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ABSTRACT 
 

MULTIVARIATE FRACTIONAL RESPONSE MODELS IN A PANEL SETTING WITH AN 
APPLICATION TO PORTFOLIO ALLOCATION  

 
By 

 
Michael Anthony Carlton 

 
Several papers use subjective survival probabilities as a measure of mortality risk in studying 

economic behavior. The first chapter “Wealth Holdings, Asset Allocation and Mortality: A Test 

of the Information Content of Subjective Survival Probabilities” studies whether subjective 

survival probability measures contain any additional information that can explain differential 

wealth holdings and asset allocation among households. We find some evidence that survival 

probabilities can explain differences in household wealth holding and allocation once we control 

for other factors that affect decision-making. We also find that the estimated impact of subjective 

survival is sensitive to the inclusion of reported survival probabilities of one. 

Some fractional response variables, like the proportion of financial wealth allocated 

across multiple assets, must satisfy an adding up restriction. In the second chapter “A Model for 

Multivariate Fractional Responses with an Application to Asset Allocation”, we develop a two-

step procedure where we estimate a model with multiple fractional response variables exploiting 

the fact that these variables sum to one in each period and are correlated over time. The first step 

entails estimation of the multivariate fractional responses using the multinomial quasi-likelihood 

function which explicitly imposes the adding-up restriction and the second step uses the 

Classical Minimum Distance estimator to account for serial correlation. 

Many panel data estimators implicitly assume that we have a balanced panel at our 

disposal. Unfortunately this is rarely the case and dropping observations is an unsatisfactory 

solution to the problem. Estimation of fractional responses in a panel requires assumptions about 



the distribution of the unobserved effect and its relationship with observables, which requires 

special treatment in an unbalanced panel. In the third chapter, “Estimation of a Multivariate 

Fractional Response Model with Unbalanced Panel Data”, we extend the approach in 

Wooldridge (2010) to the case of multiple fractional responses and apply this to unbalanced 

panel data on the allocation of financial wealth across several assets. 
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CHAPTER 1 

WEALTH HOLDINGS, ASSET ALLOCATION, AND MORTALITY: A TEST OF THE 

INFORMATION CONTENT OF SUBJECTIVE SURVIVAL PROBABILITIES 

1.1 Introduction 

Economic theory predicts that individuals save to finance their consumption in 

retirement. An important factor in deciding the level and allocation of wealth to different assets 

is the length of time the individual expects to live after retirement. The risk that an individual 

faces if they do not properly account for their survival expectations is that they will outlive their 

assets. Social Security and pensions can help to alleviate this risk by providing a fixed stream of 

income in retirement, but if individuals are attempting to smooth consumption there is a potential 

for a significant decrease in utility later in life from consuming too much early in life. Therefore, 

we should see that forward-looking individuals adjust their current behavior to their individual 

life expectancy. 

It is straightforward to determine whether mortality has an impact on wealth holding and 

asset allocation. With repeated observations on individuals, we can simply see if wealth holding 

and asset allocation is different for individuals with longer actual lifetimes. The drawback to this 

approach is that it is looking at actual lifetimes, not expected lifetimes. In any period, an 

individual does not know their actual date of death but only has some idea of their probability to 

reach a target age. One can use life-table probabilities as a proxy for individual survival, but 

since these are averages over the entire population, they only vary by age, race, and gender. The 

ideal measure that we would like to use is individual’s expected survival probabilities at the 

point in time that they are making their decision to save and allocate wealth. 

Our goal in this paper is to determine whether we can explain any of the heterogeneity in 
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wealth holdings and asset allocation using subjective survival probabilities elicited in the Health 

and Retirement Study (HRS). The HRS collects detailed information on household asset 

holdings as well as measures of subjective survival probabilities. Therefore, we have a source of 

data that contains the information that we would need to determine the impact of subjective 

survival probabilities on wealth holding and allocation behavior.  

Several studies have analyzed the validity of these subjective survival probabilities in 

terms of actual mortality risk. Hurd and McGarry (1995) find that these measures are internally 

consistent, match closely to life table averages and covary with known correlates of actual 

mortality
1
. In a follow-up study, Hurd and McGarry (2002) find that these probabilities are also 

good predictors of actual mortality experiences of the HRS respondents. Smith, Taylor and Sloan 

(2001) support this finding but also point out that there is a large portion of the sample that report 

very small changes in their survival probabilities over time.  

Elder (2012) looks closely at the subjective survival probabilities in the HRS and finds 

systematic differences as compared to life tables probabilities. He finds that the subjective 

survival probabilities do not account for yearly increases in mortality rates and that individuals 

do not update their survival probabilities as expected. He also finds that the life-table survival 

probabilities are considerably better predictors of actual survival than the subjective survival 

probabilities. Perhaps most concerning is that Elder (2012) provides compelling evidence that 

subjective survival probabilities in the HRS contain significant noise; in fact so much random 

noise that it may overwhelm any individual information that reflects actual heterogeneity. 

While the above studies provide evidence that subjective survival probabilities match 

aggregate life-table probabilities but systematically differ from how mortality rates actually vary 

                                                           
1
 Hurd and McGarry (1995) do note that blacks report higher subjective survival probabilities 

than their white counterparts. This is inconsistent with the life-table probabilities. 
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over the lifetime it is still important to determine whether they are useful in explaining 

heterogeneity in economic behavior. What is important to note is that the findings in Elder 

(2012) suggest that we are likely to see very little impact from subjective survival probabilities 

simply because there is little signal in these measures.  

Our empirical work focuses on estimating reduced-form relationships of wealth holdings 

and asset allocation with subjective survival probabilities elicited from individuals. We attempt 

to control for the heterogeneity in factors that economic theory tells us should affect the wealth 

holding and allocation decision including basic demographics (age, education, gender, etc.), 

income (both current and permanent), as well as proxies for an individual’s time preference, 

cognition, and risk aversion. Since the HRS collects financial data at the household level, we 

model the household’s wealth holding and the proportion of financial wealth allocated to stocks, 

bonds, CDs, and checking/savings/money market accounts. We estimate different models for 

single and married households since multi-person households have to take into account the 

survival expectations of both members. To estimate our allocation equations we use the Quasi-

Maximum Likelihood approach proposed in Papke and Wooldridge (1996, 2008) which is 

appropriate for estimating fractional response variables.  

We find mixed evidence for the impact of subjective survival on wealth holdings
2
. For 

single households, we find that a one-percentage point difference in reported subjective survival 

probability (a difference of 0.01) leads to about $266 more Net Worth and about $124 more 

Financial Wealth holdings, both significant at the 5% level. For married households we find that 

a one-percentage point difference in the husband’s subjective survival probability leads to 

                                                           
2
 We find mixed evidence in terms of statistical significance of our estimates. Regardless of 

statistical significance, all of our estimated impacts for subjective survival probabilities are very 
small in magnitude. 
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increased Net Worth of about $241 and about $29 more Financial Wealth but both estimates are 

statistically insignificant at standard levels. A one-percentage point difference for the wife’s 

subjective survival probability is associated with about $425 more in Net Worth (statistically 

significant at the 5% level) but, contrary to theory, leads households to hold about $22 less in 

Financial Wealth, though this estimate is not statistically significant. 

There appears to be no impact of survival probability on the proportion of financial 

wealth allocated across assets for single households though we note that we see the correct sign 

of the impact of survival probabilities on the proportion of wealth allocated to stocks and 

checking. For married households, we find that a one-percentage point difference in the 

husband’s subjective survival probability leads the household to allocate about 0.026% more to 

stocks and a one-percentage point difference in the wife’s subjective survival probability leads 

the household to allocate around 0.022% more financial wealth to stocks; these are significant at 

the 5% and 10% levels. The average partial effects for the subjective survival probabilities in our 

checking equation are negative for both husband and wife but are very small and statistically 

insignificant at standard levels. 

We find no evidence that our estimated impacts of subjective survival probabilities are 

sensitive to the inclusion of a measure of permanent income. If we drop our measure of 

permanent income, we find that the estimated impact of subjective survival increases slightly for 

wealth holdings and asset allocation equations. We also show that our estimated impacts for 

subjective survival on wealth holding and asset allocation look very different when we treat 

reported survival probabilities of one differently. This is consistent with the findings from Elder 

(2012) which suggest that there is significant measurement error in these reported survival 

probabilities.  



ւ��≺⊙ �⊙��ց 

 

5 
 

The outline of this paper is as follows. Section 2 briefly discusses the underlying theory 

and reviews studies that use subjective survival probabilities to explain economic behavior. 

Section 3 briefly explains the HRS, provides descriptive statistics and patterns in the data, and 

details the analysis of the informational content of survival probability measures in terms of 

wealth holding and allocation. Section 4 presents the results of our analysis and Section 5 

concludes. 

1.2 Theory and Literature Review 

Economic theory indicates that forward-looking individuals with higher survival 

probabilities will hold more wealth and allocate a larger portion of their wealth to the risky asset 

than individuals with lower survival probabilities. This is because with time-separable utility the 

introduction of non-zero survival probabilities effectively multiplies a time varying factor to the 

individual’s constant discount rate. Bernheim, Skinner, and Weinberg (2001) perform a simple 

simulation and demonstrate that individuals with lower discount rates hold more wealth than 

individuals with higher discount rates. Cocco, Gomes, and Maenhout (2005) and Sahm (2007) 

show that the underlying policy function that defines the optimal portfolio choice of the 

household is a function of total wealth: the sum of discounted future income and current 

financial wealth holdings. With uncertain lifetimes, the individual will discount future income by 

incorporating the probability that they will earn that future income stream. They show that the 

proportion of financial wealth allocated to the risky asset is positively related to how “certain” 

their future income stream is. DeNardi et al. (2009) also document that higher survival 

probabilities (even if they are small) will lead even the oldest and sickest individuals to spend 

down their retirement wealth very slowly. DeNardi et al. (2009) also show that the impact of 

lower survival probabilities leads individuals to decrease their wealth holdings. 
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The basic premise here is that individuals will smooth the marginal utility of 

consumption over time by setting the marginal utility of current consumption to the marginal 

utility of the discounted future consumption stream. As long as individuals discount the future by 

including the probability of survival we will see that a person with higher survival probabilities 

will hold more wealth and allocate a larger proportion of wealth to the risky asset. 

Several studies attempt to link subjective survival probabilities to economic behavior and 

these tend to focus on the areas of retirement, bequests, wealth holding, and consumption. Hurd 

et al. (2002) analyze the decisions to retire and claim Social Security benefits early. Using 

responses to subjective survival to age 85 and Social Security earnings data matched to the first 

four waves of the HRS, they estimate their model on two different samples: those who are retired 

prior to age 62 and those not retired by 62. They find that there is a small, statistically significant 

increase in retirement and claiming of benefits but only for those individuals that report that their 

probability of living until age 85 is zero.  

Delevande et al. (2006) revisit the retirement and claiming issue with the hope of 

obtaining estimates that are more accurate by instrumenting for measurement error in the 

reported survival probabilities. They use the response to the question of survival to the age of 75 

instead of 85 used by Hurd et al. (2002). As instruments for the subjective survival probability, 

they use demographic information, mortality experience of parents, and an optimism index, 

which is a predicted value generated from a factor analysis of the remaining subjective 

probability questions. This optimism index reflects the correlation of the responses to all 

probability expectation questions in the HRS and potentially represents the unobserved 

heterogeneity in individual expectations. Notably this constructed optimism index has a large 

and statistically significant impact on their instrumental variable for the subjective survival 
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probability. Similar to Hurd et al. (2002) they estimate the impact of survival probabilities on 

claiming behavior for the group of respondents that are retired by age 62 and the impact of 

survival probability on early retirement and early claiming for the sample of respondents that are 

still working at age 62. Using the raw subjective survival probability measures they find no 

statistically significant impact of survival on either claiming or retirement. When they instrument 

for subjective survival they find that there is a statistically significant impact on early claiming 

but not on retirement. Their results suggest that a five-percentage point increase in the predicted 

survival probability will lead to a 1.9 percentage point decrease in the number of people that will 

claim Social Security benefits early. Delevande et al. (2006) claim that using instrumental 

variables to rid the subjective survival probability of measurement error is the reason that they 

are able to find a statically and economically significant effect of subjective survival on claiming 

behavior.  

Gan, Gong, Hurd, and McFadden (2004) study the impact of subjective survival 

probability measures on the bequest behavior of elderly households. They derive estimable 

equations from a life-cycle model so that they can estimate structural parameters that can 

describe the individual’s preferences for bequests. To account for focal points and to calculate a 

survival curve they construct a measure of yearly mortality rates based on responses to subjective 

survival questions in the Asset and Health Dynamics among the Oldest Old (AHEAD) study. In 

addition, they estimate their equations using the life-table survival curves to compare the 

predictive power of the subjective survival curves. Since they are estimating a life-cycle model, 

they are able to simulate consumption and wealth trajectories and compare model predictions to 

actual decisions within the AHEAD panel. They find that their predicted consumption and 

wealth trajectories using the survival curves derived from the subjective survival probabilities 
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outperform the predicted values using life-table survival. They also note that their estimates 

suggest that bequest motives of the older population represented in the AHEAD are very small 

and that most bequests are involuntary or accidental.  

Salm (2006) attempts to estimate the structural parameters from the Euler equation for 

consumption derived from a simple life-cycle model. He uses data from single households that 

completed the HRS interview in 2000 and 2002 and completed the Consumption and Activities 

Mail Survey (CAMS) in 2001 and 2003. Using the subjective survival probabilities, he 

constructs yearly survival rates following Gan et al. (2004). He interprets the inverse of his 

estimated coefficient on the subjective survival probability as his estimated value for the risk 

aversion parameter. To allow for precautionary savings he estimates the model including an 

estimated variance of out-of-pocket medical expenses to proxy for consumption risk. Salm 

(2006) finds that higher subjective survival probabilities lead to decreases in the growth rate of 

consumption. 

Perry (2005) estimates an empirical model derived from the Euler equation for 

consumption. He constructs yearly survival rates from the subjective survival probability 

responses in the HRS. Perry (2005) constructs his measure of consumption by looking at 

differences between wealth holdings across periods. He finds that there is no statistically 

significant relationship between the constructed subjective survival probabilities and his measure 

of consumption. Perry (2005) points to substantial measurement error in his measure of 

consumption as the culprit for the lack of statistical significance in his estimates. 

Bloom et al. (2006) studies the impact of subjective survival probabilities on retirement 

and wealth holdings of both single and married households. Bloom et al. (2006) take a sample of 

individuals that were aged 50-70 in 1992 and estimate the relationship between their retirement 
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decisions and wealth holding and subjective survival probability to age 75. To correct for 

potential measurement error they instrument subjective survival probabilities using mortality risk 

factors and parental mortality experience. They find no statistically significant impact of 

subjective survival on either retirement or wealth holding for single households. Looking at 

married households, they find no statistically significant relationship for the retirement decision 

of either the husband or wife. For married households they find that once they instrument for the 

subjective survival probability they estimate a statistically significant impact of survival 

probabilities of both spouses. Their estimates suggest that a ten percentage point change in the 

husband’s survival probability leads to a $27,600 increase in wealth (significant at the 10% 

level) and a ten percentage point increase in the wife’s survival probability leads to a $32,600 

increase in wealth. Bloom et al. (2006) interpret these findings as evidence that households save 

more in the face of higher expected lifetimes because there is no incentive to postponing 

retirement. 

DeNardi, French, and Jones (2009) look at the impact of survival uncertainty, medical 

expenses, and health uncertainty on the wealth holdings of elderly individuals in the AHEAD. 

They estimate a structural model using the Method of Simulated Moments and matching the 

medians that were in the data to the medians estimated by the structural model. They did not use 

the subjective survival probabilities that are collected in the AHEAD survey; instead, they 

estimate future survival relying on the actual mortality experience in the panel
3
. They find that 

the structural model fits the data very well. This lends much more credibility to the simulations 

that they perform to isolate the impact of differential mortality on wealth holdings. Since they 

have modeled their survival probabilities as a function of gender, health status, and permanent 

                                                           
3
 The model for survival probabilities includes the prior period’s health status, permanent 

income, and gender. 
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income, they perform simulations that show the impact of changes within the components of 

survival. It appears that the impact of health, gender, and permanent income all have similar 

impacts on the wealth holdings of elderly households. The simulations clearly point to the fact 

that the slow spend down of wealth in old age is due to uncertain lifetime. As long as there is a 

possibility of outliving one’s assets there will be a significant precautionary savings motive.  

With the exception of Hurd et al. (2002), Bloom et al. (2006), and Delevande et al. 

(2006), all of the cited works estimate either an Euler equation or a structural model using either 

the HRS or the AHEAD. Most of the studies that use the subjective survival probabilities either 

transform them into yearly survival curves or use instrumental variable techniques to correct for 

measurement error. Our work is probably closest to Bloom et al. (2006), although we take 

serious the findings of the other studies that we have reviewed. We estimate models for wealth 

holdings of both single and married households and find a statistically significant but small 

impact on wealth holdings for single and married households. While there are a few empirical 

studies of asset allocation in the HRS they look at health status and not survival probabilities 

(Rosen and Wu (2004) and Berkowitz and Qiu (2006)). Lillard and Willis (2001) estimate a 

model of asset allocation including a measure of the number of focal point responses across all 

subjective probability questions, which they interpreted as a measure of cognition. They found 

that fewer focal point responses correlate with increased allocation to the risky asset. 

1.3 Model Specification, Descriptive Statistics, and Estimation Strategy 

 The goal of our empirical exercise is to determine whether subjective survival 

probabilities help to explain the differences in wealth holding and allocation behavior between 

households in the Health and Retirement Study. We estimate reduced form equations to 

determine the relationship between household wealth holdings, allocation of wealth and survival 
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probabilities. In our model specification we include basic demographic characteristics: age, 

education, working status, household size, gender, marital status, and current income. Theory 

dictates that the household’s wealth holding and allocation decisions are a function of not only 

their current resources but also what they expect their future resources will be. To this end, we 

include a measure of permanent income in our model specifications. Differences in risk aversion 

among households can affect the amount of wealth and the allocation of wealth across assets. To 

proxy for risk aversion we include responses to questions regarding a household’s willingness to 

accept different income gambles. Households can also differ in their discount rates. We include 

responses to questions about the length of time that the individual considers for financial 

planning as a proxy for discount rates. Previous research (Elder (2012), McArdle et al. (2009) 

and Lillard and Willis (2001)) suggest that an individual’s cognition can also affect the outcome 

of the wealth holding and asset allocation decisions; we include measures of word recall and 

simple numerical calculations captured in the HRS as proxies for cognition. 

 We will estimate separate equations for single and married households. We present 

equations for single households; married households will include the same set of regressors for 

both the husband and wife. Let i  represent the household and t  represent the year of the survey. 

To estimate the impact of survival probabilities on wealth holding we specify the following 

equation: 

 Pr(Live to 75)1W uit it itβ= ⋅ + +βX  (1.3.1) 

where Wit  is a measure of wealth, either Net Worth or Financial Wealth, Pr(Live to 75) 

represents our measure of subjective survival probability from the HRS (see below for the 

specific question used to solicit the survival probability), and itX  are control variables that we 

detail below. We also estimate the relationship between survival probabilities and the allocation 
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of Financial Wealth across four types of assets; stocks, bonds, CDs, and checking/savings/money 

market accounts: 

 ( Pr(Live to 75) )1yitg it itθ ε= Φ ⋅ + +θZ  (1.3.2) 

where itgy  represents the proportion of financial wealth allocated to asset g  in year t  by 

household i . Here itZ  represents control variables that will include the same variables we use in 

the wealth holding equations with the addition of a measure of total wealth available to the 

household at time t . Due to the fractional nature of the asset share equation in (1.3.2) we have 

followed Papke and Wooldridge (1996, 2008) and specified that the conditional mean function is 

nonlinear; Φ  represents the standard normal cumulative distribution function.  

 We include controls for standard demographic variables that can affect behavior such as 

age, age
2
, age

3
, household size, education, as well as controls for year effects. Theory tells us 

that it is necessary to control for current income as well as the value of lifetime income. We 

measure current income as the sum of all non-capital income of the household as reported in all 

waves. As a measure of lifetime resources we follow Altonji and Doraszelski (2005) and 

calculate a household’s permanent income. To do this we regress current household income on 

age, age
2
, age

3
, age

4
, a set of year dummies, household size, and indicators for marital status, 

gender and education level.
4
 For each household we calculate the average of the residuals from 

this regression and then compute the permanent income of the household as the sum of the 

average residual and the predicted value of income for the education level of the individual and 

                                                           
4
 For married households, we do not include indicators for gender or marital status. 
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assuming that the individual is at the average age in our sample.
5
 Since there is likely a nonlinear 

impact of these income measures we also include squares of current and permanent income as 

well as their cross product in our wealth holding equations
6
.  

Theory dictates that total wealth has an impact on the allocation of wealth across 

available assets. Ideally, the measure of wealth that we would include in our model would 

include pension wealth, Social Security wealth and the present value of all future income. For 

our measure of wealth we use the log of Net Worth which is the sum of Financial Wealth (the 

value of holdings in stocks, bonds, CDs and checking/savings/money market accounts) and Non-

Financial Wealth (the value of holdings in IRA/Keogh accounts, housing, vehicles, other real 

estate, and trusts) minus any debt associated with these asset holdings.
7
 Our hope is that the 

combination of Net Worth and the estimated permanent income measure will act as a good proxy 

for the total wealth measure that theory dictates will affect decision-making. 

In addition to controlling for differences in household demographics, income, and wealth 

there is also a need to control for risk aversion and discount rates of households. To proxy for 

discount rates we will use responses to HRS question regarding the financial planning horizon of 

the household
8
. To control for risk aversion we will use questions meant to solicit aversion to 

income risk and we will categorize individuals based on their responses to a series of unfolding 

                                                           
5
 For single households we use calculate permanent income at age 58. For married households 

we use 58 for the husband and 54 for the wife, both of these are the average ages in our sample.  
6 In our asset allocation equations we actually use permanent log income, which we estimate in a 
similar manner to permanent income with the exception that we regress the log of current income 
on the demographic variables. 
7
 We use RAND imputations for missing values of income and asset holdings when the 

respondent was unable to give exact values. 
8
 The choices available from the planning horizon question are: Next Few Months, Next Year, 

Next Few Years, 5-10 Years and 10+ Years. We use Next Few Months as our base category. 
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questions regarding different income scenarios following Barsky, et al. (1997). This essentially 

categorizes an individual into one of four groups: High Risk Aversion, Medium-High Risk 

Aversion, Medium-Low Risk Aversion and Low Risk Aversion. We use High Risk Aversion as 

our base group. 

