THE EFFECT OF DIETARY PROTEIN SOURCE ON IRON UTILIZATION BY THE BABY PIG

Thesis for the Degree of M.S. MICHIGAN STATE UNIVERSITY STUART AUSTIN LUMB 1970

ABSTRACT

THE EFFECT OF DIETARY PROTEIN SOURCE ON IRON UTILIZATION BY THE BABY PIG

by

Stuart Austin Lumb

Two trials, involving a total of 48 baby pigs, were conducted to investigate the effects of isolated soy or high protein casein on iron utilization by the baby pig.

Baby pigs were taken from the sow at 2 to 7 days of age and weaned to a dry purified diet. Blood samples were taken initially and at the end of each trial for hematological and serological analysis.

Pigs were housed in stainless steel rearing cages and were fed ad libitum.

Pigs were allotted to one of six dietary treatments. Iron supplied as FeSO₄.2H₂O was added at O, 50 and 100 ppm to provide three levels of iron. Supplemental iron was added to the casein diets to equate the iron content with those of the soy diets.

Mineral balance studies were conducted during the final two weeks of each trial.

As judged by growth and balance data, hematocrit, hemoglobin, erythrocyte and serum iron levels, the iron in the isolated soy diets was more available than that in the high protein casein diets.

Consequently, under the conditions of the experiment, the iron requirement of the baby pig fed isolated soy protein is less than that of pigs receiving casein as the protein source.

ad the contract

rt schepanen enswigerichen der Lingt aus einzelend gebent euf

·

•

.

.

THE EFFECT OF DIETARY PROTEIN SOURCE ON IRON UTILIZATION BY THE BABY PIG

Ву

Stuart Austin Lumb

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Animal Husbandry

1970

Girc/71 3-10-10

DEDICATION

To the furtherance of Anglo-American understanding and to
the betterment of international relations between all nations of
the world

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. E. R. Miller and Dr. D. E. Ullrey for their guidance and assistance throughout his graduate program and for their critical reading of the manuscript. Thanks are also due to Dr. J. L. Gill for serving on the author's guidance committee and to Dr. W. T. Magee for his help with the statistical analysis of the data.

Sincere gratitude is expressed to Dr. R. H. Nelson and the Animal Husbandry Department for the use of facilities and animals and for financial support in the form of a graduate assistanship. Furthermore, the author thanks the department for enabling him to be engaged in graduate study at Michigan State University and thereby gather an insight into the American university system.

The author is also grateful to the fellow graduate students, laboratory personnel and department secretaries who accepted an expatriate Englishman into their midst and gave him their assistance and encouragement many times over.

Thanks are also due to Miss Patricia Wightman for her skillful typing of this thesis.

Stuart Austin Lumb

Candidate for the degree of

Master of Science

DISSERTATION:

The Effect of Dietary Protein Source on Iron Utilization by the Baby Pig

OUTLINE OF STUDIES:

Main Area: Animal Husbandry

Minor Area: Statistics

BIOGRAPHICAL ITEMS:

Born: August 28, 1943, Halifax, Yorkshire, England

Undergraduate Studies: University of Leeds, England, 1961-1966

Graduate Studies: Michigan State University, 1967-1970

Experience: Research Assistant, National Animal Husbandry

Research Institute, København, Danmark, 1966-1967

Graduate Assistant, Michigan State University,

1967-1970

TABLE OF CONTENTS

																			P ag e
LIST	r of	FIGU	JRES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
LIST	r of	TABL	.ES	•	•	•		•	•	•	•	•	•	•	•	•	•	•	viii
LIST	r of	APPE	KIDNE	(T/	ABLE	S	•	•	•	•	•	•	•	•	•	•	•	•	i×
١.	INT	RODUC	CTION	1	•	•	•	•	•	•	•	•	•	•	•		•	•	ı
11.	REV	IEW C	F LI	TEI	RATL	JRE	•	•	•	•	•	•	•	•	•	•		•	2
	D	ietar	y Fa	acto	ors	Afi	ec	ting	g li	^on	Abs	sorp	oti o	on	•	•	•	•	2
			erals		•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
			amins er fa		· ors	•	•	•	•	•	•	•	•	•	•	•	•	•	15 19
		01110	, ,		J. J	•	•	•	•	•	•	•	•	•	•	•	•	•	,,,
	P	rotei	in an	d	Iror	A Ł	SO	rpt	ion	•	•	•	•	•	•	•	•	•	23
			ary													•	•	•	23
			ect c														•	•	24
			ect c									n at	SO	rpt	ion	•	•	•	27
		•	rides						•			•	•	•	•	•	•	•	30 31
		AVITT	no ac	; [0:	s ar	10	ro	n a	USOI	рт	On	•	•	•	•	•	•	•	31
111.	EXP	ERIME	ENTAL	. Pl	ROCE	DUF	RE	•	•	•	•	•	•	•	•	•	•	•	33
	1	ntrod	ducti	on	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	G	enera	al Co	ond	uct	of	Ex	per	ime	nts	•	•	•	•	•	•	•	•	33
	Н	emato	ologi	ica	l Pa	aran	net	ers	•	•	•	•	•	•	•	•	•	•	36
	Α	nalyt	tical	P	roce	dur	-es	•	•	•	•	•	•	•	•	•	•	•	37
	S	erum	Dete	erm	inat	ior	ıs	•	•	•	•	•	•	•	•	•	•	•	38
	S	tatis	stica	a I .	An a I	lysi	is	•	•	•	•	•	•	•	•	•	•	•	39
17.	RES	ULTS	AND	DI	scus	SSIC	N	•	•	•	•	•	•	•	•	•	•	•	40
	Т	rial	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
	т	rial	2																48

TABLE OF CONTENTS (cont.)

																Page
٧.	CONCLUSIONS .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5 9
VI.	SUMMARY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	60
VII.	BIBLIOGRAPHY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	62
VIII.	APPENDIX															71

LIST OF FIGURES

igure		Pag e
١.	Effect of dietary protein source and iron level on iron balance, trial I	47
2.	Effect of dietary protein source and iron level on iron balance, trial 2	56

LIST OF TABLES

Table		Page
1.	Effect of protein source on body weight and hemoglobin levels in chicks (14-day experimental period)	29
2.	Composition of experimental diets	34
3.	Dietary iron levels (ppm)	35
4.	Summarized pig performance data, trial	41
5.	Hematological data, trial I	42
6.	Serum iron, total and unbound iron-binding capacity and transferrin saturation, trial l	44
7.	Serum protein analyses, trial	45
8.	Balance data, trial l	46
9.	Summarized pig performance data, trial 2	49
10.	Hematological data, trial 2	51
11.	Serum iron, total and unbound iron-binding capacity and transferrin saturation, trial 2	53
12.	Serum protein analyses, trial 2	54
13.	Balance data, trial 2	55

LIST OF APPENDIX TABLES

Table		Pag e
1.	Mineral mixtures used in experimental diets	. 71
2.	Vitamin mixture used in experimental diets	. 72
3.	Pig performance data, trial I	. 73
4.	Hematological data, trial	. 74
5.	Serum iron, total and unbound iron-binding capacity and transferrin saturation data, trial l.	. 75
6.	Serum protein analyses, trial I	. 76
7.	Balance data, trial 2	. 77
8.	Pig performance data, trial 2	. 78
9.	Hematological data, trial 2	. 79
10.	Serum iron, total and unbound iron-binding capacity and transferrin saturation data, trial 2.	. 80
11.	Serum protein analyses, trial 2	. 81
12.	Balance data, trial 2	. 82

•	•	•											•	
•			•										•	
•				•	•	-								
•				•				•						
													4	
•														
•	•	•	•	•	•	•								
		•	•	•				-						
		,	•		•	•								
		•	•	•	•		•	•						
•	•													
•		•	•	•	•	•							•	
		•	•			•			•				.5	

.

INTRODUCTION

In the swine industry today there is a trend toward early weaning of pigs so that the sow may be rebred soon after farrowing to maximize her reproductive potential.

Several commercial swine producers, both in the United States and Europe, are rearing pigs which have been weaned at one week of age or less. For this practice to be successful, an economical early weaning diet must be developed. Most dry early weaning diets include milk products as the protein source. Because milk products are costly, it would be desirable to use less expensive soybean protein.

Many of the nutrient requirements of the early weaned baby pig, especially the mineral requirements, have been determined using purified diets containing casein as the protein source. Several workers have reported that the availability of zinc is less in diets containing soybean meal than in diets containing milk protein (Morrison and Sarett, 1958; O'Dell and Savage, 1960; Oberleas et al., 1962; Edwards, 1965). In addition, Miller et al. (1965) stated that baby pigs fed soy diets retained less calcium, phosphorus and magnesium than pigs fed casein diets.

In view of these reports, a study was undertaken to determine the effect of dietary protein source on the availability and utilization of iron by the baby pig. This question also has additional significance in that if the iron requirement of the baby pig can be met from dietary sources, the necessity of using an injectable form of iron, plus the inherent costs involved, could be eliminated.

II. REVIEW OF LITERATURE

Dietary Factors Affecting Iron Absorption

Minerals

Dietary iron level

The effect of the dietary iron level on absorption is directly related to the iron status of the individual under consideration. Thus, anemic individuals will absorb a considerably higher percentage of iron than a normal individual. This has been shown to be the case with humans (Pirzio-Biroli et al., 1958); dogs (Stewart, 1953); chickens (Featherston et al., 1968) and rats (Pollack et al., 1964; Greenberger and Ruppert, 1966; Pearson et al., 1967).

Ullrey et al. (1960) stated that the oral iron requirement for the baby pig was 125 ppm. Pigs fed diets containing 25, 35 and 125 ppm of iron absorbed 92.2, 71.4 and 49.9% of the iron, respectively, indicating decreased absorption with an increasing level of dietary iron. Matrone et al. (1960) also estimated the iron requirement of the baby pig.

These workers estimated the utilization of dietary iron for hemoglobin synthesis and found that the utilization values for pigs receiving 40 and 80 ppm of dietary iron were significantly lower (P<0.05) than those for pigs receiving 10 or 20 ppm.

Valence form of iron

With reference to this topic, species differences do exist and therefore generalizations can only be made with regard to within-species comparisons.

Lottrup (1934) compared the effect of oral ferrous and ferric salts on hemoglobin levels in anemic children. He found that the ferrous forms were much more effective in increasing hemoglobin values. McCance et al. (1943) and Moore et al. (1943) also found that ferrous forms were more readily absorbed than the ferric, as judged by serum iron levels. Moore et al. (1944) used radioactive ferrous and ferric salts and estimated absorption by the amount of iron appearing in the hemoglobin. They found that the bivalent form was absorbed 1½ to 15 times more readily than the ferric form. Recent research from Holland would appear to cast doubt on the validity of the assumption that differences in the utilization of iron are a direct reflection of differences in absorption. Wiltink et al. (1966) measured the absorption and utilization of orally ingested ferric and ferrous salts. Absorption was calculated by the use of balance trials. Utilization of ⁵⁹Fe was calculated from blood volume and erythrocyte radioactivity. The authors, using both ferrous and ferric salts, found a significant negative correlation between intestinal absorption and utilization. It was further shown that patients given ferrous chloride or ferric versenate absorbed 20 or 22% of the dose respectively, although utilization of the ferrous chloride (32%) was considerably greater than that of the ferric versenate (9%). From this it would appear that absorption of the two forms is approximately equal. The authors also stated that the ferrous form was utilized to a greater extent than the ferric form, although in general it has been assumed that utilization of the two forms is the same.

In dogs, Moore et al. (1944) observed that the utilization of radioactive ferrous and ferric iron for hemoglobin synthesis was about equal although some dogs absorbed more of the ferrous form. The authors suggested that dogs may reduce the ferric form more efficiently than

humans. However, Hahn et al. (1945) using three anemic dogs found that there was greater uptake of the ferrous than the ferric form.

With rats, several workers have shown that both ferrous or ferric forms are equally available for hemoglobin regeneration in anemic animals (Austioni and Greenberg, 1940; Street, 1943; Blumberg and Arnold, 1947). Recent work by Fritz (1969) indicated that several forms of ferrous iron were considerably more available for hemoglobin repletion in anemic rats and chickens than ferric forms.

Because of the efficacy of injectable iron compounds as hematinics for pigs, research involving comparisons of oral forms of iron has been rather limited. Pickett et al. (1961) studied the availability of iron in different compounds using baby pigs reared on a dried skim milk semi-purified ration. In the three trials carried out, pigs receiving ferrous sulfate had significantly higher hemoglobin levels (P<0.01) than pigs receiving either ferrous carbonate or ferric oxide. Pigs receiving ferrous carbonate had higher hemoglobin levels than pigs receiving ferric oxide, although this difference was not significant. Harmon et al. (1967), also working with baby pigs, investigated the efficacy of ferric ammonium citrate as an oral hematinic. Using a semi-purified diet the authors concluded that, as judged by hemoglobin values and weight gains, ferric ammonium citrate was as efficient an oral hematinic as ferrous sulfate.

From the literature reviewed, ferrous iron, in general, is better absorbed than the ferric form. However, this may in fact be just a consequence of the greater solubility of the ferrous form. In order to resolve this matter, it would be necessary to compare the absorption of ferrous and ferric salts which had identical solubilities at a pH of around 6.5 to 7.0.

Iron salts

Nakamura and Mitchell (1943) measured the rate of hemoglobin regeneration in anemic rats fed various forms of iron salts. They reported that the iron in ferric chloride was twice as effective as that in ferric phytate for hemoglobin regeneration. In a similar experiment, Fuhr and Steenbock (1943) stated that the availability of iron from ferric phytate was 19% less than that of ferric ammonium sulfate for hemoglobin regeneration.

Also working with rats, Freeman and Burrill (1945) compared the retention of iron from several different sources. The compounds showed the following order of effectiveness in relation to hemoglobin regeneration: ferric chloride>sodium ferric orthophosphate=ferric phosphate>reduced iron sodium iron pyrophosphate. Blumberg and Arnold (1947) also found that ferric chloride was superior to ferric orthophosphate in terms of hemoglobin regeneration.

Working with pigs, Harmon et al. (1968) noted that ferrous carbonate was considerably less soluble than ferrous sulfate. They showed that a ferrous sulfate-supplemented diet (64 ppm of iron) gave significantly higher hemoglobin levels than a diet containing ferrous carbonate (70 ppm of iron). More recently, Harmon et al. (1969) stated that a survey of trace mineral salts currently used in swine diets indicated that ferrous carbonate was most commonly used to provide supplemental iron. In view of this, several experiments were conducted to further determine the efficacy of ferrous carbonate and ferrous sulfate. Pigs were fed a purified diet containing casein as the protein source. Hemoglobin values of pigs receiving ferrous sulfate were significantly greater (P<0.01) than those of pigs receiving an equal level of iron

(80 ppm) supplied as ferrous carbonate. Furthermore, the hemoglobin levels of pigs receiving the ferrous carbonate were equal to those of the control pigs receiving 29 ppm of iron. These data indicate that ferrous carbonate did not support normal hemoglobin levels, confirming the group's previous observations (Harmon et al., 1968). It was also shown that ferrous carbonate added to diets in varying amounts to give levels of 18 to 147 ppm of iron was ineffective in increasing hemoglobin levels. In addition, Fritz (1969) recently reported a relative biological value of zero for ferrous carbonate fed to chickens.

Research from the University of Florida also indicated that ferrous sulfate was superior to ferrous carbonate as a source of iron for the young pig. A diet containing 90 ppm of iron supplied as ferrous sulfate gave significantly higher hemoglobin levels (P<0.01) than diets containing 103 or 105 ppm of iron supplied as ferrous carbonate (Ammerman et al., 1969). The same group also compared samples of ferrous carbonate which differed in their solubility in acid as iron sources for young pigs. When fed with a basal diet, low, medium and high solubility ferrous carbonate diets gave hemoglobin levels of 7.3, 7.5 and 8.7 g/100 ml of blood. This would be expected as most of iron absorption occurs in the upper duodenum where the pH is still quite acid.

Thus, the differing availability of iron for absorption from the various salts is in part a consequence of their differing solubilities in acid media.

Calcium

Anderson et al. (1940) studied the effect of calcium on hemoglobin regeneration in anemic rats. The authors noted that increasing the dietary calcium level resulted in reduced iron absorption. Kletzien

(1940) also found that increased levels of calcium resulted in decreased iron absorption. The addition of 1% of calcium to a basal diet fed to anemic rats reduced the iron content of all tissues except the spleen. The average liver, blood and carcass values were 57, 86 and 90% of the respective control values. Increasing the level of calcium supplementation to 3% of the diet resulted in average liver, blood and carcass values which were 28, 72 and 61% of the respective control values.

Richards and Greig (1952) reported finding pale livers and enlarged flabby hearts in weanling mice whose mothers' diets contained I to 2% of added calcium carbonate. The dams fed a high level of calcium carbonate in the diet were also anemic. Continuing his research with mice, Greig (1954) carried out experiments to find if the anemia was due to calcium carbonate perse or to some other deficiency, induced by calcium carbonate. Substances which were considered likely to affect hemoglobin synthesis (e.g., copper and pyridoxine) were fed in excessive amounts along with calcium carbonate. However, all additives failed to prevent anemia developing. Consequently, Greig concluded that calcium carbonate exerted its anemigenic action through some interference with the assimilation or utilization of iron.

The effect of bone meal on the utilization of iron by anemic rats

was investigated by Chapman and Campbell (1957a). Bread diets,

supplemented with three levels of bone meal providing 3170, 4040 and 7330

PPm of calcium and six levels of ferrous sulfate (21.6 to 148.2 ppm of

iron) were fed ad libitum to anemic rats over a 10-week period. With

each level of iron fed, hemoglobin levels tended to be highest on the

•

.

•

•

.

