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ABSTRACT
CHARACTERIZATIONS OF INNER PRODUCT SPACES
By
John Arthur Oman

One of the central problems in the study of metric
spaces 18 that of declding when a epace 1s 1sometric to a
well known space. The characterization of inner product
spaces among normed linear spaces is an important special
case of this problem. Perhaps the best known of these
characterizations 1s the Jordan and von Neumann theorem
which states that a normed linear space 18 an inner oroduct
space 1f and only if || x+y iF + || x-¥ |F = 2(|| x IF +|ly IF)
for all vectors x and y in the space. In elementary
terms this 1s the assertion that a normed linear space is
an inner nroduct space if and only if the sum of the squares
of the edges of each parallelogram is equal to the sum of
the squares of its diagonals.

Subsequent to the publication of the Jordan and
von Neumann theorem an extensive literature has appeared
in which a variety of well known propverties of Euclidean
spaces have been shown to characterize inner product spaces.
This thesis gives a hlstorical survey and summary of this
literature and continues the program.

Typical theorems proved in the thesis, the first an
extension of the Jordan and von Neumann result, are the

following.
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THEOREM:. Let X be a normed linear space. Then X 1ise an
inner product space iff there exist a cone K with nonempnty
interior and O <y <1 s8uch that for x,y € K there
exisets O < A <1 so that the identity

p(1-p) || Ax+(1-0)y (B + A(1-A) || px-(1mp)y [P =

ae(Mtue2pd) | x 1B+ (1o0) (1w) (vm-2n) ||y IP

ls eatisefied.

THEOREM. Let X be a real normed linear epace and K De
a closed, bounded, convex subset with nonempty interior.
Then the following are equivalent:

1. X 48 an inner product epace and X 1s a sphere

2. K has the property that for each pair of hyper-
planes Hl and H2 supvorting K at x and y respectively
and each r ¢ Hlflﬂz with r, x, and y 1linearly dependent
then || x-r ||= || y-r || .

In addition a fairly detalled study of generalizatione
of the inner product and orthogonality ie carried out. New
characterizations of those complex normed linear spaces
admitting symmetric projectional orthogonality are obtained.
Many of the resulte in the thesis are closely related to

those of M. M. Day and R. C. James.
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INTRODUCTION

1. The Problem

From the time of Euclid much time and effort have been
devoted to the study and creation of axiomatic systems
which describe Euclidean geometry. Not only have tbeee
systems added to our understanding of Euclidean geometries,
but they have also led us to consider such important concepts
as non-Euclidean geometries, metric spaces, and topological
spaces. wWhen one considers these more general axiom systems
a standard problem is that of augmenting the given axiom
system to obtain one describing Euclidean geometry. 1In
this thesis we are concerned with this augmentation when
the given spaces are normed linear spaces, 1.e. the char-
acterization of inner product spaces among normed linear
spaces. A more detailed description of the contributions

of the thesis is found at the end of the chapter,

2. Basic Definitions

The following definitions and notatlions are given
80 that we may define more precisely some of the problems
to be discuesed in thies paper. For the definitions of
metric spaces, metric convexlity, external convexity, com-
pPletenees, and related concepts the.reader 18 referred to
Blumenthal [8]. zaanen [77), or any other standara text
1
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2

onh normed linear spaces may ve used for the definitions
and elementary n»nroperties of a normed linear space over the
field F where F 18 elther the real numbers R or the
comnlex numbers C. When no confusion should arise the
notation || || 1s used for the norm in several svaces
simultaneously.

The notation 8(x,p) in a metric snace M refers
to the ball with center x and radius p (i.e. the set
of all z in M wnose distance from x is at most p )
and the term sphere with center x and radius p refers
to the set of all 2z 4in M whose dlstance from x 18
exactly p. In varticularn the unit sohere of a normed
linear space 18 the sphere with center O and radius 1.
The notation X#* 1is used to denote the norm dual of the
normed linear socace X and for HECX the linear svan of
H 1s denoted Lin {H}. A normed linear sovace 18 strictly
convex i1f || x+y ||= || x ||+ ||y || implies x = Ay for
some A € R.

8ince there 1s some disagreement on the next terms,

we state the following definitions.

DEFINITION 1.1. A normed linear snace X over F Ais

called an inner product space or an i.p.s. 1f there existe

(] )*XxX-->F satisfying for all x,y,z ¢ X and
aeF

I-1.  (x+ylz) = (x]2) + (y]|z)

I-2. (ax|z) = a(x]|z)

I-35. (x]z) = T7[x) (1f F = C then a denotes
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complex conjugation ).
I-4, (x| x) = || x |F
The terms pre-Hilbert espaces or generalized Euclidean

spaces are also used for inner oroduct spaces.

DEFINITION 1.2. A complete normed linear space is called

& Banach space and a complete inner product space is called

a Hilbert space.

DEFINITION 1.3° Two normed linear spaces X, Y are ealled

isomorphic if there exists a map ¢ : X —> Y such that

1. ¢ is linear.
2. ¢ 1s one-to-one and onto.
3. There exist m, M ¢ R such that for all x ¢ X
mllx < I o(x) l<™ (x|
If m=M=11in definition 1.3 then ¢ is an isometry
and we usually make no distinction between X and Y.

Sueh a map 1s also called a congruence.

As mentioned the primary problem to be considered is:

PROBLEM 1.4. To find necessary and suffieient conditions

for & normed linear space to be an inner product space.

This problem has many generalizations, some of which
are discussed later. The following are three of these

generalizations and references to them.
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4
PROBLEM 1.5. To find necessary and sufficient conditions

for a normed linear space to be i1somorphic to an inner oroduct

epace. ( [10), (39), (40}, [468), [se], [73), [r4])

PROBLEM 1.6. To find necessary and suffielient econditions

for a metric space to be an inner product spaee.

( [41, [6), (7], (18], [27], [42], [e7], [78])

PROBLEM 1.7, To find nesessary and sufficient conditions

for a normed linear space to be (isometrie to) a space

th

of real funetidns whose p powers are Lesbeque integrable.

( (28], (70] )
3. History

The history of this problem is almost as 0ld as the
definition of an inner product space. What is probably
one of the most important of all resulys, besides being
one of the earliest, 1s that due to P. Jordan and J. von

Neumann [Bi] ’

THEOREM 1.8. A normed linear space X is an i.p.s. iff
(3) NxB+UyB=12(Ixy IB+llxyIf) xvex.

An immediate eorollary to theorem 1.8 1s:

COROLLARY 1.9. A normed linear space X 4is an i.p.s. iff

every two-dimensional subspace of X 1s an i.p.s.
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The original proof of theorem 1.8 verifies that ( x | y ) =
1/4 (|| x+y |F - || x=y IF ) 18 an inner product. ( J ) is
usually ealled the "parallelogram law" due to its inter-
pretation in the plane as an identity between the sides of
a parallelogram and its diagonals. A second geometrie
interpretation of ( J ) 1s to eonsider it as the functional
relation between the length of the median ( 5;1 ) and the
lengths of the sides of the triangle (vertices O,x,y).

Thus one way to generalize 1.8 is to restrict the
triangles to be isosceles. Even more generally Day [18]

has shown theorem 1.10.

THEOREM 1.10. A normed linear space X is an 1i.p.s. Aiff
x,7 ¢Xand [l x [|= ||y l|=2 tmply || x¢y € + || x-y IP r 4

where r may be any of the relations =, >, <,

A seeond way to generallize 1.8 which was used by
Senechalle (64] is to assume there is a relationship (not
necessarily Euclidean) between the length of a median of

a trliangle and the lengths of the sides of that triangle.

THEOREM 1.11. A normed linear spase X 1s an inner product

space iff there exists f : [0,2] —> (0,2] sueh that
£(|| x+y ||) = || x~y || vhenever x,y ¢ X and || x || = ||y || = 1.

The proofs of theorems 1.10 and 1.1l are quite different
from that of theorem 1.8 in that they are very gometrie in
eharaster. The next few paragraphs help link Eueclidean
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geometry and the characterization oroblem.
Any n-dimensional real normed linear space has a
representation as a Minkowskil space. A Minkowskl space
18 obtalned by considering Euclidean n-space and determining
a norm by
| x ||=tnffa >0 | %/, €383
where 8 18 a convex body which is symmetric about O.
The boundary of 8 1s the unit sphere of the space. Day
in (18] (also Kubota [48] ; characterizes those bodies S

which determine inner oroduct spaces,

THEOREM 1.12: If X 18 a real two (three) dimensional

Minkowskl space then X 18 an inner oroduct space 1ff

the unit sphere of X 1is an ellipse (ellipsoid).

Since most characterizations of inner product epaces
reduce to the two or three dimensional problem they are
often very closely related to characterizations of ellipses
or ellipsoids. Thus it 1s often vossible to reformulate
a characterization of inner oroduct spaces as a character-
ization of ellipsoids or ellipses and conversely.

The theorem corresponding to 1.8 in metric spaces

has been proven by Blumenthal [6] .

THEOREM 1.13. Let M wve a complete, convex, externally

convex metric space. If p,q,r ¢ M and opr =qr = 1/2 pq

2 2

[»]
imply 2ps~ ¢+ 2qs = 4sr  + pqg for any s ¢ M then M

is a Hilbert soace. (pq denotes the distance from o to q.)
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7
Theorems 1.14 - 1.18 may also be considered general-
1zations of 1.8. They postulate the existence of some norm

equality or inequality to charaeterize inner oroduct spaees.

THEOREM 1.14: (Day [19] ) Let X be a normed linear

spase. Then X 1s an inner product space iff for eash
pair x,y ¢ X with |[x ||= ||y || =1 there exist A and 3
sueh that 0 < A, p < 1 and (A+p~2pA) (Ap+(1-p)(1=A)) r
p(1-p) || Ax + (1-A)7 [P + A(1-A) || px = (14s)7|P where r

is either >, =, or <,

Freese [é?] and Kay [42) have partially generalized

theorem 1.14 to metriec spaces.

THEOREM 1.15. (Carlsson [13] ) Let X be a normed linear

spaee and a, # O, bv' e, v=1, ..., m be real numbers

v’

such that (bv"v) and (bp’cp) are linearly independent
for v#pand Tab> =cSae® =ctade =0. Then X

is an inner product space 1ff I a Il b,x + ey “2 =0 x,yeX.

THEOREM 1.16. (Sehoenberg [62] ) A normed linear space

X 1s an inner product spaee 1ff the Ptolemalc inequality
holds. (1.e. || x=y|| || z-w || + ([ x~w || || y=2 || > || z=2 || || y=w ||

fOI‘ x,y,l,' € x‘)

THEOREM 1.17. (Ficken Eéé] ) A normed linear space X

18 an inner product space 1ff || x ||= ||y || = 1 implies
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8

|| axtby || = || ox+ay || tor all a,b € R.

THEORNM 1.18:  (Lorch [50}] , A normed linear space X

ie an inner oroduct soace 1ff there exists v ¢ R, ¥ # 0,1

such that || x ||= ||y || implies || x+vy || = || vx+y || .

Theorem 1.19 was given oy Kakutani [38] for real normed
linear spaces and extended to complex normed linear spaces
by Bohenblust [9]. It 18 an often used theorem and 1s
closely related to the concept of othogonality (to be
dlscussed later) and to extension vroblems with linear
functionals. The original proof of Kakutani is based on

a characterization of elllipsolds due to Blaschke [3] .

THEORZNM 1.19. Let X be a normed linear svace of dimension

at least three. Then X 1s an inner product space 1iff
for each two-dimensional subsvace Y of X there exists

a projection of norm 1 from X ¢to Y.

A useful concept in plane geometry is that of an angle
and its measure. Thus 1t is not surprising that several
people have tried to extend this concent to normed linear
spaces. While the angle concept carries over to any real
linear space without difficulty there seems to ve no unique
natural measure to associate with an angle. Here are two

measures which have received some study.
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DEFINITION 1.20. Given x,y € X, a normed linear spaee,

the Clarkson angle measure between them is

« %3] =z - T4 I -

DEFINITION 1.21: Let x be a nonzero veetor in a normed

linear spaee X and H be a linear subset of X. The

Sundaresan angle measure between x and H 1is given by

-1 1
<x,H> = 8in T=T inf || x=¥]| .
’ x YcH

For a more somplete dlseussion see Clarkson [14],
Sehaeffer [61), and Sundaresan [71], [72]. Both Sehaeffer
and Sundaresan give eharaeferizations of inner produet
spases based on these angles.

More important to us, however, will be definitions
of orthogonality. Rather than trying to measure all angles
we eontent ourselves with defining when two vestors are
orthogonal. The first definition, due to Carlsson [13],

eontains definitions 1.23 and 1.24 as special eases.

DEFINITION 1.22. Let X Dbe a real normed linear spaee

and ‘W’ b?’ '7’ Yy=1, ..., m be a fixed eollection of real

2= 2 =
numbers satisfying I ‘?b? P> aY'Y O and a~b707 =1,
Two veetors x,y ¢ X are said to be orthogonal iff

e Il qu tey IP = 0,

DEFINITIUN 1.23:. The speeial case, m=3 and 1 = -a; =

‘2=‘3=bl=b2=-cl=.amdbS’-"z:o
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(L.e. || x IF + ||y |F = || x-y IF) is known as Pythagorean

orthogonallity.

DEFINITION 1.24: The special case m = 2, 2a, = -2ap = b, =

by =c) =-c5 =1 (L.e. |l x+y ||= || x-y || ) 18 called

isosceles orthogonallty.

A definition of orthogonality originally given by
Birkhoff [2] and studied extensively by James [33] 1ie
related to definition 1.21. This type of orthogonality
is studlied in greater detail.

DEFINITION 1.25: Let X be a real (complex) normed linear

space and x,y € X. Then x 18 real (complex) projectional

orthogonal to y, denoted x : ro .y (x : ko : y) Aff

lx ||< || x-~ay || for a ¢ R (a ¢ C). (When 1t is clear

whether X 18 real or complex the notation x | y 1s used.)

It should be noted that in an inner nroduct svace all
of the above definitions coincide with the usual definition,
i.e. x orthosonal y <==> (x|y) = 0. . Definitions 1.26-1.29
are properties of orthogonality in an lnner product space

which may be postulated for any of the above orthogonalities.

DEFINITION 1.26. Orthogonality is sald to be left (right;

additive if x orthogonal to y and 2z orthogonal to ¥y
(x orthogonal to 2z) imply x+z orthogonal to y (x

orthogonal to y+z).
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DEFINITION 1.27: Orthogonality 1is saild to be left (right)

unique 1if for x,y ¢ X there exists a unique a ¢ F such

that x+ay 18 orthnogonal to y (y 18 orthogonal to x+ay).

DEFINITION 1.28. Orthogonality is left (right) homogeneous

if x orthogonal to y 1implies Ax orthogonal to Yy

(x orthogonal to Ay) for A\ ¢ F.

DEFINITION 1.29: Orthogonality 1is symmetric if x orthog-

onal to y 1mplies y orthogonal to x.

Results based on definitions 1.22-1.24 and 1.26-
1.29 may be found in (1), [1s}, (18}, [ss], [53], ([54],
[68] . Most of these are speclal cases of theorem 1.30

or theorem 1.31,

THEQREM 1.30: (Carlsson [131 ) A real normed linear space

X 18 an inner product snace iff x orthogonal to ¥y
(1.e. T a, ||bx+c,y |F =0) tmplies
2
Lim 1/n £ a_ || nb_x+c_y || = O.
N> 09 v vo iy

THEOREM 1.31. If any one type of orthogonality implies

another then X 1e an inner product space.

Theorems 1.32 and 1l.33 combine many of the results
on projectional orthogonality which were proven by James
[34] in the real case and von den Stelnen [68} in the

complex case.
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THEOREM 1.32.

1.
2.

Projectional orthogonality 1s homogeneous.

Given x ¢ X there existe a cloéod hyperplane

H sueh that x | H,

Given x,y ¢ X there exist a,b ¢ F sueh that

x+ay | ¥y and x | bx+y.

X | y Aff there exists a eontinuous linear funetional
f such that f(x) = || £ || || x || and £(y) = O,

Ir x‘l y then x and y are linearly independent,

THEOREM 1.33. If X 1is a normed linear spase of at least

d#imension 3 then the following are equivalent:

1.
2.

S

The norm of X 1is indueed by an inner vroduet.

For every slosed subspase 8 # O of X there
exists a projeetion P of norm 1 whose image is 8,
For every elosed hyperplane H of X there exists
a ovrojestion P of norm 1 whose image is H.

For every elosed hyperplane H of X there exists
an element x ¢ X with x # O and H | x.

The relation | is left unique and for every x ¢ X
there exists a e¢losed hyperplane H with H | x.

The relation | is left additive.

The rolﬁtion‘l is symmetrie.

Of partieular interest in theorem 1.33 is eondition 7.

While eonditions 2 - 6 are rather easlly seen to be insuf-

fieient to eharaeterize two-dimensional inner produet spases,

the faet that 7 also does not sharasterize two-dimensional
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inner product svases is not as imrediately clear. The
spases in whieh orthogonality is symmetric do form a rather
niee elass whieh has been sharaeterized by Day [lé] « These
spases are examined in more detail in chapter 3.
Definition 1.34 was given by James [34) and is a power-
ful tool in the study of orthogonality in normed linear

spases.

DEFINITION 1,.34. [let X De a real normed linear spase

and x,y ¢ X. N+ (x;y) = ht ‘]‘._1,ng nx+y ||- || nx ||. Ir
N, (x;y) = N_. (x;y) for all y then the norm of X 1s
sald to be Gateaux differentiable at x and N(x;y) =

Ne (x;y) = N_ (x7y).

PHEOREM 1,35: Let X Dbe a real normed linear spase,

X,¥,2 ¢ X and t ¢ R,
1. N¢ (x; y+z) < Ny (x;¥) + N, (x;2).
2. Ny {x;ty) < tN4(x;y) t>0
3. N4 (x;x) = || x ||
4. | N (x59) | <Ml |l
5. N+ (x;y) = -K_ (x;-¥)
6. x | ax+ y 1ff N_ (x;¥) < =a || x || < N+ (x;¥)

THEOREM 1.36; If X 1ie& a real normed linear spaee and

the norm of X 1is Gateaux differentiable (i.e. Gateaux
differentiable at eash point x ¢ x) "then N(x; ) 1s a

bounded linear funetional on X.
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Now we are able to give still another generalization

of theorem 1.8.

