A COST COMPARISON BETWEEN A REINFORCED CONCRETE AND A STRUCTURAL STEEL BUILDING FRAME

Thesis for the Degree of B. S.
MICHIGAN STATE COLLEGE
George Seymour
1949

C.

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

• •

•

A COST COMPARISON BETWEEN A REINFORCED CONCRETE AND A STRUCTURAL STEEL BUILDING FRAME

A Thesis Submitted to

The Faculty of

MICHIGAN STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE

by

George Seymour
Candidate for the degree of

Bachelor of Science

March 1949

INTRODUCTION

\

The comparison of cost is truly vital and necessary to all people both in business and out if they are to receive full value for their dollar. Neither a person's wage nor margin of profit is so great as to enable that person to ignore price variation when buying. It is with this in mind that I decided to make a cost comparison of two types of building frames now in common use: reinforced concrete and structural steel.

Generally speaking, the two frames are used in different types of buildings. The reinforced concrete frame is used where a fire-proof building is required, as in schools, spartment houses, department stores—in general, fireproof buildings under twenty stories in height. Steel frame buildings generally are used for mill buildings, factories, or very tall structures. There is, however, much overlapping of the two where both might be addaptable

In this paper I wish to investigate the cost of the two types of frames where either type might be used—that is, in a building that does not have to be fireproofed and is small enough to be supported by a reinforced conrete frame. With this in mind I selected a small apartment building to be designed for both a reinforced concrete and a structural steel frame. It is true that for this size building, wood frame construction would be possible, and in many cases, practical. However, from a maintainence and life of structure standpoint, wood frame construction was ruled out. Also, while fireproof construction was not necessare, the added protection of a concrete or steel structure was a large factor in eliminating wood construction from consideration.

ARCHETECTURAL CONSIDERATIONS

While the general layout of the building would ordinarily concern the archetect rather than the engineer, it is closely enough tied to the structural design to deserve brief mention here.

The initial problem was providing the required floor area with the least outside perimeter while still satisfying the necessary light and ventilation requirements for each apartment as a whole and certain rooms in particular: namely the kitchen and bathroom. For this reason a cross plan was adopted as the plan of the building which allowed two apartments per wing with a central location of stairwell. With this plan, corner ventilation is secured for each apartment and adequate window is available for lighting.

A ceiling height of eight feet and a story to story height of nine feet was decided upon. In the steel frame building, the eight foot ceiling height was modified somewhat in the north-south wings where it was necessary to use ten inch beams with a four inch slab, leaving seven feet ten inches clear. This was still further reduced two inches for floor and ceiling finishes leaving seven feet seven inches clear. In this respect, the steel frame building would furnish less desireable apartments than the concrete frame building. It is true that the story to story height would have been increased for the steel frame building. That, however, would have eliminated one necessity in this cost comparison of the two buildings: that of making both designs identical. Again it is true that for both types the story to story height could have been increased. This, however, would increase the cost of the concrete frame structure with no proportionate advantage.

The nine foot story to story height also necessitated a more or less radical departure from the conventional bean and slab type of reinforced concrete building. Instead of the typical narrow, deep beam, a shallow, wide, and relatively heavily reinforced beas was used. A beam of this type requires more concrete and steel than the conventional beam but this is overshadowed by its many advantages. I believe the greatest of these advantages is the reduction in story height which in this case would amount to about a foot. Archetecturally and economically this is desireable. Secondly, the need of a drop ceiling to conceel the beams is obviated, a considerable saving. The wide shallow beam, protruding no more than four inches below the rest of the ceilingbecomes a harmonious archetectural feature of the room and need not be concealed. The third distinct advantage is the decrease in clear span lingth for the floor slabs with a subsequent decrease in slab steel resulting from reduced critical moment. This offsets in a large way the necessary increase in beam steel. Lastly, the wide, shallow beam is easier and cheaper to form than the deep, narrow beam. In times of high labor and material cost, both of which exist today, this is a substantial saving. For these reasons, the slab-band method of framing was chosen for the reinforced conrete building.

Exterior walls of the building are to be of cavity wall construction—brick exterior with a two inch air space and four inch cinder bhock plastered on the inside. All interior partitions are to be of three inch gypsum block plastered both sides. Ceilings are of accoustical tile applied, in the concrete frame building, directly to the concrete with mastic, and in the steel building, to furring

strips attached to the steel floor beams. Floors are to be wood block laid in mastic directly on the cementslab.

DESIGN OF CONCRETE STRUCTURE

The reinforced concrete frame building was designed in accordance with the American Concrete Institute Specifications, and the building code requirements of the City of Midland, Mich. where the building would be erected. Two departures from the ACI code were made. The first was decreasing the recommended area of the columns from one hundred twenty squart inches to one hundred square inches. This change was made because, in most cases, the collumns were considerably understressed. However, the recommended minimum thickness of ten inches was held. The second departure was in using one inch fire protection for beams instead of one and one half inches. However, inasmuch as the beams, except spandrel beams, are at least eighteen inches wide, such beams could easily be classed as slabs and the one inch protection is adequate for a four hour rating.

SLAB DESIGN

Both one way and two way slabs were used in the building, depending upon the spans.

