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ABSTRACT

CHARACTERIZATIONS OF INNER PRODUCT SPACES

By

John Arthur Oman

One of the central problems in the study of metric

spaces is that of deciding when a space is isometric to a

well known space. The characterization of inner product

spaces among normed linear spaces is an important special

case of this problem. Perhaps the best known of these

characterizations is the Jordan and von Neumann theorem

which states that a normed linear space is an inner product

space if and only if [I x+y "2 + N x-y “2 '2 2(|| x "2 + II y "2)

for all vectors x and y in the space. In elementary

terms this is the assertion that a normed linear space is

an inner product space if and only if the sum of the squares

of the edges of each parallelogram is equal to the sum of

the squares of its diagonals.

subsequent to the publication or the Jordan and

von Neumann theorem an extensive literature has appeared

in which a variety of wellknown prOperties of Euclidean

spaces have been shown to characterize inner product spaces.

This thesis gives a historical survey and summary of this

literature and continues the program.

Typical theorems proved in the thesis,-ths first an

extension of the Jordan and von Neumann result, are the

following.
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THEOREM: Let x hbe a normed linear space. Then X is an

inner product space iff there exist a cone K with nonempty

interior and O < p < 1 such that for x,y c K there

exists 0 < x < 1 so that the identity

par-u.) u u+<1->.)y Ir2 + Ml-x) ll uX-(l-v-hr "2 =-

xp(>.+..-2ux) II x Ire + (l-A)(1~p)(-\+n-2u7~) H y H2

is satisfied.

THEOREM: Let X be a real normed linear space and K be

a closed, bounded, convex subset with nonempty interior.

Then the following are equivalent:

1. X is an inner product space and K is a sphere

2. K has the property that for each pair of hyper-

planes H1 and H2 supporting K at x and y 'respectively

and each r t Hlfiflz with r, x, and y linearly dependent

then H x-r "‘3 " y—r " .

In addition a fairly detailed study of generalizations

of the inner product and orthogonality is carried out. New

characterizations of those complex normed linear spaces

admitting symmetric projectional orthogonality are obtained.

Many of the results in the thesis are closely related to

those of M. N. Day and R. C. James.
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INTRODUCTION

1. The Problem

From the time of Euclid much time and effort have been

devoted to the study and creation of axiomatic systems

which describe Euclidean geometry. Not only have these

systems added to our understanding of Euclidean geometries,

but they have also led us to consider such important concepts

as non-Euclidean geometries, metric spaces, and tapological

spaces. When one considers these more general axiom systems

a standard problem is that of augmenting the given axiom

system to Obtain one describing Euclidean geometry. In

this thesis we are concerned with this augmentation when

the given spaces are normed linear spaces, i.e. the char-

acterization of inner product spaces among normed linear

spaces. A more detailed description of the contributions

of the thesis is found at the end of the chapter.

2. Basic Definitions

The following definitions and notations are given

so that we may define more precisely some of the problems

to be discussed in this paper. For the definitions of

metric spaces, metric convexity, external convexity, com—

pleteness, and related concepts the reader is referred to

lBlumenthal [81. Zaanen [77] , or any other standard text

1
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2

on normed linear spaces may be used for the definitions

and elementary prOperties of a normed linear space over the

field F where F is either the real numbers R or the

complex numbers C. When no confusion should arise the

notation H u is used for the norm in several spaces

simultaneously.

The notation S(x,p) in a metric space M refers

to the ball with center x and radius p (i.e. the set

of all z in M whose distance from x is at most p )

and the term sphere with center x and radius p refers

to the set Of all z in M whose distance/from x is

exactly p. In particulan the unit sphere of a normed

linear space is the sphere with center 0 and radius 1.

The notation X‘I is used to denote the norm dual of the

normed linear space X and for HCX the linear span of

H is denoted inn {H}. A normed linear space is strictly

convex if H x+y H = H x H + H y H implies x = Xy for

some A e R.

Since there is some disagreement on the next terms,

we state the following definitions.

DEFINITION 1.12 A normed linear space X over F is
 

called an inner product space or an i.p.s. if there exists
 

( | ) Z X X X --> F satisfying for all x,y,z e x and

a e F Z

1-1. (x+yiz) = (XIZJ + (VIZ)

1-2. (asz) = a(x|z)

1-5. (xlz) = {7|x) (if F = C then '3 denotes
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complex conjugation ).

1-4. (x I x) = ||x “2

The terms pre-Hilbert spaces or generalized Euclidean

spaces are also used for inner product spaces.

DEFINITION 1.22 A complete normed linear space is called
 

a Banach gpacs and a complete inner product space is called
 

a Hilbert space.
 

DEFINITION 1.32 Two normed linear spaces X, Y are called
 

isomorphic if there exists a map O I X -—> Y such that I
 

l. O is linear.

2. O is one-to-ons and onto.

3. There exist m, M c R such that for all x c x

m ”x "gums ”:14!le-

If m = M = l in definition 1.3 than O is an isometry
 

and we usually make no distinction between X and Y.

Such a map is also called a congruence.
 

As mentioned the primary problem to be considered is:

PROBLEM 1.4: To find necessary and sufficient conditions
 

for a normed linear space to be an inner product space.

This problem has many generalizations, some of which

are discussed later. The following are three of these

generalizations and references to them.
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PROBLEM 1.5: To find necessary and sufficient conditions
 

for a normed linear space to be isomorphic to an inner product

space. ( [10], [39], [4o], [48}, [58], [73] , [74])

PROBLEM 1.6: To find necessary and sufficient conditions
 

for a metric space to be an inner product space.

( [4]. f6). f7]. [19]. [27]. [42]. [st, [76])

PROBLEM 1.7: To find necessary and sufficient conditions
 

for a normed linear space to be (isometric to) a space

th
of real functions whose p powers are Lesbeque integrable.

( [28], (70] )

3. History

The history of this problem is almost as old as the

definition of an inner product space. What is probably

one of the most important of all results, besides being

one of the earliest, is that due to P. Jordan and J. von

Neumann [Bi] ,

THEOREM 1.8: A normed linear space x is an i.p.s. iff

(J) llxl|2+lly||2=l/2(llx+y"EMU—HF) xmx.

 

An immediate corollary to theorem 1.8 is:

COROLLARY 1.9: A normed linear space x is an i.p.s. iff

every two-dimensional subspace of x is an i.p.s.
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The original proof of theorem 1.8 verifies that ( x | y ) =

1/4 (H x+y “2 - H x-y "2 ) is an inner product. ( J ) is

usually called the “parallelogram law" due to its inter-

pretation in the plane as an identity between the sides of

a parallelogram and its diagonals. A second geometric

interpretation of ( J ) is to consider it as the functional

relation between the length of the median ( 5E! ) and the

lengths of the sides of the triangle (verticcs 0,x,y).

Thus one way to generalize 1.8 is to restrict the

triangles to be isosceles. Even more generally Day [18]

has shown theorem 1.10.

THEOREM 1.10: A normed linear space x is an i.p.s. iff

x,ychnd||x||=||y ll=limply||x+yH2+||x—y|f2r4

where r may be any of the relations =, _>_, 5.

 

A second way to generalize 1.8 which was used by

Benechallc [B4J is to assume there is a relationship (not

necessarily Euclidean) between the length of a median of

a triangle and the lengths of the sides of that triangle.

THEOREM 1.11: A normed linear space x is an inner product
 

space iff there exists f : [0,2] -> [0,2] such that

f(" x+y ") = H x-y H whenever x,y c x and [I x II = H y u = l.

The proofs of theorems 1.10 and 1.11 are quite different

from that of theorem 1.8 in that they are very gometrie in

character. The next few paragraphs help link Enclidcan
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6

geometry and the characterization problem.

Any n-dimensional real normed linear space has a

representation as a Minkowski space. A Minkowski space

is obtained by considering Euclidean n-space and determining

a norm by

“x ||== ianX_>_0 | x/A e 33

where 8 is a convex body which is symmetric about 0.

The boundary of S is the unit sphere of the space. Day

in [18] (also Kubota [46] ; characterizes those bodies 8

which determine inner product spaces.

THEOREM 1.12: If X is a real two (three) dimensional
 

Minkowski space then X is an inner product space iff

the unit sphere of X is an ellipse (ellipsoid).

Since most characterizations of inner product spaces

reduce to the two or three dimensional problem they are

often very closely related to characterizations of ellipses

or ellipsoids. Thus it is often possible to reformulate

a characterization of inner product spaces as a character-

ization of ellipsoids or ellipses and conversely.

The theorem corresponding to 1.8 in metric spaces

has been proven by Blumenthal [6] .

THEOREM 1.13: Let M we a complete, convex, externally
 

convex metric space. If p,q,r c M and pr = qr 1/2 pq

9

imply 2pc2 + 2qs2 = 4sr” + pqg for any 3 e M then M

is a Hilbert space. (pq denotes the distance from p to q.)
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Theorems 1.14 - 1.18 may also be considered general-

izations of 1.8. They postulate the existence of some norm

equality or inequality to characterize inner product spaces.

THEOREM 1.14: (Day [is] ) Let x be a normed linear
 

space. Then x is an inner product space iff for each

pair x,y e X with H x H = H y H = 1 there exist A and u

such that o < 1, p < 1 and (1+p-2uk)(xp+(1-p)(1—1)) r

Ml-qu u + (14»): H2 + M14.) II n: - (l—rhrll2 who" r

is either 3, =, or <.

Freese [27] and Kay [42] have partially generalized

theorem 1.14 to metric spaces.

THEOREM 1.18: (Carlsson [13] ) Let X be a normed linear
 

space and av f O, bv' 'v' v = l, ..., m be real numbers

such that (bv"v) and (b ,c are linearly independent

u p

2
for v f u and E avbv = E a cv = E a b c = 0. Then X

)

2

v v v v

is an inner product space iff 2 av H bvx + cvy "2 a O x,ycX.

THEOREM 1.16: (Schoenberg [62] ) A normed linear space

X is an inner product space iff the Ptolemaic inequality

holds. <1-0- H x-yH H z-v H + H x-v H H 3-2 ".2 H I-z H H rev H

for x,y,z,w e X.)

THEOREM 1.17: (Ficken [26] ) A normed linear space X

is an inner product space iff H x H = ||y ||= 1 implies
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8

H ax+by H = H bx+ay H for all a,b e R.

THEOREM 1.182 (Lorch [50] g A normed linear space X
 

is an inner product space iff there exists y c R, 7 # 0,1

such that H x H = H y H implies H x+yy H = H 7x+y H .

Theorem 1.19 was given by Kakutani [be] for real normed

linear spaces and extended to complex normed linear spaces

by Bohenblust [9]. It is an often used theorem and is

closely related to the concept of othogonality (to be

discussed later) and to extension problems with linear

functionals. The original proof of Kakutani is based on

a characterization of ellipsoids due to Blaschke [3] .

THEOREM 1.19: Let X be a normed linear space of dimension
 

at least three. Then X is an inner product space iff

for each two-dimensional subspace Y of X there exists

a projection of norm 1 from X to Y.