THEOREM 1.37. (Hopt [Bz]) A real normed linear spase X

18 an 1.p.s. Aff there exists f : R X R —-> R sueh that

x | y impliee £(|Ix ||, ||y ) = Il x+y |}

The remainder of this seetion is not as important to
the vaper but is given for completeness. Ineluded is a
eolleetion of interesting results based on avoroaches Aif-
ferent from those previously mentioned.

Theorem 1.38 (Klee [44) ) and theorem 1.39 (Comfort
and Gordon [15] ) are similar in that they depend rather
explieitly on the "geometrisal® properties of unit spheres.

THEQOREM 1.38. For a normed linear spase X the following

assertions are equivalent:
l. X 4is an inner product svace or is two-dimensional.
2. Whenever ¢ > 0 and X 18 a eonvex subset of B8 the
unit sphere of X, then 8 e¢ontains a translate

of K whose distanee from the origin is < «.

THEOREM 1.39. Let X be a real normed linear snase of

dimeneion at least three. The following are equivalent:
1. X is an inner product space.
2. For eash three points X,,X,,X; ¢ X and p,,pp,
pz Positive numbers with N8(xi,py) # ¢ 1t follows that
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f)s(xi,pl)f)F # 0 wnere F = {xl + x X = a(xz—xl) +

b (x a,b € RY.

3=%X1 /s
The geometrical significance of condition 2 is that
for three spheres with nonempty intersection D the nlane

of centers intersects D.

The Hahn-Banach theorem 1is& probably one of the best
known theorems in functional analysis. Theorem 1.40
(Kakutanl [38] ) shows that a etrengthened Hahn-Banach

- theorem characterlizes inner product spaces.

THEOREM 1.40: Let X be a normed linear space. Then X

is an inner product space iff for each closed linear subspace
Y there exists a linear map F. Y® --> X¥* (the dual
spaces of Y and X, such that for f ¢ Y* then F(f) is a

norm preserving extension of f,

In a simllar veln several people have studied the
poseibilities of extending contractions (Schonbeck [63] )s
isometries (Edelstein and Thompson [24] ), or bilinear

forms (Hayden [31] ).

THEOREM 1.41. (Edelstein and Thompson) Let X and

Y Dbe real normed linear spaces, X be strictly convex,
and dim X > 2., Then X and Y are inner product spaces iff
for DCX then each isometry f ° D --> Y can be extended

to an isometry F . X -=> Y.
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Many characterizations of inner product spaces may
be regarded as expressing the "homogeneity" of the space.
All generalizations of theorem 1.8 are of this type.
Dvoretzky [22], Gromov [30], and Senechalle [65] have ex-

pressed homogeneity in terms of the "sameness" of subspaces.

THEOREM 1.42: (Senechalle) A real normed linear space X

is an 1.p.s. i1ff all two-dlimensional subspaces are 1sometric.,

In thie section an effort has been made to relate
the history of the problem and state background results
used in the reralning chapters. Ve conclude the chaoter
with a few remarks outlining the contributions of this thésie
to the general nrogram,

Lumer {51] defined semi-inner-products which are
"generalized inner products®™ that can be defined on arbitrary
normed linear spaces. Anotner type of "generalized inner
product" based on vrojectional orthogonality and i1ts relation
to the characterization of inner product spaces is con-
sldered in chapter 2,

In chapter 5 we discuss the two-dimenslonal spaces with
symmetric projectional orthogonality (see theorem 1.33) and
a non constructive characterization of such svaces is obtalned.
New constructions (see Day [18] and Busemann [12] ) for all
real two-dimensional normed linear svacee with symmetric real
orthogonality and a class of examples of complex two-dimen-
sional normed linear spaces with symmetric comvlex orojectional

orthogonality are given. These seem to be the flrst exnlicit



THESIS




17
examples of non inner product snaces with symmetric comolex
projectional orthogonality.

In chapter 4 we consider the general problem of char-
acterizing inner product spaces by assuming that various of
the known characterizing identities (theorems 1.8, 1.10,
and 1.14) hold only on restricted subsets of the vectors of
the space. One of the interesting new resulte of chapter 4
is that the Jordan and von Neumann identity 1is still
characterigzing if 1t 1s postulated only on the vectors of
a single cone. This answers and extends a conjecture of my
colleague J. Quinn. This and the other localizations given
in the chapter do not avpear to have received previous study.

The metatheorem enunclated by Lorch and others to the
effect that any Euclidean metric property adjoined to the
axioms of a real normed linear space 18 enough to force the
epace to be Euclidean (inner product) is considered in the
final chapter. While all characterizations are essentially
of this type, in the last section of chapter 5§ we are
especlally interested in this metatheorem. Among other
results in the chapter we offer new proofs for the theorem
of Ficken, answer a conjecture of Hopf (theorem 5.7 and
settle a question raised vy L. M. Kelly (theorem 5.2).
with respect to methodology as well as the result itself
this last theorem 18 one of the most interesting in the

thesis.
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GENERALIZATIONS OF THE INNER PRODUCT

In this chapter we determine a weaker set of axioms
tnan I-1,..., I-4 for an inner product svace and examine
functions in arbitrary normed linear snaces which have
eome of the properties of inner products.

Lumer [51] defined the concept of a semi-inner-product
in an arbltrary normed linear space.. First Lumer and then
Giles [29] used the semi-inner-product to reproduce the

functional analysis of inner product spaces.

DEFINITION 2.1. Let X Dbe a real normed linear space.

Then { , J . XXX --=> R 1s a semi-inner-product (s.i.p.)
if for all x,y,z ¢ X and X\ € R 1t satisfles

s-1. [x+y,z} = [x,2z] + [y,2] .

s-2.  [ax,y] = A[x,v]

3-3. [x,x] = |Ix |F

s-4. | [x,v] [25 {x,x]lv,v] .

The following construction due to Giles nuts a
semi-inner-product on any normred linear space. If x € X
and || x || =1 by the Hahn-Banach theorem there exists
f, € X* such that Il £x Il = f,(x) = 1. For each x on
the unit svhere choose such an f_ and define [v.,x] =
fx(y). Now extend homogeneously to all vectors x. Note
that thie s8.1.p. has the additional property that [x,Ay] =
A [x,5] -

18



THESIS




19

Given a real normed linear svace we are interested
in funetions § : X X X —> R which eatisfy some or all
of the following properties.

G=1. OP(x+z,y) = 0(x,y) + ¢(z,y) x,¥y,z ¢ X

6-2. O(x+y,y) = ¢(x,y) + ¢(y,¥y) x5y ¢X

G-3. P(x,y+z) = ¢(x,y) + ¢(x,2) X,¥,z ¢ X

G-4. O(x,x+y) = ¢(x,x) + ¢(x,y) x,y ¢ X

G-5. Q(ax,y) A o(x,Yy) Ae¢R, x,yeX

G-6. O(x,Ay) = A ¢(x,¥) A¢R, Xx,ye¢X

G=7. ¢(x,ty) = 9(tx,y) = ¢t ¢(x,y) t>0, X,y ¢ X

8. O(-x,y) = 9(x,~-y) = -¢(x,y) x,¥y ¢ X

e-9. ¢(x,y) = ¢(y,x) X,y ¢ X
G-10. ¢(x,y) = 0 => ¢{y,x) = 0 X,y ¢ X
6-11. | ¢(x,¥) | < I x|l ¥ |l x,y ¢ X
G-12. There exists k > O such that

| ¢(x,5) | < X llxllly |l xyeX
¢-13. ¢(x,x) = || x |P xe¢X

Ir ¢ satisfies G-1, G-5, G-9, G-13 then 1t is an inner
product and if § satisfies G-1, G-5, G-11, G-13 then § 1s
& semi-inner-product. Theorem 2.2 gives a weakened set

of axioms for an inner product space.

THEOREM 2.2° Suppose X 1is a normed linear space and

there exists ¢ : X X X ——> R satisfying -2, G-4, G-8, and
G-13. Then X 18 an inner product svace.
Proof.

Using G-2
0(y,x+y) = ¢(=x,x+y) + Q(x+y,x+y)
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and applying G-4 and G-8

O(y,x) + ¢(y,y) = =0(x,x)-9(x,5) + Q(x+y,x+y).
Likewise

¥(x,x)-0(x,7) = ¢(x-y,x-y) + 0(y,x)-9(y,y)
Adding, we obtain _

¢ (x+y,x+y) + P(x-y,x~y) = 2(Q(x,x) + 0(y,¥)).
Which by G-13 implies

lxey B+ llx-y 1Z=20=1P+yIF).
Hence by theorem 1.8 X 1is an i.p.s.

q.e.q4.

We remark that ¢ need not be the inner product on
the space since it need not be symmetric. The inner oroduct
is given by (x | y) = 1/2 (¢(x,y) + ¢(y,x)), however.
Consider, for example, a complex inner product space with
Ainner product ( | ). Let ¢(x,y) = Re(x | y) +Im (x| y).
Then ¢ satisfies the hypothesis of theorem 2.2 but is

not a real inner product on the space.

COROLLARY 2.3. Let X be a real normed linear space and
 : XXX —>R satisfy G-2, G-8, G-9, and G-13. Then ¢

is an inner product on X.

Next we look at the relationship of G-1, ..., G-13 and
that of orthogonality (unless otherwise specified orthogonality
will mean projectional orthogonality in the remainder of

the paper).
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THEOREM 2.4. Let X Dbe a real normed linear space and

9 : XXX -->R satisfy G-2, G-5, G-11, G-13. Then for
x,y¢X and y # O, ylx-% y.
Proof:
For b # 0 then
¢(ax+dby,y) = b ¢(§ x + ¥,¥)
=b ¢(5 x, ¥) + D 0(y,y)
= a ¢(x,y) + D> ¢(y,¥).
Thus ¢( ,¥) 18 a linear functional of norm ||y || on
Lin {x,y'} (the linear span of x and y). By the Hahn-
Banach theorem it has a norm preserving extension to X.

But ¢(x - “(x |) Y,¥) = 0O so by theorem 1.32
y ,

(x,¥)
y x-f—l)'? .
1 Iy |

q.e.q, |

COROLLARY 2.5° If X 1is a real normed linear space and

¢ 1is a semi-inner-product then y | x - ﬂ_;_!" 2 '% v.
y

X 1s Gateaux differentiable then y | x - ayy 1iff
X,¥)

Wy |

Qo = and ¢(x,y) = || x || N(x;y) for all x,y ¢ X.

Corollary 2.5 is an extension of theorem 2 of Giles.
A natural question to ask at this point concerns the

possibility of defining a generalized inner product, §,
such that x - a,y 1l v are , Q(x,zlg . 8ince orthogonality
Iy |
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is not in general symmetric such a ¢ will in general
not satisfy G-2,6-5,G-11, and G-13. However, we can make
9 satisfy 6-2,0-5,G-12, and G-13. The remainder of this
ohapter deals with the definition of such a § and examines
some of its properties. With this end in mind we begin
with the following definitions.

DEFINITION 2.6: Let X be a normed linear space and

x,y ¢ X.
M(x,y) = fa ¢ F | ||xay ll<|lx-py || BeF§

Theorems 2.7 and 2.8 give the exlistence and basic

properties of M(x,y).

THEOREM 2.7: M(x,y) exists for all x,y ¢ X and for

Yy # 0, M(x,y) 1s compact and convex.

Proof.

For any x,y ¢ X the function f [ F —=> R given by
f(a) = || x~ay || 18 a continuous convex function. If y = O

then M(x,y) = F and hence exists. If y # O then for

| 8| >2 {%ii-ﬂ- we have
y

Iz-py Iz 1 Nxl-181 Uylil>lxI
By the continuity of f it attains its minimumon | B | <
2-ﬂ-§-u- and hence on all of F. Moreover, this shows

Wy ll |

the compactness of M(x,y). The convexity follows from the

triangle inequality.
q.e.d.
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THEOREM 2.8. 1. v(tx,y) = t M(x,y) t#0
2. M(x,y) = t M(x,ty) t#0
3. M(ax+by,y) = a M(x,y) + D a,b ¢ F

Proof.

1. Let a ¢ M(x,y). Then

| x -ay || < || x-By || B € F,
|| tx-(at)y || < || tx=(Bt)y || B ¢ F,
| tx-(at)y || < || tx-By || B eF.

Thus at ¢ M(tx,y) or t M(x,y)C M(tx,y). But M(tx,y) =
t ¢t M(tx,y)Ct M(t'ltx,y) = t M(x,y) and hence

t M(x,y) = M(tx,y).

2. Let a ¢ M(x,y). Then

| x-ay || < || x-By || B ¢F,
| x=(at™1)(ty) || < || x-(Bt™ 1) (ty) || B ¢F,
| x=(at™1) (ty) || < || x-B(ty) |l B ¢ F.

Thus t TM(x,y)CM(x,ty). But M(x,ty) = t-TtM(x,ty)C

t—ln(x,tt’ly) = t'lM(x,y) and hence t"lM(x,y) = M(x,ty).

3. Note that M(y,y) = 1 for y # O. Hence if a = 0,

M(ax+by,y) = aM(x,y)+b. If a # O and a ¢ M(ax+by,y)
|| ax+by-ay || < || ax+by-gy || B ¢ F,
Ix- 422 5 < g x- L8221y ) B« F,
ux-—‘ﬂ‘;ﬂyusux-ay I B« F.

Hence M(ax+by,y)Ca M(x,y) + b.
If a ¢ a M(x,y) + b then
Ihx - 422) 5 |l < || x-py |l B ¢ F,
hx-doy < gix =By

|| ax+by-ay || < || ax+by-gy || B ¢ F.

™
~
'z}

-

then
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Hence M(ax+by,y) = a M(x,y) + b.
q.e.d.

If X 1e strictly convex then M(x,y) reduces to a
point for every x,y ¢ X. In general, however, it may be
larger. In any case we define some candidates for the

desired finction.

DEFINITION 2.9. Let X Dbe a normed linear space and x,y¢X.

L(x,y) = a]| ¥y |F where aeM(x,y) and |a]| = inf {lal | acn(x,ykj.
It X 18 real then define

ally IF vy#0 - -
L,(x,y) = 0 y= @ here a =, 1nf{+ a | ac M(x,y)}.

If X 48 a complex normed linear space then there
exist Lc(x,y) and LR(x,y) where X 18 considered first
as a complex space and secondly as a real space. Lc(x,y)
is a complex function and Lg(x,y) 18 a real function.

See appendix A.

With the above theorems and remarks in mind we can

now state the basic properties of L( , ) and L.(, ).

PYEOREM 2.10° L(x,x) = || x IF

L(tx,y) = L(x,ty) = t L(x,y)

{t L.(x,y) t>0
t I7{x,y) t <O

5. .Lg(x*Ypy) = Li(xsy) + lﬁ(y’y)

6. x:ro .y Aiff L_(x,y) <0 <L,(x,y)

1.
2. x | yirf L(x,y) =0
d
4

. L+(t1,}') = L...(xs ty)
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7. If X 1is strictly convex then L( , )
satisfies G-2,G-5,8-68,0-12,G-13.
8. If X is an i.p.s. then L(x,y) =

Le(x,y) = (x | ¥).

Suppose X 18 strictly convex and ¢ : X ¥ X ~=> R
satisfiee G-2, G-5, G-13 and ¢(x,y) = O =>x . ro . y
then §(x,y) = L(x,y). To see this simply note Q(x-‘ﬁiiﬁgl Y,y) =
y

0 which implies L(x= "(‘ I) ¥,¥) = 0 so L(x,y) = ¢(x,¥)
y

by part 7 of theorem 2.10. Hence L( , ) has the desired
property that L(x,y) = 0 Aff x | y and 1f X 1is striotly
convex it is the only possible function.

An immediate corollary of theorem 2.10, theorem 2,.2.
and corollary 2.3 is the following.

COROLLARY 2.11: If X 4is strictly convex the following

are equivalent:
1. X 4s an 1.p.s.
2. Ly(y,x) = Lylix,y).
3. L( , ) satisfies G-4.

It should be noted that it would be sufficient to

assume L.(7,x) = Lp(x,y) for || x ||= || ¥ || = 1 since the
homogeneity would imply Lg(y,x) = Lp(x,y) for all x,y ¢ X.
Theorem 1.33 allows us to state another corollary to 2.10.
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COROLLARY 2.12. If X 18 a normed linear space of dimension

at least three then the following are equivalent:
l. X 4is an i.p.s.
2. L(, ) satisfies G-1.
3. L(, ) satisfies G-9.
4. L(, ) satisrfies G-10.

When X 1is strictly convex, corollary 2.12 1s a
special case of the theorem by Rudin and Smith (60] .

We continue to look at the properties of L(x,y).
From theorem 2.8 it followe that | ;:(x,y) l<efix|l iy Il
In general this is the best possible bound since it is
attained in the 11 plane (the 1l plane is the Minkowski
plane with the norm || (x,¥) ||= | x| + | ¥y |). By rounding
the sides on the 1l unit sphere, a strictly convex normed
linear space can be obtained where the bound is arbitrarily
close to 2. The following does provide a stronger theorem
than 2.8, however.

THEOREM 2.13: | Ly(x,y) | | Lo(wmx) | <= P Il5 IP
Proof.
Let a ¢ M(x,y) and b ¢ M(x,y). If M(x,y) = M(y,x) =0

the result is trivial. If not we may assume a,b # O. Then
Il x-ay Il = la| || y-a" x [ > |a| || y=bx ||
= |ab| || x-b~ty || > |ab| || x-ay .
Hence 1 > |ab| and the theorem is proven (4f || x-ay || == 0
then x = ay and Ly(x,y) = Li(y,x) = [Ix || |l ¥ II).
q.e.4,
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We now use L*(x,y) to characterize symmetric orthogonality.

THEOREM 2.14. If X 1is a real normed linear svace then

| Le(x,5) | <l x |||y |l for all x,y € X 4iff X has
symmetric orthogonality.

Proof.

Suppose | Li(x,y) | < |Ix |l ll¥ Il for all x,y ¢ X.
Let x,y ¢ X such that x | yand || x ||= ||y ||= 1. Then
1 ¢ M(ax+y,y) for all a since O ¢ M(x,y). Hence |y || =
1 < max | Ly(ax+y,y) | < [laxsy || Iy Il = || ax+y |l .

Suppose X has symmetric orthogonality. Let aeM(x,y).
If a=0 then |a| <|Ix|||ly ||+ If a# O then

| x-ay || < || x-By || for all B ¢ F
and by assumption

Hy Il < |l y-B(x-ay) || for all B ¢ F.