One way slab Mark Sl

Loading

design live load 30 #/sq ft
slab weight 50 #/sq ft
roofing and ceiling finish 10 #/sq ft

Total load W

90 #/sq ft

```
specifications
```

fc = 1350 psi n = 10 fs = 20,000 psi

moment

effective span = 11 - 3 + 0.7 = 8.7 ft

Positive = $1/14 \text{ W1}^2 = 1/14 \text{ x } 90 \text{ x } 8.7^2 = 486 \text{ ft-lb}$

negative = $1/10 \text{ Wl}^2 = 1/10 \text{ x } 90 \text{ x } 8.7^2 = 683 \text{ ft-lb}$

 $K = M/bd^2 = 683 \times 12 + 12 \times 3^2 = 75.9$ OK

steel area

positive As = M + fsjd = 470 x 12 + 20,000 x .87 x 3 = .112 in²
min ellowed .0025 x 12 x 4 = 0.12 in²

negative As = $685 \times 12 + 20,000 \times .87 \times 3 = 0.157$

bond

 $V = 90 \times 8,7 + 2 = 378 \#$

u = 150 psi

sum of perimeters = $V + ujd = 378 + 150 \times .87 \times 3 = .97 \text{ in}^2$ steel use $1/2^n$ deformed bars at 10^n

shear

v = V + bjd = 378 + 12 x .87 x 3 = 12 psi 0K

Two way slab mark S2

moment

effective length = 14'

short span

pos mom = $.054 \text{ Wl}^2 = .054 \text{ x } 90 \text{ x } 14^2 = 1130 \text{ lb-ft}$

 $neg mom = .071 W1^2 = .071 \times 90 \times 14^2 = 1380 lb-ft$

long span

pos mom = $.049 \text{ Wl}^2 = .049 \text{ x } 90 \text{ x } 14^2 = 652 \text{ lb-ft}$

 $neg mom = .037 Wl^2 = .037 x 90 x 14^2 = 868 lb-ft$

steel area

short span

long span

neg As =
$$863 \times 12 + 20,000 \times .87 \times 3 = 201 \text{ in}^2$$

pos As $652 \times 12 + 20,000 \times .87 \times 3 = .152 \text{ in}^2$

use 1/2" bars at 7" for short span
1/2" bars at 10" for long span

shear

$$V = 90 \times 7 = 630 \#$$

 $V = V + b jd = 630 + 12 \times .87 \times 3 = 20 psi$ OX

BEAM DESIGN

The maximum end moments in beams was determined by the Cross method of moment distribution. The proceedure, cutlined briefly, was this. By the use of end coeffecients, a beam size was determined which was then checked by moment distribution. The first choice of beams turned out to be small and the size of the beams had to be increased and rechecked. A sample of the moment distribution computations are included on the next page.

Maximum shear at the supports of the beams was obtained by adding to the shear due to the total load, the difference of the two end moments divided by the langth. Shear in the beams was not critical because of the width of the beams. Stirrups, therefore, were needed only in the spandrel beams of the first or second floors.

	Col A	Col B	Beam		Beem	Col A	Col B	Вевш		Веели Со]	Col A	Col B
		.46	• 54	T.L.	.35		8	8	D.L.	.54	ſ	•46
		0.61-	+41.0		4 4.6		+ 3.8	+28.0		-28.0 +15.0		+13.0
		+ 1.9	+ + % %		-11.0		+ 1.3	+ 7.5		+ 1 0 0 0 0		+ 8.0
		-23.6	+23.6		-45.8		+ 4.1	+41.7		-16,3		+16.3
.31		.3	• 38	D.L.	.27	.23	• 23	.27	T.L.	.38 .31		<u>.</u>
-13.0		-13.0	+42.0		42.0	- 2.0	- 2.0	+51.0		-51.0		+•6•0
+ 5.8	- 1	+ 8°0 + 5°8	- 1.2	•	8.0	+ 1.9	+ 1.0	+ 9.5		1 2 2 + 6	3 c	+ 6.0
-16.7		-15.2	+21.0		-53.7	- 1.1	- 2.0	+56.8		-37.5 +19.0		+18.5
.		ਡ .	38	T.L.	27	.23	83.	12.	D.L.	. 38 . SI		ឆ
-16.0		-16.0	+51.0		-51.0	+ 2.0	+ 2.0	+42.0		-42.0 +16.0 +15.0		+13.0
- 6.5 + 1.3		0 + 1.8	+ + 1.2		- 9.5	- 1.0	0 +	+ 8.0		+ 1.2 + 8 + 8	8.0	0 3.1
-21.2	Q;	-14.7	+34.9		-57.3 +	+ 1.6	+ 2.7	+58.2		-28.4 +17.9		6.6
	ı	@				l	J0				- A	1 _

Column Line 2

Center moment

average end moment (34.9 + 57.5) + 2 = 41.1

center moment—simply supported beam 88.5

Corrected center moment 47.4 lb-ft

Shear

shear due to loading 16.1 k

Shear sue to end moments 0.9

max shear 17.0 k

BEAM DESIGN

Specifications

fc = 1350 fs = 20,000 n = 10 u = 150 v = 90

Beam mark CD2

use $d = 7^{**}$ $b = 48^{**}$

neg mom = 56.8 k-ft pos mom = 44.2 k-ft

neg steel

 $R = M + bd^2 = 56800 \times 12 + 48 \times 7^2 = 299$

Compression steel req'd

p' = 1% for compression steel

 $A^*s = .01 \times 48 \times 7 = 3.36 \text{ in}^2$ 8 - 3/4" bars

p = 1.75% for tension stees

pos steel

 $R = 44.200 \times 12 + 48 \times 7^2 = 226$ OK

As = M + fsjd = $44,200 \times 12 + 20,000 \times .87 \times 7 + 4.36$

 $10 - 3/4^{n}$ bars

shear

V = 17 k

 $v = V + bjd = 17,000 + 48 \times .87 \times 7 = 58.2 \text{ psi}$ OK

Bond

sum of perimeters = V + ujd = 17,000 + 150 x .87 x 7 = 18.7psi OK

COLUMN DESIGN

column mark B2

col load 71.1 k

use 4 - 3/4ⁿ bars

allowable load

P = .8 Ag (.225 f'c + fspg)

