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ABSTRACT

DIMENSIONS OF LONG CHAIN MOLECULES

IN DILUTE SOLUTIONS: THERMODYNAMIC EFFECTS

AND INTRINSIC VISCOSITY MEASUREMENTS

By

Bakulesh Navranglal Shah

The purpose of this work was to study different theoretical

approaches which have been proposed to explain the ”excluded

volume" effect which is observed when studying the properties of

dilute solutions of polymer molecules. In theory the polymer

molecule is described statistically as a random coil of connected

beads. The excluded volume effect may be thought Of as an osmotic

swelling of the randomly coiled chain by the polymer—solvent inter-

actions.

This work is divided into two parts. Part one contains a

discussion of excluded volume theories and the behavior of the

equations resulting from theories at very large (asymptotic) and

very low (near to unity) values Of O<, a factor expressing the linear

expansion of a polymer molecule owing to polymer-solvent
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interaction compared with that at the Flory (theta) temperature

condition. At the Flory (theta) temperature, the polymer-solvent

interaction vanishes, the excluded volume effect is not present, and

the random coil end —to -end distance is a minimum similar to its

dimensions in the bulk, undissolved polymer. At the theta condition

the expansion factor, (X is unity. The equations are

Flory: O<5 - 0(3 = (4/3) Z

KSR: (0(3 -O()(1+1/30(2)3/2 = (32/35/2) z

Kurata: (0(3 - 1) + 3/8 (C)(5 -O(3) = (5/2) 2

Fixman: 0(3 - 1 == (2) z

Ptitsyn: (4. 68 O<2 — 3. 68)3/2 - 1 = (9.36) z

FON: O<5 - 0.49310? - 0.2499CX‘1'332 sin (1.073 InCX)

- 0. 5069051332 cos (1. 073 111% .-_- (2.603) 2

where

z = (3/:2TT)3/2 Ba'B N“2

for a chain of N links of the effective chain length a. ,8 represents

the binary cluster integral, an integral function of the polymer-

solvent pair potential energy function, e. g. Lennard Jones potential
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for nonpolar systems. These equations were expanded in the form

of power series and each equation was compared to the exact power

series obtained by the perturbation theory Of the excluded volume

effect. This exact series is

2 2

O< =1+(4/3)Z+2.0752 +..

Part two contains the comparison of expansion factor cal—

culated from these equations with experimental data for expansion

factor obtained from dilute solution viscosity data from the literature.

The experimental observation of dilute solution viscosity for several

polymers of various molecular weights in a number of solvents

along with that at the Flory (theta) temperature yields the expansion

factor DC for these solutions. Thus the theory and data may be

compared and the influence of polymer molecular weight and polymer-

solvent thermodynamics on molecular size in solution may be studied.

The conclusions as summarized are that at least for the

nonpolar polymer-nonpolar solvent systems, Flory' s thermodynamic

equation predicts expansion factor in reasonable agreement with

intrinsic viscosity measurements. The discrepancy between the

experimental expansion factor function (0(5 - 0(3) and the theoretical

calculation from thermodynamic parameters at low values of (I
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(near to 1) could be reduced if not eliminated by the use of a function

(1 - BEM) where B is a constant which might be related to the

binary cluster integral B. For the polar systems exact values

of Flory thermodynamic parameters, XS and XH’ are very

important in the success of the expansion factor predictions and

the use of a universal entropy parameter, XS’ equal to 0. 34 in

general warrants further investigation. In spite of the better

success of some of the newer theories in correlating molecular

weight dependence of (X with experimental Q values, Flory' s

theory offers the maximum applicability to the study of the polymer-

solvent thermodynamic inter-actions, because the thermodynamic

parameters are available from nonviscometric data sources.
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INTRODUCTION

During the last three decades much effort has been devoted

to the development of a quantitatively adequate statistical mechanical

theory of the large deviations found in polymer solutions from the

ideal theormodynamic behavior represented by Raoult' s law.

Despite the considerable success achieved by the lattice theory of

Flory1 and Huggins, 2 the inherent complexity of the problem has so

far prevented the achievement of a rigorous and complete treatment

for sufficiently detailed models. For this reason the comparison

of theory and experiment is still a matter of importance in apprising

the adequacy of approximations made. in the various derivations.

The "excluded volume" effect which is observed when

studying the properties of dilute solutions of polymer molecules may

be thought of as an osmotic swelling of the randomly coiled chain by

the polymer -solvent interactions. In theory the polymer molecule

is described statistically as a random coil of connected beads. The

problem of the "excluded volume" effect has essential importance

for the structural interpretation of the solution properties of linear

polymer molecules because the molecular weight, temperature,



and intermolecular thermodynamic interaction dependencies of

solution properties are markedly influenced by the existence of this

effect. Thus the study of the volume effects has been a central

problem of polymer solution theory since its discovery by Flory.

The exact statistical mechanical calculation of the average

dimensions of a linear polymer molecule in nonideal solvent is one

of the ultimate goals of the theory of dilute polymer solutions.

Unfortunately this calculation is a formidably difficult problem,

even with a greatly simplified model of polymer chain such as the

pearl necklace model. Since the pioneering work of Flory, a

number of investigators have attempted to solve this problem by

introducing various simplifying assumptions. The results so far

reported are at variance with each other and with experiment,

depending mainly on the assumptions used to evaluate the interaction

energy of chain elements in the molecule.
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CHAPTER I

FLORY THEORY

The dimensions of long chain molecules in solution are

greatly influenced by the interactions between chain elements.

The interactions may be divided into two classes:1 The "short-

range” interactions and the "long -range” interactions. Short-range

interactions are those between atoms or groups separated by only

a small number of valence bonds; and because of them, there is an

effective constancy of bond angles. ° The "long -range" interactions

are those between nonbonded groups which are separated in the

basic chain structure by many valence bonds. 2 The discussion here

is limited to nonbranched chains. Polyelectrolytes are not considered.

In the absence of both types of interaction, long chain

molecules would obey Gaussian or random flight statistics. 1 Of

course covalent binding forces are present which fix the lengths of the

chain links. Under these conditions the mean square value of the

spherical radius of gyration of the random flight macromolecule is

given by1



U
1

2 2

> = . ..< S 00 ln/6 (I 1)

where n is the number Of bonds in the chain, 1 is the bond length,

and the double zero subscript denotes lack of both kinds of inter—

action.

The chain without long -range interaction may be called the

"unperturbed" chain, 1 and the mean square radius of gyration may

be written as°

< S2 >O = sl°n/6 (1—2)

where s is a "structural" parameter independent of n and accounting

for the effects of the "short—range" interactions. "Long —range"

interactions, on the other hand, give rise to "excluded volume"

effect1 which can be thought of as an osmotic swelling of the randomly

coiled chain by the polymer—solvent interactions. 2 As a result of

both types of interaction, the mean square radius of gyration of a

. . . . . . 1

real linear macromolecule In dilute solution 13 written as

<S°> : OC°<S° >O : (C(28) 1°n/6 (I—3)

where.O( is the linear expansion factor which depends on the number

of bonds n as well as s and temperature. The factor 5 primarily

represents the molecular structural features of the polymer chain



while (X depends upon the effects of interactions of the polymer with

the solvent. For a clear understanding of the conformational

properties of chain molecules in solution, separate determination of

the factor OC and the factor 5 is necessary.

It is well known that the excluded volume effect vanishes

under a special condition of temperature or solvent, which is usually

known as the Flory (theta) condition. Certain measurements per-

formed on solutions under theta conditions can furnish direct

knowledge of the "unperturbed" dimensions and the factor s. With

the aid of Flory -Fox°’ 4 equations, viscosity measurements can

furnish information on long --range interaction and the factor 04 .

These equations are

63/2¢< s2 >3/2/M (I--4)[7)]

[77] [7219 0(3 (1-5)

[7719 =¢KMl/° (145)

K s 63/“¢ (< 8° >0/M)°/° (1-7)

where [7]] and [7) 16 represent intrinsic viscosities in ordinary

and theta solvents respectively. M is the molecular weight of the

polymer and Cl) and K are constants independent of M.



