HEAT CAPACITIES OF
LiCuCl, - 2H,0 AND FoCl,-4H,0
SR - HELIUM

TEMPERATURE REGION

Tf‘;es"s {ov 51” L/cz\.xme o. M. S

REELCHEINEANY T4 "“‘ IR Y D'\ ™
aa.Ev“.&b "&1 bn. a.u- Wit ..':‘;i. b 1\8

JCI&V&I’ 4\?&» I\JLL u\-GEEeJ’Y

161



LIBRARY
Michigan State
University




MSU

LIBRARIES
AN

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.

B R R b O

DY S S0 A ]
N




HEAT CAPACITIES OF LiCuCl,- 2H,O AND FeCl.-4H,0
IN THE LIQUID-HELIUM TEMPERATURE REGION
By

Donald Ray McNeeley

AN ABSTRACT

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Physics and Astronomy

1961

4
s
Approved X ewe ! Hea i




ABSTRACT

The heat capacities of LiCuCl;* 2H,0O and FeCl,;*4H,0 have been
measured in the liquid helium temperature region to determine if a
N\ type anomaly exists in the specific heat curve. One example of this
anomaly is noted for those crystals which undergo a paramagnetic-
antiferromagnetic transition, where it is associated with the extra
energy needed to disorder the crystal. In the antiferromagnetic state
itne spins are aligned such that the nearest neighbors of an atom A are
antiparallel to this atom. In the paramagnetic state the spins are
randomly oriented.

The specific heat curve for LiCuCl;* 2H,0 shows this type of
anomaly at a temperature of 4.40 ¥ .02°K. The change in magnetic
entropy is also calculated for this crystal and compared with the
theoretical value. In the Van Vleck theory only long-range order ex-
tending over many atomic distances is considered. However, 48% of
the change in entropy occurs above the Neel temperature, indicating
that a large amount of short-range order, over a few atomic distances,
still persists.

The specific heat curve for FeCl,*4H,0 shows very little
temperature dependence in the region investigated, indicating perhaps
that the experimental accuracy is not sufficient to disclose the expected
T dependence of the lattice specific heat, or that this region repre-
sents the ''tail'" in the paramagnetic state. Such temperature independent

regions have been found in other paramagnetic salts.
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THEORY

In general, one defines a mean heat capacity over a temperature

range T, to T; by the equation

C = Q(T,-T,) (1)

The heat capacity, at any temperature T, is then defined as the limit
of the above ratio when the temperature difference AT approaches zero,

where the flow of heat is dQ:
C = dQ/d4T (2)

This heat capacity is in general a function of temperature. To obtain
a quantity characteristic of a substance, we define a specific heat

capacity as the ratio
C = dq/dT (3)

where dq is the heat flowing into the substance per mole. As would
be expected this specific heat capacity, or specific heat, depends upon
the nature of the process during which heat flows into the system.

Starting with the first law of thermodynamics,
dQ = dU + PdV (4)

where U is the internal energy, P is the pressure, and V is the

volume, and considering a process at constant volume, we have
C, = (dg/dT), = (3UAT), (5)

where we define Cy, = ( BQ/BT)V; that is the specific heat at constant
volume gives the rate of change of internal energy with respect to

temperature at constant volume.



Considering a process at constant pressure,
(dQ/dT)p = (dU/2 T)p + P(OV/>2 T)p (6)

and defining

C =(2Q/a7T) (7)
P P

one can see that the change in internal energy with temperature is
not necessarily a simple function of the specific heat at constant
pressure. It can be shown, ! that the difference between Cp and CV is
given by,

C -C =B?’TV/k (8)
P v

where V is the volume, B the coefficient of volume expansion, and k
the compressibility. At low temperatures this difference is quite
small, so that one can effectively measure Cv by measuring C .

Of interest in this paper is the temperature dependence of the
specific heat of two normally paramagnetic salts. Contributions to
specific heat normally arise from the lattice vibrations and the free
electrons. For a paramagnetic substance, an additional magnetic
contribution will be considered, due primarily to the dipole-dipole
exchange interaction.

Since the crystals investigated were dielectrics, the electronic
contribution was considered negligible. It can be shown? that the

electronic contribution is of the form

C =aT (9)

v
where a is a constant.
For the lattice contribution, Einstein developed a simple model
to account for the tendency of the lattice heat capacity to decrease
at low temperatures below the value 3R per mole obtained at high

temperatures, where R is the gas constant. He treated the vibrations



of the N atoms as a set of 3N independent harmonic oscillators in one
dimension, each with an identical angular frequency w. The expression
for the average energy of an oscillator in quantum theory is

40/kT 1
e

E =4%w/ -+ 5 Ao (10)

At low temperatures (kt </ﬁw), however,

4

E = fwe” KT (11)
where A
C, = Nk(-hw/kT)?e ~ KT (12)

As T30 the exponential factor is dominant; yet it is found experimentally
that the variation goes nearly as .

On the Einstein model each atom is assumed to be oscillating about
a fixed point. Actually each oscillates relative to the other. For long
wavelengths, moreover, large regions may move together. It is therefore
an oversimplification to assign an identical frequency to all 3N ascillations.
The long wavelength motions are particularly important at low temperatures
because there will be modes of vibration for which/w << kT. Thus some
degrees of freedom will behave classically and contribute approximately
kT to the energy. The total energy will not, then, approach zero
exponentially.

