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ANALYTIC FUNCTIONS
over a

CERTAIN HYPERCOMPLEX ALGEBRA
INTRODUCTION

This paper is a study of the algebra of a four-
component hypercomplex variable which is commutative
and associative, and of analytic functions of that
variable. After a discussion of the algebra involved,
the 'Cauchy-Riemann' equations are derived; Stokes'
theorem is extended to four dimensions; Cauchy's
integral theorem and integral formula are demon-
strated; and properties of certain elementary func-
tions are considered.

That the present variable was studied rather
than the quaternion is due to the fact that analytic
functlions of a quaternion are limited to linear func-
tions. Even the simple function w = z2 is not analy-
tic when 2z 1s a quaternion. Quaternion algebra has
the advantage, however, of having no nilfactors.

The study made here follows to a certain extent
a paper on general hypercomplex variables by F. W.

1

Ketchum+. The present paper, however, gives explicit

1 Ketchum, P. W., "Analytic Functions of Hypercomplex
Variables", Transactions of the American Mathematical
Society, Volume 30, 1328, pages 641-667.
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statements and proofs of results for the four-conm-
ponent variable, where Ketchum's vaper 1is restricted,
by 1ts consideration of the n-compronent variable, to
more general statements and indications of proofs.

In the introduction to his article, Ketchunm
lists several references to original papers by those
who began the study of functions of hypercomplex
variables. Four of these references, the ones most
closely related to the present work, are given in

the bibliography.



CHAFTER I
THE HYPERCOMPLEX ALGEBRA

l. The variaple. The four-component variable

used will be denoted by

z =xq ¢ 1x2 + ij + kx4 .

The units are 1 (one), 1, J, and kX, with the multi-

vlication table

Y
~

-3 -1 1 .

It 1s to be especially noted tnat

12 =42=21, 1°=x2=1.

The x's will be restricted to be real numbers.

It is easily shown that addition and rmultipli-
cation are associative and commutative, and that
multiplication is distributive. The factor law
does not always hold true, for (1 + J)(1 - J)
=12 . 32 =-1+1=0C, although i + J # 0 and
i - 3 #0. Such quantities as 1 + jJ and 1 - J,
for which a second factor can be found which makes
the product zeroc though neither factor equals zero,
are called nilfactors. We shall find that it 1is

-3~



possible to specify all nilfactor values of the vari-
able. In case a product is zero and it can be shown
that no factor 1s a nilfactor, then the factor law
may be aprrlied.

2. Definitions. A determinant which occurs in

the discussion of the algebra 1is

X X
X = 1 2
Xz Xy |,
The absolute value of z 1s defined to be
a1
_ 2 2 2 2y 2
lzl—(xl+x2+x3+x4) .

In the discussion of functions, w will be used
to represent the derendent variable. That is,
w=f(z) = u; +lu, + Ju3 + ku,
where u, = up(xl, X5y X3, x4). Similar to the deter-
minant X, U.wlll represent the determinant
u u
U = 1 2
u3 u4 L]
The absolute value of a function will be denoted by
wl — (1.2 2 2 2,1/2
lw] = (ul tuy +ug o+ u4) .
The product of z by a real number, a scalar,

a, is defined to be

az = ax, + iax2 + Jax3 + kax4.

The quotient of z by a real number different from



zero is defined to be the product of z and 1/a,

X X X X
a a a

3. Inequalities. Beginning with the well-
known inequality of real variavles,

a2 + b2 z 2ab ,

1t can be shown that:

(1) V2ol = 20| 312y + 250 S 1200 + 12,1
(2) x & 1x] £ Ixgx, ]+ Ixpxgl $3-1213,
(3) 121 £ Ixy |+ Ixgl + Ixgl + Ix,| S2]2] .

The second part of (3) is demonstrated by the same
method used to prove the corresponding inequality
of complex variables.

4. Product. The product of two numbers is,

w=u + 1u2 + Ju3 + ku4 = 2,25

= (x99%Xp) = Xyp¥pp = Xy3%Xp3 * X14%Xp4)
(4) + 1(xg %00 * XypXoy T XyaXpy T X14%p3)
+ 31Xy X535 = XyoXgy + Xy3Xpy T XqsXpo)

+ k(x + X

11%24 12%03 * Xy3%op * Xy4%pp) -

This product is symmetrical; that is, if xlp and x2p
are interchanged the result remains the same. The

apsolute value of the product 1is

— 2 2 1/2
lzlz2| - (lzll Izel + 47(112)
V2 lz1||z2| .

|w]

(5)

A



The inequality follows from the inequality (2).

5. Conjugate. The conjugate, z, of a number z
is a number such that the product, w = zZ, has only
real terms. That is,

u, = u3 =u, = 0.

