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ABSTRACT
A STUDY OF THE EFFECTS OF PROCESSING AND ALLOYING ON THE

MICROSTRUCTURE AND DEFORMATION BEHAVIOR OF WROUGHT MAGNESIUM
ALLOYS

By
Zhe Chen

Lightweight magnesium (Mg) alloys are being progressively incorporated into structural
applications where weight reduction is an important design priority. Higher strength and better
formability can be achieved by the development of new processing methods and new alloy
compositions, which entail a comprehensive understanding of the processing-microstructure-
property relationship and deformation mechanisms.

A systematic study on the processing-microstructure-property relationships was
performed on a Mg-6Al-0.3Mn (wt%) (AM60) alloy. The effect of thermomechanical
processing and subsequent heat treatment on the tensile, fatigue, and creep behavior was
investigated. The specific processing conditions investigated were: (1) as-Thixomolded® (as-
molded), (2) Thixomolded® then thermomechanically processed (TTMP), and (3) TTMP then
annealed (annealed). Compared to the as-molded material, both the TTMP and annealed
materials exhibited a significant increase in the tensile yield strength, the ultimate tensile strength,
and the fatigue strength, but a decrease in the creep resistance. The altered microstructure was
responsible for the change in the mechanical properties. In particular, the resulting mechanical
properties were correlated with reduced porosity, texture modification, work hardening, and
grain refinement effects introduced by the processing. A detailed analysis was performed on the
small fatigue crack growth behavior. The effect of processing and mechanical loading

parameters (including maximum applied stress and stress ratio) was evaluated. The applicability



of a dislocation-based fracture mechanics relationship to the material was demonstrated by
successfully modeling the effect of stress ratio on the crack growth rate using this relationship.
Near surface pores were found to be the most preferential sites for fatigue crack initiation.

Dilute rare earth (RE) additions to wrought Mg alloys can lead to texture randomization
and potentially improved formability. A novel testing method was employed to study the tensile
deformation mechanisms in a conventional wrought Mg alloy Mg-3Al-1Zn (wt%) (AZ31) and a
newly-developed RE-containing Mg alloy Mg-1Mn-1Nd (wt%) (MN11) for the temperature
range of 50<C to 250<C. Twinning and dislocation slip activity were identified by a combination
of in-situ tensile testing and electron backscatter diffraction (EBSD) analysis. Grain boundary
sliding (GBS) activity was evaluated using atomic force microscopy (AFM). For the highly-
textured rolled AZ31, prismatic slip was prevalent at all testing temperatures and exhibited
increased activity with increasing temperature. The plastic strain ratio was found to decrease
with increasing temperature, and was attributed to the increase in both second-order pyramidal
<c+a> slip and GBS activity. For the weakly-textured extruded MN11, basal slip was prevalent
at all testing temperatures and exhibited increased activity with increasing temperature. It is
believed that the addition of RE provides effective strengthening to the basal slip system. The
strengthening effect was reduced with increasing temperature due the increased diffusion rate of
RE solutes, which led to a decrease in the critical resolved shear stress (CRSS) of basal slip.

Overall the work performed in this dissertation provides new insight into the processing-
microstructure-property relationships and deformation mechanisms in Mg alloys, which can
serve as a guidance for alloy development and microstructural optimization. The information
and data provided in this dissertation can also be incorporated into future modeling efforts for

predicting the deformation pathway and mechanical properties of simulated microstructures.
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CHAPTER 1

INTRODUCTION

1.1 Rationale

Magnesium (Mg) and its alloys are the lightest commonly used structural metals. Mg

alloys exhibit a low density (~1.8g/cm3) and a high specific strength, which are important

properties for applications that benefit from weight reduction. They also exhibit good castability,

good machinability, and good damping behavior (Kainer and von Buch 2004). Compared with

plastics, which generally exhibit a density of less than 1.59/c:m3 ('Plastic’), Mg alloys have much

better electromagnetic interference (EMI) shielding ability, higher thermal conductivity, and
better 