 $= .8 \times 100 (.225 \times 3000 + 20,000 \times .0176)$

=82.4 k

ties

use 1/4^m bars spaced at 48d = 12^m

FOOTING DESIGN

footing mark A3

loading 46.1 k

ext footing weight 3 k

total weight 49.1 k

size of footing

allowable soilpressure 4 k/ft2

area required 49.1 + 4 = 12.3 ft²

use 3.5 x 3.5' footing

net pressure 46.1 + 12.3 = 3.78 k/ft²

depth of footing

governed by moment

 $M = 1.33 \times 3.5 \times .67 \times 3.78 = 10.8 \text{ k-ft}$

 $d = (M + Rb)^{\frac{1}{2}} = (10,800 \times 12 + 236 \times 42)^{\frac{1}{2}} = 3.6$

governed by shear

assume d of 12"

 $V = .33 \times 3.5 \times 2 \times 3.78 + .33 \times 2.8 \times 2 \times 3.78 = 15.85 k$

b = 136** v = 75 psi

 $d = V + vjb = 15,850 + 75 \times .87 \times 136 = 1.8$

use a d of 12" + 3" cover. This is a larger d then called for by the computations but to allow for construction variables, a d of at least 12" is desireable.

steel

As = M + fsjd $\frac{1}{7}$ 10,800 x 12 + 20,000 x .87 x 12 = .62 in² bond

 $V = 1.33 \times 3.5 \times 3.78 = 17.5 \text{ }$ u = 135 psi sum of perimeters = 17,500 + 135 x .87 x 12 = 12.4 in² use 6 - $3/4^n$ deformed bars

DESIGN OF STEEL FRAMEWORK

The steel frame building was designed in accordance with the American Institute of Steel Construction specifications. The beams and girders were designed as simply supported members with no end restraint. In a building of this size, the restraint developed by the concrete floor is sufficient to counteract wind loading. This accounts for the lack of sway bracing. All beams, girders and columns are rolled sections which is common in a building of this size.

FLOOR DESIGN

The floor system as in the concrete frame building, is composed of a combination of one and two way slabs. However the span length is smaller in the steel building resulting in lighter reinforcing. The span length was decreased in order to obviate the need for large heavy beams to conserve head room. Floor thickness was not decreased because any lessening of the sound insulating value of a four inch concrete floor was undesireable. Computations for the floor system are the same for the reinforced concrete frame building and will not be repeated here.

BEAM DESIGN

beam mark BCl

loading W = 875 #/ft

span 1 = 22°

Min depth = $1/24 \times 22 \times 12 = 11$ " use 10" WF

decrease allowable unit stress 10/11 x 20,000 = 18,200 psi

moment == $1/8 \text{ Wl}^2 = 1/8 \text{ x } 925 \text{ x } 22^2 = 52,900 \text{ lb-ft}$ section modulus = M + f = 52,900 x l2 + 18,200 = 34.9 use 10* WF 35

COLUMN DESIGN

col mark C2

loading 156k

try 10" WF 29

 $P = (17,000 - .485(96/1.34)^2) 8.53 = 124 k$ too small try 10" WF 39

$$P = (17,000 - .485 (96/1.98)^2) 11.48 == 182 k$$
 OK

BASE PLATE DESIGN

col mark C2

base plate loading 156 k + 1 = 157 kfc = .8 k/in²

area required = 157 \div .8 = 197 in²

size of plate

col size 8" x 10"

length = .8 width

 $lw = 197 in^2$

or .8 $w^2 = 197 \text{ in}^2$

w = 15.7 or 16

1 = 13''

max overhang = 3"

thickness of plate = $(.15 \times .75 \times 3^2)^{\frac{1}{2}} == 1.05$ "
use 13" x 16" x 1" base plate for all cols

PIER DESIGN

All piers 14" x 17"

p = 1.0%

allowable load

P = 0.80 (.225 f'c Ag + pg Ag fs) = 167 k

steel area

As= $.01 \times 14 \times 17 = 2.38 \text{ in}^2$

use 4 - 7/8" deformed bars

ties

use $1/4^m$ bars at $48d = 12^m$

FOOTING DESIGN

Footing C2

loading = 157 + 3 = 160 k

size of footing

allowable soil pressure = 4 k/in²

area required = 160 + 4 = 40 ft²

use 6.5 x 6.5

depth

governed by moment

$$M = 3.7 \times 2.6 \times 6.5 \times 1.3 = 81.2 \text{ k-ft}$$

$$d = (M + Rb)^{\frac{1}{2}} = (81,200 \times 12 + 236 \times 78)^{\frac{1}{2}} = 7.3^{\circ}$$

governed by shear

assume d = 12"

 $V = 2 \times 1.5 \times 6.5 \times 3.7 + 2 \times 1.7 \times 3.5 \times 3.7 = 116.2 \text{ k}$

 $d = V + vjb = 116.2 + 75 \times .87 \times 154 = 11.7$ use d of 15" + 3" = 15"

COST ESTIMATION

Estimating the cost of the two types of framing systems is probably the least accurate portion of this thesis. It is possible to predict with reasonable accuracy the performance of steel and concrete in a building, but the placing of these materials in the structure involves many variables, two of the greatest being the weather and the willingness and/or ability of human beings to work efficiently. Consequently, any attempt to predict anything with as many variables as construction work is apt to go awry. In making up this estimate, great reliance was placed on the "Builders Estimating Reference Book," by Harry Walker, and somewhat less reliance on my own experience on construction jobs. Even with two such authorities as guides, herever, estimating is rather hazardous.

No account was taken of any functions that would be duplicated in the two building. For instance, no estimate was made of the excavating costs inasmuch as they would be identical for both structures.