Let B = -a~1. Then

Ny ll< |l y+a L (x-ay) || =

lal Ny B<lixitllyll.

b3
| a |

q.e.d.

From the definitions of N_(x;y) and L (x,y) and
by theorem 1.35 we may conclude the following.

THEOREM 2.15. Let X be a real normed linear space.

Then L (x,y) =D |y IF and L_(x,y) =a |y |F irt
N,(x-by;y) > 0 > N_(x-ay;y) and N (x-ay;y) = N_(x-ay,y) = O

for a ¢ (a,b).
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THEOREN 2.16. If X 1s a real normed linear svace then

X has symmetric orthogonality iff L.(x,y) = ||y || N,ly,x)
and L_(x,y) = ||y || N.(7;x).

While we are characterizing spaces consider the followlng.

THEOREM 2.17. Let X DbDe a real normed linear space.

Then X 18 strictly convex iff L(x+y,y) = L(x,y) *+ L(y,y)
for all x,y ¢ X.
Proof.

If X 18 strictly convex then L(x+y,y) = L(x,y) +
L(y,y) by theorem 2.10.
Suppose L(x+y,y) = L{x,y) + L(y,y) for all x,y ¢ X.

Let X,y ¢ X and y # O. Then x -|f=iﬁ?11— y | y ana
Yy

L,(x
X - vyilyvy.
Ny | 4

Hence 0 = L(x -‘hniflﬁé ¥y,y) = Lix,y) - L(L' X Y,y) =
: Iy | Ny |

L(x,y) - L_(x,¥).

0 = L(x - L-_(_J‘...'EL ¥,Y) = L(x,y) - L+(x,¥5).
Ny |

q.e.d4,

If X 1is a complex normed linear space it is natural
to wonder if there is a relation between Lp(x,y) and Lg(x,¥).
Theorem 2.18 answers this question as well as characterizing

inner product spaces. See appendix A.
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THEQREM 2.18. If X 18 a strictly convex complex normed

linear space the following are equivalent:

l. X 4is an 1i.p.s.

2. La(x,y) = Re L,(x,y) for all x,y ¢ X.

3. Lp(x,y) = Re Lc(y,x) for all x,y ¢ X.

Proof;

Clearly 1 implies 8 and 1 implies 3 are trivial, for
given a complex inner product (x|y) then Re (x|y) is a
real inner product.

Also, 1f the complex dimension of X 1is one, then
X 1is an i.p.s. in any case,

Now assume the complex dimension of X 1is two, so that
the real dimension of X 1is four. B8ince Ly(x,y) is complex
additive which implies LR(x,y) is real additive in the
first argument (second argument) since Ln(x,y) = Re la(x,y)
(Lg(x,y) = Re L4(¥,x)). By corollary 2.11 X 1is a real
i.p.s. and hence a complex 1.p.s.

If the complex dim X > 2 then every two-dimensional

subspace 18 an i.p.s. 80 X 1is an i.p.s.

q.‘od.

The final result in this section ie a new proof of

theorem 1.17.

THEOREM. Let X be a normed linear space. Then X 1s
an 1.p.s. 1ff || x || = || ¥ || implies || x+ay || = || ax+y ||
for all a ¢ R.
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Proof.

The necessity of the second condition i1s obvioue. 1In
proving the sufficlency we may assume X 18 a real epace
since if it is complex then it is a complex i.p.s. iff it
is a real i.p.s. Also we will not repeat the section of
Ficken's argument which proves X 18 strictly convex.
Using corollary 2.11 and the remark following it will
suffice to show L(x,y) = L(y,x) whenever || x ||l= ||y || = 1.

Suppose || x ||= ||y |l=1 and L(x,y) = a. Then

|| x~ay || < || x~ay || for all a ¢ R.

But || x-ay || = || y-ax || and || x-ay || = || y~ax || Hence
l| x~ay || < || x~ay || for all a ¢ R or L(x,y) = L(y,x).
q.e.d,

In some instances the function L( , ), like the semi-
inner-product or the Gateaux derivative, can be used in an
arbitrary normed linear space in much the same way as the
inner product is used in inner product spaces. There are

several results in later chapters which are based on L( s )e
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SYMMETRIC ORTHOGONALITY

A8 we have mentioned (theorem 1.33) there exist two-
dimensional normed linear spaces in which orthogonality
18 symmetric and whioh are not inner product epaces.

(Recall orthogonality means projectional orthogonality unless
otherwise specified.) Because the class of spaces with
symmetric orthogohality is so closely related to the class
of inner product spaces and since it provides counterexamples
to various conjectures we examine the class more carefully.
Also many of the results in this chapter are used in the
later chapters. Day [}8] has given a conatruction from
which all real two-dimensional normed linear spaces with
symmetric orthogonality can be obtained. We give two similar
constructions for all real two-dimensional normed linear
spaces with symmetric orthogonality and in addition examine
the possibility of constructing complex two-dimensional
normed linear spaces with symmetric orthogonality. The
ochapter also includes several characterizations of spaces
with symmetric orthogonality.

We begin by examining the geometric significance of
orthogonality. In theorem 1.32 we found that x | y iff
there existes a continuoue linear functional f such that
£(x) = || || |l x || and £(y) = 0. If || x || =1 this would
usually be stated geometrically that y was in a supporting
hyperplane to the unit svhere at x. Thus if X 1is a real
two-dimensional noymed linear space and x,y ¢ X satisfy

31
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L. olxhk=llyll=12

2, x|y and y | x
then there l1s a support line to the unit sphere at x
parallel to y and a support line at y parallel to x.
In terms of Minkowskil spaces the problem of determining two-
dimensional spaces with symmetrio orthogonality reduces to
the problem of determining centrally symmetric oonvex curves
(unit spheres) for which diameters and support lines have
this speclal relationship. Such curves are called Radon
curves [57] .

Using this geometric significance of orthogonality
Day has shown the following.

THEOREM 3.1° Given any real two-dimensional space X

there exist vectors x,y ¢ X such that x | y and y | x.

We now give a construction which produces all real
two-dimensional normed linear spaceés with symmetric orthog-
onality. By theorem 3.1 given any real two-dimensional
normed linear space we can find x,y ¢ X such that || x || =
ly l=1, x|y, and y | x. Following the notation of
Day we call Jax+by | a,b > 03 the first quadrant and
similarly name the other three quadrants with the corres—
ponding restrictions on a and b, Day has shown that X
can be renormed in such a way that the two nofml agree in
the first quadrant and under this new norm X has symmetrioc
orthogonality. He does this by oonltructing the second
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quadrant of the new unit sphere. Moreover, if X had
symmetric orthogzonality originally the two norms agree.
Thus we have constructed all two-dimensional real spaces
with symmetric orthogonality.
The first construction which we give is that by Day

except in more analytic terms,

CONSTRUCTION I.

Following Day we let X be any real two-dimensional
normed linear space and x,y ¢ X satisfy |Ix |l= |7y |l=1,
x|y, and y | x. It is easy to show that for O <a <1l
there exists a unique f(a) > O such that || ax+f(a)y || = 1.
Moreover, f 1s continuous, convex, and satisfies 0 < f(a) < 1,
£(0) =1. It is well known from the theory of such functions
that at each point f has left and right derivatives
(denoted Df(a) and DI(a) respectively) and that f is

differentiable except for a countable set., Also f has a

f(ath) + f(a=h) = 2f(a)

n®

Schwartg derivative <f%(a) = Lim
almost everywhere. B
Let z(a,m) = (am—t‘(a))"1 for Df(a).z m > Df(a) and
0 <a<l. We claim that if X 18 renormed so that tho
unit sphere 1in the second quadrant has the form
[z(a,m)x + mz(a,m)y | 0 <a <1, Df(a) >m> D{(a)} then
X has symmetric orthogonality with resvect to the new
norm, By Day's construction and our method of construction
it suffices to calculate the slope of a support line to

thie ourve at z(a,m)x + mz(a,m)y.
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Firet we determine when a --> z(a,m; 1is one-to-one.
If £'(a) doee not exist then a --> z(a,m) 41ie one to many.

Now suppose a < b and z(a,ml) - z(b,mz). Then 0 > m, >

£(o) - f(a) N
D-a

irrse ml= m2. Thus we can divide our calculations into

several cases determined from these.

> my from which 1t follows z(a,ml) = z(b,mz)

1. Suppose f', f* both exist at "b" and f¥(b) # O.
Then m = f'(b) and the slope M of the suoport line at
(z(o,2'(b) )x+(fr*(b)z(b,f*'(b))y 4ise given Dy
mz(a,m) - £'(b)z(b,£'(b))
M= Lim 1. ——?Trﬁ

z'a,m) - z(D, )]

a-=->b
" i (o) - 11(0) KAL) 4 ) 103)
= m
a->b f(a;;% £f(b) +m+b f'ﬁg%a- m
_ (£2(0))% = (£27(0))2 + £o(b)r(b) _ £(b
£1(b) - £1(b) + £¥(b)b b

which 18 what we desired,.
2. Suppose f' doee not exist at b and nf(b) >m>
Di(b). Then the slope M of the support line at

(z(b,m) )x + (mz(b,m) )y 18 again given by
mz(b,m) - mlz(b,ml) (m—ml)r(b) £(b)
M= Lim = Lim = .
m, ~>m z(b,m) - z(b,ml) m, ->m (m—ml)b b

3. The remaining cases follow by continuity and are
the points where there are non-unique support lines in the
second quadrant (i.e. the points where a --> z(a,m) 18
many to one). Thus flat spots on the unit sphere in the
first quadrant correspond to corners on it in the second

quadrant and ocorners in the firet quadrant corresoond to
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flat spota in the second quadrant. This completes the

firset construction.

1 m
slope r—ia-l/,”,*
P \ slove m
-~ 7 \
/ \
/ \ ax+f(a)y
e
‘ \
]
| \\
ol
x
FIGURE 3.1

CONSTRUCTION II.:

Construction I suggests this second construction whioch
can be at least partially generalized to complex spaces.
Again let X Be any real two-dimensional normed linear
space and X,y ¢ X such that || x ||= ||y ||=1, x | y and
Yy ]|l x. Then h {R~->R defined by h(a) = || x+ay || 1is
a ocontinuous convex function which attains its minimum
at a = 0. Again h restricted to the positive real numbers
will determine the first quadrant of the unit evhere. This
time we determine the second quadrant of the unit sphere
of a new norm by assuming h 1s defined for only the
positive reals and showing how to define it for the negative

reals.
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Again h has left and right derivatives everywhere
and is differentiable almost everywhere. Let Z(a,m) = a - Eéﬁl
for a > 0 and DE(‘).S m < DE(a). Since h satisfies
1. h(a) > 1, |a]
2. |h(b) - n(a)| < |b-a|

% >1l. Let a= Lim Z(a,m). Now

we have Z(a,m) < 0 and
- a~> oo

we can extend h to the negative reals.

h(z(a,m)) = ‘11"1; for a > 0 Df(a.) <m< Dg(a)

h(b) = 1 ifag b<O

To check the validity of this construction we shall
reduce it to the first construction. If f 1s defined
a8 in construction I then

£(1/h (a)) = a/h (a) for a >0

Di(a) = 2(a,D§ (a)).

Thus h(Z(a,m)) =<% is equivalent to

IE&E) - A ) x s (2(a,m) (B -t by =12

which is construction I. Thus construction II is verified.

x+ay
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Before we can attempt such a construction for complex
spaces, however, we need some more results. Accordingly
we obtaln some characterizations of real #nd complex spaces
wlth symmetric orthogonality. Lemmas 3.2 and 3,3 will
give us the tools necessary to prove theorem 3.4 which
1s our maln theorem. 1In the real case theorems 3.4 and
3.5 follow from Day's construction or construction I, but
our proofs are independent of these constructions and equally

valid for complex spaces.

LEMMA 3.2. Let X be a pomplex normed linear space and

X,y ¢ X. Then x { ro . y iff there existe a real number
b such that x . ko : bix+y.

Proof.

Suppose there exists a real number b such that x *
ko . bix+y. Then there exiets a complex continuous linear
functional f such that || f ||=1, f(x) = || x || and |
£(bik+y) = O, (theorem 1.32) Then Re f is a real conttnuous
linear functional such that |[Re £ ||= 1, Re f(x) = || x ||
and Re f(y) = 0. Hence x : ro : y. (See apoendix A)

Suppose x . ro . y. Then there exists a continuous
real linear functional g such that || g ||=1, g(x) = || x ||,
and g(y) = 0. Define f(z) = g(z) - 1g(iz). Then f 18

a ocontinuous complex linear functional such that || f || =1

and £(x) = || x |l Let b = - %ﬂzlll . Then f(bix+y) = O
X
80 X . ko ; bix+y.

q.e.q4,

,A'l'“_\’m
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LEMMA $.3. Let X and Y be normed linear spaces and

. X-->Y (¢ # 0) be a 1linear map such that for X),Xg € X
and xl‘l X, then ¢(xl) l_Q(xz). Then ¢ 4ie continuous
and ¢/|| ¢ || is an isometry from X to @(X).

Proof.

Suppose X and Y sare complex spaces and | denotes
complex orthogonality. Then x : ro . y <==> x [ ko ! bix+y
==> @(x) : ko : biP(x)+P(y) <> ¢(x) : ro : ¢(y) by lemma 3.2
for x,y ¢ X. Hence we may assume X and Y are real
and | denotes real orthogonality.

Next we assume dim X = 2, By theorem 1.32 dim §(x) = 2.
Thus there exist m,M > 0 and x5,X, ¢ X such that || x5 || =

=g =21, o= || §(xz) Il , ¥ = || 9(x,) || and mw || x || <
l (x) [f<M |l x || for all x ¢ X. Now choose xg,Xg ¢ X
such that || x5 || = || x5 Il = 1, x5 | x5, and x, | xg. Then

Il 9(xz) |l <1< Il ®(xy) |l
1oCxg) 11~ = 11 0(xg) |
By continuity there exist x,z ¢ X such that || x || = || = || =
1, x| z and [[9(x) || = [19(2) || . Let k= | ¢(x) || .
Since x | z for -1 < a < +1 there must exist a unique
non-negative number f(a) such that || ax+f(a}z ||= 1. Like-
wise, since §(x) | ¢(z) for -1 < a< 1l there exists a unique
non-negative number g(a) such that || ad(x) + g(a)d(z) || = k.
Also there exlists a dense set D of -1 < a < +1 such that
both f'(a) and g'(a) exist.
For a € D the following must hold.

ax + f(a)z | x + cz iff f'(a) = o
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and ad(x) + g(a)P(z) | ¢(x) + a(z) 1rf g'(a) = A,
But ax+f(a)z | x + cz implies af(x)+f(a)d(z) | O(x)+ef(z).
If n(a) = k/|| ap(x) + f(a)P(z) || for a ¢ D then g'(ah(a)) =
r'(a) and g(ah(a)) = h(a)f(a) whenever -l< a h(a) < +1
(for a near 0, |a h(a)| < 1 so these are nontrivial condi-
tions). Since 1/h 1s convex, h' will exist almost every-
where 80 we can differentiate the second equation and

g'(a h(a)) (h(a) + a h'(a)) = £'(a)h(a) + £(a)h'(a).
Combining this with the first equation

a r'(a) h'(a) = f(a) h'(a).
If h' does not vanish identically then

a f'(a) = r(a)
which has the solution f(a) = ca for some constant c.
But £(0) = 1 so clearly this is a contradiction. Hence
h'(a) must vanigh identically or h(a) is a constant. Thus
|| @ §(x) + £(a) ¢(z) || = k for =1L < a < 1 since h(0) = 1.
This is suffiocient to show ¢/|| ¢ || 1# an igometry.

If dim X > 2 1let x ¢ X be fixed and let g ¢ X. Then
the above applies to Lin ix,z3 so there exists a constant
k, such that || ¢(x) || = k |[w || for w ¢ Lin {x,z] . How-

ever, || ¢(x) ||/ |l x || 18 fixed so k, 1e constant over the

whole space.

q.e.d.

THEOREM 3.4. Let X be a two-dimensional normed linear

space. Then X has symmetric orthogonallity 1ff there
exists a linear isometry § : X —> X" such that [#(x)] (x) = 0
for all x ¢ X.
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Proof.

First suppose X has symmetric orthogonality. Let
x,y¢X, |lx|l= ||y ll=1and x| y. Define §(ax+by)
by [b(ax+byf] (cx+dy) = ad-bc. Then ¢ is a linear map
such that {p(ax+by)} (ax+by) = O. Suppose axtby | cxHdy.
Then there exists a linear functional f such that
r(oxHdy) = 0 and f(ax+by) = || £ || || ax+by ||, But up to
scalar multiples there 1s only one linear function such
that f(cx+dy) = O so | {(p(cx+dy)] (ax+by) | =
|| $(cx+ay) || || ax+by ||. But cx+dy | ax+by by assumption.
So | [¢(ax+b,v)] (ex+dy) | = || ¢(ax+by) || || ox+dy |l. Now
we ldentify X with X™* go that the above relations now
imply Q(ax+by) | ¢(cx+dy) and ¢(cx+dy) | ¢(ax+by). Then
by lemma 3.2 there exists a constant k such that

| ¢(ax+by) || = k || ax+by ||.
But | [#(x)] (ax+by) | = |b| < || ax+by || eo || §(x) || < 1.
However | {¢(x)] (y) | =1= 1y |lso |l ¢(x) || =1 and

k=1,

Now suppose there exists an isometry ¢ : X —-> X¥ such
that E@(x)] (x) =0 for all x ¢ X. Suppose x | y. Because
X 1s two-dimensional 1t follows
| (0] ) 1= 10 Wllxli=lylllizl. But

[0(x+)] (x43) = 0
so [0(x)] (v) +B(3)] (x) = 0.

Hence | [9(x)] () | = | [0®] @) I =y llllxllsoy] =
q.e.d.



THESIS

s




41

The fact that X 1is two-dimensional in theorem 3.4
is very important. Suppose X 18 an inner product space
and of odd dimension greater than or equal to three. Then
_ there can exist no continuous linear map ¢ : X —=> X* such
that [Q(x)] (x) = 0 since even dimensional svheres admit
no continuous tangent fields. Thua the existence of ¢
18 not, in general, necessary. Next consider a two-dimen-
slonal complex normed linear space with symmetric complex
orthogonality. Then the existence of ¢ 1is given by
theorem 3.4 but 1f X 48 not an inner product space, real
orthogonglity 1s not symmetric. Hence the existence of
¢ 1is not sufficient in general.