We include two additional controls to proxy for the cognitive ability of the individual. 

The HRS collects several measures of individual cognition, but not all measures are available in 

all waves of the survey. In every wave of the HRS, respondents are given a list of nouns and then 

asked to repeat this list immediately and at the end of the cognition section. Our first measure of 

cognitive ability is the proportion of words recalled at the end of the cognition section. In 

addition, each individual performs a series of five simple numerical calculations. First, the 

individual subtracts 7 from 100. The next question in the series asks the individual to subtract 7 

from the answer to the previous calculation. The individual performs this calculation a total of 

five times. As a second measure of cognition, we use the number of correct calculations, ranging 

from 0 to 5. By no means do we think that these two measures will completely capture the 

cognitive ability of the individual. Our hope is that accounting for education level and some 

time-varying measure of cognitive ability that we can accurately proxy for the cognitive ability 

of an individual.
9
 

We use data from the Health and Retirement Study (HRS). The HRS began in 1992 and 

was nationally representative of all non-institutionalized individuals aged 51-61 in that year. In 

1998 the HRS combined with the Asset and Health Dynamics of the Oldest Old (AHEAD) and 

added several new cohorts to be nationally representative of the population of non-

                                                           
9
 McArdle, Smith, and Willis (2009) study the ability of cognitive measures in the HRS to 

explain wealth holdings and allocation. They find that word recall is positively correlated with 
allocation to the risky asset (stocks) and the amount of wealth held. Their analysis does not 
account for survival probabilities. 
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institutionalized individuals aged 51 and older. In addition to initial respondents, spouses are 

interviewed and followed in subsequent interviews. We use data for all cohorts from Waves 1-7 

(1992-2004) of the HRS. In addition to basic demographic variables, the HRS collects detailed 

information on wealth, allocation, income and its sources, health and measures of the probability 

that future events occur. The main variable of interest in this analysis is the response to the 

following question: 

On a scale from 0 to 100, where 0 is no chance and 100 is absolutely certain, what are 

the chances that you will live to age 75 or older?  

We use responses to this question as a measure of subjective survival probabilities.  

We construct our data set by household. For married households we combine spouses in 

each wave so that our panel consists of household observations by year. To select individuals for 

our sample we include observations that satisfy the following criteria: 

(i) respondent is younger than 65 at the time of the interview,  

(ii)  respondent does not have missing values for subjective survival probability,  

(iii)  responses are not from a proxy interview and  

(iv) the respondent is still living at the time of the interview.  

These criteria are applied at the individual level so married households that do not have both 

spouses are dropped. The decision to allocate wealth across assets is conditional on holding 

positive financial wealth; therefore, for estimating allocation relationships we drop observations 

where financial wealth is zero. Imposing the above criteria for married households leaves us with 

6,608 unique households (18,603 observations) to estimate wealth holding equations (we call this 

our Wealth Sample). If we drop those observations where households are holding zero financial 

wealth we are left with 6,048 households (16,690 total observations) which we will call our 
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Allocation Sample. Applying the criteria to single households we are left with 5,022 households 

(14,275 total observations) for our Wealth Sample and dropping observations with zero financial 

wealth we are left with 4,053 households (10,573 total observations) in our Allocation Sample.  

We calculate means and medians for the Wealth and Allocation Samples for both single 

and married households. Table 1 displays these descriptive statistics for single households. We 

can see that single households are predominately white females. A majority of individuals have 

not completed college (a little over 80%). Most single households hold most of their net worth in 

non-financial wealth. Between the Wealth and Allocation sample, we can see that individuals 

that hold positive financial wealth tend to report higher survival probabilities, have slightly more 

education, income, and wealth. On average, it appears that single households tend to hold higher 

amounts of their financial wealth in checking, savings, and money market accounts. 

Table 2 displays descriptive statistics for the Wealth and Allocation Samples for married 

households. Compared to single households, married household members tend to have slightly 

higher education. Married households also report holding a large portion of their net worth in 

non-financial wealth. Married households earn more income on average and they have higher 

wealth holdings relative to single households. Comparing the Wealth Sample to the Allocation 

Sample, it appears that households with positive financial wealth are better educated, earn 

slightly more income, and hold more wealth. In comparison to single households it appears that 

married households allocate about 10% more of their financial wealth to stocks and ten percent 

less to checking, savings, and money market accounts. 

Table 3 displays the raw relationship between average wealth holdings and average asset 

allocation and survival probabilities for single households. Tables 4 and 5 show the same 

relationship for married households; Table 4 uses the husband’s reported survival probability and 
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Table 5 uses the wife’s reported survival probability. We can see that average wealth holdings 

are higher for higher values of survival with the exception of those individuals that report a 

survival probability of one. We can also see that the average proportion of financial wealth to 

stocks is increasing with higher survival probabilities and the allocation to checking is 

decreasing with higher survival probabilities. Since stocks and checking are the most risky and 

least risky of the four financial assets this finding seems to fit well with what theory predicts. 

The objective of this study is to determine whether this correlation still exists once we have 

removed the impact of other factors that affect wealth holding and allocation behavior. 

1.4 Results and Discussion 

Using equation (1.3.1) we estimate models of wealth holding for single households; 

results are presented in Table 6.
10

 We see a positive impact of survival probabilities on both Net 

Worth and Financial Wealth; a one-percentage point difference in survival probability is 

associated with about $256 more Net Worth and $124 more Financial Wealth, both estimates are 

significant at the 5% level. Education plays a key role in explaining differences in wealth 

holdings among single households. Households that have a college degree have nearly $111,000 

more in Net Worth (and nearly $51,000 more Financial Wealth) than individuals that have not 

completed High School. There also appears to be a significant positive impact of a longer 

financial planning horizon. Those households that plan for more than ten years into the future 

have about $95,000 more in Net Worth and $39,000 more Financial Wealth than households that 

only plan for the next few months.  

We now turn to the results of estimating equation (1.3.2) using the Quasi-Maximum 

                                                           
10

 Throughout the paper (including the tables) we refer to a one-percentage point change in the 
subjective survival probability. This is equivalent to a 0.01 change in our measured variable. The 
reported coefficients and average partial effects in the tables are already calculated for a 0.01 
change in subjective survival probability. 
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Likelihood Estimation proposed in Papke and Wooldridge (1996, 2008) for fractional response 

variables. Table 7 presents the estimated average partial effects from estimation of this fractional 

probit on the proportion of Financial Wealth allocated to the four different assets: stocks, bonds, 

CDs, and checking/savings/money market accounts. 

There appears to be no impact of survival probabilities on the allocation of wealth for 

single households. While the signs on the average partial effects of survival probability on stocks 

and checking are what theory predicts (positive and negative, respectively) they are estimated to 

be nearly zero and are all statistically insignificant at any standard level. We see that households 

with a college degree allocate 11% more of their financial wealth to stocks and 10% less to 

checking accounts than households that have not completed High School, both significant at the 

5% level. Financial Planning Horizon also plays a role in asset allocation, we estimate that 

households with a horizon of ten years or more will allocate 5% more financial wealth to stocks, 

1% more to bonds, and 6% less to checking accounts than those households that have a horizon 

of only a few months.  

 Table 8 contains the results from estimation of the wealth holding equation (1.3.1) for 

married households. We see a positive impact of a wife’s subjective survival on Net Worth 

holdings; a one-percentage point difference in a wife’s survival probability is associated with 

about $425 more in Net Worth, this is significant at the 5% level. A one-percentage point 

difference in the husband’s subjective survival is associated with about $241 more Net Worth, 

but this estimate is not statistically significant. Looking at the impact of subjective survival on 

Financial Wealth, we see that the estimated impact for a husband’s survival is very small and 

insignificant, and that the estimate of the impact of a wife’s survival probability is actually 

negative, though both estimates have very large standard errors. The estimated impact of 
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education on wealth holdings is not as clear-cut for married households as for single households. 

We see that the husband’s education has no statistically significant relationship with Net Worth; 

it appears that having less than high school education leads to more wealth holdings than if the 

husband completed high school or some college. The wife’s education level does have the 

expected impact on Net Worth. If the wife has a college degree, we estimate that household to 

hold about $84,000 more in Net Worth than a similar household with a wife that did not 

complete high school. Our estimates for education in the financial wealth regressions make a 

little more sense. We find that a college degree for the husband leads to about $37,000 more in 

financial wealth. If the wife also completed college, we estimate that the household’s financial 

wealth will increase by $38,000. We also see that having the longest financial planning horizon 

(10 + years) has a positive impact on wealth holdings. If both spouses have horizons of ten years 

or more we see them holding about $110,000 more in Net Worth and about $52,000 more in 

Financial Wealth. 

 Table 9 displays the results of the fractional probit estimation of equation (1.3.2) on the 

allocation of Financial Wealth across the four asset types. We see that there is a statistically 

significant impact of both husband and wife survival probabilities on the allocation to stocks and 

CDs. A one-percentage point difference in the husband’s subjective survival leads households to 

hold about 0.026% more of their financial wealth in stocks and about 0.013% less in CDs, these 

estimates are significant at the 5% and 10% level respectively. A one-percentage point difference 

in the wife’s survival probability leads the household to hold about 0.022% more financial 

wealth in stocks and 0.019% less financial wealth in CDs, both these estimates are significant at 

the 10% level. While the estimated average partial effects of husband and wife survival 

probabilities are statistically insignificant for the allocation of wealth to checking we can see that 
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we estimate negative, though small impacts of higher survival.  

 Similar to our findings for single households we see that higher education levels of both 

spouses lead to increased allocation to stocks and decreased allocation to checking. Not only is 

the estimated impact of a college degree statistically significant for both spouses for all assets but 

the magnitude is also large compared to the estimated impact of subjective survival to age 75. 

We see that the financial planning horizon of the husband only is positively associated with the 

allocation of wealth to stocks and negatively associated with the allocation to checking. This is 

not the case for the wife’s planning horizon. For stock allocation, we see that longer planning 

horizons have a negative impact relative to the shortest horizon of only a few months. Looking at 

the results for the allocation of wealth to checking we can see that only the longest planning 

horizon (10+ years) has a negative impact, though none of the estimated average partial effects 

for the wife’s planning horizon are statistically significant.  

 One main reason that our results for single and married households differ is that married 

households need to consider the impact of the characteristics of both household members. 

Women live longer than men and therefore would be the more likely of the two spouses to have 

to face the risk of outliving assets. While we find an impact of the wife’s increased survival 

probabilities on Net Worth, it is very small and does not appear to carry over to the financial 

wealth of the households. Looking at the allocation decision, we see that the impact of the wife’s 

survival probabilities is smaller than the estimated impact of the husband’s. In addition, it 

appears that only the financial planning horizon of the husband has any impact on allocation. We 

see that the longest planning horizon (relative to the shortest horizon) for the husband increases 

the proportion allocated to stocks by about 3% and decreases the proportion allocated to 

checking by 4%. It appears that the characteristics of the wife play a small role in the decision of 
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how much to save and how to allocate wealth across assets. This could be consistent with the 

idea that the household maximizes their joint utility, i.e. they only consider the lifetime of the 

household when both spouses are alive. If this is the case, we would see that divorced or 

widowed women would have less wealth at their disposal. From our analysis of single 

households, we see that divorced women have less wealth but widowed individuals have greater 

wealth. The asset allocation of divorced and widowed households in the analysis of singles 

indicates that they allocate less to stocks and more to checking, but none of these estimates are 

statistically significant. A more detailed analysis into the decision making of married households 

and the way that they pool their characteristics to make wealth and allocation decisions is 

definitely an avenue for future research. 

 We test the sensitivity of our results for subjective survival responses for wealth holding 

and asset allocation for single and married households to dropping variables that include our 

constructed measure of permanent income. We remove permanent income, its square, and the 

cross product of permanent income and current income from the wealth holding equations and 

we remove permanent log income from the asset equations.  

For single households, we can see that removing permanent income from our wealth 

holding equations leads to an increased impact of subjective survival probabilities. Without 

controlling for permanent income, we see that a one-percentage point difference in subjective 

survival leads single households to hold $339 more Net Worth and $156 more Financial Wealth. 

Removing permanent log income from our asset allocation equations we see that the impact of 

subjective survival does not change much. There is no statistically significant impact of 

difference in subjective survival, though we do see that the estimated impacts of higher 

subjective survival increased slightly for stocks and bonds and decreased slightly for CDs and 
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checking.  

When we remove permanent income variables from the wealth holding equations for 

married households, we estimate that a one-percentage point difference in husband’s subjective 

survival probability leads the household to hold $356 more in Net Worth and $66 more in 

Financial Wealth. A one-percentage point difference in the wife’s subjective survival probability 

increases Net Worth by $522 and Financial Wealth by $12. While the estimated impact for 

Financial Wealth remains statistically insignificant and economically small for both spouses we 

see that the estimated impact of a one-percentage point difference in subjective survival 

probability for either spouse is generating about $100 more Net Worth and that the estimate for a 

husband’s subjective survival probability is now significant at the 10% level. Removing 

permanent log income from the asset allocation equations has a similar effect as in single 

households. The estimated impact of subjective survival probabilities slightly increases for 

stocks and bonds and slightly decreases for CDs and checking. We see that our estimated impact 

for a one-percentage point difference in the husband’s subjective survival probability leads to 

0.027% more of the households wealth allocated to stocks and only 0.015% less wealth allocated 

to checking. We see that the one-percentage point difference in the wife’s subjective survival 

probability is now driving a larger impact on the allocation of wealth to stocks. Including 

permanent log income we see that the impact was around 0.022% more in stocks (significant at 

the 10% level), but dropping our permanent log income measure we see that this estimate 

increases slightly to 0.023% and remains statistically significant at the 10% level. In addition, 

including permanent log income we estimated a negative (statistically insignificant) impact of 

increased subjective survival probabilities of both spouses on the proportion of wealth allocated 

to checking. When we drop permanent log income, the estimated impacts become slightly more 
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negative. 

Overall, excluding our measure of permanent income from our wealth holding and 

allocation equations leads us to find nearly identical coefficients and average partial effects as 

estimates from models that include permanent income. Removing permanent income, we see the 

estimated impacts of subjective survival on wealth holdings and asset allocation move away 

from zero. This suggests that the permanent income is likely weakly positively correlated to the 

reported subjective survival probabilities. Controlling for a measure of expected lifetime 

resources appears to have a negligible effect on the estimated impact of reported survival 

probabilities. It is interesting though to note that the inclusion of a measure of permanent income 

shrinks the estimated impacts for survival probabilities to zero.  

Bunching at focal points has been a concern of the subjective survival probabilities in the 

HRS since Hurd and McGarry (1995). The worry is that focal point responses may reflect either 

difference in cognition (Lillard and Willis (2001)) or measurement error (Bloom et al. (2006)). 

We provide evidence that the relationship between wealth holdings and asset allocation in the 

raw data appears to support theoretical predictions; average wealth holding and allocation to the 

risky asset increase as subjective survival probabilities increase, with the exception of 

households that report survival probabilities of one. Bloom et al. (2006) points out that 

households that report survival probabilities of one appear to have mortality rates similar to those 

people responding with survival probabilities closer to 0.7 or 0.8. 

To assess the impact of these focal points on our estimates we treat focal point responses 

of one differently. First, we estimate our wealth holding and asset allocation equations dropping 
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observations where the respondent reports a survival probability of one.
11

 Second, recognizing 

that a focal point response may reflect some underlying time-constant heterogeneity of the 

household, we estimate our models dropping the all observations for the household if any 

respondent has ever reported a survival probability of one. 

For single households, excluding observations where the respondent reported a survival 

probability of one leads us to estimate a larger impact of subjective survival probabilities on 

wealth holdings. Despite increases in the standard errors from reducing the number of 

observations we can see that we are estimating that a one-percentage point difference in 

subjective survival probability translates into $394 more Net Worth and $182 more Financial 

Wealth
12

. If we drop households that ever reported a survival probability of one our estimate of 

the impact of a one-percentage point difference in subjective survival on Net Worth is $466 and 

$143 on Financial Wealth. 

More interesting is the impact that dropping focal point responses has on the estimated 

impact of subjective survival probabilities for asset allocation. When we drop observations 

where the respondent gives a survival probability of one we estimate that a one-percentage point 

difference in subjective survival increases the allocation of financial wealth to stocks by 0.032 % 

and decreases allocation to checking by 0.035%; both estimates are statistically significant at the 

5% level despite the increases in standard error due to fewer observations. We see an even larger 

impact of removing households that ever reported a survival probability of one: we estimate that 

a one-percentage point difference in survival probabilities leads to 0.05% more financial wealth 

                                                           
11

 For married households, we drop the observation if either member of the household reports a 
survival probability of one. 
12

 Though not statistically significant, this is $13,837 more Net Worth and $5,877 more 
Financial Wealth than estimates including observations with reported survival probabilities of 
one. 
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allocated to stocks and 0.047% less allocated to checking; both estimates are significant at the 

5% level. 

 Treating reported survival probabilities of one differently leads to significantly different 

estimates of the impact of subjective survival on wealth holdings and asset allocation for married 

households. Removing observations where either the husband or the wife reported a survival 

probability of one leads us to estimate that a one-percentage point difference in the husband’s 

survival probability results in only $57 more Net Worth and $5 less Financial Wealth (both 

estimates are statistically insignificant). A one-percentage point difference in the subjective 

survival probability of the wife leads to an estimated $698 (significant at the 5% level) difference 

in Net Worth and $129 difference in Financial Wealth. Removing focal point responses causes 

the estimate for the wife’s subjective survival to increase for wealth holding equations and the 

estimate for the husband’s subjective survival to decrease for both wealth holding equations.  

 Removing households where either spouse ever reported a survival probability of one 

leads us to estimate that a one-percentage point difference in the husband’s subjective survival 

probability results in $171 less Net Worth and $14 more Financial Wealth. A one-percentage 

point difference in the wife’s subjective survival probability leads to $497 more Net Worth and 

$215 more Financial Wealth. Interestingly the estimated impacts of subjective survival 

probabilities are statistically insignificant once we remove focal point households. 

 When we remove observations where either spouse reported a survival probability of one 

we see that a one-percentage point difference in the husband’s survival probability results in 

0.035% more financial wealth allocated to stocks (significant at the 5% level), 0.021% less 

allocated to CDs (significant at the 5% level) and 0.017% less in checking (statistically 

insignificant). A one-percentage point difference in the wife’s survival probability results in 
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0.032% more financial wealth allocated to stocks (significant at the 5% level), and 0.026% less 

allocated to CDs (significant at the 10% level). When we drop households that ever report a 

survival probability of one we estimate that a one-percentage point difference in the husband’s 

subjective survival leads us to find a statistically significant (5% level) increase of 0.012% of 

financial wealth to bonds. Perhaps more interesting is the fact that we now estimate that a one-

percentage point difference in subjective survival for the wife leads the household to hold 0.06% 

more financial wealth in stocks and 0.036% less in CDs, while still small in magnitude they are 

considerably larger than our estimates that include all households. 

 It is apparent that the estimated impact of subjective survival probabilities on wealth 

holding and asset allocation are sensitive to the inclusion of reported survival probabilities of 

one. Our sensitivity analysis suggests that households that ever report a survival probability of 

one act very differently than the rest of our sample. Removing all observations for households 

that ever report a survival probability of one leads us to find that single households tend to 

increase their Net Worth more than their Financial Wealth in response to an increase in longevity 

risk. We also find that single households increase their allocation of financial wealth to stocks 

and decrease their allocation to checking. For married households we find that once we remove 

the focal point households the wife’s survival probabilities becomes more important in the 

wealth holding and asset allocation decisions. While the estimates of the impact on wealth 

holding of wife’s survival probabilities are not statistically significant at standard levels
13

, they 

do coincide well with the allocation equation findings that the wife’s survival leads to a 

significant positive impact on stock allocation. In fact, despite the lack of statistical significance 

the estimated impact of the wife’s subjective survival probability is not much different than the 

                                                           
13

 The estimated impact for Net Worth is significant at the 14% level and for Financial Wealth at 
the 12% level. 
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estimated impacts for the single household’s survival probability. 

 It appears that including households that ever report survival probabilities of one has a 

significant impact on the estimated impacts of subjective survival on wealth holding and asset 

allocation. Excluding these “focal point” households leads us to find estimated impacts that seem 

reasonable from a theoretical perspective and are generally statistically significant, despite 

increased standard errors due to smaller sample sizes. While there is still likely significant 

measurement error present in the subjective probabilities, we have identified that at a minimum 

the inclusion of households that report survival probabilities of one greatly affects estimates of 

wealth holding and allocation equations.  

1.5 Conclusion 

 Theory points to the need to include estimates of an individual’s subjective survival 

probability in estimating models of economic decision-making. Several studies use the subjective 

survival probabilities in the HRS to explain economic behavior with mixed results. We present 

here a very simple analysis that attempts to explain differences in wealth holding and asset 

allocation behavior using differences in subjective survival probabilities. 

 We find that there does appear to be a small, statistically significant impact of subjective 

survival probabilities on wealth holding (Net Worth, particularly) and asset allocation (stocks, in 

general). We find that our results for subjective survival probabilities are insensitive to the 

inclusion of a measure of permanent income, though we do see that including a measure of 

permanent income causes the estimated impact of subjective survival probabilities to move 

towards zero. If we exclude our measure of permanent income, we find that our estimated impact 

of subjective survival increases (but not by the total impact of permanent income) and the 

estimated impact on asset allocation moves away from zero. We also find that inclusion of 
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households that ever report a survival probability of one has a significant detrimental impact on 

the estimated impact of subjective survival for asset allocation equations for single households 

and for wife’s in married households. It appears that longevity risk plays a statistically 

significant role for single households, which contradicts the findings of Bloom et al. (2006). 

By no means does our study attempt to contradict the hypothesis that there is 

measurement error in these subjective survival probabilities. In fact, it appears that bunching 

does represent a form of measurement error but it may be distinctly different (or additive) to the 

measurement error that is most likely present in all the subjective survival responses. Elder 

(2012) finds that life table probabilities are better predictors of in-sample mortality and that 

subjective survival probabilities probably reflect more measurement error than they reflect 

heterogeneity in mortality expectations of HRS respondents. These findings raise questions about 

both the validity of these subjective survival probabilities as proxies for mortality risk and how 

we can interpret the estimated relationships between these measures and decision-making. Our 

results suggest that controlling for other factors that can affect a household’s wealth holding and 

allocation decisions (such as permanent income) almost completely removes the correlation with 

subjective survival that we see in the raw data. In addition, we find that excluding households 

that ever report a survival probability of one significantly affects our findings. We are not sure 

what these focal point responses mean in terms of mortality or if they represent heterogeneity in 

cognition but it does suggest that we are probably not able to interpret these probabilities as 

reflecting actual mortality risk. 

