PHYSICAL PROPERTIES OF PORTLAND CEMENT CONCRETE WITH SILICONE ADDITIVE

Thesis for the Degree of M.S. MICHIGAN STATE UNIVERSITY Paul Phillip Sulprizio

1961

This is to certify that the

thesis entitled

"Physical Properties of Portland Cement

Concrete with Silicone Additive '

presented by

Paul Phillip Sulprizio

has been accepted towards fulfillment of the requirements for

M.S. degree in Civil Engineering

Major professor

Date 1/1a, th 24, 1961

O-169

ABSTRACT

PHYSICAL PROPERTIES OF PORTLAND CEMENT CONCRETE WITH SILICONE ADDITIVE

by Paul Phillip Sulprizio

In the manufacture of concrete as a structural material, various types of admixtures are added to the concrete mix to alter the mix characteristics as well as the characteristics of the hardened concrete. These admixtures may be classified as air-entraining agents, retarders, accelerators, workability agents, and water-repellent agents. In this study the area of water-repellent concrete will be investigated using several silicone solutions as admixtures. The purpose of the study is to determine the effect of these silicone additives on the physical properties of the concrete.

Preliminary tests were conducted using four types of silicone additives in three basic concrete mixes having different cement contents. The additive coupled with the mix yielding the best performance was selected for more detailed investigation.

Data from flexure and compression tests revealed that mixes containing the selected additive were initially stronger than plain concrete, but as age increased, the effect of the additive decreased. It was also noted that an increase in the water-cement ratio brought about an increase in flexural and compressive strength of mixes with the silicone additive.

Paul Phillip Sulprizio

Based on a limited number of freezing and thawing specimens, the addition of the silicone additive to concrete mixes caused an increase in durability.

Use of the silicone additive in concrete mixes retarded both initial and final time of set. In addition, no effect on the change of volume of concrete was observed.

Fatigue tests showed that the stress level factor had no effect on the probability of failure when the specimen contained the silicone additive.

PHYSICAL PROPERTIES OF PORTLAND CEMENT

CONCRETE WITH SILICONE ADDITIVE

by

Paul Phillip Sulprizio

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Civil and Sanitary Engineering

1961

G 17210 112:131

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to his major professor, Dr. C. E. Cutts, Professor of Civil Engineering, Michigan State University, for his guidance in this investigation, and to Mr. H. A. Elleby, Instructor of Civil Engineering, Michigan State University, for his advice. Gratitude is also extended to Division of Engineering Research and the Dow-Corning Corporation for its support of this project and to the Michigan State Highway Department for the use of their facilities.

TABLE OF CONTENTS

	•	
ACKNOW	LEDGEMENTS	ii
LIST OF	FIGURES	iv
LIST OF	TABLES	vii
LIST OF S	SYMBOLS	xi
Chapter		
Ι.	REVIEW OF LITERATURE	1
II.	INTRODUCTION	4
III.	MATERIALS AND MIX DESIGN	5
I V. '	PROCEDURE OF INVESTIGATION	6
v.	DISCUSSION OF RESULTS	9
VI.	CONCLUSIONS	12
APPENDI	XFigures	16
	Tables	35
BIBLIOGE	АРНҮ	59

Page

LIST OF FIGURES

Figure		Page
1.	Flexure-age curve, 5 sacks/yd 3 , average of mixes A and	
	B, plain concrete and silicone additives DC-772, DC-771,	
	XR-8-0036, QZ-6208	16
2.	Flexure-age curve, $6 1/2 \text{ sacks/yd}^3$, average of mixes A	
	and B, plain concrete and silicone additives DC-772,	
	DC-771, XR-8-0036, QZ-6208	17
3.	Flexure-age curve, 8 sacks/yd ³ , average of mixes A and	
	B, plain concrete and silicone additives DC-772, DC-771,	
	XR-8-0036, QZ-6208	18
4.	Compression-age curve, 5 sacks/yd ³ , average of mixes A	
	and B, plain concrete and silicone additives DC-772,	
	DC-771, XR-8-0036, QZ-6208	19
5.	Compression-age curve, $6 1/2 \text{ sacks/yd}^3$, average of mixes	
	A and B, plain concrete and silicone additives DC-772,	
	DC-771, XR-8-0036, QZ-6208	20
6.	Compression-age curve, 8 sacks/yd 3 , average of mixes A	
	and B, plain concrete and silicone additives DC-772,	
	DC-771, XR-8-0036, QZ-6208	21
7.	Durability-sacks/yd ³ curve, 5, 6 1/2, and 8 sacks/yd ³ ,	
	average of mixes A and B, plain concrete and silicone	
	additives DC-772, DC-771, XR-8-0036, QZ-6208	22
8.	Flexure-age curve, 5 sacks/yd 3 , mixes C, D, and E, plain	
	concrete and silicone additive DC-772	23

iv

Figure

9.	Flexure-age curve, 5 sacks/yd ³ , average of mixes A,	
	B, C, D, and E, plain concrete and silicone additive,	
	DC-772	24
10.	Flexure-age curve, 5 sacks/yd ³ , average of mixes A,	
	B, C, D, E, and I through Q, plain concrete and silicone	
	additive DC-772	25
11.	Compression-age curve, 5 sacks/yd ³ , mixes C, D, and	
	E, plain concrete and silicone additive DC-772	26
12.	Compression-age curve, 5 sacks/yd ³ , average of mixes	
	A, B, C, D, and E, plain concrete and silicone additive	
	DC-772	27
13.	Compression-age curve, 5 sacks/yd ³ , average of mixes	
	A, B, C, D, E, and I through Q, plain concrete and	
	silicone additive DC-772	28
14.	Durability-sacks/yd ³ curve, 5, $6 \frac{1}{2}$, and $8 \frac{1}{2}$ sacks/yd ³ ,	
	average of mixes A, B, C, and D, plain concrete and	
	silicone additives DC-772, DC-771, XR-8-0036, QZ-6208	29
15.	Probability of failure-cycles to failure curve, fatigue	
	failure of concrete using a complete stress reversal of	
	.4 f_r , 5 sacks/yd ³ , mixes I through Q, plain concrete and	
	silicone additive DC-772	30
16.	Probability of failure-cycles to failure curve, fatigue	
	failure of concrete using a complete stress reversal of	

Page

17.

. 425 f_r, 5 sacks/yd³, mixes I through Q, plain concrete and silicone additive DC-772 31 Probability of failure-cycles to failure curve, fatigue

LIST OF TABLES

Table		Page
1.	Control mix proportions for 5, 6 1/2, and 8 sacks/yd 3	35
2.	Amount of silicone additives used based upon the weight	
	of cement per mix	35
3.	Physical properties of the silicone additives	35
4.	Flexure, compression, and durability data, 5, $6 l/2$, and	
	8 sacks/yd ³ , mixes A and B, plain concrete \dots	36
5.	Flexure, compression, and durability data, 5, $6 l/2$, and	
	8 sacks/yd ³ , mixes A and B, silicone additive DC-772	37
6.	Flexure, compression, and durability data, 5, $6 l/2$, and	
	8 sacks/yd ³ , mixes A and B, silicone additive DC-771	38
7.	Flexure, compression, and durability data, 5, $6 l/2$, and	
	8 sacks/yd 3 , mixes A and B, silicone additive XR-8-0036 .	39
8.	Flexure, compression, and durability data, 5, $6 1/2$, and	
	8 sacks/yd ³ , mixes A and B, silicone additive QZ-6208	40
9.	Summary of flexure results, percent gain of silicone	
	additive mixes over plain concrete, 5, $6 1/2$, and 8 sacks/	
	yd ³ , mixes A and B	41
10.	Summary of compression results, percent gain of silicone	
	additive mixes over plain concrete, 5, $6 l/2$, and 8 sacks/	
	yd ³ , mixes A and B	41
11.	Summary of flexure results using averages of mixes A and	
	B, average percent gain of silicone additive mixes over	
	plain concrete, 5, 6 $1/2$, and 8 sacks/yd ³	42

12.	Summary of compression results using averages of mixes	
	A and B, average percent gain of silicone additive mixes	
	over plain concrete, 5, 6 $1/2$, and 8 sacks/yd ³	42
13.	Air content and slump for all silicone additive mixes and	
	plain concrete, mixes A and B	43
14.	Flexure and compression data, 5 sacks/yd ³ , plain	
	concrete, mixes A, B, C, D, and E	44
15.	Flexure and compression data, 5 sacks/yd 3 , silicone	
	additive DC-772, mixes A, B, C, D, and E	45
16.	Summary of flexure and compression data, 5 sacks/yd 3 ,	
	plain concrete and silicone additive DC-772, mixes A, B,	
	C, D, and E	46
17.	Flexure and compression data for fatigue companion	
	specimens, 5 sacks/yd 3 , plain concrete, mixes I through Q	47
18.	Flexure and compression data for fatigue companion	
	specimens, 5 sacks/yd 3 , silicone additive DC-772, mixes	
	I through Q	50
19.	Summary of flexure and compression results, percent	
	gain of mixes with silicone additive DC-772 over plain	
	concrete, 5 sacks/yd ³ , mixes I through Q	53
20.	Flexure and compression data for fatigue companion	
	specimens, average results for plain concrete and silicone	
	additive DC-772 mixes, 5 sacks/yd 3 , mixes I through Q	54

viii

Page

21.	Average flexure and compression results for fatigue	
	companion specimens, plain concrete and silicone	
	additive DC-772 mixes, 5 sacks/yd ³ , mixes I through Q	55

22.	Summary of flexure and compression results for fatigue	
	companion specimens, percent gain of mixes with silicone	
	additive DC-772 over plain concrete, 5 sacks/yd 3 , mixes	
	I through Q	55
23.	Durability data for plain concrete, 5 sacks/yd 3 , mixes	
	A, B, C, and D	56
24.	Durability data for silicone additive DC-772 mixes, 5	
	sacks/yd ³ , mixes A, B, C, and D	56
25.	Summary of durability data, average percent gain in	
	durability of silicone additive DC-772 mixes over plain	
	concrete, 5 sacks/yd ³ , mixes A, B, C, and D	57
26.	Average percent of volume change for plain concrete and	
	silicone additive DC-772 mixes, 5 sacks/yd ³	57
27.	Air-content, slump, water-cement ratio, and time of set	
	for plain concrete and silicone additive DC-772 mixes, 5	
	sacks/yd ³ , mixes C, D, and E \dots	57

28.	Air-content, slump, water-cement ratio for plain	
	concrete and silicone additive DC-772 mixes, 5 sacks/yd 3 ,	
	mixes I through Q	58

Page

29.	Number of cycles, N, to failure and probability of failure,	
	p, for three stress levels, plain concrete and silicone	
	additive DC-772 fatigue specimen mixes, 5 sacks/yd 3	
	mixes I through Q	58

Page

LIST OF SYMBOLS

f_'	ultimate strength in compression (psi)
f r	modulus of rupture (psi)
E	dynamic modulus of elasticity (psi)
W	weight of the specimen (lbs)
С	a constant shape factor for a freeze-thaw specimen
N'	actual life of a freeze-thaw specimen (cycles)
М	expected life of an air-entrained specimen (cycles)
Р	percent reduction of the dynamic modulus of elasticity
	at which failure occurs (percent)
DF	durability factor (number)
р	probability of failure of a fatigue specimen (percent)
m	total number of fatigue specimens (number)
u	a rank ranging from one to m in order of increasing
	fatigue life for fatigue specimens tested at one stress
	level (number)

N number of cycles to failure of fatigue specimen

I. **REVIEW OF LITERATURE**

Silicone solutions in liquid form have been used as a spray or dip to improve the resistance of poured concrete, brick, sandstone, and other building materials to freezing and thawing action. This process has proven to be quite effective on both plain and air-entrained concrete (1). More recently, limited investigations of the effect of silicone solutions as admixtures in Portland Cement concrete have been made both here and abroad.

In 1957, Scheribel and Supinger (2) conducted preliminary studies on the effect of silicone additives DC-772 and DC-771 when used as an admixture. Compression tests were performed at two, seven, and twenty-eight days of age on a total of sixteen specimens. One control mix and three mixes each of the silicone additives were made with varying concentrations of the silicone solids. Water absorption and time of set tests were also carried out. Results indicated that the addition of small amounts of the silicone additives increased the compressive strength considerably. It was also noted that the silicone additives produced a retarding effect on the concrete mix. Neither of the silicone additives had any effect on the water absorption properties of the concrete mixes. Of the two silicone additives, DC-772 yielded better results. The optimum amount of dosage appeared to be between 0.2 and 0.4 percent of the total solids of the solution based on the weight of the cement used in the mix.

In the same year Peterson (3) carried out laboratory compression tests on mixes containing the silicone additive DC-772. In addition, field compressive tests were performed on specimens taken from an experimental highway section which was poured with varying concentrations of the silicone additive. Once again the optimum amount of the silicone additive was in the range 0.2 to 0.4 percent of total solids based on the weight of cement in the mix. A later study made by Peterson confirmed the compression strength data obtained earlier and also revealed that the silicone additive DC-772 did not lose its effectiveness at ages of sixty-one and one hundred and twenty-four days. The control mix was tested at seven and twenty-eight days of age and was assumed to gain in compressive strength thereafter.