A useful concept in plane geometry is that of an angle

and its measure. Thus it is not surprising that several

peeple have tried to extend this concept to normed linear

spaces. While the angle concept carries over to any real

linear space without difficulty there seems to be no unique

natural measure to associate with an angle. Here are two

measures which have received some study.
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DEFINITION 1.20: Given x,y c X, a normed linear space,
 

 

the Clarkson angle measure between them is

'5‘"? “‘“fi—n' " fi-Ir'“

DEFINITION 1.21: Let x be a nonzero vector in a normed
 

linear space X and H be a linear subset of X. The

Sundaresan angle measure between x and H is given by

-1 l
<x,H> = Sin 11—11 inf ll x-yll .

x yeH

 

For a more complete discussion see Clarkson [14],

Schaeffer [81], and Sundaresan [71], [721. Both Schaeffer

and Sundaresan give characterizations of inner product

spaces based on these angles.

More important to us, however, will be definitions

of orthogonality. Rather than trying to measure all angles

we content ourselves with defining when two vectors are

orthogonal. The first definition, due to Carlsson [13],

contains definitions 1.23 and 1.24 as special cases.

DEFINITION 1.22: Let X be a real normed linear space

and ‘7’ b7, e7, y = 1, ..., m be a fixed collection of real

2: 2 = 3

numbers satisfying 2 ‘wbw 2 awe.Y O and E ‘7b7.7 1.

Two vectors x,y e X are said to be orthogonal iff

+ = .2 ‘7 H‘qu cyy H2 O

 

DEFINITION 1.23: The special case, m=3 and 1 = --a1 =
 

‘23‘3=b1’b2="1""3mdb3=‘2=°
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(1.8. H x H2 + H y IF = [Ix-y (F) is known as Pythagorean
 

orthogonality.

DEFINITION 1.24: The special case m = 2, 2al = -2a2 = b a

D2 = cl = -02 = 1 (i.e. H x+y H = H x-y H ) is called

isosceles orthogonality.
 

A definition of orthogonality originally given by

Birkhoff [2] and studied extensively by James [33] is

related to definition 1.21. This type of orthogonality

is studied in greater detail.

DEFINITION 1.23; Let X be a real (complex) normed linear

space and x,y c X. Then x is real (complex) prolectional
 

orthogonal to y, denoted x I r0 2 y (x : ko : y) iff
 

H x “'5 H x-ay H for a e R (a c C). (When it is clear

whether X is real or complex the notation x.l y is used.)

It should be noted that in an inner product space all

of the above definitions coincide with the usual definition,

i.e. x orthOgonal y <==> (xly) = 0.. Definitions 1.26-1.29

are properties of orthogonality in an inner product space

which may be postulated for any of the above orthogonalitiee.

DEFINITION 1.26: Orthogonality is said to be left (right)

additive if x orthogonal to y and z orthogonal to y

(x orthOgonal to 2) imply x+z orthogonal to y (x

orthogonal to y+z).
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QEFINITION 1.27: Orthogonality is said to be left (right)
 

 

unique if for x,y c X there exists a unique a e F such

that x+ay is orthOgonal to y (y is orthogonal to x+ay).

DEFINITION 1.28: Orthogonality is left (right) homogeneous
 

if x orthogonal to y implies Xx orthOgonal to y

(x orthogonal to Xy) for A c F.

DEFINITION 1.29: Orthogonality is symmetric if x orthog-
  

onal to y implies y orthogonal to x.

Results based on definitions 1.22-1.24 and 1.26-

1.29 may be found in [is], [is], [18), [.55], [53], [54],

[88] . Most of these are special cases of theorem 1.30

or theorem 1.31.

_T§EQREM 1.30: (Carlsson [131 ) A real normed linear space
 

X is an inner product space iff x orthOgonal to y

(i.e. 2 av H bvx+cvy IF = 0) implies

n2Lim l/n 2 av llnbvx+cvy 0.

11-).

THEOREM 1.31: If any one type of orthogonality implies
 

another then X is an inner product space.

Theorems 1.32 and 1.33 combine many of the results

on projectional orthogonality which were proven by James

[:54] in the real case and von den Steinen [es] in the

complex case.
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THEOREM 1.32:
 

1.

2.

Projectional orthogonality is homogeneous.

Given x c X there exists a closed hyperplane

H such that ‘.i H.

Given x,y e X there exist a,b c F such that

x+ay l y and 1.1 bx+y.

x'l y iff there exists a continuous linear functional

1‘ such that f(x) = H r I) H x I! and f(y) = o.

If x‘i y then x and y are linearly independent.

THEOREM 1.33: If X is a normed linear space of at least
 

»dimension 3 then the following are equivalent:

The norm of X is induced by an inner product.

For every closed subspace S f 0 of X there

exists a projection P of norm 1 whose image is S.

For every closed hyperplane H of X there exists

a projection P of norm 1 whose image is H.

For every closed hyperplane H of X there exists

an element x c X with x f 0 and 3‘1 x.

The relation 1 is left unique and for every x c X

there exists a closed hyperplane H with H‘l x.

The relation 1 is left additive.

The relation 1 is symmetric.

Of particular interest in theorem 1.33 is condition 7.

while conditions 2 - 8 are rather easily seen to be insuf-

ficient to characterize two-dimensional inner product spaces,

the fact that 7 also does not characterize two-dimensional
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inner product spaces is not as immediately clear. The

spaces in which orthogonality is symmetric do form a rather

niee class which has been characterized by Day [is] . These

spaces are examined in more detail in chapter 3.

Definition 1.34 was given by James [34) and is a power-

ful tool in the study of orthogonality in normed linear

spaces.

DEFINITION 1.34: Let X be a real normed linear space
 

and x,y c X. N;- (x;y) = I 11’ng nx+y || - H nx II. If

N+.(x:y) = N- (1;?) for all y then the norm of X is

said to be Gateaux differentiable at x and N(x;y) a

11-. (xm - N- (2cm).

DHEOREM 1.35: Let X be a real normed linear space,

x,y,z c X and t c R.

1. M (1: 7+2) 5 N. (1:?) + N1 (x:z).

2. N+ (x;ty)'§ tN+(x;y) tzo

3- N+ (1:!) = H 1 H

4. I N.» (xi!) I 5 II I ll

5. N4» (x:y) = —x.. (x;-y)

6. x'l ax+ y iff N_ (x;y) f -a H x "‘5 N+ (x;y)

THEOREM 1.36: If X is a real normed linear space and

the norm of X is Gateaux differentiable (i.e. Gateaux

differentiable at each point x c X) 'then N(x; ) is a

bounded linear functional on X.
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Now we are able to give still another generalization

of theorem 1.8.

THEOREM 1.37: (Hopf [32]) A real normed linear space X
 

is an i.p.s. iff there exists r : a x a..-) a such that

x _L y impliu 1'(llx ll . ll 3' II) = H 1+? No

The remainder of this section is not as important to

the paper but is given for completeness. Included is a

collection of interesting results based on approaches dif—

ferent from those previously mentioned.

Theorem 1.38 (Klee [44] ) and theorem 1.39 (Comfort

and Gordon [15] ) are similar in that they depend rather

explicitly on the “geometrical“ preperties of unit spheres.

THEOREM 1.38: For a normed linear space X the following

assertions are equivalent:

1. X is an inner product space or is two-dimensional.

2. Whenever c > 0 and K is a convex subset of S the

unit sphere of X, then S contains a translate

of K whose distance from the origin is < c.

THEOREM 1.39: Let X be a real normed linear space of
 

dimension at least three. The following are equivalent:

1. X is an inner product space.

2. For each three points x1,x2,x3 c X and p1,p2,

p3 positive numbers with (\S(x1,p1) f 0 it follows that
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b(x3-xl), a,b £113.

The geometrical significance of condition 2 is that

for three spheres with nonempty intersection D the plane

of centers intersects D.

The Hahn-Banach theorem is probably one of the best

known theorems in functional analysis. Theorem 1.40

(Kakutani [38] ) shows that a strengthened Hahn—Banach

- theorem characterizes inner product spaces.

THEOREM 1.40: Let X be a normed linear space. Then X
 

 

is an inner product space iff for each closed linear subspace

I there exists a linear map F: Y‘ --> X' (the dual

spaces of I and X) such that for f t Y‘ then F(f) is a

norm preserving extension of f.

In a similar vein several peeple have studied the.

possibilities of extending contractions (Schonbeck [63] ),

isometries (Edelstein and Thompson [24] ), or bilinear

forms (Hayden [31] ).

THEOREM 1.41: (Edelstein and Thompson) Let X and
 

Y be real normed linear spaces, X be strictly convex,

and dim X.3 2. Then' X and Y are inner product spaces iff

for DCLX then each isometry f : D --> Y can be extended

to an isometry F : X -—> Y.
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Many characterizations of inner product spaces may

be regarded as expressing the "homogeneity" of the space.

All generalizations of theorem 1.8 are of this type.

Dvoretzky [22], Gromov [30], and Senechalle [66] have ex-

pressed homogeneity in terms of the "sameness" of subspaces.

THEOREM 1.42: (Senechalle) A real normed linear space X
 

is an i.p.s. iff all two-dimensional subspaces are isometric.

In this section an effort has been made to relate

the history of the problem and state background results

used in the remaining chapters. We conclude the chapter

with a few remarks outlining the contributions of this thesis

to the general program.

Lumer [511 defined semi-inner-products which are

"generalized inner products" that can be defined on arbitrary

normed linear spaces. Another type of ''generalized inner

product" based on projectional orthOgonality and its relation

to the characterization of inner product spaces is con-

sidered in chapter 2.

In chapter 3 we discuss the two~dimensional spaces with

symmetric projectional orthogonality (see theorem 1.33) and

a non constructive characterization of such spaces is obtained.

.New constructions (see Day [18] and Busemann [12] ) for all

real two-dimensional normed linear spaces with symmetric real

orthogonality and a class of examples of complex two-dimen-

sional normed linear spaces with symmetric complex projectional

orthogonality are given. These seem to be the first exnlicit
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examples of non inner product spaces with symmetric complex

projectional orthOgonality.

In chapter 4 we consider the general problem of char-

acterizing inner product spaces by assuming that various of

the known characterizing identities (theorems 1.8, 1.10,

and 1.14) hold only on restricted subsets of the vectors of

the space. One of the interesting new results of chapter 4

is that the Jordan and von Neumann identity is still

characterizing if it is postulated only on the vectors of

a single cone. This answers and extends a conjecture of my

colleague J. Quinn. This and the other localizations given

in the chapter do not appear to have received previous study.

The metatheorem enunciated by Lorch and others to the

effect that any Euclidean metric preperty adjoined to the

axioms of a real normed linear space is enough to force the

space to be Euclidean (inner product) is considered in the

final chapter. While all characterizations are essentially

of this type, in the last section of chapter 5 we are

especially interested in this metatheorem. Among other

results in the chapter we offer new proofs for the theorem

of Ficken, answer a conjecture of Hepf (theorem 5.7} and

settle a question raised by L. M. Kelly (theorem 5.2).

With respect to methodology as well as the result itself

this last theorem is one of the most interesting in the

thesis.
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GENERALIZATIONS OF THE INNER PRODUCT

In this chapter we determine a weaker set of axioms

than I-l,..., I-4 for an inner product space and examine

functions in arbitrary normed linear spaces which have

some of the prOperties of inner products.

Lumer [51] defined the concept of a semi-inner-product

in an arbitrary normed linear space.. First Lumer and then

Giles [29] used the semi—inner-product to reproduce the

functional analysis of inner product spaces.

DEFINITION 2.1: Let X be a real normed linear space.
 

Then [ , J 1 X x X --> R is a semi-inner-product (s.i.p.)

if for all x,y,z c X and x c R it satisfies

S-l. [x+y,z] = [x,z] + [y,z] .

