

THE EFFECT OF ADMIXTURES ON THE THERMAL EXPANSION OF CONCRETE

THESIS FOR THE DEGREE OF B. S.

JOSEPH C. LYNCH 1940

THESIS

.

•

.

í

r,

• • 1

. .

.

,

,

• •

.

.

The Effect of Admixtures on the

Thermal Expansion of

Concrete

A Thesis Submitted to

The Faculty of

Michigan State College

of

Agriculture and Applied Science

by

Joseph C. Lynch

Candidate for the Degree of

Bachelor of Science

December 1940

t.

.

THESIS Cogo, E

To the Civil Engineer, Faculty at Michigan State College, who have ably assisted me in gaining my education in Engineering, I do hereby dedicate this thesis on thermal expansion of concrete--J.C.L.

Preface

Acknowledgement is made to the Mr. Rothgery of the Civil Engineering department and to Mr. Finney of the Michigan Highway department for their advice and kind criticism offered in the developing of this problem

Table of Contents

	Page
1.	Introduction 1
2.	Materials
	A. Aetna Portland Coment 4
	B. Aggregates 6
	C. Weight of Aggregates 11
3.	Method of Proportioning 13
4.	Apparatus 15
5.	Admixtures 16
6.	Experimental Proceødure 19
7.	Experimental Data 21
8.	Calculation 23
9.	Conclusion 24
10.	Bibliography 25

Introduction

There is a keen interest in the engineering circles at the present time in the effect of powdered admixtures in Portland Cement concrete. Many types of inert admixtures have been used designedly or due to their presence in the aggregate. Admixtures have various effects on the properties of concrete some of which may be more or less benefical. An admixture should be considered only as one way to secure desired results and its use should be compared with other methods of obtaining similar results.

An increase in water content or in the perportion of paste, which commonly attends use of admixtures, may be expected to increase shrinkage. That a reduction in water-cement ratio reduces volume change, i.e., shrinkage both during hardening and setting is less.

The earliest work recorded concerning the linear thermic expansion of concrete is due to Bounicea, who published his results in the "Annales des Ponts et Chausses," in 1863. His work was performed on rectangular prisms 65 to 94 inches long and about 7 inches on each side, the blocks being placed in water whose temperature varied from 10 to 95 degrees C. The apparatus used was checked by measuring the determined coefficient of expansion for other materials. His results for concrete (proportion not given) was :00000795 inches / degree F.

Professor W. D. Pence of Purdue University has made

a series of investigations with Portland Cement concretes. The values obtained with 1 cement to 5 gravel was . 0000053*/ degrees Fahrenheit. Other mixes are:

> $1-1\frac{1}{2}-3 = .00000677$ 1-2-4 = .0000066 $1-2\frac{1}{2}-5 = .00000558$ 1-3-6 = .00000537

The resistance of concrete to frost is of much importance. Water expands about 9 percent in volume during freezing and when it is trapped in cavities the pressures that may be exerted are very large. In a wet concrete the water enclosed in the pores of the material tends on freezing to force the particles of Morter apart or to set up severe internal stresses.

The resistance of concrete to freezing depends on the density and impermeability of the material, for if water can not penetrate into it no damage can be produced.

A neat Portland Cement on heating first expands owing to the normal thermal expansion. This expansion is opposed, however, by a contraction due to the shrinkage of the material as water is driven off from it. The contraction due to drying eventually becomes much larger than the normal thermal expansion and the material then commences to shrink. The actual temperature at which the maximum expansion is reached varies with the size of the specimen and the conditions of heating. The foregoing considerations have led to an investigation of the subject. First a method of making such measurements was developed, then, experiments were made to determine the effect of admixtures on the coefficient of expansion.

,

Materials

The materials used consisted of Aetna Portland Cement, sand, coarse aggregates, water, and nine admixtures.

The fineness of grinding of Fortland Cement was determined. This is in terms of the percentage of cement retained on a standard No. 200 sieve. A 50 gram sample of cement was placed on a NO. 20 sieve and then placed in a NO. 200 sieve. Hold the sieve in an inclined direction and moved back and forth, tapping the sides of the sieve about 150 times a minute. Every twenty-five strokes rotate the sieve one sixth of a revolution. After several minutes of shaking, remove the cement. Brush the pan to make sure of getting all the particles. The percentage of residue on the sieve with a correction factor for the sieve applied, expresses the fineness of cement.