In 1959, Professor V. M. Moskveen, Director of Technical Sciences of the Academy of Building and Architecture in the USSR (4), conducted experiments on the effect of varying concentrations of the silicone additive GKJ-94 on the compressive strength, density, water absorption, time of set, and durability of concrete mixes. The water absorption was determined by weighing saturated concrete beams which had been previously dried out to a constant weight. No information is available on the control mixes, number of specimens tested or the methods used to determine density and time of set. Prior to the freezing and thawing tests the specimens were saturated in a five percent solution of sodium chloride. They were then placed in pans containing the five percent sodium chloride solution, transferred to the freezing device for a period of sixteen hours and then allowed to thaw for eight hours. Moskveen observed from these experiments that the compressive strength of the concrete containing silicone additive GKJ-94 was greater than that of the control mixes for test ages of three, seven, and twentyeight days. He noted that small quantities of the silicone additive GKJ-94 did not influence the normal density of the mortar; however, with the introduction of the silicone additive in amounts of five percent of the weight of the cement, normal density increased. The water absorption remained unchanged. The time of both initial and final set for mixes containing the silicone additive was more than doubled and the durability varied according to the concentration of the silicone additive used in the mix. With a silicone additive concentration of one percent of the weight of cement, the highest durability and the largest gain in compressive strength were achieved. Density and water absorption were not affected by this dosage.

Farbenfabriken Bayer AG, in Leverkusen, Germany (5), conducted moisture penetration and water absorption experiments on plaster and cement mortar containing the silicone additive Bayer F. After curing for an unspecified length of time the disk-shaped water penetration specimens were dried to a constant weight. A glass tube containing a moisture-absorbing medium, "Silicagel," was firmly attached to one side of the specimen. The specimen was then placed in a moist room with a constant humidity of ninety percent and removed periodically to weigh the moisture-absorbing medium. To measure the water absorption, the air-dried specimens were submerged in a glass jar filled with water to a depth of six centimeters. The hydrostatic pressure of five centimeters was presumed to provide the equivalent of a hundred kilometer per hour rain and wind storm. Specimens for both experiments were five centimeters in diameter and one centimeter thick.

The silicone additive Bayer F had no effect upon the resistance of concrete to moisture penetration. It was established that specimens treated with silicone additive Bayer F absorbed considerably less moisture than the control specimens. This phenomenon can be attributed to the fact that the silicone additive closes minute pores in the specimens which otherwise would accept and retain the moisture.

While silicone compounds have been used in the form of a spray or dip for concrete surfaces, they have not been used as additives in concrete mixtures. The purpose of this study is to explore this latter possibility.

II. INTRODUCTION

Previous investigations revealed that silicone solutions when used as admixtures have desirable effects upon the hardened concrete with regard to compressive strength, density, and durability. On the other hand, the investigators did not agree on water absorption studies. In all experiments it was observed that silicone additives produced a retarding effect on the concrete mixes which is highly desirable where mixing at the construction site is not feasible.

Because of the versatility of concrete as a structural material, new methods are constantly sought to improve its physical characteristics. It is yet to be determined what effects silicone admixtures have on the properties of creep, bond, durability, fatigue, and strength. The corrosive effect of silicone additives on reinforcing bars and prestressing cables likewise needs evaluation.

The purpose of this study is to determine the effect of four silicone additives, DC-772, DC-771, XR-8-0036, and QZ-6208, on the physical properties of Portland Cement concrete. Within the scope of this thesis, it was possible to investigate the effect of silicone additives on: compressive strength, flexural strength, shrinkage, durability, time of set, and fatigue.

III. MATERIALS AND MIX DESIGN

Both the fine and coarse aggregates used in this study were subjected to a sieve analysis and a fineness modulus of 2.76 was obtained for the fine aggregate and 5.90 for the coarse aggregate. Since smallsized specimens were used in the investigation, the maximum size of the coarse aggregate was limited to three-quarters of an inch.

The method of design used was that outlined by the Portland Cement Association (6). In order to avoid undue variations in data, equally mixed proportions of three different commercial brands of Portland Cement Type I were used.

The silicone additives, which were 0.3 percent total solids of solution based on the weight of cement, were combined with water and then introduced into the mix; by using this procedure concentration of the additives was prevented. Control mixes and additives used may be found on page 35 of the appendix.

VI. PROCEDURE OF INVESTIGATION

In the preliminary investigation two series of mixes, A and B, were subjected to compressive and flexural tests along with freezing and thawing tests. The primary purpose of this portion of the program was to determine which of the four different silicone additives combined with any of three different cement contents yielded the most promising results with respect to economy of design and overall performance. A constant water-cement ratio was maintained in this initial survey in order to obtain a comparison of the silicone additives. A total of forty cylindrical specimens four inches in diameter and eight inches long representing eight control specimens and four groups of eight specimens each containing the four types of silicone additives, were tested at seven and twenty-eight days of age for compressive strength. Cement content levels of five, six and one-half, and eight sacks per cubic yard were used in the mixes. The same procedure was followed for three inch by four inch by sixteen inch flexural and durability specimens.

After establishing the superiority of one silicone additive, a more comprehensive investigation was undertaken. The chosen additive and cement content were duplicated in mixes C, D, and E and subjected to the tests mentioned above, so that the data obtained in the preliminary investigation would be confirmed. In addition, a study of time of set and shrinkage was conducted on mixes C, D, and E. An investigation was also made on fatigue properties using the selected additive. This series of mixes was designated as I through Q. The water-cement ratio was varied in the detailed investigation while the slump was held constant. A total of forty-four control specimens and forty-four specimens containing the chosen additive were tested for compressive strength and flexural strength at ages of three, seven, and twenty-eight days. In addition, six control specimens and six specimens containing the silicone additive were tested for durability. The fatigue investigation employed twenty-seven control specimens three inch by three inch by eleven inch at three levels of applied stress, and the same number for specimens containing the silicone additive. The fatigue specimens had both compressive and flexural strength companions.

All specimens used in the program were moist cured prior to their respective tests and the experiments were conducted according to the procedures prescribed by ASTM specifications. In the instance of both freezing and thawing, and fatigue, only general methods are discussed in the above specifications, consequently, a detailed explanation of procedure is described herein. Prior to placing in the Brown freeze-thaw machine, all specimens were moist cured for fourteen days. After removal from the moist curing room, specimens were allowed to dry and their weights were recorded. They were then placed in the freezing and thawing apparatus and frozen, after which they were thawed and sonic modulus measurements were made when the specimens reached a temperature of forty degrees Fahrenheit. The specimens were then placed in metal containers, returned to the freeze-thaw machine and complete submerged under water. The temperature was then rapidly reduced to zero degrees

7

Fahrenheit. Specimens were tested for their dynamic modulus of elasticity every six to eighteen cycles depending upon the amount of air present in the beam. One cycle corresponded to a four hour period. A thirty percent reduction in the dynamic modulus of elasticity was regarded as failure. Normally, an air-entrained concrete specimen is expected to pass through three hundred cycles of freezing and thawing without having a thirty percent reduction occur in the dynamic modulus of elasticity. A ratio may then be formed between the expected life of a specimen (three hundred cycles or M), actual life of a specimen (N'), and the percent reduction in the dynamic modulus of elasticity at which failure occurred, thirty percent or P. This is defined as the Durability Factor.

D. F. =
$$\frac{PN'}{M}$$

The number of cycles at which failure occurred was obtained graphically by plotting the number of cycles versus percent reduction of the dynamic modulus of elasticity.

The fatigue study was conducted on three different levels of applied stress, the same stress levels being applied to beams with and without the silicone additive. A total of nine specimens were tested at each stress level. Three specimens were tested in flexure to failure in order to determine the modulus of rupture, f_r . Three compression tests were also made so that the effect of the silicone additive could be observed at the age of testing. The age of these specimens varied from ninety to one hundred and ten days. The stress levels used were forty percent, forty-two and one-half percent, and forty-five percent of the modulus of rupture.

Although the modulus of rupture varied from mix to mix, the level of stress applied was always constant.

A Sonntag fatigue testing machine was used for the flexural fatigue study. The dynamic force was applied at a rate of eighteen hundred cycles per minute and subjected the specimens to reversal of flexural stress. The design of the machine is such that only a vertical force was transmitted to the third points of the specimen. The probability of failure, p, due to fatigue, was computed by using the following equation:

$$p = \frac{u}{m+1}$$

where u is a ranked specimen belonging to a total of m specimens which were tested at one stress level.

V. DISCUSSION OF RESULTS

Experimental results of the preliminary investigation revealed that silicone additives DC-772 and DC-771 when combined with a five sacks per cubic yard mix were superior to the other two silicone additives in both compressive and flexural strength. The study also indicated that the effects of the silicone additives decreased somewhat as the cement content increased. Figures 1, 2, and 3 show the average flexural results for five, six and one-half, and eight sacks per cubic yard mixes when combined with the silicone additives. Likewise, Figures 4, 5, and 6 illustrate the compression results.

Freezing and thawing results for this initial study indicated that the durability of concrete mixes with less cement appeared to be influenced more by the silicone additives. The one notable exception was silicone additive DC-771. Concrete specimens cast from duplicate mixes yielded varied results when subjected to freezing and thawing action. Woods (7) stated that a poor distribution of air could very well account for this behavior. Although relationships developed for three of the silicone additives when used with varying cement contents, no such trend was established for the silicone additive QZ-6208. Figure 7 shows the relationship between D. F. and the cement content for the various mixes.

Since the greatest gain in strength and durability was experienced at the five sacks per cubic yard level with silicone additive DC-772, this mix was selected for the detailed investigation.

The results of the detailed investigation confirmed the data obtained in the initial study with respect to the combination of silicone additive DC-772 and a five sacks per cubic yard cement content. In addition, the modulus of rupture and the ultimate compressive strength were determined for ages of three, seven, twenty-eight, and ninety to one hundred and ten days. Very little variation in compressive and flexural strength was noted for all of the fatigue companion specimens. Figures 10 and 13 show the average results of flexure and compression tests for ages of three, seven, twenty-eight, and ninety days. Tables 19 and 22 list the percent gain in compressive and flexural strength for silicone additive DC-772 mixes over plain concrete mixes when combined with a cement content of five sacks per cubic yard. The results of compressive and flexural tests show that the influence of silicone additive DC-772 decreased at the age of ninety days for the five sacks per cubic yard mix. No definite trend developed where freezing and thawing of silicone additive mixes was concerned, but it does appear that the durability of low cement content mixes was increased. Silicone additive DC-772 in a five sacks per cubic yard mix improved the durability approximately two and one-half times. Table 25 and Figure 14 illustrate the effectiveness of the silicone additive DC-772 when combined with a five sacks per cubic yard mix to resist the action of freezing and thawing. Moskveen reported a gain in durability of approximately one and one-half times that of plain concrete, however, no information was given on the control mixes.

The time of initial and final set was increased when additive DC-772 was introduced into mixes. Table 27 lists the time of initial set and the time of final set for plain concrete mixes and concrete mixes containing silicone additive DC-772. The study directed by Moskveen also showed that silicone additives act as a retarder.

A comparison of the change of volume during the critical twentyfour hour period after mixing was not possible due to the retarding effect of silicone additive DC-772. Therefore, the procedure outlined by ASTM specifications for shrinkage was not employed and another test was resorted to. A rubber balloon was placed in a glass tube and was partially filled with mortar from a mix and then completely filled with water. A rubber stopper was inserted into the glass tube and the edges were sealed with wax. A graduated pipette was placed through the rubber stopper and filled with water. This test revealed that silicone additive DC-772 increased shrinkage by a maximum amount of 0.3 percent when compared to plain mortar. These measurements are listed in Table 26.

Early investigations made by Clemmer (8), Ewing (9), and others (10), indicated that the fatigue limit for plain concrete fell in the range of fifty to fifty-four percent of the modulus of rupture, and that this range was somewhat dependent upon the cement content, rate of load application, and range of the applied loads. Kesler (11, 12) later found that the rate of loading had little effect on the fatigue strength of plain concrete, but came to no definite conclusions concerning the fatigue limit. McCall (13) subsequently conducted a study of fatigue and noted that no endurance limit could be established for a stress level of forty-seven and one-half percent of the modulus of rupture when applied to a five and six-tenths sacks per cubic yard mix.

The results of this study indicated that no endurance limit could be definitely established for a five sacks per cubic yard mix with the lowest applied stress level of forty percent of the modulus of rupture. The addition of silicone additive DC-772 appeared to improve the fatigue strength at a low stress level, but upon approaching a higher stress level, the effect of the silicone additive was less evident. This is shown in Figure 19. This fatigue study was based on fifty-four specimens.

VI. CONCLUSIONS

On the basis of observations made in this investigation the following conclusions may be drawn:

1) Silicone additive improved compressive and flexural strength when used in concrete mixes having a cement content of five sacks per cubic yard, but their effectiveness decreased as the cement content increased to six and one-half and eight sacks per cubic yard. Figures 1 to 6 inclusive illustrate the decreasing effect of the silicone additive on flexural and compressive strength with increasing cement contents.

2) When used in a five sacks per cubic yard concrete mix, the silicone additive DC-772 was more effective than the other silicone additives in increasing the flexural strength and compressive strength. The gain in flexural and compressive strength decreased as the specimens increased in age. Figures 10 and 13 show the decrease in flexural strength and compressive strength up to the age of ninety days. The effect of silicone additives on concrete for a period longer than ninety days was not determined.

3) The durability of concrete was improved when silicone additives were present in the concrete. However, as the cement content of a mix increased, the influence of the silicone additives decreased. This may be seen in Figure 14. A combination of the silicone additive DC-772 and a cement content of five sacks per cubic yard proved to be superior to other additives at the same cement content level.

4) The use of silicone additive DC-772 in a five sacks per cubic yard mix increased the time of set. Results of the time of set study are tabulated in Table 27.