8—2. [Xx,y] = i[x,YJ

8-3. [x,x] = H x ”2

3—4. Ifm'] I2: [leml -

The following construction due to Giles puts a

semi-inner-product on any normed linear space. If x e X

and H x H = 1 by the Hahn-Banach theorem there exists

fx 6 X‘ such that H fx |l= fx(x) = 1. For each x on

the unit sphere choose such an fx and define [y,x] =

fx(y). Now extend homogeneously to all vectors x. Note

that this s.i.p. has the additional preperty that [x,Xy] =

X [x,y] .

18
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Given a real normed linear space we are interested

in functions 0 : X 1 X -> R which satisfy some or all

of the following properties.

G—l. O(x+z,y) = 0(x,y) + O(z,y) x,y,z c X

G-Z- ¢(x+y.y) = ¢(X.y) + @(y.y) 1.? c X

G—3. O(x,y+z) = O(x,y) + O(x,z) x,y,z c X

6-4. ¢(x.x+y) = ¢(x,x) + @(x.y) x,y c X

0-5. ¢(Ax,y) A ¢(x,y) A c R, x,y c‘X

6-6. O(x,Ay) = A ¢(x,y) A e R, x,y c X

G—7. ¢(x,ty) = O(tx,y) = t 0(x,y) tap, x,y c X

s—s. ¢(-x.y) = 9(X.—y) = -¢(x.y) x,y t X

069. O(x,y) = 0(y,x) x,y c X

6-10. Q(x,y) = 0 -> Oty,x) a 0 x,y c X

0-11- l ¢(X.y) l,s H X H H y H X.y c x

6-12. There exists k > 0 such that

l ¢(x,y) l.5 k H x H H y H x,y c x

G-13. 0(x,x) = H x H2 x e X

If 0 satisfies G—l, 0-5, G—9, G—13 then it is an inner

product and if 0 satisfies G—l, G-5, G—ll, G-13 then 0 is

a semi-inner—product. Theorem 2.2 gives a weakened set

of axioms for an inner product space.

THEOREM 2.2: Suppose X is a normed linear space and

there exists 0 : X x X -> R satisfying G—2, G—4, 6-8, and

G-13. Then X is an inner product space.

PrOOf:

using G—2

0(y.x*y) = ¢(-X.x+y) + ¢(x+y.1+y)



THESIS

 

 
 



20

and applying G—4 and G—8

¢(:.x) + ¢(y.y) = -¢(x.x)-¢(x.y) + ¢(x+y,x+y).

Likewise .

¢(x.x)-¢(x.y) = ¢(x-y.x-y) + Oman-Wyn)

.Adding, we obtain .

¢<x+y.1+y) + ¢(x-y.x-y) = 2(¢(x.x) + ¢(y.y)).

Which by G-l3 implies

llx+r "2+ ux-y uz=2< ux "2+ Hy IF >.

Hence by theorem 1.8 X is an i.p.s.

q.e.d.

We remark that 0 need not be the inner product on

the space since it need not be symmetric. The inner product

is given by (x I y) = 1/2 (¢(x,y) + ¢(y,x)), however.

Consider, for example, a complex inner product space with

inner product ( | ). Let ¢(x,y) a Re(x | y) + Im (x | y).

Then 0 satisfies the hypothesis of theorem 2.2 but is

not a real inner product on the space.

COROLLARY 2.3: Let X be a real normed linear space and

0 : X 1 X -> R satisfy G—2, G—8, G—9, and G—13. Then 0

is an inner product on X.

Next we look at the relationship of G—l, ..., G—13 and

that of orthogonality (unless otherwise specified orthogonality

will mean projectional orthogonality in the remainder of

the paper).
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THEOREM 2.4: Let X be a real normed linear space and
 

O : X * X --> R satisfy G-2, (3-5, (3—11, G—13. Then for

x,ycX andny, ylx-W y.

page

For b 76 0 then

Maxi-bye?) = b 00% x + y,y)

b¢@x.n+btcw>

c ¢(X.y) + b @(y.y).

Thus 0( ,1) is a linear functional of norm H y H on

Lin {x,y} (the linear span of x and y). By the Hahn-

Banach theorem it has a norm preserving extension to X.

But 0(x - (x ) y,y) = 0 so by theorem 1.32

llyl

ylx—flihzé y,

H y I

q.e.d. '

COROLLARY 2.5: If X is a real normed linear space and

Q is a scmi-inner—product then y l x -H y. If

Y

X is Gateaux differentiable then y _|_ x - coy iff

x )
H I and 0(x,y) = H x H N(x:y) for all x,y c X.

y

0.03

Corollary 2.5 is an extension of theorem 2 of Giles.

.A natural question to ask at this point concerns the

possibility of defining a generalized inner product, 0,

such that x - may i y iff do “NIH . Since orthogonality

‘ H y l
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is not in general symmetric such a O will in general

not satisfy G—2,G—5,G—ll, and G—l3. However, we can make

Q satisfy O—2,G—5,G—12, and G—JS. The remainder of this

chapter deals with the definition of such a O: and examines

some of its properties. With this end in mind we begin

with the following definitions.

QEFINITION 2.6: Let x be a normed linear space and

x,y t X. .

mm = {a c Fl H x-ay u: II My u a . r3

Theorems 2.7 and 2.8 give the existence and basic

prOperties of M(x.Y).

THEOREM 2.7: M(x,y) exists for all x,y s X and for

y f O, M(x,y) is compact and convex.

Proof:

For any x,y c X the function f : F -> R given by

f(a) = H x-cy H is a continuous convex function. If y - 0

then M(x,y) = F and hence exists. If y f 0 then for

| 5 | > 2-fi45-fi- *we have

I

le-ay Il_>_ I "x II- I a I My II I > le "-

By the continuity of r it attains its minimum on“ | s | _<_

2 11-5—11- and hence on all of 1". Moreover, this shows

III II .

the compactness of M(x,y). The convexity follows from the

triangle inequality.

q.e.d.
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THEORgM 8.8: l. M(tx,y) = t M(x,y) t f O

2. M(x,y) = t M(x,ty) t f O

3. M(ax+by,y) = a M(x,y) + b a,b c F

Proof:

1. Let a c M(x,y). Then

H X val? II;: II X-By H s e F,

ll tx—Iat)y II: II tau-(aw II a . r.

H tX—(ut)y “.5 N tx-py H a e F.

Thus at c M(tx,y) or t M(x,y)CM(tx,y). But M(tx,y) =

t t’1 M(tx,y)c.t M(t'1tx,y; =- t M(x,y) ’ and hence

t M(x,y) = M(tx,y).

2. Let a C M(x,y). Then

II x-ay II: II x-fly II Bf F.

II x-(at‘lmy) II: II x-(et‘lutyI II a . r.

ll x-(at‘luty) II: II x-aIty) u a . n

Thus t'1M(x,Y)<:M(x,ty). But M(x,ty) = t'ltM(x,ty)c:

t'1M(x,tt'1y) = t'1M(x,y) and hence t"lM(x,y) = M(x,ty).

3. Note that M(y,y) = l for y f 0. Hence if a = O,

M(ax+by,y) = aM(x,y}+b. If a f 0 and c. c M(ax+by,y) then

H “WY-<1? H.< ll ”May-By II a e F,

-b -b

IIx-(“-—-—)-;3II<IIxAir—Wu an.

-b

IIx—ié-lyugIIx-ayu an.

Hence M(ax+by,y)c‘_a M(x,y) + b.

If a c a M(x,y) + b then

le-i‘i‘E-Elvllsllx-Byn acr-

IIx-flg‘flyllsIIx-‘Efiy II

II ”WY-av II: II army-By II B c 1“.

1
b

a :‘
1
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Hence M(ax+by,y) = a M(x,y) + b.

q.e.d.

If X is strictly convex then M(x,y) reduces to a

point for every x,y s X. In general, however, it may be

larger. In any case we define some candidates for the

desired finction.

DEFINITION 2.9: Let X be a normed linear space and x,ycx.

L(x,y) =- aH y H2 where a¢M(x,y) and la] = inf {Isl I a¢M(x,y)3.

If X is real then define

 

0 - - .
L+(x,y) = £8": ”2 ::0 where a = + inf i... a I a. c M(x,y)3.

If x is a complex normed linear space then there

exist hc(x,y) and LR(x,y) where x is considered first

as a complex space and secondly as a real space. Lc(x,y)

is a complex function and LR(x,y) is a real function.

See appendix A.

With the above theorems and remarks in mind we can

now state the basic preperties of L( , ) and L+( , ).

THEOREM 2.10: 1. L(x,x) = u x H2

2. x‘l y iff L(x,y) = O

5

4

LItx,y) = LIX.ty) = t LIX.y)

it L+(x,y) t‘: O

t L:(x.Y) t < O

'L,(x+y.y) = b,(X.y) + b,I¥.y)

6. x : ro I y iff L;(x,y)‘5 0'5 L+(x,y)

. L+(tX.Y) = L+(x.ty)

O
I
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7. If X is strictly convex then L( , )

satisfies O—2,G—5,I—6,G-12,G—13.

8. If x is an i.p.s. then L(x,y) =

L:(X,7) ' (X i 1).

Suppose X is strictly convex and 0 : X x X -> R

satisfies 0-2, 0—5, 0-13 and 0(x,y) a 0 => x : ro': y

then Q(x,y) - L(x,y). To see this simply note 9(x-W y,y) =

y

0 which implies L(x~ "(x E) y,y) a 0 so L(x,y) -i¢(X.Y)

y

by part 7 of theorem 2.10. Hence L( , )-has the desired

property that L(x,y) = 0 iff x.l y and if X is strictly

convex it is the only possible function.

An immediate corollary of theorem 2.10, theorem 2.2.

and corollary 2.3 is the following.

COROLLARIZ.11: If X is strictly convex the following

are equivalent: ‘

1. X is an i.p.s.

2. LR(y,x) a LRIx,y).

3. L( , ) satisfies 9-4.

It should be noted that it would be sufficient to

assume 1.3(y,x) = LR(x,y) for H x H - H y H a 1 since the

homogeneity would imply LR(y,x) 8 LR(x.!) for all x,y c X.

Theorem 1.33 allows us to state another corollary to 2.10.
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COROLLARY 2.12: If X is a normed linear space of dimension
 

at least three then the following are equivalent:

1. X is an i.p.s.

2. L( , ) satisfies G—l.

3. L( , ) satisfies 6-9.

4. L( , ) satisfies 0-10.

When X is strictly convex, corollary 2.12 is a

special case of the theorem by Rudin and smith (60] .

We continue to look at the prOperties of L(x,y).

From theorem 2.8 it follows that I L:(x,y) | 5 2 [I x u Hy II.

In general this is the best possible bound since it is

attained in the 11 plans (the 11 plane is the Minkowski

plane with the norm H (x,y) H== | x | + | y I). By rounding

the sides on the 11 unit sphere, a strictly convex normed

linear space can be obtained where the bound is arbitrarily

close to 2. The following does provide a stronger theorem

than 2.8, however.

THEOREM 2.13: I Liam) I I Lima) l :5 II x IF II I II2 ‘

Proof:

Let a s R(x,y) and b e M(x,y). If M(x,y) - M(y,x) II 0

the result is trivial. If not we may assume a,b f 0. Then

II ..., II= IaI II y-a'lx II_>_ Ial III-b1"

- IabI II ...,-1, Hz Iabl II ..., II.

