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ABSTRACT

ANALYSIS OF CLAY CONSOLIDATION

BY RATE'PROCESS THEORY

by Robert J. Neukirchner

The consolidation of clay is composed of two processes; the first is

drainage of excess pore water to reduce pore pressures and the second

involves the deformation of the clay particle structure. In this thesis the

deformation phenomenon is considered to occur through the breaking and

reforming of bonds at the clay particle contacts and is assumed to be gov-

erned by the rate process theory. A rheological model is proposed which

represents the behavior of the clay structure under load. The model para-

meters are related to properties of the clay structure and the parameters

are used to evaluate the deformation charactertistics of the clay structure.



ANALYSIS OF CLAY CONSOLIDATION

BY RATE PROCESS THEORY

By

Robert J. Neukirchner

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Civil Engineering

1965



 

ACKNOWLEDGMENTS

The writer is indebted to his major professor, Dr. T. H. Wu,

Professor of Civil Engineering, for his everpresent aid, guidance and

encouragement throughout the writer's graduate program and during

the preparation of this thesis. Thanks also to Dr. A. K. Loh and

J. R. Adams for their helpful suggestions and criticisms, and to

Professor D. Resendiz of the University of Mexico for supplying the

time-consolidation data on the Mexico City clays.

Thanks are due also to the Civil Engineering Department of

Michigan State University for the financial assistance which made the

completion of these studies possible.



CHAPTER

II

III

IV

VI

APPENDIX

TABLE OF CONTENTS

INTRODUCTION ........................

THEORY ...............................

EXPERIMENTAL PROGRAM .............

CALCULATION OF MODEL PARAMETERS

TEST RESULTS

1. Theoretical Curves vs. Test Curves . . . .

2. Variation of Model Parameters . . .

CONCLUSION ..........................

BIBLIOGRAPHY .......................

TEST DATA — TABULAR FORM ..........

EXPERIMENTAL TIME- DEFORMATION

CURVES

CALCULATED PARAMETERS ...........

VARIATION OF OLB AND FOR_kL_

INCREASING STRESS - GRAPHICAL

SAMPLE CALCULATIONS ...............

PAGE

11

22

29

34

37

39

56

61



LIST OF FIGURES

FIGURES PAGE

1 Proposed Rheological Model .............. 4

2 Loading Conditions for General Model ..... 7

3 Index Properties of Clays Used ........... 10

4 Graphical Solutions for Case II ............ l4

5 Relation of U* to U** Curves ............. 15

6 Construction of U* vs. t Curve ........... 23

7 Experimental vs. Theoretical Curves - 1 . . . 24

8 Experimental vs. Theoretical Curves - Z . . . 25

9 Experimental vs. Theoretical Curves - 3 . . . Z6

10 Experimental vs. Theoretical Curves - 4. . . 27

11 Variation of Model Parameters with Stress . 31

12 Variation of Model Parameters with Stress . 32

13 Classification of Clay Deformation Curves. . 35



k1,k2

K,L, M,N

tP

U*

U**

Uo. U00

zm

NOTATION

Slope parameter

Constant

Coefficient of consolidation

Boltzmann's constant

Planck's constant

rheological model parameters

constants with respect to time

applied pressure increment

total effective stress on the model

effective stress on the flowing bonds

gas constant

absolute temperature

time

time for 100% primary consolidation to occur determined

according to log time method

axial deformation

percent total axial deformation

dimensionless strain used in Case I solution

initial and final values of axial deformation

time parameter

rate process theory parameters
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deformations of model (shear strain)

octahedral shear strain

principal strains

initial and final values of strain, 6|

average distance between interparticle bonds

distance between adjacent planes of slip

number of flowing particle contacts per unit area

principal stresses

octahedral normal stress

shear stress

shear stress in flowing bonds

octahedral shear stres s



CHAPTER I

INTRODUCTION

The reduction in volume with time under a constant applied load is

called consolidation. Consolidation of clay has customarily been considered

to consist of two distinct parts; a primary and a secondary part. With refer-

ence to primary consolidation, Terzaghi and Peck (1948) say, "The gradual

decrease of the. water content at constant load is known as consolidation. "

The rate of primary consolidation is considered to be governed by the vel-

ocity of the flow of water from the material under a hydraulic gradient.

The "secondary time effect" is described by the same authors as

" . . . due to the gradual adjustment of the soil structure to stress, com-

bined with the resistance offered by the viscosity of the adsorbed layers

to a slippage between grains. "

The primary phase is considered to be adequately described by the

flow of water from the voids under a hydraulic gradient and was solved by

Terzaghi's one-dimensional consolidation theory. Secondary consolidation,

however, cannot be attributed to the hydraulic phenomenon, and may con-

tinue for long periods after the excess hydrostatic pressure has approached

zero. In an effort to determine the nature of this phenomenon, several

authors (Altschaffel, Gibson and Lo, Leonards, Tan, Schiffmann and others)

have proposed rheological models designed to describe clay consolidation.



In recent studies on clay deformation in general, the rate process

theory of Eyring et a1 (1948) has been used to describe the mechanism of

slip at interparticle contacts. The result of these investigations seems to

give a satisfactory insight into the nature of deformation of clay.