5) Shrinkage measurements performed over a period of four days indicated that the addition of the silicone additive DC-772 to a five sacks per cubic yard concrete mix produced about the same shrinkage as plain concrete. Table 26 contains the results of the shrinkage measurements. 6) Within the range of the fatigue study conducted, silicone additive DC-772 when used in a five sacks per cubic yard mix, appeared to improve fatigue strength at a stress level of forty percent of the modulus of rupture. Upon the application of a higher stress level, forty-five percent of the modulus of rupture, the fatigue life of the specimens with silicone additive DC-772 was shorter than that of plain concrete specimens. Figures 18 and 19 show the probability of failure for fatigue cycles of plain concrete and specimens containing additive DC-772 subjected to three different stress levels. APPENDIX

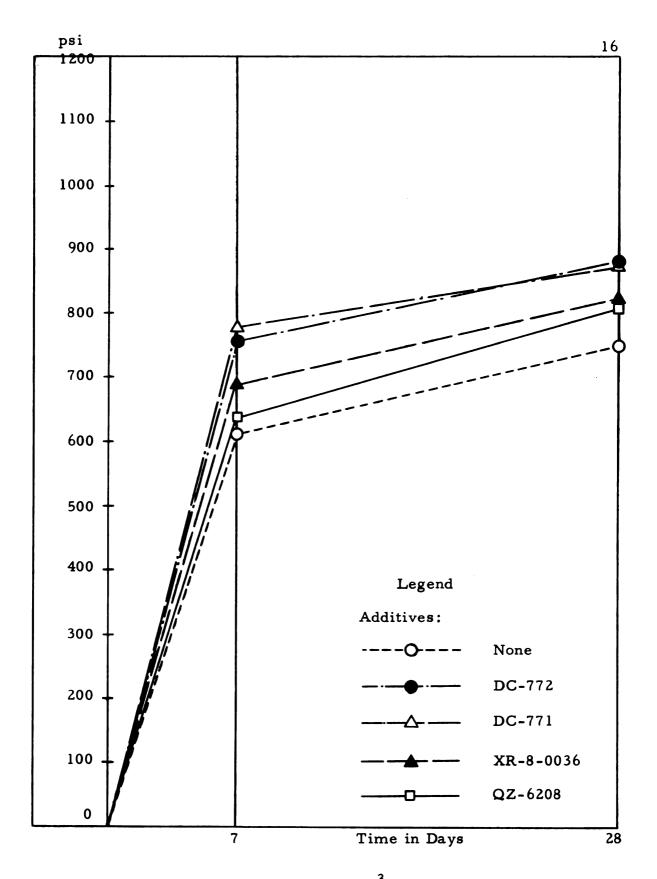


Figure 1. Flexure-age curve, 5 sacks/yd³, average of mixes A and B, plain concrete and silicone additives DC-772, DC-771, XR-8-0036, QZ-6208

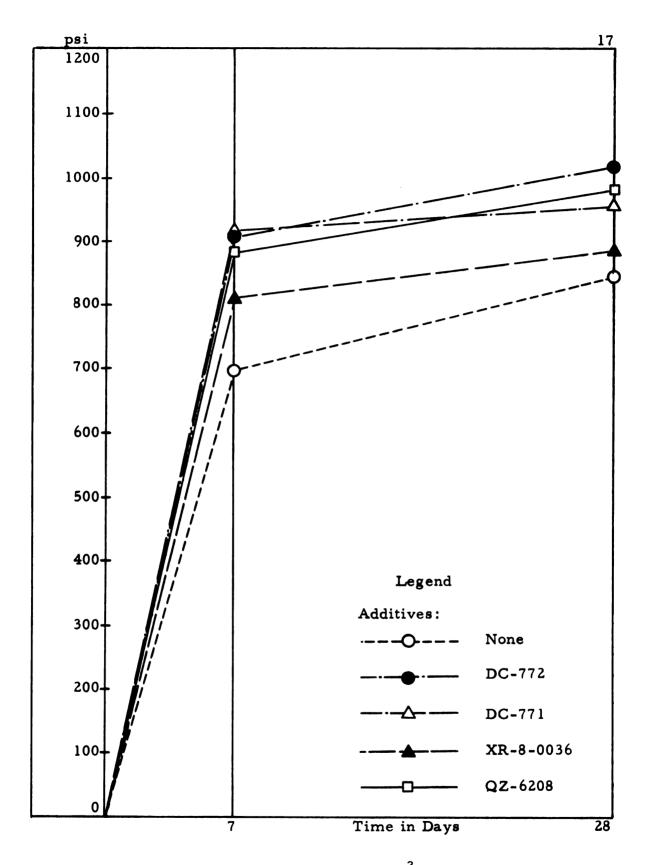


Figure 2. Flexure-age curve, 6-1/2 sacks/yd³, average of mixes A and B, plain concrete and silicone additives DC-772, DC-771, XR-8-0036, QZ-6208

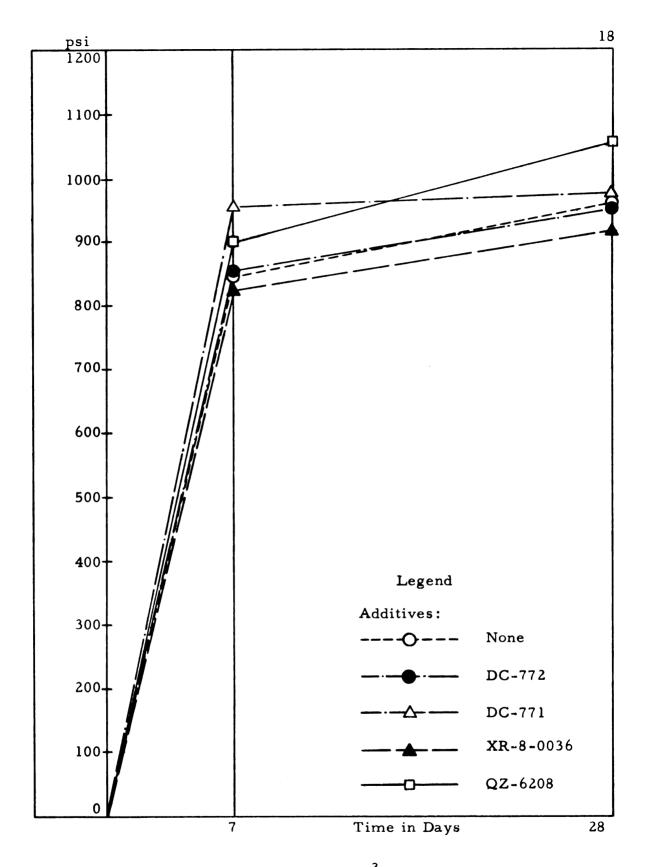


Figure 3. Flexure-age curve, 8 sacks/yd³, average of mixes A and B, plain concrete and silicone additives DC-772, DC-771, XR-8-0036, QZ-6208

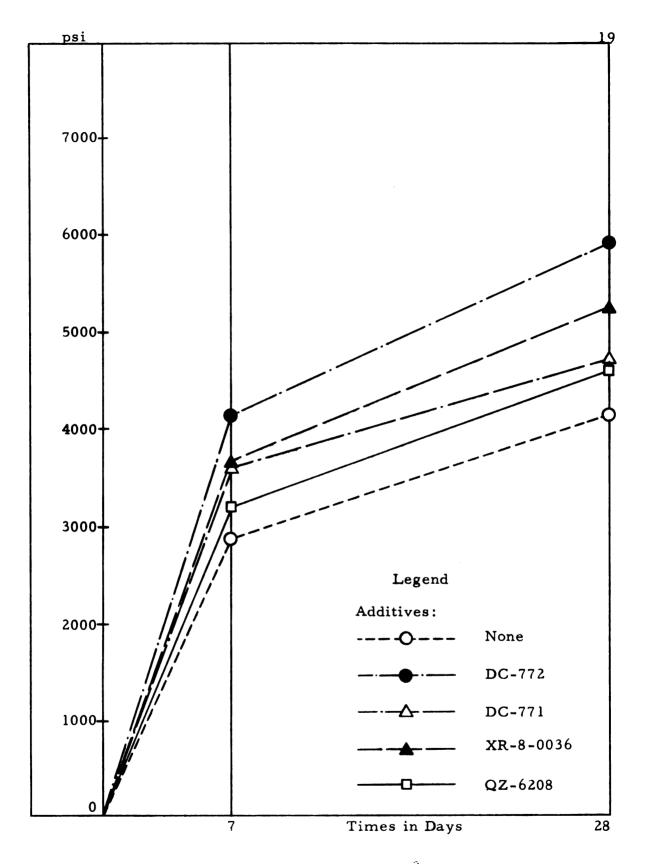


Figure 4. Compression-age curve, 5 sacks/yd³, average of mixes A and B, plain concrete and silicone additives DC-772, DC-771, XR-8-0036, QZ-6208

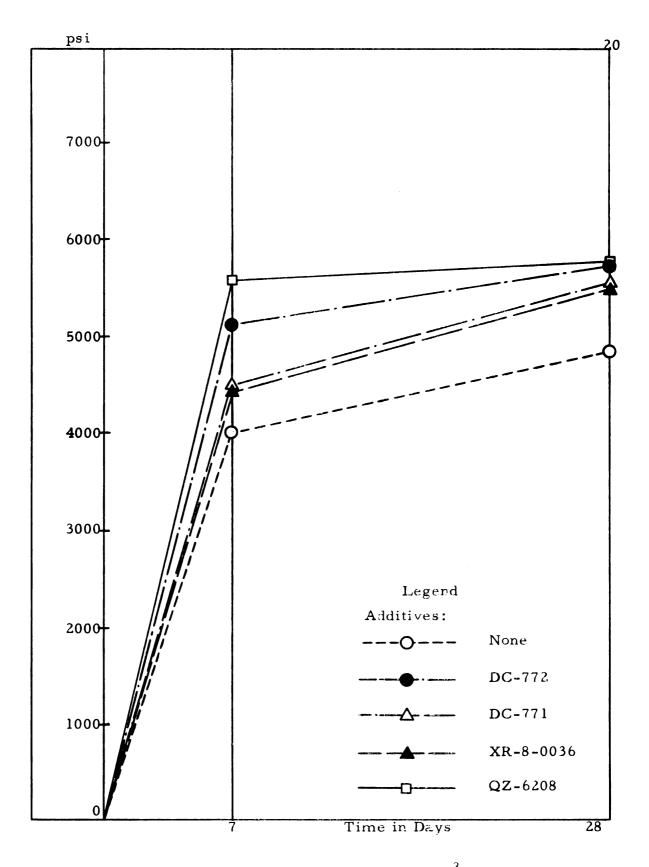


Figure 5. Compression-age curve, 6-1/2 sacks/yd³, average of mixes A and B, plain concrete and silicone additives DC-772, DC-771, XR-8-0036, QZ-6208

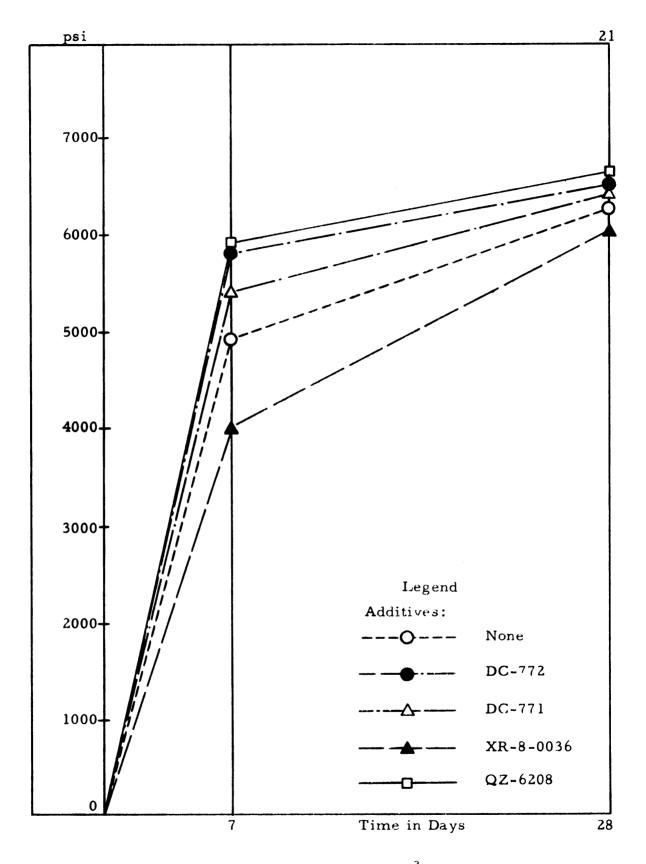


Figure 6. Compression-age curve, 8 sacks/yd³, average of mixes A and B, plain concrete and silicone additives DC-772, DC-771, XR-8-0036, QZ-6208

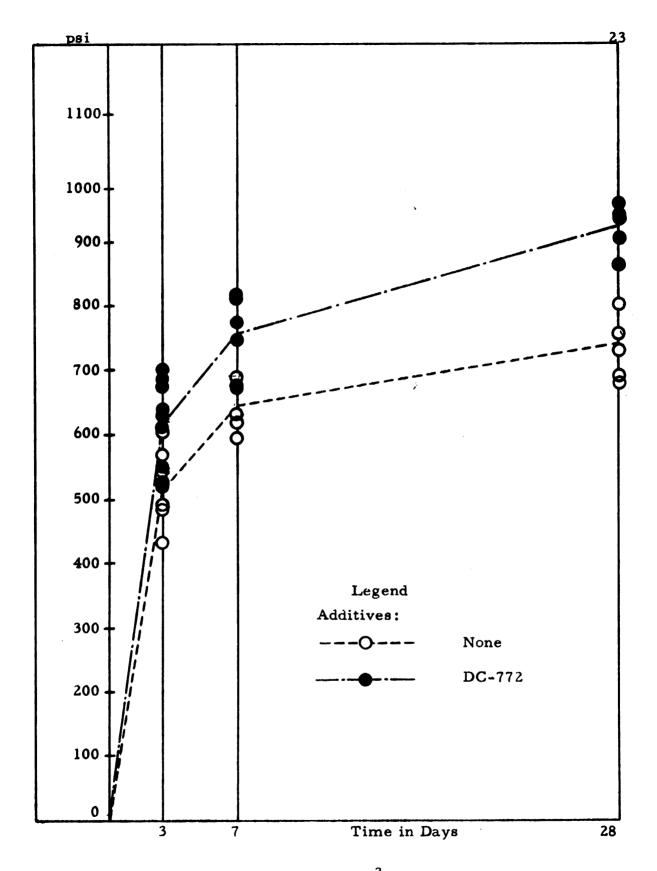


Figure 8. Flexure-age curve, 5 sacks/yd^3 , mixes C, D, and E, plain concrete and silicone additive DC-772