In all the cost estimating, an attempt was make to break the operation or quantity into its smallest units. This, it is felt, leads to more accurate estimating. On the following page, the floor forms will be estimated in this manner. Thereafter, only total quantities and prices will be noted.

REINFORCED CONCRETE FRAME ESTIMATION

Floor forms	
lumber required per 100 ft of forms	
1" sheathing + 20% waste	120 bf
2 x 6 joists at 24"	6 3 "
3 x 8 stringers	46 **
4 x 4 shores	86 **
beam sides	10 "
braces	21 "
total	346 bf
labor cost	
cost per 1000 board feet	
carp 32 hrs at #2.07	\$66.20
lab 28 hrs at 1.35	27.80
total	\$104.90
form area needed = 17,100 sq ft	
lumber needed = $171 \times 346 = 59,200$ bf	
total labor cost = 104 x 59.2 =	\$6150.00
Materials cost	
forms to be used three times	
total lumber needed = 17,100 + 3 = 5,700 aq ft	
cost per 100 sq st of forms	
l" lumber (.120 + .021 + .010) x 130 =	\$19.62
2" lumber .063 x 105 =	6.63
3^{n} lumber (.046 + .086) x 140	19.05

total per 100 aq ft

total for the bldg = \$45.29 x 57 =

\$45.29

\$2580.00

total cost-labor and materials

\$2580.00 + \$6150.00 =	\$8 730. 00
col forms	
labor cost	\$780.00
material cost	373. 00
total	\$1153.00
footing forms	
labor cost	\$36.40
material cost	16.05
total	\$52.4 5
reinforcing steel	
material cost 10.75 ton	\$3920.00
labor cost	87 8_•50
total	\$ 4 798 .5 0
concrete	
material cost 331 yds	\$3730.00
labor cost	1315.00
total	\$5045.00
Grand total, reinforced concrete frame	\$19,778.9 5

STRUCTURAL STEEL FRAME ESTIMATE

Estimating the cost of the steel, that is, the fabrication and erection, was a job that I was not qualified to handled. Therefore, I obtained from the Jarvis Engineering Co., Lansing, Mich. an estimate for the job. To that I added the cost of the concrete floors, piers and footings to get the final estimate.

Steel frame, fabricating and erecting	
70.5 ton at \$285.00	\$20 ,50 0.00
Floor forms	
Material cost	\$1,645.00
labor cost	5,180.00
total	\$6,8250,00
Footing forms	
Material cost	\$15.50
labor cost	27.30
total	\$40.80
Pier forms	
material cost	\$62.00
labor cost	128.60
total	\$190.60
Reinforcing steel	
material cost	\$1,680.00
labor cost	437.60
total	\$2,117.60
Concrete	
material cost 186 yds	\$2,090.00
labor cost	818.60
total	\$2,908.60

\$32,602.57

Grand total, structural steel frame

CONCLUSION

As noted from the previous figures, the cost of the steel frame runs substantially highter than the cost of the reinforced concrete frame. The total difference is \$12,823.42. On the basis that the entire building will cost about \$150,000.00, this represents about an 8% difference between the two types of framing.

The dominant factor in the greater cost of the steel frame building is the cost of fabricating and erecting the steel. I believe the reason for this lies in the type of building for which the cost analysis was made. The analysis clearly shows that for a small structure with light loading, it is more economical to erect a reinforced concrete frame than one of structural steel.

BIBLIOGRAPHY

Apartment Houses

Abel and Severud

John Wiley and Sons

Building estimators Reference Book Frank R. Walker

Frank R. Walker co.

Design of Modern Steel Structures Linton E. Grinter

MacMillian Co.