Christensen and Wu (1964) and Muryama and Shi-bata (1964) analyzed

creep and stress relaxation in clay by the rate process theory. They also

proposed a rheological model consisting of a parallel arrangement of a

spring, and a spring and a dashpot to approximate the deformation of the

clay structure under creep. The results of this analysis agreed well with

test data.

Considering that consolidation of clay also involves contact slips

and is a special case of clay deformation, the author has used the model

of Christensen and Wu to describe this phenomenon. The solution is

generalized to take into account the stress changes in the system during

primary consolidation.

This approach is considered because it seems reasonable to

expect that one mechanism rather than two distinct processes should be

used to represent clay consolidation. In addition, the rate process theory

offers an opportunity to study the mechanism of clay deformation.



CHAPTER II

THEORY

It is commonly held that clay particles are thin, plate-like structures

with a high surface area to volume ratio . Tan (1953) (also Rosenquist, 1959,

and Mitchell, 1964,) has proposed that these particles form edge to face con-

tacts resulting in a continuous clay structure.

The nature of these contacts and the bonding forces at the contacts

are still the subject of much disagreement. However, deformation of the

clay structure under an applied load is considered to be the result of slip

at these particle contacts due to local stresses. On the molecular level

this involves a continuous breaking and reforming of bonds at the contacts

(Christensen and Wu, 1964, and Mitchell, 1964) and is considered to be a

rate process. It should be mentioned that a wide range in bond strengths

may be encountered in deformation. Some contacts break under the small-

est stress while others remain intact .until shear failure of the soil occurs.

The deformational properties of the particle structure of a clay can

be approximately represented by the rheological model shown in figure 1.

The spring k.2 represents the behavior of the non-flowing bonds in

the clay structure under stress :5 . These bonds are assumed to behave

elastically under stress. The right hand side of the model accounts for the

effects of the flowing bonds. The bonds at any particular contact are con-

sidered to have a specific bond strength. When the applied stress exceeds



this strength flow occurs at the contact. Once flow is initiated the bond may

be broken or reestablished depending on the contact displacement. Bonds

are distinct from particle contacts as there may be many bonds at a single

contact. The flow is assumed to obey the rate process theory.

Figure 1. Proposed rheological model

Considering the behavior of the model under an applied stress T,

the combined resistance of k1 and k2 account for the initial deformation

which represents the elastic response of the structure. As deformation

proceeds stress is transferred from the weaker contacts, which flow, to

the stronger, non-flowing contacts. In the model, as the dashpot flows,

the stress is transferred to the left half of the model until ultimately all

the stress resides in spring k2. Then the flow ceases.

Experiments show that this model satisfactorily represents the

major deformational characteristics observed in clays.

Under an applied stress 1 T the stress in the left—hand side of the

model is

T—Trr- 1.27 (1)



where 7; is the stress in the right side of the model and 7is the total shear

strain. In the right half, the stress is

Tr: k1 (7-7,) (2)

If we consider the viscous flow in the dashpot to behave according to

the rate process theory we have (according to Glasstone, Laidler, and

Eyring, 1941)

fig—Bsinha’frd+__(111' 1 (3)

k1

w r A
he 6 0‘: ZUkT

)8: 2 fih—k—T exp(—AF/RT)

I

and

k = Botlzmann's constant;

T =. absolute temperature;

h = Planck's constant;

R = gas constant;

AF = Activation energy;

A = average jump distance;

A1 = distance between planes of slip;

~ U = number of flowing contacts

From eq. (1) 7,

7=§r=lzlg (it) _ (4)

Combining eqs. (3) and (4) we get

k1+k2 371. 1

klkz T - = k—z % "/8 SinhOCTr (5)dt

 

which is the differential equation governing the deformation of our model.



As proposed, the model represents the behavior of the clay structure

under load but does not take into account the presence of the pore water pres-

sure. In a clay-water system the load on the soil skeleton is the effective

stress, which in a consolidation test increases with decreasing pore pressure.

If we consider the stress under a given axial stress increment p0

p0: pw + E (6)

in which pW is pore water pressure and S is effective axial stress.

From the Terzaghi one—dimensional consolidation theory we have

at t=0 , pW : p0

at t=tp , pW = 0

where tp represents the time for 100% primary consolidation as determined

graphically from a time-consolidation curve.

Rewriting (6) we have

5 = 130 - pw (6a)

which implies _

at t=0 , p=0

at t=tp , p-=pO

The change in pW and E are given by the theory of consolidation (Terzaghi,

1923).

Graphically this can be shown by figure 2.

From this it is seen that 3 represents the loading condition on the .

soil structure (the model) and we note that for

O<t<tp , 32%), Bio

t<tp , p=constant, 5:0



(applied stress) (pore water pressure) (effective stress)

 

p0 p0. p0-——————

  tp 1p
f

log time

 

 
 

log time

Figure 2. Loading conditions for general model

If we consider the deformation that occurs after time 't>tp, p is

constant. We may apply the condition fi- = O to eq. (5), which yields

 

 

 

 

dt

k1+ kZ d Tr

or

ma 1.)
_—-k—11-<2_ : -/B sinhCX Tr (8)

d O( t)

k1+k2

ON. on;

Writing sinhCXZ: e -6 and substituting this into (8)

Z

we get:

M _ Q chr -o<Tr
‘ klkz 2.: e -e (9)

d‘a .t Z
k1+k2

Upon integration,

1
T =-—ln tanh l, (X k1 k2

r O< 2‘ Bkl'i'kz t ' C (10)

If we consider the load? applied instantaneously, then

k __
at t=0 — 1 _

2; "' k—_—1+k2T ( Tza constant)



so that

C" 2 (k1+k2) _ak1T )-1
- ( __
O‘Bklkz 8"" k1+k2

from which

 
 

___1 1 k k I k
Tr- Ci ln tanh 3098 1 2 t+tanh "lexp(-CX IT) (11)

 

k1'*'1<z k1+k2

From eq. (1)

l _

7 : ‘1:- (T- Tr )

2

Substituting (11) into (1) we have

7: _]_'._—+_._1._ 1n tanh 'l-aflkl k2 _1 ale

1 2

Thus the deformation of our model is governed by two cases.