Hence 1 3 |ab| and the theorem is proven (if H x-ay H In 0

then x = er and L1(x.y) - L¢(y.x) - H x H H y H).

q.e.d.
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We now use L+(x,y) to .Icharacterize symmetric orthogonality.

THEOREM 2.14: If X is a real normed linear space then

I L:(x,y) |.S H x H H y H for all x,y c X iff X has

symmetric orthogonality.

Proof:

Suppose I L*(x,y) ['5 H x H H y H for all x,y s X.

Let x,y c X such that xi y and H x H I: H y H8 1. Then

1 s M(ax+y,y) for all a since 0 s H(x,y). Hence H y H:-

1 :5 max I Lye-m) I .5 II my II II II II = II my II .

Suppose X has symmetric orthogonality. Let a¢M(x,y).

If a = 0 then |a|.§ H x H H y H .' If a f 0 then

H x—ay H‘s H x-By H for all B s F

and by assumption

II 3’ II: II y-Nx-ay) II for all I3 t P-

Let B = -c’l. Then

II: II: II m‘lIx—m II=Jl|-’£-III
a

IaI IIy IF: IIx II My II.

q.e.d.

From the definitions of n,(x;y) and L+(X.Y) and

by theorem 1.35 we may conclude the following.

THEOREM 2.15: Let X be a real normed linear space.
 

Then L+(x,y) = b Hy ”2 and L_(x,y) = a II y "2 iff

N+(x-by:y).3 0,3 N-(x-ay;y) and N+(x-ay;y) = N_(x-cy;y) = O

for a c (a,b).
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THEOREM 2.16: If X is a real normed linear space then
 

X has symmetric orthogonality iff L+(x,y) a H y H N+Iy,x)

and LLIX.3) = IIy’IIN-(y;x).

While we are characterizing spaces consider the following.

THEOREMv2.l7: Let X be a real normed linear space.
 

Then X is strictly convex iff L(x+y.y) ' L(x,y) + L(y,y)

for all x,y t X.

Proof:

If X is strictly convex then L(x+Y.Y) = L(x,y) +

L(y,y) by theorem 2.10.

Suppose L(x+y,y) s L‘x,y) + L(y,y) for all x,y s X.

Let x,y s X and y f 0. Then x _"L-Cfié¥2 y‘l y and

y

x_L(X 115'-

III I

Hence 0 = L(x --£-L§Lfi£ 1,!) = LIX,Y) - L(L‘ x y,y) '

- H y I H r I

L(x,y) - L_(x,y).

0 a L(xI--£1£57%l— y,y) = L(x,y) - L+(x.Y).

N I I

q.e.d.

1: x is a complex normed linear space it-is natural

to wonder if there is a relation between LR(x,y) and L°(x,y).

Theorem.2.18 answers this question as well as characterizing

inner product spaces. See appendix A.



THESIS

 

   



29

THEOREM 2.18: If X is a strictly convex complex normed
 

linear space the following are equivalent:

1. X is an i.p.s.

2. Ln(x,y) = Re Lc(x,y) for all x,y s X.

3. LR(x,y) = Re Lc(7,x) for all x,y s X.

Proof:

Clearly 1 implies 8 and 1 implies 3 are trivial, for

given a complex inner product (XIV) then Re (xly) is a

real inner product.

Also, if the complex dimension of X is one, then

X is an i.p.s. in any case.

Now assume the complex dimension of X is two, so that

the real dimension of X is four. Bince Lc(x,y) is complex

additive which implies LR(x,y) is real additive in the

first argument (second argument) since La(x,y) a Re La(x,y)

(L3(x,y) a Re L°(y,x)). By corollary 2.11 X is a real

i.p.s. and hence a complex i.p.s.

If the complex dim X > 2 then every two-dimensional

subspace is an i.p.s. so X is an i.p.s.

q.e.d.

The final result in this section is a new proof of

theorem 1.17.

THEOREH: Let X be a normed linear space. Then X is

an i.p.s. iff H x H = Hy H implies H x+ay H = H cx+y H

for all a s R.
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Proof:

The necessity of the second condition is obvious. In

proving the sufficiency we may assume X is a real space

since if it is complex than it is a complex i.p.s. iff it

is a real i.p.s. .Also we will not repeat the section of

Ficken's argument which proves X is strictly convex.

Using corollary 2.11 and the remark following it will

suffice to show L(x,y) = L(y,x) whenever H x H3 Ily'||= 1.

Suppose I lel= IIY’II= l and L(x,y) a a. Then

H x-ay “'5 H x-ay H for all a c R.

But H x-ay H = H y-ax H and H x-ay H = H y—ax H. Hence

H x-ay "'5 H x-cy H for all a s R or L(x,y) = L(y,x).

q.e.d.

In some instances the function L( , ), like the semi-

inner-product or the Gateaux derivative, can be used in an

{arbitrary normed linear space in much the same way as the

inner product is used in inner product spaces. There are

several results in later chapters which are based on LI , )-
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SIMMETRIC ORTHOGONALITY

As we have mentioned (theorem 1.33) there exist two-

dimensional normed linear spaces in which orthogonality

is symmetric and which are not inner product spaces.

(Recall orthogonality means projectional orthogonality unless

otherwise specified.) Because the class of spaces with

symmetric orthogonality is so closely related to the class

of inner product spaces and since it provides counterexamples

to various conJectures we examine the class more carefully.

Also many of the results in this chapter are used in the

later chapters. Day [18] has given a construction from

which all real two-dimensional normed linear spaces with

symmetric orthOgonality can be obtained. We give two similar

constructions for all real two-dimensional normed linear

spaces with symmetric orthogonality and in addition examine

the possibility of constructing complex two-dimensional

normed linear spaces with symmetric orthogonality. The

chapter also includes several characterizations of spaces

with symmetric orthogonality.

we begin by examining the geometric significance of

orthogonality. In theorem 1.32 we found that x‘l y iff

there exists a continuous linear functional f such that

f(x) - H f H H x H and f(y) = 0. If H x H - 1 this would

usually be stated geometrically that y was in a supporting

hyperplane to the unit sphere at x. Thus if X is a real

two-dimensional normed linear space and x,y e X satisfy

31
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1- IIx II=IIyII=1A

2. x.l y and y'l x

then there is a support line to the unit sphere at x

parallel to y and a support line at y parallel to x.

In terms of Minkcwski spaces the problem of determining two-

dimensional spaces with symmetric orthogonality reduces to

the problem of determining centrally symmetric convex curves

(unit spheres) for which diameters and support lines have

this special relationship. Such curves are called Radon

curves [571.

Using this geometric significance of orthogonality

Day has shown the following.

THEOREM 3.1: Given any real two-dimensional space X

there exist vectors x,y c X such that x.l y and y'l x.

We now give a construction which produces all real

two-dimensional normed linear spaces with symmetric orthog—

onality. By theorem 3.1 given any real two—dimensional

normed linear space we can find x,y c X such that H x H:-

||y'||- l, x.l y, and y.) x. Following the notation of

Day we call £ax+by | a,b 3 o} the first quadrant and

similarly name the other three quadrants with the corres—

ponding restrictions on a and b. Day has shown that X

can be renormed in such a way that the two norms agree in

the first quadrant and under this new norm X has symmetric

orthogonality. He does this by constructing the second
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quadrant of the new unit sphere. Moreover, if X had

symmetric orthogonality originally the two norms agree.

Thus we have constructed all two-dimensional real spaces

with symmetric orthogonality.

The first construction which we give is that by Day

except in more analytic terms.

CONSTRQETION I:
 

Following Day we let X be any real two-dimensional

normed linear space and x,y s X satisfy H x H = H y H = 1,

1.1 y, and y'l x. It is easy to show that for 0.5 a < 1

there exists a unique f(a) Z 0 such that H ax+f(a)y H=- 1.

Moreover, f is continuous, convex, and satisfies 0 < f(a) 5 l,

f(O) =1. It is well known from the theory of such functions

that at each point f has left and right derivatives

(denoted Df(a) and D£(a) respectively) and that f is

differentiable except for a countable set. Also f has a

\ ‘

Schwartz derivative f'(a) a Lim f(a+h, +—r§27h)l’ 2f(§)

h->O h

 

almost everywhere.

Let z(a,m) = (am-f(a))-1 for D£(a) z m‘z D£(a) and

0.5 a < 1. We claim that if X is renormed so that the

unit sphere in the second quadrant has the form

[s(a,m)x + mz(a,m)y I 0 __<_ a < l, D£(a) 3 m _>_ D:(a)3 then

X has symmetric orthogonality with respect to the new

norm. By Day's construction and our method of construction

it suffices. to calculate the slope of a support line to

this curve at z(a,m)x + mz(a,m)y.
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First we determine when a --> z(a,m} is one—to-one.

If f'(a) does not exist then a --> z(a,m) is one to many.

Now suppose a < b and z(a,ml) - z(b,m2). Then 0‘: m1.z

be)b:af(a).z m2 from which it follows z(a,ml) t z(b,m2)

iff ml= m2. Thus we can divide our calculations into

several cases determined from these.

1. Suppose f', f“ both exist at "b" and f“(b) f 0.

Then m = f'(b) and the slope M of the support line at

(z(b,f'(b))x+(f'(b)z(b,f'(b))y is given by

we —r‘—”zéaa:%y‘-‘;éfithrI—-L3z‘b)
mf'(b) - r'(b) f(a) " f(b) + f(b) __b..__..f'(b2" “1

 

 

 

 

= Lim a-b a ——

a—>b ._ fIa;-- f(b) + m + b f'(bla- m

.. (f'Ib))2 - (rum)? + f"(b11113) .. f(b)

rth) - me) + f'(b)b b

‘which is what we desired.

2. Suppose f' does not exist at b and Df(b) > m >

D£(b). Then the lepe M of the support line at

(z(b,m))x + (mz(b,m))y is again given by

mz(b,m) - mlz(b,ml) (m—ml)f(b) f(b)

M = Lim = Lim a —-—- .

ml->m z(b,m) - z(b,m1) ml—>m (m—ml)b b

 

3. The remaining cases follow by continuity and are

the points where there are non-unique support lines in the

second quadrant (i.e. the points where a --> z(a,m) is

many to one). Thus flat spots on the unit sphere in the

first quadrant correspond to corners on it in the second

quadrant and corners in the first quadrant correspond to
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flat spots in the second quadrant. This completes the

first construction.

  

1 m

ma- 9. x+ma- a y’{,/’-1 y

sloper£é3l,1:7fl§

,// \ slope m

”' l \

I, \
I \ 31+f(a)y1.

l \

l

I \\

i_l

x

FIGURE 3.1

CONSTRUCTION II::

Construction I suggests this second construction which

can be at least partially generalized to complex spaces.

.Again let X be any real two-dimensional normed linear

space and x,y s X such that “x "I! Hy H8 1, x_I_y and

y'l x. Then h.: R -> R defined by h(a) = H x+ay H is

a continuous convex function which attains its minimum

at a I 0. Again h restricted to the positive real numbers

‘will determine the first quadrant of the unit sphere. This

time we determine the second quadrant of the unit sphere

of a new norm by assuming h is defined for only the

positive reels and showing how to define it for the negative

reals.
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Again h has left and right derivatives everywhere

and is differentiable almost everywhere. Let z(a,m) s a - Eéfil

for an: 0 and DE(a)‘5 m‘s D§(a). Since h satisfies

1. h(a) 3 1, la]

2. Ih(b) — h(a)I 5 Ib—aI

% 3 1. Let c . Lim Z(a,m). Nowwe have z(a,m) < 0 and

'_ a~>ss

we can extend h to the negative reals.

h(z(a,m)) = -% for “.2 O D2(a)‘5 m‘s Dg(a)

h(b) = 1 if a 5, b.$ 0

To check the validity of this construction we shall

reduce it to the first construction. If f is defined

as in construction I then

f(l/h.(a)) = a/h (a) for a'z 0

Dim = met (an.