Given z, in order to find z let z, of (4) equal z
and z, equal z. Then we have three equations to
solve for the components X15 X5 x3, Xy of z;

they are,

Uy = XoX; + X X5 = XXz = XzX, = o,

(6) Uz = X3X) = x4§2 * XX5 - x2§4 =

u, = x4;l + x3§2 + x2§3 + x1§4 =0 .
These equations are sufficient to determine

the ratios of the x's. The values of the x's are

proportional to the three-rowed determinants, alter-

nately plus and minus, obtained by dropring the first,

second, etc., columns successively from the matrix

of the coefficients% On simplifying these determi-

nants, we find that

- 2-
cx = X1|Z| 2x,X ,

o
el
]

2
-x2]z| - 2x3x ,

- - 2 _
cx5 = x3|z| 2x,X ,

x4|z|2 - 2x.X ,

CXy 1

2 B8cher, Maxime, Introduction to Higher Algebra,
page 47, theorem IV.




where ¢ 1s a real proportionality factor different
from zero. Taklng ¢ equal to one, we shall mean by
the conjugate of z,

Z = (x121% - 2x,%) - 1(x,121% + 2x5%)

(7)
- J(x3|zl2 + 2x2X) + k(x4|z|2 - 2xlx) ,

which may also be written as

- 2
z = |z] (x; = 1ix, - Jxg + kx,,)
(7')
- 2X(x4 + ix3 + Jx, + kxl) .
The product of a nunber and its conjugate

reduces to

(8) w =2z = |z|* - 4x®.

In case 2z is a nilfactor, the rank of the matrix
of coefficients of equations (6) i1s two and the solu-
tion for the x's given above 18 not valid. The com-
ponents of Z then are properly the same as those of
the conjugate nilfactor?

6. Quotient. The quotient of two numbers, 29
and 25, is defined to be a number w such that

2y = Wiy
Kultiplying each member of this equation by the con-
Jugate of 25, WE get

z122 = wz222.

Dividing each member by (z222), a real number, we

3 For a demonstration of the statements of this
paragrarh, see section /0.



find for w, using (8),

z 2.2 2.2
(9) w = Zl = 1_2—- = %—g 5 -
2 2,2, 122| - 4X3
Let
C = (x97%Xp) + XypXpp * Xy3¥Xp3 * Xyu%0s)
D = (x99X55 = X9pXpy *+ X33Xou = X35%03)
E = (X99X55 + XqpXp, = X13Xo1 = Xy%Xp0) s
F = (xyy%5, - X10%03 T X13%Xop * X 4%01) -

Then, after simplification,

2

(10) W= —— = 1 (clz.1% - 2FX,)
Z2 (lzzll} - 4)(2) [ 2 2

- 1(D|z,|°% + 2EX,) - J(Elz.|° + 2DX,)

2 2 2 2

+ k(F]z2|2 - 2cx2)] i

We also find that the absolute value of the quotient

is
2 2 1/2
IWI = 2‘1 = |zl‘ !z%| - gxlxz .
Z
2 122| - 4X3

T. Determination of a nilfactor. A number z,

different from zero is called a nilfactor i1f there
exists a second number z2 different from zero such

that thelr product is zero. The number z, will then
be called the conjugate nilfactor to zZq -



If w = 2125, then for a known number Z, to be

a nilfactor we must be able to find a z, such that

2
w = 0; that is,

U = u, = u3 =y, = o .
Taking the values of the u's from equation (4), we
get the four equations:

Uy = X31%Xp1 T X10Xon T X33¥Xpz T XyuXoy T

Up = X9oXoy + XyXop = XpXoz = X13Xpy =
(12)

Uz = X93Xo) = X34%op + X39X03 = X1p0%¥py <

Uy = XqpXoy ¥ Xy3Xon F XyoXoz F X99Xpy =

In order for there to exist solutions not all
zero for the components of 25 the determinant of
the coefficients (the known xl's) must equal zero.

The necessary and sufficient condition, then, that

Zz, be a nilfactor is that

l..—
X311 X120 TX13 X4
(15) X312 11 X140 TX13
13 D = _ _ =0
X13 X4 11 X2
X14 X713 X12 X11 | .
On expanding the determinant, we get
_ 4 .2
(14) D = |z1| 4%7 -

From D = 0, we find
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That 1is,
2 2 2 2 _ + -
X11 * Xyp * Xzt Xqyu T C2Xg0Xqy F 2XoXys
2 = 2 2 + 2 _
Xyp ¥ 2x11x14 + X7, tX]p - 2x12xl3 + xl3 = 0,
or
- 2 + 2 _
(x11 + x14) + (x12 - xlj) =0 .
Therefore,
- _ + _
(15) Xy, * %X, =0 and X1p = X33 =0,
2 2 2 _ .2
11 T *14 X12 = %13 -
Adding,
2 2 _ .2 2 2 2
X371 * Xyo T Xyz fXyy T Xy X3 T Xpp t Xqye
Let
_ .2 2
m o= X7, + X], -
Then
2 1 2
(16) 2n = lzll ’ m = —é—lzll 20,
since z1 cannot be zero.
Also from (15),
- = + —
(17) X11%13 * XppXqy = F X1X1p T Xpp¥%qq =0 .