-
J

The ratio between the efflux times of solvent (to) and of

solution (t) from a capillary viscometer for the same densities of

the two gives relative viscosity nrel' Specific viscosity

T7sp : 7(rel -1'

The concentration dependence of the viscosity of polymer

solutions is eliminated by the extrapolation of measured values of

 

’77
the reduced viscosity Csp or of the logarithm of the reduced

viscosity Crel , to infinite dilution. The extrapolated value is

called the intrinsic viscosity [77 ] . Since CD is supposed to be a

universal constant1 for all the flexible linear polymers, the

. 2 .
unperturbed mean square radius of gyration < S > can readlly

0

be calculated from K. The unperturbed dimensions of various

chain molecules thus determined are found in very many cases to

be practically independent of the particular theta solvent employed

and are thus characteristic of the chain under consideration apart

from a usually slight downward trend with increasing temperature. 5

The unperturbed dimensions of various polymers in different theta

solvents are listed in reference 23 and one can see that for the

same polymer there is a slight variation in unperturbed dimension

in different theta solvents. Table I- 1 shows, from reference 23,

/2

sample entries for unperturbed end -to —end distance (< r° >0/M)1 .

2

The quantity < r >O/M is independent of molecular weight.



Table I—1

. . 2 1/2 .
Unperturbed End t-O -I:nd Distance (< r >0/l\/I) for the

Polymers Polystyrene and Poly(methyl Methacrylate)

in Different 6 Solvents

 

 

 

Polymer Solvent 90 Temp. (< r2 >O/M)1/°

C.

Polystyrene Ethyl or Methyl

Atactic Cyclohexane °°° 7° 650 i 15

Cyclohexane 34 690 i 10

73%—trans- 18 655

decalin

_100%Ttrans- 24 670

decahn

Poly(methyl _ . _
methacrylate) Butyl Chlorlde 35. 4 537

3 —Octanone 72 560 :t 10   
 

-)

Once the values of K or < S >O/M are known, the expansion

)1/3
factor O( can be evaluated from the ratio ( [77 ] H77 16) or from

1/21/22 2 _.

(< S2 >/< S2 >0) or from (< r >/< r°>0) where < r > is the

mean square end ~to -end distance of a chain at the temperature of

2 , ,

measurement and < r >O Is the same at the theta temperature.

For Gaussian chains the mean radius Of gyration and mean square

end -to-end distance are related by

<S°>=<r° >/6 (1-8)



Thermodynamic analysis of the polymer-solvent system may then

be accomplished with the aid of an appropriate theory such as that

of Flory. 1

CX° —O(° 2CM(1/2 -X)M1/2 (1-9)

01" (XS-a3 /2

2CM Wu — e/TJM1 (I-9a)

where CM is an essentially numerical factor for a particular polymer-

solvent pair.

/2 2 /2

CM = (27/25 7T3/2) (-v—°/NAV1) (6 < s >O/M)'3 (1-10)

where 7 is the partial specific volume of polymer, V1 is the molar

volume of solvent and NA is the Avogadro number. According to

Guggenheim's6 more refined lattice treatment, X is a parameter

related to the local free energy of the polymer rather than simply a

heat—of-mixing parameter as used by Flory. 1 The parameter X is

a dimensionless quantity which includes the interaction energy

characteristic of a given solvent-solute pair. Thus X is often

written as

X=XH+XS (I-11)

where the two terms refer to a heat parameter and entropy parameter

respectively. X is a parameter characterizing the entropy of



10

dilution of polymer with solvent. 9 is defined as

9 = K T/(fl (1-12)

where K is a heat parameter such that

— , 2
AH1-RTRV2 (1-13)

A H1 is partial molar heat of dilution; and v 2 is volume fraction

of polymer. Similarly

— 2

ASI=RWv2 (1-14)

where ASl is partial molar entropy of solution.

K, w and X are related as

Kl-t/j=X-1/2 (1-15)

In a poor solvent, where both K and K/w generally are positive,

6 also will be positive. At the temperature T = 6 , the chemical

potential due to polymer segment-solvent interactions is zero,

and deviations from ideality vanish.

Equation (1- 9) directs attention to a number of important

characteristics of the molecular expansion factor (X . In the first

place 01 is predicted to increase slowly with molecular weight

(assuming T > 6 ) and without limit even when the molecular weight



11

becomes very large. Secondly, 0( depends on the intensity of the

thermodynamic interactions between solvent and polymer. The

larger the factor (1/2 -X), the greater the value of CC for a given

M and thus, the better the solvent, the greater the "swelling" of the

molecule. X is less than 1/2 for soluble system, approaches 1/2 at

the theta condition where 0( tends to 1.0, and decreases when the

strength of polymer solvent interaction increases, i. e. by hydrogen

bonding. Ordinarily for positive 9 , therefore, 045 -O(3 may be

expected to decrease as temperature is decreased in a poor solvent.

Phase separation sets a practical limit on how poor a solvent may be

and yet permit the existence of a stable homogeneous dilute solution. 1

6 represents the lowest temperature for complete miscibility in

the given poor solvent.

Several assumptions were made in arriving at Equation (1- 9).

Tompa24 discusses these assumptions quite thoroughly. Guggenheim°5

and Tompa24 have discussed the refinements to Flory' s lattice theory

in detail. Most of the refinements are toward improvement of the

theory. However, their approach does not remove inherent imper-

fections in the lattice model on which the whole theory is based.



CHAPTER 11

OTHER THEORIES

Kurata, Stockmayer and Roig (KSR) Theory
 

Kurata, Stockmayer and Roig26 proposed a new approximate

theory of the excluded volume effect in an attempt to resolve some

of the discrepancies Observed in Flory‘ s equation (I- 9). Their

equation is

3 1 -32 52 32 12 3

O( -O<=(I+3_&§) / (4/3)’ (3/27T)/,8N//a (II-1)

where a is an effective bond length, and 8 is the binary cluster

integral (see Chapter IV) of each chain element. This treatment

uses an equivalent ellipsoid model for the linear polymer molecule in

deriving Equation (11- 1). The closed expression for excluded volume

effect in terms of parameters used by Flory can be written as

6

T

/2

(0(3—01) (1 + —4—2)3/2 = (4/3)5/2 ch — )M1 (11-2)
30(

where C is a constant different from that of Flory' s in Equation (1— 9).

12
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Fixman Theory
 

Fixman11 derived an approximate differential equation to

get a closed form of excluded volume effect on the basis of quite

different statistical considerations. His differential equation is

2

ZO((dO(/d2)= I-OC +2(Z/O() (II—3)

where 0(* refers to the change in end ~to—end distance of a

macromolecule from that of the unperturbed dimension. Fixman

did not solve or analyze the above equation. When the above equation

is solved with proper boundary condition (CX (Z) = 1 for Z = 0

at T = 6 ), one obtains

0(3 -1=2z (II-4)

Kurata Theory
 

An approximate closed expression for the excluded volume

effect has been developed by Kurata°° with the help of the uniform

expansion model of perturbed chains. His equation is

<O<3 - 1) + (3/8) (0&5 -O<3) = (5/2) 2 (11-5)

 

*See Chapter IV for difference between O( and (XL.
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The uniform expansion approximation consists in replacing the

perturbed chain by an equivalent Gaussian chain whose average

dimension is chosen so as to coincide with that of the original chain.

Undoubtedly the uniform expansion model becomes increasingly poor

as Z is increased toward infinity.

Kurata' 8 equation was derived in closed form from the basic

equation developed by Fujita et a1. 30 This equation is a simple

hybrid form between the Flory equation

(X5 -O(3 = (4/3) 2

and the Fixman equation

(Oé3 - 1) = 22

The proportion Of hybridization is 73% for the Fixman character and

27% for the Flory character. 2

Fujita, Okada and Norisuye (FON) Theory
 

Fujita, Okada and Norisuye30 derived a closed expression

for excluded volume effect subject to the condition that interaction

of a pair of chain segments is characterized by the binary cluster

integral/8. Starting with this expression and estimating the total

number of segmental collisions in such a chain by use of the
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approximation of uniform distribution of segments and of the ellipsoid

approximation to the overall shape of the molecule, an approximate

closed expression for CX was obtained. The result is

015 - 0. 49310(3 .- o. 2499O<'1' 332-sin (1.073 InOC)

- 0. 5069O(°1' 33° cos (1.073 Ina) = 2. 630 Z (II-6)

The validity of the above relation is attributed almost entirely

to the appropriateness of the physical assumptions used to estimate

the total number of two—body collisions of chain segments in the

perturbed polymer molecule. Those assumptions were:

a. The approximation of uniform distribution of chain segments

in the molecule considered,

b. The use of an ellipsoid model to represent the average

shape of such a molecule, and

c. The uniform expansion approximation to obtain expressions

for the major and minor axis of the ellipsoid.