Thus h(z(a,m)) 3.; is equivalent to

H ¢3é%g%l - -5%;7 )"1 x + (2(a.m)) (z z m) -5%;7)-1 F'II= 1

‘whioh is construction I. Thus construction II is verified.

x+ay
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Before we can attempt such a constructiOn for complex

spaces, however, we need some more results. Accordingly

we obtain some characterizations of real and complex spaces

with symmetric orthOgonality. Lemmas 3.2 and 3.3 will

give us the tools necessary to prove theorem 3.4 which

is our main theorem. In the real case theorems 3.4 and

3.5 follow from Day's construction or construction I, but

our proofs are independent of these constructions and equally

valid for complex spaces.

LEMMA 3.2: Let X be a complex normed linear space and
 

x,y s X. Then x : ro : y iff there exists a real number

b such that x : ko : bix+y.

Proof:

Suppose there exists a real number b. such that x :

ko : bix+y. Then there exists a complex continuous linear

functional f such that H f H = 1, f(x) = H x H and '

f(bix+y) a O,(theorem 1.32) Then He f is a real continuous

linear functional such that HZRe f II= 1, Re f(x) 8 H x H

and Re f(y) = 0. Hence x : ro : y. (See appendix A)

Suppose x : ro : y. Then there exists a continuous

:real linear functional g such that H g H = l, g(x) = H x H,

and 8(1) 3 0. Define f(2.) = g(z) - ig(iz). Then f is

a continuous complex linear functional such that II f II = 1

and f(x) = II 1: II. Let b = -fl . Then f(bix+y) = O

x

so x : ko : bix+y.

q.e.d.
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LEMMA 3.3: Let X and I be normed linear spaces and
 

9 : X -—> Y (O f 0) be a linear map such that for xl,x2 c X

and 31.1 x2 then 0(x1) I ¢(x2). _Then 0 is continuous

and ¢/H O H is an isometry from X to ¢(X).

Proof:

Suppose X and Y are complex spaces and I denotes

. y <e=> x : kc : bix+ycomplex orthogonality. Then x .

==> 0(x) : ko : bi.(x)+¢(y) <==> @(x)': ro : C(y) by lemma 3.2

for x,y s X. Hence we may assume X and I are real

1‘0

and .1 denotes real orthogonality.

Next we assume dim X = 2. By theorem 1.32 dim C(x) = 2.

Thus there exist m,M > 0 and x3,x4 s X such that H x3 H==

II 2:. II= 1. m= II M13) II . M= II we.) II and m I: II:

H ¢(x) H‘s M H x H for all x s X. Now choose x5,x6 s X

such that H x5 HI= H x6 H = l, x3.l x5, and x4‘l x6. Then

II TI! I II WI: )

3 :15. 4 —“

.By continuity there exist x,z c X such that H x H I H 2 H =

1. XI 2 and II MK) II'-' II NZ) II ~ Let 1“ II 9(1) II -

Since x‘l 2 far -1 < a < +1 there must exist a unique

 
 

non—negative number f(a) such that H ax+f(a)z II: 1. Like-

wise, since 0(x) 1 0(2) for -l < a<:l there exists a unique

.non-negative number g(a) such that H a¢(x) + g(a)¢(z) H:= k.

Also there exists a dense set D of -1 < a < +1 such that

both f'(a) and g'(a) exist.

For a c D the following must hold:

ax + f(a)z l x + cz iff f'(a) = c
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and a¢(x) + g(a)¢(z) l ¢(x) + d¢(z) iff g'(a) = d.

But ax+f(a)z l x + oz implies a0(x)+f(a)¢(z) l ¢(x)+oQ(z).

If h(a) = k/H aO(x) + f(a)¢(z) H for a s D then g'(ah(8))’=

f'(a) and g(ah(a)) = h(a)f(a) whenever ~l< a h(a) < +1-

(for a near 0, Ia h(a)I < 1 so these are nontrivial condi-

tions). Since l/h is convex, h' will exist almost every-

where so we can differentiate the second equation and

s'Ia h(a)) (h(a) + a h'(a)) = f'(a)h(a) + f(e)h'(a).

Combining this with the first equation

a f'(a) h'(a) = f(a) h'(a).

If h' does not vanish identically then

a f'(a) = f(a)

which has the solution f(a) = ca for some constant c.

But f(0) = 1 so clearly this is a contradiction. Hence

h'(a) must vanish identically or h(a) is a constant. Thus

H a 0(x) + f(a) 0(a) H = k for —1 < a < 1 since h(O) = 1.

This is sufficient to show O/H 0 H is an isometry.

If dim X > 2 let x c X be fixed and let z c X. Then

the above applies to Lin {x,z3 so there exists a constant

a such that II III.) II = kzII w II for w c Lin {as}. How-
z

ever, H ¢(x) H / H x H is fixed so k2 is constant over the

whole space.

q.e.d.

THEOREM 3.4: Let .X be a two-dimensional normed linear
 

space. Then X has symmetric orthOgonality iff there

exists a linear isometry e : x -—> x' such that [p(:)] (x) = o

for all x s X.
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Proof:

. First suppose X has symmetric orthogonality. Let

x,y s X, II x II a- II y II = l and x _I_ y. Define Maxi-by)

by [0(ax+by)] (cx+dy) = ad-bo. Then 0 is a linear map

such that Y9(ax+by)] (ax+by) = 0. Suppose axsby I cx+dy.

Then there exists a linear functional f such that

f(cx-I'dy) = 0 and f(ax+by) = II 1' II II ~ax+by II. But up to

scalar multiples there is only one linear function such

that f(cx+dy) = 0 so I [C(cx+dy)] (ax+by) I =

II¢(ox+dy) H H ax+by H. But cx+dy l ax+by by assumption.

30 I [Max-thy” (cx+dy) I = II Maxi-by) II II 01%! II- NOV

we identify X with XV‘ so that the above relations now

imply C(ax+by) I ¢(cx+dy) and ¢(cx+dy) I 9(ax+by). Then

by lemma 3.2 there exists a constant k such that

II Moms; II = k II ...by Il-

Bus I [we] (subs) I = Ibl .5 II ax+byII so II¢<x> II_5 1.

However I [¢(x)] (y) I = l = IIy'IIso,II¢(x) II: 1 and

k 8 1.

Now suppose there exists an isometry Q : X —-> X' such

'that [f(x)] (x) = O for all x c X. Suppose x‘l y. Because

.X is two-dimensional it follows I

I [we] Ix) I = II Ire) II II: II== II y II II or II. But

[Martyn (fly) = 0

so (cu)! m dam] (x) = 0.

Hence I [¢(x)](y) I = I [up] Ix) I -= II y II II x II so u x.

q.e.d.

 



rHESSoIS‘s

 
-9..er



41

The fact that X is two-dimensional in theorem 3.4

is very important. Suppose X is an inner product space

and of odd dimension greater than or equal to three. Then

I there can exist no continuous linear map 0 :.X -> X' such

that [0(x)] (x) a 0 since even dimensional spheres admit

no continuous tangent fields. Thus the existence of Q

is not, in general, necessary. Next consider a two~dimen- F-~

sional complex normed linear space with symmetric complex

orthogonality. Then the existence of Q is given by

 theorem 3.4 but if X is not an inner product space, real 5

orthogonality is not symmetric. Hence the existence of HI

O is not sufficient in general.

From theorem 3.4 we can prove the following character-

izations:

THEOREM 3.5: If X is a normed linear space then the
 

following are equivalent:

1. X has symmetric orthogonality.

2. If x,ycX, HxII=IIyH=1and xly then

ax+bylcx+dy iff Iad-bcI= IIax-I-by II ch+dy II.

3. Ifx.y¢X. IIXII=IlyII=1.x4-ayly and

y+bx I x then H.x + ay H = H y + bx IL

Proof:

(l->2)

If dim X > 2 then X is an inner product space and

this is an easy calculation. If dim X I 2 then in proof

of theorem 3.4 we proved
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ax+by I cx+dy iff Iad-bcI = H O(ax+by) H H cx+dy II iff

lad-bcI - H ax+by H Hon+dy II since 0 is'an isometry.

(23>3)

Let x,y satisfy the hypothesis_of 3. Then

1= "1*” II ”a" -ay

II xWWII

y+bx a b IIxfiay H x+ay + (l-ab)y.

II new II j

...,. e I
Since-——————— and y satisfy the hypothesis of 2 we have

II I“! II . ,
.

I

II rox II = II or II II no: II =

I H x+ay H (l-ab) + ab H x+ay H I = H x+ay H. K

(3=>l) “

Suppose H x H = H y II= l, x.l y and y+bx I x. Then

IIXII=|Iy+b1II=1= IIyII- Hence xix.

geeede

As usual we like to interpret our theorem geometrically

and part 3 of theorem 3.5 may be expressed as the equality

of the altitudes to the equal sides of an isosceles triangle.

The next theorem diverges from the goals of this section

but we include it now because we have the tools to handle

it and it includes concepts from both chapters 2 and 3.

THEOREM 3.6: Let X be a real normed linear space. Then
 

L+(x,y) = 0 implies L+(y,x) = 0 iff X has symmetric

orthogonality and X is strictly convex.

Proof:

If X has symmetric orthogonality and is strictly
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convex then if x‘l y we have L(x,y) = L(y,x) = 0 and

L+(X.y) = L(x,y) and L+(y.x) = L(y.1).

Suppose L+(x,y) = 0 implies L+(y,x) = 0. Suppose

x.l 2. Then

L+(x - L+(x,z)z,z) 8 0 => L+(z, x - L+(x,z)z) 8 O

L.(x - L_(x,z)z,z) = 0 => L+(x — L_(x,z)z,-z) - 0

=> L+(-z,x - L_(x,z)z) = 0

=> L_(z,x - L_(x,z)z) = 0

But this implies z‘l x by theorem 1.33. Thus X has

symmetric orthogonality. If dim X > 2 then X is an inner

product space and hence is strictly convex. If dim 2.8 2,

then if X is not strictly convex we note we can find

x,ycX such that IIxH=IIyII=1,xJ_y, L+(y,x)>0

'but Lg(x,y) = L_(x,y) = L(x,y) a 0 (this is obvious from

construction I). Hence L+(x,y) = 0 but L+(y,x) f O which

is a contradiction.

q.e.d.

Now we are ready to look at the two—dimensional complex

normed linear spaces with symmetric orthogonality. We

generalize construction II to complex spaces. This procedure

is helpful in characterising these spaces and constructing

specific examples but does not construct all two-dimensional

complex normed linear spaces with symmetric orthogonality

as construction II.

consummation III:

Let X be a two-dimensional complex normed linear
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space with symmetric orthogonality. Let x,y s X, H x H =

H y H = l, and x'l y. Define f : R x.R -> R by f(a,b) a

H x +‘(a¥b1)y H. Then by theorem 3.5 x+(a#bi)y I x+(c+di)y

iff I(a-c) + (b-d)i I = f(a,b) f(c.d).