Taking the signs in (15) cne at a time, we have

two possibilities:

Case I,
(18) X14 = %110 X3 T TXpp s
X =55y +xj, =,
12,12 = 2(«F, +x5,) = em = 2%, ,

(19) z) =r +1s - Js + kr .
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Case 1I,
(20) ¥14 = "X o *13 = *12

X = -x5) 5, = om

Izll2 = 2(x§l + x§2) = 2m = -2X, ,
(21) z) =r +1s + js - kr,

where r and s are any real parareters not both zero.
In either case,
(22) m=|X].

Vie are now able to state the theorem: The neces-

sary and sufficient condition that 24 be a nilfactor

1s that its components satisfy either (18) or (20).

This is true because (18) and (20) follow directly
from D = 0, and each gives D = O.

8. Solution for the conjugate nilfactor.

When D = 0, that is, when 29 is a nilfactor, then D
1s of rank two. This can be shown by consideration
of the second- and third-order minors of D. The
two-by-two determinant in the upper left-hand corner
of D equals m, which is never gero, (16). The three-
by-three determinant In the urper left-hand corner,

for example, reduces to
2
xpy 12 1% = 2x,% -
Considering the equations given under elther case 1

or case I1I, we find that this determinant 1s zero.

The other three third-order determinants having m
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as first minor reduce to similar values and are like-
wise equal to zero. Therefore, all three-rowed deter-
minants of D are zero, and D is of rank two%

As D is of rank two, we can solve equations (12)
for two of the x2's in terms of the other two.

Solving for Xo3 and X5y WE get

¥23 = [?21‘*11*13 ESPETR
* xpp(Xy1%qy - x12"13)]'
In this expression, the filrst quantity in parentheses

1s zero by (17), the second is X,. 3By (22), m = IXlIl

Therefore,

!
(23) x23 = —Tx—l—l—- x22 .
Similarly,
X
(24) x24 = =- —r)q—r' x21 .

Referring to the ecuations given under cases

I and 1I, we have, under case I,

(25) Xp3 = Xpp » BNA Xy = "Xy
(26) 2, =P +1q + Jq - kp ;

and under case II,

(27) Xp5 = “Xpp ,  and Xoy = X5p

(28) 2, =p +1q - Jg + kp ,

where p and g are real parazeters, not both zero.

4 B8cher, Theorem I, pagze 54.
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9. Summary of nilfaetors. Let a, b, ¢, d be
any real numbers such that

2

a® + b2 £0, and c°

+ a2 A0 .
Then, by equations (19) and (21),
+

zy =a +1b + Jb = ka

is a nilfactor, and, by equations (26) and (28),

2, = ¢ +1d ¥ Jd * ke
is a conjugate nilfactor to 2 regardless of the
relative values of a, b, ¢, and d. This can be ver-
i1fied by direct multiplication of 24 and Zoy the pro-
duct belng zero.

If 24 1s a nilfactor, a conJugate nilfactor is
most simply found by changing the sicns of x13 and X4
It follows from the assoclative law of multi-

plication that the product of a nilfactor by any
hypercomplex number, not zero and not a conjugate
nilfactor of the glven number, is itself a nilfactor.
It should be noted that if X is zero, z cannot be a

nilfactor.

10. Relation of conjugate and nilfactor. If

z is a nilfactor, then D is of rank two as shown above.
The matrix of coefficients of equations (6) is the
same, when X5 in (6) equals X1p in D, as the last
three rows of D, and 1s therefore of rank two.

This renders the solutions for the components

of z given in (7) invalid. The last two of equations
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(6) are of rank two and may be solved for §3 and §4
in terms of ;1, ;2, and the x's. The components of
the conjugate then are found to be the same as those
of the conjugate nilfactor. This 1s evident by com-
rarison of the last two of equations (6) with the
last two of (12). The name "conjugate nilfactor"
was chosen for this reason.

The product of a nilfactor and its conjugate is
necessarily zero, by the argument of the preceding
paragraph. Therefore, i1t 1s necessary to bar divi-
sion by nilfactors as well as divislon by zero. A
nilfactor in the denominator of a fraction has the

same effect as a zero.



CHAPTER I1I
DIFFERENTIATION AND INTEGRATION

11. Limits; continuity. The definition of a

limit is the same as that used in complex variable.
The necessary and sufficlent condition that a sequence
or a function aprroach a lirmit 1s that each component
of the general term of the sequence, or each conju-
gate function of the function, arproach the corres-
ponding component of the limit. The usual theorems

on the sum, product, and quotient of limits hold

true, except that nilfactor, as well as zero, values
of the 1limit of the divisor are barred.

