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ABSTRACT

The heat capacities of LiCuCl3' ZHZO and FeClz' 4HZO have been

measured in the liquid helium temperature region to determine if a

k type anomaly exists in the specific heat curve. One example of this

anomaly is noted for those crystals which undergo a paramagnetic-

antiferromagnetic transition, where it is associated with the extra

energy needed to disorder the crystal. In the antiferromagnetic state

the spins are aligned such that the nearest neighbors of an atom A are

antiparallel to this atom. In the paramagnetic state the spins are

randomly oriented.

The specific heat curve for LiCuC13° ZHZO shows this type of

anomaly at a temperature of 4.40 : .OZOK. The change in magnetic

entropy is also calculated for this crystal and compared with the

theoretical value. In the Van Vleck theory only long-range order ex-

tending over many atomic distances is considered. However, 48% of

the change in entropy occurs above the Neel temperature, indicating

that a. large amount of short-range order, over a few atomic distances,

still persists.

The specific heat curve for FeClz'4I-IZO shows very little

temperature dependence in the region investigated, indicating perhaps

that the experimental accuracy is not sufficient to disclose the expected

T3 dependence of the lattice specific heat, or that this region repre-

sents the "tail" in the paramagnetic state. Such temperature independent

regions have been found in other paramagnetic salts.
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THEORY

In general, one defines a mean heat capacity over a temperature

range T2 to T1 by the equation

5: Q(Tz-T1) (1)

The heat capacity, at any temperature T, is then defined as the limit

of the above ratio when the temperature difference AT approaches zero,

where the flow of heat is dQ:

C = dQ/dT (2)

This heat capacity is in general a function of temperature. To obtain

a quantity characteristic of a substance, we define a Specific heat

capacity as the ratio

C : dq/dT (3)

where dq is the heat flowing into the substance: per mole. As would

be expected this specific heat capacity, or Specific heat, depends upon

the nature of the process during which heat flows into the system.

Starting with the first law of thermodynamics,

d0 = dU + PdV (4)

where U is the internal energy, P is the pressure, and V is the

volume, and considering a process at constant volume, we have

C, = (dq/dT)v = (av/9T), (5)

where we define CV = ( BQ/BT)V; that is the specific heat at constant

volume gives the rate of change of internal energy with respect to

temperature at constant volume.



Considering a process at constant pressure,

(dQ/dT)p : (a U/a T)p + P()V/3 T)p (6)

and defining

C : (BQ/AT) (7)

p p

one can see that the change in internal energy with temperature is

not necessarily a simple function of the specific heat at constant

pressure. It can be shown, 1 that the difference between Cp and Cv is

given by,

C - C = BZTV/k (8)
p V

where V is the volume, B the coefficient of volume expansion, and k

the compressibility. At low temperatures this difference is quite

small, so that one can effectively measure Cv by measuring C .

Of interest in this paper is the temperature dependence of the

specific heat of two normally paramagnetic salts. Contributions to

specific heat normally arise from the lattice vibrations and the free

electrons. For a paramagnetic substance, an additional magnetic

contribution will be considered, due primarily to the dipole-dipole

exchange interaction.

Since the crystals investigated were dielectrics, the electronic

contribution was considered negligible. It can be shown2 that the

electronic contribution is of the form

C = aT (9)
v

where a is a constant.

For the lattice contribution, Einstein develOped a simple model

to account for the tendency of the lattice heat capacity to decrease

at low temperatures below the value 3R per mole obtained at high

temperatures, where R is the gas constant. He treated the vibrations



of the N atoms as a set of 3N independent harmonic oscillators in one

dimension, each with an identical angular frequency co. The expression

for the average energy of an oscillator in quantum theory is

E :hw/(efiw/kT-l) + % “hm (10)

At low temperatures (kt <Ihto), however,

_ A.

E = ’hwe- VT (11)
where 41

_“_°.

CV = Nk(-’ho.>/kT)2 e ' H (12)

As T+O the exponential factor is dominant; yet it is found experimentally

that the variation goes nearly as T3.

On the Einstein model each atom is assumed to be oscillating about

a fixed point. Actually each oscillates relative to the other. For long

wavelengths, moreover, large regions may move together. It is therefore

an oversimplification to assign an identical frequency to all 3N oscillations.

The long wavelength motions are particularly important at low temperatures

because there will be modes of vibration for which’hw << kT. Thus some

degrees of freedom will behave classically and contribute approximately

kT to the energy. The total energy will not, then, approach zero

exponentially.

Debye attacked the problem by ignoring the lattice structure and

considering the crystal as an isotropic elastic continuum. Three modes

of waves originate, two trqnsverse and one longitudinal. We find

VIA : sz : Ct (13)

and v3)\ = C1

where v1 and v; are the frequencies of the transverse waves, and A is

the wavelength and Ct and C1 are respectively the transverse and

longitudinal velocities. The number of longitudinal vibrations whose

frequencies lie between v and v + Av is



4 ‘rr(L/Cl)3 vZAv (14)

where L is the length of one side of the crystal. The total number of

vibrations with frequency between v and v + Av is then

N(v)Av = 41TV(Z/Ct3+1/C€5)VZAV (15)

where L3 = V, the volume.