In fact all the treatments of the excluded volume effect

which are approximate have had recourse to approximations similar

to those mentioned above.
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Ptitsyn Theory
 

The approximate theory of Ptitsyn, 33 which takes interaction

between segments of the chain roughly into account, leads to an

equation differing substantially from that of Flory. Ptitsyn' 3

equation is

(4.80(° -3.68)°/° -1= 9.36Z (II-7)

It was derived by means of a somewhat artificial modification of the

approach which was used by Fixman for the derivation of his

equation. Ptitsyn took into account that the volume effects lead to a

non-Gaussian distribution function w(h) for the end -to-end distance.

The non-Gaussian character of the function w(h) implies that the

influence of the volume effects on the chain dimensions cannot be

considered as a simple increase in the length of a statistical element

of the chain.



CHAPTER III

ASYMPTOTIC BEHAVIOR OF DIFFERENT THEORIES

The behavior of an equation in the limit of large Z and

hence large 0( is considered. In summary the appropriate equations

 

are:

Flory:31 (X5 -CX3 = (2. 60) Z (III-1)

KSRz°° (0(3 —O() (1 + 12 )3/2 = (32/35/2) z (III-2)

30¢

Kurataz°° (013 - 1) + 34015 - 0(3) = (5/2) z (III-3)

Fixman:3° (0(3 - 1) = (2) Z (III—4)

Ptitsynz°° (4. 68C><2 — 3.68)°/° - 1 = (9. 36) 2 (111-5)

FON:°° 0(5 - .4931O(3 - .24990<'1‘ 332 sin (1.0731nOC)

- .50690é‘1'332 cos (1.0731nCX)

= (2.630) Z (III—6)

In the limit of large Z, the well known equation of Flory

yields (X5 proportional to Z whereas the KSR equation yields 0(3

l7
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proportional to Z. All the equations fall in either of the above two

categories. Equation (III-4) of Fixman, Equation (III-5) of Ptitsyn

and Equation (III-2) of KSR belong to the same category in the sense

that all these yield 0(3 proportional to Z in the limit of indefinitely

large Z, and hence they are called the third power type. On the

other hand, in the asymptotic limit Equation (III- 1) of Flory,

Equation (III — 6) of FON and Equation (III- 3) of Kurata yield (X5

proportional to Z and hence they are called fifth power type. A

new equation of Flory and Fisk34 also belongs to this latter type,

but it will not be considered here because it refers to the expansion

factor defined in terms of the root mean square radius of gyration

of the molecule.

Comparison of Equations (III- 3) and (111-6) with Equation

(III-'1) indicates that asymptotic behavior is reached at a smaller

value of Z by Equation (III-3) than by Equations (III- 1) and (111-6).

In the asymptotic limit

a5 = (6. 67) Z for Equation (III-3)

(XS = (2. 630) Z for Equation (III—6)

(X5 = (2. 60) Z for Equation (III- 1)

Thus Equations (III-6) and (III- 1) have a remarkable similarity in
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the asymptotic limit. Similarly, asymptotic relations for the other

category are

04 3 = (2.05) Z for Equation (111-2)

0(3 = (2) Z for Equation (III-4)

0(3 == (. 92) Z for Equation (III -5)

Kurata Equation (III-3) is numerically closer to Ptitsyn Equation

(111-5) in the ordinary range of O( (i. e. for 1 5 O( 3 2) as found by

Kurata. 2° Again Kurata equation has been found29 to be practically

closer to the equations of Fixman and Ptitsyn in behavior than to that

of Flory, in the ordinary range of O( values, but it is in contrast

to the equations of Fixman and Ptitsyn as far as asymptotic behavior

is concerned. This shows that it is practically impossible to argue

from the experimental data concerning the asymptotic dependence of

04 on Z, because in the ordinary range of O( values, some theories

show similar behavior to each other even though they do not belong to

the same category.

The asymptotic behavior of KSR equation has a remarkable

resemblance to that of Fixman' 3 equation. In fact it has been found2

that the KSR equation is also in good agreement with numerical solution

of Fixman differential equation (II- 3) for intermediate values of Z.
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This is reflected in almost coinciding positions of plots from KSR

and Fixman equations, both showing the quantity (CX 5 - OC 3)/Z to

be an increasing function of Z rather than constant as expected

from Flory' 5 equation. This agreement between the KSR and Fixman

equations is all the more remarkable in view of their apparently

totally different methods of derivation; and it is therefore tempting

to regard this agreement as additional support for their validity.

The really accurate experimental determination of (X as

a function of Z, actually of molecular weight, with a well defined

system of polymer and solvent is one of the most crucial tasks required

of the experimentalist in the field. On the other hand, since the

range of Z accessible to experiment is rather limited, it is beyond

the problem of experimental work to determine what is the correct

asymptotic form of O< in the limit of large Z. Edwards35 has

developed a sophisticated theory on this form and reached a conclu-

sion which favored the fifth -power type mentioned above. However,

it must be noted that this fact does not necessarily imply the correct—

ness of Flory's equation.



CHAPTER IV

COMPARISON OF DIFFERENT THEORIES

WITH ACTUAL SERIES

The long -range interactions between chain elements, i. e.

interactions between nonbonded segments of polymer chains, are

represented in sufficiently dilute solutions by the binary cluster

integral,

(>0

3‘ f 1 -exp[—w(l)/k T] 47Tl°d1 (1v-1)

0

provided that pair potential of average force w(l) as a function of

the intersegmental distance 1 is assumed to be of short-range

nature as required by the inequality

B< < < r 2 > 3/2

Here k T has its usual meaning and r is the displacement length of

chain considered. The expansion factor O( is then a function of a

single parameter which may be written

2 =(3/2TT)3/2,8a'3N1/2 (IV-2)

21
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for a chain of N links of the effective length a. In the absence of

this type of interaction, i. e. at T = 9 , where B = O, the mean-

square dimensions of the chain are simply written

<r°>0=6<S°>0=a°N (IV—3)

which is identical to Equation (1-2).

For small values of Z, exact expressions for expansion

factors can be Obtained by means of perturbation treatments of the

interactions (see Zimm, stockmayer and Fixman9 and Yamakawa and

39
Kurata ). These are, for example, for mean square radius of

gyration

0(2 2 2
L =<s >/<S > =1+(134/105)z-. .. (IV-4)

0

and for mean square end -to ~end distance

2 2

O( =<r >/<r2> =l+(4/3)Z-2.07SZ2

O

+6.459Z°+. .. (IV—5)

The difference between (X and (XL is caused by the non -Gaussian

character of the chain, but it is rather small and negligible for most

purposes. These equations can be effectively applied to systems in

poor solvents near the theta temperature, but not to systems in good

solvents because of slow convergence of the series. The expansion
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factor 04 for long chains is a function of single variable Z provided

that clusters of three or more segments can be ignored.

When notations are brought into correspondence, 10 we find

that for Flory' 3 equation

B=2vltfl1<i= 9m (IV-6)

and finally we have

0(5—O(3=CZ (IV-7)

where constant C has the value 33/2/2 = 2. 60 or about twice that

needed to secure agreement with the linear term in Equation (IV - 5).

It is found13 that if C in Flory' 3 equation is set equal to

(4/3), thus forcing agreement with the linear term in Equation (IV - 5),

the coefficient of Z2 in the expansion of Flory's equation is in fair

agreement (-2. 667 compared to -2. 075) with the correct value;

and coefficient of Z3 is 9. 778 compared with 6. 459 in Equation (IV -5).

The proposal to adopt this new value of C, in general was

not accepted by Orofino and Flory14 who supposed that at higher values

of (X and Z, the original constant would be superior.