Debye attacked the problem by ignoring the lattice structure and
considering the crystal as an isotropic elastic continuum. Three modes

of waves originate, two trgnsverse and one longitudinal. We find

]

Vl)\ sz = Ct (13)

and V3 A Cl

where v, and v, are the frequencies of the transverse waves, and \ is
the wavelength and Ct and C1 are respectively the transverse and

longitudinal velocities. The number of longitudinal vibrations whose

frequencies lie between v and v + Av is



4 7(L/G))® viay (14)

where L is the length of one side of the crystal. The total number of

vibrations with frequency between v and v + Av is then
N(v)Av = 47 V(2 /ct3 +1/C*) v Ay (15)

where L3 = V, the volume.
The lattice structure is taken into account by the ad hoc assumption
of a cutoff frequency v, such that the total number of vibrations has

the correct value 3N, Then

3N= 4w V(2/C +1/C ) [Ym 24, (16)
0
= 4 7 v/3(z/ci+ 1/C? ) v} (17)
or
N(v)Av = 9N v%/ v;n Av (18)

With this distribution of oscillator frequencies the average energy of

the lattice is

hv

hv
= .1
CkT

E= ON/vge® [ m ¥ b+ ] vidv (19)

where ;—h is the zero-point energy term. Using the Debye function

D(u) = 3/u? fou x3 dx/ex -1 (20)
where x = hvm/kTE /T (21)
and & = h'™M/k (22)
we find - E=9/8Nhv, + 3NkT-D(hv_/kT). (23)

The heat capacity at constant volume is the derivative of the energy

with respect to temperature:



3Nk-D(®/T) + 3NkT:d/dT(D(®/T)) (24)

O
1l

3Nk 4D(®/T) - 3(9/T)/e9/T- 1 (25)

At low temperatures, this function reduces to

C, =3Nk4 n*/5(T/8)> + " (26)

as found by experiment.
The magnetic contribution (paramagnetic), which is due to the
influence of the magnetic dipole-dipole coupling and feeble exchange

coupling, has been derived by VanVleck.? He assumes a Hamiltonian, H,

of the form

H = Eivi + .Z W= H, Ei P'Zi (27)
j>i
~ I T Y e S ex
with ©ijF T M B 3(py- rij) (pj rlJ) vy (28)

Here -;ij is the radius vector connecting atoms i and j, Hj is the applied
field directed along the z axis, and the ;'s are the magnetic moments
of the atoms. The first part of the wi5 is the dipole-dipole coupling of
atoms i and j, and the last term is the exchange energy. It can be

shown that

J(J+1) + S(S+1) - L(L+1
where vl_] = (Zr:J/gZ BZL[ (J+ ) ZJ((J:'I)) (L+ )]ZK (30)

Here S, L, J are respectively the spin, azimuthal, and inner quantum
numbers of an atom. The factor r:i’j/gzﬁZ is included to make Vij
dimensionless. The exchange effect is then isotropic since it depends

only on the relative orientation of _p.-i and :j . Kis the exchange integral.

By expanding the partition function

Z = T, e WA/kT (31)

N



where the sum is over all the states of the crystal and WX are the

characteristic values of the Hamiltonian; and using

P d
. B_T—{_ KT? ~— (log Z)} (32)
2 - b'(7/T)- (/T4 +..] (33)

C

Nk [a'(7/T)

1

VanVleck obtains Cv

where ¥ is defined by
T = g?B’NI(I+1)/k, (34)

and the constants a', b', c' depend upon the structure of the crystal.

At low temperatures, a reasonable approximation is given by

C,=a/T% (35)

If we add to a paramagnetic substance an interaction tending to

align the atomic spins in a staggered parallel arrangement we may have

an antiferromagnetic media. To illustrate, consider a simple cubic

Oor a body-centered cubic arrangement. Suppose the crystal consists
of two interpenetrating sublattices such that the nearest neighbors of
an atom on lattice A are entirely on lattice B. If then the spins on A
are parallel in one direction and those on B in the opposite direction we
have an antiferromagnetic media. For more complex arrangements
additional sublattices will be needed.

It can be shown that exchange interactions are equivalent to an

interatomic potential

Vi = - +K(+ 45;-S;) (36)

where Si and Sj are respectively the spin angular-momentum vectors
of atoms i and j in units of h/2w and K is again the exchange integral.
K is negative, we have an antiferromagnetic media. The effective
POtential on a given atom i is then found by summing over the j nearest

neighbors. This procedure is equivalent to saying that each atom i lies



in an effective molecular field due to atoms j. Thus except for an

additive constant,

Vi; = -2KS;. IS5 = -22KS;. 5; (37)
J

where z is the number of nearest neighbors of a given atom. The

neighboring atoms have the same alignment, so that we have simply

the product of the mean value for any one atom j and the number of

such atoms z. The mean value of the spins on lattice i and j will be

equal but oppositely directed. We call this value of the spin go-

Hence
V = -2KZS& . (38)
The magnetic energy is then

- G2
E, = -NZ|K|S§ (39)

where N is the number of magnetic ions per unit volume.