Future avenues for research would be to try different specifications for married 

households, particularly around different types of objective functions that combine attributes of 

the spouses differently. In addition, including the cohort survival probability module as a 
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standard part of the HRS expectations survey would help to tease out measurement error and the 

learning process that respondents go through when estimating their expectations. It might also be 

beneficial to look into the impact of bequest intentions as they may play a large role for some 

households compared to others. 
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CHAPTER 2 

A MODEL FOR MULTIVARIATE FRACTIONAL RESPONSES WITH AN APPLICATION 

TO ASSET ALLOCATION 

2.1 Introduction 

Many interesting economic variables are fractional in nature. By definition, some 

fractional response variables are related, such as the budget share of goods in a demand system 

or the allocation of wealth across available assets. Since these fractional responses are shares of a 

total, they must satisfy an adding up restriction. Due to the limited nature of the fractional 

responses we are often interested in estimating relationships using nonlinear conditional mean 

functions. Analogous to the case where we estimate linear conditional means, the adding up 

restriction imposes constraints on the marginal effects of the covariates in our model. Since the 

marginal effects of covariates in a nonlinear conditional mean are themselves nonlinear, this 

causes some difficulty in estimation as it amounts to imposing nonlinear constraints on our 

coefficients. We get around this issue by imposing the adding up restriction using the 

multinomial quasi-likelihood. 

Sivakumar and Bhat (2002) and Mullahy (2010) show how this approach works when 

using cross-sectional data. In fact, this approach extends very naturally to the panel data case, 

even if we specify a time-invariant unobserved effect for each cross-sectional unit. We can 

appeal to the Correlated Random Effects approach to estimation (Chamberlain (1980) and 

Mundlak (1978)) and specify that the conditional mean of the unobserved effect is a parametric 

function of the time-averages of the independent variables. As pointed out in Wooldridge (2010), 

this approach is only appropriate when we have a balanced panel. With an unbalanced panel, at a 

minimum, we violate the assumption that the unobserved effect has a constant variance across 
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cross-section units, since we have a different number of observations for each unit. We address 

this concern by exploiting the independence of our cross-section units. To do this we estimate the 

multinomial quasi-likelihood on balanced panel subsets of the full, unbalanced panel. We create 

the balanced panels by combining households that are observed in the sample for the same 

number of time periods. Since the households in different balanced panel subsets are independent 

of each other we are able to take the weighted average of the average partial effects (and their 

variances) estimated in each balanced panel subset to get the average partial effect for the entire 

unbalanced panel. 

This approach ignores the potential serial correlation present within the cross-sectional 

unit. A natural next step is to correct for this serial correlation by using a weighting matrix that 

accounts for serial correlation. To do this we use Classical Minimum Distance estimation. 

Simply put, this method takes the estimated coefficients from the multinomial quasi-likelihood 

estimation on each balanced panel subset of data and estimates a single coefficient for each 

covariate that is a weighted average of all the balanced panel subset coefficients. The weighting 

matrix that we construct contains the estimated variance-covariance matrices from the 

multinomial quasi-likelihood estimated on each balanced panel subset and estimates of the serial 

correlation within and across equations over time. 

This paper takes the single equation fractional probit technique laid out in Papke and 

Wooldridge (2008) and extends it to cover multiple fractional responses that must meet an 

adding up restriction. In addition, we estimate an unbalanced panel using the Correlated Random 

Effects framework by exploiting the independence of our cross-sectional units. Lastly, we also 

show how we can apply Classical Minimum Distance to this procedure to potentially derive 

more efficient estimates. Section 2 briefly covers some of the work done on fractional response 
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variables. Section 3 presents the single equation specification of our multiple fractional 

responses. Section 4 combines the single equations together using the multinomial quasi-

likelihood. Section 5 lays out the Classical Minimum Distance estimator. Section 6 describes an 

alternative estimator that may be more parsimonious. Section 7 describes the data that we use in 

our analysis and presents results of estimation and section 8 concludes. 

2.2 Fractional Response Variables 

Gourieroux, Monfort, and Trognon (1984) summarizes the theory underlying the quasi-

maximum likelihood estimator. They show that if a random variable comes from the linear 

exponential family and we correctly specify the conditional mean, then estimation by quasi-

maximum likelihood generates consistent, though potentially inefficient, estimates for the 

impacts of our covariates. This finding holds under the general conditions that we require for M-

Estimation. Under the standard assumptions, the quasi-maximum likelihood estimators are 

asymptotically normal and converge at the rate of 1/ 2N− . 

Papke and Wooldridge (1996) estimate a single fractional response variable in the cross-

section using the logit functional form for the conditional mean function. Papke and Wooldridge 

(2008) estimate a single equation fractional response variable in the panel data context using the 

probit functional form for the conditional mean. They insert the time-averages of their 

coefficients in their conditional mean function, thus parametrically “removing” the unobserved 

effect. They also explore the possibility of improving efficiency by constructing a “working” 

correlation matrix that allows for some correction of the serial correlation within cross-sectional 

units. This technique essentially follows the logic that even if we incorrectly specify the 

correlation structure that we can gain some efficiency by not ignoring its presence. 
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Sivakumar and Bhat (2002), Mullahy (2010) and Koch (2010) study the multivariate 

fractional response case in cross-sectional data. They follow a similar approach that we take in 

this paper and exploit the robustness properties of the multinomial quasi-likelihood. They specify 

their conditional means using the multinomial logit specification that imposes the adding up 

restriction across equations. In this paper, we use the probit specification of the conditional mean 

functions since it more easily accommodates the use of the Chamberlain-Mundlak device to 

control for the presence of an unobserved effect.  

2.3 Single Equation Fractional Probit 

 A natural starting point for our analysis is to ignore the relationship between our 

fractional response variables and proceed as though we will estimate each equation separately. 

We do this for two reasons; first our procedure essentially takes our single equation framework 

and extends it to the multiple fractional response case. Second, the single equation framework 

gives us a baseline set of estimates to compare to the results of the procedure that we present 

here. 

 Assume that at each time period t , we observe household i  allocate a proportion of their 

financial wealth to each asset g . We assume that 1,2,...,g G=  exhausts all possible investment 

options so that in each period the household invests all their financial wealth. This assumption 

implies that 1G yitgg =∑  for each 1,2,...,i N=  and 1,2,...,t T= . In addition to our response 

vector, we observe a set of covariates itx  and an unobserved effect igc . Our goal is to estimate a 

model of the conditional mean of y  given x  to determine the impact of each covariate. By 

construction, yitg  is bounded between zero and one. Assuming that we use the same set of 

covariates for each equation we can specify the conditional mean as: 
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 ( | , ) ( );   1,..., ;  1,..., ;  and 1,...,E y c c i N t T g Gitg it ig it g ig= Φ + = = =x x β  (2.3.1) 

We point out that the above specification completely ignores the fact that these fractional 

responses sum to one. It is simply acting as though we are treating each asset equation by itself. 

Nevertheless, it is useful to study what we can derive from these single equation models since 

our approach here essentially takes the specification in (2.3.1) for each equation and uses the 

multinomial quasi-likelihood to impose the adding up constraint. 

 Our interest lies in estimating the average partial effects of the covariates, itx  on the 

proportion of financial wealth allocated to each asset. Following the results for a probit model 

the direction of the partial effect is determined by the sign of gβ . For a continuous variable xtk  

(dropping the i subscript); 

 
( | , )

( )
E y ctg t g

cgk t g gxtk
β φ

∂
= +

∂

x
x β  (2.3.2) 

To obtain the average partial effect we can average this over the distribution of cg and tx . 

 To consistently estimate the coefficients in this single equation framework we require 

that the covariates are not correlated with the error term. We assume that itx  is strictly 

exogenous conditional on the unobserved effect, 

 ( | , ) ( | , ).E y c E y citg i ig itg it ig=x x  (2.3.3) 

Following Chamberlain (1980) and Mundlak (1978) we assume that  

 2; where | ~ (0, ).c a a Normalig g i g ig ig i aψ σ= + +x ξ x  (2.3.4) 

Using (2.3.4) we can rewrite (2.3.1) as: 

 ( | , ) ( ).E y a aitg i ig g it g i g igψ= Φ + + +x x β x ξ  (2.3.5) 

So the mean of yitg  conditional on ix  is: 
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 ( | ) ( ( | )
2 1/ 2(1 )

g it g i g
E y E aitg i g it g i g ig i

ag

ψ
ψ

σ

 + +
 = Φ + + + = Φ − + 

x β x ξ
x x β x ξ x  (2.3.6) 

or  

 ( )( | ) ( ( | ))E y E aitg i g it g i g ig i ga it ga i gaψ ψ= Φ + + + = Φ + +x x β x ξ x x β x ξ (2.3.7) 

where we use the a  subscript to denote that our estimated coefficients are scaled by 

2 1/ 2(1 )agσ −+ . Woodridge (2002, Section 15.8.2) shows that the mixing properties of the 

normal distribution lead to equation (2.3.7). 

 For identification of the scaled coefficients in (2.3.7) we require that there is no perfect 

collinearity between the elements of itx  and that there is enough variation in itx  over time. 

With the above parametric specification of the unobserved effect we can now write the Average 

Structural Function (ASF) following Blundell and Powell (2003): 

 ( )( )ASF Eg t ga t ga i gai ψ = Φ + +
 

x x β x ξx  (2.3.8) 

A consistent estimator of ( )ASFg tx  is: 

 	 ( )1 ˆˆˆ( ) .
1

N
ASF Ng t ga t ga i ga

i
ψ−= Φ + +

=
∑x x β x ξ  (2.3.9) 

where ˆgaψ , ˆ gaβ , and ̂ gaξ  are consistent estimates of the scaled coefficients in equation (2.3.7). 

For a continuous variable xj  we can calculate the average partial effect by taking the derivative 

of (2.3.9) and average over both i  and t : 

 	
ˆˆˆ( ) 1 ˆˆ ˆˆ( ) ( ),

1 1

T Nga it ga i ga
APE x NTg j ga j ga it ga i gaxj t i

ψ
β φ ψ

∂Φ + + −= = + +
∂ = =

∑∑
x β x ξ

x β x ξ   

  (2.3.10) 
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For a binary xj  we can calculate the average partial effect by calculating the difference in the 

Average Structural Function evaluated at zero and one.  

 The above presentation closely mirrors that of Papke and Wooldridge (2008) for the 

single equation fractional probit model. We laid out the basic specification of the conditional 

mean functions for each of our asset equations. We can use the individual conditional mean 

functions and the previous results to estimate each equation assuming that there is no correlation 

between equations. Estimation of the individual equation conditional means would entail 

maximizing the Bernoulli quasi-likelihood function. While this works, it ignores the fact that 

there is a definite relationship between the fractional responses, i.e. that they sum to one for each 

household in each time period. 

 Analogous to the linear case, imposing the adding up restriction places a constraint on the 

marginal effects of the covariates. The adding up restriction states that 11
G yitgg ==∑ . Taking 

expectations of this conditional on itx  and cig  gives us the following restriction: 

 ( | , ) 1.E y citg it ig =x  (2.3.11) 

Taking the derivative of (2.3.11) with respect to xk : 

 

( | , )
( )

1 1

( ) 0.
1

G GE y citg it ig
cgk it g igxkg g

G

gk g it g i g
g

β φ

β φ ψ

∂
= +

∂= =

= + + =
=

∑ ∑

∑

x
x β

x β x ξ

 (2.3.12) 

Equation (2.3.12) shows that the adding up restriction implies that the sum of the marginal 

effects of a specific covariate across equations is zero. Therefore, the effect of a change in a 

covariate will lead to a reallocation of financial wealth across the available assets. 
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 A very simple way to impose the adding up restriction in estimation is to exploit the 

multinomial quasi-likelihood function.  

2.4 The Multinomial Quasi-Likelihood 

We use the multinomial quasi-likelihood function to allow for correlation across 

equations and impose the restriction that our dependent variables must sum to one in each period 

for each household.  We assume our fractional responses ( , ,..., )1 2y y yit it itG  are exhaustive and 

mutually exclusive categories representing the population and that [0,1]yitg ∈  and 

11
G yitgg ==∑ . Let itx  be a set of covariates that affect our quantity of interest, ( | )E yitg ix .

Assume that 

 ( | ) ( ) ( , ), , , , , , , , , , , ,E yitg i o t g a it o t g a i o t g a it o t g aψ= Φ + + = Φx x β x ξ x θ  (2.4.1) 

For identification of the parameters the multinomial quasi-likelihood function requires that the 

following constraint holds: 

 
( , ) ( | ), , ,

1 ( , ) ( , ) ( , )., ,1, , ,2, , , 1,

E yit o t G a itG i

it o t a it o t a it o t G a

Φ =

= − Φ − Φ − ⋅⋅⋅− Φ −

x θ x

x θ x θ x θ
(2.4.2) 

So that for any { , ,..., },1, ,2, , 1,t t a t a t G a= −θ θ θ θ , 

 ( , ) 1.
1

G

g it t
g

Φ =
=
∑ x θ  

Assuming that the conditional mean functions are continuously differentiable in tθ the adding up 

restriction implies 

 
( , ( , ( , ( , .1 2 1G it t it t it t G it tt t t t∇ Φ ) = −∇ Φ ) − ∇ Φ ) − ⋅⋅⋅− ∇ Φ )−x θ x θ x θ x θθ θ θ θ
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 Assuming that we have a random draw i  the multinomial quasi-likelihood equation for 

each observation is: 

 ( ) log[ ( , log[ ( , log[ ( , .1 1 2 2y y yit t it it t it it t itG G it t= Φ )]+ Φ )]+ ⋅⋅⋅+ Φ )]θ x θ x θ x θℓ (2.4.3)
14

 

The score function is 

 

1 2( ) ( , ( ,1 2( , ( ,1 2

( ,
( ,

y yit it
it t it t it tt tit t it t

yitG
G it ttG it t

′ ′= ∇ Φ ) + ∇ Φ ) + ⋅⋅⋅
Φ ) Φ )

′+ ∇ Φ )
Φ )

s θ x θ x θθ θx θ x θ

x θθx θ

 (2.4.4) 

Assuming the correct specification of the conditional mean 

 

( | ) ( | )1 2( ( ) | ) ( , ( ,1 2( , ( ,1 2

( | )
( ,

( ,

( , ( , ( ,1 2

.

E y E yit i it iE it t i it t it tt tit t it t

E yitG i
G it ttG it t

it t it t G it tt t t

′ ′= ∇ Φ ) + ∇ Φ ) + ⋅⋅⋅
Φ ) Φ )

′+ ∇ Φ )
Φ )

′ ′ ′= ∇ Φ ) + ∇ Φ ) + ⋅⋅⋅ + ∇ Φ )

=

x x
s θ x x θ x θθ θx θ x θ

x
x θθx θ

x θ x θ x θθ θ θ

0

 

Let ( , ,t i i t )H x y θ  be the Hessian, it can be shown that  

( , ( , ( , ( ,1 , 1 , 2 , 2 ,
[ ( , , | ], ( , ( ,1 , 2 ,

( , ( ,, ,

( , ,

it o t it o t it o t it o tt t t tE t it it o t i
it o t it o t

G it o t G it o tt t

G it o t

′ ′∇ Φ ) ∇ Φ ) ∇ Φ ) ∇ Φ )
− ) = + + ⋅⋅⋅

Φ ) Φ )

′∇ Φ ) ∇ Φ )
+

Φ )

x θ x θ x θ x θθ θ θ θ
H x y θ x

x θ x θ

x θ x θθ θ

x θ

and is consistently estimated by 

                                                           
14 We point out that using the Normal cumulative distribution function does not explicitly 
restrict the predicted values of the “omitted” equation from falling outside of [0,1]. Using the 
logarithm function in the quasi log-likelihood implicitly imposes this restriction. In our 
application, we do not see this as a cause for concern as all predicted values of the “omitted” 
equation fall within [0,1], though this may be a concern where there is a greater frequency of 
zeros and ones in the response variable. 
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 1ˆ ˆ ˆ ˆ( , ( , ( ,
1

N
Nt it t t it t it tt t

i

− ′= ∇ ) )∇ )
=
∑A Φ x θ W x θ Φ x θθ θ  

where 

 

ˆ( , )1

ˆ( , )2ˆ( , )

ˆ( , )

it tt

it tt
it tt

G it tt

 ∇ Φ
 
 ∇ Φ
 ∇ =
 
 
  ∇ Φ
 

x θθ

x θθ
Φ x θθ

x θθ

⋮
 

and  

 

1
0 0

ˆ( ,1

1
0

ˆˆ ( ,( , ) .2

0

1
0 0

ˆ( ,

it t

it tt it t

G it t

 
 Φ ) 
 
 
 Φ )=  
 
 
 
 
 Φ ) 

x θ

x θW x θ

x θ

⋯

⋱ ⋮

⋮ ⋱ ⋱

…

 

Define  

 1 ˆ ˆˆ ( ) ( ) .
1

N
Nt it t it t

i

− ′=
=
∑B s θ s θ  

Then an estimator of the variance matrix that only relies on the correct specification of the 

conditional means is given by 

 

1
1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ / ( , ( , ( , ( (

1 1

1
ˆ ˆ ˆ( , ) ( , ) ( , ) .

1

N N
Nt t t it t t it t it t it t it tt t

i i

N

it t t it t it tt t
i

−
   − −    ′ ′= ∇ ) )∇ ) ) )
   = =   

−
 
 ′⋅ ∇ ∇
 = 

∑ ∑

∑

A B A Φ x θ W x θ Φ x θ s θ s θθ θ

Φ x θ W x θ Φ x θθ θ

(2.4.5) 
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 In the above presentation we laid out the basic approach to estimating the multinomial 

quasi-likelihood for each time period in a balanced panel. With a few minor changes we can 

rewrite the above equations to estimate a pooled version of the multinomial quasi-likelihood 

where we do not allow the estimated parameter vector to vary by time period. We can write the 

partial multinomial quasi-likelihood function as 

 ( ) log[ ( , )] log[ ( , )] log[ ( , )].1 1 2 2
1

T
y y yi it it it it itG G it

t

= Φ + Φ + ⋅⋅⋅+ Φ
=
∑θ x θ x θ x θℓ  

Then the score function is  

 

1 2( , ( ,1 2( , ( ,1 2
( ) ( )

1 1 ( ,
( ,

y yit it
it itT T it it

i it
yitGt t

G it
G it

 ′ ′∇ Φ ) + ∇ Φ ) + ⋅⋅⋅ Φ ) Φ ) = =  
= =  ′⋅ ⋅ ⋅ + ∇ Φ ) Φ ) 

∑ ∑

x θ x θθ θx θ x θ
s θ s θ

x θθx θ

 

and the negative of the expected Hessian is  

 

( , ( , ( , ( ,1 1 2 2
( , ( ,1 2

[ ( , , | ] .
( , ( ,1

( ,

it o it o it o it o
T it o it o

E i i o i
G it o G it ot

G it o

′ ′∇ Φ ) ∇ Φ ) ∇ Φ ) ∇ Φ ) + + ⋅⋅⋅ Φ ) Φ ) − ) =  ′∇ Φ ) ∇ Φ )=  ⋅ ⋅ ⋅ + Φ ) 

∑

x θ x θ x θ x θθ θ θ θ

x θ x θ
H x y θ x

x θ x θθ θ

x θ

 

The consistent estimator of the Hessian is 

 1ˆ ˆ ˆ ˆ( , ( , ( ,
1 1

N T
NT it it it

i t

− ′= ∇ ) )∇ )
= =
∑∑A Φ x θ W x θ Φ x θθ θ  

where  
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ˆ( , )1

ˆ( , )2ˆ( , )

ˆ( , )

it

it
it

G it

 ∇ Φ
 
 ∇ Φ
 ∇ =
 
 
 ∇ Φ 

x θθ

x θθ
Φ x θθ

x θθ

⋮
 

and 

 

1
0 0

ˆ( ,1

1
0

ˆˆ ( ,( , ) .2

0

1
0 0

ˆ( ,

it

itit

G it

 
 Φ ) 
 
 
 Φ )=  
 
 
 
 
 Φ ) 

x θ

x θW x θ

x θ

⋯

⋱ ⋮

⋮ ⋱ ⋱

…

 

Define 

 1 ˆ ˆˆ ( ) ( ) .
1 1

N T
NT it it

i t

− ′=
= =
∑∑B s θ s θ  

Then a consistent estimator of the variance matrix that only relies on the correct specification of 

the conditional means is 

 

1
1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ / ( , ( , ( , ( (

1 1 1 1

1
ˆ ˆ ˆ( , ) ( , ) ( , ) .

1 1

N T N T
N it it it it it

i t i t

N T

it it it
i t

−
   − −    ′ ′= ∇ ) )∇ ) ⋅ ) ) ⋅
   = = = =   

−
 
 ′⋅ ∇ ∇
 = = 

∑∑ ∑∑

∑∑

A BA Φ x θ W x θ Φ x θ s θ s θθ θ

Φ x θ W x θ Φ x θθ θ

 

2.5 Classical Minimum Distance Estimation 

 Classical Minimum Distance estimation (CMD) is similar to Generalized Method of 

Moments and involves minimizing the Euclidean distance between a set of “reduced-form” 
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parameters and their structural counterparts. The basic exposition is as follows and can be found 

in Wooldridge (2002, Section 14.6). 

 Suppose that we have a 1P×  vector of structural parameters oθ  related to oπ  a 1S×  

(where S P> ) vector of reduced-form parameters such that: 

 ( )o o=π h θ  (2.5.1) 

where h  is a known, continuously differentiable function that maps the structural parameters to 

the reduced-form parameters. To perform CMD estimation we first obtain estimates of the 

reduced-form parameters, say π̂ , and then find an estimator θ̂ that minimizes the weighted 

Euclidean distance between π̂  and ˆ( )h θ . Analogous to GMM, we can use any weighting matrix 

so long as it is positive semi-definite, such as an S S×  identity matrix, but the optimal weighting 

matrix is the one that makes the CMD estimator the minimum chi-square estimator. 