.

levels of bone meal fed, hemoglobin levels tended to increase with increasing levels of iron. Thus it would appear that increasing the amount of bone meal in the diet reduced the amount of iron available for absorption or utilization. In further work, Chapman and Campbell (1957b) carried out a study to determine whether the calcium or the phosphate portion of the bone meal was responsible for the interference with iron utilization. It was shown that there was no significant difference in hemoglobin regeneration of anemic rats fed a control diet (80% bread) containing 1670 ppm of phosphorus or of anemic rats fed the same diet supplemented either with disodium phosphate or sodium hexaphosphate, the phosphorus content of these two diets being 3620 and 3610 ppm respectively. However, the hemoglobin regeneration of anemic rats fed the control diet supplemented with either calcium carbonate (7900 ppm total calcium), or calcium chloride (7290 ppm total calcium), was considerably less than that of anemic rats fed the control diet containing 3200 ppm calcium. Thus, under the conditions of the study, it was found that phosphate did not interfere with iron absorption, whereas calcium did.

Working in India, De and Basu (1949) found that human subjects kept on a diet of sago sugar and butterfat for 12 days almost maintained iron balance. However, when 500 to 1000 mg of calcium lactate was ingested with the diet, the subjects were in negative iron balance, mainly through an increase in fecal iron. It was concluded that the excess calcium was probably precipitated as insoluble calcium phosphate which removed a large amount of iron along with it. In further experiments with human subjects, Apte and

Venkatchalam (1964) compared the effects of three different levels of supplementary calcium, ranging from 360 to 1600 mg/day. The ratio of phytin phosphorus to total phosphorus was kept constant at 40%. With a daily intake of 400 mg of calcium, subjects on an iron intake of 16.6 mg were in negative iron balance. Subjects ingesting 1000 mg of calcium and 16.6 mg of iron/day absorbed 4% of the iron, while increasing the calcium level to 1500 mg/day resulted in 16% of the dietary iron being absorbed. It can be seen that increased calcium levels in this instance resulted in increased iron absorption. It is possible that at the higher levels of calcium supplementation, sufficient calcium was available to precipitate the phytate present in the diet. Consequently the iron, which might have been precipitated as iron phytate, was then available for absorption.

Very little research has been carried out related to the effects of calcium on iron absorption with swine. Working in Scotland, Greig (1960) fed young pigs a basal wheat and milk diet. Pigs receiving this diet had significantly higher hemoglobin levels at 8 weeks of age (P<0.01) than pigs receiving the same diet supplemented with 2% of calcium carbonate. Greig concluded that calcium carbonate reduced the availability of iron in the small intestine due to its antacid properties. However, there is a possibility that the reduction in absorption was due to the carbonate ion and not to the calcium. Pickett et al. (1961) showed that the availability of iron carbonate was much less than that of ferrous sulfate and its is possible that the reduction observed by Greig was due to iron carbonate formed in the intestinal tract.

rej3 exe!

·

·

.

•

.

•

•

•

:01 \$00

2050

æ"

cit

sie

How

٤ie

die เาร

The

Ç):

Çr i

-3-

¥į:

001

In general, it can be stated that dietary calcium supplementation, regardless of species, reduces iron absorption, although a definite explanation for this occurrence appears to be lacking.

Phosphorus

Kinney et al. (1949) studied the influence of diet on iron absorption in the rat. The two basal diets, Purina dog chow and a corn grit meal, containing 350 and 27 ppm of iron respectively, were supplemented with an additional 3100 ppm of iron supplied as ferric citrate, giving four treatments in all. Liver iron determinations were made at the termination of the experiment, and it was found that the liver iron content of rats receiving the supplemented corn grit diet was considerably greater than that of rats receiving the corn diet alone (19.4 and 69.6 mg of iron/100 g of liver respectively). However, the liver iron content of rats fed the supplemented Purina diet was only slightly greater than that of rats receiving the unsupplemented Purina diet (9.0 and 13.9 mg of iron/100 g of liver). The authors noted that the liver iron content of the corn grit-fed rats exceeded the total body iron content of normal rats, and considered that the low phosphorus content (400 ppm) of the corn grit diet was responsible for this excessive deposition of iron. In further experiments, Hegsted, Finch and Kinney (1949) again working with rats fed a corn grit diet supplemented with 0.31% of iron, found that the amount of liver iron was inversely related to the phosphorus content of the diet.

Buttner and Muhler (1959) worked with Sprague Dawley rats which were fed a stock corn diet containing 0.32% of calcium and 0.31% of phosphorus. They found that a six-fold increase in liver iron

concentration occurred in rats receiving 50 mg of iron/day compared with the control group, which received no supplemental iron. However, the liver iron content of rats receiving a daily supplement of 50 mg of iron and 50 mg of phosphorus was significantly less (P<0.0001) than that of rats receiving supplemental iron alone (50 mg/day). Furthermore, the liver iron content of rats receiving 50 mg of iron and 100 mg of phosphorus/day was less than that of the group receiving 50 mg of iron and phosphorus/day.

O'Donovan et al. (1963) working with baby pigs, studied the effects of three different dietary phosphorus levels fed in conjunction with dietary iron levels of 80, 2500 and 5000 ppm. Levels of 1.2 or 0.6% phosphorus reduced the toxic effects of high iron levels as compared with 0.3% phosphorus supplementation. Consequently it would appear that in pigs receiving excessive amounts of iron and higher levels of phosphorus, much of the phosphorus was forming insoluble complexes with the iron, thereby rendering the iron unavailable for absorption and hence reducing the toxic effect.

Copper

It is well known that copper is essential for hemoglobin synthesis. Even with adequate supplies of dietary iron, if copper is lacking, anemia will develop (Cartwright et al., 1956). This indicates the involvement of copper in adequate iron utilization. Many workers have shown that copper deficiency anemia in swine can be successfully treated with copper supplementation, providing adequate iron is also supplied (Hart et al., 1930; Schultze et al., 1936; Lahey et al., 1952; Wintrobe et al., 1952).

Gubler et al. (1952) found that baby pigs fed a basal diet supplemented with 4.3 mg of iron and 0.5 mg of copper per kg of body weight per day absorbed 6.1% of an orally administered dose of ⁵⁹Fe, whereas pigs receiving the same level of iron, but no supplemental copper, absorbed only 1.85% of the labelled iron. As judged by plasma iron levels, it was also shown that little iron was absorbed in the absence of dietary copper, whereas in the presence of dietary copper, large amounts of iron were absorbed. Working in England, Cassidy and Eva (1958) fed bacon pigs diets containing 125, 250 or 500 ppm of copper. The liver iron values tended to decrease with increasing levels of copper in the diet, even though all pigs received the same level of dietary iron (400 ppm). Working with baby pigs, Ullrey et al. (1960b) compared diets containing 6, 16 and 106 ppm of copper. They found that 6 ppm of copper gave normal growth and erythropoiesis. Serum iron concentration was increased at the 16 ppm level, and liver iron content was shown to increase with increasing levels of dietary copper. In further work carried out at Michigan State, Ritchie et al. (1963) compared the effects of adding various levels and combinations of copper and zinc to a high calcium diet fed to growing pigs. The addition of 250 ppm of copper to the basal ration containing 13.1 ppm of copper and 42.2 ppm of zinc resulted in hemoglobin and hematocrit values which were significantly lower (P<0.05) than those from pigs on the basal ration. Workers at the Rowett Research Institute fed even higher levels of copper to pigs. Supplementation of a basal diet with 75 ppm of copper resulted in anemia developing, although pigs receiving the same level of copper with an additional 750 ppm of iron did not become anemic (Suttle and Mills, 1964).

⁵⁹Fe , rats

e**ec

the i

-ela1

(196

0000

copo ⊭ith

on t

al*i

(19

0⁴

•

Als

3,-

404

0ŧ

. .

Working with male albino rats, Chase et al. (1952) studied the effect of various levels of dietary copper (0.05 to 1.0 mg/day) on ⁵⁹Fe absorption and found that maximum iron absorption occurred with rats fed 0.25 to 0.5 mg of copper per day. It was also reported that the influence of copper on iron absorption was not due to the simultaneous administration of copper with iron, but appeared to be correlated with the copper level of the tissues. However, Kinnamon (1966) showed that there was no significant difference in liver iron content between rats fed a control diet containing no supplemental copper for 5 weeks and rats receiving the same diet supplemented with 0.02% copper over the same period of time.

Zinc

Magee and Matrone (1960) using rats, studied the effect of zinc on the absorption of ⁵⁹Fe. Results indicated that there was little difference in absorption between the control and zinc-fed rats, although the zinc content of the diets was not stated. Kinnamon. (1966) also reported that there was no significant difference in the absorption of ⁵⁹Fe between rats receiving a diet containing 0.75% of zinc and rats receiving a diet containing no zinc supplementation. Also there was no significant difference in the amount of radioiron retained in the liver by the same two groups. Also working with rats, Bunn and Matrone (1966) found that dietary zinc levels of 200 and 400 ppm increased liver iron levels as compared to a basal level of 9 ppm of zinc. This finding is in contrast to the other reports quoted.

Regarding work with swine, Cox and Hale (1962) investigated the effect of 0.2 and 0.4% dietary zinc on liver iron in weanling pigs.

The liver iron content of pigs receiving 0.4% of zinc was significantly

less (P<0.01) than that of the control group which received 40 ppm of added zinc. There was no significant difference in liver iron levels between the controls and pigs fed 0.2% zinc. The authors noted that even at the 0.4% zinc level, no toxicity problems were encountered, although growth rate was slightly reduced, as compared to the other two treatments.

<u>Manganese</u>

Hartman et al. (1955) stressed that as little as 45 ppm of supplemental manganese fed to anemic lambs resulted in decreased hemoglobin concentrations and serum iron levels. Higher levels of manganese, up to 5000 ppm, resulted in decreased iron levels in the spleen, liver and kidney. In a further trial, anemic lambs were fed a roughage diet supplemented with 0, 1000 or 2000 ppm of manganese. Hemoglobin regeneration was retarded and serum iron depressed in lambs fed diets containing either 1000 or 2000 ppm of manganese.

Further experiments to determine the effects of high levels of manganese on hemoglobin regeneration were carried out by Matrone et al. (1959), using rabbits and baby pigs. Supplemental manganese (2000 pm) depressed hemoglobin formation in both rabbits and baby pigs. However, a dietary supplement of 400 ppm of iron overcame this depressing effect. The minimum level of manganese in the diet that interfered with hemoglobin formation was 50 to 125 ppm.

Vitamins

Pyridoxine

Working with 30 lb pigs, Hughes and Squibb (1943) found that a diet deficient in pyridoxine resulted in poor appetite, reduced growth and the development of microcytic hypochromic anemia. On the addition of pyridoxine to the diet, however, the blood picture returned to normal. Miller et al. (1957) determined the pyridoxine requirement of the baby pig, using a synthetic milk diet. The hemoglobin levels of control pigs were significantly less (P<0.01) during the third, fourth and fifth weeks than those of pigs receiving pyridoxine. Pyridoxine is necessary for protoporphyrin synthesis and protoporphyrin is required for hemoglobin synthesis (Cartwright and Wintrobe, 1948). Consequently, the low hemoglobin levels observed by Hughes and Squibb and Miller et al. were due to a lack of protoporphyrin rather than to a lack of iron.

In contrast, Gubler et al. (1949) found that iron absorption of pyridoxine-deficient rats was greater than that of the control rats fed the same level of iron (I mg/day). More recently, Neal and Pearson (1962) also working with rats, studied the relationship between pyridoxine deficiency and iron absorption at various levels of iron intake. In their first experiment, an iron-free diet was fed to control and pyridoxine-deficient groups for 5 weeks. All rats were given 0.1 mg of ⁵⁵⁻⁵⁹Fe by stomach tube and killed 24 hours later. It was found that pyridoxine-deficient rats absorbed significantly less iron than the control group (P 0.05). In the next experiment, the two groups were fed iron-free diets for 10 weeks after which they were fed 0.1 mg of ⁵⁵⁻⁵⁹Fe/day for 14 days. In this case, there were no significant

differences in iron absorption. However, when $^{55-59}$ Fe was fed at a level of I mg/day over an I8-day period following I2 weeks on the iron-free diets, the pyridoxine-deficient group absorbed significantly more iron than the control group (P<0.05). The results of this last experiment are in agreement with those of Gubler et al. (1949).

In contrast, Shen et al. (1964) found that pyridoxine deficiency reduced iron utilization. Rats fed a pyridoxine-deficient diet containing 22.2 mg iron/100 g developed a severe microcytic hypochromic anemia after 40 to 50 weeks on trial. This anemia responded promptly to pyridoxine administration, hemoglobin levels recovering to normal after 2 weeks of pyridoxine therapy.

Vitamin B12

Neuman et al. (1950) determined the vitamin B_{12} requirement of the baby pig fed a synthetic milk diet. Increasing levels of supplemental B_{12} gave increasing hemoglobin values, the highest value (14.3 g/100 ml blood) resulting from pigs receiving 51 mcg of B_{12}/kg dry matter. According to Wohl and Goodhart (1968) vitamin B_{12} is involved indirectly in deoxyribose nucleic acid formation. Consequently, if B_{12} is lacking the mitotic activity of the bone marrow is decreased, resulting in decreased erythropoiesis. In view of this, the increased hemoglobin values observed by Neuman et al. (1950) were probably a consequence of the effect of B_{12} on erythropoiesis.

Vitamin C

Moore (1955) showed that human subjects absorbed a greater percentage of 59 Fe when fed on a diet of eggs and citrus fruit juices than when fed eggs alone. The author suggested that ascorbic acid

• . . .

.

1

.

.

present in the fruit juice increased absorption by promoting the reduction of ferric iron to the ferrous form. When ascorbic acid was substituted for the citrus juice, similar results were obtained.

Other workers have also shown that foods containing appreciable amounts of ascorbic acid, such as tomatoes and orange juices, were effective in reducing ferric iron to the ferrous state (Kirch et al., 1947; Bergheim and Kirch, 1949).

The effect of ascorbic acid on iron absorption in rats was investigated by Groen et al. (1947). They also found that ascorbic acid increased iron absorption. It was concluded that the ascorbic acid effectively reduced intestinal pH and enabled more ferrous iron to be absorbed. Greenberg et al. (1957) further showed that the rate of hemoglobin regeneration was consistently greater in rats given supplements of iron and ascorbic acid than in rats supplied with iron alone. After observing that ascorbic acid resulted in increased iron absorption from ligated rat intestinal loops, Hopping and Ruliffson (1966) suggested that ascorbate-iron chelates may be formed and be responsible for the increased iron absorption. This was shown to be the case by Helbock and Saltman (1967). They showed that the uptake of ⁵⁹Fe by ligated rat intestinal segments was increased when an ascorbate-iron chelate was used. They stated that low molecular weight chelates are necessary to maintain iron in a soluble and Permeable form.

Greenberg and Rhinehart (1955) observed hypoferremia and anemia

**wo rhesus monkeys exhibiting chronic vitamin C deficiency. Oral

alone (50 mg/day for 41 days) had very little effect on this

tion, but when supplemented with ascorbic acid the hypoferremia

ar C

.

:

•

•

.

.

•

.

and anemia were markedly reduced.

Vitamin E

Indovina (1951) found that rabbits exhibiting symptoms of vitamin E deficiency had low hemoglobin levels. The administration of 30 mg of vitamin E/day for 15 days resulted in increased hemoglobin values. Scott et al. (1955) developed a diet for use in the study of vitamin E deficiency in the chick. Birds receiving this basal diet displayed a microcytic anemia and a low reticulocyte count, and the authors indicated that vitamin E might be concerned in erythropoiesis. Working with primates, Day and Dinning (1956) found that anemia developed in rhesus monkeys fed a vitamin E-deficient diet. Injection of 20 mg of α -tocopherol phosphate resulted in the hematocrit value increasing from 30% to 44% over a 19-day period.

Greenberg et al. (1957) studied the effects of supplements of iron with ascorbic acid and vitamin E on hemoglobin regeneration in milk-fed anemic rats. They found that the rate of hemoglobin regeneration was consistently greater in rats receiving all three supplements than with iron alone or with iron plus either of the vitamins. In a continuation of this research, Tucker et al. (1957) substituted diphenyl-p-phenylenediamine (DPPD) for vitamin E in order to ascertain whether an antioxidant would stimulate hemoglobin regeneration. As in the previous work, milk-fed anemic rats were used. It was found that hemoglobin regeneration was greatest in the group receiving iron, ascorbic acid and the antioxidant as compared with groups receiving either iron alone or iron plus either ascorbic acid or DPPD.

Thus, it would appear that either vitamin E or a biologically active antioxidant, and ascorbic acid are interrelated and exert a considerable effect on iron metabolism in anemic rats.

Other Factors

Phytate

McCance et al. (1943) postulated that phytates interfere with iron absorption by precipitating iron as insoluble iron phytate, thus rendering the iron unavailable for absorption.

In balance studies carried out with human subjects. Widdowson and McCance (1942) found that more iron was absorbed from white bread than from brown, in spite of the fact that iron intakes were 50% higher on the brown bread diets. The reduced absorption from brown bread was attributed to its higher phytate content. Furthermore, the brown bread contained more inorganic phosphorus, and hence some iron could have been precipitated as ferric phosphate. McCance et al. (1943) working with human subjects noted that when large doses of ferric or ferrous ammonium sulfate were fed along with a standard breakfast of jam, and white bread containing sodium phytate, the increase in serum iron levels was less than when the iron salts and bread containing no added phytate were fed. Assuming that the rise in serum iron was proportional to the amount of iron absorbed, it was concluded that sodium phytate interfered with iron absorption by reacting with the iron as it passed through the intestinal tract and precipitating it as insoluble ferric phytate. Using seven different test meals, Sharpe et al. (1950) investigated the effect of phytate on the absorption of ⁵⁵Fe or ⁵⁹Fe. Using meals composed mainly of rolled oats and milk, the authors stated that there was no correlation between the phytate content of the rolled oats and the reduction in iron absorption. Meals 4 and 7 were both composed of milk and rolled oats, the phytate content of meal 4 being approximately 50% higher than meal 7. The percentage of radioactive iron absorbed was 9.81 and 8.84 for the two meals respectively. It was pointed out, however, that these meals contained abundant amounts of calcium, quite in excess of the amount required to precipitate the phytate in the diet as calcium phytate. Thus, a possible explanation for the lack of correlation between the phytate content of the rolled oats and the reduction in iron absorption was the preferential combination of the calcium in the milk with the phytate, making it unavailable for combination with the iron in the meals. In the same experiment, when sodium phytate was added to a test meal, iron absorption was considerably reduced.