VanVleck* has calculated the value of §0. He introduces an
applied field H which produces a displacement 6§i and 6§j to the
spin of typical atoms. Noting that besides the effective potential we
have terms like -gB—S-i.Iq due to the applied field, we write an effective
field }_{eff‘ By then writing the magnetic moment M and upon isolating

correspondings contributions, we have

- - +
ISy +6S 1 =S Bgly ) (40)
|-So + 6S 1 =SB (y) (41)
t bl
where y = |Hggs ISgB/kT (42)

and Bg is the Brillouin function

25+1 2Sy+y. 1.
B = th (227 = coth (_LY_ 43
s(y) . 2S cotat 2S- ! 2S ° (ZS ) (43)

For zero applied field



1Sl = S Bgl(yo). (44)
vo = 22S | KSy | /kT (45)

The Néel temperature is that temperature above which equation (44)
ceases to have a real non-vanishing solution for §o- For small values

of the argument

SB.(y) = (1/3)(S+1)y (46)
ISol=(1/3)(S+1)2zS | KSyl /KT, (47)
or T. = (2/3) | Klzk™'S(S+1) (48)

Looking then at the internal magnetic energy
_2
E = -Nz|K|S, (49)
we have for the specific heat

C,= (ME/3 T), = -2Nz| K|S, dSo/dT. (50)

Knowing then the transition temperature and the ground state
spin of the magnetic ion, we can draw the curve for Cv as a function
of T. We first plot y as a function of go using equation (44). Then,
using equation (45) for different values of T, we plot y as a function of
§0 on the same graph as equation (44). These curves are shown in
Figure 1. The intersection of the two curves gives a pair of go’ T
values. These pairs of values are then plotted in Figure 2. From
this graph of go vs T, dgo/dT values are obtained at different temperatures.
These slopes are shown in Figure 2. By use of the equation for the
specific heat (50) C, values are then found for different T values, and
the graph is drawn in Figure 3.
Usually a transition between different crystal modifications takes
place by means of a discontinuous reconstruction of the lattice.
In addition to this crystal modification however, a transition may occur

involving a change of ordering. As the temperature changes some
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atoms may shift relative to others. As soon as this shift begins the
lattice symmetry changes. An arbitrarily small displacement is
sufficient to produce an abrupt change in the symmetry of the lattice.
The arrangement of the atoms in the crystal however changes con-
tinuously. A transition of this kind is called a second-order phase
transition.

The transitions considered in this paper are changes in the
magnetic ordering which occur at the Néel point, that is, the transitions
from the antigerromagnetic to the paramagnetic state.

At absolute zero the system is completely ordered. It becomes
less ordered as the temperature is increased, until the transition
temperature (Néel point) is reached. Above this point the long-range
order over many atomic distances disappears. However some short-
range order, or correlation among near neighbors, may persist above
the transition.

The Néel point may be found from an analysis of the specific
heat, which has an anomaly there. This anomaly is associated with the
extra internal energy required to disorder the structure. This
phenomenon may be seen for LiCuCl;* 2H,0O in Figure 3.

If one divides the heat added to a system dQ by the temperature
T, one gets an exact differential dS of some function of the system S
called the entropy.

With this definition of entropy
dQ/T = dS (51)
2 2
we write J dQ/dT = [ dS = S,-S, (52)
1 1
where 1 and 2 designate the states of the system, and S,-S; designates
the change in entropy.

It is then of interest to calculate the change in entropy associated

with the diminution of long-range order (antiferromagnetic state) and
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the change associated with short-range order (paramagnetic state).
One method for doing this is one described by Friedberg.®

We can calculate the change in entropy by remembering that

dQ = C,dT (53)
Then as= [T2 (c,/T)aT (54)
T,

This equation may be applied directly to find the change in entropy

above the Néel point. We recall

C, = (a/T% + bT? (55)

where the electronic term has been omitted. To evaluate the con-
stants a and b, CVTZ is plotted as a function of T°>. This curve is shown
in Figure 4. The slope and intercept of this curve are determined
from Figure 4, and they represent the constants b and a respectively.
It is found that b is so small that the lattice contribution may be
neglected. Then

AS = f; a/T3.dT (56)

where T, is the temperature at which the above curve deviates from
linearity. The upper limit has been extended to infinity without serious
error, since the integrated function is decreasing as 1/T2,

-For the change in entropy below the Néel point one must use a
different procedure, since the specific heat is not known as an
analytic function of temperature. A plot is made of CV/T as a function
of T, and the area under the curve from T=O to T=T, is found by
graphical means. The curve of Cv/T vs T is done in Figure 5.

The total entropy change i.e., the sum of the contribution above
and below the Néel temperature, may then be compared with the
theoretical value of

AS = R log (2s+1) (57)
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where s is the ground state spin of the magnetic ion, and R is the gas
constant.

The present experiment thus concerns itself first with compar-
ing equation (50) with the experimental specific heat curve for one
paramagnetic salt, and secondly with comparing the expected entropy
change equation (57) with that calculated from the specific-heat data.
In addition, data are also given for a paramagnetic salt that does not

become antiferromagnetic in the region investigated.