The CMD estimator solves the following problem: 

 1ˆˆ ˆ{ ( )} { ( )}min
−′− −

∈
π h θ Ξ π h θ

θ Θ

 (2.5.2) 

where ˆplimN o=→∞Ξ Ξ . Assuming that ̂π  is a consistent estimator of oπ  and that 

ˆ( ) ~ Normal( , )
a

N o o−π π 0 Ξ  then 1ˆ −
Ξ  is the inverse of any consistent estimate of the 

asymptotic variance of ˆ( )N o−π π . The solution to the optimization problem in (2.5.2) is θ̂  

which minimizes the weighted Euclidean distance between π̂  and ˆ( )h θ  it can be shown that 

1ˆ( ) Normal[0, ]
a

N o o o o
−′−θ θ H Ξ H∼  where ( )o o=H H θ  and ( ) ( )≡ ∇H θ h θθ  the S P×  

Jacobian of ( )h θ . The appropriate estimator of 	 ˆAvar( )θ  

 	 	1 1 1 1ˆ ˆˆAvar( ) ( ) / ( [Avar( )] )N− − − −′ ′≡ =θ H Ξ H H π H  (2.5.3) 
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 If the mapping function h  is linear then we can state the general form of the CMD 

estimator as follows (Wooldridge, 2002, Problem 14.7): 

 1 1 1ˆ ˆ ˆ ˆ( ) .− − −′ ′=θ H Ξ H H Ξ π  (2.5.4) 

This implies that the optimal CMD estimator of the structural parameter vector is a weighted 

average of the reduced form parameter vector where the weighting matrix is the estimated 

asymptotic variance matrix of the reduced-form parameters. 

 The mapping function that we use in the CMD estimation step is indeed linear and 

therefore we can use (2.5.4) to construct the estimates of the structural parameter vector. To 

obtain our reduced-form parameter vector we maximize the multinomial quasi-likelihood for 

each time period within each balanced panel subset. Using these estimates we can then construct 

the weighting matrix that we will use in the CMD estimation. The weighting matrix will be a 

block matrix where the estimated variance matrices from each time period are on the diagonal 

and the off-diagonal block matrices contain estimates of the covariance within and across 

equations over time. 

 Given the results in section 3 and the specifications of the conditional mean functions in 

section 2 we define the diagonal elements of the weighting matrix as 

 

1
1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ / ( , ( , ( , ( (

1 1

1
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(2.5.5) 

We construct the off-diagonal elements of the weighting matrix in a similar manner 
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The weighting matrix that we use in CMD estimation is  
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⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (2.5.7) 

We calculate this weighting matrix for each balanced panel subset in our data. The mapping 

function that we use is linear, it maps the T  reduced-form coefficient vectors to the single 

structural parameter vector for each balanced panel subset. Therefore, we can state that the CMD 

estimator βɶ  takes the following form 

 1 1 1ˆ ˆ( )− − −′ ′=β HΩ H HΩ βɶ  (2.5.8) 

where Ω̂  is defined above, β̂  represents the ( 1) 1T G K− ×  ( K  covariates, 1G−  equations, T  

time periods in each balanced panel subset) vector of parameter estimates from the multinomial 

quasi-likelihood maximization and H is a ( 1) ( 1)T G K G K− × −  matrix that maps the reduced-

form parameter estimates to the structural parameter estimates: 
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where ( 1)
t j
G K
=

−I  is a ( 1) ( 1)G K G K− × −  identity matrix for each time period j . 

 After deriving the CMD estimates of the structural parameters in (2.5.8), we can calculate 

the average partial effects of our covariates as in Section 2 using βɶ . Therefore, our proposed 

procedure is  

Procedure 1:  

1. For each time period obtain the multinomial quasi-likelihood estimates of the 

coefficients, the gradient vector, and the robust variance matrix. 

 2. Create the weighting matrix as in (2.5.7), and the matrix H  

3. Obtain the MD coefficient estimates using (2.5.8) and the asymptotic variance matrix 

of these estimated coefficients as in (2.5.3). 

The above presentation necessarily assumes that we have a balanced panel; this is due to 

the use of the Chamberlain-Mundlak device employed to remove the unobserved effect. If we 

have an unbalanced panel then, at a minimum, our assumption of a common variance across 

households, conditional on the number of time periods, is incorrect. Households in the panel for 

fewer time periods will necessarily have a larger estimated variance for their time-averaged 

observables. One solution to this problem is to drop observations so that we have a balanced 

panel. While this works technically, it has the potential to cause problems that are even more 
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worrisome. Fortunately, there is a very simple way to allow us to use this procedure in the 

context of an unbalanced panel. 

 Since we have independence within the cross-section, i.e., households are randomly 

sampled and independent within each time period, we can simply subset our data based on the 

number of times that we observe households and then average the estimated average partial 

effects across these subsets. This entails creating balanced panels that contain households that are 

observed for the same number of time periods. We estimate the multinomial quasi-likelihood on 

each of these balanced panels by time period, followed by the minimum distance estimation to 

account for serial correlation. We then calculate the average partial effects for each balanced 

panel and average these across all the balanced panels. 

 We adapt Procedure 1 in the following way to allow for estimation on an unbalanced 

panel: 

Procedure 2: 

1. Subset the panel into balanced panels which contain all households that have exactly j

observations, where 2,...,j T= . 

2. For each time period in each balanced panel subset maximize the multinomial quasi-

likelihood obtaining the estimates of the coefficients, the gradient vector, and the robust 

variance matrix. 

 3. Apply CMD estimation as detailed above to each subset of the data. 

4. Calculate the average partial effects and their variances for each balanced panel subset 

and then average these across all balanced panel subsets. 

2.6 An Alternative Specification 

 The procedure presented above essentially takes single equation fractional probits and 
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combines them into a system of equations. While this is the logical first step in estimating 

multiple fractional response variables, it assumes that there are G  sources of heterogeneity. This 

is a very general assumption and acts as though we have a different distribution for the 

unobserved effect for each equation. We know that heterogeneity is at the household level, and 

we want to control for these time-invariant unobserved characteristics. Suppose that what we 

cannot measure is household risk aversion and that risk aversion is time-invariant but correlated 

with our covariates. If we do not control for risk aversion then our estimated coefficients will be 

inconsistent. Although risk aversion is constant over time and across assets, we anticipate that 

the expected value of the impact of risk aversion will vary depending on the asset under 

consideration. A very risk-averse household will allocate a smaller proportion of their wealth to 

the risky asset and a larger proportion to less risky assets. Therefore, the expected value of the 

unobserved effect should vary by equation. Our model allows for this in a very general way. One 

concern is that the model that we propose is too general and leads to estimation of too many 

parameters. 

 A potential solution is to specify a slightly different model where instead of estimating a 

different parameter for each time average and intercept by equation we estimate a single 

parameter vector for the time averages and then estimate parameters to allow the effect of the 

time-averaged covariates to vary by equation. We can adapt the above model as follows: 

 ( | , ) ( ).E y c citg it i it g g iδ= Φ +x x β  

Here we introduce an equation specific parameter gδ  that allows the impact of the unobserved 

effect to vary across equations. In addition, we make the assumption that there is a single source 

of heterogeneity. 
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Again, we assume strict exogeneity conditional on the unobserved effect: 

 ( | , ) ( | , )E y c E y citg i i itg it i=x x  

Plugging ci  into ( | , )E y citg it ix  gives us the mean conditional on observed and unobserved 

factors: 
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This is nearly identical to equation (2.3.6) above, except that we have a different scale factor. 

Regardless, we will still be able to derive the consistent estimates of the average partial effects. 

 We can estimate the above conditional means using the multinomial quasi-likelihood. 

Since we cannot identify a parameter for each equation, we would need to normalize one say, 

Gδ  to one. We do not estimate this specification here, but we point out that in other applications 

this can be considered since it is more parsimonious and may be more efficient. 

2.7 Results 

We use data from the Health and Retirement Study (HRS). The HRS began in 1992 and 

was nationally representative of all non-institutionalized individuals aged 51-61 in that year. In 

1998, the HRS combined with the Asset and Health Dynamics of the Oldest Old (AHEAD) and 

added several new cohorts to be nationally representative of the population of non-
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institutionalized individuals aged 51 and older. Both initial respondents and their spouses are 

interviewed and followed in subsequent waves. We use data for all cohorts from Waves 1-7 

(1992-2004) of the HRS. In addition to basic demographic variables, the HRS collects detailed 

information on wealth holdings, allocation of wealth, income and its sources, health, and 

measures of the probability that future events occur. We use subjective survival probability, age, 

word recall, household income, and non-financial wealth as regressors in our model. 

Our measure of subjective survival probabilities comes from responses to the following 

question: 

On a scale from 0 to 100, where 0 is no chance and 100 is absolutely certain, what are 

the chances that you will live to age 75 or older?  

Our measure of income is calculated as the sum of all non-capital income received by the 

respondent and spouse during the year. To calculate wealth variables we use responses to 

questions about the value of holdings within various financial assets. The assets that are 

measured are stocks and/or mutual funds, bonds (corporate and government), Certificates of 

Deposit (CDs) and checking, saving and/or money market accounts. We also have information 

about other assets owned by the household including housing, vehicles, other real estate, 

IRA/Keogh accounts, and trusts. We distinguish between two measures of wealth holdings. Non-

financial wealth consists of the value of housing, real estate, IRA/Keogh accounts, vehicles, and 

trust holdings, less any associated debt. Financial Wealth is the value of all holdings in 

stocks/mutual funds, bonds, Certificates of Deposit and savings, checking and money market 

accounts. HRS respondents are given a list of nouns and then asked to repeat this list 

immediately and then again at the end of the cognition section. We use the proportion of words 

recalled at the end of the section as a proxy for cognition. 
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We construct our data set by household. We combine spouses in each wave so that our 

panel consists of household observations by year. To select individuals for our sample we drop 

observations that satisfy the following criteria: 

(i) older than 65,  

(ii)  missing values for subjective survival probability,  

(iii)  is a proxy interview or  

(iv) is deceased.  

We apply these criteria at the individual level so households that do not have both spouses are 

dropped. The decision to allocate wealth across assets is conditional on holding positive financial 

wealth; thus, we drop observations where financial wealth is zero. In addition, we drop 

households that are only observed for one time period. Imposing the above criteria for married 

households leaves us with 3,872 households (14,514 total observations).  

 In Table 13, we display means and medians of the relevant variables in our analysis. We 

can see from Table 13 that the average allocation of wealth generally falls into two assets: stocks 

and checking. There is some investment in CDs but very little in Bonds. There is some concern 

regarding the time variation in the HRS in particular with subjective survival probability 

measures.
15

 Table 14 presents the proportion of the variation that is between households in our 

dataset. We can see that the bulk of the variation in our variables is between households, but 

there is some variation over time that we may be able to exploit. 

As a first step, we estimate our allocation equations by linear fixed effects. In general 

linear fixed effects coefficients should provide fairly good estimates of the average partial effects 

and provide a reasonable baseline to compare other estimation techniques. The results of the 

                                                           
15

 Smith et al. (2001) and Elder (2010) point to the lack of appropriate variation in the subjective 
survival probabilities collected in the HRS. 



ւ��≺⊙ �⊙��ց 

 

51 
 

linear fixed effects estimation are presented in Table 15. 

We now turn to different methods of estimating the average partial effects of our 

covariates using a nonlinear conditional mean specification. As a first pass, we know that we can 

estimate each equation using a single equation nonlinear method. We follow Papke and 

Wooldridge (2008) and use the procedure that they laid out for the estimation of a pooled 

fractional probit. Since we have an unbalanced panel we cannot simply estimate the single 

equation fractional probit on the entire panel. Instead we subset the unbalanced panel as 

described above, maximize the Bernoulli quasi-likelihood for each balanced panel subset, 

calculate the average partial effects and then average these across the balanced panel subsets. 

The results from this estimation approach are presented in Table 16. With the exception of the 

estimated average partial effects on Husband and Wife Word Recall, the estimated average 

partial effects are similar to those estimated by linear fixed effects but we can see that estimating 

using balanced panel subsets significantly increased our estimated standard errors so that none of 

our covariates are statistically significant. The difference in the estimated average partial effects 

for both Husband and Wife Word Recall may suggest that there is some nonlinearity in the 

impact of this variable on the allocation of wealth 

Next, we maximize the multinomial quasi-likelihood on each balanced panel subset, 

calculate the average partial effects for each balanced panel subset, and then average these over 

the balanced panel subsets. Table 17 contains the estimated average partial effects and the 

standard errors from this approach. Overall, we can see that the estimated average partial effects 

for all equations are very similar to those estimated by the single equation fractional probit 

technique. Looking at the standard errors, we can see that they are nearly identical to the 

fractional probit standard errors. It appears that imposing the adding up restriction does not affect 
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the estimates of either the average partial effects or the standard errors.  

Table 18 presents the estimated average partial effects and standard errors from 

Procedure 2 outlined above. Our main points of comparison here are Tables 15, 16 and 17, the 

average partial effects estimated by linear fixed effects, maximizing the Bernoulli quasi-

likelihood and maximizing the multinomial quasi-likelihood on the balanced panel subsets. 

Looking first at the estimated standard errors, we can see that they are smaller than those in both 

Tables 16 and 17 but larger than those estimated by linear fixed effects. This suggests that 

accounting for serial correlation within and between equations has led to more precise estimates 

relative to the estimation that uses balanced panel subsets. In particular, the estimated standard 

errors for the allocation of wealth to Bonds and CDs are almost half the size of the standard 

errors estimated by maximizing the pooled multinomial quasi-likelihood.  

Turning to the estimated average partial effects we can see that there are some differences 

between the results in Table 18 compared to Tables 15, 16 and 17. Tables 19, 20 and 21 show the 

p-values of testing the difference in estimated average partial effects across the different 

estimation approaches. Tables 19 and 20 compare the estimated average partial effects of 

Procedure 2 to the estimated partial effects from maximizing the Bernoulli quasi-likelihood for 

each asset equation on balanced panel subsets and from maximizing the multinomial quasi-

likelihood on balanced panel subsets. Given the large standard errors from estimation on 

balanced panel subsets with either the single equation or multiple equation approaches we only 

see a statistically significant difference (at the 5% level) for the estimated average partial effect 

of Log(Income) on the allocation of wealth to Bonds. Looking at Table 21, which compares 

estimated average partial effects between Procedure 2 and linear fixed effects we can see that the 

estimated average partial effect of Log(Income) on bonds is also statistically significantly 
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different than the linear fixed effect estimate. It is unclear whether we should expect a negative 

correlation between income and bond holdings, since it is not certain what increasing income 

levels mean for the riskiness of that income. Theoretically a more risky income stream would 

lead to an increased incentive to allocate wealth to less risky investments, but this will depend 

upon the correlation between the riskiness of the return from each asset and income. Since the 

estimated average partial effects from linear fixed effects, maximizing the Bernoulli quasi-

likelihood for each equation and maximizing the multinomial quasi-likelihood are relatively 

close to zero with large standard errors it seems plausible that the effect is negative but not 

controlling for serial correlation leads us to estimate a very small impact from income. 

Simply looking at the magnitude of the estimated average partial effects it appears that 

the largest differences occur within the stock and checking equations. The estimated average 

partial effects that are the most different are for Husband and Wife Age, Husband and Wife 

Pr(Live to 75), and Husband and Wife Word Recall. While the impacts of these covariates have 

changed for both Husband and Wife there are distinct differences between the two members of 

the household. The average partial effect of a ten percentage point increase in survival 

probability on the allocation of wealth to stocks increased nearly tenfold for the Husband, but 

decreased twofold for the Wife. We can also see that the estimated average partial effect on 

stocks from Husband Word Recall is about 0.003 percentage points greater in Table 18 

compared to the linear fixed effects estimate in Table 15, but this is not the case when comparing 

Wife Word Recall. Nevertheless, though the magnitudes of the estimated average partial effects 

are larger from Procedure 2 we cannot reject the null hypothesis that they are statistically 

equivalent to the estimates from maximizing the single equation Bernoulli quasi-likelihoods or 

the multinomial quasi-likelihood. 
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Turning to Table 21, which compares the estimated average partial effects between linear 

fixed effects and Procedure 2, the covariates with statistically significant different estimates (at 

the 5% level) are Husband Age for stocks, Wife Pr(Live to 75) and Log(Income) for bonds and 

Husband Age and Wife Age for checking. The differences in the estimated average partial 

effects for Husband and Wife Age are not surprising given the fact that Procedure 2 is using the 

between household variation from time averages within years of the balanced panel subsets to 

estimate the impact of age. Perhaps more surprising is the fact that we now estimate a negative 

average partial effect for Wife Pr(Live to 75) for bonds. Though this estimated average partial 

effect from Procedure 2 is not statistically different from the linear fixed effect estimate it 

suggests that the Wife may prefer less risky assets (and potentially more liquid in the case of 

CDs and Checking) when facing an increased lifespan. While this is purely conjecture it may 

suggest that there is an avenue for research into the different preferences of household members 

against both the expected risk and return from assets and the liquidity of these assets. 

There are several reasons that we would expect to see differences in the estimated 

average partial effects from our Procedure 2. First, the two-step procedure maximizes the 

multinomial quasi-likelihood for each time period within each balanced panel subset; this 

technique exploits the variation in the differences from the time averages between households. 

Second, Procedure 2 is weights the coefficients based on the serial correlation in the allocation of 

wealth to each asset, the serial correlation in the covariates and the correlation of the covariates 

across equations within each time period and also across time. Our procedure combines all of 

these correlations into weights that are then applied to the coefficients from each time period 

within the balanced panel subset. What is promising is that while we do see some statistically 

different estimated average partial effects from Procedure 2 compared to maximizing single 



ւ��≺⊙ �⊙��ց 

 

55 
 

equation Bernoulli quasi-likelihoods, maximizing multiple equation multinomial quasi-

likelihoods and single equation linear fixed effects the actual impact from these covariates all 

point to relatively small effects on the allocation of wealth across these assets. 

Overall it seems that our estimated impacts from the procedure we laid out here are 

reasonably close to estimates from models that we know will generate consistent but inefficient 

results. In addition, despite slightly different estimated average partial effects our proposed 

procedure still estimates small impacts of these covariates on the allocation decision which is 

consistent with the other approaches that we used.  

One of the advantages of the method that we proposed here is that it allows the effect of 

the covariates to affect our response variables in a non-linear way. Even though we have 

estimated our multinomial QMLE on time periods within balanced panel subsets we can still 

construct the Average Structural Function (ASF) for the entire sample: 

 	 ( )1 ˆˆˆ( ) 1[ ]  for 2,..., .
1 2

N T
ASF N T r r Tt i r t gr i gr

i r

−= = Φ Ψ + + =
= =
∑ ∑x x β x ξ   

We plot 	( )ASF tx  for Husband Word Recall for the allocation of wealth to Stocks, Bonds, CDs, 

and Checking in Figures 1 – 4 and for Wife Word Recall in Figures 5 – 8. As a point of 

reference, we also plot the corresponding ASF from the linear fixed effects estimation, which are 

straight lines because the coefficient estimates are constant over the entire range of the covariate. 

From figure 1 we can see that there is some nonlinearity in the impact of Husband Word Recall 

on stocks. It seems that the impact of remembering additional words increases slightly as more 

words are recalled. Figure 2 displays the average structural function for bonds. There appears to 

be a steep decline in the predicted proportion of wealth allocated to bonds as the number of 

words recalled increases, but this impact dampens as more and more words are recalled. For the 
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allocation of wealth to CDs we see a relatively stable small impact of Husband Word Recall that 

gets slightly larger as the number of words recalled increases. In figure 4 we can see that the 

impact of Husband Word Recall on the proportion of wealth allocated to checking is initially 

small, but increases as the number of words recalled increases. 

 Turning to Wife Word Recall we can see in Figure 5 that the average structural function 

is fairly linear across the range of word recall. Figure 6 shows that there is some significant 

nonlinearity in the impact of word recall on the allocation of wealth to bonds. It appears that 

impact of recalling additional words increases once the wife has recalled greater than 50% of the 

words given in the survey. Figure 7 shows that there is a slight dampening effect of recalling 

additional words on the allocation of wealth to CDs, but that it sets in near the end of the range 

of possible values. As we can see from Figure 8, there appears to be “diminishing returns” to the 

impact of additional words recalled by the wife and it seems that this begins to set in slightly past 

60% of the words recalled. 

2.8 Conclusion 

In this paper, we have presented a two-step estimation procedure for cases where we have 

multiple fractional responses that must satisfy an adding up restriction. We leveraged the 

properties of the multinomial quasi-likelihood and the normal cumulative distribution function to 

account for the adding-up restriction and the restricted range of our multiple response variables. 

In our application, we were able to exploit the random sampling of cross-sectional units to derive 

consistent and more slightly more efficient estimates of the average partial effects of our 

covariates on the allocation of financial wealth to various assets in an unbalanced panel while 

still controlling for a time-invariant unobserved effect. Since the multinomial quasi-likelihood 

function is a member of the linear exponential family we are able to achieve consistent results 
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under the assumption that we have correctly specified the conditional mean. Our second step 

allows us to increase the efficiency of our estimates from using nonlinear methods on balanced 

panel subsets of our data while still estimating average partial effects that are (for the most part) 

not statistically different from these other approaches.  

 We also laid out an alternative estimation approach that makes a further assumption on 

the impact of our time averages. This refinement is a clear next step along this line of research. 

There is also much to be gained in applying the two-step procedure to other problems where we 

have multivariate fractional responses that must satisfy an adding-up restriction. In particular, it 

would be useful to see how well this estimation technique performs in balanced panels and also 

in panels where there is more within variation in the covariates. It would also be fruitful to see 

the impact that different assumptions about the serial correlation have on the estimates from the 

CMD step. One assumption that is obvious and that it used in the Generalized Estimating 

Equation literature is to assume that the correlation within units over time is exchangeable. 

Papke and Wooldridge (2008) find that there is almost no difference between their estimates 

when assuming an exchangeable correlation structure compared to a completely unstructured 

correlation.  
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CHAPTER 3 

ESTIMATION OF A MULTIVARIATE FRACTIONAL RESPONSE MODEL WITH 

UNBALANCED PANEL DATA 

3.1 Introduction 

 Estimation using panel datasets is more prevalent with the increase of available data on 

repeated observations on micro-level units. With panel data we are careful to remove unobserved 

effects by differencing the data or using fixed-effects. With a linear model this is straightforward 

and allows for the unobserved effect to be correlated with observables and having a balanced 

panel is not necessary. Once we begin to look at estimation of nonlinear models on panel data 

this issue becomes a little more complicated.  