Case I - for t< tp ; T: T(t)

The general equation (eq. 5) holds.

Case 11 — for t>tp; Tzconst. ;—-—=O

The deformation is given by eq. (12).



CHAPTER III

EXPERIMENTAL PROGRAM

The purpose of the experimental program is to compare the observed

behavior of the soils tested with the theoretical predictions. Further, eval-

uation of the significance of the model parameters will be in order if test

data and the model behavior are in agreement.

Clays Tested - Time-deformation curves were obtained on three
 

different types of clay. The author conducted tests on two types of glacial

lake clays.

The specimens consist of remold'ed samples of a glacial clay from

a site approximately 15 miles south of Sault Ste. Marie, Michigan, and

undisturbed and remol’ded samples of a glacial clay from Marine City,

Michigan.

Data on the Mexico City clay were provided by Professor D. Resendiz

of the University of Mexico.

The index properties of the glacial clays tested are shown in fig. 4.

Testing Procedure - All samples were tested with standard consoli-
 

dation test equipment. The samples are two and one—half inches in diameter

with an original height of l. 00 inches.
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Clay
PL P1

Clay LL Fraction %

Marine City #1 46. 8 24.1 23.7 -

Marine City #2 41.4 21.7 19.7 68

Sault Ste. Marie 60.5 23.6 36.2 60

Figure 3. Index properties of clays used

Loading increments varied throughout the testing sequence and are

given with other pertinent information for each test in Appendix A.

Wherever possible each load increment was maintained until

deformations stopped. As can be seen from the test data, the tests extended

over. long periods and many had to be stopped before the final deformation

was reached because of time considerations.

The shortest time duration of a load increment was 4 days, while

several tests lasted for more than 100 days and one was terminated after

253 days.

On such long-term tests, the effects of temperature variations and

other minor disturbances are readily apparent; however these effects are,

in most cases, short term and do not seriously affect the long-term behav-

ior of the clays.

Test results and calculations of parameters are shown in Appendix C.

Time-consolidation curves for each load increment are shown graphically in

Appendix B.



CHAPTER IV

CALCULATION OF MODEL PARAMETERS

In order that deformation equations (5) and (12) for the proposed

model may be used to analyze the results of the experimental program we

must first adopt a consistent and convenient method for calculating our

model parameters k1,k2,06 and B .

Let us define Tand Tin eqs. (5) and (12) as the effective shear stress

and shear strain on octahedral plane in our stress system.

 

Toct : '31: \/(Ei—Uz)2+(©}—O’3) 2+(G/3“ av (13)

and

 

U
J
N

70“: = _ \/(g]:' €2fii" (62" €3)Z+ (63" £1) 2 (14)

where 01 2 3 are major, intermediate and minor principal stresses and
’ i .

61, 2, 3 are the major, intermediate and minor principal strains.

In a consolidation test we have the conditions that

(_ _

O’2=O’3 (15)

(

 62:53 =0 (16)
\

Putting (15) into (13) gives us:

Toct = 71 \/(c’)’1 -5’3)Z+(c“)’343",)2 <17)

 

The stress 0; is indeterminate for a consolidation test but a good

a s sumption is that

63 = k 5" : kopo (18)
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where k0 is the at rest coefficient of earth pressure

k can be evaluated by the equation

k0: 1- sinfi

where¢ represents the angle of internal friction in terms of effective stress

(19)

(Bishop, 1958) For the clays studied, an average value of¢ 13 30°

therefore

(20)k0: l - sin 300: 0.5

Subst1tuting (20) and (18) into((13) our expression becomes

Toct= —\/2(
(21)

where po 13 the 1ncrement in consolidation pressure applied At t>tp, the

entire load is carried by the effective stress and

137-130

Now if we turn to our equation for octahedral shear stra1n and put

(16) into eq. (14) we get

You: 2 (551121316): 2_\/_§__€| (22)

Let us now consider the two conditions for the deformat1on of the

Begmning with Case 11, the condition T: 0 g1ves us

130(7) (12)t + tanh lexp

k1+k2

model separately.

kl+kz

 

 

1 ‘ 1

7: Ff+arz 1n tanh —(X/8

Substituting (21) and (22) into (12) we have

6 = 3 .