APPARATUS AND PROCEDURES

In the determination of specific heat one must measure the
amount of heat added to the sample, and the corresponding temperature
change. For small temperature changes no appreciable error is
introduced by taking the true specific heat as the specific heat at the
average temperature, i.e., the average of the before-heating
temperature and the after-heating temperature.

The heating circuit is shown in Figure 6. Heat is introduced
into the system by passing a current through a manganin wire of
approximately 400 ohms resistance at room temperature. This heating
wire is wound around the crystal, and is held in place by a small amount
of Glyptal. The current through this wire is measured by the potential
drop across a 100 ohms standard resistance with a Leeds and Northrup
type K potentiometer. By use of a reversing switch the potentiometer
also measures the potential drop across the heater wire. The time
during which the heat flows into the system is measured with a hand-
operated stop watch accurate to 0.1 sec. The time intervals varied
from 20 to 60 sec.

To measure the absolute temperature T, Allen-Bradley 0.1 watt
carbon resistors were used.® These resistors had a resistance of 56
ohms at room temperature, increasing to 70 ohms at liquid-air temper-
atures, to 500 ohms at the boiling point of liquid helium, and to 10, 000
ohms at 1. 30K. These resistors show a linear relationship for
Log,oR plotted against 1/T, the line breaking at the \ point (2. 18).

To determine the resistance of the thermometer, a Leeds and
Northrup type k-3 potentiometer measured the potential across the

thermometer. The current through the thermometer was held at

17
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10 microamperes. This was done by adjusting the current in this
thermometer circuit with a 100k helipot. This adjustment was made to
keep the potential drop across a 1000 ohm standard resistance in this
same circuit at 1072 volts as read by a Leeds and Northrup type K-2
potentiometer. This circuit is shown as the lower half of Figure 7.

The resistance of the thermometer varied continuously, however
owing to the small heat leak into the system. This resultant temperature
increase gave rise to an unbalance in the potentiometer. This unbalance
was amplified by a LL.eeds and Northrup D.C. amplifier and recorded on
4 Leeds and Northrup Speedomax recorder. The recorder was cali-
brated for different voltage ranges so that, by measuring the unbalance
on the chart the reading could be converted to a potential difference.

By recording the potential for a balanced position, the potential at any
other point could be obtained. By knowing the current through the
thermometerit was now possible to determine the resistance, and
consequently the temperature. The circuit used for measuring the
thermometer resistance is shown as the upper half of Figure 7.

The measurements were carried out in the double-Dewar system
shown in Figure 8. This system consisted of two pyrex Dewars of
double wall construction. The inner Dewar, containing the helium, had
a 1/4 inch glass flange attached to it. By means of a split ring below
this flange and a brass T above, fastened together with eight 1/4-inch
bolts, the Dewar could be sealed for reducing the vapor pressure.

It had an overall length of 36 1/4 inches with a 2-inch inside and 3-inch
outside diameter, with strip silvering, 1/2-inch wide. The space
between the walls of the helium Dewar was first evacuated and then filled
with dry nitrogen to a pressure of Imm Hg. This space had to be re-
evacuated and again filled with nitrogen periodically because of the
diffusion of helium gas through the Pyrex wall. At liquid-air

temperatures the nitrogen gas acted as a good exchange medium.
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After liquid helium was transfered into the Dewar, however, the nitrogen
was frozen out, and therefore a good vacuum was obtained for isolating
the helium bath from the liquid-air bath. The outer Dewar containing
liquid-air, had an overall length of 35 inches with a 3 1/2-inch inside
and 4 1/2-inch outside diameter, with strip silvering 1/2-inch wide.

The temperature region of interest was from 1. 3OK to 10°K. This
range was obtained by controlling the vapor pressure, and by heating.
For temperatures below 4. 2°K to the \ point, the vapor pressure was
reduced with a Kinney KDH 130 vacuum pump. Below the \ point, a
combination of pumping and heating was used.’ For temperatures above
4.2°K the pressure was allowed to build up in the system to approximately
two atmospheres, Because of the time for the crystal to react to a
change in the temperature of the bath, its temperature could be increased
above 4.2°K by allowing the pressure of the bath to increase above
atmospheric pressure. A second method for increasing the temperature
was to bring a heating element near the Dewar system. This method
however had the disadvantage of reducing the liquid helium level to a
point where only one run could be made through the interval 4. 2°K to
10°K.

The calorimeter is shown in Figure 9. The calorimeter can was
made of copper, 6 3/4 inches long and 1 3/8 inches in diameter. The
top plate, of 1/4-inch brass, was held to the can by eight 6/32 inch
screws. To obtain a vacuum seal between the two, a fuse wire "O'"-ring
slightly greased with Dow-Corning silicone vacuum grease was set in a
groove in the top plate, which was then tightened down. The leads from
the crystal were brought out of the calorimeter can through this top
plate through tungsten-glass seals. To the top plate was attached a
1/2 inch O.D. stainless steel tube for evacuating the calorimeter.