Fixman11 proposed to generalize the Flory theory by using

more realistic segment density distribution. But Casassa and

Orofino12 have shown that the coefficient of Z is made even larger



24

by the use of the more realistic segment density distribution. This

lends support to Flory's surmise that the use of a single Gaussian

function has a relatively minor effect in comparison with other

approximations made in the derivation.

The KSR equation can be written as

3

OC -O(=Cg(O()Z (IV-8)

where

g(O()=80C°/(30(°+1)°/° (IV-9)

In deriving this equation, the constant C was set equal to 4/3 to make

an agreement with the coefficient of Z in the exact series expansion.

The KSR equation then gives a value of -O. 2 for the coefficient of Z2.

The Fixman equation when expanded in the series form for

small values of Z corresponds to the linear term of the precise

equation but it leads to the coefficient of Z2 considerably lower than

the precise coefficient (-0. 67 instead of -2. 075).

The Ptitsyn equation when expanded gives the coefficients

4/3 for Z, —2.075 for Z2 and 8. 611 for Z3 in which first and second

coefficients are given correctly but third is slightly overestimated

in comparison with exact values.

The Kurata equation has the three coefficients as 4/3, -8/9

and 88/81. Thus here there is a large deviation of second and third



25

coefficients from actual values, -2. 075 and 6.459 for second and

third coefficients respectively as in Equation (IV - 5).

The FON equation gives the first coefficient as 4/3.

Thus if we judge the theories by the values of the coefficients,

the Ptitsyn theory should be ranked highest, followed by the Flory

theory and then the other theories. However, this kind of criterion

is practically meaningless because it should be remarked that the

inferiority of these equations to Flory' s in predicting the numerical

coefficients in expansion series need not be regarded as a serious

matter, since the convergence of the series is so slow that for all

but the smallest value of Z, terms well beyond the second play quite

a dominant role.



CHAPTER V

RELATION BETWEEN EXPANSION FACTOR Oé,

INTRINSIC VISCOSITY [77 ] , AND INTRINSIC VISCOSITY

AT THE FLORY (THETA) TEMPERATURE [7716'

In 1949, Flory31 developed an approximate theory of the

excluded volume effect in a polymer chain and indicated that the

mean square radius of gyration < 82 > of a chain of N links becomes

asymptotically proportional to a power of N higher than first. It

has been concluded that the dependence of intrinsic viscosity on

molecular weight arises from the excluded volume effect rather

18, 38

 

than the draining effect of solvent molecules. The essential
 

correctness of this View is now widely accepted, but there remain

several deviations of the theory from experiments. For example,

in the case of solutions of polystyrene in cyclohexane, if the theory

is tested by plotting the intrinsic viscosity against the radius of

gyration using a log log scale, the points fall on a line of slope 2. 2,

instead of three as anticipated. 20 This implies that the hydrodynamic

radius of a polymer coil is not always proportional to the statistical

radius.

26
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According to Flory and Fox4’ 1°

[hi/[n]6= o<3 (v-1)

But Kurata and Yamakawa17 have developed a perturbation theory

of the intrinsic viscosity, taking the non -Gaussian character of

chains into account and derived

n

[DI/IUIQ=CX ,n=2,43 (V-2)

That the exponent n is lower than 3 has also been confirmed by the

experiment of Schulz, Kirste and Inagaki40 for the polymethyl

methacrylate -butylchloride sys'tem .

Since the equation of Kurata and Yamakawa is now known

to be theoretically correct at least for values of (X close to unity,

this difference implies that Equation (V - 1) cannot be a generally

valid relation. Also there exists no theory which justifies the

validity Of Equation (V - 1) for larger values of (X. Thus at present

no general relation is available which permits unambiguous calcula—

tion of (X from measurements of limiting viscosity number alone.

Nevertheless, numerous existing data appear to support the empirical

validity of the Flory-Fox viscosity relation given by Equation (V — 1).

In view of this somewhat confusing situation, all the proposed

equations for excluded volume effect will be tested by calculating 04

from Equation (V - 1) as well as Equation (V —2),



PART II

COMPARISON OF DIFFERENT THEORIES WITH EXPERIMENT



CHAPTER VI

SYSTEMS AND SCHEME OF COMPARISON

Systems Studied
 

Broadly the systems of polymers and solvents can be

classified into two categories —-polar and nonpolar. Again the

sub -classification may be made as,

a. nonpolar polymer and nonpolar solvent,

b. nonpolar polymer and polar solvent,

c. polar polymer and nonpolar solvent,

d. polar polymer and polar solvent.

The data for all the systems studied in this work were obtained from

the literature. The systems studied are:

1. Nonpolar polymer and nonpolar solvent

Polystyrene-benzene (P-B) at 30° C. (Reference 44),

same at 25° C. (Reference 51).

Polystyrene —toluene (P— T) at 25° C. (References 45

and 52), same at 30° C. (Reference 53).

29
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2. Polar polymer and nonpolar solvent

Polymethyl methacrylate — toluene (PMMA- T) at 27° C.

(Reference 46).

3. Polar polymer and polar solvent

Polymethyl methacrylate - methyl isobutyrate (PMMA -

MIB) at 27° C. (Reference 47).

All the polymers studied were quite narrow -molecular -weight-

distribution polymers. An attempt was made to get as wide a

range of molecular weights as possible. Accurate intrinsic viscosity

data at temperatures very near to the Flory temperature are hard

to find.

Two sets of data for 04 from light scattering were used as

"control data. " They are polystyrene-toluene (PS- T) at 20° C.

(Reference 48) and polyvinyl acetate-methyl ethyl ketone (PVA-

MEK) at 25° C. (Reference 36).

The Xvalues used for comparing Flory' s theory with

experiment were obtained from References 49 and 50.

Scheme of Comparison
 

The equations are

Flory: (X5 -O(° = C Z (VI—1)



31

KSR: (O(3 -O() (1 + 1/3 0(2)3/2 = C Z (VI-2)

3 5 3

Kurata: ((X —1)+3/8(O( —O( )=CZ (VI-3)

Fixman: 0(3 - 1 = C Z (VI-4)

Ptitsyn: (4. 680<2 - 3. 68)°/° - 1 = C 2 (VI—5)

FON: (X5 - 0.493IO<3 — 0.24996X'1'332 sin (1.073 InOO

- 0. 5069 O(°1'°°° cos (1.073 lnCX) = C Z (VI-6)

Whe re the constant C for each equation is different. Flory' 3

equation may be written as

0(5 - (X3 = 2 CM (1/2 -X) M”2 (VI-7)

For comparison of this equation with experiment, one must calculate

the expansion factor function (O( 5 - 04°) from experimental O( values

and the theoretical calculation from the known theoretical or

expe rimental (other than viscosity measurements) values of X.

The most straightforward manner to examine these equations

is to make the following plots and study the deviations from the

eXpe cted shapes of the plots. The plots are made using the 04 values

fr0m

Mam/17716
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and

0(2'43=1771/17)19

to test these latter two equations also.

1. Expansion factor functions of all the equations against MHZ.

It is expected that these plots should give straight lines

passing through the coordinate origin because the form of

each equation is y = mx although there is no physical mean-

ing to the extrapolation of the line to the zero molecular

weight.

2. Expansion factor function/MU2 against M, molecular

weight. These plots should give horizontal lines because

the quantities on the right hand side are independent of

molecular weight and characteristic of a particular polymer-

solvent system.

3. Expansion factor function/MU2 against (X, the expansion

factor. These plots also should give horizontal lines for

the same reason as in 2 above.

It was thought desirable to have some ”control plots. "

These plots were made using above equations (VI- 1 to VI-6) using

the (X values from light scattering, thus avoiding the doubtful

CXvaluesfromO(°=[’Y}]/[77]6 orO(°'4°=[7}]/[77]6 . Thus
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one can make the comparison of different equations with experiment

irrespective of the above O( values since the exact value of the

exponent n in an = [’77 ] /[77 la is unknown.