Indian workers have also shown that phytate exerts a considerable effect on iron absorption. Hussain and Patwardhan (1959) carried out several experiments with healthy male subjects. Cereal diets, with the proportion of phytate phosphorus to total phosphorus kept at 8% and 40%, were used. With an iron intake of around 22 mg/day, iron absorption was 11% and 3% for the two diets, respectively. Apte and Venkatachalam (1962), also working in India, found that an intake of 11.7 mg of iron/day was insufficient to meet requirements when a cereal diet, in which the proportion of phytin phosphorus to total phosphorus was kept at 40%, was fed to human subjects. Subjects on an intake of 16.4 mg of iron/day absorbed less than 1%; however, with an intake of 21.6 mg, retention was 30% and all subjects were in

positive iron balance. From this, the authors concluded that a satisfactory level of iron intake on cereal diets containing 40% phosphorus as phytate phosphorus appeared to be between 17 and 21 mg of iron/day. This level is nearly double that recommended by the United States Food and Nutrition Board (1968). From the above reports, it can be seen that phytate considerably reduces the amount of iron available for absorption. In contrast, Foy et al. (1959) using diets of bread, jam and sodium phytate fed to human subjects reported no consistent effect of dietary phytate on the absorption of radioactive ferric chloride. The authors considered that phytates per se had no adverse effect on iron absorption but that the products of their hydrolysis may include amounts of phosphates which would combine with the available iron in the intestine.

Apart from human subjects, rats have also been used to study the effect of phytate on iron absorption. Sathe and Krishnamurthy (1953) studied hemoglobin regeneration in anemic rats and concluded that phytin phosphorus inhibited iron absorption. However, neither the phytate nor the iron content of the diets used were reported, and the differences in values for hemoglobin regeneration amongst treatment groups were not statistically significant. In contrast, Harrison and Mellanby (1942) found that the addition of sodium phytate to the diet of anemic rats receiving 0.3 mg iron/day did not appear to inhibit hemoglobin regeneration when compared with the control group. More reacently, Cowan et al. (1966) compared hemoglobin regeneration in groups of anemic rats fed purified diets containing 10 or 20 ppm of iron, in which either 45% or 75% of the total phosphorus was replaced with phytate phosphorus. Hemoglobin regeneration was more rapid in

10

•

·

•

·

.

.

10

Dý

.11

¥į

Wā

S

ē

!

the groups receiving 20 ppm of iron than in the groups receiving 10 ppm. However, the hemoglobin values showed that, even at the 10 ppm level, the rate of hemoglobin regeneration was not affected by the presence of either level of dietary phytate. In view of this, it was concluded that high levels of phytate have no effect on iron absorption in the rat.

Carbohydrates

Herndon et al. (1958) showed that D-sorbitol increased the absorption of ⁵⁹Fe in normal as well as anemic rats when compared with control animals. Rats received equal amounts of ⁵⁹Fe and D-sorbitol and it was observed that the amount of radioiron absorbed was a direct function of D-sorbitol concentration.

<u>Fat</u>

Wissler et al. (1954) studied the effect of polyoxyethylene sorbitan monolaurate (Tween 20), a fatty acid polyoxyethylene derivative of sorbitol, on iron absorption. Adult hamsters fed a fortified bread ration containg 5% Tween 20 absorbed greater amounts of radioiron than control animals. Increases were noted in the amount of isotope present in the cecum and large intestine, and results suggested that the excess iron was being absorbed largely in the cecum. The authors postulated that the increased iron absorption was due to absorption from the large intestine in addition to the usual absorption from the small intestine.

Organic acids

Groen et al. (1947) showed that the absorption of iron from closed loops of rat intestine was increased when solutions of citric, succinic and malic acid were administered. More recently, Boddy and Will (1967) studied the effect of succinic acid on the oral uptake of ⁵⁹Fe on human subjects. The absorption of a physiological dose of ⁵⁹Fe ferrous succinate was increased from 8.56% to 13.0% when succinic acid was given concomitantly with the ferrous succinate. According to Groen, the increase in iron absorption observed with the administration of organic acids was a consequence of the lowered pH. More iron would be in the ferrous form due to the lower pH and thus more iron would be in an absorbable form.

Protein and Iron Absorption

Dietary Protein Level and Iron Absorption

Klavins et al. (1959) showed that young male albino rats fed synthetic protein-free diets absorbed significantly less iron than pair-fed controls fed a diet containing 18% casein. Also the hemoglobin levels of rats fed the protein-free diet were lower than those of the controls. In conclusion, the authors suggested that a relationship existed between dietary protein level and iron absorption. More recently these same workers studied the effect of different dietary protein levels on iron absorption. Male albino rats were again used. It was found that approximately 15 to 18% protein was necessary for normal iron absorption. When lower levels of protein were fed, iron absorption was impaired, and the authors concluded that the dietary protein level exerted a definite quantitative effect on

iron absorption (Klavins et al., 1962). Bhattacharya et al. (1964), working in India, fed rats diets containing 0 to 18% protein. They also found that iron absorption and hemoglobin levels were greatly reduced in rats fed protein-free diets. The authors considered that a dietary protein level of 6 to 9% was necessary to maintain adequate iron absorption, which is considerably lower than that recommended by Klavins et al. (1962).

Effect of Protein Source on Mineral Absorption

O'Dell and Savage (1957) briefly reported that zinc in soy protein was less available than that in animal protein. Morrison and Sarett (1958) fed chicks diets containing either soy, or casein and gelatin, as the protein source. Adding zinc to the soy diet resulted in increased growth rate. However, adding zinc to the casein diet had no effect on growth rate. Removal of supplemental zinc from both diets resulted in reduced growth rates, although the effect was most marked in chicks receiving the soy diet. In view of this, the authors concluded that the soybean meal used in the experiment contained a factor which might have impaired the availability of zinc for absorption.

O'Dell and Savage (1960) studied the effect of phytic acid on zinc availability. Chicks fed a diet containing casein and gelatin as the protein source had much better growth rates than chicks fed a soy protein diet. However, when a casein-phytic acid complex and gelatin was used as the protein source, the growth rate was about the same as that on the basal soy diet. Both diets contained about the same amounts of phytic acid, phosphorus and zinc. When zinc was added to the casein-

phytic acid diet, growth rate was considerably improved. Chicks fed a soy protein-phytic acid complex exhibited zinc deficiency symptoms and grew even more slowly than chicks on the basal soy diet, although the addition of 15 ppm of zinc overcame the depressing effect of the added phytic acid. In conclusion, the authors suggested that the zinc in the isolated soy protein was less available than that in casein. Furthermore, they stated that from the results it appeared the phytic acid was involved in making zinc unavailable.

At the University of California, Davis et al. (1962a) carried out a study to determine whether soybean protein interfered with the utilization of various trace minerals. Chicks were fed diets containing three levels of zinc, copper and manganese, with and without ethylenediaminetetracetic acid (EDTA) along with isolated soy as the protein source. At each level of mineral supplementation, performance was superior in the EDTA-supplemented groups. The authors stated that EDTA is a strong chelating agent and that as such could form EDTA mineral complexes with the various trace minerals which were bound in the soy protein. These EDTA mineral complexes would then be available for normal absorption. No evidence was obtained that EDTA per se was growth stimulating.

More recently, Edwards (1966) studied the effect of protein source on the absorption of 65 Zn by the chick. It was found that chicks fed a casein-gelatin diet for 24 hours prior to dosing absorbed approximately 16% of an orally administered dose of 65 Zn. However, only 9% of the dose was absorbed by chicks on an isolated soy diet. 65 Zn was also given intraperitoneally. In this instance, there was only a slight difference in retention between chicks fed the different diets. Their

results would appear to indicate that soybean protein is able to reduce the availability of free zinc for absorption.

Several workers have also investigated the effect of soy and case in proteins on zinc availability and absorption in the pig. Smith et al. (1959) studied the effect of different protein sources on the zinc requirement of the growing pig. Pigs receiving isolated soy or soybean meal developed symptoms of parakeratosis, but no symptoms were observed in pigs receiving milk protein diets. This occurred even though the total dietary zinc content of the soy diets was higher than that of the milk protein diets. The addition of zinc to the soy diets resulted in significant growth increases (P<0.01) and alleviation of parakeratosis. The addition of zinc to the milk protein diets did not affect growth rate. Thus it would appear that for pigs, zinc in soy protein sources is bound and unavailable for absorption.

Oberleas et al. (1962) carried out experiments to determine the effect of phytic acid on zinc availability in growing swine. Over a 6-week period, pigs fed a basal soy protein diet containing 0.5% phytic acid gained significantly less (P<0.05) than pigs fed a basal casein diet. The zinc content of the two diets was 25 and 14 ppm, respectively. Pigs fed a casein diet supplemented with 0.7% phytic acid gained significantly less (P<0.01) than pigs fed the casein basal diet. However, when the casein-0.7% phytic acid diet was supplemented with 100 ppm of zinc, gains were superior to those on the casein-0.7% phytic acid diet and only slightly less than those achieved on the basal casein diet. Increasing the amount of phytic acid in the soy basal diet to 1.4% resulted in significantly reduced daily gains (P<0.05) as compared to those produced on the soy basal diet itself.

The growth depressing effect of added phytic acid was corrected by zinc supplementation, suggesting that the effect of phytic acid was to reduce the availability of zinc. This would explain the superior performance of pigs fed the basal casein diet over pigs fed the basal soy, even though the zinc content of the soy diet was nearly double that of the casein diet.

Working with the baby pig, Miller et al. (1965) compared casein and soy proteins with regard to calcium, phosphorus and magnesium balance. Balance data showed that pigs fed the soy diets excreted larger amounts of fecal phosphorus, calcium and magnesium than pigs fed the casein diets. The authors suggested that this difference was due to the poor availability of the phytate phosphorus in the soy protein and the formation of phytate complexes with calcium and magnesium rendering these cations less available for absorption.

Effect of Protein Source on Iron Absorption

Davis et al. (1962a) studied the effect of soybean protein on the utilization of trace minerals by the chick. As previously stated, the availability of zinc, manganese and copper was reduced in chicks fed the isolated soy protein diet. The availability of iron was also investigated in this same experiment. Diets containing 33.6, 43.6 and 58.6 ppm of iron were fed with and without a supplement of 0.07% EDTA. Addition of EDTA to the diets did not result in increased hemoglobin levels, indicating that EDTA did not increase the availability of the iron in the soy protein. If an EDTA-iron complex was in fact formed, it was not reflected in terms of changes in hemoglobin levels.

Further studies by Davis et al. (1962b) also showed that EDTA did not increase the availability of the iron in soy protein, thereby confirming the group's previous finding. They also stated that the iron in soy bean protein was found to be available for growth and hemoglobin formation. In addition, the availability of iron in soybean protein and dried skim milk was compared, the 2 basal diets containing 23.7 and 28.0 ppm of iron, respectively. Diets containing added iron (40, 80 and 160 ppm) were also fed. Hemoglobin levels of chicks receiving the dried skim milk diets were significantly higher (P<0.0005) than those of chicks on the soy diet. However, feed intake and consequently iron intake was greater on the dried skim milk diets, and the authors suggested that this was the reason for the higher hemoglobin levels of chicks receiving the dried skim milk diets. It was concluded that the iron in isolated soybean protein was approximately as available as the iron in dried skim milk.

More recent work on iron utilization and metabolism in the chick was carried out by the same group (Davis et al., 1968). The experiment was designed to determine whether the phytic acid contained in soybean protein interfered with iron absorption. Chicks were fed either an EDTA-washed soybean protein diet or a casein-gelatin diet, containing 24 and 25 ppm of iron, respectively for 14 days. Casein and soy diets supplemented with graded levels of iron (20 to 120 ppm) were also fed (see table 1).

In general, chicks fed the soybean protein diets had hemoglobin and hematocrit values equal to or higher than those of chicks receiving the casein-gelatin diet, and the authors concluded that: "no evidence was obtained that the soybean protein basal diet reduced the utilization of iron. Thus, the possibility that the phytic acid in the soybean protein interfered with the availability of iron was ruled out."

Table I. Effect of protein source on body weight and hemoglobin levels in chicks (14-day experimental period).

	Soybe	an diet	Casein-g	elatin diet
Dietary Iron ppm ^a	Body wt. g	Hb,g/IOO mI blood	Body wt. g	Hb,g/100 ml blood
24	136.2	4.5	148.2	4.5
44	155.4	6.6	166.2	6.6
64	150.9	8.4	171.2	7.9
84	164.9	9.3	182.4	8.6
124	163.7	9.6	173.9	8.9
144	162.3	9.0	170.9	9.2

^a The iron contents of the basal soy and basal casein-gelatin diet were 24 and 25 ppm respectively. Supplemental iron was added to give the higher iron levels.

Furthermore, EDTA-washed soybean protein was used in the trial.

Previously, Davis et al. (1962b) showed that chicks fed an untreated soybean protein diet containing 45.3 ppm of iron had an average hemoglobin level of 6.5 g/100 ml of blood whereas chicks fed an EDTA-treated soybean diet (36.3 ppm of iron) supplemented with 10 ppm of iron had a hemoglobin level of 4.8. Thus it would appear that washing with EDTA in some way reduced the availability of the iron in the soy. In view of this, it could be assumed that had unwashed soybean protein been used in the 1968 soy/casein comparison, growth rates and hemoglobin values might have been even higher than those quoted (Davis et al., 1968).

Davis et al. (1962a) stated that isolated soybean protein contains a component which combines with zinc, manganese and copper and reduces the availability of these minerals. However, this was not the case with iron. In light of this statement it is interesting to note that Vohra et al. (1965) demonstrated that sodium phytate formed complexes with metals in the following decreasing order: Cu++, Zn++, Ni++, Co++, Mn++, Fe++ and Ca++.

Fritz (1969) stated that the iron in isolated soy protein was as available as that in ferric ammonium citrate, ferrous gluconate, ferrous fumarate and ferrous tartrate, and considerably more available than the iron in ferrous carbonate and various ferric salts. The repletion of hemoglobin and hematocrit levels in rats and chicks was used as the criterion to determine utilization of iron in the various sources tested.

In contrast to these previous reports, Fitch et al. (1964) found that 7 rhesus monkeys receiving purified diets containing isolated soybean protein became anemic after 2 to 7 months. Previously, monkeys fed casein diets containing the same amount of iron (210 ppm) had not become anemic.

Studies with radioiron showed that incorporation of 59 Fe from a soybean protein mixture was approximately 50% as great as that from a case in 59 Fe mixture. It should be noted however, that only one monkey was used in this study.

Thus, from literature reviewed, it would appear that in general, the iron in soybean protein is available for absorption and utilization.

Peptides and Iron Absorption

Mellander (1955) hypothesised that iron may combine with peptides and be absorbed in this form. He noted that peptides complex with iron and appear to act as effective chelating agents. An iron-peptide complex containing 20% iron given orally to humans was absorbed efficiently, as judged by increased serum iron levels. Indian workers showed that the ingestion of acid or enzyme hydrolysates of casein and iron increased the body iron in rats. They also suggested that peptides or other

protein degradation products acted as chelating agents and that peptides acted as vehicles for the transport of iron through the gastrointestinal mucosa (Bhattacharya and Esh, 1964).

Amino Acids and Iron Absorption

Rummel and Camdon (1956) stated that amino acids are good chelating agents and showed that an iron and alanine chelate, given orally, increased serum levels considerably more than ferrous sulfate alone.

Cysteine

Groen et al. (1947) noted that cysteine increased iron absorption from closed loops of rat small intestine. This effect could be due both to the reducing properties of the sulfhydryl group of cysteine and also to its chelating ability.

Methionine

Kaufman et al. (1966) fed methionine-deficient diets to rats for 4 weeks. Compared with controls, these rats developed anemia and their total body iron levels decreased, due to a decrease in iron absorption or retention. The tow hemoglobin levels could also have been a direct consequence of the methionine deficiency, as hemoglobin itself contains a small percentage of methionine. This same group (Klavins et al., 1963) also studied the effect of excess methionine levels on body iron levels and hematological parameters. It was found that excess methionine feeding also produced anemia. To explain this result, the authors postulated that since methionine inhibits histidine absorption (Taylor et al., 1959) and, as histidine is the most limiting amino acid in hemoglobin synthesis (Borsook et al., 1957), the anemia observed was

a consequence of the unavailability of histidine due to the high level of methionine fed.

Other amino acids

Kroe et al. (1963a) showed that rats perfused with solutions containing ⁵⁹Fe and histidine absorbed more iron than rats perfused with the isotope alone. In comparisons involving other amino acids, however, histidine had relatively little effect on increasing iron absorption. Kroe et al. (1963b) compared the effects of various amino acids on iron absorption from the rat gastro intestinal tract, as measured by the appearance of ⁵⁹Fe in the serum and liver. Glutamine, glutamic acid and asparagine gave the greatest increases in blood ⁵⁹Fe values. Methionine, proline, serine and phenylalanine produced a moderate increase in iron absorption, and histidine supplementation increased iron absorption least of all. More recently the same group (Kroe et al., 1966) again showed that iron absorption was greater with glutamine supplementation than with histidine, regardless of pH.