This tube passed up through the helium bath and was soldered at the top

of the Dewar to a 1/4-inch brass plate. This plate was fastened by
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eight 1/4-inch bolts to the top of the T, previously described, which
was connected to the helium Dewar. Also in this plate was a lead-out
for all wires, and a connection for the manometers. A third opening

in this plate was for the transfer of liquid helium. For measuring the
pressure in the calorimeter, an NRC type-507 ionization gauge was
connected to the 1/2-inch tubing above the bra‘ss plate. The calorimeter
was evacuated with the vacuum system shown in Figure 10,

During the course of a run the thermometer first had to be cali-
brated by making resistance measurements at various temperatures
and plotting log,oR against 1/T. The vapor pressure was reduced by
the pumping system already described, and the pressure was read on
a mercury manometer. Below the A-point an 0il manometer was used.
The density of the oil was 1/14,08 that of mercury. BY using the 1958
vapor pressure versus temperature,® pressure readings were converted
to temperatures. From ten to fifteen calibration points were usually
taken from 4.2°K to 1.3°K. For temperatures above 4. ZOK, extrapo-
lation was necessary.

Following the calibration, the calorimeter was evacuated. Some
heat leaks still occurred but they were of constant magnitude. To
compensate for these heat leaks during a heating cycle the before and
after-drifts were extrapolated to the midpoint of the heating curve.

The fore-drift of the heating curve was always begun at a known value

of the potential, so that by use of the recorder calibration, the potential
and hence the temperature could be found at the two points on the heating
curve.

By use of the data from the heating circuit and the equation

VIt
C, = T (58)

the heat capacity at the average temperature (T¢ T;)/2 could be found.



25

axaydsoune

saATeA

‘walsAg wmnoep I9j3wtIore) - *or 2anSig

dwuind wnnoea o3

0} 8

I9j}2WItIo1ed

so8ned wmnoea
a1dnoosowrayy

dwund

/ uoTSNIFIP

o

X o~

o3}

28ned uoryeziuor

dexy
ite pmbry



26

Here
V = potential across the heater
I = current through the heater
= time of heating
Ti and Tf = initial and final temperatures
(Note: In an actual run, the specimen is maintained at constant
pressure, but at low temperatures Cp = Cv‘)
To recapitulate, the experimental data were taken as follows:
1. Precooling:
After mounting the calorimeter in the Dewar, the Dewar was
flushed out with helium gas and one atmosphere of gas left in.
The liquid-air Dewar was then filled and the system was left to
cool down (usually overnight). It was possible to determine when
the system had reached liquid-air temperature by noting the value
of the thermometer resistance.
2. Transfer:
The calorimeter was flushed out with helium and one mm Hg of
helium was left in as exchange gas. Liquid helium is then
transfered into the helium Dewar from the storage container by
use of compressed helium gas to force it through the transfer:
tube.
3. Calibration:
The potential drop across the thermometer was read after it had
reached equilibrium at the boiling point of liquid helium. By
pumping, the vapor pressure and the temperature were lowered.
4. Isolating the system and taking of data:
After the lowest temperature had been reached the calorimeter
was evacuated to remove the exchange gas and thus isolate the
calorimeter from the liquid helium bath. At intervals of 3 to 5

minutes, heat was allowed to flow into the system.
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Measurements of the current, potential drop, and time were
taken for the heating circuit. The current and potential drop
across the thermometer had been read a short time previously
to give a reference point and to permit determination of the
before-drift background.

Single crystals were grown from aqueous solutions at room
temperature, the LiCuCl,;-2H,0 from an aqueous solution of
CuCl,- 2H,0 and LiCl, and the FeCl,.-4H,0 crystals from an
aqueous solution of FeCl,-4H,0. These salts were reagent grade,
obtained from J. T. Baker Chemical Company. The LiCuCLs.2H,0
crystals were reddish-brown, the FeCl,-4H,0 crystals were dark
green. Both types of crystals were monoclinic, All the crystals
weighed 1.0 to 1.5 gm and measured approximately 1.5 x 1.0 cm.
A chemical analysis was made on one of the LiCuCl;. 2H,0 crystals

b3
to verify its composition.

*
Analysis performed by Schwarzkopf Microanalytical Laboratory,
Woodside, N. Y.



ANALYSIS OF RESULTS

LiCuCl,- 2H,0

Only the LiCuClj3* 2H,0 crystal showed an anomaly in the specific
heat curve in the liquid-helium temperature range. Three crystals
were studied in the investigations, the third of which was also used
for some nuclear magnetic resonance measurements. This nuclear-
resonance data further identified the transition as paramagnetic-
antiferromagnetic.

The specific heat curve, Figure 3, rises from about 0.25 cal/mole-
deg to 1.25 cal/mole-deg in the temperature range from 2-4°K, but
increases rapidly within O. 5°K from 1. 25 cal/mole-deg to 3.50 cal/
mole-deg (near the transition temperature). The curve then falls
to approximately 1.50 cal/mole-deg at 9°K. This decrease follows
approximately a 1/T? law. The experimental data for this crystal are
given in Appendix I.

The transition temperature was estimated to be 4.40 X . 02°K.
This value agrees well with the nuclear resonance data, but is lower
than that derived from the susceptibility measurements of Vossos,
Jennings, and Rundle. !?

A comparison of the theoretical and experimental curves should
be made. Below the transition point the experimental values are lower
than the theoretical. The experimental curve also exhibits a tail above
the transition, whereas VanVlecks' theoretical curve goes to zero.
One reason for this difference is VanVleck considered only long-range
ordering which goes to zero at the Néel point. However as can be seen

some short-range ordering still persists above the Néel point.