The lattice structure is taken into account by the ad hoc assumption

of a cutoff frequency Vm such that the total number of vibrations has

the correct value 3N. Then

3N: 4 1TV(Z/C: +1/C3 ) fvmvzdv (16)

0

4 TrV/3(2/C:+ I/C3 ) v1.3n (17)

OI‘

N(v)Av = 9N vz/ Vin Av (18)

With this distribution of oscillator frequencies the average energy of

the lattic e is

-— h

E = 9N/vm3 fovm [é- hv + h, V lvzdv <19)
-1

e—

kT

 

where %h is the zero-point energy term. Using the Debye function

D(u) E 3/u3 fou x3. dx/eX - l (20)

where x ; hvm/kTE G/T (21)

and e _=_ th/k (22)

we find . E" = 9/8thm + 3NkT~ D(hvm/kT). (23)

The heat capacity at constant volume is the derivative of the energy

with respect to temperature:



3Nk-D(e/T) + 3NkT:d/dT(D(e/T)) (24)0 ll

3Nk 4D(o/T) - 3(G/T)/eg/T- 1 (25)

At low temperatures, this function reduces to

CV = 3Nk 4 1T4/5(T/9)3 + (26)

as found by experiment.

The magnetic contribution (paramagnetic), which is due to the

influence of the magnetic dipole-dipole coupling and feeble exchange

coupling, has been derived by VanVleck.3 He assumes a Hamiltonian, H,

of the form

H = Zivi + E oi. - H0 Ei ”7.1 (27)

J >1

- _ -3 -. - -.-.. —.—.. exWith wij - rij (.11 . ”j - 3(u1.r1J) (uj r13) + VIJ (28)

Here Tij is the radius vector connecting atoms i and j, H0 is the applied

field directed along the z axis, and the E's are the magnetic moments

of the atoms. The first part of the wij is the dipole-dipole coupling of

atoms i and j, and the last term is the exchange energy. It can be

shown that

 

ex — —

Vij : Vini' Hj/rij (Z9)

_ 3 2 2 J(J+1) + S(S+1) - L(L+1) ,
where Vij — (Zrij/g (3 )i 2J(J+1) ] K (30)

Here S, L, J are reSpectively the Spin, azimuthal, and inner quantum

numbers of an atom. The factor rij/gzfiz is included to make Vij

dimensionless. The exchange effect is then isotropic since it depends

only On the relative orientation of pi and Ej .~ K is the exchange integral.

By expanding the partition function

z E E e'wx/kT (31)
A



where the sum is over all the states of the crystal and WK are the

characteristic values of the Hamiltonian; and using

9 a
CV W{_ sz j—T (10g 2)} (32)

2 - b'(7’/T)3«- c'(7’/T)4 + ..] (33)
Nk [a'(’l’/T)l

1

VanVleck obtains CV

where 7’ is defined by

r 3 gZBZNJ(J+1)/k. (34)

and the constants a', b', c' depend upon the structure of the crystal.

At low temperatures, a reasonable approximation is given by

__ 2
CV _. a/T . (35)

If we add to a paramagnetic substance an interaction tending to

align the atomic spins in a staggered parallel arrangement we may have

an antiferromagnetic media. To illustrate, consider a simple cubic

01‘ a body-centered cubic arrangement. Suppose the crystal consists

of two interpenetrating sublattices such that the nearest neighbors of

an atom on lattice A are entirely on lattice B. If then the Spins on A

are parallel in one direction and those on B in the Opposite direction we

have an antiferromagnetic media. For more complex arrangements

additional sublattices will be needed.

It can be shown that exchange interactions are equivalent to an

inte ratomic potential

vij = - 21—K(1 + 4513.1) (36)

Where Si and S, are respectively the Spin angular-momentum vectors

0f atoms i and j in units of h/ZJT and K is again the exchange integral.

If K is negative, we have an antiferromagnetic media. The effective

Potential on a given atom i is then found by summing over the j nearest

neighbors. This procedure is equivalent to saying that each atom i lies



in an effective molecular field due to atoms j. Thus except for an

additive c ons tant,

V13: —2KSi.ESj = -2zKSi.Sj (37)

.1

where z is the number of nearest neighbors of a given atom. The

neighboring atoms have the same alignment, so that we have simply

the product of the mean value for any one atom j and the number of

such atoms 2. The mean value of the Spins on lattice i and j will be

equal but oppositely directed. We call this value of the Spin So.

Hence

v = -ZKZS02 . (38)

The magnetic energy is then

_. _Z

Eex— —NZ|K|so (39)

where N is the number of magnetic ions per unit volume.