1 4p + —— g1n1:a.nh_1_0(/Bk1k2 t+t h_1 -O(k1Po
k +k an exp M 23

1 2 3f? (kl‘l'kz ( )2 fiakz 2
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For purposes of analyzing the test results, eq. (23) would be much

more valuable if it were written in a dimensionless form. Consider the

following:

at t=0 (6111— 214—3-9— (24)

where (€11i is the elastic response (instantaneous) to the applied stress.

at t=o<> (€11 ._.., _P_o_ (25)

N

We now propose a dimensionless strain U** such that

U**:U£ (26)

(61106 (€111

Making use of conditions (24) and (25), we may write eq. (23) in the

 

 

form:

U... 1.21/2 (14:122.) .1. La 4.2
p0 k1 a 1n tanh 2 kl+k2t

+ tanh'l exptakl PO

3(/?(k1+k2) (27)

01‘

1
U**=1+ X In tanh [ Z(t)+tanh'l exp(—A)] (28)

“ \
where

_CXk1 Po

3J7 (k1+k2) 5

Z(t)=__ 098 k1R2 (29)

k1+kzt  
/

We can now make use of the fact that eq. (28) expresses U** as a

function of Z(t) and can plot solutions of the equation in the form of U**

vs. Z(t) for different values of A. The solutions in this form are shown

in figure 4.
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To relate the curves of figure 4 to the consolidation data we define

a parameter

 

where U represents axial deformation.

. ‘ dz"
A graph showmg U* vs. Z(t) for dt = 0 (case 11) would

appear as shown in figure 5.

 

 

 

 

  
 

 

l.

|

' I
U* '

I I

| I

I I

U. | )
1 1 I

0 : a It} ltuz i fiL

log time

Figure 5. Relation of U* to U** curves

From figure 5, U* is related to U** by the equation

U** = M (31)

1 - Ui

where Uizglk. p0 k2

(63100 4(k1+k2) po - k1+kz (31a)

4k2

As shown, the slope of the straight portion of the curve is given by

slope m* where

111* _ Ug- Uf‘

log t2 - log t1
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The corresponding slope of the U** curve in figure 4 is given by

m** where

~ *2:

_‘** U201 ‘ UI
m
 

_1og Z(t)2 — log Z(t)1

For the same time differences we have the relationship that

rn'*=(m**) _ m** (k1+k2)
1

1-Ui T (321

Therefore for a given curve of U* vs t we can evaluate the slope

m'* , calculate m** by eq. (32) and then obtain a value of A which gives the

best fit to m** from figure 4. We note that the initial conditions of eq. (28)

differ from that in the consolidation test. However, we restrict the use of

eq. (28) through (32) to the range t>tp. Hence, the initial conditions do

not effect the eqs. in this range.

All the calculations require that we have a quantity ( 61100' This

value of ultimate deformation, (6" )oo , may be obtained by letting each

test run until an equilibrium is reached. However, waiting for the deforma-

tions to stop in a consolidation test is often impractical as the time required

may be extremely long.

We can however compute the value of ultimate deformation, or at

least an estimate of this value from the following relationships.

The variation of the strain rate with increasing strain is

d6 dé dt

d - dt d6

   

(33)

Now we take eq. (25) and express it as

€1=K +1. ln tanh (Mt +N) (34)
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Taking the first derivative we get

 

d

3%; : 2LM csch 2(Mt +N) (35)

Differentiating again yields

—_Lgt: -4LM2 csch 2(Mt+N) 36

tanh 2(Mt +N) ( )

from which

d

'B—E : -ZM ctnh 2 (Mt +N) (37)

We see that if (Mt+N) -- 00 as t -—-00 , then ctnh 2(Mt+ N)--l.

Therefore, for large values of t

dé _
56 _-2M (38)

Thus an arithmetic plot of €vs. E for large t has a constant slope

 

of -2M. The intercept of this curve at é=0 gives (Q) as the1ultimate

oo

deformation.

Note also that equation (38) gives us another equation for 098 in

that

dé k k
_: _2 = __ 2

d€ M “18151.3; (39)

With ( 6" 100 known, the value of k2 can be calculated from eq. (25).

To evaluate k1 we must turn our attention to case I. For this case

the deformation of the model for t < tp is governed by the general equation

Mail- 1 EL: .
. klkz. dt — 12-; dt —l['3 sth(T,. (5)

To be consistent with our analysis of case 11 we consider 7;. and

T as stresses on the octahedral plane. Using (21) and letting 0" :5

we may rewrite (5) as
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1.1.1., 95:1. -_1._ (:13..- s... 414 3
3 2k1k2 dt 3J—Z-k2 dt 18 3 [2' 1

    

01‘

as, k. as (3...,s o. -
dt k1+k2 dt k1+k2 3\/'2'

where E is the axial effective stress on the model and 51 is the axial effective

stress on the flow component.

If we write (40) in the form of finite differences we have

   

 

A13 k AS _
1 : 1 - (3’8 sinh 0‘ pl (.41)

At k1+k2 At 3‘12.

where G - 3 \FZ-k1k2

The initial condition for this case is 51:0 at t=0. For these

conditions eq. (41) becomes

   

  

A31 h. .AE

At = k1+k2 At (42)

which is valid as the limit when At-u-O

OI‘

lim A151 _ k1 AS

At-.O At -k1+k2 At t = o (43)

If we approximate (43) by limiting t to small values we have eq. (42)

01'

AR) k1

A? " k1+kZ

 

(441

Using eq. (21) and (22) we rewrite eq. (1) as

- 1 _ —

61*213 w-pp (4m
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From eq. (30) and (25) we have

U*:_§_1_ (30) P (25)