28
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For the change in magnetic entropy associated with a para-
magnetic- antiferromagnetic transition above the Néel temperature one
must evaluate the integral

AS = f;’l —5— dT (59)

From the graph of C T2 vs T® in Figure 4 we obtain T, = 4.57 and
p

a=27.2. Thus

o 27.2

AS = f4.57 T = 0.65 cal/mole-deg (60)

The change in entropy below the Néel point is found by graphically
measuring the area under the curbe of C /T vs T from 00-4. 57OK, in
Figure 5. The entropy change in the region 0°-4. 57OK, is calculated
to be 0.70 cal/mole-deg. The total change in entropy is therefore
1.35 cal/mole-deg. We wish to compare this total entropy change with
the theoretical equation (57). The exact composition of the magnetic
ion is unknown. However if one assumes a spin of%— for the copper
(possibly as CuCl;) then the theoretical change in magnetic entropy
is 1.38 cal/mole-deg, a value within 2% of that obtained experimentally.
However, in the susceptibility measurements!® it is found that a better
fit to the data is obtained if s is taken as 1 for copper (as Cu,Cly).
A more detailed examination of this point must await neutron-diffraction
experiments.

It should also be noted that 48% of the change in entropy occurs
above the Néel temperature. This entropy change is associated with
the diminution of short-range order, a phenomenon neglected in VanVleck's
simple model. Such a large fraction has also been observed in a number

of other antiferromagnets.

Feclz' 4Hzo

In the case of FeCl,-4H,0 no transition was found in the temperature

region investigated. Neutron-diffraction investigations by Wilkinson and
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Cable!! on polycrystalline samples of anhydrous FeCl, from 4. 2°K to
room temperature indicate an antiferromagnetic-paramagnetic
transition at 24 K. From previous work by other investigators on

the anhydrous and hydrated forms of paramagnetic crystals, it was
shown that in a number of cases, if the anhydrous form of the para-
magnetic crystal became antiferromagnetic, then the hydrated form
showed an antiferromagnetic state at a lower temperature. From this
fact the present investigator felt that a magnetic transition might be
observed in the helium region with a hydrated sample of FeCl,-
Apparently however the tetrahydrate of FeCl, is magnetically too dilute
to show such a transition in this region. Possibly FeCl,:4H,0 is
antiferromagnetic at a temperature not attainable with the present
pumping system.

Figure 11 shows the specific heat curves obtained for FeCl,.4H,0
in three separate runs on two different crystals. The specific heat
values are quite small, and appear to remain constant over the
temperature range investigated. From the experimental data no T3
dependence of the heat capacity is observed. It is possible that this
is due to the lack of experimental accuracy. On the other hand, this
heat capacity data may be in a region corresponding to the 'tail' in
an antiferromagnetic-paramagnetic transition. This has been observed
previously in MnCl,* 4H,0. 12 That this data does represent such a
region is not too unreasonable, since it has been reported previously
that FeCl,-4H,0 shows a magnetic transition at approximately 1. 6°K. 13
Further work at lower temperatures will help to clarify this point.

The experimental data are given in Appendix II.



. AMOV sanmjexadwaJ,
0°¢

0°2
! _

e
—

. ¢ - ’ (PR APRE A ‘. o.o....o..:.-.-
- ° 4 o 4 . . . ¢ a .
B
19/%/5
unx 3sy
Te1skan 1sy
’ c q ) ] ) ) - L “ e 4 - o\ov et 0 ® e, .n;so.o.\.-
=
19/11/s
una puy
1e1sh1n 3s1

19/92/5
1e3shkan puz

OHE -41D2 4 Jo 1eey otytoadg  *1 sanSig

o
—_
d

o
N
(31 - erow/Ted)




1)

2)

3)

1)

Wl
e

9)

10)

11)

12)

13)

LIST OF REFERENCES

F. W. Sears, Thermodynamics, (Addison-Wesley Pub. Co.
Cambridge, Mass., 1956).

C. Kittel, Introduction to Solid State Physics, (John Wiley and
Sons, Inc., New York: 2nd edition, 1956).

J. H. VanVleck, J. Chem. Phys. 5, 320 (1937).

J. H. VanVleck, J. Chem. Phys. 9, 85 (1941).

S. A. Friedberg, Physica 18, 714 (1952).

J. R. Clement and E. H. Quinnell, Rev. Sci. Instr. 22, 213 (1952).
H. Forstat and J. Novak, Rev. Sci. Instr. 29, 733 (1958).