CHAPTER V II

FLORY THEORY

Flory' 3 equation is

0(5 -013 = 2CM Wu - 6/T)M1/2 (VII-1)

or C15 —O(3=2CM(1/2 -X)M1/2 (VII-2)

5 3 1/2

or O< -O< = 2CM (1/2 - XS - XH) M (VII-3)

For nonpolar systems according to Hildebrand -Scatchard43 regular

solution theory

V
1 2

XHfl—R-T—(61-62) (VII-4)

where XH is the heat parameter, XS is the entropy parameter of

the total parameter X (X is fully described in Chapter I), V s1 i

the molar volume of the solvent, and CS is the solubility parameter,

subscript 1 and 2 referring to solvent and solute respectively. For

the system of nonpolar polymer and nonpolar solvent the Flory

equation is

34
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V

5 3_ 1 2 1/2
O< -o< -2cM 1/2-Xs-fi.(51-62) M (VII-5)

A similar equation for polar systems is also available49 but it will

not be considered here. For nonpolar systems XS equal to 0. 34

was taken as suggested by Blanks5O and V1 and 6 values were

obtained from Reference 49. From CX values from the literature

expansion factor function was calculated and thus both sides of the

equation were compared. Tables VII-1, VII -2 and VII -3 show this

for nonpolar systems. It was observed that the theoretical calcula-

tion of the Flory equation was very sensitive to X values. It can be

seen that in most of the nonpolar systems of a polymer and a solvent,

the theoretical calculation is greater than the expansion factor

function. Also this difference is found to decrease in general as the

value of (X increased. Tables VII-1, VII-2 and VII-3 show this.

The general trend, at least for the nonpolar systems, is that below

the value of O< equal to about 1. 2, the theoretical calculation is

twice or more than twice the expansion factor function. However,

this must be determined carefully in the future by running a series

of experiments at different values of (X. This sort of experimental

data at low values of 04 is hard to find and also it is liable to serious

experimental errors.

For polar systems (Table VII -4) the theoretical calculation

of the equation was done by finding the X values as shown in
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Reference 49 using XS equal to 0.34 as suggested therein. It was

observed that the theoretical calculation was consistently throughout

the range of (X values far greater than (4 to 5 times) the experimental

value of the expansion factor function. Also the theoretical calcula-

tion of the equation was extremely sensitive to the X values. This

implies that XS may not be 0. 34 for the systems where the above

fact was observed. It should be kept in mind that the calculation of

the XH value is subject to the limitations of the Hildebrand-

Scatchard theory. From the above observations one may suggest

that the correction terms which may be incorporated in Flory' 3

equation to improve it may be different in different cases depending

on the type of the polymer -solvent system. It was observed that a

small change in the value of X altered the value of the theoretical

calculation to a large extent. This observation warrants a new

investigation in the value of XS, since XS is a function of the size

and shape of the molecules in solution.

Stockmayer10 has strongly'suggested that the factor C
M

in Flory' 3 equation should be replaced by 0. 49 C for temperatures
M

near the Flory (theta) temperature on the basis of the calculation
 

of X from Flory' 3 equation and by some method other than the

viscosity measurements. He found that Flory's equation gave the

value of (1/2 - X) exactly half the value of (1/2 - X) obtained by the
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other method. He7 has also shown that the Monte Carlo calculations

of Wall and his co-workers15 are in distinctly better agreement

with the lower value of the constant in Flory' 5 equation. This

seems to be quite valid as can be observed from Tables VII-1,

VII -2 and VII -3. One cannot say that the same is true for the polar

systems also without having the correct values of X to compare the

value of the expansion factor function with theoretical calculations.

Thus no conclusion can be made for the nonpolar systems regarding

the value of C without having the correct values of X.
M

The proposal to adopt the new value of the constant CM in

general was not accepted by Orofino and Flory14 who supposed that

at higher values of the expansion factor O(, the original constant

would be superior. Tables VII-1, VII-2 and VII -3 support the

conclusion of Flory and Orofino. It seems, however, that over a

certain range of O< values, the original constant would be superior

and the determination of this range (X values for different systems

requires exhaustive experimentation.

Plot of the Expansion Factor Function Against Mll2

WithO<=(I_72,I/Iv;2hv1)”§

Figure 1 shows this plot for P-B with a calculated from

[7]] H7716 = (X3. The data with the Flory equation reasonably
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fall on a straight line; however, the line does not pass through the

coordinate origin. The observation is similar for P-T in Figure 2.

Here higher 04 values are not available. For PMMA -T in Figure 3

also the observation is similar except that the point with the highest

value of (X falls outside of the straight line. This could be due to

an experimental error. For PMMA -MIB in Figure 4, there is a slight

scatter of the points from the straight line. In all but the last case,

there is a small positive intercept on the abscissa if the lines are

extended towards the coordinate origin. The lines have not been

extended towards the origin because very low values of OC (near to 1)

are not available. Okada et a1. 41 have observed downward as well

as upward curvature at extremely low values of O(. The positive

intercepts on the abscissa axis indicate that Flory' 3 equation is

adequate only in the region of molecular weights above a certain

value which depends on the kind of Solvent (and probably on tempera -

ture also). Below the molecular weight corresponding to the intercept

on the abscissa axis, the factor (X is sensibly equal to unity indepen—

dent of molecular weight. For PMMA -MIB (Figure 4), the intercept

on abscissa axis is negative. It is not clear whether this is due to

experimental error or whether it reflects a certain specific inter—

action between methyl methacrylate monomer and methyl isobutyrate

molecule. One has to note that in the region of (X close to unity,
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plots of this type are very sensitive to small errors in the

measurement of [77 ] . It appears therefore a little hazardous to

extend the curves to the coordinate origin in absence of data at

values of 0( close to unity.

Plot of (Expansion Factor Function)/M1/2

Against M with 04 = ([31]/[7l]%’)1/3

 

Flory' 3 equation predicts that if one plots (0(5 - O('°)/M1/2

against M, the quantity should be independent of M at every given

temperature. However, a marked dependence of ((15 - CX°)/M1/°

on M has been observed for several polymer solvent systems by

Krigbaum and Flory. 4° Figures 5, 6, 7 and 8 show these plots for

P—B, P—T, PMMA—T and PMMA-MIB respectively. Figure 5 for

P-B shows that the points are widely scattered. Figure 6 for P-T

shows that there is a continuous rise in the value of (0(5 - 0(°)/M1/2

as M increases. Figure 7 for PMMA -T shows that there is a uniform

marked dependence of (04° - CX°)/M1/2 on M as observed by Krig-

baum and Flory. 4° Figure 8 for PMMA —MIB shows a somewhat

different behavior than that observed above. Here data show a

drooping line as molecular weight increases. However there is a

scatter of points about, this line. It appears that X is a function of

M for nonpolar-nonpolar systems but not for polar polymers.
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Plot of (Expansion Factor Function)/M1/ 2

Against O< with (X = ([m/[UJQHIB

 

A plot of this kind should give a horizontal line. Figures 9,

10, 11, and 12 show these plots for all the four systems. For P-B

(Figure 9) there is a wide scatter of points while for P-T (Figure 10),

the points show an increase in value as (X increases. For PMMA -T

(Figure 11), first the plot increases gradually and then decreases

gradually, thus showing a distinct maximum as in the case of a plot

of ((X5 - CX3)/M1/2 YE. M. For PMMA—MIB (Figure 12), the plot

shows points falling downward as 0( increases. Thus in all cases,

these plots are similar to the plots of (O(5 —O(3)/M1/2 against M

as expected.

All the three kinds of plots show deviations from the expected

shapes. This discrepancy may be attributed first of all to the

incorrectness of (X—values obtained by CC: ([77] /[77]6)1/3 from the

viscosity data and secondly to the imperfection of Flory' 3 equation.

This imperfection could be corrected by obtaining a correct (X value

from [77] and [7719 or by incorporating a molecular weight dependence

on X since XS is a function of size and shape of a molecule.

Plots with (X = ([71] H72LéDII
Z' 43

The expansion factor function with the above value of (X is

far different from the theoretical calculations with X values as
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compared to the calculations with (X = ([77] /[77]Q)1/3 (this is quite

obvious), thus Opposing the new value of (X. Figures 13, 14, 15,

and 16 show plots of (O(5 -O(3) against M1,2 and it is observed that

the scatter of the points is much more than the case where

0(3 = [77] ”7719. The same is true-with all the other plots (Figures 17 -

24). The points are more widely scattered.