In contrast, Van Campen and Gross (1969) found that histidine and lysine increased ⁵⁹Fe absorption from ligated rat duodenal segments, whereas glutamic acid, glutamine, methionine and glycine did not. In this instance, ferric iron was used, whereas in previous studies the ferrous form was prefered. This fact may partly explain the difference in results. Furthermore, the authors noted that their findings were consistent with the hypothesis that amino acid-iron chelates are formed and subsequently absorbed.

In conclusion, it is possible that the differences in iron absorption associated with different protein sources may in part be a consequence of their amino acid composition.

III. EXPERIMENTAL PROCEDURE

Introduction

Two trials were conducted to study the effect of protein source on the iron requirement of the baby pig. Two protein sources were used in conjunction with three levels of dietary iron; four pigs were allotted to each treatment group, thereby giving a 2x3 factorial.

General Conduct of Experiments

The two trials involved a total of 48 pigs, all from the University herd. In trial I, 20 Yorkshire and four Hampshire pigs were used; in trial 2, pigs were all of the Yorkshire breed.

The experimental procedure was the same in both trials unless otherwise stated. Pigs were taken from the sow at 2 to 7 days of age and placed in individual stainless steel rearing cages equipped with stainless steel feeders and water troughs. Room temperature was maintained at 20°C for the duration of the trial. The pigs were weaned to a dry purified diet (table 2). Intake was encouraged by placing small amounts of feed in the animals' mouth. The pigs readily adapted to the dry feed and no problems with adaptation were encountered.

The pigs were fed a low iron diet (15 ppm) for several days to deplete their iron reserves after which four pigs were allotted to each treatment group on the basis of sex, weight and litter. The experimental diets contained either purified casein or isolated soy as the protein source. The soy protein diets were supplemented with 0.3% DL-methionine. A basal diet, basal plus 50 ppm of iron and basal

Table 2. Composition of experimental diets.

	Casein	Soy ²
	L	\$
Casein	30	-
Soy	-	30
DL-Methionine	-	0.3
α-Cellulose ³	5	5
Lard	5	5
Cerelose ⁴	51	50.7
Mineral mixture ⁵	6	6
Fat-soluble vitamins in corn oil ⁶	1	i
Water-soluble vitamins in water ⁶	2	2

High Protein Casein, General Biochemicals, Chagrin Falls, Ohio.
Soya Assay Protein, General Biochemicals, Chagrin Falls, Ohio.
Solka Floc, Brown Company, Chicago, Illinois.
Cerelose, Corn Products Company, Argo, Illinois.
See Appendix Table 1.
See Appendix Table 2.

plus 100 ppm of iron were produced, using FeSO₄·2H₂O for supplementary iron. On completion of trial I it was found that the iron content of the soy protein was considerably greater than the assumed value. Consequently the iron content of the soy diets was greater than that of the casein diets. In view of this, in trial 2 the amount of supplemental iron in the casein diets was increased in order that the casein and soy diets would contain equal amounts of iron at the three treatment levels. The analyzed iron content of the diets is shown in table 3:

Table 3. Dietary iron levels (ppm).

	Basa Casein	Soy			Basal+100 Casein	
Trial I	45	73	88	137	152	189
Trial 2	101	9 5	148	147	189	189

Blood was taken from the anterior vena cava initially and at the conclusion of each trial for determination of blood and serum constituents.

Pigs were fed ad <u>libitum</u> and had free access to water, which was changed twice daily. All feed was weighed out daily and individual feed consumption was recorded. Pigs were individually weighed weekly for the duration of the trial, following which they were returned to the <u>University</u> herd. Pigs were kept on trial I for 29 days and for 35 days in trial 2.

Mineral balance studies were conducted during the final 2 weeks of both trials. Two pigs from each treatment group were selected on the basis of equivalent weight and placed in individual metabolism cages. Pigs were removed from the cages three times daily and individually

fed an amount of food and water which could be consumed within a 5 to 10 minute period. Following this, the pigs' mouths were wiped clean to avoid contamination of excreta. The pigs were then returned to the cages. After a 3-day adjustment period, fecal and urine collections were made over a 3-day period. Feces were separated from urine by means of a fine screen placed above the collection funnel. Where possible, constant daily feed intakes were maintained throughout the balance period.

Feces were oven dried for 24 hours, weighed, ground and stored in sealed plastic containers. Urine was collected in polyethylene containers and acidified with 6N HCl. Following the collection period, the urine volume was recorded and 100 ml aliquots were taken and stored in acid-washed polyethylene bottles at 30 C.

During each trial, one pig on the basal case in diet went off feed, lost weight became weak and was consequently killed. Post mortem information was not obtained on pig 57-5 which died during the first trial. A post mortem examination of pig 17-7 which died during the second trial revealed evidence of encephalomalacia and meningitis.

Hematological Parameters

<u>Hemoglobin</u>

Hemoglobin was determined by the cyanmethemoglobin method of Crosby et al. (1954). A Coleman Junior II spectrophotometer was used for optical density determinations.

Hematocrit

Hematocrit was determined by the micro method (McGovern et al., 1955). Blood samples were centrifuged for 5 minutes at 10,000 RPM in an International "Hemacrit" centrifuge.

Erythrocytes

Erythrocytes were counted in duplicate from a single filling of a "zero error" Hellige pipette, using an improved Neubauer counting chamber. The diluent used was 0.85% NaCl.

Reticulocytes

Four drops of methylene blue were mixed with an equal amount of blood and allowed to stand for 10 minutes. Following this, duplicate thin smears were made, allowed to dry and then stored for later counting. Reticulocytes were enumerated per 1000 erythrocytes and expressed as a percentage.

Analytical Procedures

Feed

A wet ashing procedure was used. A I g sample was placed in a 250 ml Phillips beaker and 60 ml of concentrated HNO₃ were added. This digestion mixture was heated on a hot plate to near dryness and allowed to cool. Seven ml of concentrated perchloric acid were added and digestion continued, again to near dryness. After cooling, samples were diluted to constant weight with deionized distilled water. Standards and blanks were prepared in an identical manner.

Iron content was determined by atomic absorption spectrophotometry, using a Jarrell-Ash model 82-516 spectrophotometer equipped with a

Hetco total consumption burner. Samples were aspirated into an air-hydrogen flame. An absorption wavelength of 2480.5 Å was used.

<u>Feces</u>

Fecal iron was determined by an identical procedure, except that a sample weight of 0.5 g was used.

Urine

For iron determinations, undigested and undiluted samples were used and concentrations were determined using atomic absorption spectrophotometry.

Serum Determinations

Blood samples from the pigs were collected in acid-washed test tubes and allowed to coagulate. Following removal of the clot, samples were centrifuged at 550 g for 15 minutes. The serum was then transfered to acid-washed vials for 50 C storage.

Serum protein analysis

Total serum protein was determined using a modified Lowry procedure (Miller, 1959). Electrophoretic separation of serum proteins was achieved using agar strips in a modified Beckman-Spinco Durrum cell. Strips were scanned using a Beckman RB Analytrol densitometer.

Serum samples were then frozen and stored at $-10^{\rm O}$ C until further analyses were performed.

Serum iron

Serum iron concentration was determined by atomic absorption spectrophotometry, again using a wavelength of 2480°5 Å. Serum

samples were diluted 1:1 with deionized distilled water prior to serum iron determination.

Total iron-binding capacity

The procedure developed by Olson and Hamlin (1969) was slightly modified and used to determine total iron-binding capacity. Equal volumes (0.5 ml) of serum and a ferric chloride solution (5 ppm iron) were mixed and allowed to stand for 5 minutes. Following the addition of 50 mg of magnesium carbonate, samples were mixed four times during a 30 minute period, centrifuged and 0.5 ml of the supernatant transferred to another test tube. One ml of 20% TCA was added to the supernatant, and the tube heated at 90° C for 15 minutes. Following cooling and centrifugation, the iron content of the supernatant was determined by atomic absorption spectrophotometry.

Hemoglobin iron

Because of hemolysis in certain serum samples, it was necessary to correct for the hemoglobin iron present in these samples. The spectrophotometric method for quantitating hemoglobin in serum developed by Hunter et al. (1950) was used.

Statistical Analysis

The data were analysed by analysis of variance and by the multiple range test of Duncan (Bliss, 1967).

IV. RESULTS AND DISCUSSION

Trial |

Pig performance data are presented in table 4. In general, a positive linear effect was noted with an increase in the iron content of the diets, irrespective of the protein source. Differences in average daily food intake approached significance (P<0.07) with regard to dietary iron level.

Hematological data are presented in table 5. Regardless of protein source, hematocrit values increased with increasing dietary iron level (P<0,001). The effect of protein source on hematocrit values approached significance (P<0.07). Hemoglobin levels similarly significantly (P<0.001) increased with increasing dietary iron level. The effect of protein source on hemoglobin levels was not significant. As judged by hemoglobin levels, pigs on the 45 ppm casein and 73 ppm soy diets were anemic, having hemoglobin levels of less than 8 g/100 ml. This is not unexpected as the Agricultural Research Council of Great Britain (1967) considered that a dietary level of 60 ppm was necessary to produce a hemoglobin level of 8 g/100 ml. This is the same level as suggested by Matrone et al. (1960) for baby pigs fed a fortified cows' milk diet.

Pickett et al. (1960) using a dried skim milk semi-purified diet found that normal hemoglobin and hematocrit levels were obtained with a dietary level of 80 ppm or more. Ullrey et al. (1960a)recommended a level of 125 ppm for pigs fed a synthetic casein-type diet. Consequently, the type of diet fed influences the oral iron requirement.

Table 4. Summarized pig performance data, trial I.

Protein source		Casein			Ѕоу			Sign	nificano	Significance (P value)	ue)
Iron level, ppm	45	88	152	73	137	189	±SE¹	Prot.	Iron	Repl. F	Iron Repl. Prot.xiron
Initial wt., kg	2.1	2.0	2.1	2.1	2.1	2.1	0.19	0.93	0.92	0.30	0.94
Final wt., kg	4.7	7.9	7.4	6.8	7.5	4.6	¥.	0.27	0.16	0.48	0,56
Avg daily gain, kg	0.09	0.20	0.18	91.0	0.19	0.25	9.	0.24	0.13	0.54	0.50
Avg daily feed, kg	0.17	0.24	0.25	0.22	0.23	0.32	0.03	0.20	0.07	0.19	0.51
Gain/food	0.52	0.83	0.68	69.0	0.77	08.0	0	0.41	0.24	0.68	0.56

l Standard error of the mean.

Hematological data, trial I. Table 5.

Protein source		Casein			Soy			Sign	ificanc	Significance (P value)	ue)
iron level, ppm	45	88	152	73	137	189	‡SE¹	Prot.	Iron	Repl. P	Repl. Prot.xiron
Hematocrit, % Initial Final	26.9 20.8	28.7 29.0aa	25.0 33.0 ^{aa} ,	25.0 31.3 33.0 ^{aa, b} 26.3a a	27.0 29.3aa	26.9 34.4 ^{bb} ,dl	1.86 d1.53	0.33	0.26	0.11	0.30
Hemoglobin, g/100 ml blood Initial Final	blood 7.3 5.4	8.3 8.4a	6.7 9.1aa	8.7	7.8 8.3a	7.5 9.6 ^{aa}	0.60	0.32	0.23	0.23	0.30
Mean corpuscular hemoglobin Initial 27.1 Final	27.1 27.1 26.1	concentra 29.2 28.8	ation, % 26.7 27.6	27.7 28.3	28.8	27.8	0.76	0.50	0.07	0.21	0.62
Erythrocytes, 10 ⁶ /mm ³ Initial Final	4.01 6.08	4.67	3.72 6.93	4.72 6.73	3.74 6.26	4.44	0.50	0.50	0.66	0.06	0.17
Mean corpuscular volume, cubic microns Initial 71.9 61.3 Final 34.1 40.2	ume, cub 71.9 34.1	ic micror 61.3 40.2	78.1 48.3ª	74.0 39.2	79.6 47.1ª	61.1 56.7cc	11.86 3.52	0.91	0.96	0.46 0.92	0.35
Reticulocytes, % of Initial Final	% of erythrocytes 2.5 2 2.5 1	ytes 2.7 1.4	3.1	2.2	ى 4	3.6	0.58	0.54 0.28	0.25	0.04	09.0
Standard error of the mean.	the mean										

a Significantly greater than least value (P<0.05); aa (P<0.01).
b Significantly greater than least two values (P<0.05); bb (P<0.01).
c Significantly greater than least three values (P<0.05); cc (P<0.01).
d Significantly greater than least four values (P<0.05); dd (P<0.01).

Differences in mean corpuscular hemoglobin concentration and erythrocyte counts between treatment means were not significantly different. These values were similar to those obtained by Ullrey et al. (1960a). Mean corpuscular volume increased significantly (P<0.001) with increasing iron levels on both protein treatments. Furthermore, the values for pigs receiving the soy diets were significantly (P<0.03) greater than those of pigs receiving casein. Differences in reticulocyte counts were not significant, although for each treatment, final values were lower than initial values.

Serum iron values and other related parameters are shown in table 6. Regardless of the protein source, serum iron values increased with increasing levels of supplemental iron (P<0.001). However, there were no significant differences found between treatment means with reference to total and unbound iron-binding capacity. Transferrin saturation decreased with decreasing dietary iron (P<0.001). Consequently, the more anemic animals had the lowest transferrin saturation.

Results of the serum protein analyses are presented in table 7. Increasing dietary iron levels resulted in increasing α -globulin levels (P<0.05).

The balance data from trial I are shown in table 8 and figure I. Chemical analysis of the water used in the trial indicated the presence of no measurable amounts of iron. Consequently water consumption data were not included in the table. Significant differences were observed in food intake. This was a consequence of the extremely low intake of the pigs receiving the 45 ppm casein diet. Differences in the daily iron intake were also significant (P<0.001) due to the higher amounts

Serum iron, total and unbound iron-binding capacity and transferrin saturation, trial I. Table 6.

Protein source	O	Casein			Soy			Sign	nificanc	Significance (P value)	ue)
Iron level, ppm	45	88	152	73	137	189	±SE l	Prot.	Iron	Repl. P	Repl. Prot.xiron
Serum iron, mcg/100 ml serum	serum 147	061	144	133	74	155	5.34	0.31	0.13	0.07	0,34
Final	6 =	155	195bb	127	155	q6/1	13.59	0.82	0.0	0.29	99.0
TIBC, mcg/100 ml serum	19 8	171	247	224	509	292	28.51	0.89	0.16	0.03	0.17
Final	213	219	261	192	228	237	20.08	0.49	0.10	0.49	0.68
UIBC, mcg/100 ml serum Initial	15	18	103	6	55	137	53,34	0.62	0.48	0.31	0,60
Final	94	99	99	65	73	29	11.56	0.31	0.36	0.73	0.32
Transferrin saturation, % Initial Final	<i>S</i> O	71.1	58.7 74.9 ^{aa}	59.0 66.8	74.0 68.9ª	58.7 75.0ªª	5.80 4.06	0.39	0.0	0.16	0.27

T Standard error of the mean. a Significantly greater than least value (P<0.05); aa (P<0.01). b Significantly greater than least two values (P<0.05); bb (P<0.01).

Table 7. Serum protein analyses, trial 1.

Protein source Iron level, ppm	45	Casein 88	152	73	Soy 137	189	±SE!	Sign Prot.	ificance	Significance (P value) ot. Iron Repl. Prot	(P value) Repl. Prot.xiron
Total serum protein, g/100 ml serum Initial 6.7 6.4 Final 6.9 7.0	g/100 ml 6.7 6.9	serum 6.4 7.0	6.8 7.3	6.6	6. 7 6.2	6.2 6.4	0.28 0.59	0.67	0.85 0.85	0.22	0.27 0.68
Serum albumin, % of total serum prote Initial 32.8 38.0 Final 42.4 46.5	total ser 32.8 42.4	um prote 38.0 46.5	ein 35.2 40.4	32.2 48.7	37.7 50.0	8.4. 8.4.	1.94 3.94	0.78	0.05	0.63	0.99 0.92
Serum α-globulin, % of total serum produitial 30.3 27.2 Final 27.0 50.2	of total 30.3 27.0	serum pr 27.2 30.2	27.8 32.1	30.4 29.5	28.4 27.3	32.5 33.1 ^b	1.49	0.12	0.19	0.32	0.30
Serum 8-globulin, % of total serum protein Initial 13.8 14.5 14.6 Final 14.2 13.4 12.7	of total 13.8 14.2	serum pr 14.5 13.4	rotein 14.6 12.7	11.8	12.4	13.9	0.78	0.0 0.0	0.44	0.42	0.75
Serum Y-globulin, % of total serum protein Initial 23.1 20.9 24.3 Final 9.6 9.9 14.1	of total 23.1 9.6	serum pr 20.9 9.9	24.3 14.1	21.2	22.3	18.1	2.13	0.22	0.90	0.36	0.23

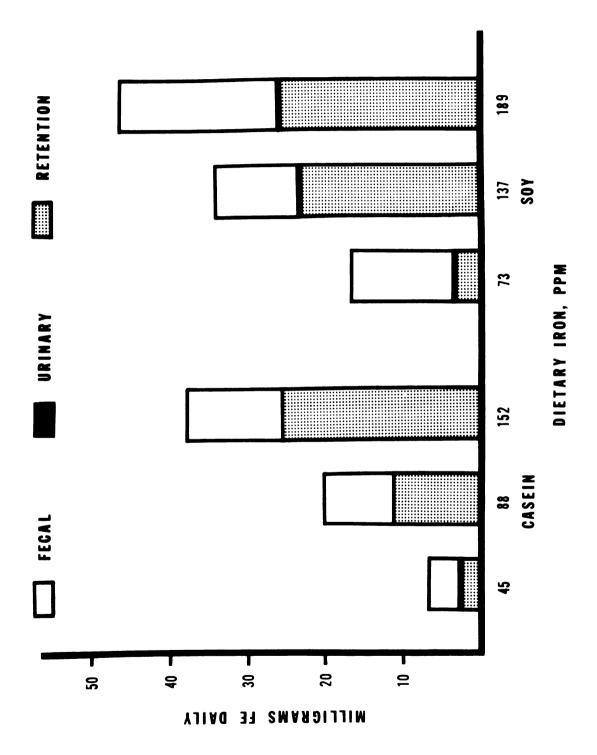
I Standard error of the mean. b Significantly greater than least two values (P<0.05).