F. G. Brickwedde, H. vanDijk, M. Durieux, J. R. Clement, and
J. K. Logan, J. Research (N.B.S.) 64A, 1 (1960).

R. D. Spence and C. R. K. Murty, (to be published in Physica).

P. H. Vossos, L. D. Jennings, and R. E. Rundle, J. Chem. Phys.
32, 1590 (1960).

M. K. Wilkinson and J. W. Cable, Bull. Am. Phy. Soc. II 1, 190
(1956).

H. Forstat, G. O. Taylor and B. R. King, J. Phys. Soc. Japan 15,
528 (1960).

R. D. Pierce and S. A. Friedberg, J. Appl. Phys. 32, 66 (1961).

32



APPENDICES

33



APPENDIX 1

Experimental Data for LiCuCl;- 2H,0

C AT T
(cal/mo%e oK) (OK) (OK)
7 Dec. 1960
0.15 0.009 1.998
0.19 0.010 2.018
0.25 0.008 2.155
0.25 0.007 2.157
0.24 0.008 2.265
0.34 0.006 2.329
0.34 0.005 2.365
0.39 0.004 2.571
0.37 0.005 2.641
0.34 0.006 2.677
0.93 0.009 3.821
2.46 0.006 4,387
3.517 0.004 4.392
15 Dec. 1960
0.24 0.005 2.043
0.26 0.005 2.063
0.28 0.005 2.084
0.23 0.005 2.103
0.27 0.004 2.145
0.29 0.004 2.189
0.26 0.004 2.214
0.34 0.003 2.400
0.36 0.004 2.633
0.44 0.004 2.663
0.71 0.012 2.963
0.86 0.008 3.314
0.84 0.009 3.539
0.93 0.008 3.865
1.34 0.016 4,002
19 Dec. 1960
0.21 0.003 2.065
0.27 0.003 2.257
0.22 0.004 2.291
0.23 0.003 2.330
0.36 0.002 2.441
Continued

34
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C o AT ;I‘
(cal/moge K) (°K) (" K)
19 Dec. 1960 (cont'd)
0.38 0.002 2.479
0. 35 0.002 2.543
0.32 0.003 2.621
0.88 0.009 3.582
1.97 0.009 4,169
22 Dec. 1960
0.16 0.005 1.921
0.18 0.004 1.938
0.21 0.004 1.954
0.24 0.003 2.013
0.26 0.006 2.069
0.24 0.003 2.098
0.33 0.003 2.448
0.37 0.021 2.702
0.46 0.013 2.756
0.50 0.011 2.819
1.09 0.015 3.716
2.12 0.007 4.295
0.53 0.180 7.389
0.49 0.204 8.259
26 Jan. 1961

0.17 0.004 1.904
0.15 0.004 1.920
0.23 0.003 1.964.
0.25 0.003 1.979
0.24 0.004 2.016
0.29 0.003 2.034
0.20 0.003 2.066
0.26 0.003 2.097
0.29 0.003 2.129
0.26 0.003 2.146
0.26 0.003 2.217
0.25 0.014 2.269
0.29 0.012 2.361
0.35 0.009 2.470
0.38 0.007 2.512
0.36 0.010 2.598
0.40 0.007 2.663
0.41 0.007 2.703

continued
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C
(cal/moqe 0K)

AT
(°K)

T
(K)

.47
.56
.57
.45
.70
.67
.67
.84
.88
.88
.90
.90
.96
.23
.20
.22
.51
.48
.93
.10
.09
.64
. 86
.71
.98
.44
.47
.32
.38
11
.11
.14
17
.16
.02
.09
99
.91
.93
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26 Jan.

1961 (cont'd)
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011
010
011

.013
.008

009
021
026
008

.012
.007
.007

013

.009
.010
.010
.008
.009
.007
.005
.009
.005
.008
.008
.006
.014
.013

015

.011

018

.015
. 044
.038

058

.065
.036
.035
.039
.059
.043

. 752
. 805
. 846
. 888
.928
.978
.072
. 145
. 290
.320
.613
639
.696
. 896
. 962
.000
.069
. 107
. 187
.225
.274
. 357
.421
. 446
.491
.501
.552
.579
. 648
. 744
.731
.953
.052
.139
.323
.476
.633
.708
.731
775

.
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continued
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|

CP o AoT oT
(cal/mole K) ( K) (" K)
26 Jan, 1961 (cont'd)

0.89 0.073 5.892
0.76 0.110 6.050
0.81 0.071 6.632
0.80 0.062 6.653
0.73 0.147 6.867
0.72 0.138 7.023
0.67 0.146 7.340
0.58 0.159 7.820
0.56 0.152 8.320
0.47 0.173 8.874




A

PPENDIX II

Experimental Data FeCl,-4H,0

1st Crystal, lst Run

4 May 1961
T AT C T AT C
P P
1.3750 0.0044 1.08 1.7604 0.0034 1.06
1.3814 0.0038 1.01 1.7815 0.0045 1.20
1.3918 0.0037 1.15 1.8051 0.0049 1.08
1.4034 0.0043 0.91 1.8298 0.0114 1.11
1.4124 0.0036 1.03 1.8588 0.0099 1.32
1.4226 0.0032 1.12 1.8925 0.0100 1.15
1.4348 0.0033 1.18 1.9256 0.0097 1.07
1.4462 0.0032 1.10 1.9599 0.0077 1.32
1.4587 0.0034 1.06 1.9930 0.0092 1.18
1.4709 0.0028 1.10 2.0323 0.0144 1.33
1.4828 0.0029 1.04 2.0740 0.0176 1.13
1.4930 0.0037 1.01 2.1692 0.0160 1.06
1.5056 0.0039 0.96 2.2266 0.0169 1.26
1.5234 0.0037 0.94 2.3081 0.0112 1.62
1.5393 0.0033 1.05 2.3749 0.0107 1.46
1.5539 0.0039 0.95 2.4422 0.0137 1.53
1.5669 0.0044 1.03 2.5723 0.0126 1.37
1.5831 0.0038 1.00 2.6856 0.0195 1.42
1.5950 0.0038 1.00 2.7559 0.0144 1.80
1.6081 0.0031 1.09 2.9103 0.0135 2.10
1.6297 0.0032 1.03 3.1235 0.0186 1.49
1.6537 0.0038 1.15 3.6284 0.0289 1.45
1.6715 0.0042 0.91 3.7955 0.0231 1.62
1.6853 0.0026 1.39 4.0700 0.0298 1.27
1.7098 0.0038 1.07 4.3114 0.0502 1.63
1.7313 0.0036 0.95
1st Crystal, 2nd Run
11 May 1961