Minimum Property Requirements

Federal Housing Administration

Reinforced Concrete Design H. Sutherland and R.C. Reese

John Wiley and Sons

Simplified Design of Reinforced Concrete

Harry Parker

John Wiley and Sons

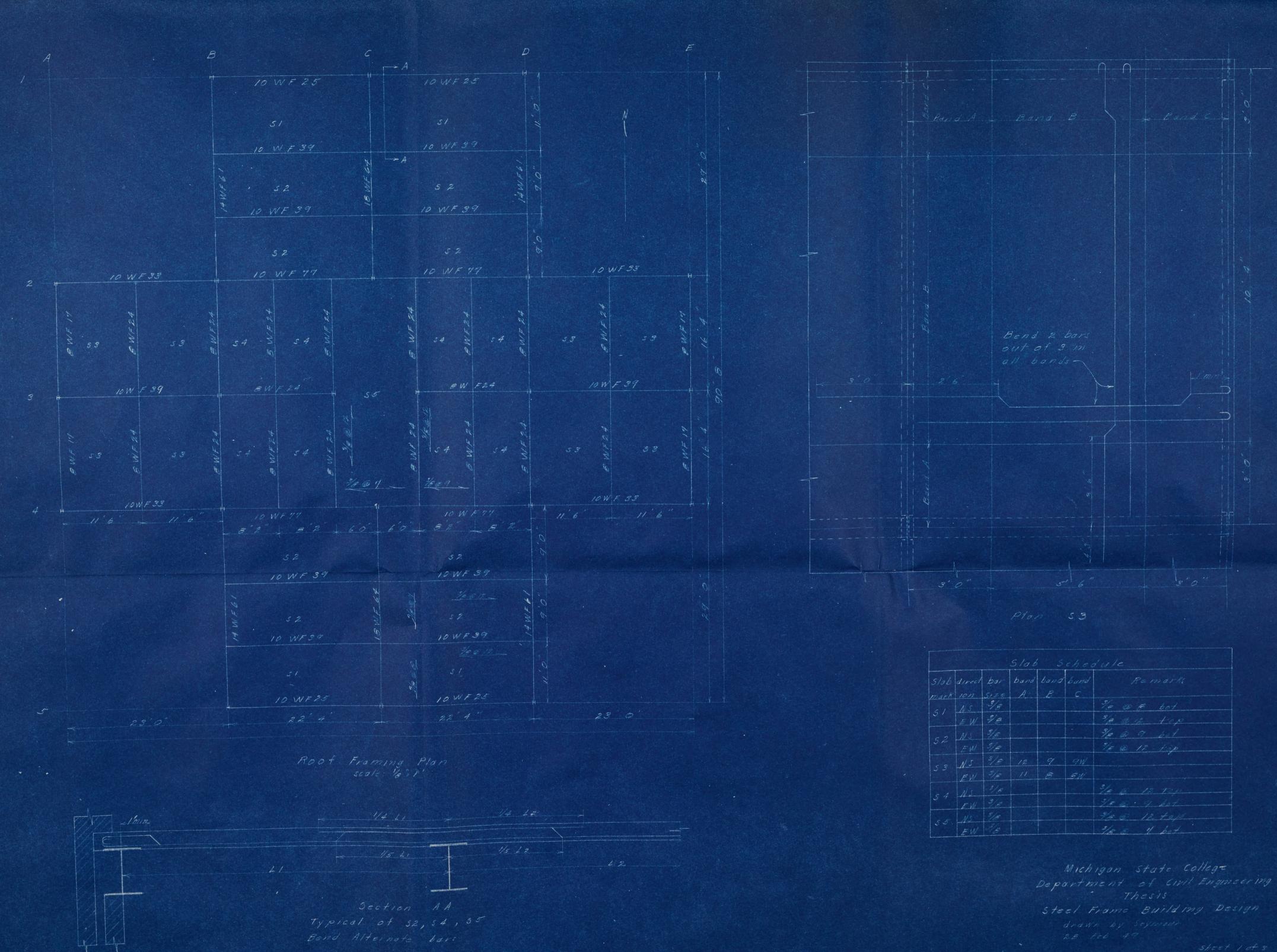
Simplified Design of Structural Steel

Harry Parker

John Wiley and Sons

Strength of Houses

U.S. Deapartment of Commerce


The House For You

Catherine and Harold Sleeper

John Wiley and Sons

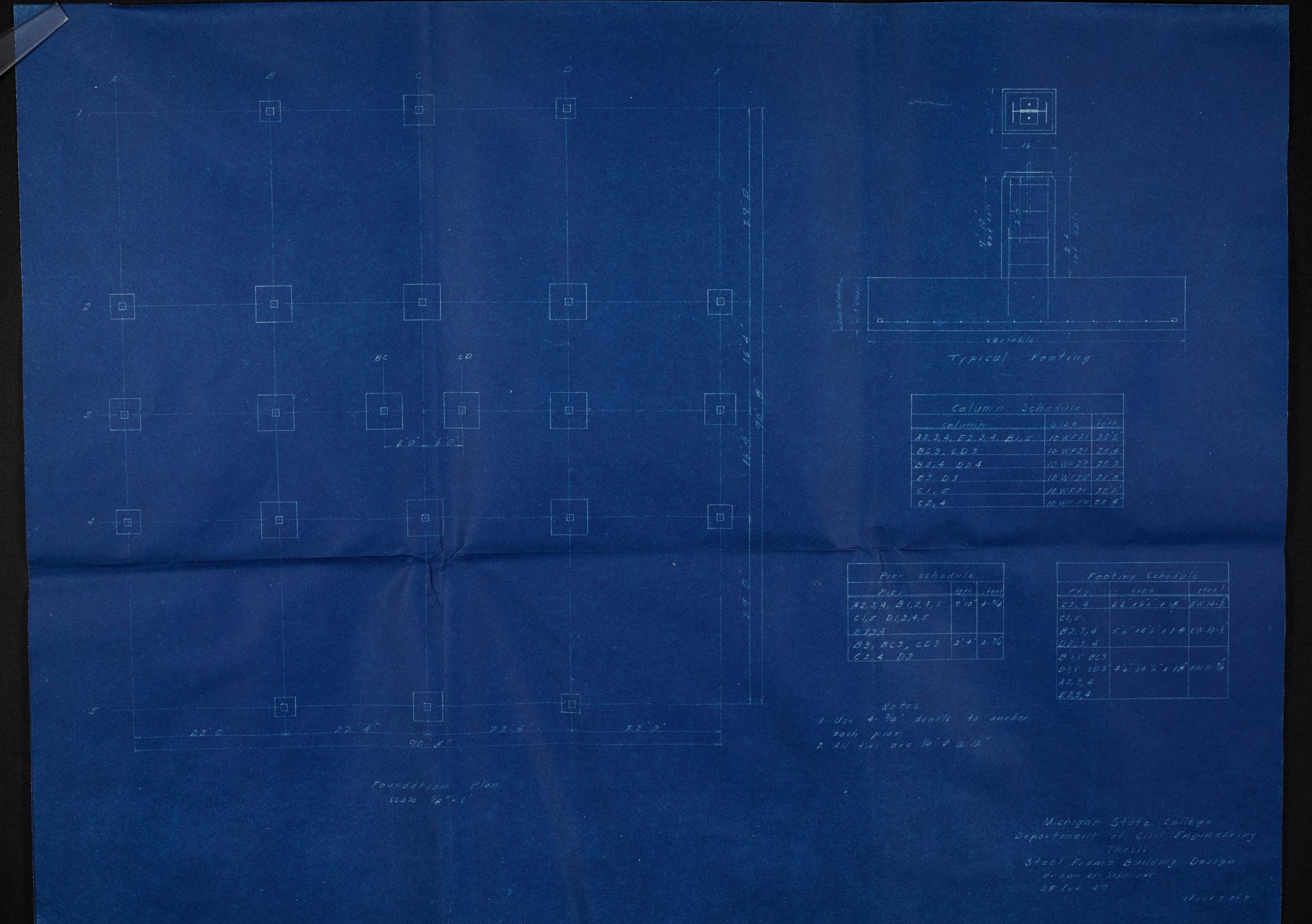
CONT. CONT.