 Treating the unobserved effect as a parameter to estimate leads to inconsistent estimates, 

referred to as the “incidental parameters problem”. In general it is assumed that the unobserved 

effect is part of the conditional mean that we specify for our dependent variable. As this 

unobserved effect is folded into a nonlinear function we are not able to remove it via differencing 

or time-demeaning. We can avoid this problem either by ignoring it or using a random-effect 

technique that assumes that the unobserved effect is not correlated with any observables. While 

the random effects procedure provides a solution, the assumption that the unobserved effect is 

uncorrelated with the independent variables can lead to inconsistent estimates if violated.  

Another approach to controlling for the unobserved effect in panel data is through 

Correlated Random Effects models. The approach makes parametric assumptions about the way 

that the time-invariant effect is related to other independent variables in the conditional mean 

model. The usual set up assumes that there is a linear relationship between the unobserved effect 
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and the time-averages of the regressors. This Chamberlain-Mundlak device is relatively simple 

to implement assuming that we have a balanced panel. 

 In the context of an unbalanced panel care needs to be taken when employing the 

Chamberlain-Mundlak device to control for unobserved effects. The standard assumption is that 

the unobserved effect ci is distributed ( , )Normal xi cψ ξ σ+ . This assumption is not accurate if 

some cross-section units have fewer observations than others since the estimated variance of the 

unobserved effect will be larger for units that are observed fewer times. The most obvious 

approach to remedy this problem is to simply choose the largest balanced panel, essentially 

dropping cross-section units that we do not observe for a set number of periods. This approach is 

dangerous for two reasons. First, reducing the number of observations decreases the accuracy of 

our estimates. Second, even if we assume that selection is uncorrelated with the idiosyncratic 

errors there is a potential for selection to be correlated with the observables and unobserved 

heterogeneity which will lead to inconsistent estimates of their effects on our dependent variable. 

Wooldridge (2010) presents a modification of the Correlated Random Effects approach that 

allows selection to be correlated with the covariates and the unobserved effect. This modification 

allows us to apply the Correlated Random Effects approach to be applied to unbalanced panel 

data. 

Wooldridge (2010) presents an example using a standard probit (or fractional probit) 

model and suggests that we can extend this modification to multivariate fractional responses. 

Sivakumar and Bhat (2002) and Mullahy (2010) use the multinomial quasi-likelihood to estimate 

models of multivariate fractional responses that have an adding up restriction and estimate their 

models using cross-sectional data. Extending the models to balanced panel data is relatively 

straightforward as we can simply estimate pooled models on repeated cross-section observations. 
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Of course, we would want to make sure that we use clustered standard errors to make inference 

robust. In a balanced panel we could use the Correlated Random Effects approach and control for 

the unobserved heterogeneity by making parametric assumptions of the moments of its 

distribution. 

In this paper we combine the approach for multivariate fractional responses and the 

modifications to the Correlated Random Effects approach to estimate models on multiple 

fractional responses on cross-section units that are observed over time, but not for the same 

number of time periods. We do this by combining the conditional mean specifications of each of 

our fractional responses and estimate using the multinomial quasi-likelihood function which 

explicitly imposes the adding up restriction of the multivariate fractional responses. We assume 

that selection is uncorrelated with the idiosyncratic error but allow it to be correlated with the 

unobserved effect and the covariates in our conditional mean. 

The outline of the paper is as follows. Section 2 presents the single equation fractional 

probit model discussed in Papke and Wooldridge (2008), section 3 extends the single equation 

fractional probit to allow for selection following Wooldridge (2010), section 4 presents the 

multinomial quasi-likelihood and details how we will estimate the multivariate fractional 

response models on an unbalanced panel simultaneously, section 5 presents results from 

estimation of this model comparing it to results from other estimation methods and section 6 

concludes. 

3.2. Single Equation Fractional Probit Models in a Balanced Panel 

We begin by laying down the framework for estimating a model of portfolio allocation on 

a balanced panel. We proceed in this manner since it makes obvious the modifications that we 
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need to make for the unbalanced panel case and demonstrates the impact that these modifications 

will have on the estimation of the average partial effects. 

Assume that at each time period t , we observe household i  allocate a proportion of their 

financial wealth to each asset g . We assume that 1,2,...,g G=  exhausts all possible investment 

options so that in each period the household invests all their financial wealth. This assumption 

implies that 1G yitgg =∑  for each 1,2,...,i N=  and 1,2,...,t T= . In addition to our response 

vector, we observe a set of covariates itx  and an unobserved effect igc . Our goal is to estimate a 

model of the conditional mean of y  given x  to determine the impact of each covariate. By 

construction, yitg  is bounded between zero and one. Assuming that we use the same set of 

covariates for each equation we can specify the conditional mean as: 

 ( | , ) ( );   1,..., ;  1,..., ;  and 1,...,E y c c i N t T g Gitg it ig it g ig= Φ + = = =x x β  (3.2.1) 

We point out that the above specification completely ignores the fact that these fractional 

responses sum to one. It is simply acting as though we are treating each asset equation by itself. 

Nevertheless, it is useful to study what we can derive from these single equation models since 

our approach here essentially takes the specification in (3.2.1) for each equation and uses the 

multinomial quasi-likelihood to impose the adding up constraint. 

 Our interest lies in estimating the average partial effects of the covariates, itx  on the 

proportion of financial wealth allocated to each asset. Following the results for a probit model 

the direction of the partial effect is determined by the sign of gβ . For a continuous variable xtk  

(dropping the i subscript); 

 
( | , )

( )
E y ctg t g

cgk t g gxtk
β φ

∂
= +

∂

x
x β  (3.2.2) 
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To obtain the average partial effect we can average this over the distribution of cg and and tx . 

 To consistently estimate the coefficients in this single equation framework we require 

that the covariates are not correlated with the error term. We assume that itx  is strictly 

exogenous conditional on the unobserved effect, 

 ( | , ) ( | , ).E y c E y citg i ig itg it ig=x x  (3.2.3) 

Following Chamberlain (1980) and Mundlak (1978) we assume that  

 2; where | ~ (0, ).c a a Normalig g i g ig ig i aψ σ= + +x ξ x  (3.2.4) 

Using (3.2.4) we can rewrite (3.2.1) as: 

 ( | , ) ( ).E y a aitg i ig g it g i g igψ= Φ + + +x x β x ξ  (3.2.5) 

So the mean of yitg  conditional on ix  is: 

 ( | ) ( ( | )
2 1/ 2(1 )

g it g i g
E y E aitg i g it g i g ig i

ag

ψ
ψ

σ

 + +
 = Φ + + + = Φ − + 

x β x ξ
x x β x ξ x  (3.2.6) 

or  

 ( )( | ) ( ( | ))E y E aitg i g it g i g ig i ga it ga i gaψ ψ= Φ + + + = Φ + +x x β x ξ x x β x ξ (3.2.7) 

where we use the a  subscript to denote that our estimated coefficients are scaled by 

2 1/ 2(1 )agσ −+ . Woodridge (2002, Section 15.8.2) shows that the mixing properties of the 

normal distribution lead to equation (3.2.7). 

 For identification of the scaled coefficients in (3.2.7) we require that there is no perfect 

collinearity between the elements of itx  and that there is enough variation in itx  over time. 

With the above parametric specification of the unobserved effect we can now write the Average 

Structural Function (ASF) following Blundell and Powell (2003): 
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 ( )( )ASF Eg t ga t ga i gai ψ = Φ + +
 

x x β x ξx  (3.2.8) 

A consistent estimator of ( )ASFg tx  is: 

 	 ( )1 ˆˆˆ( ) .
1

N
ASF Ng t ga t ga i ga

i

ψ−= Φ + +
=
∑x x β x ξ  (3.2.9) 

where ˆgaψ , ˆ gaβ , and ̂ gaξ  are consistent estimates of the scaled coefficients in equation (3.2.7). 

For a continuous variable, xj  we can calculate the average partial effect by taking the derivative 

of (3.2.9) and average over both i  and t : 

 	
ˆˆˆ( ) 1 ˆˆ ˆˆ( ) ( ),

1 1

T Nga it ga i ga
APE x NTg j ga j ga it ga i gax j t i

ψ
β φ ψ

∂Φ + + −= = + +
∂ = =

∑∑
x β x ξ

x β x ξ   

  (3.2.10) 

For a binary xj  we can calculate the average partial effect by calculating the difference in the 

Average Structural Function evaluated at zero and one.  

3.3 Single Equation Fractional Probit Models in an Unbalanced Panel 

 Once we are dealing with an unbalanced panel we need to make explicit the fact that each 

cross section unit in our sample is not observed for the full span of time. Let Ti  represent the 

number of periods that we observe each cross sectional unit. We also introduce a selection 

indicator to index whether an observation is used in estimation. Let sit  be an indicator that takes 

on a value of one if the observation is used in estimation and zero otherwise. To get consistent 

estimates of the average partial effects we need to make explicit the assumption that selection is 

not correlated with the idiosyncratic error term. Therefore, in addition to the usual strict 

exogeneity assumption we assume that selection is conditionally ignorable. We write this 

assumption as follows: 
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 ( | , , ) ( | , ) ( )E y c E y c citg i ig i itg it ig it g ig= = Φ +x s x x β  (3.3.1) 

Now we need to specify a model for the distribution of the unobserved effect. In the typical case 

this amounts to specifying that the expected value of the unobserved effect varies linearly with 

the time averages of the observed covariates.  

 In an unbalanced panel, we need to specify that the mean and the variance of the 

unobserved effect vary by Ti  since intuitively the estimated moments will vary simply because 

we are using a different number of observations to estimate the parameters of the distribution. 

Following Wooldridge (2010), we define iw to represent functions of the covariates and 

selection {( , : 1,..., }s s t Tit it it =x . A straightforward extension of the standard Chamberlain-

Mundlak device would be to allow( | )E cig iw to vary by the number of time periods that we 

observe our cross-section units
16

: 

 ( | ) 1[ ]
1

T
E c T rig i gr i i g

r

ψ= ⋅ = +
=
∑w x ξ  (3.3.2) 

We allow the variance of cig to vary across the unbalanced panel through the following 

specification: 

 
1

( | ) exp 1[ ]
1

T
Var c T rig i i gr

r

τ
− 

 = + = ⋅
 = 

∑w ω  (3.3.3) 

The specification in (3.3.3) allows the variance of the unobserved effect to vary with the number 

of time periods that we observe a cross-section unit in our panel. 

                                                           
16

 Wooldridge (2010) actually specifies that the conditional mean of the unobserved effect 
includes the interaction between the indicator for number of time periods in sample and the time 
averages of the covariates. We only include the indicator variables here due to non-convergence 
of our likelihood functions in estimation. 
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 Given equations (3.3.2) and (3.3.3) and assuming cig conditional on iw is distributed 

normal we can rewrite the conditional mean for a given asset as  

 

{ }

( | , , 1)

1[ ]2
1/ 2

11 exp 1[ ]1

E y sitg it i it

T T rit g gr i i gr

T T ri grr

ψ

τ

= =

 
 + ⋅ = + =Φ
 

−  + + = ⋅ =   

∑

∑

x w

x β x ξ

ω

 (3.3.4) 

We can reparameterize equation (3.3.4) so that the denominator is unity if we have a balanced 

panel: 

 

( | , , 1)

1[ ]1
1/ 2

exp 1[ ]2

E y sitg it i it

T T rit g gr i i gr

T T ri grr

ψ

= =

 
 + ⋅ = += Φ
 

  = ⋅ =  

∑

∑

x w

x β x ξ

ω

 (3.3.5) 

 

Given the specification in (3.3.5) we follow Blundell and Powell (2003) and construct the 

Average Structural Function as: 

 
1[ ]1( )

1/ 2
exp 1[ ]2

T T rt g gr i i grASF Eg t i
T T ri grr

ψ
  
  + ⋅ = +=  = Φ
  

   = ⋅ =    

∑

∑

x β x ξ
x x

ω

 (3.3.6) 

A consistent estimate of this is 

 	
ˆˆ ˆ 1[ ]1 1( )

1/ 2
1 ˆexp 1[ ]2

TN T rt g gr i i grASF Ng t
Ti T ri grr

ψ
 
 + ⋅ = +− = = Φ
 

 =  = ⋅ =  

∑
∑

∑

x β x ξ
x

ω

 (3.3.7) 
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where ̂ gβ , ˆgrψ , ˆ
gξ  and ˆ grω are consistent estimates of the coefficients in (3.3.5). For a 

continuous variable xk  we can calculate the average partial effect by taking the derivative of 

(3.3.7): 

 
ˆˆ ˆ 1[ ]1 1ˆ

1/ 2
1 ˆexp 1[ ]2

TN T rt g gr i i grNgk
Ti T ri grr

ψ
β φ

  
  + ⋅ = + − =     =  = ⋅  =   

∑
∑

∑

x β x ξ

ω

 (3.3.8) 

where [ ]φ i  represents the standard normal probability distribution function. Once again we can 

see that ̂ gkβ  determines the direction of the partial effect. 

3.4 The Multinomial Quasi-Likelihood: Multivariate Fractional Responses 

 We now describe the multinomial quasi-likelihood function and detail the how estimation 

proceeds given the specifications for the conditional mean and variance. Since an observation 

can only have a log-likelihood value if it is included in estimation the following exposition 

necessarily assumes that the likelihood is only defined for observations where 1sit = .  

 The multinomial quasi-likelihood function for a random draw i  in a specific time period 

t  is given by: 

 
[ ] [ ]

[ ]

( ) log ( , , ) log ( , , )1 1 2 2

log ( , , )

y m y mit i t it i i t it i

y miGt it i G

= + +

+

θ x w θ x w θ

x w θ

ℓ ⋯

⋯
 (3.4.1) 

Where 
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1[ ]1( , , ) .

1/ 2
exp 1[ ]2

T T rit g gr i i grm it i g
T T ri grr

ψ
 
 + ⋅ = += = Φ
 

  = ⋅ =  

∑

∑

x β x ξ
x w θ

ω

17
 

For identification of the parameters the multinomial quasi-likelihood requires that the following 

constraint hold: 

 ( , , ) 1 ( , , ) ( , , ) ( , , )1 2 1m m m mit i G it i it i it i G= − − − ⋅⋅⋅− −x w θ x w θ x w θ x w θ  (3.4.2) 

Since we will be pooling observations the partial quasi-likelihood function is  

[ ] [ ] [ ]( ) log ( , , ) log ( , , ) log ( , , )1 1 2 2
1

T
y m y m y mi i t it i i t it i iGt it i G

t
= + + +

=
∑θ x w θ x w θ x w θℓ ⋯

 (3.4.3) 

The score function is then 

 

( , , )( , , ) 21
1 2( , , ) ( , , )1 2

( ) (
( , , )1 1

( , , )

mm it iit iy yit itT T m mit i it i
i it

m it i Gt t
yitG m it i G

′∇ ′∇
⋅ + ⋅ + 

 
= ) =  

′∇ = = + ⋅ 
 

∑ ∑

x w θx w θθ θ

x w θ x w θ
s θ s θ

x w θ
θ

x w θ

⋯

⋯

(3.4.4) 

Define ( , , )i i iH x y θ as the Hessian then 

                                                           
17

 We note that using the Normal cumulative distribution function does not explicitly restrict the 
predicted value of the “omitted” equation to fall in the unit interval, though it is implicitly 
imposed by the logarithm function. In our application, the predicted values of the omitted 
equation remain in the unit interval. We also estimate an approximate multinomial logit form of 
the system which does explicitly impose the adding-up restriction of the equations, the results are 
nearly identical. 
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( , , ) ( , , )1 1
( , , )1

( , , ) ( , , )2 2[ ( , , | )]
( , , )21

( , , ) ( , , )

( , , )

m mit i it i
m it i

T m mit i it iE i i i i m it it

m mit i G it i G
m it i G

 ′∇ ∇
 +
 
 
 ′∇ ∇

− = + 
 =
 ′∇ ∇ +
 
 

∑

x w θ x w θθ θ

x w θ

x w θ x w θθ θH x y θ x
x w θ

x w θ x w θθ θ

x w θ

⋯

⋯

⋯

 (3.4.5) 

this is consistently estimated by: 

 � 1 ˆ ˆ ˆ( ) ( , , ) ( , , ) ( , , )
1 1

N T
NT it i it it i it i

i t

− ′=
= =
∑∑A µ x w θ W x w θ µ x w θ  (3.4.6) 

where 

 

ˆ( , , )1

ˆ( , , )2ˆ( , , )

ˆ( , , )

m it i

m it i
it i

m it i G

 ∇
 
 ∇
 =
 
 
 ∇ 

x w θθ

x w θθ
µ x w θ

x w θθ

⋮
 (3.4.7) 

and  

 

1
0 0

ˆ( , , )1

1
0 0

ˆˆ ( , , )( , , ) .2

1
0 0

ˆ( , , )

m it i

m it iit it i

m it i G

 
 
 
 
 
 =  
 
 
 
 
 
 

x w θ

x w θW x w θ

x w θ

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (3.4.8) 

Define ˆ ˆˆ ( ( )
1 1

N T

it it
i t

′= )
= =
∑∑B s θ s θ , then we can construct the robust sandwich form of the 

asymptotic variance-covariance matrix as 
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1 1ˆ ˆ ˆ ˆ ˆˆ / ( , , ) ( , , ) ( , , )
1 1

ˆ ˆ( ( )
1 1

1
ˆ ˆ ˆ( , , ) ( , , ) ( , , )

1 1

N T
N it i it it i it i

i t

N T

it it
i t

N T

it i it it i it i
i t

 − −  ′=
 = = 

′)
= =

−
 
 ′
 = = 

∑∑

∑∑

∑∑

A BA µ x w θ W x w θ µ x w θ

s θ s θ

µ x w θ W x w θ µ x w θ

i

i  (3.4.9) 

3.5 Results 

We use data from the Health and Retirement Study (HRS). The HRS began in 1992 and 

was nationally representative of all non-institutionalized individuals aged 51-61 in that year. In 

1998, the HRS combined with the Asset and Health Dynamics of the Oldest Old (AHEAD) and 

added several new cohorts to be nationally representative of the population of non-

institutionalized individuals aged 51 and older. Both initial respondents and their spouses are 

interviewed and followed in subsequent waves. We use data for all cohorts from Waves 1-7 

(1992-2004) of the HRS. In addition to basic demographic variables, the HRS collects detailed 

information on wealth holdings, allocation of wealth, income and its sources, health, and 

measures of the probability that future events occur. We use subjective survival probability, age, 

word recall, household income, and non-financial wealth as regressors in our model. 

Our measure of subjective survival probabilities comes from responses to the following 

question: 

On a scale from 0 to 100, where 0 is no chance and 100 is absolutely certain, what are 

the chances that you will live to age 75 or older?  

Our measure of income is calculated as the sum of all non-capital income received by the 

respondent and spouse during the year. To calculate wealth variables we use responses to 
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questions about the value of holdings within various financial assets. The assets that are 

measured are stocks and/or mutual funds, bonds (corporate and government), CDs, and checking, 

saving and/or money market accounts. We also have information about other assets owned by 

the household including housing, vehicles, other real estate, IRA/Keogh accounts, and trusts. We 

distinguish between two measures of wealth holdings. Non-financial wealth consists of the value 

of housing, real estate, IRA/Keogh accounts, vehicles, and trust holdings, less any associated 

debt. Financial wealth is the value of all holdings in stocks/mutual funds, bonds, CDs, and 

checking, savings, and money market accounts. HRS respondents are given a list of nouns and 

then asked to repeat this list immediately and then again at the end of the cognition section. We 

use the proportion of words recalled at the end of the section as a proxy for cognition.  

We construct our data set by household. We combine spouses in each wave so that our 

panel consists of household observations by year. To select individuals for our sample we drop 

observations that satisfy the following criteria: 

(i) older than 65,  

(ii)  missing values for subjective survival probability,  

(iii)  is a proxy interview or  

(iv) is deceased.  

We apply these criteria at the individual level so households that do not have both spouses are 

dropped. The decision to allocate wealth across assets is conditional on holding positive financial 

wealth; thus, we drop observations where financial wealth is zero. In addition, we drop 

households that are only observed for one time period. Imposing the above criteria for married 

households leaves us with 3,872 households (14,514 total observations).  

 In Table 22, we display means and medians of the relevant variables in our analysis. We 
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can see from Table 22 that the average allocation of wealth generally falls into two assets: stocks 

and checking. There is some investment in CDs but very little in Bonds. There is some concern 

regarding the time variation in the HRS in particular with subjective survival probability 

measures.18
 Table 23 presents the proportion of the variation that is between households in our 

dataset. We can see that the bulk of the variation in our variables is between households, but 

there is some variation over time that we may be able to exploit. 

As a first step we estimate our allocation equations by linear fixed effects. In general 

linear fixed effects coefficients should provide fairly good estimates of the average partial effects 

therefore they should provide us with a reasonable baseline to compare other estimation 

techniques. The results of the linear fixed effects estimation are presented in Table 24. 

We now turn to different methods of estimating the average partial effects of our 

covariates using nonlinear estimation. As a first pass we know that we can estimate each 

equation using a single equation nonlinear method. We follow Papke and Wooldridge (2008) and 

use the procedure that they laid out for the estimation of a pooled fractional probit. In this 

approach we are ignoring the unbalanced nature of the panel and simply maximizing the 

Bernoulli quasi-likelihood function for each asset equation over the full dataset. The results from 

this approach are presented in Table 25. While we have controlled for an unobserved effect in 

this estimation we have not accounted for the fact that we have an unbalanced panel, in fact we 

have simply assumed that each household is observed the same number of times. 

 Table 26 presents the results of maximizing the Bernoulli quasi-likelihood for each 

balanced panel subset of the full, unbalanced panel and then averaging the estimated average 

partial effects (and their variances) across the balanced panel subsets. We can see that the 
                                                           
18

 Smith et al. (2001) and Elder (2010) point to the lack of appropriate variation in the subjective 
survival probabilities collected in the HRS. 
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estimated average partial effects are nearly identical to the estimates provided by completely 

ignoring the unbalanced nature of the data. The difference in standard errors between these two 

approaches is significant though. The increase in the estimated standard errors arises from the 

fact that there are considerably fewer observations within each balanced panel subset and this 

naturally leads to larger variances. While this approach assumes that there is a difference in the 

estimated moments of the unobserved effect depending on the number of times that a household 

is viewed in the panel it does not provide a way to test whether the number of times that we 

observe a household has a statistically significant impact on the estimates.  

Our next step is to estimate each asset equation on the full, unbalanced panel correcting 

for the unbalanced nature of the panel by allowing the mean and the variance of the unobserved 

effect to vary with the number of time periods that we observe a household. We maximize the 

Bernoulli quasi-likelihood and include indicator variables for the number of time periods that a 

household is in the sample in the specification of the conditional mean and the conditional 

variance of the unobserved effect. This is what Wooldridge (2010) proposes; except that we have 

made the assumption that there is a constant slope on the time averages of the covariates in the 

model. The results of this estimation approach are displayed in Table 27.  