Balance data, trial 1. Table 8.

Protein source		Casein) So			710010		
Iron level, ppm	45	88	152	73	137	189	±SE1	Prot.	O)	Prot. Iron Prot.xiron
Daily food intake, g ²	150	22999	250aa	228a a	250aa	24299	9.05	0.01	0.0	0.01
Fe balance, daily										
Fe intake, mg	6. 8	20.198,	20.1aa,b38.0cc,d16.7aa	16.799	34.3cc	46.3ee	0.87	0.0	%	0.05
Fecal Fe, mg	4.2	8.9	12.6	12.9	9.01	20.30	2,44	0.05	0.05	, s
Urinary Fe, mg	0.4	- 0	4.0	0.4	4.0	0.4	0.09	s.s.	s.s.	N.S.
Fe retention, mg	2.2	- -	25.3bb,c 3.4	3.4	23,3bb,	23.3bb,c25.6bb,c 2.76	: 2.76	N.S.	0.00	S. S.
Fe retention, %	33	¥	6 7 9	20	68 a	55	12.13	N.S.	0.05	S. N
Standard person of the										•

2 Two pigs per treatment.

2 Two pigs per treatment.


a Significantly greater than least value (P<0.05); aa (P<0.01).

b Significantly greater than least two values (P<0.05); bb (P<0.01).

b Significantly greater than least three values (P<0.05); cc (P<0.01). Standard error of the mean. **9 9 0**

dd (P<0.01). **69 (P<0.01).** Significantly greater than least three values (P<0.05); Significantly greater than least four values (P<0.05); Significantly greater than all other values (P<0.05); equipments

cc (P<0.01).

Effect of dietary protein source and iron level on iron balance, trial 1. Figure 1.

of iron in the three soy protein diets. Fecal iron increased with increasing iron levels (P<0.05). Also, fecal iron output was greater (P<0.05) on the soy diets than on the casein.

The retention data are difficult to interpret. In general, anemic animals retain more iron, on a percentage basis, than normal animals. In this instance, however, pigs receiving the basal soy and casein diets retained less iron on a percentage basis than pigs on the other four treatments. Hendricks (1967) carried out iron balance studies with baby pigs receiving 40% of either casein or soy as the protein source. Percent iron retention on the casein diet which contained 106 ppm of iron, was 35%. Retention on the soy diet (194 ppm of iron) was 50%. These values are somewhat different from those given in table 8. Because of the unequal iron levels in the different diets it is difficult to make a definite statement in relation to the effect of the protein source on iron absorption and utilization.

Some conclusions may be drawn from data of pigs on the 152 ppm casein and the 137 ppm soy diets, as these two diets approached equivalence in terms of iron content. No significant differences were observed in final weight or hematocrit, hemoglobin and erythrocyte values. Also the iron retention percentages for the two treatments were almost identical. Consequently it can be stated that under the conditions of the trial, at the level of iron supplementation mentioned above, the protein source had no significant effect on iron absorption and utilization.

Trial 2

Pig performance data are shown in table 9. Average daily gain increased with increasing levels of dietary iron (P<0.05) and

Table 9. Summarized pig performance data, trial 2.

Protein source		Casein			Soy			Sign	Significance (P value)	e (P va	lue)
iron level, ppm	101	148	189	95	147	189	±SE l	Prot.	Iron	Repl.	Prot. Iron Repl. Prot.xiron
Initial wt., kg	2.7	2.7	2.6	2.7	2.7	2.7	₩.0	0.92	66.0	0.46	66.0
Final wt., kg	7.6	7.6	6.6	8.9	7.6	10.4	1.02	0.15	0.19	0.72	0.70
Avg daily gain, kg	0.14	0.14	0.21b	0.18	0.20	0.23bb	0.02	90.0	0.05	0.67	0.73
Avg daily feed, kg	0.23	0.23	0.27	0.27	0.29	0,31	0.03	0.09	0.47	0.47	0.86
Gain/good	09.0	09*0	0.77 ^b	99*0	0.70	0.77 ^b	0.0	0.12	0.01	0.43	0,50

I Standard error of the mean. $^{\rm b}$ Significantly greater than least 2 values (P<0.05); $^{\rm bb}$ (P<0.01).

differences between protein source approached significance (P<0.06). This growth difference was a consequence of higher food intake by pigs on the soy diets. This difference approached significance (P<0.09). It is possible that the higher intake of the soy diets was related to the palatability and physical texture of the two diets. The case in diets tended to adhere to the feeder and the sides of the pens more readily than the soy diets. Thus the more adhesive nature of the case in diets may have been a factor in reducing the intake of these diets. Feed efficiency also increased with increasing iron levels (P<0.01).

As can be seen from table 10, final hematocrit and hemoglobin values were significantly different and reflected changes in the iron content of the diets. Pigs on the soy diets had significantly higher hematocrit and hemoglobin values (P<0.01) than pigs receiving the case in diets. The final hemoglobin values in the second trial were somewhat lower than those observed in the first trial, even though the iron levels of the three casein diets had been increased. These low final values may have been due in part to the fact that the initial hematocrit and hemoglobin values of pigs on trial 2 were lower than those of pigs on trial I, and consequently these pigs were more anemic and would require more iron to replete their tissues. Furthermore, in both trials, supplemental iron was provided as $FeSO_4.2H_2O$. Both Matrone et al. (1960 and Ullrey et al. (1960a) used $FeSO_4.7H_2O$ to provide supplemental iron. These workers also fed a liquid diet, whereas a solid diet was used in this study. It is possible that the iron supplied as FeSO4.2H2O was in a less available form as compared to FeSO4.7H2O. Consequently, less iron would be available for absorption and utilization.

Hematological data, trial 2. Table 10.

Protein source		Casein			Soy			Sign	nificanc	Significance (P value)	(en
iron level, ppm	101	148	189	95	147	189	±SE l	Prot.	Iron	Repl. P	Prot.xlron
Hematocrit, % Initial	25.3	23.9	24.7	27.9	24.9	24.4	- 68 1	0.44	0.37	0.0	0.71
1 na 1	0.22	71.1	25.5	7.67	9*67	55./26	ري د	0.0	0.0	0.28	<u>8</u>
Hemoglobin, g/100 mi blood Initial 7.4	1 blood 7.4	7.1	7.6	8.2	7.4	6.9	0.53	0.73	0.55	0.02	0.36
Final	5.2	4.9	7.19	5.7	6.5	9,988	0.65	0.01	0.00	0.22	0.24
Mean corpuscular hemoglobin concentration,	moglobin	concentr	ation, %		((1		((
nitial	29.1	29.6	ਨ ਲ	29.4	29.7	28.3	0.55	0.12	0.70	0.72	0.03
Final	23.5	23.4	28. Ib	24.4	25.5	29.2 ^c	0.91	0.08	%	0.31	0.80
Erythrocytes, 106/mm ³	m ³										
	4.42	4.29	4.60	4.76	4.70	4.53	0.28	0.35	0.95	0.20	0.67
Final	5,38	5.31	5.45	5.90	6.63 ^c	6.74 ^c	0.35	%	0.43	0.55	0.45
Mean corpuscular volume, cubic micron	lume, cub	ic micro	ns Su								
Initial	57.4	55.6	53.9	88. 8.8	53.3	53.4	3,58	0.87	0.44	0.42	0.87
Final	40.8	39.7	46.6	39.2	38.9	50°7d	2.67	0.79	0.0	0.0	0.52
Reticulocytes, % of erythrocytes	erythroc	ytes									
Initial	8.	3.0	2.3	3.0	2.3	3.0	0.57	0.41	0.85	o. 8	0.26
Final	3.8 ^b	2.2	3.0	4.00	2.0	6.	0.52	0.37	0.0	0.0	0.43

I Standard error of the mean.

a Significantly greater than least value (P<0.05).

b Significantly greater than least two values (P<0.05).

c Significantly greater than least three values (P<0.05).

d Significantly greater than least four values (P<0.05).

e Significantly greater than all other values (P<0.05); ee (P<0.01).

Mean corpuscular hemoglobin concentration increased with increasing levels of dietary iron (P<0.001). Erythrocyte counts from pigs receiving soy diets were significantly (P<0.002) greater than those from pigs receiving casein diets. Mean corpuscular volume increased with increasing dietary iron levels (P<0.01), whereas reticulocyte counts decreased with increasing dietary iron levels (P<0.01).

Serum iron values and other related parameters are shown in table II. Serum iron values increased with increasing levels of dietary iron (P<0.01). Total iron-binding capacity also increased with increasing dietary iron levels (P<0.002). Anemic animals usually have higher TIBC values than normal animals (Ullrey et al., 1960a). In this instance, the reverse occurred. As in trial I, percent transferrin saturation decreased with decreasing dietary iron levels, although differences were not significant. The transferrin saturation values were smaller than those in trial I, again a reflection of the low iron status of the pigs in trial 2.

Data from the serum protein analyses are presented in table 12. Serum albumin levels increased with increasing dietary iron level (P<0.02) whereas serum α -globulin levels decreased (P<0.02). Although there was no significant effect of iron level on β -globulin levels, there was a negative linear effect of dietary iron on the transferrincontaining β -globulin fraction in both trials.

Data from the balance trial are shown in table 13 and figure 2. The daily iron intake reflected the different iron content of the diets (P<0.001). Fecal iron levels increased with increasing dietary iron levels (P<0.05) and fecal iron output was greater from pigs receiving the casein diets. Iron retention increased with

Serum iron, total and unbound iron-binding capacity and transferrin saturation, trial 2. Table II.

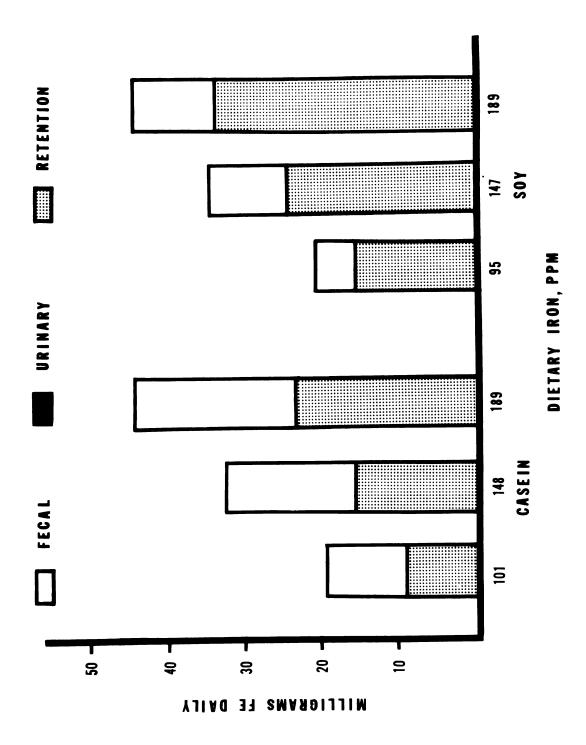
Protein source		Casein			Soy		•	Sign	nificanc	Significance (P value)	ne)
Iron level, ppm	101	148	189	95	147	681	+SE	Prot.	Lron	Repl. P	Repl. Prot.xiron
Serum iron, mcg/100 ml serum Initial 61	00 ml seru 61	75 75	45	56	62 98	80	13.47	0.63	0.76	0.20	0.20
TIBC, mcg/100 ml serum	Serum		5		2	1			•		
Initial Final	191 174	238 198	210	200 194	195	226 319 ^{bb}	226 23.54 319 ^{bb} , d30.86	0.76	0.00	0.48	0.41
UIBC, mcg/100 ml serum	serum 130	163	991	145	133	147	26.50	0.61	0.78	0.13	0.68
Final	80	6 0 1	102	97	77	107	15.00	0.78	0.56	0.19	0.27
Transferrin saturation, % Initial 35.9	ation, % 35.9	9.18	20.7	31.9	31.2	37.1	5.80	0.56	0.83	0.17	0.42
Final	24.6	46.0	59.3	50.4	56.4	65.9	4.06	0.40	0.16	0.68	0.48

I Standard error of the mean. b Significantly greater than least value (P<0.05); ^{bb} (P<0.01). d Significantly greater than least four values (P<0.05).

Serum protein analyses, trial 2. Table 12.

Protein source		Casein			Soy			Sign	n ifi canc	Significance (P value)	e)
Iron level, ppm	101	148	189	95	147	189	±SE¹	Prot.	ron	Repl. P	Prot.xlron
Total serum protein	g/100 ml	serum		,						1	
	6.7	0 0,1	6.7	6°9	4. 4	6.7	0.30	0. 4.0	0°.7	0,88	0,30
	•	0.0	0	0.0	٠ .	0.0	<u>•</u>	0.83	8	0.28	ᡮ •
Serum albumin, % of total serum prote	total ser	rum prot	ein								
Initial	30.8	30.1	27.3	29.5	30.2	28.7	2.29	0.97	0.57	0.67	0.84
Final	42.3	42.8	46.9	41.6	41.9	46.6	1.65	0.65	0.02	0.43	0.98
Serum & -globulin, %	of total	serum p									
Initial 30.7a 29.7	30.7a	29.7	31.2ª	27.4	28.5	30.6ª	0.90	9. 8	0.10	o. 12	0.30
Final	32,39	30.7		31.5	33.1b	28.8	1.22	0.50	0.02	0.47	0.46
Serum B-globulin, %	of total	Serum p	rotein								
Initial 12.4 12.5	12.4	12.5	12.9	13.0	12.3	12.4	0.67	0.00	0.86	0.83	69.0
Final	14.3	13.8	12.9	13.8	13.5	11.7	0.76	o. ¥	0.08	o. 74	0.83
Serum γ -globulin, % of total serum pr	of total	serum p	rotein								
Initial	26.0	27.8	28.7	29.1	29.1	28.2	8	0.45	0.88	0.68	0.70
Final	11.2	12.7	12.1	13.1	5.	12.9	66.0	0.54	0.92	0.72	0.31
neom off to morne brehoets	4+										

I Standard error of the mean. a Significantly greater than least value (P<0.05). b Significantly greater than least two values (P<0.05).


Balance data, trial 2. Table 13.

Protein source		Casein			Soy			Signif	icance (Significance (P value)
iron level, ppm	101	148	189	95	147	189	±SE l	Prot.		Iron Prot.xIron
Daily food intake, g ²	961	220	236	220	235	235	17.84	s.s.	N.S.	×.S.
Fe balance, daily										
Fe intake, mg	19.7	32.5 ^{bb}	44.6cc,d20.8	d20.8	34.5bb	44.2 ^{dd}	1.84	N.S.	%.0	s.s.
Fecal Fe, mg	0.01	16.79	21.2aa,d 5.5	d 5.5	10.5	10.2	2.37	0.05	0.05	s.s.
Urinary Fe, mg	0.1	0.0	0.0	0.0	0.0	0.0	0.03	N.S.	N.S.	s.s.
Fe retention, mg	9.6	15.79	23.3aa,c15.2a	c15.2a	23.9bb,	23.9bb, c33.9ee	1.51	0.0	%.0	N.S.
Fe retention, %	49	48	52	73 ^b	69	77 ^c	5.89	0.01	s.s.	N.S.

Standard error of the mean.

Significantly greater than least value (P<0.05); aa (P<0.01).
Significantly greater than least two values (P<0.05); bb (P<0.01).
Significantly greater than least three values (P<0.05); cc (P<0.01).
Significantly greater than least four values (P<0.05); dd (P<0.01).
Significantly greater than all other values (P<0.05); ee (P<0.01). Standard error of the me 2 Two pigs per treatment. a Significantly greater th b Significantly greater th

OOO

Effect of dietary protein source and iron level on iron balance, trial 2. Figure 2.

increasing dietary iron levels (P<0.001) and was also significantly greater in pigs receiving the soy diets. On a percentage basis, iron retention was significantly greater (P<0.001) for pigs receiving the soy diets. The percentage retention figures for pigs receiving the casein diets seem rather low especially in view of the anemic nature of these pigs, and an explanation is not readily forthcoming. Hendricks (1967) noted that pigs receiving a 40% casein diet containing 106 ppm of iron retained 35% of their iron intake, whereas pigs receiving a 40% soy diet containing 194 ppm of iron retained 50% of their iron intake. In this instance also, pigs receiving the higher level of iron were retaining more iron on a percentage basis. Hendricks further stated that: "the rapidly growing baby pig adapts well to limited dietary alterations, therefore, single short term mineral balance trials are not always reliable as a measure of mineral utilization during an entire experimental period".

As judged by growth and balance data, hematocrit, hemoglobin and erythrocyte values, the soy protein diets proved superior to the casein diets. Certainly it would appear from the data presented that the iron present in the soy protein is at least equally, if not more, available than that in the casein. The higher values on the soy diets may have been due, in part, to the increased food intake and consequently increased iron intake of these pigs.

Davis et al. (1968) concluded that for chicks, the iron in soybean protein was as available as that in casein. Fritz (1969) stated that the iron in isolated soy protein was as available as that in ferrous gluconate, ferrous fumarate and ferric ammonium citrate for hemoglobin

regeneration in rats and chickens. From the data presented, it would appear that for the baby pig, the iron in isolated soy is more available than that in casein.

V. CONCLUSIONS

Under the experimental conditions employed, the following conclusions can be made.