The definitions of continuity and uniform con-
tinuity likewise remain the same. The necessary and
sufficient condition for a function to be continuous
is that the conjugate functions be continuous. Cther
theorems on continulity and on limits also carry over
5

from complex variable=

12. The derivative. As in functions of a con-

plex variable, the derivative of a function 1s defined

to be the following limit, if it exists:

dw

(29) - =1'(z) = L f(z +az) - £(z)
YA

Az =0 Az

5 Ketchum, page 643, footnote, states that in Town-
send, runctions of a Comrlex Varlable, every theorem
of Chapter 11, pages 20-21, is true for hypercomplex
variables.

-15-
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A function wihich has a derivative at z = a 1is
said to be regular at a. If i1t is regular at every

roint of a region, 1t 1is said to be holororrhic in

that region. It 18 called zn analytic function if

it is nolororrhic in some region.

If a function has a derivative, that derivative
must be independent of tihe method of approach of
(z + az) to z. By setting Az equal, in turn, to
A Xy, isz, JAx3, and k4x4, and taking the limit
as Az approaches zero, we find the following values
for the derivative, if tne partial derivatives of the

conjusate functions exist:

dw_ _ oM, _;_/g_g_ 3/“3 9,&(,,
dz = o/x, *1 9//“: * I, tk o, ’
_PM P Py | D4y
= oz, 2.7, o= DAy
(30)
_ _PH4s | 1_""_{*_ - J_é’ﬁi_ - 2Ha
- 2583 9//3 9//‘53 9/)43 !
_ P Uy - 3/13 - Qﬂg + X ou,
T dxy O Ay Py M Iy

Cn equating the corresronding components of these
four values of the derivative, we find that the neces-

sary conditions for a function to have a derivatlve

are that the partial derivatlives of tne conjugate

functions exist and satisfy the equations,
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2/“1 _ J’“& _ 9/43 _ 9/"4
%, - Oy - 9//"3 - P xy ’
9/“/ - 9/”1 _ 9/‘(3 — 9’“‘)‘
dxe ~ dx,  Sxw | Oxz
(31)
OMy Oy P4y Dy
%y Xy %, Axy '
9/“1 - 9/‘(2 - - 9/‘(3 _ 9/“4
S s  Pxy,  Ix,

These are the equations corresponding to the Cauchy-
Riemann equations in functlons of a complex variable.
We shall call ther the Cauchy-Riemann equations here
also.

By substitution from tnese equalities in the
values of the derivative given above, we can write
other expressions for tie derivative, each involving

the partial derivatives of only one of the u's.

They are,
aw - u, -3 Py -3 9,(4, + K DX,
dz 2%, A7, d#4 Pxy ’
= 4l - - =
a/xz QAU, 9&” 9453
(32)
OM 3//3 DAy 9/‘(,
= -1 + ] - -,
2% 4 2 7y %, 2%,
= _.a_fi_ + 1 9/‘{“ <+ j 9/“# + k.i/ﬁ_ .

2.2, 2.x,

9%;,; 9/11(3
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If the conjumate functions up have continuous

first partial derivatives satisfying the Cauchy-

Rierann eoquations in a resmion, then w = f£(z) has a

derivative £'(z) in that region.

Since up nas continuous partial derivatives,
it is totally differantiable, and

o4 4 4y
- % i 2 A
zxup £y a.z + o, ax, + 2o, Aog

+ 6*34“3 + fﬁ,Aﬂ,, ’
where the €'s converge uniformly to zero as AS
approaches zero§ That 1is,

|€4M-'|<€ for |Axi| §|Az[<5 .

Then
AW _ Au1+1Au2+jAu3+kAu4
Hz T AZ
b 4 u
- P L Ax_ +1 5 —2 A
Az p_19/)5’ D 1 944* P
4 Ju Y Ju -
+ )& 2_ Ax Z Y Ax €,
1 ¢?A%’ p 1 9/%; p

for lAz|< $ . The absolute value of € 1s less than

16 € because

D% | <
|——LA7 21, and €y | <€ .

—— ——————  —  S——————
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Substituting in the above difference quotient from

equations (31), we can reduce it to

2z = | I,z o= T I5x,

22 872 .z
+ k £y ] ‘A;% + € .

Taking tne 1limit as A z aprroaches zero, we get

' _ dW _ 9/"/ 9/‘(2
£l = = e R
2/43 Py
* J 3//, ¥ k JMI ?

since we know that the partial derivatives exist and
that |€ | < 16€ , while € anrroaches zero with A z.
The value of f£'(z) found is exactly the first of
equations (30); so thne theorem is proved.