Now consider (a,b) fixed. Then the function h(p,q) =

((a-p)2 + (b-q)2)l/2 / f(p,q) has its absolute maximum

at (c,d) in which case h(c,d) = f(a,b). Suppose f is

differentiable at (c,d). Let D = ((a—c)2 + (b—d)2)1/2.

Then 0 a h1(c,d) .. (a—c)(Df(c,d))':1 - Dfl(c,d)(f(c,d))"2

and o . h2(c,d) a (b-c)(pr(o,d))"1 a Df2(c,d)(f(c,d))-2.

Simplifying and solving

f2(a,b) = (a~c)(f(c,d)fl(c,d))’l = (b-d)(f(c,d)f2(c,d))'1

Equating the last terms, resubstituting and simplifying we

obtain

(3.7) f2(a,b) = (ff (c,d) + £3 (c,d))"l

Now solving for a and ‘b

(3.8) a = c + (f(c,d)f1(c,d))(f§ (c,d) + f3 (c,d))”l

b = c.+ (f(c,d)f2 (c,d))(fi (c,d) + :2 (c,d))-1

.Naturally these equations are symmetric in (a,b) and (c,d).

Irhey are also the two-dimensional analOgues to the equation

of’definiticn in construction II. Equations 3.7 and 3.8

Iaold whenever f has partials at (c,d) which will be a1mbst

everywhere in the plane so we can pick up the rest of the

'plane by continuity.

We might be tempted to try to construct all complex

spaces with symmetric orthogonality by assuming f is

defined.on the upper half of the plane and extending the
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equations 3.7 and 3.8. It is possible, however, that 3.7

and 3.8 either do not extend f to all the plane or extend

f in two different manners for some points in general.

The reason for this is that (a,b) and (c,d) need not lie

on a line through the origin.

 

 
 

 
(c,d)

 ful

{(p.Q) I f(ma) = No.41 pm) I f(p,q) = Nam)?

FIGURE 3.3

CONSTRUCTION IV:

 

We now use theorem 3.4 to generalize a construction

by Thorp [15] to obtain spaces congruent to their duals.

By doing so we are able to obtain examples of two-dimensional

complex spaces with symmetric orthogonality and hence have

examples of the functions described in construction III.

Let H H'be a norm on R2 such that (R2, H H) has

symmetric orthogonality, II(0,1) II= II(l,O)H = l,

(0,1) I (1,0), and H (l,a) H:= H (l,-a) H. (Such spaces
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do exist. For example consider the Minkowski plane whose

unit sphere is given by

{(r,s) I rp + sp = 1 if rs'z 0 and rp/p—l + .p/p-l = 1 if

rs.5 0‘} where p is any integer greater than 2. Let

x = (2-1“), 2'1/p) and y = (Zl/p-l, Zl/p'l) and use x,y

as the coordinate axes.)

Let X, Y be any two normed linear spaces (where both

 

are either real or complex) and define the norm on X x-Y {Ad

by II (1.1!) II = II III I II. II 3* II) II for X t X and y t Y-

The only nontrivial condition to check, to see that this

defines a norm, is the triangle inequality. \1

“(x1+x2: 31+72) H = H I“ x1+32 "s H 71+Y2 H)“

5 II (II!<1II+ II 12 II. II y1+y2 IIIII

5, II (II 11 II+ "12 II. II 3'1 II* II 12 IIIII

.5 H I“ 31 "s H 71 H)" + "I“ ‘2 ”a H 12 "I“

' II (x1. ’1)" * II (x2. 12) II-

The above inequalities follow from the triangle inequalities

in x and I and the fact that (1,0) l (0,1) and

(0,1) I (1,0). We also notice X,Y are embedded isometrically

as closed subspaces in X 1‘1.

Now suppose X is any space such that X and X?‘

are congruent by a congruence O : X +-> X“ . Let X = X

and I =- X". Let 7,:- X 3 X" with the above norm. If

h.s X? and x c X then the linear functional (h,O(x)) defined

by [mean] Inc) .. h(y) +[¢Ix>) (g) belongs to 2'.

Moreover, all elements of 2' are of this form. To determine

the norm III-h. IIx)H(y.s)I == I-th) +I¢Ix>1<eII y . x. s s x'



THESIS

 

 

 



47

.5 Ih(yII + I [IIXI] (sI I

.S H h H H y H + H x H H s H

.5 H (H x H . H h H I H H (H y H s-H s H I H

= H (H X H I H h H I H H (H y H . H s H I H

= IIIx.-hI H H (y.sI H -

Thus H (-h, 0(x)) H‘s H (x,h) H . Now choose H y H ,

H 8 H 8° that I H Y H I -H 8 H I.1 (II x H . H h H I and

Vi ‘ x» 81 ¢ X‘ 8° that H Y1 H = H y H . H s1 H = H s H ,

-h(y,> --> II n II II y II . and [was] (5,) --> II 8 II II x II .

Thus H (-h, O(x))H = H (x,h) H since

I {I-h.¢(x))](y.g>| -—> II (x,-h) II II (y,g) II . Hence the

mapping W : Z --> 2* given by ¢(x,h) = (-h,O(x)) is a

congruence. Moreover, if X is reflexive and 0 is the

canonical isomorphism then the map H also maps a vector

onto an annihilator of itself.

Next suppose X and Y are any linear spaces such that

there exist congruences $1 : X --> X’ and 02 : Y —-> Y'.

Let Z = X X I then again 2* = X‘ x 2*. Exactly as above

the map I : Z --> 2* given by ¢(x,y) = (¢l(x),¢2(y)) is

a congruence. Also if 01,02 map each vector onto an

annihilator of itself m will also.

By using combinations of the above results we may

obtain spaces of any dimension congruent to their duals.

We have not characterized such spaces since we have not

even constructed 11 for instance.

 

,
,
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CONSTRUCTION V:

As a particular example let X = C (i.e. the one dimen-

sional complex space). Then X X X' with the above norm is

a two-dimensional complex space with symmetric orthogonality

by theorem 3.4. This example is a particularly simple

case of construction III since f(a,B) = f(|a|,|BI) and

all real two-dimensional subspaces generated by (O,B),(a,0)

are isometric to (R2,|| ll).

“
3
7
,
.

.
.
a
'
“
“
‘
“
“
“

O

 “1W
FIGURE 5.4
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LOCALIZATION OF IDENTITIES

1. Preliminary Results

Corollary 1.9 is an extremely important result because

it allows us to reduce many characterizations to two—dimen—

sional problems. For some of the theorems in this chapter

we need strongerforms of 1.9 in-order to make this reduc-

tion, however.

LEMMA 4.1: Let X and Y be normed linear spaces and
 

suppose the norm on Z = X x Y is given by

”(x,y) IF = H x H2 + H y H2. Then Z is an inner product

space iff both 1 and Y are inner product spaces.

Proof:

If Z is an inner product space then X .and Y are

embedded as subspaces of Z and hence are inner product

spaces.

If X and Y are inner product spaces let ¢x( , )

and ¢Y( , ) be the inner products on X and Y, respectively.

Define

((x1.yl)l(x2,y2II = ¢x(xl,x2I + ¢Y(yl.y2I.

It is easy to check this is an inner product on Z.

q.e.d.

LEMMA 4.2: Let X be a normed linear space. Then X
.0..- cm

 

is an inner product space iff there exist a hyperplane H

and a vector x not in H such that H is an inner product

49
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space and every two-dimensional subspace of X which

contains x is an inner product space.

Proof:

If X is an inner product space then H can be any

hypersubspace H and any vector x not in H will do.

Suppose H and x exist. Let H' be any closed

hypersubspace sucn that x.l H' (theorem 1.32). Then

X = Ldnfiix} x H' where the norm is given by '

||(rx,h') IF = ||rx.lF + H h' H2. By lemma 4.1 it will

suffice to prove H' is an inner product space. If

h', g' c H' there exist r,s c F such that rx+h' and

sx+g' belong to H. Since the parallelogram law hOldB in

II2 + II (r-eIx + (h'-s') IF =

H2

H (r+8)x + Ih'+s'I

2 H rx+h' H?“ + 2 H 8x+g'

or

2 2 ‘ 2 2 2

I m I In: II + II h'+e' II8 + I r-e I IIx II + II h'-s' II

2 2 2 2

2IrI lle2+2llh' H2+2lel llxll +2Hs' II.

Thus

2 ° 2

H h'+s' H + II h'-e' II“ = 2 H h' H
2

+2l'g' H D

and the parallelogram law also holds in H'. By theorem 1.8

H' is an inner product space.

q.e.d.

Lemma 4.2 is especially useful in three dimensions

since hypersubspaces are two-dimensional. It may also be

used as an inductive step for proving other generalizations

of 1.9.

H
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_L§MMA 4.3: Let X be a normed linear space. Then X is
 

an inner product space iff there exists a.basis {y,xai

for X such that every two—dimensional subspace of X

which contains an x“ is an inner product space.

Proof:

If X is an inner product space any basis will do.

Suppose such a basis exists. If the dimension of X is

n then we will proceed by induction on n. If n is

l or 2 the theorem is trivial. Suppose the theorem is

true for n = 1,2, ..., m. Let n = m + l and y,x1, ...,Xm

be such a basis. Then H = Lin {y,xl, ""xm~1 is a hyper-

subspace of X. By the induction hypothesis H is an

inner product space. By lemma 4.2 X is an inner product

space.

If the dimension of X is not finite then let -H

be a two-dimensional subspace of X. Since [y5xa3 is a

basis there exists a positive integer N such that

HCLin [y,xal, ””1014; which by the above is an inner

product space. Thus by 1.9 X is an inner product space.

q.e.d.

2. T0p010gical

Now-we look at a class of problems originally suggested

'by Dr. Charles MacCluer and Mr. Joseph Quinn. The main

idea is to generalize the theorems from chapter one by

assuming the hypothesis holds only locally. Locally here

usually has a more tapological meaning (i.e. the vectors
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are in some sense close) than a geometric meaning (i.e. the

vectors form some specialized configuration). This appears

to be a somewhat different approach than most which have

appeared in the literature.

DEFINITION 4.42 Let X be a normed linear space and
 

(x,y) c X X X. Let O<X,p<l and r be one of the relations

.3, =, or <. The pair (x,y; belongs to the class A(X,u,r)

if and only if

u(1-u)|| MHl-UY |I2+\(l-M H bx-(l-sIY H:2 1‘

I 2

mum-2w II x ||+(1->~I(1-Is)(n+K-3I1XI H y Hz-

With this definition we may state the three conjectures

with which most of this chapter is concerned.

CONJEGTURE 4.5: Let X be a normed linear space. Then X
 

is an inner product space iff there is a relation r and a

set KCX with the property that for x,y c K there exist

O<X,p<l such that (x,y) c A(X,p,r).

CONJECTURE 4.62 Let X be a normed linear space. Then X
  

is an inner product space iff there is a relation r and

e > O with the prooerty that for all x,y c X satisfying

H x H = H y H = l and H x-y H < c then there exist

O<X,p<l such that (X,Y) c A(\,u,r).

CONJECTURE 4.7: Let X be a normed linear space. Then X
 

is an inner product space iff there is a relation r and
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c > O with the prOperty that for all x,y c X satisfying

a [x,y] < c (i.e. H x[H x H - y/H y H H < c) then there

exist 0<X,p<l such that (x,y) c A(X,p,r).