(ence ,( 61); 41:2
 

Combining (25) and (45) with (30) we have

  

 

 

I5 51 5 '5
U>k = ' - : _:l'

(46)

P0 P0 P0 P

Differentiating with respect to _p_ gives us

po

dU* l d'fSI/d (1) dis].

p : ' Po = 1 - _— (47)

d(-) — d?Po dp/ d (.2)

p0

If we write this in difference form it becomes

AU“ -1 A51

A r/po) A}; (48)

which becomes upon substituting (44)

Au* k1 k2

_ = 1 - = —— (49)
A p /Po k1+k2 k1+k2

  

We know that the variation of p/po for O <t<tp follows the curve

obtained by Terzaghi for one dimensional consolidation. Therefore with the

coefficient of consolidation, CV , known from the test data, we can plot a

curve of-p/po vs. t.

The experimental data has already been plotted in the form of

U* vs. t . Therefore if we can take several small increments of At and

plot AU*/ A (p /Pb ) vs. t , the intercept of this curve with t=0 gives

us the value of the ratio k2 /(k1+k2)
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Note that with the values of k1 and k2 we can evaluate (Xand C(B

by eq. (29).

The time-deformation curve for the model for t < tp can be

calculated in the following manner.

We have written the general differential equation for '51 and E in

terms of finite differences (eq. 40) and have given initial conditions govern-

ing its behavior (31: 0 at t=0 ). Making use of Euler's method of

numerical integration (see for instance Hildebrand, "Introduction to

Numerical Analysis") we can get an approximation of the solution of this

equation for El .

With the solution of eq. (40) for 31 we make use of eq. (46) to

relate 31 to U>l< .

U* __ p p1

P0 P0

(46)
 

We can now plot a theoretical curve for the deformation of our

model for t < tp. In fact this solution can be extended over the entire

range of t if desired. However it is cumbersome to apply and its use

is not warranted as we already have a convenient solution for t > tp in

eq. (28) .

All the model parameters have now been determined and a step by

step procedure for calculating k1,k2,O( and [B is given as follows. For

a complete set of sample calculations see Appendix D.

1 - Plot test data as U*= U/Uoo vs. t .

2 - Evaluate(€l)ooand get k2 from eq. (25) .

3 - Determine Cv from experimental time-deformation curve and

plot p/p0 vs. t .
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Evaluate kZ/(k1+ k2) from eq. (49) and consequently k1 .

Calculate m* and m**, then determine the value of A (figure 5)

which best fits m**.

Calculate 098 by eqs. (29) and (39) .

Use eq. (29) to calculate (Xandfl .



CHAPTER V

TEST RESULTS

1. Comparison of Theoretical Curves with Test Data

In the previous section steps are given for calculating the model

parameters k1 , k2 , (X , and 18 Having these parameters along with the

value of A, CV and Z(t)/t , we can construct a curve of U* vs. t and com-

pare it with the experimental curve.

The construction is carried out in two steps corresponding to the

two cases given for the model deformation, however the finate difference

solution used in case I would be extended over the whole test range. This

process is cumbersome and not necessary.

For t<tp we use Euler's method of numerical integration to find

the variation of 51 /p'o with time and then calculate U* by eq. (46).

The portion of the curve for t>tp can be gotten with the aid of

eq. (28) and figure 4. Ui is computed by eq. (31a). A solution of eq. (28)

from figure 4 can be plotted for known values of Z(t)/t, A and the ratio of

m**/m*. Of course we only use the part of the curve for t>tp. Figure 6

gives a graphical picture of these solutions.

Figures 7, 8, 9 and 10 give graphical comparisons of the actual and

computed results. It is seen that in each case the agreement of the pre-

dicted curves and the experimental data is very good over the entire test

range. The curves shown are typical of several types of consolidation

curves .
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 1.0

solution of eq. (28) for t>tp

U* P" . . .
finite difference solution for t<tp

-
w
—

5? 

4
|
-

1
)
-l

i

log time

Figure 6. Construction of U* vs. t Curves

Classically, clay consolidation is considered to take place in two

stages; the primary consolidation results from drainage under excess hydro-

static pore water pressure, while the secondary consolidation occurs as a

result of a rearrangement of clay particles under stress until a stable clay

structure is attained. It is obvious that these two effects are not independ-

ent, for the clay particles may begin their process of adjustment (flow) long

before thegdrainage has ended.

The solution presented in this thesis accounts for such an overlap.

' The secondary phase of consolidation is represented by the viscous flow of

the dashpot and is expressed in terms of the parameter )8. This non—linear

element contributes to the deformation of the model over the whole range of

stress application. In many cases appreciable amounts of viscous flow

takes place shortly after the pressure increment pO is applied. This results

in the common linear relationship of U* vs. log t (as observed for the

Sault Ste. Marie and Marine City clays).

The secondary consolidation of the Mexico City clays differs

considerably from those described above. As shown by Girault (1960), the

unusual shape of these deformation curves occurs for small loading incre-

AP

ments ( T‘l). In such cases we see that even after primary consolidation
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has been completed, the viscous flow of the particles is still very small

and in some cases negligible. However most of the viscous flow occurs

after tp and very large secondary consolidation may take place before an

equilibrium is reached. Our model is still able to reproduce faithfully

the experimental data.
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2. Variation of Model Parameters

As there is good agreement between theoretical and experimental

data, we now look at the model parameters individually and study their

variation with the loading conditions. A summary of the calculated para-

meters is given in Appendix C, while the variation of ' kl/(kl+k2), a and

)8 with stress is shown graphically in Appendix D.