VanVleck4 has calculated the value of S0. He introduces an

applied field H which produces a displacement 6§i and 6Sj to the

Spin of typical atoms. Noting that besides the effective potential we

have terms like -g(3Si. H due to the applied field, we write an effective

field fieff' By then writing the magnetic moment ICA- and upon isolating

correSpondings contributions, we have

— — +
(sowsl =SBs(y) (40)

(50 + (S) =SB(y") (41)

:t i (3
where y = lHeff ISg /kT (42)

and BS is the Brillouin function

 

Izs+1 25 + .- 1. 1
B :‘ coth .'_Y.X _ .._... COth _Y_ 43

Sm , zs ( as as (25 ) ( )

For zero applied field



I§o| = s Bswo). (44)

yo = 27.5 | KS, l/kT (45)

The Néel temperature is that temperature above which equation (44)

ceases to have a real non-vanishing solution for SO. For small values

of the argument

SBSW) = (1/3)(S+1)y (46)

(5012(1/3)(s+1)2zs IKSOI [ch (47)

61- TC = (2/3))K1zk’15(s+1) (48)

Looking then at the internal magnetic energy

_2

we have for the specific heat

CV = (71 E/B T)V = -2Nle|So dSo/dT. (50)

Knowing then the transition temperature and the ground state

Spin of the magnetic ion, we can draw the curve for CV as a function

of T. We first plot y as a function of So using equation (44). Then,

using equation (45) for different values of T, we plot y as a function of

So on the same graph as equation (44). These curves are shown in

Figure 1. The intersection of the two curves gives a pair of So, T

values. These pairs of values are then plotted in Figure 2. From

this graph of So vs T, dSo/dT values are obtained at different temperatures.

These slopes are shown in Figure 2. By use of the equation for the

specific heat (50) CV values are then found for different T values, and

the graph is drawn in Figure 3.

Usually a transition between different crystal modifications takes

place by means of a discontinuous reconstruction of the lattice.

, In addition to this crystal modification however, a transition may occur

involving a change of ordering. As the temperature changes some
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Figure 2. S0 vs T for LiCuCl3° ZHZO
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atoms may shift relative to others. As soon as this shift begins the

lattice symmetry changes. An arbitrarily small displacement is

sufficient to produce an abrupt change in the symmetry of the lattice.

The arrangement of the atoms in the crystal however changes con-

tinuously. A transition of this kind is called a second-order phase

transition.

The transitions considered in this paper are changes in the

magnetic ordering which occur at the Néel point, that is, the transitions

from the antigerromagnetic to the paramagnetic state.

At absolute zero the system is completely ordered. It becomes

less ordered as the temperature is increased, until the transition

temperature (Néel point) is reached. Above this point the long-range

order over many atomic distances disappears. However some short—

range order, or correlation among near neighbors, may persist above

the transition.

The Néel point may be found from an analysis of the specific

heat, which has an anomaly there. This anomaly is associated with the

extra internal energy required to disorder the structure. This

phenomenon may be seen for LiCuCl3° ZHZO in Figure 3.

If one divides the heat added to a system dQ by the temperature

T, one gets an exact differential d8 of some function of the system S

called the entropy.

With this definition of entrOpy

dQ/T = d5 (51)

2 2

we write I dQ/dT = f d5 = 52-51 (52)

1 1

where l and 2 designate the states of the system, and 82-81 designates

the change in entropy.

It is then of interest to calculate the change in entropy associated

with the diminution of long—range order (antiferromagnetic state) and



13

the change associated with short-range order (paramagnetic state).

One method for doing this is one described by Friedberg.5

We can calculate the change in entropy by remembering that

dQ = CVdT (53)

Then AS: (T2 (CV/T)dT (54)

TI

This equation may be applied directly to find the change in entropy

above the Néel point. We recall

CV = (a/TZ) + bT3 (55)

where the electronic term has been omitted. To evaluate the con-

stants a and b, CVT?‘ is plotted as a function of T5. This curve is shown

in Figure 4. The slope and intercept of this curve are determined

from Figure 4, and they represent the constants b and a respectively.

It is found that b is so small that the lattice contribution may be

neglected. Then

AS: I; a/T3.dT (56)

where T1 is the temperature at which the above curve deviates from

linearity. The upper limit has been extended to infinity without serious

error, since the integrated function is decreasing as l/Tz.

- For the change in entropy below the Néel point one must use a

different procedure, since the Specific heat is not known as an

analytic function of temperature. A plot is made of Cv/T as a function

of T, and the area under the curve from T=O to T=T1 is found by

graphical means. The curve of CV/T vs T is done in Figure 5.

The total entropy change i. e. , the sum of the contribution above

and below the Néel temperature, may then be compared with the

theoretical value of

AS = R 10g (zs+1) (57)
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where s is the ground state Spin of the magnetic ion, and R is the gas

constant.