Actually all three of the conjectures as stated are

false and what we are really interested in are the additional

restrictions necessary in order to obtain true theorems.

We prove some results, however, before giving counterexamples

to the conjectures.

It should also be evident that some restrictions on K

must be made in conjecture 4.5 if th re is to be any hope of

a result. Not only must K at least span X but it must

in some sense contain at least one vector in every direction.

One easy condition to place on K is that it have non—empty

interior, but this is not the only one possible.

Before we begin the theorems we need another definition.

DEFINITION 4.82 A subset C of a linear space X is a
 

cone iff for x c C and a_3 0 then ax c C. If C is

convex then it is a convex cone.

If x1,...,xn c X then C(xl,...,xn)={2a1x1| a1: 0}

is a convex cone and if dimension of X is n and the x1

are independent then C(xl,...,xn) has nonempty interior.

The next theorem is a generalization of 1.14 and a

special case of 4.5.
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THEOREM 4.9: Let X be a normed linear space. Then X
 

is an inner product space iff there exist a relation -r

and a subset KCX with-the properties that for each x e X

there exists a c R such that ax e K and for x,y e K

there exist 0<X,p<l such that (x,y) c A(X,u,r).

Proof:

The necessity of the last condition is obvious. This “fl

P
I

same statement holds for all of the theorems in this chapter

and most of those in the next. Thus we will usually show

 
only the sufficiency of the last condition.

Thus suppose K exists. By corollary 1.9 we may \

assume X is real and two—dimensional. First we prove the

result when r is '5. Let E be the minimal (in area)

ellipse with center 0 and containing the unit sphere 8.

‘Then Efls contains at least a pair of independent vectors

x and y (and hence contains -x and -y also) and EI18

is compact since E and S both are. See appendix B for

a discussion of E. Thus if E118 f 8 there exist r,s c Eris

such that ErISIICIr,s) = £r,s3 . Also there exist a,p e R

with ar,as c K. Finally if I I is the norm determined

by E then I I is induced by an inner product and

H x ".2 I x I for all x c X.

By hypothsis

PMW"\-2IM)02+(1~M(1-M(aim-2111.182 3

le-uHIIXar+(l—X)ps H2+A(l-X}H par—(l-p)Bs IF.Z

I2

eIl-eII Xar‘tI’l-HBB l2+Ml-AII par-(l-IzIBB

IiMufl’zI‘Magfi l-X) (l-u) (ufl-ZMIBZ
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Thus equality holds throughout so 1 Xar+(l—x)ps

II Xar+(l-X)Bs H

and : ypar-(l-plps belong to Elfi S. But at least one

H ear-(lwIBB II

of the vectors belongs to C(r,s) and is distinct from r and s

contrary to the hypothesis. Hence El\ 8 = E and X is an

inner product space.

If r 18.2 choose E to be the maximal inscribed

ellipse in S and a similar proof holds. If r is =

this is a special case of either of the first two results.

q.e.d.

 
The classical example of a set X satisfying the

condition imposed by this theorem is the boundary of any

closed bounded set containing 0 as an interior point.

Note that if f is any continuous linear functional then

the boundary intersected with the half space £fo(x) 3 03

also satisfies the hypothesis.

We omit the proof of the next lemma.

LEMMA 4.10: Let X be a normed linear space. If a subset
 

K CX has the prOperty that for a relation r and for each

x,y e K there exist 0 < X, p < 1 such that (x,y) c A(X,u,r)

then aK will also have the property for any scalar a.

The next lemma is intersting because we intuitively

would like to attack conjectures 4.5-4.7 by this approach.

It is less powerful, however, than later techniques we

will use.
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LEMMA 4.11: Let X be a normed linear space, X be a
 

convex subset of X, and w c X. If X has the property

that there is a value 0 < A < 1 such that.for x,y s K

then (x,y) c A(X,l/2,=) then X - w (the translation of

K by w) has the same property.

Proof:

Let x,y c K. Then

II Mac-w) + (l-XHy-w) IF =

“fin- (MI nun-m He + (l-AIII w II2-II Mu+Il-I.Iy)+I1-x)wlte)=

——-1—-— II Inc-IIIIF + l/AH w IF - —-—-- (AH Men-m IF +
(1—2.) (1-1AA)

(l-AIII Inc-m IF - Ml-AIH anyIF) =

—I—;;-Hu+(1-m IF + l/AH w IF -1-x<>~H an IF +(l-XIII w IF -

Ml—XIII x-w IIZI-l/MAII y |I2+(1->.II IWIF-Ml-XIIII y-WIII'HIZ II #sz =

c2 III-y IF «Mg II Inn-m IF—I—fs; II x IF-II ,. IF+2~ II x-w IF +

Il-A) II y—w "2.

Thus

l/4H Xdew)+(l-X)(y-W) H2+X(l-X)H l/2(x-w)-l/2(y—w) H2 a

1/4 1.1:; (Ml-XIII x-vIIZHI n+(l-AIyII2-AH XIF—(1~A)II szI +

1/4(AII x-VII2+(1-M II y—wIF)=

l/4IAII x—w IF + Il-IIII y... IF).

Q.e.d.

THEOREM 4.12: Let X be a normed linear space. Then X

is an inner product space iff there exist a set X with

nonempty interior and a value 0 <‘X < 1 such that for x,y c K

then (x,y) c MA, 1/2, 8).
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Proof:

Suppose S(z,s)CK. Then S(z,¢) satisfies the

hypothesis of lemma 4.11 so S(z,£) -z has the same prOperty.

But S(z,c) -z satisfies the hypothesis of theorem 4.9

so X is an inner product space.

q.e.d.

The next theorem is a direct generalization of the

last one but involves completely different techniques.

Thus the theorems have been stated separately.

 
THEOREM 4.13! Let X be a normed space. Then X is an

inner product space iff there exists a subset K of X

with nonempty interior with the prOperty that for x,y c K

there exists 0 < X < 1 such that (x,y) c A(X, 1/2, =).

Proof:

Suppose X exists. If 2 c INT(K) then by lemma 4.10

we may assume H 2 H = l and it suffices to prove the theorem

when K is a ball with center z. I

We prove the theorem using several cases depending

on the dimension of X. First suppose the real dimension

of X is 2. Let y s S(z,¢) such that H y H = l and

IIy-z H < 2. Then there exists a unique ellipse E with

center 0 and which passes through y, z, y-z/H y-z H.

(See appendix B) Let S be the unit sphere of X, D = SfiE,

and I I be the norm determined by E, Then D and

D(|C(y,z) are both closed and nonempty. Suppose C(y,z)r|D f

C(y,z)f\S. Then there must exist r,s c C(y,z)/1D such
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that C(r,s)nD= {me}. Since X is two-dimensional

there exist 0 < 5, ”.5 1 and 0,: p. 7': 1 such that

or = py + (l~u)z and as = 7y + (1-7)z.

 

 

 

S(z,c)

 

 
   

FIGURE 4.1

By convexity 6r, as t S(z,s) so there exists 0 < X < 1

such.that

2

II X6r+(l-X)°B IF All or II + (mm as IF - 7~(1--J\I(II—'III2Hy-zH2

Marla + (l-XIIOBIZ - AIL-XI(Ia~vI2|v-zI2

= IXsr + (l-X)csI2.

 Thus *3” + (1‘4)°3 s C(r,s)r|D contrary to the choice

H Xar + (l-X)es H

of r and s so C(y,z)nD = C(y,z)/‘| S.

Let w = l/2(z+y) and x c X. There exists a > 0

such that w+6x e C(y,z)(1 S(z,c). Then by hypothesis

there exists 0 < X < 1 such that

X(1—X)II 5:: IF = XII w IF + (l-XIII w+5x IF - II XV+(l-X)(w+ex)II2

= AM2 + (1-XIlw+6xI2 - IM+(1—XI(w+5xII2

mama”.

Hence D = S = E and X is an inner product space.

 :
4
-
"
0
'
“
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If the real dimension of X is greater than two then

since K has nonempty interior there exists a basis {xa3

of X such that {xé}:1nt(x). But by the above argument

each two-dimensional subspace containing xa will be an

inner product space. By lemma 4.3 X is an inner product

space.

q.e.d.

In the next theorem we allow p to take values other

than 1/2 as it did in the previous theorem. However, we

must make an additional hypothesis on K. Example 4.1?

shows that this hypothesis is necessary.

THEOREM 4.14: Let X be a normed linear space. Then X
 

is an inner product space iff there exist a convex cone K

with nonempty interior and a fixed 0 < p < 1 such that for

all x,y e K there exists 0 < X < l with (x,y) c A(X,u,=).

Proof:

Assume X exists and again assume X is two-dimensional.

Choose y,z e K so that IIy II= IIz II= l, IIy—z II< 1,

and C(y,z)C K. Let E be the unique ellipse with center

0 through y,z,y—z/H y—z H, and I I be the norm determined

by E. Let S be the unit sphere of X and D = SD E.

If D“ C(y,z) f S flC(y,z) then there exist r,s c DnC(y,z)

such that Dt1 C(r,s) = {r,s} . There exist a,B.3 0 such

that par - B(1~p)s = y — z(here is where we use the fact

K is a cone). Also there exists 0 < X < 1 such that
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IIIl-uIII tar + (l-XIBB IF = mun—2px)” ar IF

+(l-uIII—XI(D+A-2MIII BB Hz-Ml-XIH par-(l-IIIBB H2

= nX(n+A-2sXIIarI2

+(1—IIII1-XIIMX-2IIXIIsaIE—Ml-XIInar-Ilemefi

= u(l—uIlXar+(1-XIIBBI2

Thus Xar+(1-X)Bs/II Xdr-I(l—X)Bs II c D n C(r,s) contrary to

the choice of r and s so that DnC(y,z) = SnC(y,z).

Let x = ay+bz. If ab.3 0 then H ay+bz H = Iay+bzI

by the above. If ab.= O then without loss of generality

let a > O > b. Then there exists 0 < X < 1 such that

X(l-X)Hu( LgI- Il-cIII—”b2 I IF= cum-2w“ y IF

«awn-woman)“ z. Hz-IsIl-uIH X( Lg>+I1-I>I‘bZIIF

= uMIrtN-Zv-XIIYIZ

+(l-uIII—XIIufl—2MIIzI E’MIL‘MIIK(£Z)+(1-M(i-b_:)I

X(l—X)Iax+bzI2

Thus D = S = E and X is an inner product space.

If the dimension of X is greater than two then the

result again follows from lemma 4.3 and the above argument.

q.e.d.

Lemma 4.15 enables us to draw conclusions on conjecture

4.7 from theorem 4.14.

LEMMA 4.15! Let X be a normed linear space and x,y c X.
 

Then a [z,w]‘§ a [x,y] for z,w e(3(X,y)-

Proof:

First note that we may assume H x H = H y H = H 2 H =

IH w H = 1. Let z=ax+by and w * cx+dy where a,b,c,d Z O
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and H x—Y H = c = a [x,y] . Assume the notation was chosen

so that be > ad. First we show a[y,w] _<_ a. [y,x] . By

the triangle inequality

3:?- = “-9-?!- 3 II =Hd(‘ %— x ..%. 3') +3;- (CX+dvI II

< d +-£

- c

and l = II cx+dy II _<_ c+d.

Hence 1': c+d 5 d¢+l

Now consider two cases.