There are some differences in the estimated average partial effects in Table 27 for some 

covariates when we compare them to those estimated by the other methods in Tables 24, 25 and 

26. This appears to be most prevalent in the estimated average partial effects for the covariates in 

the bond equation. For the most part, the larger average partial effects are not that worrisome 

since the estimated standard errors are large enough so that they are statistically insignificant at 

standard levels. The only estimated average partial effect which stands out as statistically 

different is Wife Pr(Live to 75). While the overall impact on allocation is still small – a ten 
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percentage point increase in Wife Pr(Live to 75) leads to a 0.005 percentage point increase in the 

allocation of financial wealth to bonds - it is still five times larger than the estimated average 

partial effect from the other single equation estimates. Perhaps most striking is that in the other 

single equation estimation approaches we very nearly have average partial effects that sum to 

zero across the four equations, but this does not appear to be the case in Table 27. In fact it 

appears that none of the marginal effects of any covariate sum to zero across equations. 

 We also test the joint significance of the indicator variables for the total number of time 

periods that a household is observed in both the mean and the variance equation. From our test of 

joint significance we can see that the allocation of wealth to CDs is the only equation where we 

see that we obtain a test statistic of 52.16 which is significant at the 5% level, but this is only for 

the mean equation. This implies that there is little evidence of variation in the moments of the 

unobserved effects at the single equation level, with the exception of the mean of ci  for the 

allocation of wealth to CDs. 

Our next step is to estimate the allocation equations by maximizing the multinomial 

quasi-likelihood function. We first estimate the multinomial quasi-likelihood function on the 

entire unbalanced panel ignoring the fact that we observe households for a different number of 

time periods. The results of this approach are shown in Table 28. We can see that our estimated 

average partial effects are very similar to those that we estimated using linear fixed effects and 

maximizing the Bernoulli quasi-likelihood for each equation. It appears that the biggest 

difference in estimated average partial effects is for Log (Income) which is larger in the single 

equation approaches than it is for the multinomial approach. This is not surprising as the 

multinomial approach leads us to estimated coefficients that maximize a likelihood that is 

restricted to values that satisfy the adding up constraint.  
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As a next step we acknowledge the unbalanced nature of our panel by maximizing the 

pooled multinomial quasi-likelihood for each balanced panel subset and then average the 

estimated average partial effects and their variances across the balanced panel subsets. Table 29 

displays the results of this estimation approach. Once again it is clear that our standard errors 

have increased significantly since the sample sizes of the balanced panel subsets are smaller than 

the full panel. Nevertheless, there appears to be little difference in the estimated average partial 

effects compared to the estimates in Tables 24, 25 and 26. In fact, see that the estimated impact 

of Log (Income) are closer to those estimated using the single equation approaches. 

Table 30 presents the results of maximizing the multinomial quasi-likelihood on the full, 

unbalanced panel and specifying that the moments of the unobserved effect to vary based on the 

number of times that we observe households in the panel. The estimated average partial effects 

are nearly identical to those estimated by linear fixed effects. Unlike the estimates from the 

maximization of the Bernoulli quasi-likelihood in table 27 the estimated average partial effects 

for each covariate sum to zero (with some rounding error) in table 30. This is due to the fact that 

the adding up restriction is naturally imposed by the specification of the conditional mean 

function and therefore restricts the maximization routine to focus on coefficients that satisfy the 

restriction. Looking at the joint significance test for the indicator variables for the total number 

of times that a household is observed we can see that there are some slight differences from the 

similar test presented in Table 27. First, since we are “excluding” the checking equation in the 

multinomial approach we do not have coefficients to test so these are missing. Second, it appears 

that both the conditional mean and conditional variance of the unobserved effect for the 

allocation of wealth to bonds differs across the number of time periods that we observe 

households. Similar to the estimates in table 27 we see that the conditional mean of the 
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unobserved effect in the allocation of wealth to CDs does differ depending on the total number of 

time periods that a household is in sample. The difference in the bond allocation equation is most 

likely due to the imposition of the adding up restriction. Once we force the impact of these 

covariates to cancel out across the four assets it restricts the search for coefficients to those that 

satisfy the adding up constraint. Since the allocation of wealth to bonds is so small (in fact for a 

majority of households it is zero more often than not) and the quasi-likelihood function is flatter 

than for other assets, a single equation approach is likely to find many coefficients that maximize 

the flat likelihood but that do not maximize the multinomial quasi-likelihood. 

As another point of comparison, we include Table 31 which shows the estimated average 

partial effects from estimating equation (3.3.5) but replacing the Normal Cumulative Distribution 

Function with the multinomial logit functional form. We should note that the below estimation 

equation is an approximation, the actual derivation of the appropriate specification of the 

conditional mean and variance function when using the multinomial logit functional form is 

more complicated. We perform this additional estimation since using the Normal Cumulative 

Distribution Function does not explicitly impose the restriction that the predicted value of the 

omitted equation must be in the unit interval; instead we are relying on the logarithm to impose 

this constraint. Specifically we are estimate the following equation: 
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We can see from Table 31 that the estimated average partial effects are nearly identical to those 

reported in Table 30, though the estimated standard errors for all equations are smaller than those 

estimated using the multinomial fractional probit approach. An interesting difference between 

Table 30 and 31 arises in the 2χ  test for grψ  and grω  for the Bond equation. In table 30 we 

can see that there the covariates are in general not statistically significant, but the indicator 

variables for the length of time in sample are significant in both the conditional mean and 

variance equation. Using the multinomial logit functional form we see that the these indicator 

variables are no longer statistically significant in either the conditional mean or variance 

equation, but that now the estimated partial effects are more precisely estimated. The fact that the 

estimated average partial effects are nearly identical across all estimation approaches suggests 

that we can leverage the flexibility (and potential efficiency) of non-linear estimation techniques 

on fractional response variables in an unbalanced panel.  

Overall our estimated average partial effects from the procedure laid out in this paper are 

nearly identical to those estimated by methods that we know will give us consistent estimates, 

but it appears that estimating a nonlinear model that appropriately imposes the adding up 

restriction and also accounts for the unbalanced nature of our panel has led to a happy 

compromise between ignoring this information and over controlling for it.  

3.6 Conclusion 

 One of the major criticisms of estimating nonlinear models on panel data with a 

correlated random effects approach is that it cannot handle unbalanced panels. Wooldridge 

(2010) offers a simple solution to this problem that is parsimonious and easily estimable by 

standard software. We have extended this approach to multiple fractional response variables and 

have exploited the fact that we have an adding up restriction that allows us to use the 
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multinomial quasi-likelihood function. Since the multinomial quasi-likelihood is in the linear 

exponential family we can be confident that we have consistent estimates of the average partial 

effects of our covariates.  

 We have also compared our results from our procedure to other estimation methods that 

will give us consistent estimates of the average partial effects. We have found that the estimation 

procedure we laid out here lies somewhere in between ignoring the unbalanced nature of the 

panel and more drastic corrections for it such as estimation of standard correlated random effect 

models on balanced panel subsets. Since we have explicitly modeled that the conditional mean 

and variance of our unobserved effect varies with the number of time periods we observe a cross-

sectional unit we are able to use the full data set to estimate our average partial effects. This has 

allowed us to maintain consistency while increasing the precision of our estimated average 

partial effects. 

 Possible avenues for future research would be to attempt to more parsimoniously specify 

that the unobserved effect will differ across equations. Here we have allowed for each covariate 

in the conditional mean and variance of the unobserved effect to be different for each equation. It 

might be fruitful to instead specify that the unobserved effect is the same across each equation 

but instead there is an overall scale factor for each equation’s conditional mean and variance 

function. With the appropriate normalization we could then estimate fewer coefficients leading 

to possible more efficiently estimated average partial effects. 

   



 

78 
 

APPENDIX



 

79 
 

 
 
Table 1. Summary Statistics for Single Households 

 Wealth Sample Allocation Sample 
 Mean Median Mean Median 

Age 58 58 58 59 
White 0.62  0.71  
Black 0.27  0.21  

Hispanic 0.09  0.06  
Other 0.03  0.03  

Less than High School 0.28  0.19  
High School 0.34  0.35  

Some College 0.20  0.23  
College 0.08  0.10  

Post Grad 0.10  0.13  
Male 0.29  0.29  

Divorced/Separated 0.56  0.56  
Widowed 0.30  0.30  

Never Married 0.14  0.14  
Working 0.57  0.63  
Retired 0.18  0.20  

Unemployed 0.04  0.03  
Disabled 0.18  0.12  

Household Size 1.81 1 1.72 1 
Word Recall 0.63 0.71 0.67 0.71 

Series 7 Correct 2.34 2 2.66 3 
High Risk Aversion 0.62  0.63  

Medium-High Risk Aversion 0.12  0.13  
Medium-Low Risk Aversion 0.10  0.10  

Low Risk Aversion 0.14  0.13  
Plan for Next Few Months 0.25  0.21  

Plan for Next Year 0.11  0.11  
Plan for Next Few Years 0.27  0.28  

Plan for 5-10 years 0.26  0.29  
Plan for 10+ years 0.10  0.10  

Pr(Live to 75) 0.63 0.70 0.65 0.75 
Net Worth $131,430 $38,530 $168,903 $64,186 

Financial Wealth $35,029 $1,485 $47,295 $4,733 
Current Income $22,764 $15,300 $27,155 $19,407 

Log(Current Income) 9.55 9.64 9.77 9.87 
Permanent Income $21,405 $15,303 $25,585 $18,983 

Permanent Log Income 9.44 9.50 9.65 9.71 
Stocks   0.17  
Bonds   0.02  
CDs   0.08  

Checking   0.74  
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Table 1 (cont’d). 
Observations 
Households 

14,275 
5,022 

10,573 
4,053 

Note: Reported Wealth and Income measures are in 1992 dollars. 
 
Table 2. Summary Statistics for Married Households 

 Wealth Sample Allocation Sample 
 Mean Median Mean Median 
 Husband Wife Husband Wife Husband Wife Husband Wife 

Age 58 54 58 55 58 55 58 55 
White 0.80 0.81   0.84 0.85   
Black 0.10 0.10   0.08 0.08   
Other 0.02 0.02   0.02 0.02   

Hispanic 0.07 0.07   0.05 0.05   
Less than 

High School 
0.21 0.19   0.17 0.15   

High School 0.32 0.39   0.33 0.40   
Some College 0.21 0.23   0.22 0.24   

College 0.12 0.10   0.13 0.10   
Post Grad 0.14 0.09   0.15 0.10   
High Risk 
Aversion 

0.60 0.63   0.60 0.63   

Medium-High 
Risk Aversion 

0.13 0.15   0.14 0.15   

Medium-Low 
Risk Aversion 

0.10 0.10   0.10 0.10   

Low Risk 
Aversion 

0.14 0.10   0.14 0.10   

Plan for Next 
Few Months 

0.13 0.15   0.12 0.13   

Plan for Next 
Year 

0.10 0.11   0.09 0.10   

Plan for Next 
Few Years 

0.29 0.31   0.30 0.31   

Plan for 5-10 
Years 

0.35 0.32   0.36 0.33   

Plan for 10+ 
Years 

0.12 0.11   0.12 0.11   

Word Recall 0.58 0.65 0.59 0.71 0.60 0.66 0.71 0.71 
Pr(Live to 75) 0.64 0.67 0.70 0.75 0.65 0.68 0.70 0.75 

Working 0.68 0.59   0.69 0.61   
Retired 0.25 0.11   0.26 0.11   

Unemployed 0.02 0.02   0.02 0.02   
Disabled 0.09 0.06   0.07 0.05   
Series 7 
Correct 

2.44 2.26 3 2 2.54 2.36 3 2 
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Table 2 (cont’d). 
Current 
Income 

$56,086 $43,750 $59,317 $46,498 

Log(Current 
Income) 

10.58 10.69 10.68 10.75 

Household 
Size 

2.16 2 2.16 2 

Permanent 
Income 

$56,914 $46,670 $59,988 $49,218 

Permanent 
Log Income 

10.64 10.72 10.73 10.77 

Net Worth $304,024 $140,111 $330,922 $159,045 
Financial 
Wealth 

$65,593 $10,887 $73,111 $15,200 

Stocks   0.25  
Bonds   0.02  
CDs   0.09  

Checking   0.63  
Observations 
Households 

18,603 
6,608 

16,690 
6,048 

Note: Reported Wealth and Income measures are in 1992 dollars. 

 
 
Table 3. Average Wealth and Proportion of Financial Wealth Allocated by Pr(Live to 75), 
Single Households 

 Net Worth Financial 
Wealth 

Stocks Bonds CDs Checking 
Fraction 

of 
Sample 

0 75 0.1P≤ <  $41,804 $7,063 0.08 0.01 0.06 0.86 0.0594 
0.1 75 0.2P≤ <  $70,412 $14,898 0.13 0.01 0.07 0.79 0.0282 
0.2 75 0.3P≤ <  $107,678 $24,816 0.16 0.01 0.08 0.75 0.0355 
0.3 75 0.4P≤ <  $103,123 $17,245 0.13 0.02 0.09 0.76 0.0210 
0.4 75 0.5P≤ <  $129,572 $35,292 0.14 0.03 0.08 0.75 0.0217 
0.5 75 0.6P≤ <  $116,788 $28,681 0.15 0.01 0.09 0.75 0.2487 
0.6 75 0.7P≤ <  $176,562 $57,327 0.19  0.02 0.08 0.70 0.0824 
0.7 75 0.8P≤ <  $177,824 $44,265 0.21 0.02 0.10 0.68 0.0760 
0.8 75 0.9P≤ <  $185,234 $51,814 0.21 0.02 0.09 0.68 0.2026 
0.9 75 1P≤ <  $347,801 $168,255 0.24 0.02 0.07 0.67 0.0162 

75 1P =  $111,057 $26,632 0.15 0.01 0.01 0.77 0.2085 
Note: Wealth figures are in 1992 dollars. 
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Table 4. Average Wealth and Proportion of Financial Wealth Allocated by Husband’s 
Pr(Live to 75), Married Households 

 
Net 

Worth 
Financial 
Wealth Stocks Bonds CDs Checking 

Fraction 
of 

Sample 
0 75 0.1P≤ <  $150,509 $30,026 0.17 0.01 0.09 0.73 0.0524 

0.1 75 0.2P≤ <  $195,464 $31,120 0.18 0.01 0.07 0.73 0.0255 
0.2 75 0.3P≤ <  $226,670 $48,087 0.21 0.02 0.1 0.67 0.0367 
0.3 75 0.4P≤ <  $200,316 $41,090 0.21 0.02 0.11 0.67 0.0259 
0.4 75 0.5P≤ <  $238,363 $45,413 0.22 0.02 0.09 0.68 0.0241 
0.5 75 0.6P≤ <  $273,417 $57,287 0.22 0.02 0.1 0.66 0.2490 
0.6 75 0.7P≤ <  $336,502 $80,045 0.3 0.03 0.09 0.58 0.1067 
0.7 75 0.8P≤ <  $439,344 $116,920 0.31 0.03 0.09 0.57 0.0795 
0.8 75 0.9P≤ <  $364,742 $76,434 0.3 0.03 0.09 0.59 0.2026 
0.9 75 1P≤ <  $404,967 $91,239 0.39 0.03 0.05 0.53 0.0143 

75 1P =  $306,326 $61,103 0.23 0.02 0.09 0.65 0.1833 
Note: Wealth figures are in 1992 dollars. 
 
 
 
 
Table 5. Average Wealth and Proportion of Financial Wealth Allocated by Wife’s Pr(Live to 
75), Married Households 

 
Net 

Worth 
Financial 
Wealth Stocks Bonds CDs Checking 

Fraction 
of 

Sample 
0 75 0.1P≤ <  $118,553 $18,608 0.14 0.01 0.08 0.77 0.0395 

0.1 75 0.2P≤ <  $180,629 $48,247 0.18 0.01 0.1 0.71 0.0174 
0.2 75 0.3P≤ <  $177,559 $33,642 0.16 0.01 0.1 0.74 0.0280 
0.3 75 0.4P≤ <  $183,728 $44,373 0.22 0.01 0.11 0.66 0.0176 
0.4 75 0.5P≤ <  $159,264 $28,859 0.19 0.02 0.12 0.68 0.0200 
0.5 75 0.6P≤ <  $264,519 $58,833 0.22 0.02 0.1 0.66 0.2395 
0.6 75 0.7P≤ <  $307,643 $68,165 0.26 0.02 0.1 0.62 0.0954 
0.7 75 0.8P≤ <  $434,637 $97,380 0.31 0.03 0.08 0.58 0.0841 
0.8 75 0.9P≤ <  $370,027 $83,681 0.3 0.03 0.09 0.59 0.2436 
0.9 75 1P≤ <  $450,742 $115,980 0.35 0.03 0.07 0.55 0.0205 

75 1P =  $310,064 $57,644 0.25 0.02 0.09 0.64 0.1944 
Note: Wealth figures are in 1992 dollars. 
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Table 6. Wealth Holding Estimation Results, Single Households 

 Net Worth Financial 
Wealth 

Age 
-51,213 

(29,894)* 
-14,279 
(13,684) 

Age
2
 

1,153 
(590)* 

350 
(276) 

Age
3
 

-8 
(4)** 

-3 
(2) 

Black 
-45,779 

(17,874)** 
-5,396 
(6,116) 

White 
19,166 

(18,174) 
17,318 

(6,211)** 

Hispanic 
-23,964 
(18,216) 

-625 
(6,337) 

High School 
17,680 

(8,268)** 
8,859 

(2,833)** 

Some College 
58,107 

(12,235)** 
23,101 

(4,975)** 

College 
111,375 

(23,695)** 
50,635 

(10,958)** 

Post Grad 
165,583 

(28,868)** 
79,858 

(13,114)** 

Male 
25,972 

(10,429)** 
12,850 

(4,692)** 

Divorced/Separated 
-2,113 

(10,033) 
-3,394 
(4,784) 

Widowed 
46,520 

(11,615)** 
9,966 

(5,101)* 

Working 
248 

(13,335) 
7,630 

(8,387) 

Retired 
36,706 

(10,668)** 
16,949 

(5,008)** 

Unemployed 
3,935 

(21,743) 
-5,174 
(6,628) 

Household Size 
-4,772 

(1,845)** 
-2,668 

(769)** 

Word Recall 
26,900 

(12,737)** 
9,479 

(4,822)** 

Series 7 Correct 
4,466 

(1,924)** 
2,328 

(856)** 

Medium-High Risk Aversion 
6,102 

(12,438) 
-1,879 
(3,570) 

Medium-Low Risk Aversion 
2,723 

(15,650) 
2,850 

(8,821) 
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Table 6 (cont’d). 

Low Risk Aversion 
29,291 

(13,970)** 
9,374 

(5,480)* 

Plan for Next Year 
6,775 

(10,052) 
860 

(4,315) 

Plan for Next Few Years 
26,510 

(6,049)** 
9,814 

(2,362)** 

Plan for 5-10 Years 
50,030 

(9,069)** 
22,221 

(4,045)** 

Plan for 10+ Years 
94,892 

(15,926)** 
38,520 

(8,780)** 

Pr(Live to 75) 
256 

(95)** 
124 

(44)** 

Current Income 
-25,613 

(9,518)** 
-23,819 

(6,887)** 

Current Income
2
 

330 
(153)** 

228 
(97)** 

Permanent Income 
31,176 

(7,194)** 
11,922 

(3,949)** 

Permanent Income
2
 

267 
(62)** 

108 
(35)** 

Current Income*Permanent 
Income 

-74 
(301) 

19 
(185) 

Observations 
Households 

14,275 
5,022 

Note: Robust standard errors reported in parentheses. ** p<0.05 and 
* p<0.1. A full set of year dummies is included in all models. 
Reported coefficients for Pr(Live to 75) are for a one-percentage 
point difference (0.01). 

 
 

Table 7. Average Partial Effects (Reported as Percentages) for Allocation of 
Financial Wealth , Single Households, Estimated by Single Equation 
Fractional Probit 

 Stocks Bonds CDs Checking 

Age 
-0.117 
(0.092) 

0.002 
(0.022) 

0.117 
(0.067)* 

-0.027 
(0.105) 

Black 
-2.054 
(2.616) 

-0.167 
(0.688) 

0.989 
(2.086) 

0.787 
(3.103) 

White 
3.830 

(2.387) 
0.360 

(0.594) 
1.555 

(1.781) 
-5.819 

(2.819)** 

Hispanic 
0.676 

(3.269) 
0.168 

(0.907) 
-0.390 
(2.187) 

-0.421 
(3.635) 

High School 
4.729 

(1.511)** 
0.830 

(0.462)* 
0.806 

(0.994) 
-4.637 

(1.563)** 
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Table 7 (cont’d).     