Plots with (X Values from Light Scattering
 

Figures 25 and 26 show the plots of the expansion factor

function against M1,2 for PS -T and PVA -MEK respectively with

O( values from light scattering obtained from the literature. Un-

fortunately the data are not available over a wide range. In both

the cases, the points are_f_a_r_ from a straight line passing through the

coordinate origin. Figures 27 and 28 show (0(5 -0( 3)/M1/2 against

M for the two systems. The plots do not show any horizontal line.

Thus Flory's equation does not show any good correlation with O(

values obtained from the light scattering. This is also the case

/21

with the plots of ((X5 - 0(3)/M against 0( as shown in the

Figures 29 and 30.
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Figure 15. --Expansion factor functions v_s_ M”2 for polymethyl

methacrylate in toluene at 27°C. with

o< = ([771/[7719>1’2'43.
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Figure 28. -- Expansion factor functions/M1,2 vs M for polyvinylchloride-

methyl ethyl ketone at 250 C. with 0( from light scattering.
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CHAPTER VIII

OTHER THEORIES

Kurata, Stockmayer and RoiJgJKSR)

and Fixman Theories

 

 

The KSR and Fixman equations will be discussed together

since it can be seen from the figures that both equations give points

very close to each other.

Plots of Expansion Factor Functions

iflgiiinst M1/2 with o< = (ml/[1115111

 

/3

In the cases of P-B and PMMA -T, as shown in Figures 1

and 3, it can be observed that at high values of (X or for higher

molecular weights, the points give a curve. From this it seems

that the KSR and Fixman equations are appr0priate for relatively

low molecular weights. The data for P-T (Figure 2) and PMMA-

MIB (Figure 4) fall reasonably on a straight line. The lines do not

pass through the coordinate origin and in the cases of PMMA -T

(Figure 3) and PMMA -MIB (Figure 4) they show negative intercept
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on the abscissa axis. Other observations are similar to those

observed in plots from Flory' 3 equation.

Plots of Expansion Factor

1/2_Against M

 

Functions /M
 

Figures 5-8 show these plots for P-B, P-T, PMMA -T and

PMMA -MIB respectively. In these plots the points are much less

scattered above the horizontal lines than the points in plots from

Flory's equation. In the plot for P-B (Figure 5), for small values

of molecular weight, one can observe an upward curve. This may be

due to an error in the values of intrinsic viscosities at low values

of molecular‘weight. As the molecular weight increases, there is

a slight fall in the curve which finally becomes a horizontal line at

higher molecular weights. This observation supports the validity of

these equations at higher molecular weights which is grits in contrast

to the observation made for plots of expansion factor function against

MHZ. In the plot for P-T (Figure 6), the deviation of points is much

less as compared to Flory' s theory, although the points do not fall

on a horizontal line. . Here the line slowly rises with molecular

weight with a slight scattering of the points about this line. For

PMMA -T (Figure 7) and PMMA -MIB (Figure 8), the line slowly

falls with an increase in the molecular'weight.
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Plot of (Expansion Factor

Function)/M172 Against

o< with o<=<IQIIInJé111/3

 

 

Figures 9-12 show these plots. For P-B (Figure 9) one

observes a slight upward curvature about the horizontal line and

then a fall with a final horizontal line. For P-T (Figure 10) one

observes a rise in the plot with increasing 0C values. For PMMA -T

and PMMA -MIB (Figures 11 and 12) there is a uniform fall in the

plot with increasing (X values.

From all the above plots, it can be seen that the KSR and

Fixman equations represent the-experimental observation better

than the Flory equation.

Plots with O( =(l7ll/[71114’1/2
'43

No noticeable improvement in the plots is observed with

the above (X values (Figures 13 -2 4).

Plots with 04 Values Direct

from Light Scattering_

 

 

Figures 25—30 show different plots for both the systems.

Figures 25 and 26 show the plots of eXpansion factor function against

M1,2 for PS-T and PVA -MEK respectively. The plots are far

from expected shapes and are no better than those obtained with
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Flory's equation. Figures 27 and 28 show the plots of (expansion

1/2
factor function)/M against M. The representation is much better

than Flory' 3 equation. Similar is the case with the plots of (expansion

1/
factor function)/M 2 against 0( as shown in Figures 29 and 30.

Kurata Theory
 

The Kurata equation shows a slight upward curvature for

P-B and PMMA -T in the plots of expansion factor function against

M”2 as shown in Figures 1 and 3 respectively. This is similar to

that observed in the same plots for the KSR and Fixman equations

(Figures 1 and 3). In other plots (Figures 2 and 4) the shape is

similar to the plots of KSR and Fixman equations (Figures 2 and 4),

but the scattering of points is slightly more. From most of the

plots one can see that the Kurata plots are similar to the KSR and

Fixman plots with slightly magnified error.

The Kurata and KSR -Fixman plots have much different

”2 against M is plottedshapes when (expansion factor function)/M

for PVA -MEK (Figure 28) and the same against (X is plotted for

PS -T (Figure 29) and PVA -MEK (Figure 30) with (X calculated

from light scattering. In most of the other plots one observes a

little more deviation in the Kurata plots than in the KSR -Fixman

plots .
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Fujita, Okada and Norisuye (FON) Theory
 

Figure 1 shows a plot of expansion factor function against

1/2
M for P—B with (X = ([77] /[77]6)1/3. It can be seen that at

higher values of molecular weight, the points are so scattered that

it is hard to draw a line through them. While for the same plot,

a considerable improvement is observed with O( = ([77] /[77]€)1/2' 43

as shown in Figure 13.

Other plots shown in Figures 2, 14, 15, and 16 show shapes

similar to those obtained before.

The plot of (expansion factor function)/M1/2 against M

(Figure 5) shows a wide scatter about a horizontal line and this is

1/2' 43, as can be seen in Figure 17.even worse when (X = ([77] /[77]6)

for P-B. Similar is the case for the same plots for P-T as shown

in Figures 6 and 18. For PMMA -T, the plot shows a good horizontal

line as shown in Figure 7; but the same plot with O< .—. ([72] [[n16)1/2. 43

shows an upward curve with a distinct maximum (Figure 19), The

plot for PMMA -MIB (Figure 20) shows a downward curve.

1/2

Figure 9 shows a plot of (expansion factor function)/M

,3. There is an upwardagainst CX for P-B with (X = ([771/[77]6)1

curve with the points widely scattered about the curve. The same

1/2.43
plot when made with O( = ([77] H7719) gives points scattered

at random as shown in Figure 21. Figures 10 and 22 show plots
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for P-T with both values of 0( respectively. Both plots show an

increase in the plot with increasing 00

Figure 11 shows a surprisingly good horizontal line with

(X: ([77] /[7}]6)1/3, with the point with highest (X falling out of the

line. Figure 23 shows the same plot with CX = ([77] /[77]6)1/2' 43.

There is an upward curve. Figures 12 and 24 show plots for PMMA-

MIB with both values of (X respectively. There is a fall in the line

with increasing (X.

Figures 25-30 show plots of FON equation with (X values

from light scattering. It can be seen that the FON equation shows

the maximum deviation from the expected shapes.

Ptitsyn Theory
 

Expansion Factor Function

Against M1,2 with

1 3

o< = ([711 @1917

 

 

Figure 31 shows this plot for P-B. At the low values of

M, the plot is a straight line, but not passing through the coordinate

origin. At high values, there is a smooth curve, with points slightly

scattered about this curve. Figure 2 shows the plot for P-T. The

behavior here is similar to that observed with other equations.

Figure 3 shows the plot for‘PMMA -T. The plot is a straight line

at low values of M, almost passing through the coordinate origin.
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At high values, it shows a curve. Figure 4 shows the plot for

PMMA -MIB. Here the points are too scattered to draw any line

OI" curve.

(Expansion Factor

Function)/M1/ 2

with (X = ([22] ”7.1163

 

Against M

1/3

 

Figures 5-8 show these plots. For P-B and P-T (Figures 5

and 6), the deviation from a horizontal line is the least for Ptitsyn

equation in comparison with all the other equations. Figure 7 shows

this plot for PMMA -T where the curve continuously falls as molecular

weight increases. Similar is the case with PMMA -MIB (Figure 8),

where there is a downward curve.