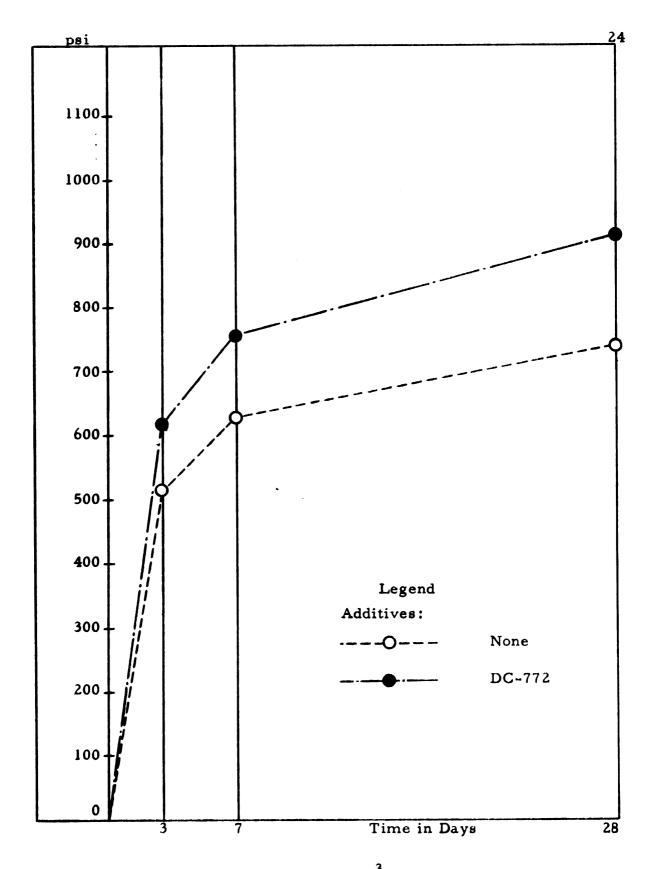
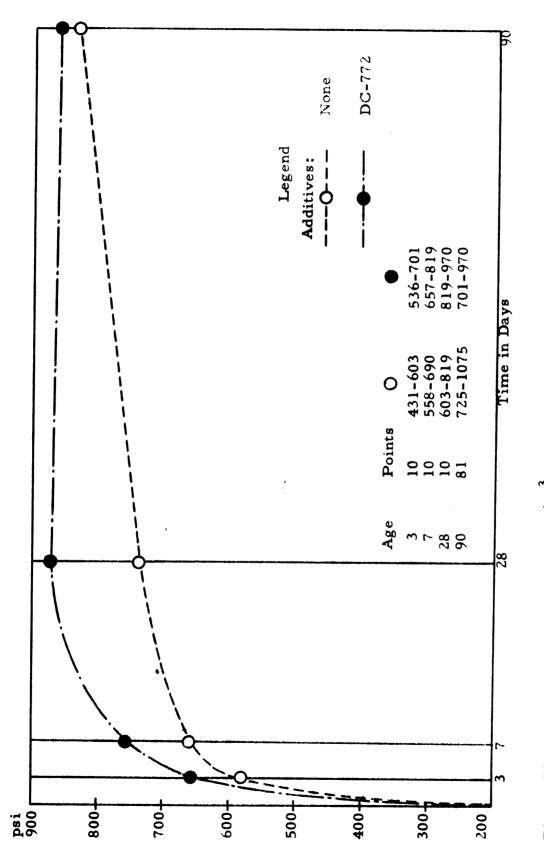



Figure 9. Flexure-age curve, 5 sacks/yd³, average of mixes A, B, C, D, and E, plain concrete and silicone additive DC-772

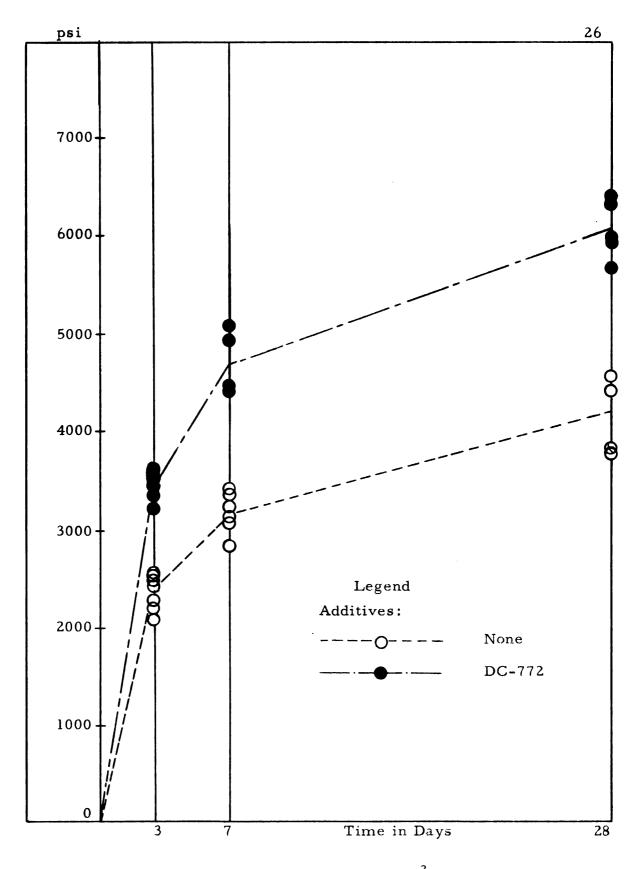


Figure 11. Compression-age curve, 5 sacks/yd³, mixes C, D, and E, plain concrete and silicone additive DC-772

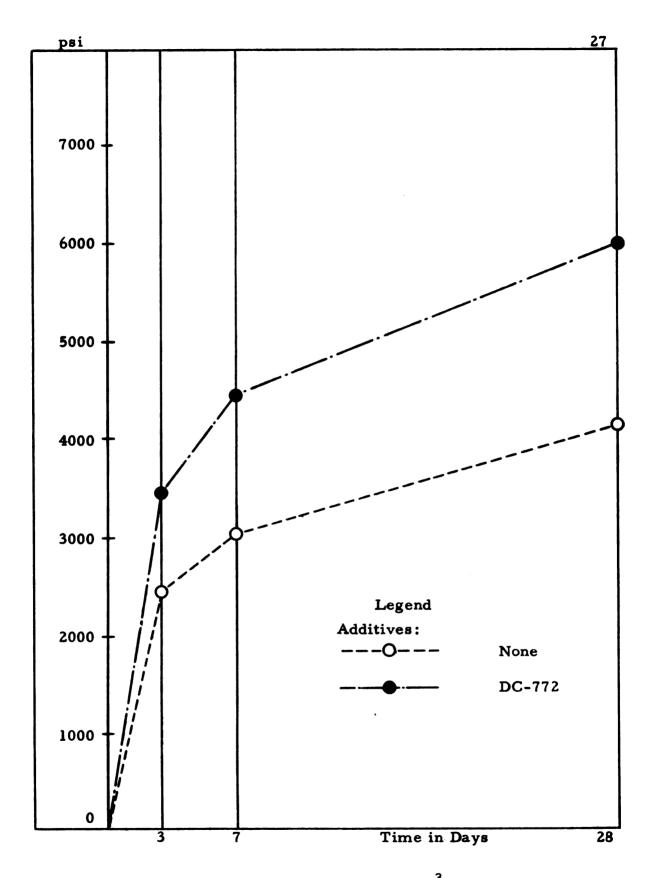
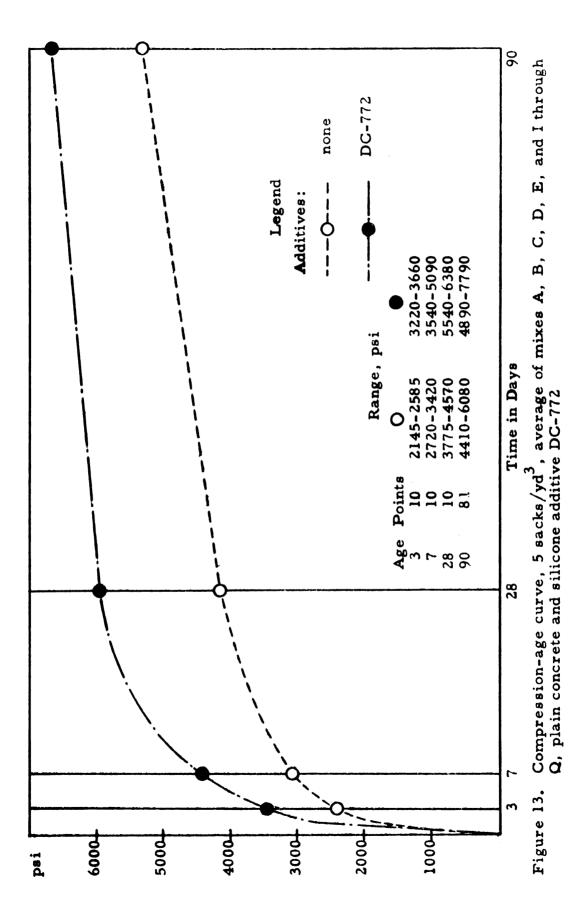
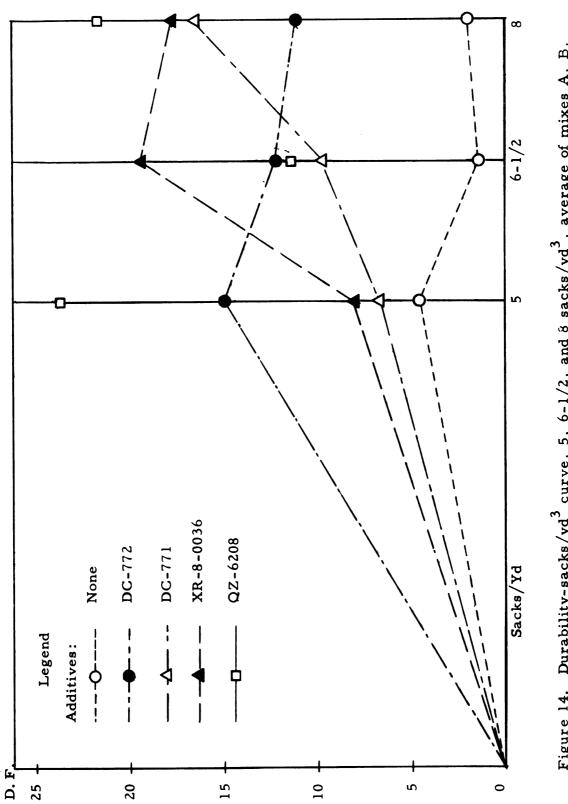
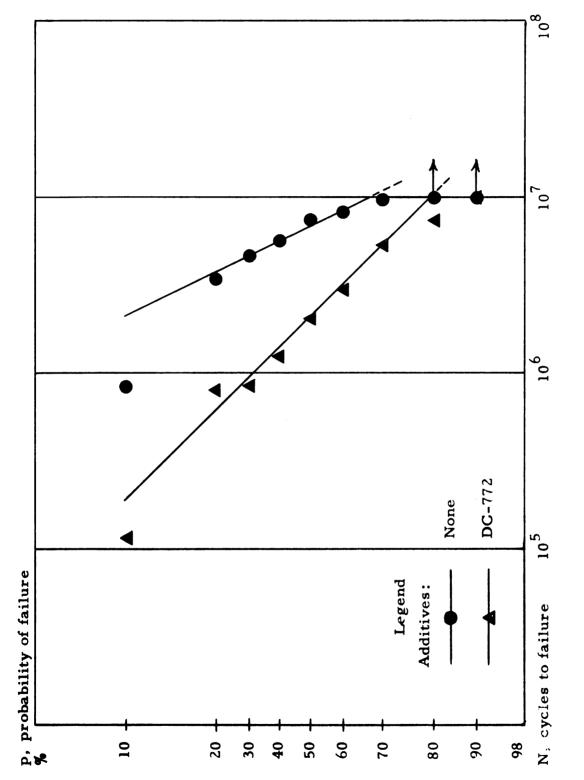
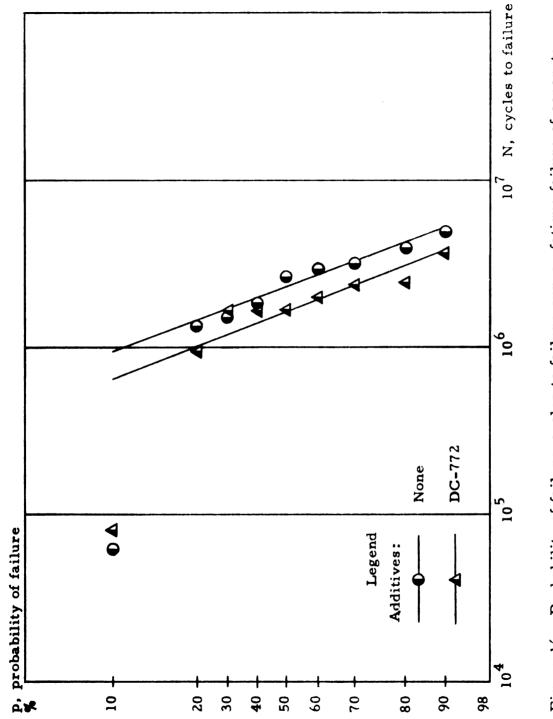
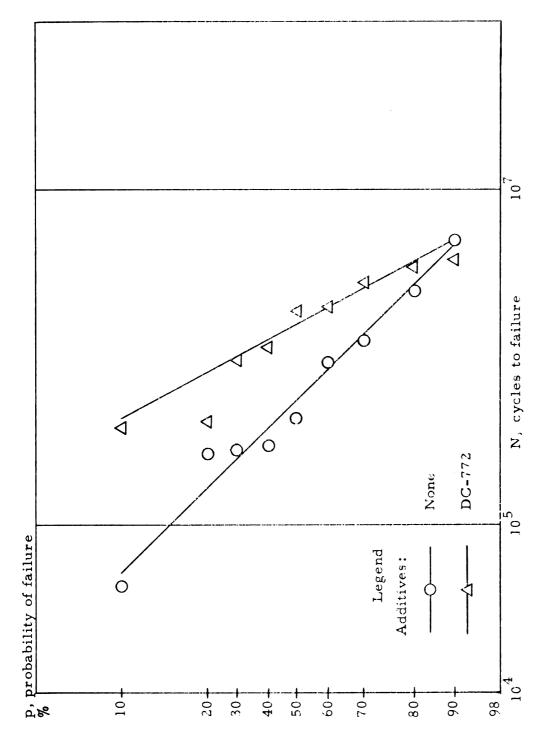
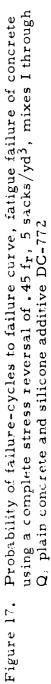
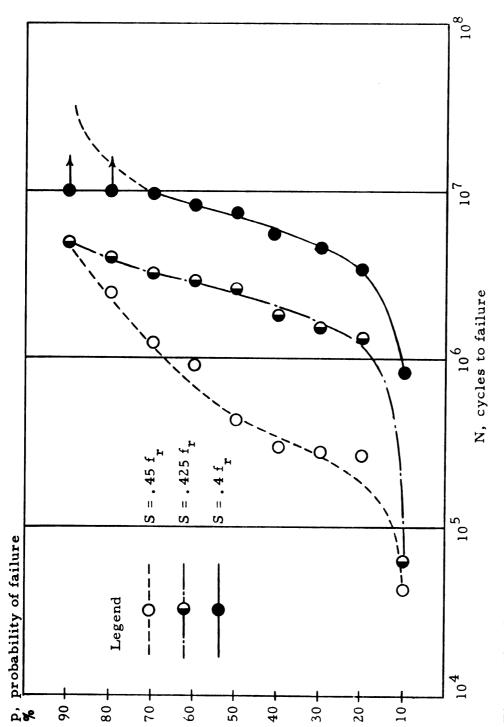