As in functions of complex variables, it can be
snown that if a function has a derivative, that deri-
vative is continuous. From this it follows easily
that the first partial derivatives of the conjugate
functions up are continuous. Accepting this as true,

we can state tne following theorem: The necessary

and sufficient condition that a function w = f£(z) be

holomorphic in a given resion is that the first par-

tial derivatives of the conjumate functions exist,

are continuous, and satisfy egquations (31).
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The rules for differentiation of a sum, a vro-
duct, and a quotient renain the same, as can be shown
from the definition. The derivative of z 1s found
from tne definition to be 1. ©Starting with this, we

n is

can show Dy induction tnat the dcrivative of z
ndt - 1{ and that the derivative of a rational func-
tion may be found as usual, exceprt at nilfactor
values of the denominator.

13. Stokes' theorem in S,+ By an argument

similar to the proof of Green's theorer in the plane?

it can be shown that on a curved surface with curvi-
linear coordinates u and v, we have the Lemma:

2P 2Qq
If P(u,v), &(u,v), —9—;, and VR

in a region S' and C is an ordinary curve on the

are continuous

surface in S' bounding a resion S of the surface,

ti

(33) J!( 24 _ 9P ) du dv
S

en

i

du v
= J’(P du + Q dv) .
YWith the use of tgis lerma we get Stokes'
Theorem: If Pi(xl’ Kys Xz, x4), i=1, 2, 3, 4,

are continuous functions with continuous first par-

tial derivatives in a re<ion R of 54, C is an ordi-

P

nary closed curve in R, S 1s 2 surface in R, bounded

7 Townsend, E. J., Functions of a Compnlex Variable,
pages 54-506.
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by C, with pararetric equations x, = xi(u,v),

i=1, 2, 3, 4, where the first parti2l derivatives

ji:% and jt%?‘ exist and are continuous and the
P! 31@4 - 3“/»4__
second rartial derivatives Doy - Ivox exist,
then
L(Pldxl + I~‘2dx:2 + P3dx3 + P4dx4)
_({ [+ 2A__ 27
B JL[ ( & 2%, ) dxdxa
f )
2 2% - £ ) dx,dx
3/'”4 9453
‘ + 4?/% ¢9f3
+ 2P 25
- - dx-.d
( 9%, 22, ) X58Xy
2 F 2P
+ a yr
( 2%, ‘9“2 ) dx4dx2
+( 9P 25

( D%, T o, )dxldx4] .

The 2 signs used above do not indicate ambi-

gulty, but a difficulty in determining the proper
signs of the Jacobians which occur in tne proof.
The result as stated is sufficient for the purpose
desired in the proof of Cauchy's first integral theo-
rem given in section 15.

Let

2
L 9 P
v du T TPW O D00



Then, by the lemma, (33),
Jc P,dx, = Jc P (x;,du + xlvdv)

=’] [(Plxlu)du + (Plxlv)dv]
(o

d 2
= JL[TI“_(P]-XIV) - —Q—/V_(Plxlu)]du dv .

By writing out the partial derivatives 1ndicated

and performing the subtraction, we find that

J (2P ;e
P.dx, = - J( —=<—)du av
1771 X, u, v
c JJsa 2
(( P X2 ,X
] 3?71
°’s
r aP ’x
Rz I

where Sl’ 52, e o o 86 are the prrojections of S on
tne X1Xps XpXzy XzXy, XzXp, XX, and X%y, rlanes,

respectively. Similarly,

+ ((L24 + (L2~
i If_af;‘:— dx4dx2 - I W dxldx2 R



- ([25
J P3dx3 = + JI 9A33 dx3dx4
(9 S,
o P:
i <3
+ J P, dx dx JI é%w d~<2dx3 R

F
J P4ax4 = JJ;EZ;;— dxldx4
c 3

%

- ([L2F + [(L25

+ J T/x::- dx4dx2 - 7’:3—— dxjdxl+ .

Sg Sq

Adding these four integrals, we get the equation of
the theorem, with Integration over S, since Xq and X,
take on thne same values over S as over the projection
Sl, etc.

14. Definition and properties of the integral.

The integral is defined to be

(35) If(z)dz: L 2f($)AZ.
C ND=0 p=1

where
w = f(z) = up *duy + Jug 4k,

A Z = Axl +iApx2 -rJApx3 +kApx4

= + 1 + +
is a valuve of z in the Iinterval ‘Apz on C, the path
of integration.
The product to be summed in (35), expanded,

consists of sixteen terms, a typical one being
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If £(z) is continuous, then the u's are continuous,
and the 1limit of the sum of each of the sixteen terms
exists. Therefore, the 1limit defining the integral
exists. It can be evaluated in terms of real line
integrals by the use of the following equation, each
real Integral being the limit of the sum of four of

the sixtcen terms mentioned above. This equation 1is
I f(z)dz = J(u - uydx, - uzdxs + u4dx4)

+ 1 I(u dx - h4dx - usdx4)

3
(36)

+ ] Jc(quxl - wdxy + uy dxsg - u2dx4)
+k ifu4dxl *ugdx, +uydxs + uldx4) .
By argument from the definition of an integral,

it can be shown that if f(z) and g(z) are integrable

and ¢ 1s a point on the path of integration, then:

y) a
J f(z) dz = - J £(z) dz ,
J k £(z) dz =k I £(z) az ,
a 2 y
J[f(z) + g(z)J dz = j £(z) dz + I g(z) az ,
a a.