- 1. As judged by balance data, hemoglobin, hematocrit, erythrocyte and serum iron levels, the iron in isolated soy protein was more available than that in high protein casein. Consequently, the iron requirement of the baby pig fed soy protein diets is less than that of baby pigs fed casein diets.
- 2. The performance of pigs receiving the soy diets was significantly superior to that of pigs receiving the casein diets. However, by hematological standards, most of the pigs were anemic.
- 3. In view of the low final hemoglobin and hematocrit values observed in trial 2, some doubt must be cast as to the efficacy of FeSO₄.2H₂O as a source of dietary supplemental iron for baby pigs fed synthetic diets.

VI. SUMMARY

Two trials involving a total of 48 baby pigs, were conducted to study the effect of source of protein, isolated soy or high protein casein, on iron utilization by the baby pig. Three levels of supplemental iron were used: 0, 50 and 100 ppm.

Trial I

Twenty-four baby pigs were assigned, 4 per lot, to the following dietary treatments: basal casein, basal isolated soy protein, basal casein plus 50 ppm supplemental iron, basal isolated soy protein plus 50 ppm supplemental iron, basal casein plus 100 ppm supplemental iron, or basal isolated soy protein plus 100 ppm supplemental iron. It was intended that the total iron content of the soy and casein diets should have been equal at each of the three levels of iron supplementation. However, it was found that the analytical iron content of the isolated soy protein was greater than the assumed value. Consequently, the total iron content of the three soy diets was greater than that of the respective casein diets. In view of this, it was not possible to make a valid comparison of the effect of the protein source on iron utilization by the baby pig.

Trial 2

Twenty-four baby pigs were again assigned, 4 pigs per lot, to treatments as in the first trial. In trial 2, however, the supplemental iron levels of the casein diets were increased so that the total iron content of the casein and soy diets was equal at each level of

iron supplementation. As analysed the iron content of the casein diets was IOI, I48 and I89 ppm and for the soy diets 95, I47 and I89 ppm. As judged by growth and balance data, hematocrit, hemoglobin and erythrocyte values, the iron in the soy diets was more available than that in high protein casein diets. Consequently, under the conditions of the experiment, it appears that the iron requirement of the baby pig fed isolated soy protein is less than that of pigs receiving casein as the protein source.

BIBLIOGRAPHY

- Agricultural Research Council. 1967. The Nutrient Requirements of Farm Livestock, No. 3. Pigs. Technical Reviews and Summaries. London.
- Ammerman, C. B., T. F. Standish, E. C. Harland, S. M. Miller and G. E. Combs. 1969. Iron sources for weanling pigs. J. Anim. Sci. 29:129. (Abstr.).
- Anderson, H. D., K. B. McDonough and C. A. Elvehjem. 1940. Relation of the dietary calcium:phosphorus ratio to iron assimilation.
 J. Clin. Lab. Med. 25:464.
- Apte, S. V. and P. S. Venkatachalam. 1962. Iron absorption in human volunteers using high phytate cereal diets. Ind. J. Med. Res. 50:516.
- Apte, S. V. and P. S. Venkatachalam. 1964. Influence of dietary calcium on the absorption of iron. Ind. J. Med. Res. 52:213.
- Austioni, M. E. and D. M. Greenberg. 1940. Studies in iron metabolism with the aid of its artificial radioactive isotope. The absorption, excretion and distribution of iron in the rat on normal and iron deficient diets. J. Biol. Chem. 134:27.
- Bergheim, O. and E. R. Kirsch. 1949. Reduction of iron in the human stomach. J. Biol. Chem. 177:591.
- Bhattacharya, R. K. and G. C. Esh. 1964. Influence of protein and its breakdown products on iron absorption in partially iron depleted rats. Ind. J. Biochem. 1:142.
- Bhattacharya, R. K., G. C. Esh and U. P. Basu. 1964. Metabolic relationship between dietary protein and iron. 1. Influence of different proteins on iron storage in rats. Ind. J. Biochem. 1:49.
- Bliss, C. I. 1967. Statistics in Biology. Vol. I. McGraw-Hill Book Co. New York.
- Blumberg, H. and A. Arnold. 1947. The comparative biological availabilities of ferrous sulfate iron and ferric orthophosphate iron in enriched bread. J. Nutr. 34:373.
- Boddy, K. and G. Will. 1967. Succinic acid and iron absorption. Scot. Med. J. 12:183.

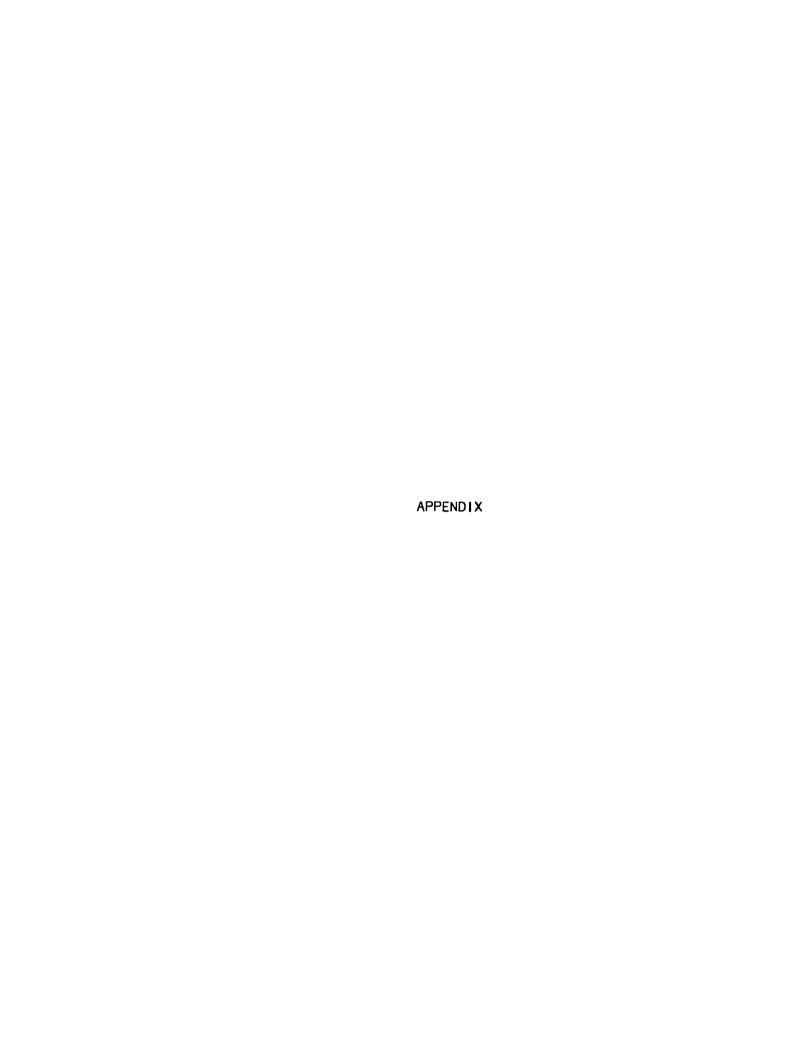
- Borsook, H. E., E. H. Fischer and G. Keighley. 1957. Factors affecting protein synthesis in vitro in rabbit reticulocytes. J. Biol. Chem. 229:1059.
- Bunn, C. R. and G. Matrone. 1966. <u>In vivo</u> interactions of cadmium, copper, zinc and iron in the mouse and rat. J. Nutr. 90:395.
- Buttner, W. and J. C. Muhler. 1959. Effect of dietary iron on phosphate metabolism. Proc. Soc. Exp. Biol. Med. 100:440.
- Cartwright, G. E. and M. M. Wintrobe. 1948. Studies on free erythrocyte protoporphyrin, plasma copper and plasma iron in normal and pyridoxine-deficient swine. J. Biol. Chem. 172:557.
- Cartwright, G. E., C. J. Gubler, J. A. Bush and M. M. Wintrobe.
 1956. Studies on copper metabolism. XVII. Further observations on the anemia of copper deficiency in swine. Blood II:143.
- Cassidy, J. and J. K. Eva. 1958. Relationship between the copper and iron concentrations in pigs livers. Proc. Nutr. Soc. 17:xxxi.
- Chapman, D. G. and J. A. Campbell. 1957a. Effect of bone meal on the utilization of iron by anemic rats. Brit. J. Nutr. 11:117.
- Chapman, D. G. and J. A. Campbell. 1957b. Effect of calcium and phosphorus salts on the utilization of iron by anemic rats. Brit. J. Nutr. 11:127.
- Chase, M. S., C. J. Gubler, G. E. Cartwright and M. M. Wintrobe. 1952. Studies on copper metabolism. IV. The influence of copper on the absorption of iron. J. Biol. Chem. 199:757.
- Cowan, J. W., M. Esfahani, J. P. Salji and S. A. Azzam. 1966. Effect of phytate on iron absorption. J. Nutr. 90:423.
- Cox, D. M. and O. M. Hale. 1962. Liver iron depletion without copper loss in swine fed excess zinc. J. Nutr. 77:225.
- Crosby, W. H., J. I. Munn and F. W. Furth. 1954. Standardizing a method for clinical hemoglobinometry. U. S. Armed Forces Med. J. 5:693.
- Davis, P. N., L. C. Norris and F. H. Kratzer. 1962a. Interference of soybean proteins with the utilization of trace minerals.
 J. Nutr. 77:217.
- Davis, P. N., L. C. Norris and F. H. Kratzer. 1962b. Iron deficiency studies in chicks using treated isolated soybean protein diets. J. Nutr. 78:445.
- Davis, P. N., L. C. Norris and F. H. Kratzer. 1968. Iron utilization and metabolism in the chick. J. Nutr. 94:407.

- Day, P. L. and J. S. Dinning. 1956. Anemia in vitamin E-deficient monkeys. Fed. Proc. 15:548.
- De, H. N. and K. P. Basu. 1949. Mutual influence of minerals in metabolism. Ind. J. Med. Res. 37:213.
- Edwards, H. M. 1966. The effect of protein source in the diet on Zn⁶⁵ absorption and excretion by chickens. Poul. Sci. 45:421.
- Edwards, H. M. and K. W. Washburn. 1968. ⁵⁹Fe absorption by chickens. Poul. Sci. 47:337.
- Featherston, W. R., T. J. Pockat and J. Wallace. 1968. Radioactive iron absorption and retention by chicks fed different levels of dietary iron. Poul. Sci. 47:946.
- Fitch, C. D., W. E. Harville, J. S. Dinning and F. S. Porter. 1964. Iron deficiency in monkeys fed diets containing soybean protein. Proc. Soc. Exp. Biol. Med. 116:130.
- Foy, H., A Kondi and W. H. Austin. 1959. Effect of dietary phytate on absorption of radioactive ferric chloride. Nature 183:691.
- Freeman, S. and M. W. Burrill. 1945. Comparative effectiveness of various iron compounds in promoting iron retention and hemoglobin regeneration by anemic rats. J. Nutr. 30:293.
- Freeman, S. and A. C. Ivy. 1942. The influence of antacids upon iron retention by the anemic rat. Amer. J. Physiol. 137:706.
- Fritz, J. C. 1969. Availability of iron from sources used for food and feed enrichment. Fed. Proc. 28:692. (Abstr.).
- Fuhr, I. and H. Steenbock. 1943. The effect of dietary calcium, phosphorus and vitamin D on the utilization of iron. I. The effect of phytic acid on the availability of iron. J. Biol. Chem. 147:59.
- Greenberg, L. D. and J. F. Rhinehart. 1955. Serum iron levels in rhesus monkeys with chronic vitamin C deficiency. Proc. Soc. Exp. Biol. Med. 88:325.
- Greenberg, S. M., R. G. Tucker, A. E. Heming and J. K. Mathues. 1957.
 Iron absorption and metabolism. I. Interrelationship of ascorbic acid and vitamin E. J. Nutr. 63:19.
- Greenberger, N. J. and R. D. Ruppert. 1966. Inhibition of protein synthesis. A mechanism for the production of impaired iron absorption. Science 153:315.
- Greig, W. A. 1954. Anaemigenic and lipogenic actions of dietary calcium carbonate. Proc. Nutr. Soc. 13:iii.

- Greig, W. A. 1960. Calcium-iron relationships in fattening pigs. Vet Rec. 72:1149.
- Groen, J., W. A. Van Den Broek and H. Veldman. 1947. Absorption of iron compounds from the small intestine in the rat. Biochem. Biophys. Acta 1:315.
- Gubler, C. J., G. E. Cartwright and M. M. Wintrobe. 1949. The effect of pyridoxine deficiency on the absorption of iron by the rat. J. Biol. Chem. 178:989.
- Gubler, C. J., M. E. Lahey, M. S. Chase, G. E. Cartwright and M. M. Wintrobe. 1952. Studies on copper metabolism. 111. The metabolism of iron in copper-deficient swine. Blood 7:1075.
- Hahn, P. F., E. Jones, R. C. Lowe, G. R. Meneely and W. Peacock. 1943. The relative absorption and utilization of ferrous and ferric iron in anemia as determined with the radioactive isotope. Amer. J. Physiol. 143:191.
- Harmon, B. G., D. E. Becker and A. H. Jensen. 1967. Efficacy of ferric ammonium citrate in preventing anemia in young swine. J. Anim. Sci. 26:1051.
- Harmon, B. G., D. E. Hoge, A. H. Jensen, D. H. Baker and D. E. Becker. 1968. Efficacy of ferrous carbonate as a hematinic for swine. J. Anim. Sci. 28:1152.
- Harmon, B. G., D. E. Hodge, A. H. Jensen and D. H. Baker. 1969. Efficacy of ferrous carbonate as a hematinic for young swine. J. Anim. Sci. 29:707.
- Harrison, D. C. and E. Mellanby. 1942. Phytic acid and iron absorption. Lancet 242:595.
- Hart, E. B., C. A. Elvehjem, H. Steenbock, A. R. Kremmerer, G. Bohstedt and J. M. Fargo. 1930. A study of the anemia of young pigs and its prevention. J. Nutr. 2:277.
- Hartman, R. H., G. Matrone and G. H. Wise. 1955. Effect of high dietary manganese on hemoglobin formation. J. Nutr. 55:429.
- Helbock, H. J. and P. Saltman. 1967. The transport of iron by rat intestine. Biochem. Biophys. Acta 135:979.
- Herndon, J. F., E. G. Rice, R. G. Tucker, E. J. Van Loon and S. M. Greenberg. 1968. Iron absorption and metabolism. III. The enhancement of iron absorption in rats by D-sorbitol. J. Nutr. 64:615.
- Hopping, J. M. and W. S. Ruliffson. 1966. Role of citric and ascorbic acid in enteric iron absorption in rats. Amer. J. Physiol. 210:1316.

- Hughes, E. M. and R. L. Squibb. 1942. Vitamin B₆ (pyridoxine) in the nutrition of the pig. J. Anim. Sci. 1:320.
- Hunter, F. T., M. Grove-Rasmussen and L. Souter. 1950. Spectrophotometric method for quantitating hemoglobin in plasma or serum. Amer. J. Clin. Pathol. 20:429.
- Hussain, R. and V. N. Patwardhan. 1959. The influence of phytate on the absorption of iron. Ind. J. Med. Res. 47:676.
- Indovina, I. 1951. Utilization of intravenously injected radioactive colloidal iron in rabbits with myopathy of vitamin E deficiency.

 Amer. J. Physiol. 165:352.
- Kaufman, N., J. V. Klavins and T. D. Kinney. 1966. Methionine deficiency and iron retention in the rat. Brit. J. Nutr. 20:813.
- Kinnaman, K. E. 1966. The role of iron in the copper-zinc interrelationship in the rat. J. Nutr. 90:315.
- Kinney, T. D., D. M. Hegsted and C. A. Finch. 1949. The influence of diet on iron absorption. I. The pathology of iron excess. J. Exp. Med. 90:137.
- Kirch, E. R., O. Bergheim, J. Kleinberg and S. James. 1947. Reduction of iron by foods in artificial gastric digestion. J. Biol. Chem. 171:687.
- Klavins, J. V., T. D. Kinney and N. Kaufman. 1959. Iron absorption in rats fed a protein-free diet. Amer. J. Pathol. 35:690.
- Klavins, J. V., T. D. Kinney and N. Kaufman. 1962. The influence of dietary protein on iron absorption. Brit. J. Expt. Pathol. 43:172.
- Klavins, J. V., T. D. Kinney and N. Kaufman. 1963. Body iron levels and hematologic findings during excess methionine feeding. J. Nutr. 79:101.
- Kletzien, S. W. 1940. Iron metabolism. I. The role of calcium in iron assimilation. J. Nutr. 19:187.
- Kroe, D. J., N. Kaufman, T. D. Kinney and J. V. Klavins. 1963a. The effect of histidine on iron absorption. Fed. Proc. 23:511(Abstr.).
- Kroe, D. J., T. D. Kinney, N. Kaufman and J. V. Klavins. 1963b. The influence of amino acids on iron absorption. Blood 21:546.
- Kroe, D. J., N. Kaufman, J. V. Klavins and T. D. Kinney. 1966.
 Interrelation of amino acids and pH on intestinal iron absorption.
 Amer. J. Physiol. 211:414.