The spring constants k1 and k2 represent the elastic response of

the clay structure while k2 represents the effect of stress on non-flowing

(elastic) contacts. In the remolded samples of Marine City and

Sault Ste. Marie clays, k2 remains fairly constant at low stress levels but

increases at high stresses. On the undisturbed samples of the same clay,

it again remains constant at low stresses but increases rapidly at stresses

that exceed the preconsolidation pressure, pC. In the undisturbed Mexico

City clays, k2 decreases with increasing stress until the preconsolidation

pressure is reached after which it increases markedly.

The increase in k2 at stresses exceeding pC is what we would expect

because in this stress range the clay is compressed to progressively smaller

void ratios. Consequently the structure becomes more rigid and the elastic

bonds are able to carry larger stresses.

The ratio of kl/(kl-l-kz) represents the portion of the applied stress

that acts on the flowing contacts. We would expect that, for undisturbed

samples, at high stress levels more contacts are broken and flow. This

should result in an increasing trend in the ratio of kl/(k1+k2).

Such a prediction agrees with the data shown in Appendix B.
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In all cases except one, the undisturbed samples showed increases in

k1/(kl-i- kg) with increasing stress. Figures 11 and 12 show variation of

kl/(kl-i-kz) as well as (X and ’8 with increasing stress for two samples.

For the remolded clays, the ratio varies little over the entire stress

range and has a low value. This indicates that under each new load increment

the stress on the flowing bonds is a constant proportion of the total stress.

The parameter (X , as defined by rate process theory, is an indicator

of interparticle movements. It is directly proportional to A , the average

distance between bonds (or the average "jump" distance) and inversely pro-

portional to the number of flowing contacts, U .

As the total stress increases, the stress on the flowing contacts

increases; we would expect the number of flowing contacts and flowing

bonds to increase directly with the stress.

The data shows that for all tests Of decreases with increasing stress

as we predicted it should.

It might be noted that Of would also decrease if A. decreased at high

stresses, however Arepresents an average value of all jump distances and

is unlikely to decrease significantly.

The parameter )8 also represents viscous movement of bonds and

is defined as

B = 2%? exp(-AF/RT)

1

where A1 is the distance between planes of slip and AF represents the

activation energy required to initiate bond "jumps".
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)1.
If the ratio of A1 remains constant over the entire stress range

fl would depend only on the activation energy. In this case we would expect

fl to decrease with increasing stress, for at high stresses the bonds with

low strengths have been broken and those remaining have progressively higher

strength and greater activation energy.

In a consolidation test, however, the strains are essentially in one

direction. Final strains can approach 10 to 12% of the original height of the

sample'fwhich could bring about a decrease in A) , the distance between the

planes of slip.

A decrease in Alwould increase the ratio of A1 and would cause an

increase in B.

The undisturbed and remolded Marine City clays have high intial ’8

values which generally decrease with increasing stress, indicating a con-

stant increase in A F.

However, from the data we see that the Mexico City clays have an

initially large value of B which decreases with increasing stress but increases

rapidly at stress levels around the preconsolidation pressure. Such behavior is

also present in the remolded Sault Ste. Marie clay. It would be well to note

here that both of these clays have very high initial void ratios.

The decrease in B for low stresses in the above clays can be explained

by an increase in AF. As the preconsolidation pressure is reached, however,

large compressions and large structural changes take place under additional

stresses. This would suggest that Amay increase, as the average jumps

would be longer, and Al decreases due to large compression in the axial

direction. Both of these factors would increase B . At stresses beyond pc

it is probable that 3 will again decrease because AF will steadily increase.



CHAPTER VI

CONCLUSION

The analysis in the previous section indicates that the model adequately

describes the deformational characteristics of a variety of clays. It has been

shown that there is good agreement between the calculated curves and the

experimental data.

The main factors governing the shape of the curves produced by our

deforming model are the slope constant, A, the ratio of kl/(kl-i- k2), the

coefficient of compressibility, CV , and the ratio of Z(t)/t. A further look

tells us that the value we pick for A depends on the ratio of m*/in which

in turn is a function of kl/(k‘1 + k2). By combining these factors in various

proportions we can duplicate a number of typical deformation curves for

clays.

Figure 13 shows two different systems for classifying types of con-

solidation curves; one by K. Y. Lo (1961) and the other by G. A. Leonards

(1961). Girault (1960) applied Leonard's classification to Mexico City clay

and showed their relation to the loading ratio used in testing.

Wehave already shown that these curves can be duplicated with the

model of figure 1. To duplicate curves of Type (1) requires that we have a

small kl/,(k1+ k2) ratio, a fairly small value for CV and a large ratio of Z(t)/t.

Lo's type II curve is merely an extension of Type I and can be pro-

duced with a value of k1/(kl-i-k2) between 0.3 and 0. 6, a fairly small value of

CV and a large ratio of Z(t)/t.
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Similarly, Leonard's Type II curve can be duplicated with a value of

kl/,(k1+k2) around 0.15.