The present experiment thus concerns itself first with compar-

ing equation (50) with the experimental specific heat curve for one

paramagnetic salt, and secondly with comparing the expected entropy

change equation (57) with that calculated from the specific-heat data.

In addition, data are also given for a paramagnetic salt that does not

become antiferromagnetic in the region investigated.



APPARA TUS AND PROCEDURES

In the determination of specific heat one must measure the

amount of heat added to the sample, and the corresponding temperature

change. For small temperature changes no appreciable error is

introduced by taking the true Specific heat as the specific heat at the

average temperature, i. e. , the average of the before-heating

temperature and the after-heating temperature.

The heating circuit is shown in Figure 6. Heat is introduced

into the system by passing a current through a manganin wire of

approximately 400 ohms resistance at room temperature. This heating

wire is wound around the crystal, and is held in place by a small amount

of Glyptal. The current through this wire is measured by the potential

drop across a 100 ohms standard resistance with a Leeds and Northrup

type K potentiometer. By use of a reversing switch the potentiometer

also measures the potential drop across the heater wire. The time

during which the heat flows into the system ismeasured with a hand-

operated stop watch accurate to 0. 1 sec. The time intervals varied

from 20 to 60 sec.

To measure the absolute temperature T, Allen-Bradley O. 1 watt

carbon resistors were used.6 These resistors had a resistance of 56

ohms at room temperature, increasing to 70 ohms at liquid-air temper-

atures, to 500 ohms at the boiling point of liquid helium, and to 10, 000

ohms at 1. 30K. These resistors Show a linear relationship for

LogloR plotted against 1/T, the line breaking at the 1. point (2. 18).

To determine the resistance of the thermometer, a Leeds and

Northrup type k-3 potentiometer measured the potential across the

thermometer. The current through the thermometer was held at

17
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10 microamperes. This was done by adjusting the current in this

thermometer circuit with a 100k helipot. This adjustment was made to

keep the potential drop across a 1000 ohm standard resistance in this

same circuit at 10-7‘ volts as read by a Leeds and Northrup type K-Z

potentiometer. This circuit is shown as the lower half of Figure 7.

The resistance of the thermometer varied continuously, however

owing to the small heat leak into the system. This resultant temperature

increase gave rise to an unbalance in the potentiometer. This unbalance

was amplified by a Leeds and Northrup D. C. amplifier and recorded on

8 Leeds and Northrup Speedomax recorder. The recorder was cali-

brated for different voltage ranges so that, by measuring the unbalance

on the chart the reading could be converted to a potential difference.

By recording the potential for a balanced position, the potential at any

other point could be obtained. By knowing the current through the

thermometer it was now possible to determine the resistance, and

consequently the temperature. The Circuit used for measuring the

thermometer resistance is shown as the upper half of Figure 7.

The measurements were carried out in the double-Dewar system

Shown in Figure 8. This system consisted of two pyrex Dewars of

double wall construction. The inner Dewar, containing the helium, had

a 1/4 inch glass flange attached to it. By means of a split ring below

this flange and a brass T above, fastened together with eight l/4-inch

bolts, the Dewar could be sealed for reducing the vapor pressure.

It had an overall length of 36 1/4 inches with a 2-inch inside and 3-inch

outside diameter, with strip silvering, l/2-inch wide. The Space

between the walls of the helium Dewar was first evacuated and then filled

with dry nitrogen to a pressure of 1mm Hg. This space had to be re-

evacuated and again filled with nitrogen periodically because of the

diffusion of helium gas through the Pyrex wall. At liquid-air

temperatures the nitrogen gas acted as a good exchange medium.
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After liquid helium was transfered into the Dewar, however, the nitrogen

was frozen out, and therefore a good vacuum was obtained for isolating

the helium bath from the liquid-air bath. The outer Dewar containing

liquid-air, had an overall length of 35 inches with a 3 1/2-inch inside

and 4 1/2-inch outside diameter, with strip silvering 1/2-inch wide.

The temperature region of interest was from 1. 30K to 100K. This

range was obtained by controlling the vapor pressure, and by heating.

For temperatures below 4. 20K to the, X point, the vapor pressure was

reduced with a Kinney KDH 130 vacuum pump. Below the k point, a

combination of pumping and heating was used.7 For temperatures above

4. 20K the pressure was allowed to build up in the system to approximately

two atmospheres. Because of the time for the crystal to react to a

change in the temperature of the bath, its temperature could be increased

above 4. 20K by allowing the pressure of the bath to increase above

atmospheric pressure. A second method for increasing the temperature

was to bring a heating element near the Dewar system. This method

however had the disadvantage of reducing the liquid helium level to a

point where only one run could be made through the interval 4. 20K to

100K.