-4-

Data Sheet

	L	II
Trial		
Material	Portland Ce	ement
Date	11/ 16/ 40	11/16/40
Air Temperature	74 ⁰	74 ⁰
Method of Shaking	Hand	Hand
Weight of Sample	50	50
Keight Retained on 200 $\#$	8 8.09	8.01
Weight Passing 200 #	41.91	41.96
Weight Lost	0.00	0.03
% Lost	0.00	0.06
% Retained	16.18	16:02
Fineness	16.18	16.02

Sample Calculations Wt. lost = wt.passed ↓ wt.retained_ wt.of sample = 41.91 ↓ 8.09 - 50 = 0.00 grams % lost = Wt.lost X 2 = 0.00 X 2 = 0.00 % Retained = Wt.retained X 2

= 8.09 X 2 **=** 16.18

-5-

Determination of Sieve Analysis of the Aggregates

Select a representative sample of the fine or coarse aggregate by quartering a larger sample. Dry the sample so as to have not less than 500 grams of fine or sand and about 3000 times the size of the largest sieve required for the coarse aggregate.

Than arrange the sieves in order and placing in sample of sand in the sieve. It was than placed in the shaker for fifteen minutes and the amount retained on each sieve was weight.

It was not possible to use the shaker on the coarse aggregate so they were shaken by hand and the retained amount was weight.

The percentage retained on each sieve for the sand and coarse aggregate was than calculated. From this data the fineness modulus for the sand and coarse aggregate was found.

-6-

	Materials		Sand			
	Date		11/ 9/40			
	Method of Sh	aking		Machine		
	Keight of Sa	mple Used		510 grams		
	Sieve Num- ber	Diameter Df Opening				
		1.5	0	0	100	
	· · · · · ·	• 742	0	0	100	
		. 371	0	0	100	
	4	.195	7	7.3	92.6	
•	8	.093	105	20.6	79.4	
	14	•046	26 7	52.4	47.6	
	28	•0232	390	76.5	23.5	
	48	.0116	502	98.5	1.5	
	100	•005	5 08	99.4	0.6	
	Totals		510	354.7		
	Fineness Mod	ulus		3.547		

		Data SI	neet	
Materials			Fine Aggreg	gates
Date			11/ 9/ 40	
Method of	Shaking		Hand	
Time of Sh	aking			
Weight of	sample us	be	2990 grams	
Sieve Num- ber			Total Per- cent Re- tained	
	1.5	0	0	100
	.742	425	14.2	85.8
	.371	2668	89.0	11.0
4	.185	298 2	99.5	0.5
8		2990	100	0.0
14				
28				
48				
100				
Totals		299 0	702.7	
Fineness M	odulus		7.027	

Ma	te	ri	al	ន

Date

.

11/9/ 40

Cearse Aggregates

Method of Shaking Hand

Time of Shaking

Weight of sample 4420

Sieve Num- ber	Diameter of Opening		Total jer- cent Retained	Total per- cent Passing
	1.5	2277	6.3	93 .7
	•742	4312	97.5	2.5
	•371	4418	99.9	0.1
4	.185	4420	100	0.0
8	•093			
14	.046			
28	.0232			
4 8	.0116			
100	.005			
Maha 1		4400	007 7	
Totals		4420	803.7	
Fineness Mo	dul us		8.037	

Hand

Materials

50% Fine and 50% Coarse Aggregate

Method of Shaking

Date 11/9/40

Time of Shaking

Weight of sample

Sieve Num- ber	Diameter of Opening	Total %t. Retained	Total per- cent Retained	Total per- cent Passing
	1.5	138	3.15	96.85
	•742	2448	55.85	44.15
	•371	4140	94.45	5.45
4		4280	100	2.25
8		4380		0.0
14				
£8				
4 8				
100				
Totals		3705	753. 2	
Fineness Mo	dulus		7.532	

Note: The aggregate used in experimenting was made up of 50% fine and 50% coarse aggregate.

To determine the unit weight of the segregate for concrete.