From theorem 3.4 we can prove the following character-

izations.

THEOQOREM 3.5. If X is a normed linear space then the

following are equivalent:
l. X has symmetric orthogonality.
2. If x,y¢X, |[x|l=|ly|l=21and x| y then
ax + by | ox +dy Aff |ad -boc | = |Jax + by || || ox + ay [l
3. Ifx,yeX, Ix]|l=|lyll=1, xtay | y ana
y+bx | x then || x +ay || = ||y + bx |l
Proof:
(1=>2)
If Aim X > 2 then X is an inner product space and

this 18 an easy calculation. If dim X = 2 then in proof

of theorem 3.4 we proved
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ax+by | ox+dy Aff |ad~bo| = || ¢(ax+by) || || ox+dy || 1ff
|ad~bo| = || ax+by || || ox+dy || eince ¢ 1s an isometry.
(2=>3)

Let x,y satlisfy the hypothesgis of 3. Then
x = || x+ay "_._x_:ﬂ_—ay

| x+ay||
y+bx = b || x+ay '|__£IEZ__ + (1-ab)y.
|| x+ay ||

Sinoe-—fzﬁz—- and y satisfy the hypothesies of 2 we have

|| x+ay || |
Il y*ox || = |l x || || y+bx || =
| || x+ay || (1-ab) + ab || x+ay || | = || x+ay ||

(3=>1)

Suppose || x || = ||y |l=1, x | y and y+bx | x. Then
lx || = (|l y+bx [|=1 = ||y |l. Hence y | x.

qoecdo

As usual we like to interpret our theorem geometrically
and part 3 of theorem 3.5 may be expressed as the equality
of the altitudes to the equal esides of an isosceles triangle.

The next theorem diverges from the goals of this section
but we include it now because we have the tools to handle

it and 1t includes concepts from both chaoters 2 and 3.

TREOREM 3.6, Let X be a real normed linear space. Then

L,(x,y) = O implies L4(y,x) = 0 Aff X hae symmetric
orthogonality and X 1ie strictly convex.
Proof.

If X has symmetric orthogonality and is strictly

LA F 3
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convex then if x | y we have L(x,y) = L{y,x) = 0 and
L4(x,y) = L(x,y) and L (y,x) = L(y,x).
Suppose L, (x,y) = O implies L (y,x) = O. Suppose
x | z. Then
L (x - L,(x,2)z,2) = 0 => L (2, x - L,(x,2)z) =0
L (x -L_(x,2z)2z,z) = 0=>L,(x-L_(x,2)z,~2) =0
=> L (-2z,x = L_(x,2)z) = 0
=> L (z,x - L _(x,2)z) =0
But this implies z | x by theorem 1.35. Thus X has
symmetric orthogonality. If dim X > 2 then X 1s an inner
product epace and hence 1s strictly convex. If dAim X = 2,
then if X 18 not strictly convex we note we can find
x,y ¢ X seuch that ||x||= |y =1, x] ¥, Ly(y,x) >0
but L (x,y) = L_(x,y) = L(x,y) = 0 (this is obvioue from
construction I). Hence L _(x,y) = 0 but L (y,x) ¥ O which
is a contradiction.

q.e.d.

Now we are ready to look at the two-dimensional complex
normed linear spaces with symmetric orthogonality. Ve
generalize construction II to complex spaces. This procedure
is helpful in characteriging these svaces and constructing
specific examples but does not construct all two-dimensional
complex normed linear spaces with symmetric orthogonality

a8 construction II.

CONSTRUCTION III.

Let X be a two-dimensional complex normed linear
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space with symmetric orthogonality. Let x,y ¢ X, || x || =
ly ll=1, ana x | y. Define f : R X R ——> R by f(a,b) =
|| x + (atbl)y ||. Then by theorem 3.5 x+(a+bi)y | x+(c+di)y
1rf |(a~c) + (b-4)1 | = f(a,b) r(c.q4).

Now consider (a,b) fixed. Then the function h(p,q) =
((a-p)2 + (b—q)z)l/2 / £(p,q) has its absolute maximum
at (c,d) in which case h(c,4) = f(a,b). Suppose f 1is
differentiable at (c,d). Let D = ((a—-o)2 + (b—d)z)l/g.
Then O = h,(e,d) = (a~c)(Df(c,d))™* - Df;(o,a)(f(c,a)) %
and 0 = hy(c,d) = (b-4)(Df(c,d))™t - Dry(c,a)(f(c,a))2.

Simplifying and eolving
t2(a,b) = (a=0)(f(c,d)f,(c,a))™t = (b-a)(f(c,a)fp(c,a))™t
Equating the last terms, resubstituting and simplifying we
obtain
(3.7)  £°(a,b) = (2 (c,a) + £5 (o,a))72
Now solving for a and Db
(3.8) a=c+ (f(c,a)r;(c,a)) (2 (c,a) + 15 (c,4))2

b=d+ (f(c,a)fy (c,d))(f5 (c,a) + 135 (c,a))™t

Naturally these equations are symmetric in (a,b) and (c,d).
They are also the two-dimensional analogues to the equation
of definition in construction II. Equations 3.7 and 3.8
hold whenever f has partials at (c,d) which will be almost
everywhere in the plane 8o we can pick up the rest of the
plane by continuity.

We might be tempted to try to construct all complex
spaces with symmetric orthogonality by assuming f 1ie
defined on the upper half of the plane and extending the
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equations 3.7 and 3.8, It 1s possible, however, that 3.7
and 3.8 either do not extend f to all the plane or extend
f in two different manners for some points in general.
The reason for this is that (a,b) and (c,d) need not lie
on a line through the origin.

(c,d)

o~
f(p,a) | f(p,q) = £(c,d

p,q) | f(p,q) = f(a,b)3

FIGURE 3.3

CONSTRUCTION IV,

Wo now use theorem 3.4 to generalize a construction
by Thorp [15] to obtain spaces congruent to their duals.
By doing so we are able to obtain examples of two-dimensional
complex spaces with symmetric orthogonality and hence have
examples of the functions described in construction III.

Let || || be a norm on R®

such that (Rz, I |I) has
symmetric orthogonality, || (0,1) || = || (1,0)]l = 1,

(0,1) | (1,0), and || (1,a) || = || (1,~-a) ||. (Such spaces

e B e Feioe Semus an ¢
-~ i
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do exist. For example consider the Minkowski plane whose
unit sphere 18 given by
{(r,8) | *P + 8P =1 1f re > 0 and oP/PL 4 /Pl o3 3¢
re < 03 where p 1s any integer greater than 2. Let
x = (2‘1/1’, 2—1/p) and y = (zl/p-l, 21/9"1) and use x,y
a8 the coordinate axes.)

Let X, Y be any two normed linear spaces (where both
are either real or complex) and define the norm on X X Y

by Il (x,¥) =1l Lllx |, |y (D) |l for x ¢ X and y ¢ Y.
The only nontrivial condition to check, to see that this

defines a norm, is the trilangle inequality. \
xy+xp, 3y+w0) 1= I (Il xp+xo Il 1l 3y%ve DI
< I Clg Il + 1= 1l 1l yptyg DI

2l I+ lixg Il Hyy L+ WWye DI
< W Chxg I hyy DU+ NCE=g 1L Il 7 DI
= Il (xps ¥+ 1l (xp0 ¥2) Il

The above inequalities follow from the triangle inequalities

in X and Y and the faoct that (1,0) | (0,1) ana

(0,1) | (1,0). We aleo notice X,Y are embedded isometrically

as closed subspaces in X X Y,

Now suppose X 18 any space such that X and X"*

are congruent by a congruence § : X -=> X" ., Let X =X

and Y = X®, Let Z =X X X* with the above norm., If

h ¢ X* and x ¢ X then the linear functional (h,$(x)) defined

by [(n,4(x))] (7,8) = n(y) +[8(x)] (g) belongs to z=.

Moreover, all slements of Z¥ are of this form. To determine

the norm |[{{-h, 0(:))](y,g)| = |-h(y) +[¢(x)}(g)| yeX, geXx*
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< Inl + | o)) (8) |

<slIn ity h+llxiilell

<=, W) nmdy ih.=lte )|l

== f, Wnd) i Wy, e i)l

=l (x,=n) || Il (v,e) Il -

Thus || (-h, §(x)) || < || (x,h) || . Now choose ||y ||,

leg Il o that (|ly I, -llgll) L (Il xI, lIh]l) and P
Yo €X, g €X* sothat |y, =1y ll, llgg l=Ngll,
-n(yy) ==> [l Ly I, ana [p(x) (g) -=> Nle Nl =1l .
Thus || (-h, ¢(x))|| = || (x,h) || since '
| {(-h,¢(x))](y,g)| --> || (x,-n) || || (¥,&) || . Hence the \.

mapping § . Z --> Z® given by VY(x,h) = (-h,P(x)) 18 a
congruence. Moreover, if X 18 reflexive and ¢ 1s the
canonical isomorphism then the map ¥ also maps a vector
onto an annihllator of itself.

Next suppoose X and Y are any linear srvaces such that
there exict congruences ¢, : X --> X* and ¢, . Y -—> Y¥.
Let Z =X XY then agaln 7% = X®* x Y*., Exactly as above
the map ¥ . Z --> Z* given by W(x,y) = (¢1(x),¢2(y)) is
a congruence. Also if ¢,,0, map each vector onto an
annihilator of itself § will also.

By using combinations of the above results we may
obtain spaces of any dimenslon congruent to their duals.

We have not characterized such spaces since we have not

even constructed ll for instance.
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CONSTRUCTION V.

A8 a particular example let X = C (i.e. the one dimen-
sional complex space). Then X X X¥ with the above norm is
a two-dlimenslonal complex space with symmetric orthogonality
by theorem 3.4. Thils example 1s a particularly simple
case of construction III since f(a,B) = f(|a|,|B|) and

all real two-dimensional subspaces generated by (0,8),(x,0)

are isometric to (R2,|| Il

@]

'1’\’/

FIGURE 5.4

]

i m——
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LOCALIZATION OF IDENTITIES

l. Preliminary Results

Corollary 1.9 is an extremely important result because
1t allowe us to reduce many characterizatione to two-dimen-
slonal probleme. For some of the theorems in this chapter
we need stronger forms of 1.9 in order to make thie reduc— .

tion, however.

LEMMA 4.1° Let X and Y De normed linear spaces and

suppoge the normon 2Z =X x Y 1is given by \
I(x,¥) IF = || x IF + ||y IF. Then 2Z 1s an inner product
space i1ff both X and Y are inner nroduct spaces.

Proof.

If Z 4is an inner nroduct space then X and Y are
embedded as subspaces of 2 and hence are inner product
spaces.

If X and Y are inner oroduct snaces let §y( , )
and ¢Y( , ) Dbe the inner oroducts on X and Y, respectively.
Define
((x9,¥9) [ (x,¥2)) = Py(xy,%x5) + Qy(¥q,¥5).

It is easy to check this 1s an inner product on 2.

aq.e.d.

LEMHA 4.2, Let X Dbe a normed lineatr space. Then X

is an inner product space iff there exiast a hyperplane H

and a vector x not in H such that H 18 an inner oroduct

49



THESIS




50

space and every two-dimensional subsvace of X which
contains x 18 an inner wnroduct svace.

rroof.

If X 18 an inner nroduct svace then H can be any
hypersubspace H and any vector x not in H will do.

Suppose H and x exist. Let H' oe any closed
hypersubsoace sucn that x | H' (theorem 1.32). Then
X = Lin {xJ x H' where the norm ie given by
| (rx,h*) ]F = || rx |F + || n? “2. By lemma 4.1 1t wilil
suftrice to prove H!' 18 an lnner oroduct space. If
h', g' € H' there exist r,s ¢ F such that rx+h' and
sx+3' oelong to H. Bince the parallelogram law hoids in
| (r+8;x + (n'+g*) |° + || (r-8)x + (h'-g'} |f =
2 || rx+nt |f + 2 || sx+g' |F
or
| r+e |2 [l x [P+ |nt+g' P+ | r-e |2 | x I+ ||nt-g* |F
2ir® Ix IF+2n |F+2le®1x IB+2 g IP
Thue

2 2
| ntsgt B + || nt=g* [F =2 |In |

2
"'2”8' ” ’

and the varallelogram law also holds in H', By theorem 1.8

H!' 18 an inner nroduct space.

q.e.d,

Lemma 4.2 is especlally useful in three dimensions
since hypersubspaces are two-dimensional. It may also be

used as an inductive step for proving other generalizations

of 1.9.

H

-~
-
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LEMMA 4.3. Let X be a normed linear space. Then X 1is

an inner product space i1ff there exists a basis {y,xaz
for X such that every two-dimensional subspace of X
which contains an xa is an inner product space.

Proof.

If X 18 an inner product space any basis will do.
Suppose such a basls existse. If the dimension of X 18
n then we will proceed by induction on n., If n 1is
l or 2 the theorem is trivial., Supovose the theorem 1is
true forn=1,2, ..., m, Let n=m+ 1 and YsXqy eeerXp
be such a basis. Then H = Lin {y,xl, ...,xm_i; is a hyper-
subspace of X. By the induction hypothesis H 18 an

inner product spnace. By lemma 4.2 X 1s an inner product

space.
If the dimension of X 4is not finite then let H

be a two-dimenslonal subspace of X. Since fy,x § 1s a
pasis there exists a positive integer N such that
HCLin fy,xal, ...,xang which by the above is an inner
product space. Thus by 1.9 X 18 an inner product sespace.

q.e.d.

2. Topologlcal

Now we look at a class of problems originally suggested
by Dr. Charles MacCluer and Mr. Joseph Quinn, The main
idea is to generalize the theorems from chapter one by
assuming the hypotheslis holdse only locally. Locally here

usually has a more topological meanin€ (i.e., the vectors

™

-
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are in some sense close) than a geometric meaning (i.e. the
vectors form some specialized configuration). This anpears
to be a somewhat different approach than most which have

appeared in the literature.

DEFINI'CION 4.4: Let X ©bpe a normed linear svace and

(x,y) ¢ X X X, Let O<\,p<l and r be one nf the relations
>, =, or <. The valr (x,y. belongs to the class A(A,ps,r)

if and only if
p(l-p) || Ax+(1=\)y Il2+\(l->s) [| px=(1=p)y II2 r
e (e t=2pn) (| x [P+ (1-A) (=) (s +r-20\) |y IR,

With this definition we way state the three conjectures

with which most of this chaoter is concerned.

CONJECTURE 4.5 Let X bLe a normed llnear space. Then X

is an inner vroduct space iff there 18 a relation r and a
set K€X with the oroperty that for x,y ¢ K there exist
0<\,p<l such that (x,y) ¢ A(N,u,P).

CONJECTURE 4.6. Let X be a normed linear svace. ‘Then X

is an inner product svace iff there 1s a relation r and
€ >0 with the oproverty that for all x,y € X satisfying
lx|l=1{ly ll=1 and || x-y || « ¢ then there exist
O<\,p<l such that (x,y, € A(\,p,r).

CONJECTURK 4.7. Let X Dbe a normed linear svace. Then X

18 an inner product space i1ff there 18 a relation r and
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¢ >0 wilth the property that for all x,y € X eatisfying
a [x,5] <¢ (1.e. || x/“ x| - y/“ y |l || « ¢) then there
exlst O<\,p<l B8uch that (x,y) ¢ A(N,n,r).

Actually all three of the conjectures as stated are
false and what we are really interested in are the additional
restrictions necessary in order to obtain true theorems.

We prove some results, however, before giving counterexamples
to the conjectures.

It should also be evident that some restrictions on K
must be wmade in conjecture 4.5 if there is to be any hope of
a result. Not only must K at least span X but it must
in som~ sense contain at least one vector in every direction.
dne easy condition to place on K 18 that it have non-emoty
interior, but this 1s not the only one possible.

3efore we begin the theorems we need another definitlon.

DEFINITION 4.8: A subset C of a linear space X 18 a

cone iff for x ¢ C and a > O then oax ¢ C, If C 1s

convex then it is a convex cone.

If XyseeesXy € X then C(xl,...,xn) =£}:a1x1 | a, > 0}
i8 a convex cone and Af dimension of X 18 n and the x1

are independent then C(xl,...,xn) has nonem»nty interior.

The next theorem i8 a generalization of 1.14 and a

special case of 4.5,

/ - -:iq?ﬁﬁﬂrmﬂ'?
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THEOREM 4.9. Let X Dbe a normed linear space. Then X

is an inner product space iff there exist a relation r

and a subset KCX with the properties that for each x ¢ X
there exists a ¢ R such that ax ¢ K and for x,y ¢ K
there exist O<A,p<l such that (x,y) € A(A,p,r).

Proof:

Tne necessity of tne last conditlion is obvious. Thie
same statement holds for all of the theorems in this chapter
and most of those in the next. Thus we will usually show
only the sufficliency of the last condition.

Thus supoose K exists. By corollary 1.9 we may
assume X is real and two-dimensional. First we prove the
result when r 1s <., Let E be the minimal (in area)
ellivse with center O and containing the unit evhere 8.
Then ENS contains at least a valr of independent vectors
x and y (and hence contains -x and -y also, and ENS

18 compact since E and S both are. See apnendix B for

a discussion of K. Thue if ENS # S there exist r,s ¢ ENS

such that ENSNC(r,s) = fr,sy . Aleo there exist a,p ¢ R

with ar,Bs € K. Finally if | | 18 the norm determined
by E then | | 18 induced by an inner vroduct and
Hx|l>] x| forall x ¢ X.

By hypotheils
A (pPA-2ph a2+ (1-A) (L=p) (p#a=2pr B2 >
p(1-p) || Aar+(1-x;ps |P+a(1-A; || par-(1-p)ps |F >
p(l-p)| Aar+(1-)gs |2+X(l-h)| par—(l-p g8 |2 =
B (B+A=2pA) a4 (11 (1) (pa-2pa B2

— m_‘;
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Thus equallty holds throughout so % Aar+(1-r)pe
|| Aar+(1-A)gs ||
and 2 par-(1-)pe belong to E S. But at least one

I| par-(1—4)ps ||
of the vectors belongs to C(r,s) and is distinct from r and s
contrary to the hypothesis. Hence E/N\ 8 = E and X 18 an
inner product space.
If r 18 > choose E to be the maximal inscribed
ellipse in 8 and a similar vroof holds. If r 1is =
thie 18 a special case of either of the firet two results.

q.e.d,

The classical example of a set K satisfying the
condition imposed by this theorem is the boundary of any
closed bounded set containing O as an interior point.
Note that 1f f 1is any continuous linear functional then
the boundary intersected withh the half svace {xlf(x)_z 03
also satlsfies the hypothesls.