The calorimeter is shown in Figure 9. The calorimeter can was

made of cepper, 63/4 inches long and 1 3/8 inches in diameter. The

top plate, of 1/4-inch brass, was held to the can by eight 6/32 inch

screws. To obtain a vacuum seal between the two, a fuse wire "O"—ring

Slightly greased with Dow-Corning silicone vacuum grease was set in a

groove in the top plate, which was then tightened down. The leads from

the crystal were brought out of the calorimeter can through this top

plate through tungsten- glass seals. To the tOp plate was attached a

1/2 inch O.D. stainless steel tube for evacuating the calorimeter.

This tube passed up through the helium bath and was soldered at the top

of the Dewar to a 1/4-inch brass plate. This plate was fastened by
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Figure 9 . Calorimeter .
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eight l/4-inch bolts to the top of the T, previously described, which

was connected to the helium Dewar. Also in this plate was a lead-out

for all wires, and a connection for the manometers. A third opening

in this plate was for the transfer of liquid helium. . For measuring the

pressure in the calorimeter, an NRC type-507 ionization gauge was

connected to the 1/2-inch tubing above the brass plate. The calorimeter

was evacuated with the vacuum system shown in Figure 10.

During the course of a run the thermometer first had to be cali-

brated by making resistance measurements at various temperatures

and plotting logloR against l/T. The vapor pressure was reduced by

the pumping system already described, and the pressure was read on

a mercury manometer. Below the X-point an oil manometer was used.

The density of the oil was 1/14. 08 that of mercury. By using the 1958

vapor pressure versus temperature, 8 pressure readings were converted

to temperatures. From ten to fifteen calibration points were usually

taken from 4. 20K to 1. 30K. For temperatures above 4. 20K, extrapo-

lation was necessary.

Following the calibration, the calorimeter was evacuated. Some

heat leaks still occurred but they were of constant magnitude. To

compensate for these heat leaks during a heating cycle the before and

after-drifts were extrapolated to the midpoint of the heating curve.

The fore—drift of the heating curve was always begun at a known value

of the potential, so that by use of the recorder calibration, the potential

and hence the temperature could be found at the two points on the heating

curve.

By use of the data from the heating circuit and the equation

VIt

Cv - T— ‘58)
the heat capacity at the average temperature (Tf Ti)/Z could be found.
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Here

V = potential across the heater

I current through the heater

t = time of heating

Ti and Tf = initial and final temperatures

(Note: In an actual run, the specimen is maintained at constant

pressure, but at low temperatures CI) = Cv‘)

To recapitulate, the experimental data were taken as follows:

1. Precooling:

After mounting the calorimeter in the Dewar, the Dewar was

flushed out with helium gas and one atmosphere of gas left in.

The liquid-air Dewar was then filled and the system was left to

cool down (usually overnight). It was possible to determine when

the system had reached liquid-air temperature by noting the value

of the thermometer resistance.

2. Transfer:

The calorimeter was flushed out with helium and one mm Hg of

helium was left in as exchange gas. Liquid helium is then

transfered into the helium Dewar from the storage container by

use of compressed helium gas to force it through the transfer:

tube.

3. Calibration:

The potential drop across the thermometer was read after it had

reached equilibrium at the boiling point of liquid helium. By

pumping, the vapor pressure and the temperature were lowered.

4. Isolating the system and taking of data:

After the lowest temperature had been reached the calorimeter

was evacuated to remove the exchange gas and thus isolate the

calorimeter from the liquid helium bath. At intervals of 3 to 5

minutes, heat was allowed to flow into the system.
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Measurements of the current, potential drop, and time were

taken for the heating circuit. The current and potential drop

across the thermometer had been read a short time previously

to give a reference point and to permit determination of the

before-drift background.

Single crystals were grown from aqueous solutions at room

temperature, the LiCuCl3- ZHZO from an aqueous solution of

CuClz- ZHZO and LiCl, and the FeClz-4HZO crystals from an

aqueous solution of FeClz-4HZO. These salts were reagent grade,

obtained from J. T. Baker Chemical Company. The LiCuCL3. ZHZO

crystals were reddish-brown, the FeClz-4HZO crystals were dark

green. Both types of crystals were monoclinic. All the crystals

weighed 1.0 to l. 5 gm and measured approximately 1. 5 x 1.0 cm.

A chemical analysis was made on one of the LiCuCl3- ZHZO crystals

3::

to verify its composition.

>:<

Analysis performed by Schwarszpf Microanalytical Laboratory,

Woodside, N. Y.



ANALYSIS OF RESULTS

LiCuCl3- 21-120

Only the LiCuCl3' ZHZO crystal showed an anomaly in the specific

heat curve in the liquid-helium temperature range. Three crystals

were studied in the investigations, the third of which was also used

for some nuclear magnetic resonance measurements. This nuclear-

resonance data further identified the transition as paramagnetic- '~

antiferromagnetic.

The specific heat curve, Figure 3, rises from about 0. 25 cal/mole-

deg to 1. 25 cal/mole-deg in the temperature range from 2-4OK, but

increases rapidly within 0. 50K from 1. 25 cal/mole-deg to 3. 50 cal/

mole-deg (near the transition temperature). The curve then falls

to approximately 1. 50 cal/mole-deg at 90K. This decrease follows

approximately a l/T2 law. The experimental data for this crystal are

given in Appendix I. V

The transition temperature was estimated to be 4.40 i . 020K.