- Lahey, M. E., C. J. Gubler, M. S. Chase, G. E. Cartwright and M. M. Wintrobe. 1952. Studies on copper metabolism. II. Hematological manifestations of copper deficiency in swine. Blood 7:1053.
- Lottrup, M. C. 1934. Treatment of anemia in children. Amer. J. Dis. Child 47:1.
- Magee, A. C. and G. Matrone. 1960. Studies on growth, copper metabolism and iron metabolism of rats fed high levels of zinc. J. Nutr. 72:233.
- Matrone, G., R. H. Hartman and A. J. Clawson. 1959. Studies of a manganese-iron antagonism in the nutrition of rabbits and baby pigs. J. Nutr. 67:309.
- Matrone, G., E. L. Thomason, Jr. and C. R. Bunn. 1960. Requirement and utilization of iron by the baby pig. J. Nutr. 72:459.
- McCance, R. A., C. N. Edgecome and E. M. Widdowson. 1943. Phytic acid and iron absorption. Lancet 245:126.
- McGovern, J. J., A. R. Jones and A. G. Steinberg. 1955. The hematocrit of capillary blood. New England J. Med. 253:308.
- Mellander, O. 1955. Protein quality. Nutr. Rev. 13:161.
- Miller, E. R., D. A. Schmidt, J. A. Hoefer and R. W. Luecke. 1957. The pyridoxine requirement of the baby pig. J. Nutr. 62:407.
- Miller, E. R., D. E. Ullrey, C. L. Zutaut, J. A. Hoefer and R. W. Luecke. 1965. Comparisons of casein and soy proteins upon mineral balance and vitamin D₂ requirement of the baby pig. J. Nutr. 85:347.
- Miller, G. J. 1959. Protein determination for large numbers of samples. Anal. Chem. 31:964.
- Moore, C. V. 1955. The importance of nutritional factors in the pathogenesis of iron-deficiency anemia. Amer. J. Clin. Nutr. 3:3.
- Moore, C. V., V. Minnach and R. Dubach. 1943. Absorption and therapeutic efficacy of iron phytate. J. Amer. Diet. Ass. 19:841.
- Moore, C. V., R. Dubach, V. Minnish and H. K. Roberts. 1944.
 Absorption of ferrous and ferric radioactive iron by human subjects and by dogs. J. Clin. Invest. 23:755.
- Morrison, A. B. and H. P. Sarett. 1958. Studies on zinc deficiency in the chick. J. Nutr. 65:267.
- Nakamura, F. I. and H. H. Mitchell. 1943. The utilization for hemoglobin regeneration of the iron in salts used in the enrichment of flour and bread. J. Nutr. 25:39.

- National Research Council. 1968. Food and Nutrition Board. Recommended dietary allowances. National Academy of Sciences. Washington, D. C.
- Neal, R. A. and W. N. Pearson. 1962. Effect of pyridoxine deficiency on iron absorption in the rat. J. Nutr. 78:215.
- Neumann, A. L., J. B. Thiersch, J. L. Krider, M. F. James and B. C. Johnson. 1950. Requirement of the baby pig for vitamin B₁₂ fed as a concentrate. J. Anim. Sci. 9:83.
- Oberleas, D., M. E. Muhrer and B. L. O'Dell. 1962. Effect of phytic acid on zinc availability and parakeratosis in swine. J. Anim. Sci. 21:57.
- O'Dell, B. L. and J. E. Savage. 1957. Symptoms of zinc deficiency in the chick. Fed. Proc. 16:394.
- O'Dell, B. L. and J. E. Savage. 1960. Effect of phytic acid on zinc availability. Proc. Soc. Exp. Biol. Med. 103:304.
- O'Donavan, P. B., R. A. Pickett, M. P. Plumlee and W. M. Beeson. 1963. Iron toxicity in the young pig. J. Anim. Sci. 22:1075.
- Olson, A. D. and W. B. Hamlin. 1969. A new method for serum iron and total iron-binding capacity by atomic absorption spectrophotometry. Clin. Chem. 15:438.
- Pearson, W. N., M. Reich, H. Frank and L. Salamat. 1967. Effect of dietary iron level on gut iron levels and iron absorption in the rat. J. Nutr. 92:53.
- Pickett, R. A., M. P. Plumlee, W. H. Smith and W. M. Beeson. Oral iron requirement of the early weaned pig. J. Anim. Sci. 19:1284. (Abstr.).
- Pickett, R. A., M. P. Plumlee and W. M. Beeson. 1961. Availability of dietary iron in different compounds for young pigs. J. Anim. Sci. 20:946. (Abstr.).
- Pirzio-Biroli, G., T. H. Bothwell and C. A. Finch. 1958. Iron absorption. II. The absorption of radioiron administered with a standard meal in man. J. Clin. Lab. Med. 51:37.
- Pollack, S., R. M. Kaufman and W. H. Crosby. 1964. Iron absorption. The effect of an iron deficient diet. Science 144:1015.
- Richards, M. B. and W. A. Greig. 1952. The effects of additions of calcium carbonate to the diet of breeding mice. I. Effects on reproduction and on the heart and thymus weights of the weanlings. Brit. J. Nutr. 6:265.
- Ritchie, H. D., R. W. Luecke, B. V. Baltzer, E. R. Miller, D. E. Ullrey and J. A. Hoefer. 1963. Copper and zinc interrelationships in the pig. J. Nutr. 79:117.

- Rummel, W. and B. Candon. 1956. How is iron absorbed? A new concept and a new chelate. Int. Rec. Med. Gen. Pract. Clin. 169:783.
- Sathe, V. and K. Krishnamurthy. 1953. Phytic acid and absorption of iron. Ind. J. Med. Res. 41:453.
- Schultze, M. A., C. A. Elvehjem and E. B. Hart. 1936. Studies on the copper content of the blood in nutritional anemia. J. Biol. Chem. 116:107.
- Scott, M. L., F. W. Hill, L. C. Norris, D. C. Dobson and T. S. Nelson. 1955. Studies on vitamin E in poultry nutrition. J. Nutr. 56:387.
- Sharpe, L. M., M. C. Peacock, R. Cooke and R. S. Harris. 1950. The effect of phytate and other food factors on iron absorption. J. Nutr. 41:433.
- Shen, S. C., P. Y. C. Wong and M. Oguro. 1964. Experimental production of pyridoxine deficiency anemia in rats. Blood 23:679.
- Smith, W. H., M. P. Plumlee and W. M. Beeson. 1959. Effect of source of protein on the zinc requirement of the growing pig. J. Anim. Sci. 18:1513. (Abstr.).
- Stewart, W. B. 1953. Some aspects of the metabolism of iron. Bull. New York Acad. Med. 28:818.
- Street, H. R. 1943. A study of the availability of the iron in enriched bread. J. Nutr. 26:187.
- Suttle, N. F. and C. F. Mills. 1964. Interactions between copper, zinc and iron and their relationship to copper toxicity in the pig. Proc. Nutr. Soc. 23:ix.
- Taylor, M. W., H. J. Newman and C. M. Paine. 1959. Intestinal absorption of methionine and histidine by the chicken. Fed. Proc. 18:548. (Abstr.).
- Tucker, R. G., S. M. Greenberg, A. E. Heming and J. K. Mathues. 1957. Iron absorption and metabolism. II. Substitution of N, N-diphenyl-p-phenylenediamine (DPPD) for vitamin E. J. Nutr. 63:33.
- Ullrey, D. E., E. R. Miller, O. A. Thompson, I. M. Ackermann, D. A. Schmidt, J. A. Hoefer and R. W. Luecke. 1960a. The requirement of the baby pig for orally administered iron. J. Nutr. 70:187.
- Ullrey, D. E., E. R. Miller, O. A. Thompson, C. L. Zutaut, D. A. Schmidt, H. D. Ritchie, J. A. Hoefer and R. W. Luecke. 1960b. Studies of copper utilization by the baby pig. J. Anim. Sci. 19:1298. (Abstr.).
- Van Campen, D. and E. Gross. 1969. Effect of histidine and certain other amino acids on the absorption of iron-59 by rats. J. Nutr. 99:68.

- Vohra, P., G. A. Gray and F. H. Kratzer. 1965. Phytic acid-metal complexes. Proc. Soc. Exp. Biol. Med. 120:447.
- Widdowson, E. M. and R. A. McCance. 1942. Iron exchanges of adults on white and brown bread diets. Lancet 242:588.
- Wiltink, W. F., H. J. Ybema, B. Leijnse and J. Gerbrandy. 1966.

 Absorption and utilisation of orally ingested ferri and ferro salts in a therapeutic dose. Clin. Chim. Acta 14:320.
- Wintrobe, M. M., G. E. Cartwright and C. J. Gubler. 1952. Studies on the function and metabolism of copper. J. Nutr. 50:395.
- Wissler, W. R., W. F. Bethard, P. Barker and H. D. Mori. 1954. Effects of polyethylene sorbitan monolaurate (Tween 20) upon gastrointestinal iron absorption in hamsters. Proc. Soc. Exp. Biol. Med. 86:170.
- Wohl, M. G. and R. S. Goodhart. 1968. Modern Nutrition in Health and Disease. (4th Ed.) Lea and Febiger, Philadelphia.

Appendix Table I. Mineral mixtures used in experimental diets.

	Bas Casein	al Soy	Casein	O ppm Fe Soy	Casein	O ppm Fe Soy
	9		я_		9	
KCI	100	100	100	100	100	100
KI	0.02	0.02	0.02	0.02	0.02	0.02
CuSO ₄	1	ı	ı	1	1	1
MnSO ₄	1	ı	1	1	1	1
CoC0 ₃	i	ı	1	1	1	ı
MgC03	20	20	20	20	20	20
NaHCO ₃	250	250	250	250	250	250
CaHPO ₄ .2H ₂ O	360	360	360	360	360	360
CaC03	125	125	125	125	125	125
ZnS0 ₄ .H ₂ 0	4	4	4	4	4	4
FeSO ₄ .2H ₂ O ^a	1.67	0	4.45	2.78	7.23	5.56
Cerelosea	136.31	137 .9 8	133.53	135.20	130.75	132.42
FeSO ₄ .2H ₂ 0 ^b	3. 32	0	6.10	2.78	8.88	5.56
Cereloseb	134.66	137 .9 8	131.88	135,20	129.10	132.42

a Trial I. b Trial 2.

Appendix Table 2. Vitamin mixture used in experimental diets.

Nicotinamide	40
Calcium pantothenate Pyridoxine hydrochloride	30 2
Para amino benzoic acid	13
Ascorbic acid	80
x-Tocopheryl acetate Inositol	10 130
holine chloride	1300
	ppb in diet
Pteroylglutamic acid	260
Biotin	50
yanocobalamin	100
-Methyl-1,4-naphthoquinone	40
itamin A palmitate	1 500
Vitamin D ₂	12.5

Appendix Table 3. Pig performance data, trial I.

			_	Weight, Kg			Av.Da.	Av.Da.	Gain/
Treatment	Pig No.	Init.	2 wt	3 wt	4 wt	5 wt	Gain, g	Feed, 9	Feed
45 ppm Fe	¥17-6	06.1		2.96	3,68	4.42	87	4	0.62
	H29-2	2.42	2.72	2.90	3.14	ъ. 27.	39	163	0.24
	Y17-9	2.08		3.42	4.90	90.9	137	200	0.69
73 ppm Fe	Y17-8	1.70	2.90	4.48	5. Y	99.9	171	216	0.79
Soy	Y57-9	2.46	3,16	4.60	5.70	5.	1 58	211	0.75
	Y17-7	2,20	3.22	4.98	6.92	10.14	274	<u>х</u>	0.00
	H29-4	06.1	2.30	2.44	2.90	3.48	¼	168	0.32
88 ppm Fe	Y17-2	1.98	2.52	3,70	4.88	6.82	167	246	0.68
Casein	Y57-12	1.65	2.44	3.88	4.68	6.24	<u>1</u> 58	<u>88</u>	0.84
	Y17-11	2.01	2.96	5.20	7.90	11.46	326	360	0.91
	Y57-2	2.40	2.60	3.36	4.70	7.10	162	181	0.89
137 ppm Fe	Y17-3	2.18	3.60	5.88	6.46	10.22	277	281	0.99
Soy	Y57-3	2.66	4. 8	90.9	6.76	9.7 7.	237	270	0.88
	H29-5	1.82	1.84	2.34	3.08	3,80	68	66	o. %
	Y57-14	1.62	2.22	2.86	4.24	6.30	191	186	0.87
152 ppm Fe	¥17.4	2.10	3.10	5.00	6.12	9.26	247	283	0.87
Casein	Y57-10	2.08	3.06	4.76	5.86	8,72	229	282	0.81
	H29-I	2,38	2.52	2.80	3.40	3.70	46	172	0.27
	Y574	1.96	2.22	3.48	5.16	7.90	205	270	0.76
189 ppm Fe	Y17-5	2.00	2.92	5.04	5.76	8,32	218	263	0.83
Soy	Y57-13	2.18	3.24	ъ. 8	5.86	9.80	263	218	0.90
	Y17-1	2.88	4.50	7.7	10,72	14.12	388	503	0.77
	Y57-6	1.32	09.1	2.30	4.00	5,52	145	506	69.0

Appendix Table 4. Hematological data, trial I.

		Hemoglobin,	obin,	-	6	Mean Cor	Corpuscular		Erythrocytes,	9	, and a	1 1	
Treatment	Pig No.	d/lod mi blood Init. Fin.	Fin.	Init. Fin	ه ۱	Init. Fin	Fin.	1	Fin.	Ini+.	Fin.	Init.	Init. Fin.
45 ppm Fe	417-6	5.19	4.76	20.5	ω.	25.3		3.87	5.95	53.0	31.1	1.7	3.6
Casein	H29-2	7.73	6.82	28.4	25.9	27.2		2.57	7.10	110.5	36.5	3.0	.5
	٧١٦-9	01.6	4.72	31.9	18.0	28.5	26.2	5.58	5.20	57.2	¥.6	2.9	0.8
73 ppm Fe	Y17-8	8.67	7.60	32.1	27.2	•		5.87	6.62	7.43	41.1	1.2	-
Soy	Y57-9	8,58	7.25	29.7	24.0	•	•	4.89	6.15	60.7	35.6	2.5	2.0
	Y17-7	8,93	8.15	31.9	28.9	28.0	28.2	5,56	6.57	57.4	44.0	2.2	<u>.</u> 5
	H29-4	8,46	6.74	31.3	25.2	•		2.54	66.9	123.2	38.	2.7	2.2
88 ppm Fe	Y17-2	8.88	9.10	30.0	30.2	29.6	30.1	5.05	7.02	59.4	43.0	6.	0.
Casein	Y57-12	8.07	7.64	27.0	26.0	29.9	29.4	4.44	1.71	8.09	33.7	1.7	7.7
	Y17-11	9.79	99.6	¥.8	32.6	28.1	29.6	5,45	6.52	63.9	50.0	2.4	1.2
	Y57-2	6,65	7.08	22.8	27.1	29.2	26.1	3,72	7.94	61.3	¥.	4.6	1.2
137 ppm Fe	Y17-3	9.83	9.36	רא	28.8	29.1	32.5	5.45	5.69	62.0	50.6	2.2	9.0
Soy	Y57-3	7.85	<u>0</u>	25.1	¥.	31.3	29.2	3.52	6.97	71.3	49.4	3,9	1.2
	H29-5	7.51	6.05	œ	27.0	26.7	22.4	2.16	6.94	<u>8</u>	38.9	3.9	2.1
	Y57-14	5.92	7.60	21.1	27.0	28.1	28.1	3,83	5.43	55.1	49.7	3.7	4.
152 ppm Fe	¥ C ¥	7.25	10.17	26.7	24.8	27.2	29.2	4.57	6.39	58.4	5.5	2.8	0.9
Casein	Y57-10	8.03	8.88	26.3	31.5	30.5	28.2	3,95	6.81	9.99	46.3	·-	2.7
	H29-1	6.70	7.60	27.3	30.7	24.5	24.8	2.83	8,23	96.3	37.3	2.4	<u>.</u>
	Y57-4	4.81	9.78	19.5	¥ 8	24.7	28.1	2.14	6.29	1.16	55,3	6. I	3.9
189 ppm Fe	Y17-5	8. 4.	11.50	_	35.9	27.2	32.0	5.47	7.59	57.4	47.3	2.9	6.0
Soy	Y57-13	6.40	7.90	23.9	32.1	26.8	24.6	3,68	5.02	64.9	63.9	4.7	0.8
	Y17-1	7.25	91.11	ın	36.8	28.5	30.3	4.56	7.12	55.7	51.7	1.2	0.8
	Y57-6	7.68	7.81	'n	32.8	28.7	23.8	4.05	5.15	66.2	63.7	5.5	3.2

a Mean corpuscular volume, cubic microns.

b Percent of erythrocytes.

Appendix Table 5. Serum iron, total and unbound iron-binding capacity and transferrin saturation data, trial 1.

Treatment	Pig No.		Irona Fin.		BCa Fin.		_{BC} a Fin.		ferrin tion % Fin.
45 ppm Fe Casein	Y17-6 H29-2 Y17-9	156 143 141	129 118 110	192 224 179	206 223 209	36 81 38	77 105 99	81.3 63.8 78.8	62.6 52.9 52.6
73 ppm Fe Soy	Y17-8 Y57-9 Y17-7 H29-4	150 123 121 136	118 125 169 97	235 229 203 230	146 191 248 184	85 106 82 94	28 66 78 87	63.8 35.6 53.7 59.1	80.8 28.9 65.4 52.7
88 ppm Fe Casein	Y17-2 Y57-12 Y17-11 Y57-2	138 239 137 246	150 100 207 162	176 361 200 345	227 131 299 218	38 122 63 99	77 31 92 57	78.4 66.2 68.5 71.3	66.1 76.3 69.2 74.3
137 ppm Fe Soy	Y17-3 Y57-3 H29-5 Y57-14	129 146 154 188	159 168 121 172	224 196 209 208	262 264 180 205	95 50 55 20	103 96 59 33	57.6 74.5 73.7 90.4	60.7 63.6 67.2 83.9
152 ppm Fe Casein	Y17-4 Y57-10 H29-1 Y57-4	97 159 173 146	206 173 197 204	189 279 225 294	290 248 261 245	92 120 52 148	84 75 64 41	51.3 57.0 76.9 49.7	71.0 69.8 75.5 83.3
189 ppm Fe Soy	Y17-5 Y57-13 Y17-1 Y57-6	110 155 142 211	179 155 224 157	227 462 167 311	237 227 273 212	117 307 25 100	58 72 49 55	48.5 33.5 85.0 67.8	75.5 68.3 82.1 74.1

a mcg/100 ml serum.