We omit the vroof of the next lemma,

LEMMA 4.10. Let X De a normed linear snace. If a subsetl

K€ X has the property that for a relation r and for each
X,y ¢ K there exlst 0 < A, p <1 such that (x,y) € A(\,p,r)

then aKk will also have the propverty for any scalar a.

The next lemma 18 intersting because we intultively
would like to attack conjectures 4.5-4.7 by this aporoach.

It is less powerful, however, than later techniques we

will use,
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LEMMA 4.11. let X be a normed linear svace, K be a

convex subset of X, and w ¢ K. If K has the prOpefty
that there is a value O < A « 1 such that. for x,y ¢ K
then (x,y) ¢ A(A,1/2,=) then K -~ w (the translation of
K by w) has the same property.
Proof.
Let x,y ¢ K. Then
[| Mx~w) + (1-A)(y=w) IF =
i A axr-ny (B + ) fw |F-|a X+ (1-0)y)+H (1M )=

— L i ax+(-M)glP + Al w R - (A Ax+(1-2)w [P +

(1-A) (1-A )
(1—».) | Ay+(1-a)w |F = A(1-2) ]| Ax—-hy I#) =
= Ihxt-ny IF v IF - 2 dllx IF e P -

).(l-)\)ll x=w |F)=1/AA| ¥ ||2+(1-A)ll Wllz-x(l-x) | y-wi 2| x-y|F =

A% ey 1B+ 5 I ax+(-Ny 1P~ 2 i x 1B=lly 1Pen (1 xew 1f
(1-A) || y=w |F.
Thus

1/4[] AMx=w)+(1-A) (y=w) IF+A(1-A) (| 1/2(x-w)-1/2(y-w) IF =
1/4 % (AL=A) || x=y|B+1| Ax+(1-N)y |B-r [l xIP-(2-2) || yIB) +
1/4 (| x=w|P+(1-7) || y-w|F)=
1/4(A]l = B+ -A) | v |E).

q.e.d,

THEOREM 4.12. Let X be a normed linear svace. Then X

i8 an inner product space iff there exist a set K with
nonempty interlor and a value O < A < 1 such that for x,y ¢ K

then (x,y) ¢ A(A, 1/2, =),
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Proof.

Suppose 38(z,¢)C K. Then 38(z,¢) satisfies the
hypothesis of lemma 4.11 8o 8S(z,¢) -z has the same vroperty.
But 8(z,¢) -z satisfies the hypothesis of theorem 4.9
6o X 1s an inner product space.

q.e.d.
The next theorem is a direct generalization of the
last one but involves completely different techniques.

Thue the theorems have been stated separately,

THEOREM 4.13: Let X be a normed svace. Then X 18 an

inner oroduct space iff there exists a subset K of X
with nonempty interlior with the property that for x,y € K
there exists O < A < 1 such that (x,y) ¢ A(A\, 1/8, =).

Proof.,

Suppose K existe. If 2z ¢ INT(K) then by lemma 4.10
we may assume || z || = 1 and 1t suffices to prove the theorem
when K 18 a ball with center z. |

We prove the theorem using several cases depending
on the dimension of X. First suppose the real dimenslon
of X 18 2. Let y ¢ S(z,¢) such that ||y ||= 1 and
il ¥z || < 2. Then there existe a unique ellipse E with
center O and which passes through y, z, y-z/|| y-z |l.

(See appendix B) Let S be the unit sphere of X, D = SAE,
and | | be the norm determined by E, Then D and
DAC(y,z) are both closed and nonempty; Suppose C(y,z)ND #
c(y,z)\8. Then there muet exist r,s ¢ C(y,z)AD such
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that C(r,s)ND = fr,sy. Since X 1s two-dimensional
there exist 0 < §, § <1 and 0 < p, ¥ <1 such that

8r = py + (l=-p)z and o8 = vy + (1-v)z.

8(z,¢)

FIGURE 4.1
By convexity &r, o8 ¢ S(z,e) 80 there exists O <« A < 1
such that
|| A8r+(1-A)gs "2 Al| r ||2 + (1-A) ]| o8 ||2 - A1=M) (w=) 2l y—z|12

Aor|? + (1-2)]o8|Z = A(L-A) (=) ®|y-2|?

= |Asr + (1-A)as|Z.

Thus —Mr + (1-2)os € C(r,8)NND contrary to the choice
| Asr + (1-A)ews ||

of r and e 8o C(y,z)NAD = C(y,z)N 8.
Let w = 1/2(z+y) and x € X. There exists § > O
such that w+6x ¢ C(y,z) ) 8(z,¢). Then by hypothesls
there exists O < A <1 such that
A(1-A) || 8x ||2 = Al w ||2 + (1-A) || wtbx ||2 -l m+(1-->‘)(w+¢sx)lr2
= Alwl2 + (1—A)|w+sx|2 - |Aw+(1-x)(w+5x)|2
A(1-A) | x| 2.

Hence D= 8=E and X 18 an inner »roduct space.
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If the real dimenslion of X 18 greater than two then
since K has nonempty interior there existe a basis {xa3
of X such that [x&}cﬂnt(x). But by the above argument
each two-dimensional subspace containing L 3 will be an
inner product space. By lemma 4.3 X 1s an inner product
space,

q.e.d,

In the next theorem we allow p to take values other
than 1/2 as 1t did in the previous theorem. However, we
must make an additional hypothesis on K. Example 4.17

shows that this hypothesie 18 necessary.

THEOREM 4.14: Let X be a normed linear space. Then X

is an inner oroduct space 1ff there exist a convex cone K
with nonempty interior and a fixed O < p « 1 s8such that for
all x,y ¢ K there existe 0 < A <1 with (x,y) ¢ A(N,1,=).
Proof.
Assume K exlists and again assume X 1is two-dimensional.
Chonse y,z ¢ K sothat ||y |Jl=1|lz |l=1, ||y-z ||l< 1,
and C(y,z)C K. Let E be the unique ellinse with center
0 through y,z,y-z/||y-z ||, and | | be the norm determined
by E. Let 8 be the unit sphere of X and D = SAE,
If DN C(y,z) # SNC(y,z) then there exist r,s ¢ DAC(y,z)
euch that DMl C(r,s) = §r,8} . There exist a,p > 0 such
that par - B(l-p)s = y — z(here is where we use the fact

K 18 a cone), Also there exists O < A < 1 such that
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p(1) |l Aar + (1-A)Bs |f = pa(n+r-2ur) || ar |F
+(1~) (1-2) (p+r-20) || B8 [F-A(1-2) || par—(1-p)pe |
= px(p-rx-sz)larlz
+(l--v~)(l--J'u)(v'+’v-2vs?\)IlBlll'2—%(1—)-)Iw-r'--(l-u)bﬂl2
= p(1—p) | Aar+(1-2)ps|®
Thus Aar+(l-A)Be/|| Aar4(1-A,Bs || ¢ DN C(r,8) contrary to
the ochoice of r and 8 8o that DAC(y,z) = 8SNC(y,z).
Let x = ay+bz. If ab > 0 then || ay+bz || = |ay+bz|
by the above. If ab « O then without lose of generallity
let a > 0 > b. Then there exists 0O < A <1 such that
A=A [ (&) ) (22 ) 1P = mawea-zun) |y P
+(1—u>(1—x)<u+x-2ux>ll 2 (B (1) |1 AC ‘y)+<1—x)(’b‘)u2
= M(uﬂr-zuh)lﬂ
(1) (1-A) (a¥A=2pd) | 2| Zmp (1) [A (2 )+(1--1»)(""z)l2
= x(l—x)|33+bz|
Thue D=8 =E and X 18 an inner oroduct space,
If the dimension of X 18 greater than two then the
result again follows from lemma 4.3 and the above argument.

q.e.d.

Lemma 4.15 enables us to draw conclusions on conjecture

4.7 from theorem 4.14,

LEMMA 4.15. Let X be a normed linear enace and x,y ¢ X.

Then a ['z,w] <a [x,y] for z,w eC(x,y).
Proof,

Firet note that we may assume || x ||= ||y =z || =

I

[l w || = 1. Let z=axt+by and w = cx+dy where a,b,c,d >0
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and || x-y || = ¢ = a [x,y] . Assume the notation was chosen

8o that bo > ad. First we show a[y,w] <a [y,x] . By

the triangle inequality

c+d _ o+d - 1 _ 1 1
< Il—?—-x [l =Na( £ x <) + 5 (ex+dy) ||
<d + 1
- €
and 1 = || ex+dy || < o+d.

Hence 1 < c+d < de+l
Now consider two cases,
1. Ifd<1
a [y,w] = |l y=(ex+dy) || = || (1-d)(%-y)+(c+d-1)x ||
< (1-d)e+(ctd~1) < (1-d)e+de = ¢,
2, Ifd>1

o [v,w] = || y-(ox+day) || = 1§ x + (1~ 1) (cx+ay) ||

c 1l _ c+d-1 de _
=gq¥tl-3=—7—== —g= ¢

The assumptlon bc > ad 1implies z ¢ C(y,w), 8o the
above implies a [z,w] < a [y,v]) < a [y,x].
q.e.d.

COROLLARY 4.16. Let X ©be a normed linear space. Then

X 18 an inner product space 1ff there exist ¢ > 0 and
O < p <1l such that for x,y € X with a [x,y] < ¢ there

exlste O < A <1 s8uch that (x,y) € A(A,p,=).

Now we give some examples which answer some of the
questions connected with conjectures 4.5 - 4.7. They also

4llustrate some of the difficultlies in extending theorems

4.12 - 4.150
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EXAMPLE 4.17. Before actually giving the example we make

a preliminary calculation. BSuppose X 18 a normed space,

x,y ¢X, 0 <A, p<l, || s+(1-M)y [[ = Al x [| +(1=A)]| ¥ ||, and

| px=(l=p)y |[= | wllx || = (I=p)|l vy || |. It ie easily

verified that (x,y) ¢ A(\,p,=). Geometrically our assumption

x y AX+(1-A)y

means :“‘;; )/nxn' My ne ™ 7 i ara-ny
PX=\1-p)Y

and /Ilux—(l-u)y I all lie on a flat spot of the

unit sphere.

With this in wmind consider the two dimensional normed

o -.tu__‘ﬁ"

linear svpace whose unit spnere S5 18 determined by
4x° + 4/3 y2 =1 and |y| >3 |x| \

(x,y, € 3 1ft ¢ |x| + |y] =1 and 3|x| > |y| > 1/3 |x| ‘
4y* + 4/3 x* =1 anda 3|y| < |x|

(i.e. this is the ll sphere whose corners have been rounded

Dy ellipses with centers O and tangent to the sldes of

the 1l sphere ).

1/4,3/4)
(3/4,1/4)

FIGURE 4.2
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If a [x,y] < 1/4 the x/“ x || and y/lly | can
have three relative positions. (1, both lie on a flat epot
of the sphere and at least one is not at the end of the flat
espot (2) both lie on an elliptical section of the svhere
and at least one does not lie at the end of the elliptical
section or (3) one lies on a flat spot and one lies on an
adjacent elliptical sectlon.

If either (1) or (2) happens then for any O < A < 1

and for O < p <1 chosen so that px—(l-p)y/" ax-(1-p)y ||

lies on the same flat spot or elliptical section as x/“ x ||
and y/“ ¥l we have (x,y) € A(\,p,=) Dby the above remark.
If (3, happens assume for definiteness that x/“ x || lies
on a flat spot and y/“ vl lies on an adjacent elliptical
gsection., If O < \,p < 1 are choeen go that

AX+(1-A) -(1=p)
B TEe and PR | e

1-A)y || (1=)y ||

lie on tke same rlat spot (elliptical section) as x/“ x |l

(y/“ y P then  (x,¥) € Alhm<) ( (x,¥) ¢ AB2) ).
By continuity 1t follows that we may choose A and 4
so that (x,y) € A(\,p,=). This naturally disoroves
conjectures 4.8 and 4.7 as stated.

If we take K = C((1/3,2/3),(2/3,1/3)) we see that
for x,y ¢ K there exist O < A\,p < 1 such that
(x,¥) € A(N\,p,=) 80 in theorem 4.14 "for a fixed p*
can not be reolaced by "there exists a ;. (devendent on
x and y)*. Also for x,y € K then (x,y) ¢ A(\,n,>)
for all O < A,y < 1. Thus "=" in theorems 4.12-4.14

can not be replaced by ">,
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Furthermore if we take K = 8((1/2,1/2),.01) and
p = .0001 then for all 0 <A <1l and x,y ¢ K it follows
that (x,y) ¢ A(A,p,=). Hence the term "cone" in theorem

4.11 can not be changed to "get with nonempty interior".

EXAMPLE 4.18. This example has many of the properties

of example 4.13 and clearly illustrates how cones behave,

Let X be the Minhkowskl plane whose unit sphere 1is
given by i(x,y) | x2+y2=1 Af xy > O and |x|3 + |y|3 =1
1f xy <0§ . Let K =0((1,0),(0,1)). Then for x,y ¢ X
and all 0 < A, p <1 we have (x,y) ¢ A(A,p,<). Thus

neither can "=# be replaced by "< ¥ in theorems 4.12-4.14.

|x|3+|y|3 =1 x“+y° =1

N\ /

FIGURE 4.3

These results and examples settle conjecture 4.5 when
K 18 a cone or set with nonempty interior. 8Still oven

18 the following interesting case of conjecture 4.5.

"——r—w



THESIS




65
What additional hypotheses are necessary for conjecture 4.5
to be true when K 418 the boundary of a convex sget with
nonempty interilor?

While example 4.17 tells us that conjecture 4.6 1is
false 1t gives no 1dea of what additional hypotheses are
necessary for the theorem to be valid. This conjecture
has been much more difficult to attack than the other two.
Corollary 4.21 will be one small step in thie direction,

however.

The next theorem is very much in the spirit of the
previous ones but is of a slightly different nature. It
18 a localigation of theorem 1.18 by Lorch.

THEOREM 4,19, let X be a normed linear space. Then X

18 an inner product epace iff there exiat O < A < 1/2 and

€ >0 such that for || x ||= ||y ||=1 and || x-y || < ¢
then || Ax+(1-A)y || = || (1-A)x+Ay ||
Proof.

Again 1t will suffice to prove the theorem when X
has real dimension two.

Let £(n) denote the sequence defined recursively by
£(0) = A and f(n) = (23-1)f(n-1) + (1-A) for n > 1. Then
|1/2 - £(n)| = |1/2 = ((2Ax=1)f(n-1) + (1-A))|

= |1/2 - £(n-1)| |2n-1|
< |1/2 - £(n-1) |
since 0 < |2\-1] <« 1. Thus f(n) -=-> 1/2 and 0 < f(n) < 1.
We wish to show by induction

1 o . e am—n FHY
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Il £(n)x + (1-f(n))y || = || (1-f(n))x + £(n)y ||
for ||x |l= ||y |l=1 and || x-y || < ¢. By the hypothesis
of the theorem the induction hypothesis 1s true for n = 0.
Suppose it 18 true for n = 0,1,...,m. Then
|| £(m+l)x + (1-f(mw+l))y || =
| Mf(m)x + (1=£(m))y)+ (1=A) ((1-f(m))x + f(m)y) || =
I (1=A)(f(m)x + (1-f(m))y) + A((1-~f(m))x + f(m)y) || =
|| (1=f(m+l))x + £(m+l)y ||
The middle equality follows from the induction hypothesis,
the hypothesis of the theorem, and lemma 4.15.

Since f(n) ~-> 1/2 thie also impllies x+y | x~-Yy.

Suppose X were not strictly convex. Then we could
find x,y ¢ X and a,b ¢ R such that ||[x ||= ||y ||= 1,
|| -y || < ¢, 0O <a<b# 1l-a, || ax+by || = 1, and

Il A;x + (1-A;)(ax+by) || =1 for 0 < A, < 1. (See figure 4.4)

Then x+y | x-y but the unit sphere has a unique supporting

hyperplane at Xty and it 1e not in the direction of

x-y. Hence X 1s strictly convex.

FIGURE 4.4

e 4

ot actia
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Now suppocse || x ||= ||y |l=1, || x~y || < ¢, and
[ Ayx + (1=-2)7 |l = |l Agx + (1-Ap)y || where Ay # Ag.
Then (A1+A2)x + (2 - (*1+*2))y.l x-y and x+y | x-y. Since
X 418 strictly convex Al + Az =2 - M = Ayor A = l - kl'
Thue || Mx + (1-A)7 || = || (1=A))x + My || for 0 <Ay <1
which implies || ax+by || = || bx+ay || for a,b > O.

Ny II=1
and || x-y || < ¢* imply || x+y || > 1. Let 0 < a < 1,

il

Choose O < ¢' < min(¢,1l) 8o that || x ||

Hx|l=ly ll=1, and || x-y || < €¢'. Then
+
[| axty || = || & || x+y|| 2X— + (1-a)y ||
| x+y ||
= || (1-a) == _ 4+ a|x+ty ||y ||
|| x+y ||
or
| axty || | x4y | = || (1-a)x + (1-a+a|| x+y |E)y I
Likewise
+
| x+y Il = || || x+ay || —=—=2{— + (1-a)y ||
|| x+ay ||
+
= || (1~a) Xtay 4 || x+ay || ¥ ||
|| x+ay ||
or
I| ax+y || || x+y || = || x+ay || || x+y ||

= || (1-a)x + (a-a®+ || x+ay Py |I.

Note a - a° + || x+ay |F'3 O and 1 - a + a || x+y ||> 0.

The function g(b) = || x+by || has the prorerty that
g(0) =1, g(l) > 1, and g(-1) < 1. Also 1% attaine its

minimum at a unique noint bo and the above values show that

l-at+a|| x+y |F - a-a® + || x+ay “2

by < 0. Thus YT-a T=a

since both are vrositive and have squal functioh values.