Some College 
9.291 

(1.711)** 
-0.038 
(0.399) 

-0.609 
(1.077) 

-6.789 
(1.740)** 

College 
11.068 

(2.203)** 
0.911 

(0.639) 
0.396 

(1.330) 
-10.372 

(2.192)** 

Post Grad 
10.005 

(2.164)** 
1.019 

(0.595)* 
-0.705 
(1.251) 

-9.451 
(2.167)** 

Male 
0.257 

(0.961) 
0.005 

(0.231) 
-1.227 

(0.656)* 
0.866 

(1.089) 

Divorced/Separated 
-0.820 
(1.257) 

0.227 
(0.285) 

-0.451 
(0.926) 

1.319 
(1.420) 

Widowed 
-0.349 
(1.373) 

0.405 
(0.326) 

-0.970 
(0.986) 

1.263 
(1.537) 

Working 
0.642 

(1.131) 
-0.086 
(0.296) 

0.742 
(0.848) 

-0.601 
(1.314) 

Retired 
1.915 

(1.201) 
0.710 

(0.377)* 
0.768 

(0.932) 
-2.906 

(1.378)** 

Unemployed 
-1.392 
(2.081) 

1.511 
(1.021) 

2.082 
(1.738) 

-1.538 
(2.533) 

Household Size 
-0.783 

(0.400)* 
-0.199 
(0.127) 

-0.686 
(0.295)** 

1.617 
(0.451)** 

Word Recall 
1.630 

(1.800) 
-0.255 
(0.441) 

-2.310 
(1.273)* 

1.139 
(2.053) 

Series 7 Correct 
0.116 

(0.284) 
0.065 

(0.090) 
-0.189 
(0.214) 

-0.033 
(0.328) 

Medium-High Risk Aversion 
-1.369 
(1.113) 

-0.125 
(0.275) 

-0.012 
(0.802) 

1.499 
(1.265) 

Medium-Low Risk Aversion 
1.450 

(1.269) 
0.193 

(0.330) 
-1.427 

(0.806)* 
-0.069 
(1.431) 

Low Risk Aversion 
2.607 

(1.114)** 
0.372 

(0.341) 
-3.175 

(0.739)** 
-0.146 
(1.277) 

Plan for Next Year 
0.291 

(1.464) 
0.699 

(0.539) 
1.885 

(1.133)** 
-2.390 
(1.650) 

Plan for Next Few Years 
4.222 

(1.171)** 
0.459 

(0.363) 
1.920 

(0.860) 
-5.943 

(1.303)** 

Plan for 5-10 Years 
5.163 

(1.203)** 
0.317 

(0.353) 
1.005 

(0.829) 
-6.049 

(1.307)** 

Plan for 10+ Years 
5.750 

(1.499)** 
1.134 

(0.544)** 
-0.973 
(0.980) 

-6.096 
(1.619)** 

Pr(Live to 75) 
0.0133 

(0.0136) 
-0.0046 
(0.0035) 

-0.0037 
(0.0093) 

-0.0037 
(0.0154) 

Log(Current Income) 
0.539 

(0.440) 
-0.010 
(0.139) 

0.067 
(0.283) 

-0.620 
(0.508) 

Permanent Log Income 
1.199 

(0.756) 
0.240 

(0.214) 
-1.145 

(0.541)** 
-0.391 
(0.873) 
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Table 7 (cont’d)     

Log(Net Worth) 
5.031 

(0.319)** 
0.693 

(0.129)** 
1.900 

(0.165)** 
-6.884 

(0.329)** 
Observations 
Households 

10,573 
4,053 

Note: Average partial effects reported. Robust standard errors are in 
parentheses. ** p<0.05 and * p<0.1. A full set of year dummies is included in 
all models. Reported Average Partial Effects for Pr(Live to 75) are for a one-
percentage point difference (0.01). 

 
 

Table 8. Wealth Holding Estimation Reults, Married Households 
 Net Worth Financial Wealth 
 Husband Wife Husband Wife 

Age 
-81,003 

(37,969)** 
-122,988 

(54,066)** 
-10,009 
(14,784) 

-4,413 
(14,993) 

Age
2
 

1,953 
(738)** 

2,480 
(1,071)** 

262 
(293) 

118 
(323) 

Age
3
 

-14 
(5)** 

-16 
(7)** 

-2 
(2) 

-1 
(2) 

Black 
-98,615 

(38,207)** 
18,022 

(33,643) 
-32,990 

(18,756)* 
-6,577 

(18,957) 

White 
6,275 

(36,598) 
32,419 

(32,772) 
322 

(17,389) 
-13,212 
(19,586) 

Hispanic 
-51,752 
(38,673) 

51,415 
(37,185) 

-6,556 
(16,973) 

-16,710 
(19,363) 

High School 
-11,679 
(14,385) 

21,975 
(13,271)* 

-3,068 
(3,803) 

5,762 
(3,783) 

Some College 
-27,431 
(20,164) 

55,406 
(23,091)** 

-1,573 
(5,098) 

14,839 
(5,294)** 

College 
54,901 

(39,712) 
84,406 

(36,931)** 
37,505 

(12,501)** 
38,063 

(15,272)** 

Post Grad 
8,167 

(36,482) 
67,598 

(38,935)* 
30,609 

(10,834)** 
41,897 

(13,844)** 

Medium-High Risk Aversion 
-18,926 
(19,420) 

-2,707 
(17,566) 

4,303 
(7,331) 

-300 
(6,772) 

Medium-Low Risk Aversion 
-48,768 

(18,796)** 
23,058 

(21,725) 
-6,619 
(5,551) 

3,323 
(7,363) 

Low Risk Aversion 
-7,599 

(18,355) 
46,826 

(27,255)* 
-1,033 
(6,077) 

-240 
(6,792) 

Plan for Next Year 
-35,539 
(21,740) 

-12,209 
(16,122) 

-6,624 
(9,458) 

-785 
(5,215) 

Plan for Next Few Years 
-21,460 
(20,062) 

20,647 
(15,212) 

-7,968 
(7,436) 

9,455 
(5,234)* 
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Table 8 (cont’d)     

Plan for 5-10 Years 
-25,427 
(21,058) 

14,505 
(17,162) 

-8,661 
(7,321) 

7,219 
(4,579) 

Plan for 10+ Years 
49,614 

(27,072)* 
59,879 

(23,574)** 
24,764 

(10,742)** 
27,512 

(8,563)** 

Word Recall 
-14,951 
(37,053) 

-15,527 
(50,025) 

-13,304 
(12,258) 

4,178 
(9,782) 

Series 7 Correct 
14,161 

(4,998)** 
821 

(5,921) 
4,867 

(1,646)** 
2,327 

(1,644) 

Household Size 
-11,193 
(5,887)* 

-4,319 
(2,196)** 

Working 
-43,525 

(13,399)** 
-98,558 

(17,784)** 
-13,889 

(5,442)** 
-31,661 

(6,289)** 

Unemployed 
-64,020 

(20,379)** 
-80,664 

(22,084)** 
-19,344 

(6,320)** 
-18,303 

(8,064)** 

Retired 
15,281 

(15,312) 
19,732 

(24,190) 
11,103 

(5,732)* 
3,034 

(9,127) 

Pr(Live to 75) 
241 

(203) 
425 

(193)** 
28 

(62) 
-22 
(65) 

Current Income 
11,292 

(5,504)** 
-2,335 

(1,303)* 

Current Income
2
 

21 
(138) 

132 
(20)** 

Permanent Income 
46,914 

(6,340)** 
13,071 

(1,764)** 

Permanent Income
2
 

-281 
(117)** 

-55 
(19)** 

Current Income*Permanent 
Income 

83 
(381) 

-145 
(57)** 

Observations 
Households 

18,603 
6,608 

Note: Robust standard errors reported in parentheses. ** p<0.05 and * p<0.1. A full set 
of year dummies are included in all models. Reported coefficients for Pr(Live to 75) are 
for a one-percentage point difference (0.01). 
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Table 9. Average Partial Effects (Reported as Percentages) for Allocation of Financial Wealth, Married 
Households, Estimated by Single Equation Fractional Probit 

 Stocks Bonds CDs Checking 
 Husband Wife Husband Wife Husband Wife Husband Wife 

Age 
-0.175 

(0.091)* 
0.167 

(0.079)** 
0.041 

(0.027) 
0.029 

(0.022) 
0.128 

(0.055)** 
0.077 

(0.047) 
-0.012 
(0.098) 

-0.273 
(0.085)** 

Black 
-2.420 
(4.658) 

-5.679 
(4.267) 

-0.299 
(0.769) 

1.241 
(1.126) 

-1.809 
(2.718) 

2.880 
(3.423) 

4.746 
(4.736) 

1.714 
(4.734) 

White 
-0.713 
(3.121) 

-0.592 
(2.884) 

-0.065 
(0.881) 

0.688 
(0.636) 

1.372 
(2.121) 

-0.726 
(1.936) 

-0.762 
(3.292) 

0.572 
(3.028) 

Hispanic 
-3.732 
(3.390) 

-6.245 
(3.064)** 

-0.751 
(0.803) 

0.179 
(1.055) 

0.337 
(2.607) 

-2.656 
(1.765) 

3.419 
(3.761) 

8.234 
(3.366)** 

High School 
4.215 

(1.307)** 
5.521 

(1.364)** 
0.663 

(0.456) 
0.989 

(0.488)** 
0.994 

(0.804) 
2.955 

(0.855)** 
-4.253 

(1.358)** 
-8.104 

(1.365)** 

Some College 
8.674 

(1.502)** 
5.378 

(1.539)** 
0.957 

(0.518)* 
0.869 

(0.559) 
0.016 

(0.860) 
2.447 

(1.017)** 
-7.612 

(1.544)** 
-7.538 

(1.578)** 

College 
8.929 

(1.718)** 
8.163 

(1.955)** 
1.854 

(0.667)** 
1.939 

(0.785)** 
-1.858 

(0.899)** 
2.275 

(1.276)* 
-7.693 

(1.749)** 
-11.581 

(1.983)** 

Post Grad 
6.747 

(1.745)** 
7.056 

(2.012)** 
1.863 

(0.687)** 
1.742 

(0.761)** 
-0.282 
(0.998) 

0.837 
(1.185) 

-6.994 
(1.845)** 

-9.431 
(2.096)** 

Medium-
High Risk 
Aversion 

1.471 
(0.974) 

-0.764 
(0.911) 

0.306 
(0.276) 

0.170 
(0.268) 

0.470 
(0.611) 

0.108 
(0.577) 

-2.204 
(1.061)** 

0.373 
(0.994) 

Medium-Low 
Risk 

Aversion 

1.683 
(1.144) 

-0.637 
(1.053) 

-0.218 
(0.315) 

-0.084 
(0.308) 

-0.788 
(0.676) 

-1.254 
(0.646)* 

-0.568 
(1.291) 

1.769 
(1.194) 

Low Risk 
Aversion 

2.788 
(1.039)** 

-0.053 
(1.144) 

0.161 
(0.288) 

0.018 
(0.326) 

-1.622 
(0.604)** 

-0.418 
(0.686) 

-1.599 
(1.120) 

0.230 
(1.257) 
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Table 9 
(cont’d). 

        

Plan for Next 
Year 

0.270 
(1.494) 

-1.711 
(1.340) 

-0.326 
(0.386) 

-0.285 
(0.383) 

0.421 
(0.931) 

0.095 
(0.870) 

-0.053 
(1.568) 

1.885 
(1.462) 

Plan for Next 
Few Years 

2.076 
(1.189)* 

-1.620 
(1.107) 

-0.159 
(0.345) 

0.033 
(0.359) 

1.204 
(0.749) 

-0.004 
(0.681) 

-2.892 
(1.256)** 

1.661 
(1.180) 

Plan for 5-10 
Years 

1.996 
(1.157)* 

-0.153 
(1.124) 

-0.124 
(0.337) 

-0.084 
(0.351) 

0.292 
(0.716) 

0.090 
(0.700) 

-1.986 
(1.229) 

0.224 
(1.202) 

Plan for 10+ 
Years 

3.167 
(1.434)** 

-0.772 
(1.297) 

-0.448 
(0.342) 

0.184 
(0.415) 

1.164 
(0.913) 

0.967 
(0.883) 

-4.121 
(1.506)** 

-0.460 
(1.434) 

Word Recall 
4.500 

(1.753)** 
1.829 

(1.703) 
-0.404 
(0.542) 

0.393 
(0.579) 

-0.006 
(1.178) 

-0.319 
(1.139) 

-3.745 
(1.942)* 

-1.550 
(1.899) 

Series 7 
Correct 

0.624 
(0.319)* 

0.374 
(0.278) 

-0.020 
(0.101) 

-0.081 
(0.091) 

-0.035 
(0.195) 

0.242 
(0.188) 

-0.674 
(0.334)** 

-0.559 
(0.302)* 

Household 
Size 

-0.827 
(0.426)* 

-0.031 
(0.114) 

0.395 
(0.279) 

0.499 
(0.462) 

Working 
0.247 

(1.024) 
0.218 

(0.801) 
-0.101 
(0.289) 

-0.194 
(0.228) 

0.195 
(0.664) 

0.636 
(0.512) 

0.104 
(1.139) 

-0.101 
(0.871) 

Unemployed 
0.833 

(2.332) 
0.647 

(2.253) 
-0.742 
(0.511) 

0.229 
(0.827) 

-1.642 
(1.352) 

0.213 
(1.466) 

1.748 
(2.478) 

-0.980 
(2.428) 

Retired 
2.846 

(1.052)** 
0.984 

(1.090) 
0.315 

(0.311) 
-0.044 
(0.294) 

1.188 
(0.665)* 

-0.141 
(0.651) 

-3.879 
(1.145)** 

-0.726 
(1.178) 

Pr(Live to 75) 
0.0262 

(0.0121)** 
0.0224 

(0.0131)* 
0.0031 

(0.0036) 
0.0036 

(0.0040) 
-0.0130 

(0.0075)* 
-0.0189 

(0.0081)** 
-0.0146 
(0.0131) 

-0.0037 
(0.0139) 

Log(Current 
Income) 

1.055 
(0.492)** 

0.123 
(0.156) 

0.300 
(0.300) 

-1.531 
(0.549)** 

Permanent 
Log Income 

2.300 
(0.813)** 

0.050 
(0.222) 

-1.209 
(0.458)** 

-1.359 
(0.885) 
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Table 9 
(cont’d). 

    

Log(Net 
Worth) 

6.670 
(0.389)** 

0.968 
(0.112)** 

1.256 
(0.159)** 

-8.115 
(0.400)** 

Observations 
Households 

16,690 
6,048 

Note: Average partial effects reported. Robust standard errors are in parentheses. ** p<0.05 and * p<0.1. A full 
set of year dummies included in all models. Reported Average Partial Effect for Pr(Live to 75) is for a one-
percentage point difference (0.01). 
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Table 10. Sensitivity Analysis, Removing Permanent Income, Single and 
Married Households, Wealth Holding and Asset Allocation 

Single Households 
 
Wealth Holdings 

 Net Worth Financial Wealth 

Pr(Live to 75) 
339 

(100)** 
156 

(50)** 
 
Asset Allocation 
 Stocks Bonds CDs Checking 

Pr(Live to 75) 
0.0142 

(0.0136) 
-0.0044 
(0.0035) 

-0.0046 
(0.0093) 

-0.0040 
(0.0154) 

 
Married Households 

 
Wealth Holdings 

 Net Worth Financial Wealth 

Husband Pr(Live to 75) 
356 

(208)* 
66 

(63) 

Wife Pr(Live to75) 
522 

(200)** 
12 

(66) 
 
Asset Allocation 

 Stocks Bonds CDs Checking 

Husband Pr(Live to 75) 
0.0274 

(0.0121)** 
0.0032 

(0.0036) 
-0.0135 

(0.0075)* 
-0.0152 
(0.0131) 

Wife Pr(Live to75) 
0.0230 

(0.0131)* 
0.0036 

(0.0040) 
-0.0193 

(0.0081)** 
-0.0040 
(0.0139) 

Note: We remove all variables that include our measure of Permanent 
Income. ** p<0.05, * p<0.10. Average Partial Effects (reported as 
percentages are shown for Stocks, Bonds, CDs, and Checking. Reported 
coefficients and Average Partial Effects for Pr(Live to 75) are for a one-
percentage point difference (0.01). 
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Table 11. Sensitivity Analysis, Treating Pr(Live to75)=1 differently, Single Households, 
Wealth Holding and Asset Allocation 

 Treatment 1: Removing 
Observations 

Treatment 2: Removing 
Households 

Net Worth 

Pr(Live to 75) 
394 

(124)** 
466 

(141)** 
Financial Wealth 

Pr(Live to 75) 
182 

(54)** 
143 

(43)** 
Observations 
Households 

11,176 
4,461 

8,022 
3,241 

 
Stocks 

Pr(Live to 75) 
0.0320 

(0.0174)* 
0.0501 

(0.0209)** 
Bonds 

Pr(Live to 75) 
-0.0022 
(0.0046) 

0.0016 
(0.0059) 

CDs 

Pr(Live to 75) 
0.0043 

(0.0117) 
-0.0019 
(0.0139) 

Checking 

Pr(Live to 75) 
-0.0351 

(0.0195)* 
-0.0473 

(0.0231)** 
Observations 
Households 

8,369 
3,566 

6,117 
2,588 

Note: In Treatment 1 we drop observations where the household reports a survival 
probability of one. In Treatment 2 we drop households that ever reported a survival 
probability of one. ** p<0.05, * p<0.10. Average Partial Effects (reported as 
percentages) are shown for Stocks, Bonds, CDs, and Checking. Reported coefficients 
and Average Partial Effects for Pr(Live to 75) are for a one-percentage point difference 
(0.01). 
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Table 12. Sensitivity Analysis, Treating Pr(Live to 75)=1 differently, Married 
Households, Wealth Holding and Asset Allocation 

 Treatment 1: Removing 
Observations 

Treatment 2: Removing 
Households 

Net Worth 

Husband Pr(Live to 75) 
56 

(253) 
-171 
(314) 

Wife Pr(Live to 75) 
698 

(253)** 
497 

(337) 
Financial Wealth 

Husband Pr(Live to 75) 
-5 

(81) 
13 

(98) 

Wife Pr(Live to 75) 
129 
(97) 

215 
(141) 

Observations 
Households 

12,436 
5,272 

7,610 
3,252 

 
Stocks 

Husband Pr(Live to 75) 
0.0359 

(0.0161)** 
0.0288 

(0.0203) 

Wife Pr(Live to 75) 
0.0326 

(0.0170)* 
0.0602 

(0.0208)** 
Bonds 

Husband Pr(Live to 75) 
0.0053 

(0.0047) 
0.0121 

(0.0061)** 

Wife Pr(Live to 75) 
0.0012 

(0.0053) 
0.0055 

(0.0067) 
CDs 

Husband Pr(Live to 75) 
-0.0212 

(0.0101)** 
-0.0249 

(0.0126)** 

Wife Pr(Live to 75) 
-0.0262 

(0.0106)** 
-0.0363 

(0.0132)** 
Checking 

Husband Pr(Live to 75) 
-0.0002 
(0.0002) 

-0.0123 
(0.0220) 

Wife Pr(Live to 75) 
-0.0039 
(0.0180) 

-0.0253 
(0.0225) 

Observations 
Households 

11,183 
4,812 

6,753 
2,912 

Note: In Treatment 1 we drop observations where any member of the household 
reports a survival probability of one. In Treatment 2 we drop households where any 
member ever reported a survival probability of one. ** p<0.05, * p<0.10. Average 
Partial Effects (reported as percentages) are shown for Stocks, Bonds, CDs, and 
Checking. Reported coefficients and Average Partial Effects for Pr(Live to 75) are for 
a one-percentage point difference (0.01). 
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Table 13. Means and Medians of Relevant Variables 
 Mean Median 
 Husband Wife Husband Wife 

Pr(Live to 75) 0.65 0.69 0.70 0.75 
Age 58 55 59 55 

Word Recall 0.61 0.67 0.71 0.71 
Income $59,578 $47,000 

Non-Financial Wealth $268,579 $131,590 
Allocation to Stocks 0.26 - 
Allocation to Bonds 0.02 - 
Allocation to CDs 0.09 - 

Allocation to Checking 0.62 - 
Observations 
Households 

14,514 
3,872 

Note: All dollar values are stated in 1992 dollars. In the right 
panel all households with only one time observation are dropped 

 
 
 
 

Table 14. Proportion of Variation Between 
Households for Relevant Variables 

 Husband Wife 
 Independent Variables 

Pr(Live to 75) 0.66 0.65 
Age 0.59 0.76 

Word Recall 0.43 0.40 
Income 0.65 

Non-Financial Wealth 0.82 
 Dependent Variables 

Allocation to Stocks 0.61 
Allocation to Bonds 0.42 
Allocation to CDs 0.52 

Allocation to Checking 0.61 
Observations 
Households 

14,514 
3,872 

Note: Results obtained by running an ANOVA 
using the Household as the categorical variable. 
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Table 15. Average Partial Effects from Pooled Linear Fixed Effects OLS 
Estimation on Entire Unbalanced Panel 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.007) 

0.004 
(0.003) 

-0.008 
(0.005) 

0.005 
(0.008) 

Husband Pr(Live to 75) 
0.001 

(0.001) 
-0.000 
(0.001) 

-0.001 
(0.001) 

0.000 
(0.002) 

Husband Word Recall 
0.006 

(0.002)** 
-0.000 
(0.001) 

0.002 
(0.001) 

-0.008 
(0.002)** 

Wife Age 
-0.004 
(0.007) 

-0.003 
(0.003) 

0.009 
(0.005)* 

-0.002 
(0.008) 

Wife Pr(Live to 75) 
-0.003 

(0.001)** 
0.001 

(0.001)** 
0.000 

(0.001) 
0.002 

(0.002) 

Wife Word Recall 
0.002 

(0.001) 
0.001 

(0.001) 
-0.002 

(0.001)* 
-0.001 
(0.002) 

Log(Income) 
0.011 

(0.005)** 
0.001 

(0.002) 
0.004 

(0.003) 
-0.017 

(0.005)** 

Log(Non-Financial 
Wealth) 

-0.007 
(0.004)* 

0.001 
(0.002) 

0.001 
(0.003) 

0.005 
(0.005) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and 
serial correlation. ** p-value < 0.05, * p-value < 0.10.  Reported average 
partial effect for Husband and Wife Pr(Live to 75) and Husband and Wife 
Word Recall represent a 10 percentage point change. 
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Table 16. Average Partial Effects from Single Equation Pooled 
Bernoulli Quasi-Maximum Likelihood Estimates for Each Balanced 
Panel Subset, Averaged Across Balanced Panel Subsets 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.019) 

0.004 
(0.006) 

-0.007 
(0.012) 

0.004 
(0.020) 

Husband Pr(Live to 75) 
0.001 

(0.004) 
-0.000 
(0.001) 

-0.001 
(0.002) 

0.001 
(0.004) 

Husband Word Recall 
0.004 

(0.004) 
0.000 

(0.002) 
0.002 

(0.003) 
-0.006 
(0.005) 

Wife Age 
-0.003 
(0.019) 

-0.002 
(0.006) 

0.009 
(0.012) 

-0.005 
(0.020) 

Wife Pr(Live to 75) 
-0.003 
(0.004) 

0.001 
(0.001) 

0.000 
(0.002) 

0.002 
(0.004) 

Wife Word Recall 
0.001 

(0.004) 
0.001 

(0.001) 
-0.002 
(0.003) 

0.000 
(0.005) 

Log(Income) 
0.012 

(0.012) 
0.002 

(0.004) 
0.003 

(0.007) 
-0.016 
(0.014) 

Log(Non-Financial 
Wealth) 

-0.006 
(0.012) 

0.002 
(0.004) 

0.001 
(0.007) 

0.005 
(0.013) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and 
serial correlation. ** p-value < 0.05, * p-value < 0.10. Reported average 
partial effect for Husband and Wife Pr(Live to 75) and Husband and 
Wife Word Recall represent a 10 percentage point change. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

97 
 

Table 17. Average Partial Effects from Pooled Multinomial Quasi-
Maximum Likelihood Estimates for Each Balanced Panel Subset, 
Averaged Across Balanced panel Subsets 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.019) 

