ = f(t, u, h(t, u, ε), ε) (C.12)

ẇ = f1(t, u, w, z, ε) (C.13)

εż = Z(t, u, w, z, ε) . (C.14)

The system (C.12)-(C.14) has the integral manifold w = εH(t, u, z, ε), where the

function H satisfies the partial differential equation

ε
∂H

∂t
+ ε

∂H

∂u
F (t, u, ε) +

∂H

∂v
Z(t, u, εH, v, ε)

= f1(t, u, εH, v, ε) ,

(C.15)

where

F (t, u, ε) = f(t, u, h(t, u, ε), ε)

and

G(t, u, v, ε) = Z(t, u, εH(t, u, v, ε), v, ε) .
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Often times, the function H can be found as an asymptotic expansion of

εH = εH1(t, u, v) + ε2H2(t, u, v) + ε3H3(t, u, v) + · · · (C.16)

from the expression in (C.15) by matching like coefficients in ε. Therefore, if both

h and H exist and satisfy the partial differential equations in (C.9) and (C.15),

respectively, (C.1)-(C.2) can be transformed into the system representation in (C.3)-

(C.4) using the change of variables in (C.5)-(C.6).
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