Thus for 0 < & < 1 we have al| x+y ‘F + (1-a)2 = || x+ay IF.

seas
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Let ||x ||= ||y ||=1 and || x-y || < ¢!. There exists
an unique ellipse E through the voints x,y and S A
| x+y |l
with center 0. Let | | be the norm determined by E. Then
lax+y|? = a|x4y|? + (1-a)®
= a|| xty |f + (1-a)2
= || axey |F
for 0 <a<1l. Thus Enan(x,y)‘ = ENC(x,y). Now
R
choose x',y! 80 that x', —*—¥' _ ¢ c(x,y), || x' || =
| xt+y* ||

Il ¥* ||=1, and || x'=y' || < ¢'. Let E' be the unique

]
ellipse through x!', y!, and-l-‘ﬂ——“ with center O.
xl+y|

Then E'ASNC(x',y'!) = E'NC(x',y') and in particular

E'NSNC(x?, _x'*y! ) = EYAC(x!?, xy' ). 8ince
[l xt+y* || I x*+y* ||

E and E' are unique and agree on a section of curve
we must have E = E', This process may be continued and in
a finite number of stevs we have shown EANS = E, Thus X

is an inner product space.

yl

x'+y' /|l x*+y* ||

FIGURE 4.5
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COROLLARY 4,20 Let X be a normed linear snace. Then

X 1e an inner product space iff there exist ¢ > O,

O < A <1/2, and a function f : [0,2] -— [0,2] euch that
tor ||x ||=|ly =1 and | x-y || < € then

[l Ax+(1-Ajy || = £(|| x+y |]).

COROLLARY 4.21. let X be a normed linear space. Then

X 18 an inner product space iff there exist ¢ > 0 and
O <A <1/2 such that for ||x ||= ||y ||=1 and || x-y || < ¢
then (x,y) € A(A,1/2,=).

Corollary 4.20 suggests a conjecture similar to con-

Jecture 4.6 and wnich 1s even more localized than 4.6,

CONJECTURE 4.22: Let X be a normed linear space. Then

X 1s an inner oroduct svace iff there exists ¢ > 0 such
that for || x ||= ||y ||= 1 end || x-y || < ¢ then there

exist O < A\, p <1, A # p 80 that

p (1) |l axt(1-0)y [P = A@-A) [l wx + (1)y IF r (5#a=1) (M)

where r 18 one of the relations >, =, <,

We will not pursue this conjecture but continue to
work on conjecture 4.7.

THEOREM 4.23. A normed linear space X 18 an inner product

space A1ff there are O < A, p <1, ¢ >0, and a relation

r euch that for a [x,y] < ¢ then (x,y) ¢ A(A,p,T).
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Proof;

Since the necessity of the last condition ie obvious
we will show only the sufficlency. Moreover, we may assume
X hae real dimension two. We will prove’ the case when
r 1e < since the othere can be proven in the usual manner.
Let 8 Dbe the unit ephere of X, E be the maximal inscribed
ellipse, | | be the norm determined by E, and D = SAE,
If D# 8 there will exist z,w ¢ D such that C(z,w)NAD = §z,w} . T
Then there exist a,b > 0 such that the vectors x = az+bw
and y = (p/l-p)az — (A/1-A)bw satisfy || x ||=1, || x~-2 || < ¢/2,
and || y/lly Il- 2z |l < ¢/2. Then a [x,y] < ¢ 80 that ‘\
B (1) || Ax+(1-0)y [B + A=A || px = (1)y |F <
as(ap-2an) || x 1B+ (1-0) Q) (-2 | 7 (F <
Ap(Atp-2in) [x]2 + (1) (1) (A2in) [ 32 =
B (1) [Ax+(1-A)¥ 12 + A(1-A) [px = (1p)y|® =
p(1) || Ax + (1-A)y |B + AQL-A) || x = (1-w)y .

‘Thus equality holde throughout so x ¢ D, But

x ¢ C(z,w) contrary to the choice of gz and w. Hence

D=8 and X 1is an inner product space.

FIGURE 4.6
q.e.d.
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THEOREM 4.24. let X be a normed linear space. Then X

is an inner product space 1ff there exist O <« p < 1, a
relation r,.and ¢ > 0 such that for X,y ¢ X satisfying
a [x,y] < ¢ then there exists 0 < A <1 such that
(x,y) ¢ A(N,p,T).

Proof.

If X 18 an inner product space then for all O < A < 1
and X,y ¢ X we have (x,y) ¢ A(A,p,=).

Assume such a u,¢, and r exist. We may assume X
is real and two-dimensional. Let »r be >,

What we wish to show 18 that if a [x,y] < ¢ then
(x,¥) ¢ A(Myp,>) for all 0 < A < 1l. By theorem 4.23 thie
would imply that X 1s an inner product space.

let a [x,y] < ¢. Then either there is an ellipee E

with center O through x/|| x |, /Il ¥ |, ana —BX=()y
| px=(1-1)y ||

or || px=(1=p)y ll=nllx || + (X=p}|l ¥y |l or || px=(1=p)y || =

Ipll x || - (1=p)|l ¥ || |« If either of the laet two cases

happens 1t follows immediately that for all O « A < 1 then
(x,¥) ¢ A(A,p,>). Thus supnose E exists and let | |
be the norm determined by E.

If the assertion is not true then there will exist
r,8 ¢ C(x,y) such that ||r ||=|r| =||8 ||= |8] =1 and

|| ar+be || < |ar+bs| for ab > 0. Let r = mx+ny and

8 = px+qy where m,n,p,q > 0. Let A = IEE'—%%E%;%;Es' .

Because a [r,s]) < ¢ there exists 0 < A <1 such that
pA(u+A=2uA) [£]2 + (1) (1-A) (w+a-20) [A8|® =
pA-2A) | [P+ () (1-A) (p+a-2p) || ae | <
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B (1p) || ar+(1-a)As [B + A(1-A) || pr=(2~p)as |P <
1 (1) [AP+(1=2)A8|2 + A(1-A) |pr=(1-)A8|2 =
BA(p*A=23A) 1|2 + (1=1) (1=7) (p+A-2p0) | 48| 2

which 18 a contradiction.

FIGURE 4.7

If r 1s < then essentially the same proof as the
above goes through with all inequalities reversed.

a.e.d.

This completes the results related to conjectures
4.5-4.7. The following table summarizes the results of
thls section. It 1lists the validity of conjectures 4.5-4.7

when varlous additional hypotheses on A,p, and r are given,
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A W r donjecture 4 5 Conjecture Conjecture
sSodies Cones 4.6 4.7

I 1/2 = T T T (A#1/2) T

D 1l/2 = T T ? T

I I = P T ? T

D I = F T ? T

D D = F F F F

I I >or < F F ? T

D I >orc< F F ? T

Notation:

T == true

F -~ false

I -- A (i) indevendent of x and y
D -- XN () dependent on x and y

FIGURE 4.8

4. testriction

There 18 a second type of localization which is occasion-

ally considered in normed linear spaces. This type of local-

jzation has oecen studied by Day and vroolems of thls tyne
were examined by Kolumban [45]. The actual conjecture

we study is a varlation of conjecture 4.5.

CONJECTURE 4.25. A normed linear space X 1s an inner

oroduct space iff there exliet a nonemnty set K and a
relation r such that fcr x € K and y € X there are

O < A\,p <1 s8uch that (x,y, € A(\,p,r).
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Qur »revious work sug,;ests that additional hypotheses
on K, A, p, and r might be necessary.

Let X ©pne an inner product svace and Y be a normed
linear space of dimension at least two. If Z =X XY
and the norm 1s given vy || (x,v) “2 = || x |F + ||y IF
then for all (xl,O), (xz,y) € Z and all 0O < A\,p < 1
we have ((xl,O),(xz,y)) € A{\,1,=). But if Y 1is not
an inner oroduct svace then neither is Z. Thus a necessary
assumption on K 1s that Lin fK} contains a hypersubspace.

Theorem 4.26 shows that this condition on K 18 also
sufficient (at least with additional hvpotheses on 1\, p,

and r,.

THEQOREM 4.26. Let X ©be a normed linear svace. Then X

is an inner product space i1ff there exist an srt K and
0 < A\yp <1 s8uch that Lin {K} cohtalns a hyoversuosvace of
X and for x € K and y ¢ X then (x,y) € A(N\,p,=).
Proof. |
If X 1e an inner product s»nace let K = X and
d < \,p <1 ©0e any values.
Suppose K exlsts. First note that 1t willl suffice
to prove the theorem when K 18 a basis for a hyversubspace,
Secondly we observe that éi% ok has the same vroverties
as K.
Now assume X 18 real two dimrensional and by the
above remarks let K = fax | acR§ . Let S De the unit
sphere of X, E; be the minimal circumscribing elllpse

of 8 with center O, E2 be the maximal inscribed elllose




THESIS

e mman




75
with center 0, and | | be the norm determined by E,.
Now let u,v ¢ Elf\s be independent vectors and

assume u,v ¥ x/" x|l If x = autbv and

= b8 -
y /1-11 u /1-\ ¥ ‘then

pA(R=-2pA) || x B + (1) (1-0) (#r=2pA) || ¥ IF =
p(1-p) || Ax+(1=\)y IF + A(1-A) || px=(1-p)y IF =
p(l-p) |kx+(l—h)}'|2 + A(1-2) lux-(l-u)yl2 =
pA(p#r-2pn) [x]2 + (1-1) (1-7) (p*A-200) 7] 2 <
pA(th-za) || x B + (1) (1-0) (wen-2n) |1y 1P
Hence equality holds throughout ao"-%—n € Eln 8. A
eimilar argument showe that -nii—“ ¢ E;N 8.

Next suppose u ¢ Eln 8, w¢ Ezn 8, u%w, and
u,w 7‘"—:-—" . Let w = cx+du and then

pA ez |2 x (R + (1) (1-n) (ade2in) || o w0 I =
s llw B+ aa-a) 1B x - Gt u f >
p(1)|w|® + A(1-N) | BR x - ﬂ-}h‘{—‘} u|? =
palr-2in) 1 1% + (1) (1-0) (w¥a-20) | S5 ul® =
pA(ar-2an) | £ x IF + (1) (1-0) (w¥a-2pn) [ ox v 1P
Thus equality holds throughout so w ¢ E;{\8.

Hence El and E, are ellipses through -".-3;-“
and w with centers O, But it is easy to see from the
definitions of El and E2 that they have the same tangents
at -n-—:-—" as 8 does. But there 18 an unlique ellipse
satisfying these conditions so E, = E;, = 8 and X 1s

an inner product space.
Next assume X 18 complex two-dimensional and
K ={o.x | a ¢ G}. Let y Dbe a vector independent of

X and conelder X as a four dimensional real space. Then
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Lin {1x,y, iy] 18 a real three dimensional space, L1n£ 7,4y§
ie an inner oroduct svace and every two-dimensional subspace
through 1x 1is an inner product epace by the above result.
Hence by lemma 4.2 Lin {1x,y,1i} ie an inner product
space. By applylng the lemma once more 1t follows that
X 1s a real inner product space and hence a complex inner
product space.

Finally if the dimension of X 1is greater than two
then the above two cases and lemma 4.3 1mply X 18 an

inner praduct space.

q.e.4.

Finally we have an example to show that "=" in 4.25

cannot be replaced by “>®,

EXAMPLE 4.27: Let X be the 1, plane and k = {(0,1)§ .

It is easy to check that for all (a,b) ¢ 1, then
((0,1),(a,b)) ¢ A(1/2,1/2,>).

Conjeoture 4.25 like conjecture 4.8 has not yet been

completely solved.
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CHARACTERIZATIONS OF INNER PRODUCT SPACES

In this chapter we continue to obtaln characterizations
of inner product spaces. Several of the theorems are
direct generallizations of known results or new proofs of
known results, but many are new theorems. Whenever possible

geometric concepts are brought into the discussions.

1. Characterizations Using Convex Subsets

Theorem 5.2 is very representative of the theorems
which are characterigations of inner product spaces. The
proof 18 rather geometric and there is a geometric inter-
pretation of the theorem. This theorem, like many of the
characterizations, 1s a special case of the following

princlple.

PRINCIPLE 5.1. lLet A be a theorem true in Euclidean

geometry. A normed linear space X 18 an inner product

space iff A 1s true in X.

Every high school student of plane geometry ie& familiar.
with the property of a cirocle that from each point »p
outside the circle there are two lines of tangency to the
circle and the distances from p to the vpoints of tangenocy
are equal. It is not too difficult to show that this property
characterizes the circle among the plane, closed, bounded

77
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convex sets with nonempty interior. We show in theorem
5.2 that a eirilar property characteriges the spheres in
inner product spaces and characterizes the inner product

epaces among normed linear spaces.

THEOREM 5.2: Let X Dbe a real normed linear space and K

be a closed, bounded, convex subset with nonempty interior.
Then the following are equivalent: ’
1. X 1is an inner product space and K is a ball in X.
2. K has the property that for each vair of hyper-
planes Hl and 32 supporting K at x and y respectively
and each r ¢ lelH2 with r,x and y 1linearly dependent
then || x-r || = || y-r ||
3. K has the property that for f,g ¢ X* and

X,y ¢ K satisfying f(x) = sup f(z) and g(y) = sup g(y) then
zeX zeXK

lg(y) - g(x)| || £(¥)x - £(x)y || = I£(x) - £(y)| || &x)y - e(¥)x ||
Proof.

First we note the equivalence of 2 and 3. This
equivalence 1is basically the equlvalence of continuous
linear functionals and closed hyperplanes which in this case
is Hlva f'lr(x) and H, = g'lg(y). If £ and g are
not linearly independent or x =y then both 2 and 3 are
trivial. If f and g are linearly indevendent and x # y
then the point r 18 given by r = ax+by where
a = g(y)(£(y) - £(x))/(f(y)g(x) - g(y)r(x))

b = £(x)(g(x) - g(y)y(f(y)g(x) - g(y)r(x)).
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Now
| x-r || = || y-r || 121
le(y)-g(x)| || £(y)x-£(x)y || = |£(x)-£(y)| || &(x)y-g(¥)x |l

That 1 1implies 3 follows from the representation
theorems for linear functionals in inner product spaces.
Let K = 8(w,p), f(x) = sup f(z), and g(y) = sup g(z).

z¢K zeK

There exist u,v ¢ X and 0,8 >0 such that |Ju ||= || v ||=1,
x = wtpu, y = wtpv, f(z) = (z|ou), and g(z) = (z|8v). By
writing everything in terms of (u|w), (u|v), and (v|w) 1t
is a stralghtforward calculation to show
le(y)-e(x)| || £(y)x-1(x)y |l = |£(y)-£(x)| || g(y)x-g(x)y [I.

To finish the proof it suffices to prove that 2 implies 1.
We begin by proving the theorem when the dimension of X 1is
two and using this to prove the theorem for higher dimensions,
We conslder X as a Minkowskl nlane and often uee the
language of plane geometry rather than that of normed linear
spaces in describing the proof.

let Il and 12 be parallel support lines to K and
X, ¢ Ilf\x for 1 = 1,2, Furthermore let 13, I4 be support
lines of K parallel to the line h determined by Xy
and x,. Finally, let x;, ¢ I;NK for 1 =3,4 and a=1I;NI;,
b = Iin I, ¢ = 12ﬂ14, d = I;Nn 13 and k be the line
determined by X and X4. The existence of such linee
follows from standard theorems on convex bodies.

By hypothesie || a-x; || = || a-x; ||,
I b-x, = 1l b=xg |, I} o=x5 Il = | c-x4 ||, and
Il a=x5 || = || &-x5 ||. Thus
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2 |la-b || = || &b |[ + || d—c ||

= || a=x) || + || =P || + || o=%5 || + || x5 = 4 ||

= |l a=xg || + || b=xy4 || + || e=x4 || + || d=~x5 ||

= || a~d || + || e=b ||

=2 || a-d ||
Hence |[c-d || = || a-d || = || a~b || = || b~c | Also h,Iz, and I,
are parallel 8o || a-x, || = || d=-x, || and || o=x5 || = || b-xy |l.

These i1mply

| a=x; Il = Il a=x, Il = [l a-xg || = || &-x; || ana
llo-x, [ = || b=x, Il = Il o=xp Il = I o-x [l
Finally || a-x) || = || a-x5 || = 1/2| a-a || = 1/2| b-c || =

|| b-x4 || = || b-x; || and || &-x5 || = || 4-x5 || = 1/2]| a~d || =
1/2||o=b || = || e=x5 || = || e=x4 |l In conclusion x,; are

the midpoints of the sldes of the square with vertices a,b,c,d.
Xy ;

Ip

FIGURE 5.1

If w=1/2(x,+xp) and p = 1/2|| x;-x5 || then xz+x; = 2w
and || x,-w ||=p for 14=1,...,4. The norm | | glven by
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Ia(xl-xz) + p(xa-x4)| = 2p(a2 + 32)1/2 is determined by
an inner product and |X,-%X5| = || ;=% || = [xg=%4| = || xz3=-x,4 ||
Let 1z # xy be a boundary point of K and J be a
support line at z. Let r =1I;NJ, 8 = Izn,j, t=I.,Nn)

and assume the notation chosen so that 2z 4is between r

= r—-z
and 8. Iftm +]—1=-ZL—”- then

|xg-r| = || xz=r || = || r-z || —L=z2L

|12~8l = “ X5—8 ||= ||g-z |l= Is;zl

and |x,~t| = || xg=t || = || t-2 || = It;zl
) T
a T 1

X3 X4
J\ 1

~ 4

d c 12

I

FIGURE 5.2

Ifns= lr-xsl and q = |e~-x;| then by the above relations
and similar triangles.

|r-8| = (n+q)m

|e-t| = (p+q)(n+q)m/(p-q)

|e=t| = (p-n)(p+a)/(p-a)
Thus

(p-n)(p+q)
T I‘E-z’ - EFH’ +| o=z m!g?i:;::%gn q; E;_'qm—
p-
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- géo-q)+ng-n)§e+q}
or 1 q(p-q P n+q,

which slmplifies to n = p %E% .

But |r-e|2 = |r-d|2 + |d-e|2

or mz(n+q)2 = (p-n)'2 + (p-q}2

o (p- q\z + (p-q)°
or m = =1,

(pp—;a+q)

Similarly ( \
i p-g
2 _ P o] 2 "q“’qﬁ' 2
2] = (p - (p-q) + (p - — )
p 229 4 q p =29 4 g
P pHq
=p2.

Thue K = 8(w,p) and X 1is an inner onroduct space.

Now suppose the dimension of X 18 greater than two.
Choose a basie {x 3§ for X such that §xJCINT(K). For
any two-dimensional subspace L which contains an Xy then
KAL satisfies the hypotheses of the theorem and condition 2
80 L 1e an inner oroduct space by the above argument.
Lemma 4.3 1lmplies X 18 an inner product svace.