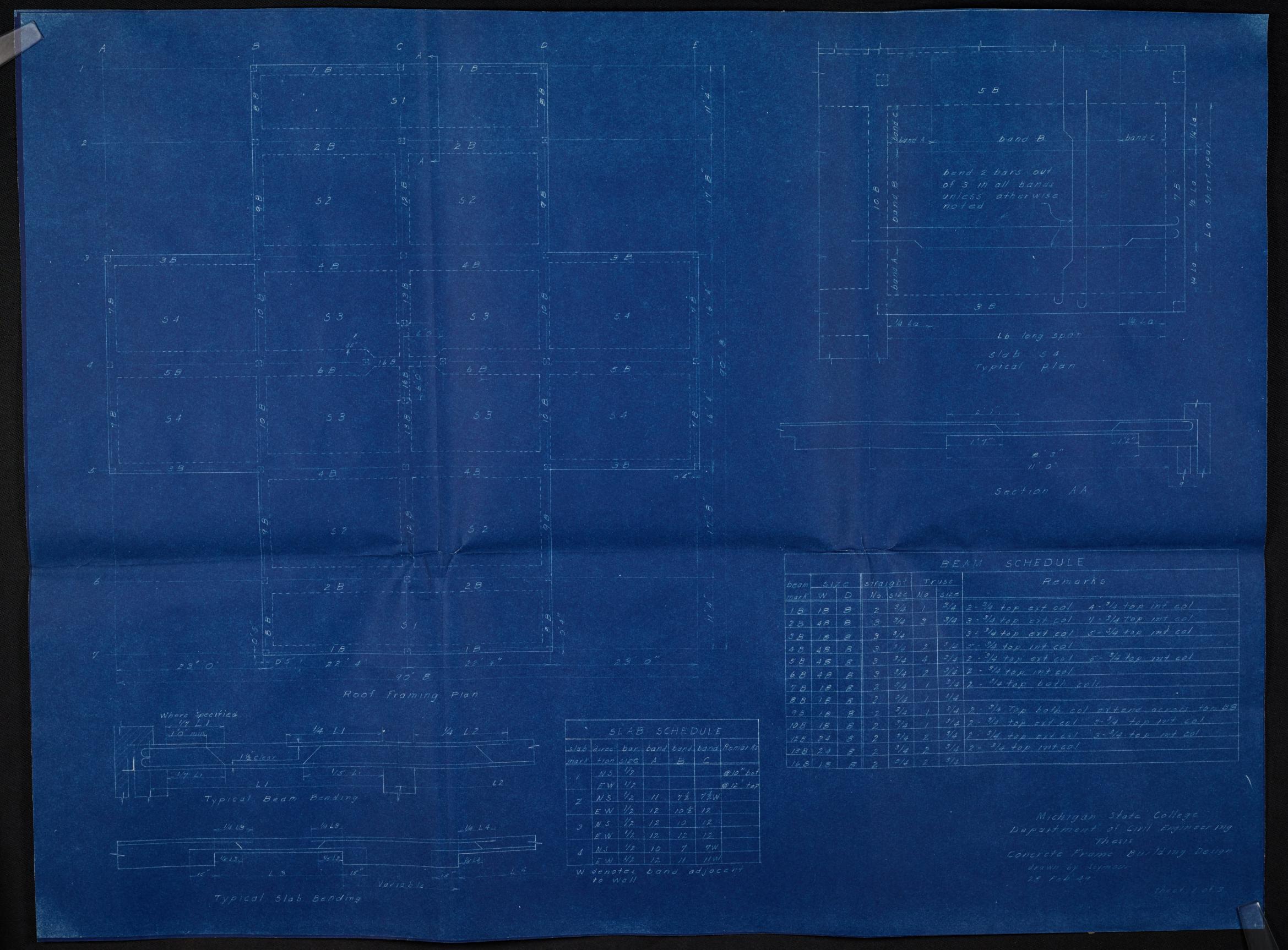
į

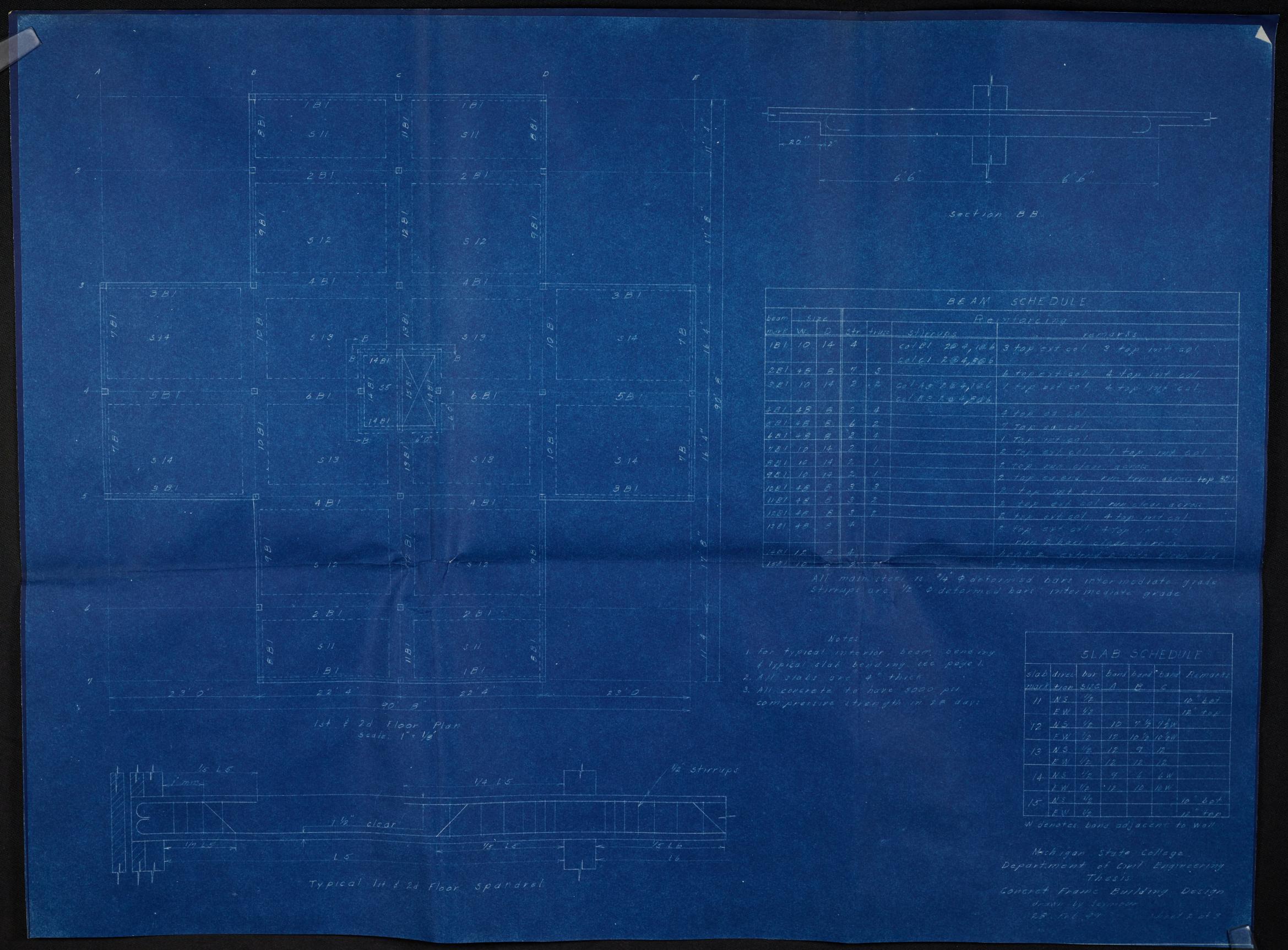
A	B	c	P	E
		10 W F 3 3	10 WF 33	
		56	56 N	
	8	10 WF 45	10 WF 45	0
	19 WF60	57 57 NO.	571 80 B 10 WF 45 B	29.
		57	57 6	
h-	12 WF 40	10 WF 49	10 WF 49 12 WF 40	+ /
1	SWFRE SWFRE	SOME SON SON	SS WE 28 8 28 WE 28 8 WE 28 WE	9 WF73
	12 W F 45	8 WF31 51	1 8 WF 51 12 WF 45	pi l
	swers	SA SA SA WE SING	8 WF 28 60 8 8 18 8 8 18 8 8 18 18 18 18 18 18 18	6 WF 28 16 4'
	12 WF 40	10 WE 49	10 WF 49 12 W F 40	
	11.6	27 10 WF 45	160" 52 52" 116". 116". 31 10WF 45	
	WF 68	5"/ 50 H	10 WF 45 5	29 0
		56	56	
		10 WF 33	10 WF 33	
	23'0"	22'4"	22'4" 25'0"	