Figure 12. Compression-age curve, 5 sacks/yd³, average of mixes A, B, C, D, and E, plain concrete and silicone additive DC-772








Probability of failure-cycles to failure curve, fatigue failure of concrete using a complete stress reversal of .4 f , 5 sacks/yd , mixes I through Q, plain concrete and silicone additive DC-772Figure 15.

Probability of failure-cycles to failure curve, fatigue failure of concrete using a complete stress reversal of .425 fr., 5 sacks/yd³, mixes I through Q, plain concrete and silicone additive DC-772 Figure 16.

	5 sacks/yd	6-1/2 sacks/yd	8 sacks/yd
water	10.94 lb.	10.74 lb.	11.34 lb.
gravel	66.6 lb.	66.6 lb.	66.6 lb.
sand	66.8 lb.	65.5 lb.	58.91b.
cement	18.8 lb.	24.4 lb.	30.0 lb.
water/cement	. 582	. 439	. 377
gal/sack	6.56	4.95	4.26

Table 2. Amount of silicone additives used based upon the weight of cement per mix

DC-772	36.7 ml per	10 lb.	of cement
DC-771	78.0 ml per	10 lb.	of cement
XR-8- 0036	43.1 ml per	10 lb.	of cement
QZ-6208	37.1 ml per	10 1ь.	of cement

Table 3. Physical properties of the silicone additives

Property	DC-772	DC-771	XR-8-0036	QZ-6208
%total solids	30	24.3	31.0	100
%s ilicone	21	10.1	18.4	24.5
sp. gr.	1.24	1.20-1.22	1.204	1.05
solvent	water	water	water	
thinner	water	water	water	water
pH	12-13	12-13	11.2	5

Table 1. Control mix proportions for 5, 6-1/2 and 8 sacks/yd³

		35
Table 1.	Control mix proportions for 5, $6-1/2$ and 8 sacks/yd ³	

	5 sacks/yd	6-1/2 sacks/yd	8 sacks/yd
water	10.94 lb.	10.74 lb.	11.34 lb.
gravel	66.6 lb.	66.6 lb.	66.6 lb.
sand	66.8 lb.	65.5 lb.	58.9 lb.
cement	18.8 lb.	24.4 lb.	30.0 lb.
water/cement	. 582	. 439	. 377
gal/sack	6.56	4. 95	4.26

 Table 2. Amount of silicone additives used based upon the weight of cement per mix

DC-772	36.7 ml per	10 lb.	of cement
DC-771	78.0 ml per	10 lb.	of cement
XR-8-0036	43.1 ml per	10 lb.	of cement
QZ-6208	37.1 ml per	10 іь.	of cement

Table 3. Physical properties of the silicone additives

Property	DC-772	DC-771	XR-8-0036	QZ-6208
%total solids	30	24.3	31.0	100
%s ilicone	21	10.1	18.4	24.5
sp. gr.	1.24	1.20-1.22	1.204	1.05
solvent	water	water	water	
thinner	water	water	water	water
рH	12-13	12-13	11.2	5

Table 4.	Flexure, comp	compression,	and	durability da	lta, 5	5, 6-	-1/2,	and 8	l 8 sacks,	/yd ³ ,	mixes	A and	'n
	plain concrete	Icrete											

Sacks Batch Specimen Compression (pei) Flexure (psi) Freeze-Thaw per 7 day 28 day 7 day 28 day cycles D.F. yard 7 day 28 day 7 day 28 day 0.8 7 day 28 day 0.8 8 day 0.9 8 day 0.9 8 day 0.9 8 day 0.9 8 day 0.8 8 day 0.1 8 day 0.1 8 day 0.8 8 day 0.1 8			plain concrete							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sacks per yard		Specimen	Compress 7 day	iion (psi) 28 day	Flexure 7 day	(psi) 28 day	Freeze-C cycles	Thaw D.F.	Dynamic modulus of elasticity (nsi)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	2825	3 900	558	744			6.48×10 ⁶
Avg. 2773 3840 586 674 8 $0.$ B 70 1.91 1.56 4.78 10.53 12.50 $5.$ B 2 2860 4370 594 819 24 2 A 2 2860 4370 594 819 23 2 2 A 2 2980 4370 594 819 23 2 2 Avg. 23740 5375 593 808 13 11 Avg. 3920 4438 53375 593 808 13 11 Avg. 3920 4638 588 803 13 11 Avg. 4135 5050 819 20.60 260 260 260 260 216 B 796 15.91 0.62 7.69 3.76 216 216 216		~	2	2720	3780	613	603	6		6.31x10 ⁰
		ና	Avg.	2773	3840	586	674			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I		% Diff.	1.91	1.56	4.78	10	2.	80	``
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'n		-	3100	4410	680	819	24	2.4	6.68x10 ⁶
D Avg., $\sum 2980$ 4390 637 819 23 2 . $\%$ Diff. 4.03 0.46 6.75 0.06 4.17 2. A 2 3740 5375 593 808 13 $1.$ A 2 3740 5375 593 808 13 $1.$ A $Avg.$ 3920 583 796 14 $1.$ $2.$ $\%$ Diff. 4.59 15.91 0.85 803 13 $1.$ B 2 4638 588 803 17.24 17.24 B 2.2 4900 5010 899 17244 216 Mug. 5115 6600 830 1.24 20.37 20.37 A 2 5290 6160 830 1.24 20.37 20.37 A 2 6.67 0.800 1.36 1.24 20.37 20.37 A 2 5290 6160 830 </td <td></td> <td>ρ</td> <td>2</td> <td>2860</td> <td>4370</td> <td>594</td> <td>81g</td> <td>23</td> <td>2.3</td> <td>7.01×10⁰</td>		ρ	2	2860	4370	594	81g	23	2.3	7.01×10 ⁰
		q	Avg.	2980	4390	637	81ġ	23	2.35	
A $\frac{1}{2}$ 2 3740 583 593 808 13 1. A $\frac{1}{90}$ 796 14 1. $\frac{1}{90}$ 796 13 13 1. $\frac{1}{90}$ 796 14 1. $\frac{1}{90}$ 796 14 1. $\frac{1}{90}$ 796 14 1. $\frac{1}{90}$ 796 14 1. $\frac{1}{90}$ 7.69 3. $\frac{1}{90}$ 7.69 2. $\frac{1}{90}$ 7.69 2. $\frac{1}{90}$ 7.69 2. $\frac{1}{90}$ 2. $\frac{1}{90}$ 4.00 2. $\frac{1}{90}$ 4. $\frac{1}{90}$ 0. $\frac{1}{90}$ 4. $\frac{1}{90}$ 7. $\frac{1}{90}$ 7.			% Diff.	4.03	0.46	6.75	0.00	4.17	2.13	、
A $\frac{2}{7}$ 3740 3900 583 796 14 1. A v_{g} , 3920 4638 588 803 13 1. η_{o} Diff. 4.59 15.91 0.85 0.62 7.69 3. B λv_{g} , 895 172** 17. η_{o} Diff. 0.49 0.80 819 895 172** 17. η_{o} Diff. 0.49 0.80 1.36 1.24 20.37 20. A v_{g} , 5010 809 884 216 21. η_{o} Diff. 0.49 0.80 1.36 1.24 20.37 20. η_{o} Diff. 3.42 6.60 830 981 42 42 4. η_{o} Diff. 3.42 6.67 0.72 2.19 13.51 13. B λv_{g} , 4730 5922 819 808 4 0. η_{o} Diff. 1.69 3.33 3.76 12.27 40.00 27.			1	4100	5375	593	808	13	1.3	7.13×105
Avg. 3920 4638 588 803 13 $1.$ B 7.69 15.91 0.85 0.62 7.69 $3.$ B 2 4135 5050 819 895 $172**$ 17 B 2 4055 4970 798 873 260 $26.$ Avg. 4090 5010 809 884 216 $21.$ Avg. 4090 5010 809 884 216 $21.$ Avg. 0.49 0.80 1.36 1.24 20.37 $20.$ Avg. 5115 6600 830 1024 32 $3.$ Avg. 5115 6600 830 1003 37 $3.$ B $Avg.$ 5115 6.67 0.72 2.19 13.51 $13.$ B $Avg.$ 4730 5725 819 921 $3.3.76$		<	c.3	3740	3 900	583	7 96	14	l. 4	5
		¢	Avg.	3920	4638	588	803	13	1. 35	
$ B \begin{array}{ccccccccccccccccccccccccccccccccccc$			% Diff.	4.59	15.91	0.85	0.62	7.69	3.70	
$ B 2 \\ A vg. 4055 4970 798 873 260 26. \\ \% \text{ Diff. } 0.490 5010 809 884 216 21. \\ \% \text{ Diff. } 0.49 0.80 1.36 1.24 20.37 20. \\ 1 1 4940 7040 841 1024 32 3. \\ 7003 5115 6600 830 981 42 4. \\ \% \text{ Diff. } 3.42 6.67 0.72 2.19 13.51 13. \\ B 2 4650 5725 819 808 4 0. \\ B Avg. 4730 5922 851 921 5 \\ \% \text{ Diff. } 1.69 3.33 3.76 12.27 40.00 27. \\ \end{array} $	6-1/2		l	4135	5050	819	895	172**	17.2	6.05×102
		β	~1	4055	4970	7 98	873	260	26.0	6.19x10 ⁰
		٩	Avg.	4090	5010	809	884	216	21.60	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			% Diff.	0.49	0.80	1.36	1.24	20.37	20.37	``
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			l	4940	7040	841	1024	32	3. 2	7.27×10^{6}
Avg. 5115 6600 836 1003 37 $3.$ %Diff. 3.42 6.67 0.72 2.19 13.51 $13.$ n 1 4810 6120 884 1035 7 $0.$ B 2 4650 5725 819 808 4 $0.$ B $Avg.$ 4730 5922 851 921 5 $0.$ B $Avg.$ 1.69 3.33 3.76 12.27 40.00 $27.$		Φ	دم	5290	6160	830	98]	42	4. 2	7.40×10 ⁰
% Diff. 3.42 6.67 0.72 2.19 13.51 $13.$ 1 4810 6120 884 1035 7 $0.$ B 2 4650 5725 819 808 4 $0.$ B $Avg.$ 4730 5922 851 921 5 $0.$ $%$ Diff. 1.69 3.33 3.76 12.27 40.00 $27.$		4	Avg.	5115	6600	836	1003	7	3.70	
I 4810 6120 884 1035 7 0. B 2 4650 5725 819 808 4 0. Avg. 4730 5922 851 921 5 0. MDiff. 1.69 3.33 3.76 12.27 40.00 27.			% Diff.	3.42	6. 67	0.72	2.19	÷.	13.51	
2 4650 5725 819 808 4 0. Avg. 4730 5922 851 921 5 0. %Diff. 1.69 3.33 3.76 12.27 40.00 27.	œ		1	4810	6120	884	1035	7	0.7	6.62x10 ⁶
Avg. 4730 5922 851 921 5 0. %Diff. 1.69 3.33 3.76 12.27 40.00 27.		д	2	4650	5725	819	808	4	0.4	66×10
1.69 3.33 3.76 12.27 40.00 27.		a	Avg.	4730	5922		921		0.55	
			% Diff.	1.69	3.33	~	12.27	40.00	27.27	

*Note: Lower values taken for an average. **Note: Excluded from computations.