For aggregate whose maximum diameter is $\frac{1}{2}$ inch or less, use the 1/10 cubic foot measure. For aggregate whose maximum diameter is over $1\frac{1}{2}$ inches in diameter use the 1 cubic foot measure. The sample of aggregate should be room dry and thoroughly mixed. Room-drying **ef** aggregate should be done only until the surface moisture has **dis**appeared, inasmuch **as** these values are used on that basis. Fill the measure one-third full of aggregate and level off with the fingers. Tamp the aggregate with the pointed end of the tamper 25 times. Fill two-thirds full, now, level off and temp. Fill the measure full to overflowing and tamp, strike off the surplus with the tamping rod. Determine the net weight of aggregate in the container. From this you can determine the weight of the material per cubic foot. Data Sheet

Material	Sand	Coarse
Date	11/ 2/ 40	(50-50) 11/2/40
Size of container	1/10 cu ft.	l cu ft.
Weight of Container	2.62 #	12.05 #
Weight of material and container	13.80 #	123.07 #
Weight of material	11.18 #	111.02 #
Weight per cubic foot	111.8 #	111.02 #

Sand: Weight/ cu, ft. = Wt. material X 10 = 11.18 X 10 = 111.8 #

Coarse: Weight/ cu, ft. = Wt. material X 1 = 111.02 X 1 = 111.02 #

Method of Proportioning

- a) Estimate a mix that will give a 'given strength. Try a 1.5 mix (combine fine and coarse)
- b) Figure 5-4 page 89 Plain Concrete -- Bauer. Maximum permissible fineness moduli is 5.75
- c) Check in figure 5-3 Strength is low 2350 p.s.i try mix 1:4.7 Strength is 2550 p.s.i. which is all right.
 - P = percentage fine aggregate
 A = fineness modulus of coarse
 - B = fineness modulus of combined
 - C = fineness modulus of sand.

Percentage of coarse aggregate is equal to 100 minus the percentage of fine aggregate

$$P = \frac{7.532 - 5.80}{7.532 - 3.547} \times 100 = \frac{1.732 \times 100}{3.985} = 43.7$$

percentage of coarse is 56.3%

d) Find weight per cubic foot of sand and aggregates.

Sand	3	111.8 #
Gravel	z	111.02#
Combination	=	121. 6 #

Calculations of Weight

New proportion 1:5.15 Cubic feet sand 5.15 X 43.7 \pm 2.25 cubic feet Weight sand \pm 2.25 X 111.8 \pm 252# / cubic feet Gubic feet coarse aggregate 5.15 X 56.3 \mp 2.80 cubic feet Weight coarse aggregate 2.8 X 111.0 \mp 311 # / cu.ft.

Absolute Vol.

 Water one cubic foot cement
 -.49

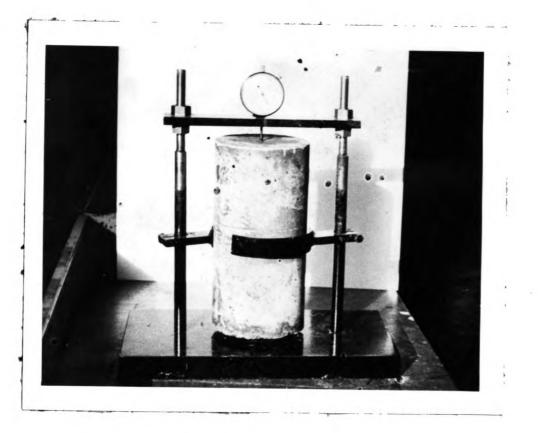
 2.25 cu. ft. sand
 2.25×111.8 1.52

 2.80 cu ft. coarse aggregate
 1.52

 2.80×111.0 1.88

 2.49×2.65 1.88

Total


4.79

Weight materials per cylinder Weight cement = $\frac{.25}{4.79}$ X 94 = 4.9 $\frac{1}{4}$ Weight water = $\frac{.25}{4.79}$ x $62.4 = 3.26 \frac{4}{4}$ Weight sand = $\frac{.25}{4.79}$ x $252 = 13.2 \frac{4}{4}$ Weight coarse aggregate = $\frac{.25}{4.79}$ x $311 = 16.3\frac{4}{4.9}$ Proportions Cement = $\frac{4.9}{4.9}$ = 1 Sand = $\frac{13.2}{4.9}$ = 2.7 Coarse Aggregate = $\frac{16.3}{4.9}$ = 3.33

1:2.7:3.3

Apparatus

The apparatus or it shall be called a comparator was made for the experimenting. It consists of a resting point for the cylinders and a federal dial to measure the height of the cylinder at the start. The comparator is better explained by the accompaning picture.