(Expansion Factor Function)/M1/ 2

Against Oé

 

Figure 9 shows an almost horizontal line for P-B. In the

case of P-T (Figure 10), there is a very gradual rise with increasing

“values. Figure 11 shows practically a horizontal line for

PMMA -T, the point with the highest value of (X falling out slightly.

For all the above cases, the behavior of the Ptitsyn equation is

closest to the expected behavior. But in the case of PMMA -MIB,

as shown in Figure 12, the behavior of the Ptitsyn equation is the

worst. It is not clear why it is so.
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No improvement is observed when all the plots are made

with (X values from 0(2' 43 = ([77] /[77]6) (Figures 14, 24, and 31).

Plots with 0( from

Light Scatterg

 

 

Figures 25-30 show these plots. Plots of (expansion

”2 against M and the same against (X (Figures 27-factor function) /M

30) show much less deviation from a horizontal line as compared to

other equations except the equations of KSR and Fixman where the

behavior is pretty much the same.



CHAPTER IX

DISCUSSION OF DIFFERENT THEORIES

Flory Theory
 

The comparison of the values of the expansion factor function

with the experimental (X values and the theoretical calculations with

the X values shows that for the nonpolar polymer -nonpolar solvent

systems, the theoretical calculation is usually greater than the

expansion factor function by a factor of 2 or more for the (X values

roughly less than 1. 2.

In the light of the above observations and other defects

observed in the Flory equation when compared with the experiment,

one has the following remarks and discussion when examining this

equation.

Flory and Orofinol4 observed the values of the quantity

(1/ 2 - X ) exhibiting a slight dependence on the molecular weight,

although no such account is taken care of in this equation. In most

cases (1/2 - X) decreases as the molecular weight increases.

This could be due to:
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(a) deviation of the spatial distribution of the molecule from

the assumed Gaussian form,

(b) failure to consider the contiguity of molecular segments

in space,

(c) neglect of higher terms in derivation of the expression

for excluded volume effect,

(d) effects of molecular heterogeneity which may increase with

molecular weight of fraction.

(a) is investigated by Flory14 and he believes it to be an

unlikely source of the variation observed. No satisfactory theory

is available for dealing with (b). Possibility (c) may be responsible

at least in part for the apparent molecular weight dependence of the

quantity (1/2 -X ). With regard to possibility (d), if the molecular

heterogeneity of the polymer fraction increases with molecular

weight owing to the decreasing efficiency in separation, then

accordingly this would be reflected in values of (1/2 - X).

As is well known, Fox and Flory16 have pointed out that the

constant 95 takes a common value, 2. 1 X 1021, not only for suf-

ficiently large values of M, but also down to low values of M.

Kurata and Yamakawa17 have shown that the counter contributions

of the draining effect and the volume effect make q) approximately

independent of M over wide ranges insofar as the argument X ,
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the draining parameter of Kirkwood and Riseman18 theory takes a

value larger than about ten. However, they17 say that as X

decreases beyond ten, the balance inclines toward the draining

effect and a decrease of the Cb values becomes significant. Kurata

and Yamakawal'7 further predict two kinds of deviations of ¢ from

the constancy; one is related to the volume effect and the other is

related to the draining effect and often is observed for relatively

short chains or rigid molecules such as the cellulose derivatives.

They concluded that the draining effect is important for quantitative

interpretation of intrinsic viscosity as well as the excluded volume

effect.

According to Flory and Fox16

3/2 2 3/2 3

6 gb (<S >0) a

[77] = M
 

Numerical Value of?
 

Kurata, Yamakawa and Utiyama19 predict the value of

as 2. 87 X 1021 instead of 2. 1 X 1021. About half this difference,

according to them, is explainable from the polydisperity effect,

but the other half is not by this means.
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Dependence of C25 on Temperature
 

2

Krigbaum and Carpenter 0 showed that the Flory constant

d) should be a decreasing function of temperature, at least in the

vicinity of the theta temperature.

Dependence of ¢ on the

Solvent Nature

 

 

The value of 95 decreases with the increasing expansion of

the polymer coil or the increasing solvent power.

In the vicinity of the Flory temperature, the parameter Z,

hence a, increases rather markedly with the temperature. There-

fore the constant CD is expected to decrease with the temperature

and/or the solvent power. 21 On the other hand, at temperatures

far above the 9 point, this tendency generally becomes weak, although

not completely vanished; and accordingly, the 9b would behave, at

least approximately, like a constant as claimed by Flory and Fox.

Krigbaum22 made an attempt to explain the variation in

<o<5 -a3)/M1’2 by means of a theory that assumes that < r2 > and

< S2 > differ to a different extent on swelling. In conclusion it may

be said that it may be possible to improve Flory' 3 equation, at

least for the nonpolar systems, so that it can represent the experi-

mental observations better by multiplying ZCM (1/2 - X) M”2 by
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(1 - 133M) where B is a constant and M is molecular weight, such

that at high values of M, 133M would be much less than 1 while at

low values of M, (1 - BEM) would tend to 1/2.

Kurata, Stockmayer and Roig (KSR)

and Fixman Theories

 

 

In all the plots it is observed that the points due to equations

from the above two theories nearly coincide. In fact, the KSR

equation is also in good agreement with the numerical solution of

Fixman differential equation, Equation (11 -3). Both the equations show

(0(5 -0( 3)/M1/2 to be an increasing function of Z unlike Flory' 3

equation, as observed experimentally. In comparison with the Flory

plots, the plots from the above two equations show much less

scattering of points. There is no definite evidence in the improvement

of the plots when (X was calculated from O( = ([77] /[77]6)1/2' 43,

as strongly suggested by Ohyanagi and Matsumoto. 28

In the derivation of the KSR equation, instead of a spherical

symmetrical model, an ellipsoidal model with three radii of inertia

—1—Na2+l—<r2>, R2=R2= —Na2

R 36 12 y z 36

2

x

2 . .

was used, where < r > is the mean square distance between the ends

of the chain, N is the number of segments of the chain, a is the

effective length of the link joining neighboring segments, and x, y,
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and 2 denote the three axes. (The axis x coincides with the vector

joining the ends of the chain.) The KSR equation was derived for the

Gaussian chain and its use for chains with volume effects means that

the latter increase only the distance between the ends of the chain

and have no effect on its cross sectional dimensions. This would

lead to a strong dependence of the shape of the chain on volume

effects, which is contrary to the strict theory and experiment. Thus

KSR equation does not in fact involve a more precise model of the

chain (ellipsoidal instead of spherical) but introduces a physically

unjustified assumption that in the limit, the swelling of the chain is

anisotropic. But Kurata, Stockmayer and Roig26 claim that their

equation is in excellent agreement with the Monte Carlo calculations

of Wall and Erpenbeck for a diamond lattice chain and also with

viscosity data for various polymer solutions.

Kurata Theory
 

The Kurata equation shows characteristics somewhere

between the Flory equation and the Fixman equation, as can be

seen from the plots, leaning more toward the Fixman equation.

It shows more scattering than Fixman' 5 equation but less than

. . . a 1/2 . 43

Flory's equation, and scattering 18 more for = ([77] /[77]6) ,

Since this equation is a hybrid of Flory's and Fixman' 3 equations,
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it has inherent weaknesses of both and does not show much

improvement on either of the other two. On the contrary, it seems

Fixman' 3 equation is closer to the experiment than Kurata' s

equation.

Ptitsyn Theory
 

The plots of (expansion factor function)/M1/2 against M

and the same against O< show that the Ptitsyn equation shows

characteristics very much similar to those of KSR and Fixman

equations. (The only difference being that the Ptitsyn equation

shows much less scatter of the points. In fact, the Ptitsyn equation

gave the best plots in most of the cases.) This is because the

Ptitsyn equation is an artificial modification of the Fixman equation.

It seem, the allowance for the non ~Gaussian character of the

function W(h) has led to considerably improved agreement between

this theory and experiment. Kurata29 has observed that in a plot

of (X3 against Z, his equation is closer to that of FWan and Ptitsyn

rather than to that of Flory. This is quite evident since the Ptitsyn

equation is an artificial modification of the Fixman equation.