‘ y)
J f(z) dz = I f(z) dz + j f(e) dz .
a I c

Also from the definition 1t is easily shown that

A
(37) I laz| =L,

Qe
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where L 1s the length of the path of integration.

By inequalities (1) and (5),

n
lp);.lf( é‘p) Az

ST o|r €| a2

Taking the lirit as Az approaches zero, we have,

< £|f( €p) Apzl

if |£(z)| is integrable,

' th(z) dzl < [/T J}If(Z)l'ldzl

(38) * yi * y)
= 2 M ldz| = 2 M dz| = 2 ML,
|/—L laz| = |/77 L| 2 = T

where M is the least upper bound of |f(z)] on the
path of integration.

15. Cauchy's first integral theorem. If f(z)

1s holomorphic in a resgion R and the partial deri-

vatives -{%ﬁ;—- (1, 3 =1, 2, 3, 4) exist and are

continuous in R, and if C 1is a closed curve in R,

then

(39) jfh)m:o.
c

Since f(z) is holomorphic, then it is continuous
and the partial derivatives satisfy equations (31).
From the continuity of f(z) we know that the integrzal
exists. Applying Stokes' theorem four times, once
to each of the 1ntegrals‘in the right member of equa-

tion (36), the u's being the P functions, we get an



expression for J f(z) dz 4in terms of double inte-
c
grals, over a surface S bounded by C, of such expres-

sions as

( - 9/‘(1 _ 9/4, )
2%, %, )

There are twenty-four such integrals in all. On
substitution from equations (31) in these expressions,
each of them 1s seen to be zero. Therefore, the

value of each double integral is zero and the con-
clusion of the theorem is proved.

The hypothesis that the partial derivatives
o4,
that £'(z) be continuous. By a dermonstration parallel

are continuous 1s egulvalent to requiring

to Goursat's proof of the theorem in complex variable,
it is possible to complete the rroof without requir-
ing the continuity of £(2)8

A consequence of the tncorem is, Corollary I:

The intesral of f(z) has the same value along any

path in R Jjoining the same two points; that is, the

integral 1s independent of the path of integration.

Another consequence is, Corollary II: In a

region in which f£(z) 1s holormorphic excert at certain

points, a path of integration can be deforrmed into

any other rath without affecting the value of thne

integral provided that in the process the path is

8 Townsend, pages 66-T1.
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cut by no singularities.

16. Cauchy's integral formula. The values of

z which make (2 - b) a nilfactor are

Z =b) +r + 1(b, + s) + j(b3 +8) + k(b, I,

where the bp are the components of b, and r and s
are parareters, not bpoth zero. The points repre-
senting these values of z lie in the prlanes A and 3,
and include all points of the planes but the point

b which is thelr only point of intersection.

Flane A is
X] = Xg Xg = = Xy ¥ (b3 +b,) ,
Xp = Xg X, = Xq + (b4 - bl) .
Plane B 1is
X; = Xq Xg = Xy + (b3 - b2) ,
Xy T Xy oy X = = Xp + (b4 + bl) .

The planes E and F,
X3=b3, X4=04,
and
x2=b2, x4=b4,
intersect planes A and B at the point b only. With
the planes A, B, E, and F specified, we can state the

following theorem, Cauchy's integral formula: If f(z)

i1s holomorphic in the gimply connected region R, b

is any point in R, and C is an ordinary curve in R

encirclinz, but not intersecting, the rlanes A and 3,
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then: (1) Af C can be deforred into a curve C, about

™r

the point b Iin the vlane E without cutting planes

A or B,

) - 1 f(Z) .