The admixtures used in the experiment were the following: Silice dust, Lime stone dust, Bentonite, Plastiment, Fly Ash. Pozzolith. Orvus. Vinsol Resin, and Natural Coment.

Silica occurs in nature in all of the polymorphous forms. The form that is most used is quartz. This raw silica as brought from the quarry or mines requires to be crushed or ground. This ground material is made extreme/yfine and is called silica dust. Silica dust is used in the ratio of 15 #/ sack of cement. The amount of silica dust required for onecylinder is:

<u>**16**</u> = <u>16</u> X 4.9 = .784 #

Limestone occurs in nature in the form of rocks. These rocks brought from a mine are ground extremely fine. The dust from the grinding is used as limestone dust. Limestone dust is used in the ratio of $15 \neq /$ sack of cement. The amount of limestone dust required for one cylinder is:

 $\frac{15}{94}$ = .16 X 4.9 = .784 #

Bentonite, an extremely fine-grained clay formed by the weathering of wind blown Volcano ash, was originally observed in Fort Benton shales of the upper Missouri Valley. In outward appearance, bentonite resembles a grey mud, but the very colloidal types exhibit considerable wwelling characteristics on additions of water. The ratio of bentonite is 5 #/ sack of cement. The amount required for one

-16-

cylinder is <u>5</u> .0534 .0534 X 4.9 = .262 #

Plastiment is an extremely fine grained material and has a reddish-brown color. The ratio of Plastiment is 1# / sack of cement. The amount required for one cylinder is:

$$\frac{1}{94} = .0107$$
.0107 X 4.9 = .0524 #

Fly Ash, an extremely fine material, made from pulverized coal ash was used in the ratio of 15 # / sack of cement. The amount required for one cylinder is:

 $\frac{15}{94} = .16$.16 X 4.9 = .784 #

Puzzolith is a manufactured material which is produced by the Master Builders. It is an extremely fine grained material and is grey in color. The ratio used was 2# / sack of cement. The amount required for one cylinder is:

<u>2</u> 94 - .0203

•0203 X 4.9 = •099 #

Orvus is a type of soap which has an extremely great amount of carbon in its molecular formula. This soap will act the same in salt water as in plain water. The ratio used was .015 $\frac{\#}{4}$ / sake of cement. The amount required for one cylinder is $\frac{.015}{.94}$ = .00016 $\frac{\#}{.94}$

.00016 X 4.9 👖 .00078 #

The scap was mixed with water in the given amounts and 68 ml. was used.

-17-

Resin is either a natural or syngthetic product. The resin used in this experiment was syngthetic Vinsol resins. It is a light grey in color. The ratio used was full amount. The amount required to make one cylinder is 4.9 #.

Natural cement is of two types:

1) With out grinding aid and 2) with grinding aid. The trade name of the natural coment used was a Luxment and it is made without grinding aid. The ratio used was 1 sack to 6 sacks of coment. The amount required to make one cylinder is: $\frac{4.9}{6} = .827 \#$.

Experimental Proceedure

The mixing of the materials was done by hand. After the sand, cement, coarse aggregate and water ware carefully measured; the cement and sand were mixed first dry. Then the coarse aggregate was spread over the cement-sand mixture and remixed again. A crater was formed in the center, into which the water was poured. When the water was absorbed. the mixing was proceeded until the concrete is homogeneous in color. Upon completion of the mixing, cylinders $(6^{"} \times 12^{"})$ were filled in three increments, rodding at each increment 25 times with a round rod and bullet-pointed at the lower end. Distribute the strokes in uniform manner over the cross section of the mold. Care is taken to place sufficient strokes in order to prevent honeycombing. After the top layer has been rodded, the excess is struck off. Steel plugs $\frac{1}{2}$ " in diameter and about 1" long were inserted in the ends of the cylinders before placed in the moist room for curing. The samples were left in the molds for not longer than twelve hours.