FI.L'Lita, Okada and Norisuye (FON) Theory
 

The FON equation deviates the most from the experiment.

Fujita et al. 30 observed that in the region of 0(3 up to about 3, their
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equation when plotted for (X3 against Z gives a curve which nearly

coincides with that predicted by the Ptitsyn equation; but beyond

this, the latter yields 0(3 which increases more rapidly with

increasing Z.



CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

Conclusions
 

Flory' s Equation
 

The most important factors that focus one' s attention on

Flory' s equation (XS - (X3 =2CM (1/2 -X) M“2 for improvement

are CM and X . For the nonpolar polymer-nonpolar solvent

systems, the theoretical calculations using X values changed from

nearly the same (in fact a little less) value as that of the expansion

factor function calculated from the experimental values of (X to twice

or more than twice the value of the expansion factor function as 0(

decreased. Accepting Flory's theory, the theoretical calculation

requires an (X dependent adjustment. This adjustment could either

depend on M or X or both.

The expansion factor function (0(5 - 0(3) when plotted

against MI/ 2 gives in most cases nearly a straight line. From

/2

this one can conclude that ZCM (1/2 - X) M1 is not a function

of M.

97
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The plot of (CX5 - 0(3)/M1/2 against M deviated from the

horizontal line at comparatively low values of M. ZCM (1/2 - X) M“2

is not independent of M for polystyrene if M is less than about

3 X 105 but it seems independent of M for M greater than 3 X 105.

It may be possible to rectify this situation by multiplying

”2 by (1 - 133M) where B is a constant such that2CM (1/2 _X ) M

at high values of M, BeM would be muchless than 1, while at low

values of M (1 - BEM) would tend to 1/2. It may be possible to

relate the constant B to the binary integral/8.

For polar systems no clear conclusion can be drawn as in

the case of nonpolar systems unless the independent values of X

are available to make a comparison between the experimental value

of the expansion factor function (Oi5 - 0(3) and the theoretical

1/2. Complete data for only onecalculation of 2CM (1/2 -X) M

system were obtained from the literature. The X values were

obtained from Reference 49. The value of the entropy parameter

XS is suggested as O. 34 and a method of calculation of the heat

parameter XH is shown in the same reference. The use of this

X value made the theoretical calculation of ZCM (1/2 -X) M”2

four to five times larger than the experimental expansion factor

function (as - 0(3) for the system investigated. Also it was

observed that a small variation in the X value altered the value of
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the theoretical calculation to a large extent. This observation

warrants a new investigation in the value of X8' Since XS is a

function of the size and shape of the molecules in solution, it seems

this dependence is very strong in the polar systems.

 

Relation Between [77] , [7)][3 andCX
1, . T

Many workers have strongly suggested that the value of n

in O(n = [771/[7716 should not be 3 but a little less than that. One

suggested value for n is 2. 43. With this value of n, (X was

calculated and the different plots were made, but there was hardly

any improvement observed in the plots. On the contrary, the plots

with n = 3 were closer to the experiment. This shows that n = 3 is

the best so far.

The evaluation of n by light scattering is not strictly pos —

sible because light scattering gives the-change in the radius of

gyration from that at the theta temperature, i. e. one gets

2 2 2

O(L=<S >/<S >0

0(n = [’77] /[77]6 refers to the change in the end -to -end distance of

whereas the expansion factor (X in the equation

a chain, i. e. 0(2 = < r2 >/< r2 >0. (XL and (X are slightly different

as can be seen from the exact series expansion of the two

0(2,:<r2>/<r2> =1+(4/3)Z -. ..

0

0(2 =<S2 >/< S2 >'L =1+(134/105)z-. ..
0
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This shows the limitation of the light scattering data in evaluation

of n.

Ranks of Different Theories
 

If the various theories are ranked on the basis of the plots

made to compare the molecular weight dependence of the expansion

factor with the experiment, then the old theory of Flory is certainly

not the best. Some of the newer theories like the Ptitsyn theory

and the KSR -Fixman theories are closer to the experiment than the

Flory theory, the Kurata and FON theories deviating the most from

the experiment. In spite of this little shortcoming of the Flory

theory, it is the only theory which relates the expansion factor CC

to indepe\ndent1y determined thermodynamic parameters of polymer-

solvent interactions, thus rendering it the mose‘widely applicable

theory currently available.

Future Work Recommended
 

Reliable experimental data is very important to test the

different equations of excluded volume. For this purpose data over

a wide range of (X values at different temperatures for all kinds of

systems are necessary. The basic measurement is intrinsic

viscosity for different systems at different temperatures. Measure -

ment of intrinsic viscosity is very sensitive to slightest experimental
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error. Good temperature control is also very important. Viscosity

of polymer solutions, as determined in capillary viscometers,

depends on the rate of flow of the solution. Depending on the rate

of shear, the viscosity of the polymer solution will be higher or

lower. The viscosities of polymer solutions of the same molecular

weight in the same solvent and at the same temperature, as given

in the literature, show unsatisfactory agreement. This is because

the viscometers used by the different workers had different efflux

times for the same solvent, because the shear rate-was different

in each case. The shear rate, however small, has an effect on

intrinsic viscosity. Therefore the use of a multiple bulb Cannon-

Ubbelhode type viscometer is strongly recommended. All the bulbs

have different shear rates. From this, the viscosity at zero shear

rate can be found out by extrapolation. There are anomalies in the

concentration dependence of viscosity at high dilutions. Rafikov

et al. 27 have described them elaborately. These must be carefully

studied before extrapolation to zero concentration.

Light scattering data for different systems are necessary

over a wide range along with the intrinsic viscosity data to find the

best value of the exponent n in [WI/[7716 = 0(n.

For the comparison of both sides of the Flory equation,

values measured by some method other than intrinsic viscosity
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measurements are necessary, and for this osmometer measurements

are highly recommended.



NOMENCLATURE



NOMENCLATURE

Effective length of a link

Constant

Concentration in gms/IOO c. c.

Constant in the Flory, KSR, Kurata, Fixman,

Ptitsyn and FON equations (Chapter VI)

Constant in Flory' s equation

Base of natural logarithm

Partial molar heat of dilution

Boltzman constant

Constant in the theoretical intrinsic viscosity

relationship [7716 = KM1/2

Intersegmental distance

Molecular weight

104



E
l :4

2

(r >,

<r2>

105

Number and weight average molecular weights

respectively

Exponent on (X in O(n = [77] /[77]6

Number of bonds in a chain

Number of links or segments

Avagadro' 3 number

Mean square and unperturbed mean square distance

between ends of a chain

Gas constant

Radii of inertia in-x, y, and 2 directions respectively

Structural parameter accounting short

Partial molar entropy of dilution

Mean square radius of gyration, the same in absence

of long range interactions, the same in absence of

both long range and short range interactions

Efflux time of solution and solvent respectively out

of a capillary viscometer

Absolute temperature



<
|

w(h)

w(r)

106

Partial specific volume of polymer

Volume fraction of polymer

Molar volume of solvent

Radial distribution function for end -to -end

coordinates of a polymer chain (usually Gaussian)

Pair potential of average force

A parameter of which expansion factor (X is a

single valued function

Greek Symbols
 

Factor expressing the linear deformation of a

polymer molecule owing to solvent interaction,

2 >0)1/2, and the same for

1/2

i.e. O( = (< r2 >/< 1‘

. . . 2 2

radius of gyration, 1. e. (XL = (< S >/< S <0)

Binary cluster integral representing the mutually

excluded volume per segment pair.

Solubility parameters of solvent and polymer

respectively

Viscosity of solution and solvent respectively

Relative viscosity, 77/ 770
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Specific viscosity, nrel _ 1

Intrinsic viscosity, dl/g

Intrinsic viscosity at the Flory temperature, dl/g

Temperature at which chemical potential due to

gelymer segment-solvent interactions is zero and

= 1

Parameter expressing the energy, divided by kT,

of interaction between a solvent molecule and

polymer

Flory' s constant

Flory interaction parameter, heat parameter and

entropy parameter of the same

Parameter characterizing the entropy of dilution

of polymer with solvent
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