Appendix Table 6. Serum protein analyses, trial 1.

		Total	erum	Serum	E	Serum	En	Serum	E	Serum	=
+000+001	0 0	Protein ^a	e u i	Albuminb	ninb	α <u>-</u> σ lo	α-globulinb	β-q lo		ν <u>-9</u>	V-globulinb
	- SN 6-	•					•				
45 ppm Fe	¥17-6	6.2	6.3	33.1	29.4	31.8	29.4	15.6	14.5	19.5	6.4
Casein	H2 9- 2	7.2	7.9	31.1	52.6	26.3	22.9	9.11	13.0	31.1	1.5
	Y17-9	9.9	6.5	34.2	45.1	32.9	28.8	14.2	15.2	18.7	0
73 ppm Fe	Y17-8	5.5	7.0	34.4	44.8	33.9	٠. لا		13.6	8.8	7.5
Soy	Y57-9	6.3	7.9	36.8	50.0	29.6	26.1	_	13.5	9.61	10.4
	Y17-7	7.3	6.2	33.5	9.19	33.6	25.8	12.0	7.6	21.0	5.1
	H29-4	7.2	6.7	23.9	38.3	24.6	31.9	•	13.8	25.2	16.0
88 ppm Fe	Y17-2	9.9	8.5	7.4	46.3	28.2	30.3	15.6	12.7	21.4	9.01
Casein	Y57-12	6.1	7.7	41.3	43.5	24.5	33.0	13.6	13.5	23.2	0.0
	Y17-11	5.7	5.5	35.6	47.7	30.6	28.5	14.2	13.0	9.61	6.01
	Y57-2	7.0	6.2	40.3	48.5	25.6	29.1	14.7	14.3	19,3	8.0
137 ppm Fe	Y17-3	0.9	8.9	39.2	60.3	31.2	23.9	13.2	10.1	19.6	5.6
Soy	Y57-3	7.2	5.9	42.0	51.2	25.8	26.5	11.7	13.0	20.3	9.5
	H29-5	7.3	5.1	¥.5	45.0	25.1	29.3	- <u>·</u>	13.2	29.2	15.5
	Y57-14	6.4	4.9	35.1	46.4	31.4	29.6	13.4	12.0	20.1	12.0
152 ppm Fe	Y174	6.3	7.1	36.0	42.7	30.5	33.1	14.6	12.3	18.9	8.
Casein	Y57-10	6.1	5.4	37.8	45.1	56.9	32.0	11.5	12.1	23.7	11.2
	H2 9-1	7.5	8.0	28.8	32.0	25.5	31.1	8. =	12.0	¥.0	21.7
	Y57-4	7.1	8.6	38.1	41.7	28.4	32.3	20.4	14.3	20.4	
189 ppm Fe	Y17-5	6.2	7.2	35.2	50.0	31.7	28.2	15.2	9.11	17.9	10.2
Soy	Y57-3	6.3	5.9	31.0	38.3	34.3	37.8	13.5	4.1	18.5	12.4
	Y17-1	5.9	6.4	37.7	49.2	29.8	28.4	13.9	12.0	18.5	10.4
	Y57-6	6.3	5.9	35.2	38.6	34. 2	37.8	13.1	9.11	17.4	12.0
a g/100 ml serum.	erum.	b Percent	o to	total serum	n protein.						

Appendix Table 7. Balance data, trial I.a

		Food intake,	Fe intake,	Fecal Fe,	Urinar Fe,	Fe retention,	Fe retention,
Treatment	Pig No.	9	mg	mq	m g	mg	
45 ppm Fe Casein ^b	Y17 - 6	I 50	6.75	4.17	0.38	2.20	32.59
73 ppm Fe	Y17-8	223	16.30	15.55	0.56	0.19	1.17
Soy	Y57-9	233	17.06	10.21	0.23	6.62	38.80
88 ppm Fe	Y17-2	250	22.00	7.80	0.11	14.09	64.05
Casein	Y57-12	208	18.27	9.91	0.17	8.19	44.83
137 ppm Fe	Y17-3	250	34.25	13.57	0.52	20.16	58.86
Soy	Y57-3	250	34.25	7.62	0.25	26.38	77.02
152 ppm Fe	Y17-4	250	38.00	8.43	0.13	29.44	77 .4 7
Casein	Y57-10	250	38.00	16.76	0.08	21.16	55 . 68
189 ppm Fe	Y17-5	240	45.36	19.15	0.45	25.76	56.79
Soy	Y57-13	250	47.25	21.47	0.26	25.52	54.01

a Per day.

b Balance data of H29-2 not used in statistical analysis because of negative iron balance.

Appendix Table 8. Pig performance data, trial 2.

				Weight.	r. Kg			Av.Da.	Av.Da.	Gain/
Treatment	Pig No.	Init.	2 wt	3 wt		5 wt	6 w†	Gain, g	Feed, g	Feed
101 ppm Fe	Y17-2	•	4.32	6.62	8.10	9.02	11.74	226	336	0.67
Casein	Y52-5	<u>-</u> 88	2.20	2.90	3.52	4 8	5.20	103	160	0.65
	Y6-1	•	3.18	4.24	4.28	5.22	6. 00	9 6	200	0.48
95 ppm Fe	¥6.4	2.44	3.30	4.40	5.18	5.84	8.00	159	225	0.71
Soy	Y17-1	3.70	4.66	5.22	6.12	6.56	8.52	<u>1</u> 38	238	0.58
	Y50-1	1.74	1.98	2.94	3,88	6.22	9°.6	209	290	0.72
	Y52-6	3.00	3.62	4.84	2.60	6.94	90.01	202	325	0.62
148 ppm Fe	Y6-5	2.12	2.60	3,86	4.72	5.58	6.88	8	201	0.68
Casein	Y17-6	2.92	2.04	3.80	4.24	٠. ۲	7.14	121	224	o. %
	46 <u>-</u> 9	1.92	2.26	3, 12	3,66	4.98	6.28	125	216	0
	Y52-I	3,68	4.22	5.90	6.52	8. %	0.00	181	295	0.61
147 ppm Fe	Y6-2	•	3.14	4.20	4.94	6.24	9.40	193	242	0.80
Soy	Y52-2	•	3,06	4.86	4.92	6.44	8,50	177	282	0.63
	Y6-8	2.28	2.66	3.74	4.60	6.48	8.82	187	282	99.0
	Y17-5	3.34	3.78	5.74	6.58	8.96	12.16	252	367	0.69
189 ppm Fe	Y6-7	•	2.72	4.00	4.76	6.36	8.84	186	253	0.74
Casein	Y52-3	•	4.26	5.90	6.32	6.94	9.98	<u> 6</u>	263	0.73
	Y6-3	2.50	3.28	4.98	6.54 4	9.58	11.80	566	310	0.86
	Y-17-4	•	3.02	4.14	4.76	6.46	9.12	193	257	0.75
189 ppm Fe	Y17-3	•	2.62	3.96	5.42	6.92	9.94	203	266	0.76
Soy	Y52-4	•	3.06	4.60	5.86	7.20	96.6	259	292	0.89
	¥6 -6	2.70	4.02	6.12	7,36	10.60	13.68	314	406	0.77
	Y52-7	•	2.86	4.50	5,56	6.30	7.82	157	239	99.0

Appendix Table 9. Hematological data, trial 2.

		Hemoglobin,	obin,		ı	Mean Cor	Mean Corpuscular	ı	Erythrocytes,		, a	:	
Treatment	Pig No.	g/100 ml blood Init. Fin.	Fin.	Hematocrit Init. Fi	Fin.	Hemogrob Init.	Hemoglobin Conc. Init. Fin.	Init. F	Fin.	Init.	MCV ^a	Heticulocytes Init. Fin.	<u>ocytes</u> Fin.
101 ppm Fe	Y17-2	7.28	7,39	25.0		ο	•	•	6,59	52.4	42.8	1.7	
Casein	Y52-5	7.79	4.10	26.6	18.5	29.3	22.2	4.27	4.51	62.3	41.0	4.	8.9
	1− 9↓	6.98	4.19	24.2	•	മ	•	•	5.03	57.5	38.4	2.2	•
95 ppm Fe	¥64	9.21	5.05	•	20.8	28.6	24.3	4.29	5.79	75.1	35.9	8.	•
Soy	Y17-1	6.29	4.43	•	8.6	29.1	22.4	3.97	5,66	¥.	35.0	9.	•
	Y50-I	10.55	8.70	4.8	32.1	30,3	27.1	6.05	6.13	57.5	52.4	1.7	3.2
	Y52-6	6.72	4.76	•	20.0	29.5	23.8	4.72	6.00	48.3	33.3	3.7	•
148 ppm Fe	Y6-5	7.92	5.62	•	22.4	29.1	25.1	•	5.49	55.7	40.8	5.	2.2
Casein	Y17-6	7.23	5.13	22.2	21.5	32.6	23.9	4.22	5.46	52.6	39.4	2.9	2.7
	6- 9k	7.23	4.72	•	20.8	28.2	22.7	•	5.21	58.7	39.9	2.4	4.
	Y52-1	5.86	4.31		9.6	28.4	22.0	•	5.06	55.5	38.7	5.2	9.
147 ppm Fe	Y6-2	7,10	6.77	•	ď	30.6	δ,	•	6.64			3.	2.0
Soy	Y52-2	7.62	8.13	26.2	28.2	29.1	28.8	4.27	6.68	61.4	42.2	-	5.
	Y6-8	7.88	7,7		_:	30.3	ď,	•	5.50	•	•	.5	5.6
	Y17-5	6.93	5.75	•	₹.	28.9	6	•	7.69	•	•	3.5	6 . 1
189 ppm Fe	Y6-7	9.47	7.67	30.0	24.8	31.6	30.9	5.42	4.92	ζ.	50.4	1.2	2.3
Casein	Y52-3	6.03	5.99	20.2	23.1	29.9	25.9	4.61	5.80	43.8	39.8	4.0	0.4
	Y6-3	8.10	7,76	26.2	27.9	30.9	27,8	4.69	5,83	ď,	47.9	⊕	2.2
	Y17-4	96.98	6.94	22.2	25.2	31.4	27.5	3,66	5.23	o	48.2	2.1	3.5
189 ppm Fe	Y17-3	9.00	19.11	31.2	38.	28.8	•	5.00	7.18	•	53.1	.5	2.3
Soy	Y52-4	5.99	9.73	21.0	33.5	28.5	•	4.57	7.80		42.9	3.1	2.0
	¥6-6	7.92	10.30	27.6	¥.	28.7	29.6	4.84	5.54	57.0	62.8	1.7	9.
	Y52-7	4.82	7,88	17.8	28.3	27.1	•	3,69	6.42	•	44.1	5.7	5.
a Mean corpuscular volume,	uscular v		cubic mic	rons.	م	Percent o	of erythr	erythrocytes.					

a Mean corpuscular volume, cubic microns.

Appendix Table 10. Serum iron, total and unbound iron-binding capacity and transferrin saturation data, trial 2.

		Serum	Irona	TIBCa		UIBCa		Transferrin Saturation %	
Treatment	Pig No.			Init.		Init.	Fin.	Init.	Fin.
		40	٥٥	0.70	4.50	100		17.6	
101 ppm Fe	Y17-2	42	95	238	152	196	57	17.6	62.5
Casein	Y52-5	78	101	121	179	43	78	64.5	56.4
	Y6-1	63	87	214	191	151	104	29.4	45.5
95 ppm Fe	Y6 - 4	75	85	147	216	72	131	51.0	39.4
Soy	Y17-1	41	8 9	256	173	215	84	16.0	51.4
•	Y50-1	50	113	125	198	75	85	40.0	57 . l
	Y52 - 6	56	102	274	190	218	8 8	20.4	53.7
148 ppm Fe	Y6-5	129	86	223	244	94	158	57.8	35.2
Casein	Y17-6	52	84	238	168	186	84	21.8	50.0
Casern	Y6 -9	7 9	97	247	208	168	111	32.0	46.6
	Y52-1	39	90	244	173	205	83	16.0	52.0
147 ppm Fe	Y6 - 2	85	53	185	121	100	68	45.9	43.8
Soy	Y52-2	44	141	229	199	185	58	19.2	70 .9
3 0y	Y6-8	95	106	214	246	119	140	44.4	43.I
	Y17-5	23	91	152	134	129	143	15.1	67 .9
	117-5	23	71	1 72	1 24	123	145	12.1	07.9
189 ppm Fe	Y6-7	22	375	138	475	116	100	15.9	78 .9
Casein	Y52-3	65	8 9	241	184	176	95	27.0	48.4
	Y6-3	5 9	177	226	302	167	125	26.1	58.6
	Y17-4	33	94	238	183	205	8 9	13.9	51.4
18 9 ppm Fe	Y17 - 3	130	292	191	353	61	61	68 . I	82.7
Soy	Y52-4	44	233	262	310	218	77	16.8	75.2
,	Y6-6	67	153	206	296	139	143	32.5	51.7
	Y52-7	77	171	247	316	170	145	31.2	54.1

a mcg/100 ml serum.

Appendix Table II. Serum protein analyses, trial 2.

		Total S	Serum	Serum Albumin ^b	en quin	Serum Q-qlobu	Serum «-alobulin ^b	Serum 8-alobu	Serum 8-alobulin ^b	Serum Y-qlobu	Serum Y-qlobulin ^b
Treatment	Pig No.	Init.	Fin.	Init.	Fin.	Init.	Fin.	-i+i-	Fin.	Init.	Fin.
101 ppm Fe	Y17-2	6.2	9.9	35.6	45.4	28.5	- *	12.0	4.	24.0	12.1
Casein	Y52-5	7.1	6. 8	28.5	41.7	31.7	32.0	11.5	14.7	28.2	11.7
	√6-1	6.7	9.9	28,3	42.8	32.0	30.8	13.8	16.7	25.8	6 .8
95 ppm Fe	¥9×	6.5	6.1	31.2	44.1	29.5	30.9	13.0	14.2	26.6	10.7
Soy	Y17-1	6.7	6.7	38.4	41.8	26.1	33,3	14.8	13.6	20.7	4.
•	Y50-1	8.0	6.5	21.9	41.0	27.7	30.0	9.11	12.4	38.9	16.7
	Y52 -6	6.5	6.5	26.5	39.5	26.5	31.8	12.6	15.1	30.0	13.6
148 ppm Fe	Y6-5	6.9	6.5	25.6	0.44	28.9	29.7	12.8	15.8	•	10.4
Casein	¥17-6	6.2	5.7	z.	42.8	29.0	31.7	11.3	12.1	•	13.5
	6-9	1. 9	6.4	28.0	40.6	31.6	32.2	12.0	13.4	28.4	13.9
	Y52-I	6.7	9.9	32.1	43.9	29.2	29.3	13.8	13.8	•	13.0
147 ppm Fe	Y6-2	7.9	•	30.5	43.1	27.6	30.2	14.3	14.8	27.6	6.11
Soy	Y52-2	7.9	•	24.9	36.9	30.8	38.0	11.2	8. =	33.0	13.3
	Y6-8	7.3	6.3	28.4	40.8	29.9	33.6	11.3	15.0	30.4	10.4
	Y17-5	6.5	•	37.0	46.8	25.5	30.4	12.2	12.5	25.2	10.4
189 ppm Fe	Y6-7	6.7	5.4	27.8	50.9	28.8	24.8	13.7	12.4	29.7	6.
Casein	Y52-3	9.9	6.5	25.3	42.7	33.1	30.7	9.11	12.8	30.0	13.9
	Y6-3	7.1	5.9	29.4	48.7	29.4	27.4	14.7	12.8	26.5	=
	Y17-4	6.4	6.2	26.7	45.3	33.3	29.9	9.11	13.4	28.4	1.3
189 ppm Fe	Y17-3	7.4	•	32.8	48.7	30.4	28,3	6.01	0.01	25.9	13.0
Soy	Y52-4	6.5	•	26.1	50.2	31.6	25.5	12.4	11.2	30.0	13.1
	¥6 - 6	5.7	5.8	29.0	48.9	29.1	28.5	12.9	13.1	29.0	9.5
	Y52-7	7.1	•	27.0	38.7	31.4	32.7	13.2	12.6	28.0	15.9
001/		2	7 7 7		4 2 4 2						

a g/100 ml serum. b Percent of total serum protein.

Appendix Table 12. Balance data, trial 2.ª

		Food intake,	Fe intake,	Fecal Fe,	Urinary Fe,	Fe retention,	Fe retention
Treatment	Pig No.	g	mg	mg	mg	mg	<u>%</u>
IOI ppm Fe	Y17-2	237	23.90	13.75	0.09	10.06	42.09
Casein	Y52-5	155	15.62	6.29	0.12	9.21	58 .9 6
95 ppm Fe	Y6 -4	207	19.63	5.72	0.13	13.78	70.20
Soy	Y17-1	232	22.04	5.30	0.12	16.62	75.41
148 ppm Fe	Y6-5	228	33.74	20.48	0.17	13.09	38.80
Casein	Y17-6	211	31.18	12.86	0.08	18.24	58.50
147 ppm Fe	Y6-2	235	34.55	11.51	0.18	22.86	66.17
Soy	Y52-2	234	34.45	9. 57	0.10	24.78	71.93
189 ppm Fe	Y6-7	236	44.67	23.27	0.13	21.27	47.62
Casein	Y52-3	236	44.60	19.10	0.16	25.34	56.82
189 ppm Fe	Y17-3	234	44.16	10.25	0.14	33.77	76.47
Soy	Y52-4	235	44.42	10.15	0.10	34.17	76 .9 2

a Per day.

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03145 9344