This value agrees well with the nuclear resonance data, but is lower

than that derived from the susceptibility measurements of Vossos,

Jennings, and Rundle. 10

A comparison of the theoretical and experimental curves should

be made. Below the transition point the experimental values are lower

than the theoretical. The experimental curve also exhibits a tail above

the transition, whereas VanVlecks' theoretical curve goes to zero.

One reason for this difference is VanVleck considered only long-range

ordering which goes to zero at the Néel point. However as can be seen

some short-range ordering still persists above the Néel point.

28
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For the change in magnetic entropy associated with a para—

magnetic- antiferromagnetic transition above the Néel temperature one

must evaluate the integral

00

AS: [T1 Fit—dT (59)

From the graph of CpTz vs T5 in Figure 4 we obtain T1 = 4. 57 and

a = 27. 2. Thus

'0 27.2
: = 0. 1 1 -d 0AS (4.57 -T"rd_-T 65 ca /mo e eg (6 )

The change in entropy below the Néel point is found by graphically

measuring the area under the curbe of C /T vs T from 00-4.57OK, in

Figure 5. The entropy change in the region 00—4. 570K, is calculated

to be 0. 70 cal/mole-deg. The total change in entropy is therefore

1. 35 cal/mole-deg. We wish to compare this total entrOpy change with

the theoretical equation (57). The exact composition of the magnetic

ion is unknown. However if one assumes a spin of%- for the copper

(possibly as CuCl3) then the theoretical change in magnetic entropy

is l. 38 cal/mole-deg, a value within 2% of that obtained experimentally.

However, in the susceptibility measurements10 it is found that a better

fit to the data is obtained if S is taken as l for c0pper (as CuzClg).

A more detailed examination of this point must await neutron-diffraction

experiments.

It should also be noted that 48% of the change in entropy occurs

above the Néel temperature. This entropy change is associated with

the diminution of Short- range order, a phenomenon neglected in VanVleck's

simple model. Such a large fraction has also been observed in a number

of other antiferromagnets.

FeClz- 4HZO

In the case of FeClZ- 4HZO no transition was found in the temperature

region investigated. Neutron-diffraction investigations by Wilkinson and
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Cable11 on polycrystalline samples of anhydrous FeClz from 4. 20K to

room temperature indicate an antiferromagnetic-paramagnetic

transition at 240K. From previous work by other investigators on

the anhydrous and hydrated forms of paramagnetic crystals, it was

shown that in a number of cases, if the anhydrous form of the para-

magnetic crystal became antiferromagnetic, then the hydrated form

showed an antiferromagnetic state at a lower temperature. From this

fact the present investigator felt that a magnetic transition might be

observed in the helium region with a hydrated sample of FeClZ-

Apparently however the tetrahydrate of FeClz is magnetically too dilute

to Show such a transition in this region. Possibly FeClZ-4HZO is

antiferromagnetic at a temperature not attainable with the present

pumping system.

Figure 11 Shows the specific heat curves obtained for FeClz-4HZO

in three separate runs on two different crystals. The Specific heat

values are quite small, and appear to remain constant over the

temperature range investigated. From the experimental data no T3

dependence of the heat capacity is observed. - It is possible that this

is due to the lack of experimental accuracy. On the other hand, this

heat capacity data may be in a region corresponding to the "tail" in

an antiferromagnetic-paramagnetic transition. This has been observed

previously in MnClz' 41120.12 That this data does represent such a

region is not too unreasonable, since it has been reported previously

that FeClz- 4HZO shows a magnetic transition at approximately 1. 60K. 13

Further work at lower temperatures will help to clarify this point.

The experimental data are given in Appendix II.
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APPENDIX I

Experimental Data for LiCuCl3- ZHZO

 

 

 

 

 

 

 

C .ATT T

(cal/moge OK) (OK) (OK)

7 Dec. 1960

0.15 0.009 1.998

0.19 0.010 2.018

0.25 0.008 2.155

0.25 0.007 2.157

0.24 0.008 2.265

0.34 0.006 2.329

0.34 0.005 2.365

0.39 0.004 2.571

0.37 0.005 2.641

0.34 0.006 2.677

0.93 0.009 3.821

2.46 0.006 4.387

3.517 0.004 4.392

15 Dec. 1960

0.24 0.005 2.043

0.26 0.005 2.063

0.28 0.005 2.084

0.23 0.005 2.103

0.27 0.004 2.145

0.29 0.004 2.189

0.26 0.004 2.214

0.34 0.003 2.400

0.36 0.004 2.633

0.44 0.004 2.663

0.71 0.012 2.963

0.86 0.008 3.314

0.84 0.009 3.539

0.93 0.008 3.865

1.34 0.016 4.002

19 Dec. 1960

0.21 0.003 2.065

0.27 0.003 2.257

0.22 0.004 2.291

0.23 0.003 2.330

0.36 0.002 2.441

Continued

34
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C .ATT T

(cal/mofie OK) (OK) (OK)