0.004 
(0.006) 

-0.006 
(0.012) 

0.003 
(0.020) 

Husband Pr(Live to 75) 
0.000 

(0.004) 
-0.001 
(0.001) 

-0.001 
(0.002) 

0.001 
(0.004) 

Husband Word Recall 
0.004 

(0.004) 
-0.000 
(0.002) 

0.002 
(0.003) 

-0.006 
(0.004) 

Wife Age 
-0.003 
(0.019) 

-0.002 
(0.006) 

0.009 
(0.012) 

-0.004 
(0.020) 

Wife Pr(Live to 75) 
-0.003 
(0.004) 

0.001 
(0.001) 

0.000 
(0.002) 

0.002 
(0.004) 

Wife Word Recall 
0.000 

(0.004) 
0.001 

(0.001) 
-0.002 
(0.003) 

0.001 
(0.004) 

Log(Income) 
0.009 

(0.012) 
0.001 

(0.004) 
0.003 

(0.007) 
-0.013 
(0.012) 

Log(Non-Financial 
Wealth) 

-0.006 
(0.012) 

0.001 
(0.004) 

0.000 
(0.007) 

0.005 
(0.013) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity 
and serial correlation. ** p-value < 0.05, * p-value < 0.10. Reported 
average partial effect for Husband and Wife Pr(Live to 75) and 
Husband and Wife Word Recall represent a 10 percentage point 
change. 
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Table 18. Procedure 2: Classical Minimum Distance applied to Multinomial 
Quasi-Maximum Likelihood Estimates for Each Year Within Balanced Panel 
Subsets 

 Stocks Bonds CDs Checking 

Husband Age 
0.027 

(0.013)** 
0.004 

(0.003) 
-0.005 
(0.007) 

-0.026 
(0.013)** 

Husband Pr(Live to 75) 
0.005 

(0.002)* 
-0.000 
(0.001) 

0.000 
(0.002) 

-0.005 
(0.003)* 

Husband Word Recall 
0.009 

(0.003)** 
-0.000 
(0.001) 

-0.000 
(0.002) 

-0.008 
(0.003)** 

Wife Age 
-0.026 

(0.013)** 
-0.003 
(0.003) 

0.003 
(0.007) 

0.026 
(0.013)** 

Wife Pr(Live to 75) 
-0.007 

(0.003)** 
-0.001 
(0.001) 

0.003 
(0.002) 

0.005 
(0.003)* 

Wife Word Recall 
-0.001 
(0.003) 

0.000 
(0.001) 

-0.001 
(0.002) 

0.002 
(0.003) 

Log(Income) 
0.023 

(0.008)** 
-0.007 

(0.002)** 
-0.003 
(0.005) 

-0.013 
(0.008) 

Log(Non-Financial 
Wealth) 

0.003 
(0.008) 

0.000 
(0.002) 

-0.004 
(0.005) 

0.001 
(0.009) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and 
serial correlation. ** p-value < 0.05, * p-value < 0.10. Reported average 
partial effects for Husband and Wife Pr(Live to 75) and Husband and Wife 
Word Recall represent a 10 percentage point change.  
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Table 19. Comparing Average Partial Effect Estimates from Pooled 
Single Equation Bernoulli Quasi-Maximum Likelihood Estimates for 
Each Balanced Panel Subset, Averaged Across Balanced Panel Subsets 
to Procedure 2 Average Partial Effect Estimates 

 Stocks Bonds CDs Checking 
Husband Age 0.137 0.972 0.913 0.153 

Husband Pr(Live to 75) 0.267 0.939 0.602 0.182 
Husband Word Recall 0.237 0.762 0.332 0.679 

Wife Age 0.228 0.952 0.588 0.117 
Wife Pr(Live to 75) 0.348 0.141 0.324 0.393 
Wife Word Recall 0.698 0.743 0.890 0.759 

Log(Income) 0.344 0.023** 0.370 0.805 
Log(Non-Financial Wealth) 0.466 0.637 0.534 0.782 
Note: p-values are robust to heteroskedasticity and serial correlation. 
** p-value < 0.05, * p-value < 0.10. Standard errors used to compute 
the test statistic are from Table 4: Weighted Average of the standard 
errors for Average Partial Effects estimated by Single Equation 
Bernoulli Quasi-Maximum Likelihood for each balanced panel subset. 
 

 
 

Table 20. Comparing Average Partial Effect Estimates from Pooled 
Multinomial Quasi-Maximum Likelihood Estimates for Each Balanced Panel 
Subset, Averaged Across Balanced Panel Subsets to Procedure 2 Estimated 
Average Partial Effects 

 Stocks Bonds CDs Checking 
Husband Age 0.133 0.955 0.935 0.145 

Husband Pr(Live to 75) 0.229 0.922 0.519 0.129 
Husband Word Recall 0.219 0.815 0.348 0.641 

Wife Age 0.219 0.902 0.592 0.122 
Wife Pr(Live to 75) 0.342 0.139 0.310 0.428 
Wife Word Recall 0.735 0.793 0.918 0.759 

Log(Income) 0.241 0.026** 0.410 0.989 
Log(Non-Financial Wealth) 0.435 0.758 0.576 0.752 

Note: p-values are robust to heteroskedasticity and serial correlation. ** p-
value < 0.05, * p-value < 0.10.  Standard errors used to compute the test 
statistic are from Table 5: Weighted Average of the standard errors for 
Average Partial Effects estimated by Multinomial Quasi-Maximum 
Likelihood for each balanced panel subset. 

 
 
 
 
 



 

100 
 

Table 21. Comparing Average Partial Effect Estimates from Pooled Linear 
Fixed Effects OLS on Entire Unbalanced Panel to Procedure 2 Estimated 
Average Partial Effect Estimates 

 Stocks Bonds CDs Checking 
Husband Age 0.027** 0.985 0.708 0.019** 

Husband Pr(Live to 75) 0.116 0.705 0.377 0.053* 
Husband Word Recall 0.311 0.776 0.209 0.934 

Wife Age 0.079* 0.921 0.391 0.030** 
Wife Pr(Live to 75) 0.150 0.005** 0.136 0.224 
Wife Word Recall 0.253 0.729 0.632 0.372 

Log(Income) 0.132 0.000** 0.110 0.610 
Log(Non-Financial Wealth) 0.223 0.552 0.328 0.688 

Note: p-values are robust to heteroskedasticity and serial correlation. ** p-
value < 0.05, * p-value < 0.10. Standard errors used to compute the test 
statistic are from Table 6: Standard errors for Average Partial Effects 
estimated by Procedure 2 (Classical Minimum Distance applied to 
Multinomial Quasi-Maximum Likelihood estimates for each year within each 
balanced panel subset). 
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Table 22. Means and Medians of Relevant Variables 
 Mean Median 
 Husband Wife Husband Wife 

Pr(Live to 75) 0.65 0.69 0.70 0.75 
Age 58 55 59 55 

Word Recall 0.61 0.67 0.71 0.71 
Income $59,578 $47,000 

Non-Financial Wealth $268,579 $131,590 
Allocation to Stocks 0.26 - 
Allocation to Bonds 0.02 - 
Allocation to CDs 0.09 - 

Allocation to Checking 0.62 - 
Observations 
Households 

14,514 
3,872 

Note: All dollar values are stated in 1992 dollars. In the right 
panel all households with only one time observation are dropped 

 
 
 
 

Table 23. Proportion of Variation Between 
Households for Relevant Variables 

 Husband Wife 

 Independent 
Variables 

Pr(Live to 75) 0.66 0.65 
Age 0.59 0.76 

Word Recall 0.43 0.40 
Income 0.65 

Non-Financial Wealth 0.82 

 Dependent 
Variables 

Allocation to Stocks 0.61 
Allocation to Bonds 0.42 
Allocation to CDs 0.52 

Allocation to Checking 0.61 
Observations 
Households 

14,514 
3,872 

Note: Results obtained by running an ANOVA 
using the Household as the categorical variable. 
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Table 24. Average Partial Effects from Pooled Linear Fixed Effects OLS 
estimation on entire unbalanced panel 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.007) 

0.004 
(0.003) 

-0.008 
(0.005) 

0.005 
(0.008) 

Husband Pr(Live to 75) 
0.001 

(0.001) 
-0.000 
(0.001) 

-0.001 
(0.001) 

0.000 
(0.002) 

Husband Word Recall 
0.006 

(0.002)** 
-0.000 
(0.001) 

0.002 
(0.001) 

-0.008 
(0.002)** 

Wife Age 
-0.004 
(0.007) 

-0.003 
(0.003) 

0.009 
(0.005)* 

-0.002 
(0.008) 

Wife Pr(Live to 75) 
-0.003 

(0.001)** 
0.001 

(0.001)** 
0.000 

(0.001) 
0.002 

(0.002) 

Wife Word Recall 
0.002 

(0.001) 
0.001 

(0.001) 
-0.002 

(0.001)* 
-0.001 
(0.002) 

Log(Income) 
0.011 

(0.005)** 
0.001 

(0.002) 
0.004 

(0.003) 
-0.017 

(0.005)** 

Log(Non-Financial Wealth) 
-0.007 

(0.004)* 
0.001 

(0.002) 
0.001 

(0.003) 
0.005 

(0.005) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and serial 
correlation. ** p-value < 0.05, * p-value < 0.10. Reported average partial effect 
for Husband and Wife Pr(Live to 75) and Husband and Wife Word Recall 
represent a 10 percentage point change. 
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Table 25. Average Partial Effects from Single Equation Pooled Bernoulli Quasi-
Maximum Likelihood Estimates on Entire Unabalanced Panel, Ignoring 
Unbalanced Nature of the Panel 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.007) 

0.004 
(0.003) 

-0.008 
(0.005) 

0.005 
(0.008) 

Husband Pr(Live to 75) 
0.001 

(0.001) 
-0.000 
(0.001) 

-0.001 
(0.001) 

0.000 
(0.002) 

Husband Word Recall 
0.006 

(0.002)** 
-0.000 
(0.001) 

0.002 
(0.001)* 

-0.008 
(0.002)** 

Wife Age 
-0.004 
(0.007) 

-0.002 
(0.003) 

0.008 
(0.005) 

-0.002 
(0.008) 

Wife Pr(Live to 75) 
-0.003 

(0.002)** 
0.001 

(0.001)** 
0.000 

(0.001) 
0.002 

(0.002) 

Wife Word Recall 
0.002 

(0.002) 
0.001 

(0.001) 
-0.002 
(0.001) 

-0.001 
(0.002) 

Log(Income) 
0.011 

(0.005)** 
0.001 

(0.002) 
0.004 

(0.003) 
-0.016 

(0.005)** 

Log(Non-Financial Wealth) 
-0.007 
(0.005) 

0.002 
(0.002) 

0.001 
(0.003) 

0.005 
(0.005) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and serial 
correlation. ** p-value < 0.05, * p-value < 0.10. Reported average partial effect for 
Husband and Wife Pr(Live to 75) and Husband and Wife Word Recall represent a 
10 percentage point change. 
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Table 26. Average Partial Effects from Single Equation Pooled Bernoulli 
Quasi-Maximum Likelihood Estimates for Each Balanced Panel Subset, 
Averaged Across Balanced Panel Subsets 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.019) 

0.004 
(0.006) 

-0.007 
(0.012) 

0.004 
(0.020) 

Husband Pr(Live to 75) 
0.001 

(0.004) 
-0.000 
(0.001) 

-0.001 
(0.002) 

0.001 
(0.004) 

Husband Word Recall 
0.004 

(0.004) 
0.000 

(0.002) 
0.002 

(0.003) 
-0.006 
(0.005) 

Wife Age 
-0.003 
(0.019) 

-0.002 
(0.006) 

0.009 
(0.012) 

-0.005 
(0.020) 

Wife Pr(Live to 75) 
-0.003 
(0.004) 

0.001 
(0.001) 

0.000 
(0.002) 

0.002 
(0.004) 

Wife Word Recall 
0.001 

(0.004) 
0.001 

(0.001) 
-0.002 
(0.003) 

0.000 
(0.005) 

Log(Income) 
0.012 

(0.012) 
0.002 

(0.004) 
0.003 

(0.007) 
-0.016 
(0.014) 

Log(Non-Financial Wealth) 
-0.006 
(0.012) 

0.002 
(0.004) 

0.001 
(0.007) 

0.005 
(0.013) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and 
serial correlation. ** p-value < 0.05, * p-value < 0.10. Reported average 
partial effect for Husband and Wife Pr(Live to 75) and Husband and Wife 
Word Recall represent a 10 percentage point change. 
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Table 27. Average Partial Effects from Pooled Bernoulli Quasi-Maximum 
Likelihood Estimates on Entire Unbalanced Panel Adjusting for Unbalanced 
Nature of the Panel 

 Stocks Bonds CDs Checking 

Husband Age 
0.000 

(0.007) 
0.015 

(0.011) 
-0.007 
(0.005) 

0.005 
(0.008) 

Husband Pr(Live to 75) 
0.001 

(0.002) 
-0.000 
(0.002) 

-0.001 
(0.001) 

0.000 
(0.002) 

Husband Word Recall 
0.006 

(0.002)** 
-0.001 
(0.002) 

0.001 
(0.001) 

-0.008 
(0.002)** 

Wife Age 
-0.004 
(0.007) 

-0.010 
(0.011) 

0.006 
(0.005) 

-0.002 
(0.008) 

Wife Pr(Live to 75) 
-0.004 

(0.002)** 
0.005 

(0.002)** 
0.0001 
(0.001) 

0.002 
(0.002) 

Wife Word Recall 
0.002 

(0.002) 
0.003 

(0.002) 
-0.001 
(0.001) 

-0.001 
(0.002) 

Log(Income) 
0.011 

(0.005)** 
0.008 

(0.007) 
0.004 

(0.003) 
-0.016 

(0.005)** 

Log(Non-Financial Wealth) 
-0.007 
(0.005) 

0.007 
(0.008) 

-0.001 
(0.003) 

0.005 
(0.005) 

2χ Test Statistic for grψ  

p-value 

1.34 
0.931 

6.75 
0.240 

52.16 
0.000** 

3.80 
0.579 

2χ Test Statistic for grω  

p-value 

1.45 
0.919 

4.74 
0.448 

5.26 
0.385 

2.83 
0.726 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and serial 
correlation. ** p-value < 0.05, * p-value < 0.10. Reported average partial effect 
for Husband and Wife Pr(Live to 75) and Husband and Wife Word Recall 
represent a 10 percentage point change. 
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Table 28. Average Partial Effects from Pooled Multinomial Quasi-Maximum 
Likelihood Estimates for Entire Unbalanced Panel, Ignoring Unbalanced Nature 
of the Panel 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.007) 

0.004 
(0.002) 

-0.008 
(0.005)* 

0.005 
(0.008) 

Husband Pr(Live to 75) 
0.001 

(0.001) 
-0.000 
(0.001) 

-0.001 
(0.001) 

0.001 
(0.002) 

Husband Word Recall 
0.006 

(0.002)** 
-0.000 
(0.001) 

0.002 
(0.001)* 

-0.007 
(0.002)** 

Wife Age 
-0.003 
(0.007) 

-0.002 
(0.002) 

0.009 
(0.005)* 

-0.004 
(0.008) 

Wife Pr(Live to 75) 
-0.004 

(0.002)** 
0.001 

(0.001)** 
0.000 

(0.001) 
0.002 

(0.002) 

Wife Word Recall 
0.002 

(0.002) 
0.001 

(0.001) 
-0.002 

(0.001)* 
-0.001 
(0.002) 

Log(Income) 
0.008 

(0.005)* 
0.000 

(0.002) 
0.002 

(0.003) 
-0.009 

(0.005)** 

Log(Non-Financial Wealth) 
-0.008 

(0.005)* 
0.001 

(0.002) 
0.000 

(0.003) 
0.007 

(0.005) 
Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and serial 
correlation. ** p-value < 0.05, * p-value < 0.10. Reported average partial effect 
for Husband and Wife Pr(Live to 75) and Husband and Wife Word Recall 
represent a 10 percentage point change. 
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 Table 29. Average Partial Effects from Pooled Multinomial Quasi-
Maximum Likelihood Estimates for Each Balanced Panel Subset, 
Averaged Across Balanced Panel Subsets 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.019) 

0.004 
(0.006) 

-0.006 
(0.012) 

0.003 
(0.020) 

Husband Pr(Live to 75) 
0.000 

(0.004) 
-0.001 
(0.001) 

-0.001 
(0.002) 

0.001 
(0.004) 

Husband Word Recall 
0.004 

(0.004) 
-0.000 
(0.002) 

0.002 
(0.003) 

-0.006 
(0.004) 

Wife Age 
-0.003 
(0.019) 

-0.002 
(0.006) 

0.009 
(0.012) 

-0.004 
(0.020) 

Wife Pr(Live to 75) 
-0.003 
(0.004) 

0.001 
(0.001) 

0.000 
(0.002) 

0.002 
(0.004) 

Wife Word Recall 
0.000 

(0.004) 
0.001 

(0.001) 
-0.002 
(0.003) 

0.001 
(0.004) 

Log(Income) 
0.009 

(0.012) 
0.001 

(0.004) 
0.003 

(0.007) 
-0.013 
(0.012) 

Log(Non-Financial Wealth) 
-0.006 
(0.012) 

0.001 
(0.004) 

0.000 
(0.007) 

0.005 
(0.013) 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and 
serial correlation. ** p-value < 0.05, * p-value < 0.10. Reported average 
partial effect for Husband and Wife Pr(Live to 75) and Husband and Wife 
Word Recall represent a 10 percentage point change. 
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Table 30. Average Partial Effects from Multinomial Quasi-Maximum 
Likelihood Estimates on Entire Unbalanced Panel, Adjusting for the 
Unbalanced Nature of the Panel 

 Stocks Bonds CDs Checking 

Husband Age 
-0.001 
(0.007) 

0.003 
(0.003) 

-0.006 
(0.005) 

0.004 
(0.007) 

Husband Pr(Live to 75) 
0.001 

(0.001) 
-0.000 
(0.001) 

-0.001 
(0.001) 

0.001 
(0.002) 

Husband Word Recall 
0.006 

(0.002)** 
-0.000 
(0.001) 

0.001 
(0.001) 

-0.007 
(0.002)** 

Wife Age 
-0.002 
(0.007) 

-0.002 
(0.003) 

0.006 
(0.005) 

-0.002 
(0.008) 

Wife Pr(Live to 75) 
-0.004 

(0.002)** 
0.001 

(0.001)* 
0.001 

(0.001) 
0.002 

(0.002) 

Wife Word Recall 
0.001 

(0.002) 
0.001 

(0.001) 
-0.001 
(0.001) 

-0.001 
(0.002) 

Log(Income) 
0.008 

(0.005)* 
0.001 

(0.002) 
0.003 

(0.003) 
-0.012 

(0.005)** 

Log(Non-Financial Wealth) 
-0.007 
(0.005) 

0.001 
(0.002) 

-0.001 
(0.003) 

0.007 
(0.005) 

2χ Test Statistic for grψ  

p-value 

2.13 
0.830 

17.40 
0.004** 

69.65 
0.000** 

- 

2χ Test Statistic for grω  

p-value 

0.80 
0.977 

11.78 
0.038** 

6.35 
0.274 

- 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and serial 
correlation. ** p-value < 0.05, * p-value < 0.10. Reported average partial 
effect for Husband and Wife Pr(Live to 75) and Husband and Wife Word 
Recall represent a 10 percentage point change. 
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Table 31. Average Partial Effects from Multinomial Quasi-Maximum Likelihood 
Estimates Using the Multinomial Logit Functional Form on Entire Unbalanced 
Panel, Adjusting for Unbalanced Nature of the Panel 

 Stocks Bonds CDs Checking 

Husband Age 
-0.000 
(0.000) 

0.003 
(0.000)** 

-0.008 
(0.006) 

0.005 
(0.007) 

Husband Pr(Live to75) 
0.001 

(0.000)** 
-0.000 

(0.000)** 
-0.001 

(0.001)** 
0.000 

(0.001) 

Husband Word Recall 
0.006 

(0.000)** 
-0.000 

(0.000)** 
0.001 

(0.001)* 
-0.007 

(0.001)** 

Wife Age 
-0.004 

(0.000)** 
-0.002 

(0.000)** 
0.008 

(0.008) 
-0.001 
(0.008) 

Wife Pr(Live to 75) 
-0.004 

(0.000)** 
0.001 

(0.000)** 
0.001 

(0.001) 
0.002 

(0.001)** 

Wife Word Recall 
0.002 

(0.000)** 
0.001 

(0.000)** 
-0.001 

(0.001)** 
-0.001 

(0.001)* 

Log(Income) 
0.011 

(0.000)** 
0.002 

(0.000)** 
0.003 

(0.007) 
-0.016 

(0.009)* 

Log(Non-Financial Wealth) 
-0.008 

(0.000)** 
0.002 

(0.000)** 
-0.000 
(0.006) 

0.007 
(0.008) 

2χ Test Statistic for grψ  

p-value 

2.42 
0.789 

6.27 
0.281 

13.91 
0.016** 

- 

2χ Test Statistic for grω  

p-value 

1.52 
0.911 

6.75 
0.240 

4.86 
0.434 

 

Observations 
Households 

14,514 
3,872 

Note: Standard errors in parentheses are robust to heteroskedasticity and serial 
correlation. ** p-value < 0.05, * p-value < 0.10. Reported average partial effects for 
Husband and Wife Pr(Live to 75) and Husband and Wife Word Recall represent a 
10 percentage point change. 
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Figure 1. Average Structural Function for the Proportion of Financial Wealth Allocated to 
Stocks Against Husband Word Recall 
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Figure 2. Average Structural Function for the Proportion of Financial Wealth Allocated to 
Bonds Against Husband Word Recall 
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Figure 3. Average Structural Function for the Proportion of Financial Wealth Allocated to 
CDs Against Husband Word Recall 
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Figure 4. Average Structural Function for the Proportion of Financial Wealth Allocated to 
Checking Against Husband Word Recall 
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Figure 5. Average Structural Function for the Proportion of Financial Wealth Allocated to 
Stocks Against Wife Word Recall 
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Figure 6. Average Structural Function for the Proportion of Financial Wealth Allocated to 
Bonds Against Wife Word Recall 
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Figure 7. Average Structural Function for Proportion of Financial Wealth Allocated to 
CDs Against Wife Word Recall 
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Figure 8. Average Structural Function for Proportion of Financial Wealth Allocated to 
Checking Against Wife Word Recall 
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