The conditions for curing the cylinders were the same in all cases. There was a relative humidity of 100% and the temperature of the moist room varied from 68° to 69° F. They were left in the moist room for seven days before an inital reading was taken. The test cylinder was then placed in the electric oven, for twenty-four hours, at a temperature of 110° C and again measured. They were then taken to a refrigerator for twenty-four hours at a temperature of -19 -10° F before another reading was taken. The cylinders were then allowed to stand at room temperature for 24 hours before a compression test was made upon them.

Experimental Data

Name of Admixtur	e Used	Inital Reading	Hot	Cold	Change
None (plain)	1 2	50/1 00 0 51/1000		43.8/1000 44.9/1000	17.6/1000 17.5/1000
Silica Dust	1 2	60/ 1000 63/1000		53.9/1000 56.9/1000	17.6/1000 17.6/1000
Limestone Dust	1 2	59/1000 57/1000	70.6/1000	52.8/1000 50.9/1000	17.8/1000 17.7/1000
Bentonite	1 2	40/1000 43/1000	52.5/1000	33.4/1000 36.3/1000	19.1/1000 19.2/1000
Plastiment	1 2	48/1000 47/1000	59.6/1000	41.8/1000 40.9/1000	17.8/1000 17.7/1000
Fly Ash	1 2	52/1000 50/1000	63.8/1000	· .	18.0/1000 17.8/1000
Pozzolith	ī 2	43/1000 45/1000	54. 2/1000 56/1000		17.2/1000 16.9/1000
Orvus	ī 2	69/1000 68/1000	80.4/1000 79.4/1000	62.9/1000	17.5/1000 17.4/1000
Resin	ĩ 2	50/1000 50/1000	61.2/1000 61.2/1000	44.1/1000	17.1/1000 17.2/1000
Luxment	12 2	55/1000 52/1000	67/1000 63.9/1000	48.6/1000	

Name of Admixt	ture Used	Compression Strength	Coefficient of Expansion
None	1	2600 p.s.i.	• 000006 10
	2	2605 p.s.1.	
Silica Dust	1	2595 p.s.1.	
	2	2600 p.s.i.	
Limestone	1	2585 p.s.1.	•00000618
	2	2580 p .š.i.	•000006 15
Bentonite	1	2520 p.s.i.	•00000664
	2	2510 p.s.i.	•0000 0666
Plastiment	1	2580 p.s.i.	•00000 618
	2	2 9 85 p.s.1.	• 0 0000 615
Fly Ash	1	2570 p.s.1.	•0000062 6
	2	2580 p.s.1.	.00 000 618
Pozzolith	1	2710 p.s.i.	•00000 596
	2	2705 p.s.1.	•00000 591
Orvus	1	2630 p.s.1.	•0000 0807
	2	2625 p.s.1.	
Resin	1	2715 p.s.i.	•00000 594
	2	2710 p.s.1.	
Luxment	1	2540 p.s.1.	
	2	2550 p.s.1.	
	1	•	

.

ļ

Calculation

$\frac{K}{1 \times t}$	110° 6 to -10° F 110° C = 230° F
K = coefficåent	(110° X 1.8) † 32 m 230
e = elongation	
l = length	
t = temperature change	2300 to -10° F
1) .0000061 = $\frac{6}{12 \times 240}$	e _{z .} 0176 *

$$K^{=} \frac{17.6}{1000 \times 12 \times 240} = \frac{17.6}{2880600} =$$

.0000061 inches/ degree F

Conclusion

The applicability of these conclusion is limited to concretes under conditions similar to those of this investigation with regard to type and proportions of materials, fineness of cement, and the curing conditions.

For each admixture two individual molds were made up of the same mix and under the same curing and testing conditions. The slight variations in the two cylinders is probably due to the loss of heat or coldness in testing. In general concrete mortar is subject to expansion, and there are a number of admixtures on the market today which supposedly reduce this expansion. But from the experimental data none of the admixtures used gave any great effect in the doefficient of expansion. The admixture that gave the greatest expansion was Bentonite, while Fozzolith and Vinso/Resin gave the least expansion. The experimental data also shows that with a low coefficient of expansion there is a high compression strength produced. From this it can be said that the expansion so that the bond is weakened.

Of the nine admixtures used only a few of these reduced the coefficient of expansion, and even then, they do not completely eliminate the expansion.