36

£

Table 5. Flexure, compression, and durability data, 5, 6-1/2, and 8 sacks/yd³, mixes A and B, silicone

1 6 010 0		additive DC-772		n Anttrant		out and antapritity wata, o, o-1/2, and o saces/ ya ,	a nd /anna		
Sacks per yard	Batch	Specimen	Compressi 7 day	ression (psi) 28 day	Flexure (psi) 7 day 28	(psi) 28 day	Freeze-Thaw cycles D.]	haw D. F.	Dynamic modulus of elasticity
		l	3660	5540	657	863	29	2.9	(psı) 7.05x10 ⁶
		2	3540	5540	787	819	21	Z. 1	6.84x10 ⁶
	A	Avg.	3600	5540	722	841	25	2.5	
		% Diff.	1.67	0.00	9.00	2.62	\sim	16.0	
Ľ		% Gain	29.82	44.27	23.20	24.78	212.50	ō.	
n		ľ	4650	6320	808	927	69	6 . 9	6. $22 \times 10^{\circ}_{E}$
		2	4650	6160	776	927	10	ഫ്	30×10
	В	Avg.	4650	6240	792	927	52	۰.	
		% Diff.	0.00	1.28	2.02	0.00	32	32	
		% Gain	56.04	42.14	24.33	13.19	4	õ	
			5375	4928	927	1046	86	9.	\sim
		rJ	5490	6956	819	186	83	` <u>`</u>	5×10
	Ą	Avg.	5433	5940	873	1014	84	4	
		% Diff.	1.07	17.06	6. 18	3.25	1.19	[
÷ 1 /3		% Gain	38.60	28.12	46.50	26.28	546.15	52	
7/1-0		l	5605	7195	992	1057	159	5.9	6.95x10 ⁰
		5	3975	3895	884	266	163	ò,	24x10
	ഫ്	Avg.	4790	5545	938	1020	161	.	
		% Diff.	17.01	29.76	5.76	2.75	1.24	~	
		% Gain	17.11	10.68	15.95	15.38	1138.46	60	ч Ч
		l	5490	7320	960	1003	92	\sim	7. $16 \times 10^{\circ}$
		2	5340	6650	895	98 1	96	9.6	7.39×10 ⁰
	A	Avg.	5415	6985	928	992	4	4	
		% Diff.	I. 38	4. 80	3.56	I. I.I.	. 13	. 13	
u		% Gāin	5.87	5.83	11.00	-1.10	4	4	
b		1	6360	7235	765	98 1	133	13.3	6.56×10
		2	6080	48 90	7 98	862	\sim	~:	9x10
	ጧ	Avg.	6220	6062	781	921	29	~:	
		% Diff.	2.25	19.33	2.05	6.41	. 10	. 10	_
		% Gain	31.50	2.36	-8. 23	0.00	48	47	

lable 0.		Flexure, compression, and durability data, 5, silicone additive DC-771	ssion, and di DC-771	ITADILITY O		0-1/2, and 8	sacks/yd', mixes	4	and B,
Sac ks per yard	Batch	Specimen	Compression (psi) 7 day 28 day	ion (psi) 28 d a y	Flexure (psi) 7 day 28	(psi) 28 day	Freeze-Thaw cycles D.	D.F.	Dynamic modulus of elasticity
		1	3900	5170	776	927	23	2.3	7.27×10^{6}
		2	4175	4770	755	852	20	2.0	7.07×10 ⁰
	A	Avg.	4038	4970	766	890	21	2.15	
		% Diff.	3.42	4.02	1.44	4.27	4.76	6.98	
ŭ		% Gain	45.61	29.43	27.30	32.05	162.50	152.94	
n			3540	4650	841	884	115	11.5	6.05×10^{0}
		2	2820	4290	745	830	109	10.9	0
	д	Avg.	3180	4470	793	857	112	11.2	
		% Diff.	11.32	4.03	6. 05	3,15	2.68	2.68	
		% Gain	6.71	1.82	24.49	4.64	386.96	376.60	
		1	4425	5720	970	1046	50	5.0	7.26×10 $^{0}_{2}$
		2	4850	5 680	895	1024	50	5.0	52×10
	A	Avg.	4638	5700	933	1035	50	5.0	
		% Diff.	4.59	0.35	4.07	1.06	0.00	0.00	
c/ 1 - Y		% Gain	18.32	22.90	60.00	28.89	284.62	270.37	Y
7/7-0		1	4380	5445	902	927	137	13.7	5.68x10 $\frac{0}{6}$
		2	4370	5205	88 4	808	153	15.3	.65x10
	д	Avg.	ς η	5325	893	868	145	14.5	
		% Diff.	0.11	2.25	1.01	6.91	5.52	5.52	
		% Gain	6.97	6.29	10.38	-1.81	1015.38	974.07	Y
		1	5090	6160	916	981	176	17.6	$7.38 \times 10^{\circ}$
		7	5140	6010	841	949	153	15.3	7.IZxI0
	A	Avg.		6085	879	965	164	16.4	
		% Diff.	•	1.23	4. 32	1.66	6.71	6.71	
α		% Gain	0.00	-7.80	5 . 14	-3.79	343.24	343.24	Y
)		1	5765	6720	0	1014	162	16.2	$6.53 \times 10^{\circ}_{h}$
		2	5685	6720	*	960	174	17.4	$6.47 \times 10^{\circ}$
	ф	Avg.	5715	6720	1035	987	168	16.8	38
			0.52	0.00	0.00	2.74	3.57	3.57	3
	i	% Gain	N	13.48	20.77	7.17		2954.54	
*Note:	Specir	*Note: Specimen failed to fractur	racture properly	erly, cons	equently	the test res	ult was dele	eted.	

Table 6. Flexure, compression, and durability data, 5, 6-1/2, and 8 sacks/yd³, mixes A and B,

, mixes A and B,	
, and 8 sacks/yd ³ ,	
y data, 5, 6-1/2,	
and durability	0036
. Flexure, compression, and durability	silicone additive XR-8-003
7. Flexure,	silicone
Table 7.	

	SILIC	silicone additive A	X K-8-0030						
Sacks per yard	Batch	Specimen	Comp ression (psi) 7 day 28 day	ion (psi) 28 day	Flexure (psi) 7 day 28	(psi) 28 day	Freeze-Thaw cycles D.	haw D.F.	Dynamic modulus of elasticity
		1	20	4940	657	819	66	6. 6	(psu) 7.05x106
		Ľ٦	78	4850	603	744	102		\sim
	Å	Avg.	3740	4895	630	781	4	8.4	
		% Diff.	٩,	0.92	4.28	-1		21.42	
u		% Gain	4.	27.47	7.51	15.88	50.	×.	L
n		ľ	79	5645	819	862	82	8.2	
		2	34	5485	679	852	72	7.2	.59×10
	сг	Avg.	56	5565	749	857	77	7.7	
		% Diff.	<u></u> .	1.44	9.35	5	•	6.4¢	
		% Cain	6	26.77	17.58	4.64	\sim	227.66	J
		-4	28	5485	787	874	\mathbf{O}	20.7	∞
		71	50	5285	669	820	0	19.]	03×10
	۲	Avg.	14	5385	728	847	0	19 . a	
		% Diff.	r.	1.86	8.10	3.19	4.52	4.52	
6/1 7		% Gain	°.	16.11	23.80	4	\mathbf{T}	1374.07	, J
111-0		1	8	5605	906	949	ω	18.4	5.66x10 $\frac{1}{6}$
		2	1	5365	862	906	S	19.8	.61x10
	щ	Avg.	79	5485	884	927	S.	19.1	
		% Diff.	4	2.19	2.49	2.27	•	3.66	
		% Gain	~	9.48	9.27	8	m	1314.81	
			65	5605	884	617	∇	14.0	7.47×10^{0}
		2	44	5405	755	863	LC L	15.6	0
	A	Avg.	69	5505	820	890	\mathbf{T}	14.8	
		% Diff.	ي ،	1.82	7.93	0	•	5.41	
a		% Gain	~	-16.59	-1.91	-11.27	0	300.00	
5		1	16	6680	830	0	_	21.1	5.59x10 $\frac{1}{6}$
		7	46	6560	819	852	0	20.5	43x10
	ф	Avg.	31	6620	824	927	208	20.8	39
		% Diff.	19.76	6	0.61	8.09	44	44)
		% Gain	¢,	11.79	-3.17	0. 65	4060.00	3681.82	

2	8 sacks/yd ² , mixes A and B,	
	5, 6-1/2, and	
	ipression, and durability data, 5, $6-1/2$, and 8 sacks/yd	8
	compression,	additive QZ-6208
	Flexure, comp.	silicone additi
	Table 8.	

Sacks per	Batch	Specimen	Compression (psi) 7 day 28 day	on (psi) 28 day	Flexure (psi) 7 day 28	(psi) 28 day	Freeze-Thaw cycles D.	haw D.F.	Dynamic modulus of
yard									elasticity (psi)
		1	2580	4290	571	733	274	~	L X
		2	2385	3775	517	701	347	4	\cap
	A	Avg.	2483	4033	544	717	310	Γ.	
		% Diff.	3.85	6.40	4.96	2.23	11.61	Ļ	
u		% Gain	-10.46	5.03	-7.17	6.38	3775.00	5	۲,
n		1	3935	5485	753	906	170	~	_
		2	3895	5010	711	884	210	21.0	6.70×10 ⁰
	ല്	Avg.	3915	5248	732	895	190	6	
		% Ditt.	0.51	4. 54	2.87	1.23	10.53		
		% Gain	31.38	19.54	14.91	9. 28		08.	• 2
		l	5010	6400	841	1057	54	4	
		~1	5250	5525	819	992	59	5.9	6.70×10 ⁰
	Å	Avg.	5130	5963	830	1025	56	9	
		% Diff.	2.34	7.35	\sim	3. 22	~	. 25	
5/17		% Gain	30.87	28.57	41.16	27.65	330.77	18	Y
7/1-0		l	6120	6280	938	1014	160	6.0	$\hat{\mathbf{n}}$
		2	6040	4810	927	884	189	ഹ്	5.66×10 ⁰
	മ	Avg.	6080	5545	933	949	174	~	
		% Diff.	0.66	13.26	0.64	6.85	8.05	~1	
		% Gain	48.66	10.68	15.33	6.85	1238.46	19	Ł
		1	5960	7355	928	1100	192	6	6.46x10 $\frac{0}{6}$
		2	5765	6995	917	1089	166	16.6	51×10
	A	Avg.	5863	7175	923	1095	179	~	
		% Diff.	1.67	2.51	0. 65	0.55	7.26	2.	
a		% Gain	14.62	8.71	10.41	9.17	383.78	383.78	
D		П	5960	6240	981	1057	300	•	5.72x10 $\frac{1}{6}$
		2	5960	6120	776	992	172	2.	13×10
	Б	Avg.	5960	6180	878	1024	236	ж.	
		% Diff.	0.00	0.97	11.62	3.13	12	~	
		% Gain	26.00	4.36	3.17	11.18	4 620 . 00	4190.91	

0

		<i>J</i> ,	0-1/2, and	I U SACKS/	yu, mixes A	
		Age		Add	litive	
Sa cks/yd	Mix	(days)	DC-772	DC - 771	XR-800 36	QZ-6208
	А	7	23.20	27.30	7.51	-7.17
5		28	24.78	32.05	15.88	638
2		7	24.33	24.49	17.58	14.91
	В	28	13.19	4.64	4.64	9.28
		7	48.50	60.00	23.80	41.16
6-1/2	Α	28	26.28	28.89	5.48	27.65
0-1/2	в	7	15.95	10.40	9.27	15.33
		28	15.38	-1.81	4.86	7.35
	А	7	11.00	5.14	-1.91	10.41
8		28	-1.10	-3.79	-11.27	9.17
0	в	7	-8.22	17.79	- 3. 18	3.18
	D	28	0.00	7.2 4	0.65	10.04

Table 9.	Summary of flexure results, percent gain of
	silicone additive mixes over plain concrete,
	5, 6-1/2, and 8 sacks/yd ³ , mixes A and B

Table 10.	Summary of compression results, percent
	gain of silicone additive mixes over plain
	concrete, 5, $6-1/2$, and 8 sacks/yd ³ ,
	mixes A and B

		Age		Ad	ditive	
Sacks/yd	Mix	(days)	DC - 772	DC-771	XR-8-00 36	Q Z- 6208
	А	7	29.82	45.61	34.87	-10.46
5		28	44.27	29.43	27.47	5.03
2	в	7	56.04	6.71	19.63	31.38
	D	28	42.14	1.82	26.77	19.54
	А	7	38.60	18.32	5.61	30.87
6-1/2		28	28.12	22.90	16.11	28.57
	в	7	17.11	6.97	17.11	48.66
		28	10.68	6 . 29	9.47	10.69
	А	7	5.87	0.00	-27.74	14.62
8	••	28	5.83	-7.80	-16.59	8.71
-	в	7	31.50	20.83	-8.84	25.48
	2	28	2.36	13.49	11.70	4. 36

Table 11. Summary of flexure results using averages of mixes A and B, average percent gain of silicone additive mixes over plain concrete, 5, 6-1/2, and 8 sacks/yd³.