19 Dec. 1960 (cont'd)

0.38 0.002 2.479

0.35 0.002 2.543

0.32 0.003 2.621

0.88 0.009 3.582

1.97 0.009 4.169

22 Dec. 1960

0.16 0.005 1.921

0.18 0.004 1.938

0.21 0.004 1.954

0.24 0.003 2.013

0.26 0.006 2.069

0.24 0.003 2.098

0.33 0.003 2.448

0.37 0.021 2.702

0.46 0.013 2.756

0.50 0.011 2.819

1.09 0.015 3.716

2.12 0.007 4.295

0.53 0.180 7.389

0.49 0.204 8.259

26 Jan. 1961

0.17 0.004 1.904

0.15 0.004 1.920

0.23 0.003 1.964.

0.25 0.003 1.979

0.24 0.004 2.016

0.29 0.003 2.034

0.20 0.003 2.066

0.26 0.003 2.097

0.29 0.003 2.129

0.26 0.003 2.146

0.26 0.003 2.217

0.25 0.014 2.269

0.29 0.012 2.361

0.35 0.009 2.470

0.38 0.007 2.512

0.36 0.010 2.598

0.40 0.007 2.663

0.41 0.007 2.703

 

confinued
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C ziT T

(oeI/morie OK) (OK) (OK)

26 Jan. 1961 (cont'd)

0.47 0.011 2.752

0.56 0.010 2.805

0.57 0 011 2.846

0.45 0 013 2.888

0.70 0.008 2.928

0.67 0.009 2.978

0.67 0.021 3.072

0.84 0.026 3.145

0.88 0 008 3.290

0.88 0.012 3.320

0.90 0.007 3.613

0.90 o 007 3.639

0.96 0.013 3.696

1.23 0.009 3.896

1.20 0.010 3.962

1.22 0.010 4.000

1.51 0 008 4.069

1.48 0.009 4.107

1.93 0.007 4.187

2.10 0.005 4.225

2.09 0.009 4.274

2.64 0.005 4.357

2.86 0 008 4.421

2.71 0.008 4.446

1.98 0.006 4.491

1.44 0.014 4.501

1.47 0.013 4.552

1.32 0.015 4.579

1.38 0 011 4.648

1.11 0.018 4.744

1.11 0 015 4.731

1.14 0.044 4.953

1.17 0.038 5.052

1.16 0.058 5.139

1.02 0.065 5.323

1.09 0.036 5.476

0.99 0.035 5.633

0.91 0.039 5.708

0.93 0.059 5.731

0.90 0.043 5.775

 

continued
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9. . AOT .T
(caymole K) ( K) ( K)

26 Jan. 1961 (cont'd)

0.89 0.073 5.892

0.76 0.110 6.050

0.81 0.071 6.632

0.80 0.062 6.653

0.73 0.147 6.867

0.72 0.138 7.023

0.67 0.146 7.340

0.58 0.159 7.820

0.56 0.152 8.320

0.47 0.173 8.874

 



APPENDD<H

Experimental Data FeClz- 4HZO

lst Crystal, lst Run

 

 

 

 

4 May 1961

T .ATT C T‘ (AT C

P P

1.3750 0.0044 1.08 1.7604 0.0034 1.06

1.3814 0.0038 1.01 1.7815 0.0045 1.20

1.3918 0.0037 1.15 1.8051 0.0049 1.08

1.4034 0.0043 0.91 1.8298 0.0114 1.11‘

1.4124 0.0036 1.03 1.8588 0.0099 1.32

1.4226 0.0032 1.12 1.8925 0.0100 1.15

1.4348 0.0033 1.18 1.9256 0.0097 1.07

1.4462 0.0032 1.10 1.9599 0.0077 1.32

1.4587 0.0034 1.06 1.9930 0.0092 1.18

1.4709 0.0028 1.10 2.0323 0.0144 1.33

1.4828 0.0029 1.04 2.0740 0.0176 1.13

1.4930 0.0037 1.01 2.1692 0.0160 1.06

1.5056 0.0039 0.96 2.2266 0.0169 1.26

1.5234 0.0037 0.94 2.3081 0.0112 1.62

1.5393 0.0033 1.05' 2.3749 0.0107 1.46

1.5539 0.0039 0.95 2.4422 0.0137 1.53

1.5669 0.0044 1.03 2.5723 0.0126 1.37

1.5831 0.0038 1.00 2.6856 0.0195 1.42

1.5950 0.0038 1.00 2.7559 0.0144 1.80

1.6081 0.0031 1.09 2.9103 0.0135 2.10

1.6297 0.0032 1.03 3.1235 0.0186 1.49

1.6537 0.0038 1.15 3.6284 0.0289 1.45

1.6715 0.0042 0.91 3.7955 0.0231 1.62

1.6853 0.0026 1.39 4.0700 0.0298 1.27

1.7098 0.0038 1.07 4.3114 0.0502 1.63

1.7313 0.0036 0.95

lst Crystal, 2nd Run'