(40) £(v) = 33 ch‘b az

(2) Af C can be deformed into a curve C, about
the point b in the rlane F without cutting planes
Aor 3
_ £(z)
(41) f(b) = 2” J - 4z -
Wie see that
F(z) = L2l

is holomorphic in R excevt on prlanes A and B. There-
fore, it 1s holomorvhic on planes & and F except at b.
Case (1), C deformable into C,: In plane E,

let Kl be the circle

+ ib, +r eia R

+ 1x, =D 5

! 2~ "
x3 = b3 ’ X4 = b4 ’
where r 1s a constant, é a parareter. Then, by

corollary 1I on page 26,

jc—gi%lg— dz = J £(z) dz

2 - D

_ I _giplg_ dz + J f(z) - £(b) s
K

Z - z = Db
[ K,
Because f(z) 1s holomorvhic in R, it 1is recular,

and hence continuous, at b. Therefore,
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|£(z) - £(b)]| <€ for |z -bl<d .

on K., lz = b| =r.
equation (38),

]
= /2 (_f-—')(Zﬂr) = 23/2q ¢

Therefore,

£(z) - £(b) _
! JK, ZZ - b dz| =0,

and

L f(z; - 1ﬁ(b) dz =0 .

Setting

Z-b=r eio ’

for z on Kl’ we find that
anw

Pick r < & . Then, by

| L—ilzg = L) | S 7l

f g(l_nlb_ dz = £(b) Ji aé = 2mi £(b).
Ky o

Combining these two results, we have

j—f—(—z-)—-dz=0+2ni f(b)
c

z - b
1 Jf(;l az
C

£(b) = 357 z - b

as was to be showne.

Case (2), C deformable into C,:

let K2 be the circle

X, ¢ Jx3 = b1 + jb3 +r eJ

Xy =Dy Xy =Dy o

6

In plane F,
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where r 1s constant, @ a parameter. By the same
arcgument as for the first case, replacing 1 by Jj,

Kl by K2’ we can show that




CHAPTER III
ELEMENTARY FUNCTIONS

17. Definitions. The exponential function,

circular functions, and hyperbolic functlions are
defined by the series which represent tnem in com-
plex variable. The addition formulas for these func-
tions remain valld for the hypercomplex variable, as
can be verified from the expansions.

From the series we find that

eJx =cos x + J s8in x ,

ekx = cosh x + k sinh x ,

sin Jx = J sinh x , cos Jx = cosh x ,
sin kx = k s8in x , cos kx = cos x .

These ecquations remain true when J 1s everywhere
reprlaced by 1.

18. The exponential function. Using the addi-

tion theorem and the equations of the preceding sec-
tion, we find that

(x, + ix
w = ez = e 1 2

+ Jx + kX4)

3

(x, +1x.) (Jx; + kx,)
N 1l 2 e 3 4

X
e “(cos X, COS X4 cosh x,

+ sin x. sin x, sinh x4)

2 3

_31-
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X
+1e 1(sin Xy €O8 X4 cosh X,

- cos x5 sin X sinh x4)

(42) .

+Je 1(cos X, sin X3 cosh x,

- sin x, cos x5 8inh x4)

X
+k e 1(sin X, 8in X cosh X,
+ cos x, cos X sinh x4) .

From this value, after simplification, we have

2x
(43) |w|2 =e * cosh(2x4) ,
and
1 4%
(44) U = — e sinh(2x4) .

Therefore,

IwI4 - 4u°

4x 4x

(45) e 1 cosh2(2x4) e t

2
sinh (2x4)

4x
=e 1fo,

and we can assert tuat e” is never a nilfactor.
Using equation (30) we find, as would be expected,
that the derivative of e? 1s again e”.

19. Tre circular functions. By the use of the

addition formula for sin(A + B), we arrive at the
following expression for sin z:

w =sin z = sin(xq + 1x, + Jx5 + kx,)



(46)

The values of le2

(47)

and

(48)

+

+

+
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sin(x; + ix,) cos(jx3 + kx, )

+ cos(x; + 1x2) sin(,jx3

(sin x; cosh x, cosh X5 COS X,

- cos
i(sin X,
+ cos
j(cos Xy
+ gin

k(cos Xq

- s8in

xl sinh x

cosh x2

xl sinh
cosh x2

X, sinh

1

cosh x2

xl sinh

and U for w =

5 sinh

sinh x

3

X~ CcOsh

2
sinh x3
x2 cosh

cosh x3

X5 sinh

X, sin

3

sin x4

X, COS8

3
cos Xy,
x3 sin

sin x4

X, COS
3

+ kX4)

x4)

x4)

x4)

X4) .

sin z reduce to,

2 2 2. 2 2
[w|© = - sin xy 8in“x, - cos®x, cos®x,
2 2 2 e
+ 8inh X5 sinh x3 + cosh X, cosh x3
_ A cos(2xl) cosh(2x2)
- 2
cosh(2x3) cos(2x4) ,
U =

cos xl sin xl cos x4 sin x4

- ¢osh x2 ginh x2 cosh x3 sinh x3

|
s

sin(2x1)

sinh(2x3

)

sinh(2x2)

sin(2x4)
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Comruting the expression

lwl? - 4u?
and setting it equal to zero, we find the condition
that sin 2z be a nilfactor to be

2 2 2 2
3 -
sin xl + sinh x2 + cosh x3 cos X,

+ 1
(49) = - 2(sin x; cosh x, cosh X sin x,
- cos xq sinh x, sinh X5 COS xa) .