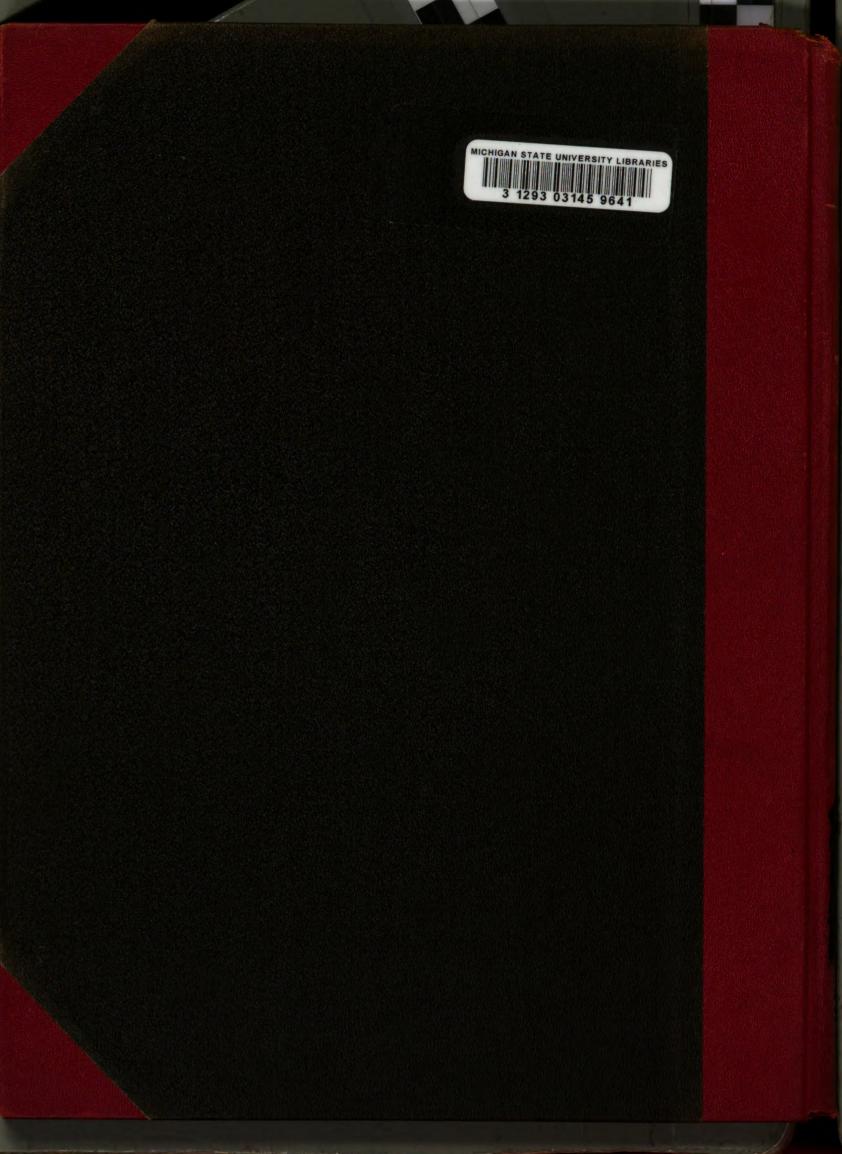
-24-

Bibliography

1.	Cement and ConcreteL.C. Sabin
2.	Practical Cement Testing 6W.P. Taylor
3.	Cement- Mortor- ConcreteM.S.Falk
4.	The Chemistry of Cement and ConcreteF.M. Lea
5.	Portland Cement Association Information
	Sheet No. St 24
٤.	Structural Material Research Laboratory D. A. Abrams
7.	Concrete Its Manufacture and Use Koehring
8.	Plain Concrete E.E. Bauer
9.	Master Builders Booklet less Water yet More
	placeability
10.	The properties of Silica R. B. Spaman
11.	Properties of Mortdrs and Concretes Containing
	Portland Pozzolan Cements R.E.Davis, J.W. Kelly, G.E.Troxell, and H.E. Davis
12.	Journal of American Concrete Institute
	Volume 8 May- June 1937
13.	Journal of American Concrete Institute
	Volume 9 July- August 1937

-25-

ROOM USE ONLY


.

·

Carl and and a

.

1