11 May 1961

1.3379 0.0015 1.41 1.7295 0.0120 1.04

1.3442 0.0024 0.94 1.7556 0.0135 0.99

1.3499 0.0022 1.02 1.7851 0.0128 1.00

1.3573 0.0020 1.13 1.8131 0.0122 0.97

1.3651 0.0019 1.07 1.8389 0.0115 1.19

1.3767 0.0025 0.82 1.8667 0.0139 1.02

1.3883 0.0023 0.86 1.9035 0.0156 1.05

confinued
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T AT‘ Cp T AT‘ Cp

lst Crystal, 2nd Run

11 May 1961

(cont'd)

1.3974 0.0020 0.98 1.9395 0.0120 1.04

1.4068 0.0031 1.11 1.9739 0.0125 1.05

1.4182 0.0040 0.81 2.0100 0.0121 1.04

1.4365 0.0039 1.01 2.0431 0.0138 1.01

1.4508 0.0035 0.92 2.0799 0.0156 0.90

1.4635 0.0038 0.95 2.1211 0.0149 1.01

1.4772 0.0032 -0.90 2.2640 0.0112 1.10

1.4964 0.0033 0.95 2.3778 0.0209 1.05

1.5123 0.0030 0.93 2.4704 0.0317 0.65

1.5282 0.0025 1.12 2.5313 0.0173 1.03

1.5449 0.0038 0.96 2.6045 0.0237 0.93

1.5557 0.0034 0.95 2.6738 0.0200 1.11

1.5695 0.0032 1.09 2.7480 0.0166 1.12

1.5855 0.0030 1.02 2.8393 0.0194 1.08

1.6097 0.0096 0.87 2.9240 0.0240 1.10

1.6317 0.0077 0.97 3.0382 0.0212 0.95

1.6570 0.0116 0.66 3.1731 0.0231 0.93

1.6797 0.0048 1.58 ‘ 3.2987 0.0250 0.83

1.7041 0.0151 0.98 3.4089 0.0267 1.12

3.5113 0.0246 0.99

3.6991 0.0506 0.95

3.8337 0.0485 0.83

3.9958 0.0990 1.10

4.1558 0.0812 1.14

4.2912 0.0573 0.81

2nd Crystal

26 May 1961

1.3678 0.0038 0.76 1.8021 0.0181 1.17

1.3750 0.0025 1.24 1.8314 0.0144 0.81

1.3815 0.0028 1.14 1.8632 0.0181 0.96

1.3882 0.0021 1.31 1.8993 0.0151 0.83

1.3951 0.0025 1.16 1.9300 0.0182 1.01

1.4026 0.0030 1.07 1.9635 0.0146 1.22

1.4104 0.0028 1.13 1.9984 0.0160 1.02

1.4233 0.0024 1.29 2.0360 0.0145 0.77

1.4294 0.0024 1.15 2.0789 0.0242 1.26

1.4367 0.0025 1.21 2.1194 0.0220 1.30

 

confinued
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T‘ 1AT‘ C T (ST C

p P

2nd Crystal

26 May 1961

(cont'd)

1.4530 0.0051 1.09 2.1636 0.0196 1.24

1.4663 0.0041 1.14 2.2119 0.0195 1.39

1.4891 0.0046 0.99 2.2609 0.0225 1.24

1.5034 0.0038 1.11 2.3191 0.0205 1.09

1.5178 0.0104 1.22 2.3798 0.0249 1.36

1.5347 0.0104 1.11 2.4343 0.0202 1.39

1.5550 0.0092 1.16 2.4978 0.0243 1.34

1.5611 0.0084 1.19 2.5651 0.0243 1.41

1.5878 0.0101 1.18 2.6462 0.0210 1.42

1.6099 0.0096 1.06 2.7454 0.0234 1.37

1.6308 0.0096 1.07 2.8467 0.0390 1.35

1.6543 0.0170 1.20 2.9568 0.0245 1.35

1.6803 0.0178 0.81 3.0910 0.0345 1.42

1.7144 0.0194 1.04 3.2783 0.0946 0.76

1.7493 0.0119 1.74 3.4162 0.0510 1.69

1.7729 0.0160 1.19 3.5114 0.0518 1.20

3.6024 0.0415 1.28

3.7129 0.0675 1.30

3.8347 0.0736 1.31

3.9835 0.0651 1.18

4.0478 0.0409 1.10

4.1230 0.0527 0.94



lllllllllllllli(IllillllllllI
293 03145 59463

I
I
I

I
I

I
I
I

I
I
I

 