Sacks		Age		Add	itive	
/yd	Mix	(days)	DC-772	DC-771	XR-8-00 36	Q Z -6208
5	A and B	7	23.77	25.90	12.55	3.87
-		28	18.98	18.35	10.26	7.83
6-1/2	A and B	7	32.23	35.20	16.54	28.25
•		28	20.83	13.54	5.17	17.50
8	A and B	7	1.89	11.47	-2.55	6.80
		28	-0.55	1.73	-5.31	9.61

Table 12. Summary of compression results using averages of mixes A and B, average percent gain of silicone additive mixes over plain concrete, 5, 6-1/2, and 8 sacks/yd³.

Sacks		Age		Add	itive	
/yd	Mix	(days)	DC-772	DC-771	XR-8-0036	Q Z -6208
5	A and B	7	42.93	26.16	20.24	31.13
		28	43.21	15.63	21.44	24.06
6-1/2	A and B	7	27.86	12.65	11.36	39.77
, -		28	19.40	14.60	12.79	19.63
8	A and B	7	18.69	10.42	-18.29	20.05
-		28	4.10	2.85	-2.45	6.54

Sacks					Ad	lditive	
/yd	Mix	variable	none	DC-772	DC-771	XR-8+0036	Q Z- 6208
		% air	1.75	0.95	1. 45	2.65	4.85
5	Α	slump	1-1/4''	3''	1 - 1/4''	3/4''	4- 1/2''
5	в	% air	2.10	2.10	3.20	2.50	3.03
	D	slump	1-1/2"	1-1/2"	1-3/4"	3/4''	3-1/4"
	А	% air	1.62	1.48	1.76	2.66	3.11
6-1/2		slump	1"	2-1/4''	1-1/4"	1-3/4''	2''
· ·/ -	6-1/2 B	% air	2.45	1.85	2.60	1.70	2.33
	В	slump	1-1/2"	1-1/2"	3-1/2"	3''	1''
	А	% air	2.80	1 10	1.20	2.05	1.93
-		slump	2-1/2"	2"	2-1/4"	5''	3''
8	в	% air	1.35	1.48	2.75	2.35	3.43
	-	slump	4''	3"	4''	3-3/4"	3-1/4"

Table 13. Air content and slump for all silicone additive mixes and plain concrete, mixes A and B.

,	Batch			ession (Flexur	-	
Sacks/yd	w/c	Specimen	3	7	28	3	7	28
		1		2825	3900		558	744
	A	2		2720	3780		613	603
	.582	average		2773	3840		586	674
		% diff		1.91	1.56		4.78	10.53
		1		3100	4410		680	819
	в	2		2860	4370		59 4	819
	.582	average		2980	4 390		637	819
		% diff		4.03	0.46		6.75	0
		1	2585	3420	4570	4 31	636	798
		2	2425	3340	4370	4 96	614	755
5	С	3	2225	3220	4370	571	593	722
	. 448	average	2410	3325	4437	499	614	758
		% diff	7.68	3.16	3.00	14.43	3.58	5.28
		1	2 4 65	3140	4370	517	690	755
		2	2425	3060	3815	517	679	690
	D	3	2305	2820	3775	485	636	679
	.468	average	2398	3007	3985	506	668	708
		% diff	3.88	6.22	9.66	4.15	4.79	6.64
		1	2585			603		
		2	2545			524		
	E	3	2505			524		
	. 502	4	2145			539		
		average	2445			547		
		% diff	12.27			10.24		

Table 14.	Flexure and compression data, 5 sacks/yd ³ , plain
	concrete, mixes A, B, C, D, and E.

Sacks	Batch		Compr	ession	(DSI)	Flexur	e (psi)	
/yd	w/c	Specimen	3	7	28	3	7	28
		1		3660	5540		657	863
		2		3540	5540		787	819
	A	average		3600	5540		722	841
	.582	% diff		1.67	0		9.00	2.62
		% gain		29.82	44.27		23.20	24.78
		1		4650	6320		808	927
		2		4650	6160		776	927
	В	average		4650	62 40		792	927
	.582	% diff		0	1.28		2.02	0
		% gain		56.04	42.14		24.33	13.19
		1	3660	4490	5960	550	744	970
		2	3380	4490	5920	529	679	949
		3	3220	4370	5685	529	*	862
5	С	average	3420	4450	5855	536	711	927
	.443	% diff	7.02	1.80	2.90	2.61	4.50	7.01
		% gain	41.91	33.83	31.96	7.41	15.80	22.30
		1	3460	5090	6360	679	819	970
		2	3380	5090	6280	647	808	938
		3	3340	4930	5960	647	776	906
	D	average	3393	5037	6200	658	801	938
	.433	% diff	1.97	2.12	3.87	3.19	3.12	3.41
		% gain	41.49	67.51	55.58	30.03	19.91	32.49
		1	3615			701		
		2	3540			690		
		3	3540			636		
		4	3340			614		
	E	average	3510			660		
	.479	% diff	4.84			6.97		
		% gain	43.56			20.66		

Table 15. Flexure and compression data, 5 sacks/yd³, silicone additive DC-772, mixes A, B, C, D, and E.

*Specimen failed improperly.

Table 16.	Summary of flexure and compression data, 5 sacks/yd ³ ,
	plain concrete and silicone additive DC-772,
	Mixes A, B, C, D, and E.

Sacks			Compr	ession	(psi)	Flexur	e (psi)	
/yd	Batch	Additive	3	7	28	3	7	28
	Α	none		2773	3840		586	674
		DC772		3600	5540		722	841
	В	none		2980	4390		637	819
		DC772		4650	62 40		792	927
	С	none	2410	3325	4437	499	614	758
		DC772	3420	4450	5855	536	711	927
	D	none	2398	3007	3985	506	668	708
5		DC772	3393	5037	6200	658	801	938
	E	none	2445			547		
		DC772	3510			660		
	А, В	none		2876	4115		611	746
		DC772		4125	5890		757	884
	C,D,E	none	2418	3166	4211	517	641	733
		DC772	3441	4733	6027	618	756	932
	A→E	none	2418	3021	4163	517	626	739
		DC772	3441	4429	5958	618	756	908

Sacks/yd	Batch	Specimen	Compression (psi)	Flexure (psi)
		l 2 3 average % diff	5285 5010 4410 4900 10.00	830 884 841 852 3.76
	I	l 2 3 average % diff	5050 4770 4690 4837 4,40	841 841 755 812 7.09
		l 2 3 average % diff	5130 5050 * 5090 0.79	884 819 733 812 9.75
5		l 2 3 average % diff	5285 5170 5170 5208 1.48	862 949 927 913 5.52
	J	l 2 3 average % diff	5365 5365 5010 5245 4.48	830 * 798 814 1.97
		l 2 3 average % diff	5645 5525 5285 5485 3.65	895 927 852 891 4.44
		l 2 3 average % diff	51.30 5285 4890 5102 4.16	701 755 787 747 6.26
	ĸ	l 2 3 average % diff	4890 4810 4850 4850 0.82	790 852 862 835 5.33
		l 2 3 average % diff	4930 4930 5050 4970 1.61	830 840 * 835 0.65
*Note: Imp	roper failure.		• • •	• • •

Table 17.	Flexure and compression data for fatigue companion specimens,
	5 sacks/yd ³ , plain concrete, mixes I through Q.

Table I (Con	tinuea)		Compression	Flexure
Sacks/yd	Batch	Specimen	(psi)	(psi)
5		l 2 3 average % diff	5365 5365 5125 5285 3.03	765 960 830 852 12.64
	L	l 2 3 average % diff	5485 5325 5365 5392 1.72	798 798 862 819 5.27
		l 2 3 average % diff	5445 5285 5205 5312 2.50	852 819 862 844 2.98
		l 2 3 average % diff	5445 5405 5365 5405 0.74	819 873 873 855 4.21
	М	l 2 3 average % diff	5765 5565 5525 5618 2.62	819 916 809 848 8.00
5		l 2 3 average % diff	5485 5465 5605 5578 1.67	906 819 755 827 9.55
		l 2 3 average % diff	5645 5485 5125 5418 5.41	852 841 949 880 7.84
	Ν	l 2 3 average % diff	5805 6080 5525 5803 4. 79	895 884 884 888 0.81
		l 2 3 average % diff	5445 5800 5605 5617 3.26	927 852 906 895 4. 80

Table 17 (Continued)

Table I/ (C	ontinued)		C	
Sacks/yd	Batch	Specimen	Compressor (psi)	Flexure (psi)
		l 2 3 average % diff	5365 5205 5125 5232 2.54	900 860 847 869 3,57
	0	l 2 3 average % diff	5285 5565 5800 5550 4.77	850 892 902 881 3.52
		l 2 3 average % diff	5460 5050 4930 5147 6.08	864 870 848 861 1.51
5		l 2 3 average % diff	*4610 5605 5605 5605 0.00	927 916 776 873 11.11
	P	l 2 3 average % diff	5565 5525 5525 5538 0.49	960 895 927 927 3.56
		l 2 3 average % diff	5685 5645 5525 5618 1.66	873 970 960 934 6.53
		l 2 3 average % diff	5205 5165 5010 5127 2.28	852 938 970 920 7.39
5	Q	l 2 3 average % diff	5050 4810 4730 4863 3.85	927 916 916 920 0.76
		l 2 3 average % diff	5445 5445 5485 5458 0.49	875 875 925 892 3.70

Table 18.	Flexure and compression data for fatigue companion specimens, 5 sacks/yd ³ , silicone additive DC-772,
	mixes I through Q

Sacks/yd	Batch	S pecimen	Compression (psi)	Flexure (psi)
		l 2 3 average % diff. % gain	7630 6795 6640 7022 8.66 43.31	1075 1050 1000 1042 4.03 22.30
	I	l 2 3 average %diff. %gain	7470 7550 6795 7272 6.56 50.34	975 1025 975 992 3.33 22.17
		l 2 3 average % diff. % gain	7790 6755 7035 7193 8.30 41.32	1095 1100 955 1050 9.05 29.31
5		l 2 3 average % diff. % gain	6915 6520 6995 6810 4.26 30.76	995 950 938 961 3,54 5,26
	J	l 2 3 average % diff. % gain	7000 6440 6755 6738 4.42 28.47	950 900 950 933 3.54 14.62
		l 2 3 average % diff. % gain	6915 6400 6360 6558 5.44 19.56	900 900 950 917 3.60 2.92
		l 2 3 average % diff. % gain	5960 5920 5125 5668 9.58 11.09	725 825 800 783 7.41 4.83

Table	18.	(continued)
	-	• •

Sacks/yd	Batch	Sp ecimen	Compression (psi)	Flexure (psi)
	К	l 2 3 average % diff. % gain	4890 5485 5880 5418 9.75 11.71	875 850 750 825 9.09 -1,20
		l 2 3 average % diff. % gain	6040 5050 5005 5365 12,58 6,24	900 900 850 883 3,7 4 5,75
5		l 2 3 average % diff. % gain	6875 7115 6955 6982 1,89 32,11	858 853 870 860 1,16 0,9 4
	L	l 2 3 average % diff. % gain	6520 6440 6560 6507 1.03 20.68	850 900 775 842 7,96 2,81
		l 2 3 average % diff. % gain	6120 6995 6635 6583 7.03 23.93	805 955 793 851 12,22 0,83
		l 2 3 average % diff. % gain	6795 6280 6560 6545 4.05 21.09	868 913 788 856 7,94 0,12
	М	l 2 3 average % diff. % gain	6955 6675 7075 6902 3.29 22.86	920 875 743 846 12,17 -0,24

Table 18 (continued)

Sacks/yd	Batch	S pecimen	Compression (psi)	Flexure (psi)
5		l 2 3 average % diff. % gain	6240 6800 6755 6598 5,03 18,29	900 875 800 858 6,76 3,75
5		l 2 3 average % diff. % gain	6955 6755 6160 6623 7.00 22,24	825 900 975 900 8.34 2.28
	N	l 2 3 average % diff. % gain	6795 6955 6835 6862 1.36 18.25	825 838 788 817 3.55 -8.00
		l 2 3 average % diff. % gain	6620 6560 6040 6407 5,73 14,06	850 888 900 879 3.30 -1.79
		l 2 3 average %diff. %gain	6955 6955 7075 6995 1.14 33.70	875 875 950 900 5.56 3.57
	Ο	l 2 3 average %diff. %gain	6795 6595 6520 6637 2,38 19,59	875 875 900 883 1.93 0.23
5		l 2 3 average % diff. % gain	7075 6835 6755 6888 2.71 33.83	850 825 900 858 4,90 -0,35

Sacks/yd	Batch	Specimen	Compression (psi)	Flexure (psi)
		l 2 3 average % diff % gain	7550 7670 7590 7603 0.88 35.65	875 900 875 883 3.96 1.15
	Р	l 2 3 average % diff % gain	7315 7035 6440 6930 7.07 25.14	913 938 900 917 2.29 -1.08
		1 2 3 average % diff % gain	7395 7395 7315 7368 0.72 31.15	1000 950 925 958 4,38 2,57
		1 2 3 average % diff % gain	7025 6995 6995 7005 0.29 36.63	968 950 800 906 11.69 -1.52
5	Q	l 2 3 average % diff % gain	7035 7035 7075 7048 3.83 44.93	920 875 800 865 7.51 -5.98
	·	l 2 3 average % diff % gain	6995 6795 6715 6835 2.34 25.23	925 920 920 922 0.33 3.36

Table 19. Summary of flexure and compression results, percent gain of mixes with silicone additive DC-772 over plain concrete, 5 sacks/yd³, mixes I through Q.