Lo's Type III(b) curve is similar to Leonard's Type III curve and

neither shows any primary stage. A curve of this type can be approximated

by using a very large value of kl/(kl-i- k2), a large value for Cv and a small

ratio of Z(t)/t. Curves of this type occur most frequently in very compres-

sible clays subjected to equal loading increments as can be seen from the

tests on Mexico City clay.

Thus we conclude that the proposed model represents an effective way

of representing the consolidation characteristics of a wide range of clay types,

including both remolded and undisturbed samples.

The fact that the calculated curves compare very well with the actual

deformation data indicates that this is alsoan effective way to calculate the

rheological parameters of the model. These have been shown to behave con-

sistently with the material parameters as proposed by the rate-theory

analysis. The variation of these material parameters gives us an important

insight into the mechanics of clay deformation.

The rheological model also gives us a solution for the entire consol-

idation process, which would seem to be more convenient and reasonable

than an arbitrary separation of the phenomenon into primary and secondary

stages. Also, while the model gives good agreement with a wide variety of

deformation curves, it is itself simple and the equations governing its

behavior offer relatively simple solutions.
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APPENDIX A

TEST DATA - TABULAR FORM



TEST DATA

1. Clay - Marine City (undisturbed)

Sample 1

Load Inc. Duration of CV

(kg/cmz) Test (days) (inZ/min)

0 - 0.625 5 3. 38x10-2

0.625- 1.25 5 1.77x10-2

1.25 -2.50 8 2.32x10'2

2.50 -5.00 234 2.56x10'2

5.00 -1000 114 2.44x10'2

2. Clay - Marine City (remolded)

Sample 2a

Load Inc. Duration of CV

(kg/cmz) Test (days) (inZ/min)

0 .0.031 4 3.02x10-Z

0.031 -0.0625 8 9.2 xio‘3

0. 0625-0.125 53 6.0 x10-4

0.125 -o.250 81 5.0 x10-4

0. 250 .-0.500 69 8.5--.x10-4

0. 500 -1 .00 139 1.78x10-3

1 .00 -2.00 117 2.6 x10‘3

3. Clay - Marine City (undisturbed)

Sample 2b

Load Inc. Duration of Cv

(kg/cmz) Test (days) (inZ/min)

0.500- 1.00 20 4.25x10'2

1 .00 - 2.00 48 4.88x10‘2

2.00 - 4.00 185 2.92x10’2

4.00 - 8.00 156 1.5 x10-2

8.00 -16.00 253 0.692210-2
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TEST DATA (cont'd)

4. Clay - Sault Ste. Marie (remolded)

Sample 1

Load Inc. Duration of Cv

(kg/cmz) Test (days) (inz/min)

0 - 0.156 6 2.452210'2

0. 312 - 0.625 73 1.36xlo-3

0.625- 1.25 172 .802x10-3

l .25 - 2.50 114 .982x10'3

2.50 - 5.00 27 1. 21x10-3

5. Clay - Mexico City (undisturbed)

Sample A5

Load Inc. Duration of CV

(kg/cmz) Test (days) (cmZ/mi'n)

0 - 0.25 4 0.770

0.25 - 0.50 40 0.705

0.50 — 1.00 132 0.458

1.00 - 2.00 125 0.0026

2.00 - 4.00 31 0.0108

4.00 - 8.00 69 0.0078

6. Clay - Mexico City (undisturbed)

Sample Bl

Load Inc. Duration of CV

(kg/cmz) Test (days) (cmZ/min)

0 - 0.25 11 0.467

0.25 - 0.50 56 0.348

0.50 - 1.00 108 0. 167

1.00 - l..50 90 0.0475

1.50 - 2.00 132 0.128

2.00 - 2.50 180 0.0653
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7.
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Sample B5

Load Inc.

(kg/cmz)

- 0.25

.25 - 0,50

.50 - 0.75

.75 - 1.00

.00 - 1.25

.25 - 1.50

.50 - 1.75

Sample C5

Load Inc.

(kg/cmz)

- 0.25

.25 - 0.50

.50 - 1.50

.50 - 2.50

.50 - 3.50

.50 - 4.50

Duration of

Te st (days)

4

35

70

167

90

132

183

Duration of

Test (day s)

33

70

76

97

57

10

TEST DATA (cont'd)
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APPENDIX B

EXPERIMENTAL TIME- DEFORMATION CURVES
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APPENDIX C

CALCULATED PARAMETERS



TEST RESULTS

1. Clay - Marine City (undisturbed)

Sample 1

Load Inc. k1 k2 k1

(kg/cmz) (kg/cmz) (kg/cmz) kl+k2

0 - 0.625 3.55 26.0 0.12.

0.625-1.25 3.76 13.3 0.22

1.25 - 2.50 5.81 21.6 0.24

2.50 - 5.00 21.6 26.4 0.45

5.00 -10.00 39.1 44.0 0.47

2. Clay - Marine City (remolded)

Sample 2a

Load Inc. k1 k2 k1

(kg/cmz) (kg/cmz) (kg/cmz) E1+k2

0 - .031 1.17 1.05 0.53

.031 - .0625 7.12 2.50 0.74

.0625- .125 0.46 1.37 0.36

. 125 - .250 0.68 1.74 0.28

.250 - .500 2.05 3.64 0.36

.500—1.00 2.84 5.06 0.36

1.00 -2.00 5.26 8.60 0.38

3. Clay - Marine City (undisturbed)

Sannple 2b

Load Inc. k1 kg kl

(kg/cmz) (kg/cmz) (kg/cmz) k1+k2

.500- 1.00 8.5 24.2 0.26

1.00 - 2.00 11.2 16.85 0.40

2.00 - 4.00 23.2 21.4 0.52

4.00 - 8.00 10.3 17.25 0.375

8.00 - 16.00 38.9 31.8 0.55
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TEST RESULTS (cont'd)

4. Clay - Sault Ste. Marie (remolded)

Sample 1

Load Inc.