1.3379 0.0015 1.41 1.7295 0.0120 1.04
1.3442 0.0024 0.94 1.7556 0.0135 0.99
1.3499 0.0022 1.02 1.7851 0.0128 1.00
1.3573 0.0020 1.13 1.8131 0.0122 0.97
1.3651 0.0019 1.07 1.8389 0.0115 1.19
1.3767 0.0025 0.82 1.8667 0.0139 1.02
1.3883 0.0023 0.86 1.9035 0.0156 1.05

continued
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T AT Cp T AT Cp
1st Crystal, 2nd Run
11 May 1961
(cont'd)
1.3974 0.0020 0.98 1.9395 0.0120 1.04
1.4068 0.0031 1.11 1.9739 0.0125 1.05
1.4182 0.0040 0.81 2.0100 0.0121 1.04
1.4365 0.0039 1.01 2.0431 0.0138 1.01
1.4508 0.0035 0.92 2.0799 0.0156 0.90
1.4635 0.0038 0.95 2.1211 0.0149 1.01
1.4772 0.0032 .0.90 2.2640 0.0112 1.10
1.4964 0.0033 0.95 2.3778 0.0209 1.05
1.5123 0.0030 0.93 2.4704 0.0317 0.65
1.5282 0.0025 1.12 2.5313 0.0173 1.03
1.5449 0.0038 0.96 2.6045 0.0237 0.93
1.5557 0.0034 0.95 2.6738 0.0200 1.11
1.5695 0.0032 1.09 2.7480 0.0166 1.12
1.5855 0.0030 1.02 2.8393 0.0194 1.08
1.6097 0.0096 0.87 2.9240 0.0240 1.10
1.6317 0.0077 0.97 3.0382 0.0212 0.95
1.6570 0.0116 0.66 3.1731 0.0231 0.93
1.6797 0.0048 1.58 ¢ 3.2987 0.0250 0.83
1.7041 0.0151 0.98 3.4089 0.0267 1.12
3.5113 0.0246 0.99
3.6991 0.0506 0.95
3.8337 0.0485 0.83
3.9958 0.0990 1.10
4.1558 0.0812 1.14
4.2912 0.0573 0.81
2nd Crystal
26 May 1961
1.3678 0.0038 0.76 1.8021 0.0181 1.17
1.3750 0.0025 1.24 1.8314 0.0144 0.81
1.3815 0.0028 1.14 1.8632 0.0181 0.96
1.3882 0.0021 1.31 1.8993 0.0151 0.83
1.3951 0.0025 1.16 1.9300 0.0182 1.01
1.4026 0.0030 1.07 1.9635 0.0146 1.22
1.4104 0.0028 1.13 1.9984 0.0160 1.02
1.4233 0.0024 1.29 2.0360 0.0145 0.77
1.4294 0.0024 1.15 2.0789 0.0242 1.26
1.4367 0.0025 1.21 2.1194 0.0220 1.30

continued
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T AT C T AT C
P p
2nd Crystal
26 May 1961
(cont'd)
1.4530 0.0051 1.09 2.1636 0.0196 1.24
1.4663 0.0041 1.14 2.2119 0.0195 1.39
1.4891 0.0046 0.99 2.2609 0.0225 1.24
1.5034 0.0038 1.11 2.3191 0.0205 1.09
1.5178 0.0104 1.22 2.3798 0.0249 1.36
1.5347 0.0104 1.11 2.4343 0.0202 1.39
1.5550 0.0092 1.16 2.4978 0.0243 1.34
1.5611 0.0084 1.19 2.5651 0.0243 1.41
1.5878 0.0101 1.18 2.6462 0.0210 1.42
1.6099 0.0096 1.06 2.7454 0.0234 1.37
1.6308 0.0096 1.07 2.8467 0.0390 1.35
1.6543 0.0170 1.20 2.9568 0.0245 1.35
1.6803 0.0178 0.81 3.0910 0.0345 1.42
1.7144 0.0194 1.04 3.2783 0.0946 0.76
1.7493 0.0119 1.74 3.4162 0.0510 1.69
1.7729 0.0160 1.19 3.5114 0.0518 1.20
3.6024 0.0415 1.28
3.7129 0.0675 1.30
3.8347 0.0736 1.31
3.9835 0.0651 1.18
4.0478 0.0409 1.10
4.1230 0.0527 0.94