	Compression (psi)			Flexure (psi)		· .
Additive	3.	7	28	3	7	28
None	2445	3021	4163	51.7	626	739
DC-772	3441	4434	5958	618	748	908
% Gain	40.74	46.77	43.12	11.80	19,49	22,87

Table 20. Flexure and compression data for fatigue companion specimens, average results for plain concrete and silicone additive DC-772 mixes, 5 sacks/yd³, mixes I through Q.

_			Compress	ion (psi)	Flexure (osi)
Sacks/yd	Batch	Group	None	DC- 772	None	DC-772
		1	4900	7022	852	1042
		2	4837	7272	812	992
	I	3	5090	7193	812	10 50
		average	4942	7162	825	1028
		% diff	3.00	1.95	3, 28	3,51
		1	5208	6810	913	961
		2	5245	6738	814	933
	J	3	5285	6558	891	917
		average	5269	6702	873	937
		% diff	1.16	2.15	6.76	2.56
		1 2	4890	5668	747	783
		2	4850	5418	835	825
	K	3	497 0	5365	835	883
		average	49 03	5484	806	830
		% diff	1.37	3.36	7.32	6.39
		1	5125	6982	852	860
		2	5392	6507	819	842
	L	3	5312	6583	844	851
		average	5276	6691	838	851
		% diff	2.86	4.35	2.27	1.06
		1	5405	6545	855	856
	м	2	5618	6902	848	846
		3	5578	6598	827	858
		average	553 4	6682	843	853
		% diff	2.34	3.29	1.90	0.82
		1	5418	6623	880	900
		2	5803	6862	888	817
	Ν	3	5617	6 407	895	879
		average	5613	6631	888	865
		% diff	3.48	3.48	0.90	5.55
		1	5232	6995	869	900
		2	5550	6637	881	883
5	0	3	5147	68 88	861	858
		average	5310	6 840	870	880
		% diff	4.52	2.97	1.26	2.50
		1	5605	7603	873	883
		2	5538	6930	927	917
	Р	3	5618	7368	934	958
		average	5587	7300	911	919
		% diff	0.88	5.07	4.17	4.13
		1	5127	7005	920	906
		2	4863	7048	920	865
	Q	3	5458	6835	892	922
		average	5149	6963	910	898
		% diff	6.00	1.84	1.98	3.67

Sacks/yd	Batch	Additive	Compression (psi)	Flexure (psi)
	I	none DC-772	4942 7162	825 1028
	J	none DC-772	5269 6702	873 937
	К	none DC-772	4903 5484	806 830
	L	none DC-772	5276 6691	838 851
5	м	none DC-772	553 4 6682	843 853
	N	none DC-772	5613 6631	888 865
	0	none DC-772	5310 68 4 0	870 880
	P	none DC-772	5587 7300	911 919
	Q	none DC-772	5149 6963	910 898

Table 21. Average flexure and compression results for fatigue companion specimens, plain concrete and silicone additive DC-772 mixes, 5 sacks/yd³, mixes I through Q.

Table 22. Summary of flexure and compression results for fatigue companion specimens, percent gain of mixes with silicone additive DC-772 over plain concrete, 5 sacks/yd³, mixes I through Q.

Additive	Compression (psi)	Flexure (psi)
none	5287	863
DC-772	6717	896
% gain	27.05	3.82

Sacks/yd	Batch	Specimen	Freeze and Cycles	Thaw D.F.	
	A	l 2 average % d iff	8 9 8 12.50	•8 •9 •85 5.88	6.48x10 ⁶ 6.31x10 ⁶
I	В	l 2 average % diff	24 23 23 4.17	2.4 2.3 2.35 2.13	6.68X106 7.01X10
5	С	1 2 3 average % diff	10 9 11 9.0 11.11	1.0 .9 1.1 .90 11.11	5.71 X10 ⁶ 5.75 X10 ⁶ 5.72 X10
	D	l 2 3 average % diff	115 133 118 122 3.28	11.5 13.3 11.8 12.20 3.28	5.60X106 5.60X106 5.60X10 5.60X10

Table 23. Durability data for plain concrete, 5 sacks/yd³, mixes. A, B, C, and D.

Table 24. Durability data for silicone additive DC-772 mixes, 5 sacks $/yd^3$, mixes A, B, C, and D.

,	, ·	• • •	-		
Sacks/yd	Batch	Specimen	Freeze and Cycles	Thaw D.F.	
	A	l 2 average % diff % gain	29 21 25 16.0 212.50	2.9 2.1 2.5 1.6 194.12	7.05X10 ⁶ 6.84X10 ⁶
	В	l 2 average % diff % gain	169 155 162 4.32 604.35	16.9 15.5 16.2 4.32 589.36	6. 22 X 10 ⁶ 6. 30 X 10 ⁶
5	С	l 2 3 average % diff % gain	104 86 40 76 47.40 426.67	10.4 8.6 4.0 7.7 47.88 432.00	5.69X106 5.64X106 5.08X10
	D	l 2 3 average % diff % gain	300 300 300 300 0.00 145.90	30 30 30 30 0.00 145.90	5.76X106 5.62X106 5.64X10

Table 25: Summary of durability data, average percent gain in durability of silicone additive DC-772 mixes over plain concrete, 5 sacks/yd³, mixes A, B, C, and D.

		Freeze a	nd Thaw
Sacks/yd	Additive	Cycles	D . F.
_	none	40	4.1
5	DC- 772	140	14.1
% Gain in	D.F.	250.00	243.90

Table 26. Average percent of volume change for plain concrete and silicone additive DC-772 mixes, 5 sacks/yd³.

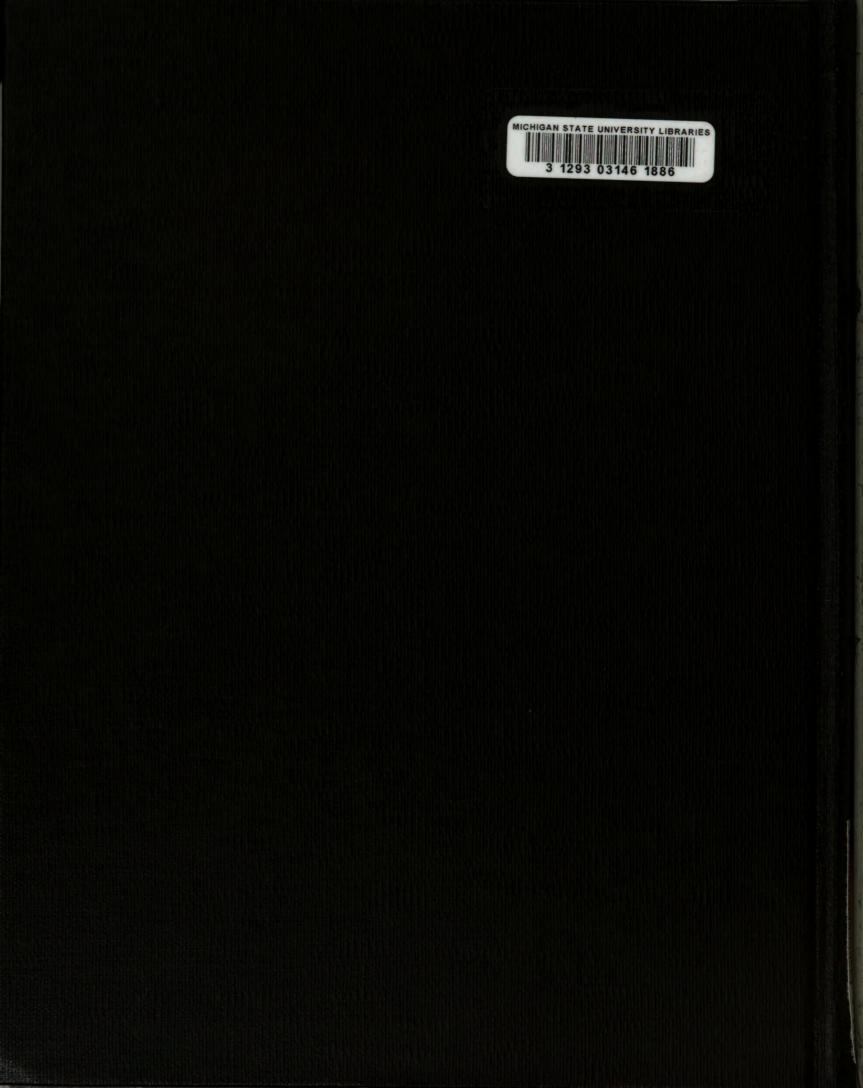
Time	Addi	tive
	None	DC-772
2 day	1.45	1.54
3 day	1.58	1.85
4 day	1.68	1.98

Table 27. Air-content, slump, water-cement ratio, and time of set for plain concrete and silicone additive DC-772 mixes, 5 sacks/yd³, mixes C, D, and E.

				Mix	
Sacks/yd	Additive	Variable	С	D	E
	None	w/c % air slump	0.448 2.15 1-1/4''	0.468 2.65 1"	0.502 2.95 1-1/4"
5		time I of F set	1'- 30'' 3'- 45''	1'-55'' 4'-30''	2'- 45'' 5'- 10''
	DC-772	w/c % air slump	0.444 2.60 1-1/2"	0.433 3.35 1"	0.479 3.00 1"
		time I of F set	3' -0'' 7'- 30''	3'-0'' 9'-15''	2' -45 '' 9'-0''

Table 28. Air-content, slump, water-cement ratio for plain concrete and silicone additive DC-772 mixes, 5 sacks/yd³, mixes I through Q.

Sacks/yd	Mix	Additive	w/c	% Air	Slump
	I	none DC- 772	• 492 • 468	2.50 2.95	3/4" 1/2"
	J	none DC-772	.530 .506	3.10 2.35	1=1/4" 3/4"
	K	none DC-772	.524 .552	3.00 2.13	1-1/2" 1"
	L	none DC- 772	.484 .508	3.65 2.53	1•1/4" 1/2"
5	М	none DC-772	. 431 . 543	3.55 1.93	1=1/4" 3/4"
	N	none DC-772	• 522 • 523	2.55 2.20	3/4" 1-1/4"
	0	none DC-772	.520 .523	2.50 2.30	3/4" 1"
	P	none DC- 772	• 476 • 486	2,20 2,70	1" 3/4"
	Q	none DC-772	• 4 86 • 509	2.60 2.63	3/4" 1"


Table 29. Number of cycles, N, to failure and probability of failure, p, for three stress levels, plain concrete and silicone additive DC-772 fatigue specimen mixes, 5 sacks/yd³, mixes I through Q.

	None	ADDITIVE		DC-772	
.4fr	Stress Level .425fr	.45fr	.4fr	Stress Level .425fr	. 45fr
827	63	43	115	82	382
3457	1346	268	793	949	414
4635	1546	281	835	1673	965
5590	1833	300	1234	1686	1145
7491	2661	436	2031	1697	1870
8241	2948	935	2911	2017	2012
9732	3233	1277	5325	2402	2803
10000+	40 63	2511	7322	2455	3431
10000+	4941	5003	10000+	36 94	3842

BIBLIOGRAPHY

- Cahn, Harold L., and Mackey, Royal V. Jr., "Extending Concrete Highway Durability and Light Reflectance with Silicones." <u>ASTM</u> Bulletin, No. 235, pp. 33-37, January, 1959.
- Scheribel, R. S. and Supinger, C., "DC-771 and DC-772 as Silicone Admixtures to Concrete," from a report prepared for the Dow-Corning Corporation, March, 1957.
- Peterson, H. T., "Silicone Additives in Concrete," from reports prepared for the Dow-Corning Corporation, July, 1957 and January, 1958.
- 4. Moskveen, V. M., Apexyev, S. N., and Batrakov, V. G., "Silicone-Organic Supplement for the Increase of Frost Resistance of Concrete," <u>Beton i Zhelezobeton</u>, No. 1, pp. 19-21, 1959.
- 5. Anonymous, "Schutz vor Durchfeuchtung durch Silicon-Impraegniermittel Bayer F," Die Bauwirtschaft, No. 1, pp. 11-12, 1960.
- Anonymous, "Design and Control of Concrete Mixtures," <u>Portland</u> Cement Association, 10th edition, 1952.
- Woods, Hubert, "Observations on the Resistance of Concrete to Freezing and Thawing," <u>American Concrete Institute Journal</u>, Vol. 26, No. 4, pp. 345-353, December, 1953.
- Clemmer, H. F. "Fatigue of Concrete," <u>Proceedings of the</u> <u>American Society for Testing Materials</u>," Vol. 22, Part II, pp. 409-419, 1922.

- Ewing, D. D., "Fatigue in Concrete," <u>Electrical Railway Journal</u>, Vol. 73, September, 1929.
- Anonymous, "The Fatigue of Concrete," Institution of Civil Engineers Journal, London, Vol. 11, p. 165, 1939.
- Kesler, C. E., "Effect of Speed of Testing on Flexural Fatigue Strength of Plain Concrete," <u>Proceedings, Highway Research Board</u>, Vol. 32, pp. 251-258, 1953.
- Kesler, C. E., and Murdock, John W., "Effects of Range of Stress on Fatigue of Plain Concrete Beams," <u>American Concrete Institute</u> Journal, Vol. 30, No. 2, August, 1958.
- McCall, J. T., "Probability of Fatigue Failure of Plain Concrete," <u>Proceedings, American Concrete Institute,</u> Vol. 55, pp. 234-244, 1959.