(kg/cmz)

0 - 0.156

0. 312 - 0.625

0.625- 1.25

1.25 - 2.50

2.50 - 5.00

5. Clay - Mexico City (undisturbed)

Sample A5

Load Inc.

(kg/cm?)

0 - 0.25

0.25 - 0.50

0.50 - 1.00

1.00 - 2.00

2.00 - 4.00

4.00 - 8.00

6. Clay - Mexico City (undisturbed)

Sample B1

@L'oad Inc.

(kg/cmz)

O - 0.25

0.25 - 0.50

0.50 - 1.00

1.00 - 1.50

1.50 - 2.00

2.00 - 2.50

kl

2.22

1.87

2.47

3.48

4.36

kl

1.89

7.45

7.62

8.70

31. 2

19.3

k2
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3.18

3.18

5.25
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14.6

k1 k2

(kg/cmz) (kg/cmz)

1.38 11.1

11.3 9.25

(8.65 5.30

0.72 1.34
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1.15 5.26

k2

(kg/cmz) (kg/emz)

9.2

7.45

3.92

1.30

1.08

1.23

kl 0982
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0
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TEST RESULTS (cont‘d)

7. Clay - Mexico City (undisturbed)

Sample B5

Load Inc. k1 k2 k1

(kg/cmz) (kg/cmz) (kg/cmz) kl+k2

0 - 0.25 1.04 9.40 0.10

0.25 - 0.50 5.23 8.70 0.375

0.50 - 0.75 7.90 5.27 0.60

0.75- 1.00 10.50 4.50 0.70

1.00- 1.25 14.9 2.63 0.85

1.25-1.50 23.2 1.55 0.938

1.50- 1.75 22.6 0.82 0.965

8. Clay - Mexico City (undisturbed)

Sample C5

Load Inzc. k1 k2 k1

(kg/cm ) (kg/cmz) (kg/cmz) k1+'kg

0 - 0.25 2.07 4.40 0.32

0.25- 0.50 5.12 3.14. 0.62

0.50- 1.50 3.66 2.54 0.59

1.50- 2.50 11.9 1.32 0.90

2.50 - 3.50 21.4 2.38 0.90

3.50- 4.50 32.7 3.52 0.90
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APPENDIX D

k1
k FOR INCREASING STRESS - GRAPHICAL

1

 VARIATION OF (X. ['3 AND
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APPENDIX E

SAMPLE CALCULATIONS
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SAMPLE CALCULATIONS

Clay - Marine City (undisturbed)

Sample 1

Pressure - 2. 50 kg/cm2 Increment - 1. 25 kg/cm2

See figure Ea for plot of test data. Figures Eb and c are used to

evaluate U00 . We found U0 by plotting U vs. t (for small t) arithmetically

and projecting the resulting curve back to its zero intercept.

CV is calculated to be 2. 32 3.110"2 in2 /min.

'5le vs. 1: is plotted in figure Ed.

Take several small increments of At and plot AU*/A('p-/.po) vs. t.

Extending this line to its intersection with t=0 yields k2/(k1+k2)=‘ 0.76

(figure E1).

 

  
 

1.0

0.76

AU* M

23(1) 0.5

p

o : 1 1 ‘

0 . 0.1 0.2 0.3 0.4 0.5

Time - (minutes)

Figure E1. Determination of kz/(k1+k2)

1.25

k =—-E-9— : -—-———— = 21.6 kg/cm2
2 4(6)0° 4x0.0144

 k = 21.6x0.24 : 5.81 kg/cm2

 

 

10.75

mka.5‘85~o =7.5/cyc1e

log 1000- log100'"

m**=m*(k1+k2 :7'5 = 31.3/cyc1e

k1 .24
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therefore A =7. 60 (from figure 4)

Z(t) _1.6x10'2 _ -5

“'E—‘TEFT‘ - 6-4’40

._ Z(t) ' .

0982 ._ 2““, (4%): 2(6. 4x10 5) (. 218)=-2. 77x10” 5

Note: 0981, 2 refer to the two methods for calculating this quantity.

d0
The slope of the ? curve in figure Ec gives us a value of

-2M=2.50x10"4

k k
O(,8,=-2M J—i— = 2.50x10‘4 (.218)=5.35x10-5

 

k1+k2

k k
a=3\/—Z_ (A) ..__._..__.1+: 2 =107 cmZ/kg

(X 0- 5

)9:-—&§3=2 771317 = 2.59x10-7 min-1

The calculations above and the figures in Appendix A indicate that

the two methods described previously for calculating afi differ by a factor

of two. Because of the approximations and estimates made in each of the

methods, agreement is considered good if the ratio of the smaller to the

larger of these corresponding values is less than 3.

In cases where the ratio exceeds 3, the author has used 0982 for

calculations, having more confidence in the reliability of this method.
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