It remains to show K 18 a sphere. First sunpose
the dimension of X 1is finite., If L 18 a two-dimensional
subspace of X such that LAINT(K) # § then LNAK 1is a
ball in L. 8ince K 18 comvact there must exist a two-
dimensional subspace L' such that the radius of this ball
is maximal. Let w Dbe the center of this ball and p be
its radius. Choose x,y ¢ L'NK 80 that || x-y ||= 20 and
x and y are linearly dependent. Either x or y 1s not

O 80 assume x # 0. If =z 1is on the boundary of K and

independent of x then L"AK satlefies the hypotheses
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of the theorem.and condition 2 where L* = Lin §z,x3 .
Hence L*N K 1is a ball (in L") with radius R < p. But
2R > || x-y ||= 20 80 R =p and the center of this ball
18 w = 1/2(x+y). Thus || w-z ||=p ~and K = S(w,p).

Finally suppose X 1is infinite dimensional. Let Hl
and H2 be parallel supporting hyperplanes to K and
x, ¢ nin K. Let y ¢ INT(K) and 2z be any point on the
boundary of K. Then by the above argument Lin {xl,xa,y,zZIII
is a ball in Lin §x,,xX5,¥,2§ . But Lin {xl’xz,y,z]nﬂi
are parallel supporting hyperplanes to this ball e80 it has
center 1/2(x;+x,) and radius 1/2| x;-X, |, Thus
| 1/2(xy+x5)-2 || = 1/2|| x;-%5 || and K = 8(1/2(xy+x5),1/2(| x;~%5]1).

q.e.qd.

Condition 2 1in 5.2 is somewhat weaker than assuming
that from a point r outside of K then all support lines
to K through r have the same length. The assumption
that x,y, and r are linearly dependent 1e particularly
significant geometrically when O ¢ INT(K) but thére is
no need to assume this. Theorem 5.2 waa stated for real
spaces since complex spaces are usually consldered as real
spaces when supporting hypervlanes are discussed.

The natural way to generalize this theorem would be
to use some subset of the class of all supporting hyper-
planes of K. One method of doing this would be to add
the condition in 2 ¢that r must also lie on a given

surface containing K. Theorem 5.5 shows that this condition

no longer characterizes inner onroduct spaces, however.
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DEFINITION 5.3: Let X Dbe a real normed linear space and

K be a closed convem subset with nonempty interior. A

set K' 18 an E-set of K Af for each r ¢ K', f,g ¢ X%,

and x,y ¢ K which satisfy
1. f(x) = sup f(z)

z¢k
2. g(y) = sup g(z)
z¢kK _3
3. f(r) = £(x), g(r) = g(y), r ¢ Linéx,y}
then || r-x || = || r-y |l
DEFINITION 5.4. Let X be a real normed linear space. \\

The eet D(X) denotes the vectors r ¢ X such that there
exiset f,g ¢ X* and x,y ¢ X satlsfying

1. Ix|l=flyll=1, x]y, © ¢ Lin {x,y}

2. Jrx)l =1t |, lex)l = 1llell

3. f(r) = £(x), g(r) = g(x).

THEOREM 5.5. If X 18 a real normed linear svace then

D(X) 1is an E-get of the unit sohere iff X hae symmetric
orthogonallity and is etrictly convex.
Proof.
Suppose D(X) ie an E-set of the unit svhere. Let
lx |l=|ly |l=21and x| y. Choose f,g ¢ X® 80 that
f(x)=g(y) =llfll=1lg|l=1and f£(y) = 0. Let
r = x+(l-g(x))y. Then by assumption
l2=x || = || -y || 80 |1-g(x)| = || x-g(x)¥ |l
Now apply the hypothesis to -x,y,-f,g, and ry= -x+{1+g(x))y.
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Then || ry+x =1l ry-y | so |l+g(x;| = || x-g({x}y || .
Hence g(x) = 0 and y | x. The fact that X must be
strictly convex 18 obvious.

Supnose X has syrmetric orthogonality and is strictly

convex. Let ||x|{|= ||y ||=1 and x | y. Then there
exist unique f,g ¢ X#®# such that f(x, = g(y; =||f || =
ll 8 Il = L. Moreover, 1t(y, = g(x, =0 80 r = x+y satisfles
f(r; = f(x), g(r) = g(y), and || r-x || = || r=y || . ™hat

all r are of this form follows from the symmetric
orthogonallity.

g.e.d.

With theorers 5.2 and 5.% in mind we make the following
conjecture which 18 a very difficult nroblem since it 1is
unsolved even for the sneclal case as a characterization

of the circle in the Tuclidean nlane.

CONJECTURE 5.6. Let X bve a real normed linear toace

and K oe a closed, oounied, convex subset of X with
nonemnty interior. Taen ¥ 18 ctrictly convex with
eymmetric ort-ogonality and K 18 a snnere in X Aff there
exists o closed subset K' of X which contains K in

its interior and wnose ovoundary 18 an lk-set of K.

2. A Conjecture by Hopof

The next theorem verifies a conjecture of Hoof [32)

in normed spaces. It 18 also stronger than a result by
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Ohira which is a special case of theorem 1.31,

THEOREM 5.7. A real normed linear svace X 4is an inner

product space if and only if || x ||= ||y ||=1 and
x | vy 1mply || x+y || = || x-3 |l

Proof:

If X 1is an inner »roduct svace, || x ||= ||y || =
and x | y then || x+y ||= || x-y ||= 2.

Supoose X has the above property. First we show
that X has symmetric orthogonality. Let ||x |l= 1|y |l =
|| ax+by ||= 1, x | y, and y | ax+by. By aporooriate cholce
of notation we may assume a,b > 0 80 by orthogonality
1 >a>b >0, By assumption || x+y || = || x-y || and
|| ax+(b+1l)y || = || ax+(b-1)y || . Thue the convex function
g(r) = || x+ry || has the following properties: g(0) = l<g(r)
for r ¢ R, ¢g(1l) = g(-1), and g( —= b+l ) = b'1) But

2251 ana 0>t > -1, Hence g( 2L) > g(1) > 1 ana

g(-1) > g(~E§l)‘3 1 which implies either a =1 and
b+l

and b=0 or | xtry ||[=1 for —=>r >-1. If a=1
and b = 0 then y | x. If |[[x+ry |[=1 ror~3;l.3 r>-l

then a~t = ||x+-§ vyl =

8o 1t remaine to determine b,
Since y | x+by and

L= |ly |l= |l y*(x+by) || =|l ¥y = (x+by) || we have

1 = || ytr(x+by) || for -1 <r < +1,

y¥r(x+by) | x + by for -1 <r < +1, and x+ry | ¥

for b+l >r > ~1. In particular x+(b+l)y | x + by,

x+(b-1)y | y, x+(b-1)y | x + by, and x + (b+l)y | v.

"~ m,
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But 1f b # O then the unit sphere at x+(b-l)y has a
unique tangent line (namely one in the direction of y)
contrary to the above calculations. Hence b =0 and y | x.
Also note that these equations imply orthogonality is right

unique so that X 1s strictly convex.

FIGURE 5.3

If the dimension of X 18 three or greater this imvlies
X 1s an inner oroduct space. Thus we now assume the dimen-
sion of X 18 two. We use construction I of chapter 3
(1.e. the points of X are those of R° and the norm is
the one determined by the unit sphere 8 granhically
represented by {(x,r(x)) | 0< x< lz in the first quadrant
and by f(lf xf'(x)-f(x), f'(x)/xf'(x)-t’(x))j’ in the second
quadrant) to describe X. Alaso note that the norm of X
is Gateaux differentiable so f'(x) exists on ([0,1).

Choose O<a,b,c,4,<1 80 that : -a = l/af‘(a.)--r(a),
£(o) = £' () prr(v)-£(b), f(c)

¢, and f'(d) = =1. What

we show 18 that a =b=c =da = /2 and that (1,1) | (-1,1).
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8ince we could start with any pair of orthogonal unit vectors

as coordinate axes this implies that if || x ||= ||y ||=1
and x | y then |[x+y || = || x-y || = J2 and x+y 1 x-y.
8ince I/c = || (1,1) || = || (-1,1) || = 4 + £(a) thie

glves us one relationship between ¢ and d. Also by
convexity of the unit sphere the tangent line at (4,f(d4))
must intersect y = x at a voint with x-coordinate at
least o©. The point of intersection 1is (d+f(d)/2, d+f(d)/2)
go 1¥T()/2 5 Lqer(a) or a+r(a) > {Z. Hence

[| (1,1) || >J{2 and by the above remark this also apolies

to all r,s with ||r ||= | e |[=1 and r | s. Thus
Il (a+t/at'(a)-1(a), (a) + T'(2)/arr(a)-1(a)) || =
Il (0,%/a) || = */a >J2 ana

Il (B = Ypri(o)-r(v), £(d) - I Plprr)-r(n)) |l =
Il ¢ Yem) , o) || =Y/2(0) > /2.
We now consider cases to see which relative orders
of a,b,0,d are permissible.
Suppose ¢ < d,.
Case 1. If a <c <d then
¢ = “Ljarv(a)-r(a) < “L/orr(c)-f(c) < ~Y/ari(a)-t(a) = a
which 18 a contradiction.
Case 2. If c¢c <d <a then
a = “l/afri(a)-1(a) < “Ljarr(a)-r(a) =c
which is again a contradiction.

Case 3. If oc <a<d then

r(")/a <1 and f'{(a) > -1. Hence
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1 = af(a)-ar'(a) = a%( T(®)) _ r1(a)) <2a® <1

which i8 also a contradiction.
Now suppose 4 < c,
Case 4, If b‘f d < ¢ then

¢ = f(c) < f(d) < £(b) and

£i(c) > ri(d) =c > £'(b) = £(b)
cf¥(c)-r(c) arv(a)=-r(a) ~ br'(b)-r(b)

which 18 a contradiction.

case 5. If d <o <b then f(b) < f(c)=c < r(d) and
(o) r£1(b) > £'(c) > £1'(a)
br'(b)-r(b) ~ eft(c)-f(ec) ar'(da)-r(a)

which 18 again a contradiction.

Case 6, If d «cb<c then f'(b) <=1 and f(b) > b,
£2(b)

Then -1 > f'(b) = m

1-bf(b) < £2(b)
0 < r2(b) + bf(b) - 1 < 2r%(b) - 1

Y < ()
which 18 also a contradiction.
Hence ¢ = d which impllies c = l/‘—g which in turn implies
a =Db= o,

We may now complete the proof. From the above results
we see that f on (I/JE , 1] determines the entire unit
sphere. Moreover, f'(x) existse except for x = 1 and
f*(x) exists almost everywhere but 18 never equal to zero.
In particular for x ¢ [l/J-, 1) then

f'(x)/ a

1
Y 5 e x)-rix)r 10X * xf(x)-f(x)) an

1 1 !
/[2' (x- /xfl(x)_r(x)) r(x) - f (x

7 x£t(x)=£(x)) are
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orthogonal unit vectors. For those pointe x where f"(x)

exists we have

£ '
) - e L g @ TR ey

£ I/Xf'(x)'f(x) H(x+ l/xf'(x)-r(x))
which simplifies to f%(x) = (xf!lx)=-f(x) )3. This differential
equation must also satisfy the boundary conditiones f(1l) = O,
£1(1) = - 00, £(}/5) = 1/5, and £1(Y/yz) = -1, The
equation is not very difficult to solve and by the boundary
conditions has a unique soclution. But we already know one
solution, namely f(x) =aJ1 - x2 and hence it is the
solution. Thus X 18 an inner oroduct space.

q.e.qd4.
There are two immediate corollaries.

COROLLARY 5.8, Let X bDe a real normed linear space.

Then X 418 an inner product snace 1ff there exists a
constant ¢ such that || x {[= ||y ||=1 and x | ¥

then || x+y || = c.

COROLLARY 5.9: let X Dbe a real normed linear space. Then

X is an inner product space 1ff projectional orthogonality

i{mplies isosceles orthogonallty.

It is intereeting to note that von den Steinen [68]

proved a complex version of theorem 5.7.

P
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3. On a Theorem of Lorch

The following theorem was given by Lorch [49] , but

does not aprnear to be very well known.

THEOREM 5,10. If X 1is a Banach svace then X is an inner

product space iff there existe T: X =-=> X¥ guch that T

18 linear and bounded, 7-1

[r(x)] (x) = || o) || I x ||

exists and is bounded, and

Similar theorems were also proven by Day fieJ and
Kakutani [38] . Such a property may be considered as a self
adjointnese oroperty on X. Theorem 5.11 shows that many
of the hypotheses of 5.10 can be removed or weakened. Also
we give a proof which is independent of 5.10 and which

i8 eshorter than the original proof.

THEOREM 5.11. let X Dbe a normed linear space. There

exists a linear onerator T: X --> X® guch that
fr(xf] (x) = || T(x) || | x || for all x and T # O 1iff
X is an inner vroduct space.

Proof.

If X 18 an inner oroduct space then the existence
of T follows from the classical reoresentation theorems
for linear functionals.

Suppose T exists. First we wish to show T 18 one-

to-one. If T 1e not one-to-one there exists x ¢ X such
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that x# 0, and T(x) = 0., Since T # O there exists
ycX, y#0, and T(y) # 0. Now consider two cases.
Ir [T(y)) (x) =0 let r = Iy |I/”x I Because

T(rx+y) = T(y) we have || T(y, || || rx+y || = [T(y)] (rx+y)
=[T(y)] (¥)
=Ty Wyl

Since || T(y) || # O

Ny ll=llrxty [I2 | llex l=|ly I| =2y |l
which is a contradiction.

1 [20)) (x) #0 e == POV IMUS Hyp 0,
Again T(rx+y) = T(y) so
I T(y) Il ll rx+y || = [T(y)] (rx+y) = 0. Since | T(y) |[# O
we have || rx+y || = 0 which 1s a contradiction since x

and 'y must have been linearly independent. Thus T must
be one-to-one. .

Now suppose the dimension of X 18 two. Then T must
also be onto and bounded. First we wish to show that X
i8 strictly convex and the norm is Gateaux differentiable.

To show both of these it suffices to show

| [Tx)] (v) | <l T(x) [ ly || &f x and y are linearly

independent. BSuppose to the contrary that there exist x,y ¢ X

such that |[x ||= ||y ||I=1, || x~y || > 0, and
['r(x)](y) = || T(x) |l. Then x+y | x-y and there is an
unique line which supports the unit sphere at 1/2(x+y).

Thue [T(x+y)] (x-y) = 0 = [T(x)] (x) + [P(1)] (x) - [*(x)] (3)-[r(x)] (v)

and hence [T(y)](x) = [T(yﬂ (y). But this implies

I T(x-y) || || -y || = [T(x-y)](x-y) = 0 which is a contradiction.
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Thus X 18 strictly oonvex and Gateaux differentiable and
by the results of James [34] X¥ has the same pronerties.
Since X 18 reflexive these imply in particular

r | 8 ifr [T(r)](s) =0 1ff T(s) | T(r). By theorem 3.1
we can find x,y ¢ X such that x | y and y | x. Then
ax + by | ox + dy 1iff [T(ax+by0](cx+dy) =0

irr ac[‘r(x)] (x) + bd['r(y)](y) =0

1rr [T(cx+dy)] (ax+by) = 0

Aff cx + dy | ax + by,
Thus x | y implies T(x) | T(y) and by lemma 3.3 there
exists 2k such that || T(x) || = k || x || for x ¢ X. Hence
I x+y ||+ || x-y IF = k" Y([T(x+y)] (x+y) + [2(x-y)] (x-¥))
k™t (2fr(x)] (x) + 2[T(y)] (¥) )
=2( [Ix F+1yIf).

Thue X 18 an inner product space.

Now suppose the dimension of X 18 greater than two.

Let H be any two-dimensional subspace of X and H' = T(H).

By the hypothesis of the theorem || T(z)|yx Il = Il T(z) ||
for z ¢ H 80 that H' 1s congruent to H* . By the two-
dimeneional case H 1is an inner oroduct space and hence X

18 an inner product svace.

q.e.d.

4, On Ficken's Theorem

In chapter 2 we gave an alternate oroof of Filoken's
theorem and from theorem 4.15 Ficken's theorem would follow

as a corollary. We give two more proofs which are based on

L
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classical characterizations of ellinsoids that can be found

in Busemann [123.

THEOREM 5.12. A closed convex surface C 1is an ellipsoid

1ff the locus of the midpoints of any family of parallel

chords in contained in a hypervlane.

THEOREM 5.13. A closed convex surface C 1is an ellipsoid

1ff there is a fixed point =z inside of C such that
for each pair p,q € C there exists an affine transformation
of the space onto itself which maps C onto 1tself, takes

p to q, and fixes z.

The proofs are mostly a matter of interpreting Ficken's

theorer in terms of the above two theorems.

THEOREM. Let X be a normed linear space. Then X 1s

an inner product svace 1ff || ax+by || = || bx+ay || for all
a,b ¢ R and x,y € X such that || x ||= ||y || = 1.
Proof I:

As usual we only prove the sufficiency of the condition
and obviously we may assume that the diménslon of X 1is two.
Let x,y, axt+by,cx+dy ¢ 3 the unit sphere of X and
(ax+by) - (ex+tdy) = A(x-y) for some real number A (i.e,

the chord jolning axtby to cx+dy 1is parallel to the
chord jJoining x to y). Since the locus of midpoints

of chords parallel to x-y goes through the origin it will

.:A/‘_
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suffice to show (ax+by) + (cx+dy) = p( x+y) for eome
real number . We may assume that the segment joining
ax + by to cx + dy does not lie on the unit sphere since
this case follows by continuilty, eo.thﬁt cx + dy 1s uniquely
determined by ax + by. But bx + ay has all of the prop-
erties attributed to cx + dy, whence (cx+ily) + (ax+by) =
(atb) (x+y). Thus Dy theorem 5.12 S 18 an ellipse and
hence X 18 an inner product space,

Proof II.

Ir x,y ¢ X and ||x ||= ||y ||=1 then by hypothesis
the mapping ¢ ! ax+by --> bx+ay 18 an i1sometry on X
and hence maps the unit snhere 8 onto itself. Thus ¢
18 an affine transformation of the noints of X onto them-
selves which mavs 3 onto 1tself, x to y, and fixes O,
By theorem 5.13 38 1s an ellipsold and thus X 1s an
inner product space.

q.e.d.
For etill another proof of the theorem see Day [éo].
5. Comments on Principle 5.1

In this section we give some more svecific examples
based on princiole 5.1. We begin by stating some theorems
from plane geometry and reformulating them in terms of

linear spaces. In order to do this we make the following

definitions.
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DEFINITION 5.14. Let X be a real normed linear space and

X,y ¢ X. Then we may consider the triangle with vertices
0,x,y and let the base be the side determined by x and
y- An altitude to the base 1s any vector ax+by such

that ax + by | x - y.