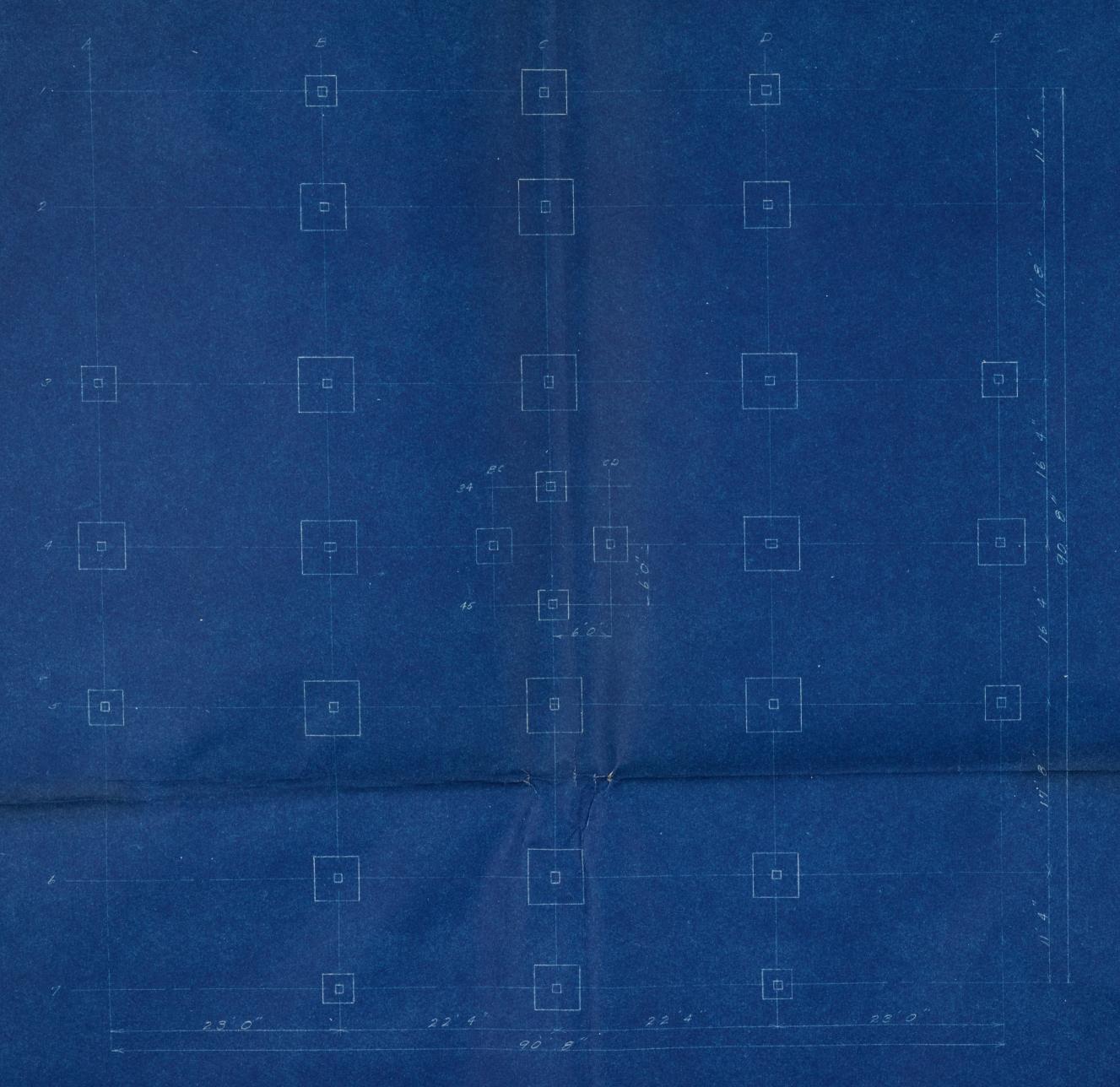
1st & 2d Floor Framing

Scole: 18 = 1

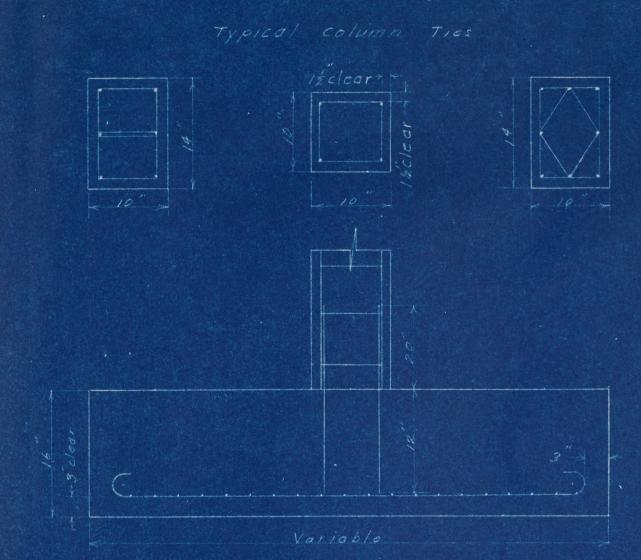

				5/06	50	hedule
5/06	direc	bar	band	bond	bond	Remarks
mark	tion	SIZE	A	8	C	
6	115	3/8				3/8 @ 1/2 601
	FW	3/8				9/2 @ 12 top
7	NS	3/8				3/2 00 9 bot
	EW	3/8				3/0 0 12 top
8	N5	3/8	11	多艺	BZW	
	FW	3/8	10	沙室	TEW	
9	N5	3/8				9/8 @ 12 + op
7	EW	3/8				3/0 do 91 box
10	N5	3/8	12		12	
	EW	3/8	12	9.	12	
	N5	3/8	12		12	
	FW	3/8	12		12	


W denotes bond adjacent to wall


Note


- 1. For slab bending details see page 1
 5.8, 10, \$ 11 are similar to 53. 56, 4, 67
- 2. All concrete to have soon psi compress
- 3. All reinforcing to be intermediate grade

Michigan State College
Department of Civil Engineerin
Thesis
Steel Frame Building Design
drown by Seymour
28 Feb 49



Foundation Plan
scale: Va"=1'

	colu	mn É	Footin	ng Sch	edule		
Mark	A3, A5, E3	A4 E4	81,81, D1 D1, C34, C45		B3, 85	84,04	65,66
SIZE roaf 1	10"x 10"	10"110"			D3, D5	10 110"	10.110
Veld stre70	4 - 3/4	4 - 3/4	4 - 3/4	4-3/9	4 - 3/4	4 - 3/4	4-3/4
ties of their	14 @ 12	14 @ 12	14 @ 12	1/4 @ 19	1/4 @ 12	14 @ 12	14 @ 12
512=	10"10"	10 110"	10"110"	10"110"	10"110"	10"x10"	10 1 10
vert steel o	4-3/4	4-3/4	4-3/4	4-3/4	4-3/4	4-3/4	4-3/4
Ties Ist ston	14 12	2000	14 50 14	14617	14 85 77-	14 6	79 60
5128	10" 10"	10'110"	10"110"	10"110"	10110	10'114"	10814"
Vert steel	4 - 3/4	1/4 @ 12	4-3/4	1/4 @ 12	8-3/4	6-14	8-1/4
Ties Bent floor							
DOME /s ty top	4-3/4	4-3/4	4-3/4	4-3/4	8-3/4	6.3/4	8-3/4
5 5120			30130				
Steel- 1/2 E.W.	12-3/4	16 - 3/4	10-3/4	16-3/4	20-3/4	20:3/4	20-3/4

Michigan State College
Department of Civil Engineering
Thesis
Concrete France Building Design
drawn by Seymour
28 Feb 99

spects of 3