Starting with the second values in (47) and (48),
the condition 1s found to be

cos(4xl) + cosh(4x2) + cosh(4x3) + cos(4x4)
(49"') =4 cos(le) cosh(2x2) cosh(2x3) cos(2x4)
- sin(2x,) sinn(2x,) sinh(2x3) sin(2x4)] .

vie observe that two sets of values of z that
make sin 2z a nilfactor, a few of the values being
zeros of the functlon, are

kn _
xl—X4— 2 ’ X2—X3,

where k 1s zero or an integer, and
Xp =Xy Xy = x3 =0 .
Tne expressions for cos z corresponding to those
of (46) through (42) for sin z are similar and may
be found in the same way.
Finding the derivatives of sin z and cos z by

equation (30), we can show that



iz sin 2 = cos z ,

and

d -
az cos 2 = - 8in z .

From these equations, the derivatives of the other
circular functions may be found.

20. The logarithm. Let w = log z be defined

by the equation

(u, + 1u, + juy + ku,)

" - e 1 2 3 4
=z =x + 1x2 + Jx3 + kx4 .

Then, using equation (42), we find for the x's,

u
_ .1 .
X, = e (cos uy €os uz cosh uy

+ sin u, s8in Uz sinh u4) ,

Y
e ~(sin uy €0S uz cosh uy

Xy =
- cos u, sin ug sinh u4) ,
b
X5 = @ (cos u, 8in us cosh u,
- sin u, cos u sinh u4) ’
]
X, =e (sin u, sin usz cosh u,

+ cos u, cos us ginh u4) .

From these equatlions we compute

2u

(50) 2(x1x4 - x2x3) =oX=e 1 sinh(2u4) ’
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2 02 e i 42 = [z 2uy

(51) X] * X5 ¥ X3 +x, 0= = e cosh(2u,) ,
2u

(52) xi - xg + x§ - xi e 1 cos(2u,) ,
2u

(53) x§ + xg - x% - xi =e 1T cos(2u3) .

Subtracting the square of (50) from that of (51),

we have, "
u
e L= |z|* - ax?,
and
(54) u; = —}T—log(lzl4 - 4%°) .

Solving (52) for u, and (53) for us, we find~

2 2 2 2
Xy = Xp * Xz = X,

arc cos

2 2 e2ul
(55) -2 2 2 2 -
=L arc cos|—L T2 %5~ %4
2 -(Iz|4- 4x2)1/2 _ ’
and
r 2, 2 2 _ 217
(56) ug = —%— arc cos —fl—:ﬁfg :3l/2x4
| (lz]7 - 4x%) J -

Dividing (50) by (51) and solving for u,, we discover

its value to be

u4 = —%— arc tanh{-fyér]
A

2
1, [ 2] + 2X ]
e Izl2 - 2X

]
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The complete expression for log z is found by
use of equations (54) throuzn (57) to be,

w = log z

—%— log(|z]* - 4x2)

1
+ 1 —=— arc cos
2 | (l2]* - 4x2)Y/2

(58) _
-2 .2 2 2
R o B T

J 5~ arc cos N 2,1/2
L (]z]7 - 4x°)

1 izl2 cox ]
X 1
L Og[ lzl2 - 2)(] .

+

It i1s obvious from this expression for the loga-
rithm that every nilfactor value of z, as well as
the point z =0, 1s a singular point of the function.
The quantity
(59) PIREC
which is zero when z 18 zero or a nilfactor occurs
elther in the denominator or inside a real logarithm
in every conjugate function. This 1is true because
both factors of (59) appear in the value of u,, and
one of them is zero whenever (59) is.

21. Comparison with functions of a complex

variable. It 1s easily seen, by a review of the
functions considered in this chapter, that zero and
nilfactor values of the argument together take the

place in our study of the zero in the study of func-
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tions of a complex variable. Ve have seen that cor-
responding to the non-existence, for a finite argu-
rent, of a zero of e? in complex variable, we have
that e? 1s never gero or a.nilfactor in our function
theory. Corresponding to the singularity at zero

of log z in complex variable, we find that log z is
not defined for a zero or nilfactor argument. If

we should write out the expression for tan z as the
quotient of sin z by cos z, it would be evident that
the functlion has singularities at nilfactor, as well
as zero, values of cos z.

In general, X5 and x the second and third

3’
components of our four-component variable, rlay the
vart in this paper that the imaginary term does in

corplex variable, while X, goes with x5, in taking

1
over the role rlayed by the real term. This is seen
in the absolute value of ez, where only X and Xy
occur. It is seen again in the logarithm, where it

18 the second and third conjugate functions which

give the function its multiple-valued character.
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