DEFINITION 5.15. Let X be a real normed linear space and

x,y € X. A vector z = ax + by 1s sald to lie on the

bisector of the angle between x and y Aif the Sundaresan

angles <z,x> and <z,y>» are equal (i.e. min || z - ax ||
a

min || z - ay || 8o that the bisector may be considered as the

a

set of points equidistant from the sides of the angle),

These definitions are used orimarily as motivation and
insight into the theorems discussed. With this in mind
we state the following Euclidean theorems and their linear

space analogues.

(5.16) For 1 <1 <9 1-N 18 a real normed linear space
analogue of the Euclidean theorem 1i-E,
1-E. The altitudes to the equal sides of an isosceles

triangle are equal.
1-N. If |lx|l=1|ly || and x-by | y and y-ax | x

then || x-by || = || y-ax ||.
2-E. The altitudes of an lsosceles trilangle are copunctal.
2-N. I1f |Ix||=I|l¥y |, y-ax | x, and x-by | ¥y then

a(l-b)x + b(l-a)y | x-¥y.
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5-E. The median to the base of an isosceles triangle
is also an altitude. ‘

3N. If |[x|l=|y|[then x+y]|x-y.
4-E. The medlan to the base of an isosceles triangle
lies on the angle bisector of the wertex angle.

4-N. If ||x||=1|ly ll, y-ax | x, and x~by | y then

l| x=by || = || y-ax ||

5-E. If a,b,c are the vertices of an 1sosceles
triangle with ab = ac and e,f are the feet of the
altitudes to the equal sides then the median to the side
ef of the triangle a,e,f Dblsects the angle at a.

5~-N. If |lx||= |y |l, =~ay | ¥, and y-bx | x then
|o| || x-ay || = |a| || y-bx ||

6-E. If p 18 a vpoint outside a circle C and if

X,y are points on C such that the lines px and py are

tangent to the circle then p 1l1lies on the bisector of the

angle xpy.
6-N. If |lx||= |y Il, x-ay | ¥, y-bx | x, x | y-cx,
and y | x-dy then | 1-d4 | || y-bx || = | 1-c | || x~ay ||

7-E. If p 18 the intersection of the altitudes to
the equal eides of an 1sosceles triangle then 1o 1lies on
the bisector of the vertex angle.

7-N. If |Ix||=1|ly [l, x~ay | ¥, and y-bx | x then
a =D,

8-E. If p Ais the intersection of the altitudes to
the equal sides of an 1sosceles triangle then p 1lles on

the median to the base.
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8-N. If |[x|l=]|ly I, x~ay | ¥, and y-bx | x then
a=0>n,
9-E. The bisectors of the angles of a triangle are
coounctal.
9=-N. If x,y ¢ X there exists e,f ¢ R such that

min || ex + fy — ax ||= min || ex + fy - ay || = min || ex+fy-a(x-y) ||
a a a

There are naturally many more possibllities, but these
seem to be rather representative in both the statement of
results and the methods of proof. Note that 1-N and 4-N
are the same and they were used in 3.5. Also note that
3-N 1s another way of saylng 1sosceles orthogonality imnlies
projective orthogonality. Corollary 2.11 is based on 7-N
or 8-N. Flnally 9-=-N 18 true in any real normed linear
space.

Before giving more theorems based on 5.16 we prove

the followling lemma.

LEMMA §,17: Let X bDe a rcal normed linear snace which

18 etrictly convex and has eymmetrié orthogonality. If

x,y ¢X, a,be¢R, x-by |y, and y - ax | x then ab > 0.
Proof.
It will suffice to prove the result when the dimension

of X 1is two since the higher dimensional cases are obvious.
Coordinatize so that x = (|| x ||,0), z = (0,1), and

x | z. Let y = (c,d). Since X 1e strictly convex c = a|| x ||

From construction I in chapter 3 it followe that



THESIS

-




99
( Il x |l =be) (pd) (c) (4) >0
(L - ab) (ab) > 0
but | ab | <1 so ab > 0.

q.e.d.

The first theorem is based on 2-N,

THEOREM 5.18; Let X be a real normed linear snace. Then

X 1s an inner oroduct svace iff x,y ¢ X and a,b € R
satisfying {|x ||= ||y ll=1, y-ax | x, and x -by | vy
then a(l-bjx + b(l-a)y | x = y.

Proof.

To establish the necessity of the last condition we
prove the etronger result that if x,y ¢ X, y - ax | x,
and x - by | y then a(l-b)x + b(l-a)y | x - y. It is easy
to verify a = (Y|")/” < B+ P= (Yl")/" y B » =nd that
(a{l-b)x + b(l-a)y | x - y) = O,

To establish the sufficiency of the condition suvnnose
lxil=1llyll=21 yvy-ax] x, and x -~ by | y. Then the
palr x,-y ¢ X has the proocerties that || x ||= |-y || = 1,
(-y) - (-a)x | x, and x - (-b)(-y; | -y 8o that
a(l+b)x - b(l+a)y | x + y.

Now suppose || x ||= ||y (=1, y -ax | x, x| ¥y.

If a=0 then y | x. If a # O then oy hypotheslis

x| x+y and x | x-y. Thue Lin §x,y} 48 an 1, plane

and hence y | x. In any case X has symmetric orthogonality.
For the remainder of the proof we may assume the dimen-

son of X 48 two. Also in the above argument the only
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tirme orthogonality was not left unique was in the ll plane.
But the ll plane does not have symmetric orthogonallity so
orthogonality in X 18 actually left unique. Hence X
is striotly convex and the norm i1s Gateaux differentiable.

Suppose X 1s expressed as in Construction I in
chapter 3. Then the unit snhere S8 1in the first quadrant
is given by i(x,f{x)}j' and f'(x) exists on [0,1). Let
D={fx | 0<x<l and f'(x)= ~ /t(x) °F %= 1.].

There exist x,,X, ¢ [0,1] such that

2 2

x, + rz(xl) < x + fe(x)'f xg + fz(xz) for x ¢ [0,1] .

If S 1s not a circle then at least one of the values

X1»Xp 18 distinct from O and 1. By elementary consid-
erations x,,x, ¢ D. If D # [0,1] there exist x5,x, ¢ [o,1]

at least one of which 18 neither O or 1 and such that
[x,é,x4]fl1)={x3,x4} . Let x Dbe (x3,f(x3)) and

y Dbe (x4,f(x4)) and | | be the norm determined by

the unit circle. Then x - by | y and y - ax | x where

a = (y'x)/|x|2 and b = (y|x3/'y|2 eince x,,x, ¢ D.

Because x and y 1lie in the first quadrant and at least

one does not lie on the coordinate axes it follows that
O<ab<l s8ince X 1s strictly convex. By hypothesis

a(l-b)x + b(l-a,y | x - y. From the relationships on a

and b we have (xg,f(xg)) = *UTOX TN e
satlsefles X; € X5 <Xy and X5 € D. But this 18 a

contradiction to the choice of x, and x,. Thus D = [o0,1]

and f'(x) = -x/r(x) for x ¢ [0,1] . Hence f(x) = (l-xz)l/2
and X 1e& an inner product space,

q.e.d.

—_



THESIS

e A




101
'Theorem 5.19 18 based on 6-N.

THEOREM 5.19: If X 418 a real normed linear space then

the following are equivalent.
l. X 18 an inner product space

2. If x,y ¢ X and a,b,c,d ¢ R satisfy | x ||=

Wy =1, x-ay]y, yvy-bx]x, x] y=-cx, and
Yy]ly-a then | l1-a | ||]ly-bx|l=]1-c | ||x=-ay|
Proof.

(1==>2) This 18 obvious since a =b =c¢ =4 = (x|y).
(2==>1) sSuppose x |y, |Ix|l=1{lyll=1, ¥y ] x- ay,
and y - bx | x. By hypothesis | 1L -ad | ||y - bx || = 1.
Now apply the hypothesis to -x and y. Then
| 1 +da | ||ly-bx|]j=1. Hence |1 -d | =]1+4a],
whence d = 0. Thus X has symmetric orthogonality and
1s strictly convex.
Hence a = d, b = ¢ and by theorem 3.5 || y=bhx || =
|| x-ay ||. By theorem 2.14 |a|, |b| < 1. Thus condition
2 reduces | 1 -a | =] 1-Db | whence a = b. Hence
L(x,y) = L(x,y) whenever ||x ||= ||y ||=1 and by corollary
2.11 X 1s an inner product space.

q.e.d.

5-N provides the following theorem.

THEOREM 5.20. If X 1s a real normed linear space then

the following are equivalent.

l. X 18 an inner vroduct space.
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e. It |Ix{=Jlyll=1, x-ay ]y, and y-Dbx | x
then |[b| |[x - ay || = |a| ||y - bx ||

Proof.

(l==>2) This 18 again obvious since a = b = (x|y).

(2==>1) Condition 2 clearly impliese a =0 Aiff b =0
which implies X has symmetric orthogonality and is strictly
convex. Since | x - ay ||= ||y - bx || for such a space
we have |a| = |b|. By lemma 5.17 this implies a =Db 80
by corollary 2.11 X 1is an inner product snace.

q.e.d,

Since 3-N has already been used (theorem 1.31) we prove

a slightly stronger theorem.

THEOREM 5.21. If X is a real normed linear space then

the following are equivalent.

l. X ise an inner product space.

2. If x,y ¢« X satisfy |[x|= |y |l=1, x] v,
then x +y | x-y.

Proof.

(l==>2) This is obvious.

(2==>1) First note that x | y and |[x ||= |y [l=1

imply x | -y and |[x ||=|l-y [|=1 8o that x+y | x =~

and x -y | x +y.

It suffices to prove the theorem when the dimeneion
of X 1s two. Choose x,y ¢ X such that x | y, v | x,
and || x ||= |l ¥y || = 1. Asesume the unit sphere 8 1is glven
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in polar coordinates by (£(9),8) for 0‘5 @ < 2m, where
(1,0) = x and (1,ﬂ/2) =y. A8 @ varies from O to ﬂ/2
one of the unit vectors orthogonal to it varies from Tr/2 to

T and the sum of these two vectors varies in angle from

n/4 to 3"/4. But the sum and difference vectors are mutually

orthogonal e#o this implies X has symretric orthogonality.

Suprocee x | y and |x ||= ||y ||=1. Then
X +y + X -y l xX+y X -y
Nx+yll llx-uvl Ix+yll llx-vl
or
1 1 1 1
C iy 1 Y gl 2O iyl = T pxey YL
1 1 1 1
/xeyll = ix=y 125 C may 1Y ) xey P

If || x+y || # || x~y || thle implies ax + by | bx + ay
1 1

here x x || = a= +

w v, UWx1li=1ylb /|| x+y|] /N x=y P
1 1

b = - and a,b 0. But obviousl
Mixeyl = i ==y 1P i y

rfrom construction I this cannot hapoen since orthogonal

vectors cannot lie in the same quadrant. Thus

lx+y|l= |l x-y|. By theorem 5.7 X 1s an inner

product space.

q.e.qd,
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APPENDIX A

Most of the geometric asnects (convexitv, suovporting
hyperplanes, etc.) of normed linear spaces are most easily
dilscussed in real normed linear spaces. However, much of
the analytic theory (elgenvalues, spectral theory, etc.)
finds a natural setting in complex normed linear space.

The usual technique for studying the geometric aspects of
a complex space is to "change" it into a real space. We
wish to dlecuss how this change is made and prove some
theorems based on 1t.

If X 1is a comnlex normed linear space we can assoclate
a real normed linear space X with 1t in the following
manner. The vectors in ¥ are those of X, addition in
i ie the same as that in X, scalar multinlication in ').('
1s the same as multivolication by a real number in X, and
finally the norm in f' is the same as the norm in X.

It 18 a stralghtforward calculation that ¥ 1s a real
normed linear space. Next we wish to determine the relation

o~
between the dual spaces of X and X.

THEOREM A.1. If f ¢ X* then Re f defined by [Re f] (x) =

Re [f(x)] Dbelongs to Xt anda || r ||= | Re £ | . Further-
more, 1t g ¢ X* then the function f defined by

f(x) = g(x)-1g(1x) belonze to X% and || T ||= |l g || .
Proof.
Let £ ¢ X®. Then | Re f(x) | < | £(x) | <t lllx]

60 Re f ¢ X* and || Re f l< il £l. Let x, ¢ X such that
109
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=)
|l x, l=2 ana [f(x,)| ==> || £ || Then if a, = ——=

lf(xi)l
we have |[a;x, ||[=1 and |Re f(a,x,)| ==> || £ ||. Hence

| Re £ || = || £ |I.

Let ¢ ¢e¥* and r ve given by fr(x) = g(x) - ig(ix).
For a ¢ C then af(x) = a (g(x) - 1g(ix))
(Re a)g(x) + (Im a)g(ix)

+ 1((Im a)g(x) - (Re a)g(ix))
glax) - 1g(aix)
f(ax).

Also | f(x) | = | g(x) - 1g(ix) |
< | s(x) | +| g(ix) |

<2 l& =1

go ||[f|l<2|lg |l and f ¢ X%. But Re f ¢ ¥s and
Re f =g, Hence || f ||=||Re £ ||= |l g || by the above.
q.e.d.

We can also determine the relation of X and i' in

the characterization problem,

THEOREM A.Z2. X 18 a complex inner product svace iff %

is a real inner product space.

Proof.

Suppose ( | ) 1s an inner product on X. Then by
stralghtforward calculation it can be shown that ¢(x,y) =
Re (x|y) 4ie an inner product on ¥X.

Now suppose @¢( , ) 18 an inner product on . We

show (x|y) = ¢(x,y) - 1¢(ix,y) 18 an inner product on X.
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Obviausly ( | ) satisfies I-1 and I-2 i1s satisfied
by a calculation similar to the one in A-1l.

For a ¢ C then |
| ax |P + 2 9(ax,ay) + || ay [ = d(ax+ay,ax+ay)

= || axtay |P

laf 2|1 x4y |
&% ¢(x+y,x+y)

a2 £l = IF +200x,9) + Iy IF3

or ¢lax,ay) = Ia.l2 o(x,y).
Hence (x|y) = ¢(x,y) - 14(ix,y)
= ¢(y,x) - 14(y,1x)
= ¢(y,x) - 10(1y,-x)
= ¢(y,x) + 10(1y,x)
= T91x7
Finally 2|Ix.|F + 20(1x,x) = Q(x+ix,x+ix)
= || xtax |F
= 2| x P
or ¢(ix,x) = 0.
Hence (x|x) = ¢(x,x) = || x |F and ( | ) 1is an inner
product on X,

q.Q.d.

Since X and X are eo closely connected, in the
text we have taken the liberty of using such phrases as
“consider X as a real normed linear space" or "X 18 a
complex inner product space 1ff X 48 a real inner product
space®, Naturally what we mean is “oonsilder 'f inetead of
X" or "X is a complex inner product space iff ¥ 18 a

real inner product space®.
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APPYNDIX B

Suppose X 18 a normed linear space with norm || | .
Quite often we wish to define a second norm | | on the
vectors of X. Usually it 1s convenient to say more simply
that we have defined a second norm on X. Moreover, we
say | | 18 Ainduced by an inner product if there exists
an inner oroduct defined on the vectors of X éuch that
(x|x) = | x |2.

There 18 a technique which 18 very valuable for char-
acterizing inner product svaces. Let X Dbe a normed linear
space with norm || || and §x,3C X. Suppose | | 1e a

second norm on X which 18 induced by an inner product and

| x, | = |l x4 || . We then show by some method that | x | =
| x || for all x ¢ X. Thus we wish to dlscuss several
methods of determining such a norm | |.

THEOREM B.1l. Let X ©vpe a real two-dimensional normed

linear svace. Suppose Xx,y €¢ X and a,b € R such that

lax [+ (I by || > |l ax+dy [|> | [lax | = [ by || |. Then
there existe a norm | | on X which 1s induced by an
Anner product such that | x | =|lx ||, | vyl =WIl¥1l,
and | ax+by. | = || ax+by || .

Proof.

Deflne

(rx+sy|px+ay) = rp || x | + (ra+ps)a + sq ||y |F

shere A = llaxtoy 1B - |lax |F - oy |f
2ab
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Let | rx+sy |2 = (rx+sy|rx+sy). The only nontrivial
condition to check is that | rx+sy | 18 well defined.
But (rx+sy|rx+sy) = r? Il x |F +2reA + 8° | ¥ IF
>(ellx l-e iy II)?
> 0

since | A | < | x ([ ]ly | .

Suppose 7e conslder X as a Minkowskl smace. Then

B.1l 18 equivalent to the statement that there exlists an
X v ax+by

’ = »
=1l iy Il |l ax+by |
and | | 18 the norm determined by E.

ellipse E with center 0O through

Tneorem B.2 18 due originally to Loewner and oproofs

of the two cases may ve found in Day [18] and Schoenberg [62].

THEOREM B.2° Let S Dbe a convex curve in the Euclidean

plane which is symmetric about O. There exists an unique
ellipse K with center QO s8uch that S 1s contained inside
of E ( E 1is contalned inside of 8 )} and E has the
minimal area (maximal area) of all ellipses with this
property. Moreover EN3 contains at least one vnair of

independent points.

The ellivee E 1s usually called the minimal circum=-
scribed ellipse or the maximal inscribed ellipse, resnectively.
Supnose X 18 a real two-dimensional normed linear

space. If we consider X as a Minkowskil snace then the
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unit sovhere satisflies the hypotheses on S 1in B.2 so

that by theorem 1.12 we have the following.

THEOREM B.3. Let X be a real two-dimensional normed

linear space. Then there exists a norm | | on X which
1s induced by an inner product such that | x | < || x ||

(| x| >|lx | ) for al1 x ¢ X and such that there existe

a pair of linearly indeosendent vectors y,z ¢ X with

Wy ll=1y | and [z]=1]2].

In practice it is often convenient to refer to both
the ellipse E and the norm | | . 1In doing so we are
naturally considering X as a Minkowskl svace even 1f we

do not explicitly mention this fact.
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