1. If d‘s l

a [y,w] = IIy—(cx+dy) H = H (l-d)(lhy)+(c+d—l)x H

‘5 (1—d)s+(c+d-l)'5 (l-d)e+dc = e.

2. If d‘z l

a [nut] = II y-ch+dy> II = II§ x + (l— éuomy) II

c l _ c+d~l dc

53*1‘a“—1"S 1

The assumption bc‘z ad implies 2.: C(y3w0 so the

above implies a [z,w] _<_ a [y,w) 5 a. [y,x] .

q.e.d.

COROLLARY 4.16: Let X be a normed linear space. Then

.X is an inner product space iff there exist c > O and

O < u < 1 such that for x,y c X with a [x,y] < c there

exists 0 < X < 1 such that (x,y) e A(X,p,=).

Now we give some examples which answer some of the

questions connected with conjectures 4.5 - 4.7. They also

illustrate some of the difficulties in extending theorems

4.12 — 4.15.

 



THESIS

Ah-‘sflA

5|

 

 

 



62

EXAMPLE 4.172 Before actually giving the example we make

a preliminary calculation. Suppose x is a normed space,

x,y c x, o < x, p < 1, H xx+(1-x)y H = AH x H +(L—i)H y H, and

H ux*(l~n)r H = I p” x H - (l-u)H y H I- It is easily

verified that (x,y) c A(A,p,=). Geometrically our assumption

x y Ax+(l—X)y

”a“ that ’le II' /|Iy Il’ . /IIxx+I1-m H’

and uxp(1—p)y/“‘ux_(l_u)y H all lie on a flat spot of the

unit sphere.

With this in mind consider the two dimensional normed

 linear space whose unit sphere S is determined by I

4x2 + 4/3 y2 = 1 and IYI.Z 3 IxI N

(x,y; e 3 iff IxI + IyI = l and 3IxI'3 IyI‘z 1/3 IxI

4y2 + 4/5 x2 = l and 3IYI.S IxI

(i.e. this is the 11 sphere whose corners have been rounded

by ellipses with centers 0 and tangent to the sides of

the 11 Sphere).

( /4,3/4)

(3/4,1/4)

FTQME4ng
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If a [x,y] < 1/4 the x[H x H and y/“ y H can

have three relative positions; (1) both lie on a flat spot

of the sphere and at least one is not at the end of the flat

spot (2) both lie on an elliptical section of the sphere

and at least one does not lie at the end of the elliptical

section or (3) one lies on a flat spot and one lies on an

adjacent elliptical section.

 

If either (1) or (2) happens then for any 0 < x < 1 TA

ux-(l-n)y 4
and for O < p < l chosen so that /“ px-(l-p)y H

lies on the same flat spot or elliptical section as x/“ x H I

and y/H y II we have (x,y) c A(A,p,=) by the above remark. \

If (3) happens assume for definiteness that x/H x H lies

on a flat spot and y/“ y H lies on an adjacent elliptical

section. If 0 < A,p < l are chosen so that

xx+(1-a)y/“ x +(1 and nx-(l-u)y/
x .-

A)y H IIuX~(l-u)y H

lie on the same flat spot (elliptical section) as x/” x H

(y/H y u) then (x,y) . may < (x,y) . a<x.p._>_> ).

By continuity it follows that we may choose a and p

so that (x,y) c A(x,p,=). This naturally disoroves

conjectures 4.6 and 4.7 as stated.

If we take K = C((l/3,2/3),(2/3,l/3)) we see that

for x,y c K there exist 0 < x,p < 1 such that

(x,y) c A(x,p,=) so in theorem 4.14 "for a fixed p"

can not be replaced by "there exists a p (dependent on

x and y)". Also for x,y c K then (x,y) c A(x,p.3)

for all 0 < x,p < 1. Thus "=" in theorems 4.12-4.14

can not be replaced by ">".
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Furthermore if we take K = 5((1/2,l/2),.01) and

p = .0001 then for all 0 < A <‘l and x,y e K it follows

that (x,y) t A(A,p,=). Hence the term "cone" in theorem

4.11 can not be changed to "set with nonempty interior“.

EXAMPLE 4.182 This example has many of the properties
 

of example 4.13 and clearly illustrates how cones behave.

Let x be the Minkowski plane whose unit sphere is

given by’ i(x,y) I x2+y2=l if xy‘z O and Ix|3 + IyI3 a 1

1r xy_<_ 03 . Let x = C((l,0),(0,l)). Then for x,y c x

and all 0 < A, p < l we have (x,y) c A(k,u.§). Thus

neither can "I“ be replaced by “5 " in theorems 4.13-4.14.

|x|3+IyI3 = l x +y = l

\ f

 

 

 
FIGURE 4.3

These results and examples settle conjecture 4.5 when

K is a cone or set with nonempty interior. Still Open

is the following interesting case of conjecture 4.5.
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What additional hypotheses are necessary for conjecture 4.5

to be true when X is the boundary of a convex set with

nonempty interior?

while example 4.1? tells us that conjecture 4.6 is

false it gives no idea of what additional hypotheses are

necessary for the theorem to be valid. This conjecture

has been much more difficult to attack than the other two.

Corollary 4.21 will be one small step in this direction, ?

however.
I

The next theorem is very much in the spirit of the i

previous ones but is of a slightly different nature. It H

is a localization of theorem 1.18 by Larch.

THEOREM 4.19: Let x be a normed linear space. Then X
 

is an inner product space iff there exist 0 < A < 1/2 and

t > 0 such that for’IIx.II= IIy II= l and H x—y H < c

then H Ax+(l—A)y II= II(l—x)x+xy H.

Proof:

Again it will suffice to prove the theorem when x

has real dimension two.

Let f(n) denote the sequence defined recursively by

f(0) = A and f(n) = (2h—l)f(n—l) + (l—A) for n1: 1. Then

I1/2 - f(n)I = I1/2 - ((2x—1)r(n-1) + (1—x))|

== I1/2 - t(n-1)l Isa-1|

< I1/2 — f(n—l) I

since 0 < IZA-lI < 1. Thus f(n) --> 1/2 and O < f(n) < 1.

We wish to show by induction
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H f(n)x + (1-f(n))y II = II (l-f(n))x + f(nh' II

for H x H = H y H = l and H x—y H < c. By the hypothesis

of the theorem the induction hypothesis is true for n = 0.

Suppose it is true for n = 0,1,...,m. Then

H f(m+1)x + (l-f(m+l))y H =

H x(f(m)x + (1-r(m))y>+ (1-a)((1-r(m))x + f(n)!) II =

II (l-A)(f(m)x + (1-f(m))y) + MIL-f(n)): + f(m)y) II 8

H (l-f(m+l))x + f(m+l)y H '

The middle equality follows from the induction hypOthesis,

the hypothesis of the theorem, and lemma 4.15.

Since f(n) —-> 1/2 this also implies x+y l xpy.

Suppose K were not strictly convex. Then we could

find x,y c X and a,b c R such that H x H = IIy'II= l,

IIx—y H<¢, 0<a<bf l—a, Ilax+by II= l, and

H alx + (l-AlHax-O-by) H = 1 for o _<_ a1 5 1. (See figure 4.4)

Then x+y l x-y but the unit sphere has a unique supporting

hyperplane at fl] and it is not in the direction of

x+y

x-y. Hence x is strictly convex.

   
FIGURE 4.4
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Now suppose IIx:II= IIy'II= l, H x—y H < e, and

II 2.1; + (i-alIy II .. II .2... (14.2” II where x1 7: x2.

Then (xl+A2)x + (2 - (A1+A2))y I x—y and x+y l x—y. Since

x is strictly convex x1 + A2 = 2 - A1 - he or x2 = 1 - a1.

Thus H alx + (l—i1)y H a H (14.1): + My H for o _<_ M _5 1

which implies H ax+by H = H bx+ay H for a,b Z 0.

My II=-1

and H x—y H < :' imply H x+y H > 1. Let 0 < a < 1,

Choose 0 < ".S min(¢,1) so that IIx H

 

 

IIx II= IIy II= 1. and IIx-y I|< t'- Then

4.

II ax+y II = II a II JWarll-EE—IE— + (l-aIy II

II x+y Il

-- II (l-a) £1— + an x+y II y II

II I+y II

01'

II we II II x+y II = II (1...). + (l-mII x+y IFIy II.

Likewise

.1.

II x+y II = II II x+ay II " “h + (1...). II

II flay II

+

= II (l—a) x “y + II x+ay II 3* II

II flay II

01'

II at” II II x+y II = II x+ay II II X+y II

= II (l-aIx + (a-a2+ II ”M “2hr Il-

Note a—a2+ Hx+ay H230 and l-a+a IIx+y H30.

The function g(b) = H x+by H has the property that

g(0) = l, g(l) > 1, and g(-1) < 1. Also it attains its

minimum at a unique point b0 and the above values show that

2

1—a+aIJ x+y H2 _ a-a + II x+ay H2

since both are positive and have equal function values.

Thus for 0 _<_ a _<_ l we have all x+y II2 + (l—a)2 = II x+ay H2.
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Let II x II = II y II = l and II x—y II < c'. There exists

an unique ellipse E through the points x,y and x+y

II X+y II

with center 0. Let I I be the norm determined by E. Then

Iax+yI2 = s.Ix'|’yI2 + (l—a)2

= all x+y IF + (l—a)2

= II are! II2

for 0 < a < 1. Thus EnSnC(x,y)' = EflC(x,y). Now

I I '

choose x',y' so that x', x +y s C(x,y), H x' II=

IIx'w' II

II?” II= 1: and.IIx'-y| H < e'. Let E' be the unique

 

I

ellipse through x', y', and x'+y with center 0.

II 10+)" II

Then E'nSflC(x',y') == E'nC(x',y') and in particular

E'flSflNx', x'+y' ) = E'fl0(x', x'fy' ). Since

ll X'W' II II x'fl" II

  

E and E' are unique and agree on a section of curve

we must have E = E'. This process may be continued and in

a finite number of steps we have shown E113 = E. Thus X

is an inner product space.

I

I
yI

  

  

 

x""Y'III X'+y' II

 

 

FIGURE 4.5

   



THESIS

 

 



69

COROLLARY 4.20: Let X be a normed linear space. Then
 

X is an inner product space iff there exist c > O,

o < a < 1/2, and a function r : [0,2] --> [0,2] such that

for H x H = IIy II= l and H x—y H < c then

H Ava-My II = f(II1+y II).

COROLLARY 4.21: Let X be a normed linear space. Then
 

X is an inner product space iff there exist c > 0 and en

0 < A < 1/2 such that for H x H = H'y H = 1 and IIxey H < c

then (x,y) c A(A,l/2,=).

 

Corollary 4.20 suggests a conjecture similar to con— \\

jecture 4.6 and which is even more localized than 4.6.

CONJECTURE 4.22! Let X be a normed linear space. Then
 

X is an inner product Space iff there exists ( > 0 such

that for H x H = H y H = l and H x—y H < c then there

exist 0 < A, p < l, X f p so that

su—eI II Ann—m IF - Ml-MII M + (l-tIy “2 :- (ufiv-UIW)

where r is one or the relations 3, =, 5.

We will not pursue this conjecture but continue to

work on conjecture 4.7.

THEOREM 4.233 A normed linear space X is an inner product
 

space iff there are 0 < A, p < l, c > O, and a relation

r such that for a [x,y] < c then (x,y) e A(X,u,r).
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Proof:

Since the necessity of the last condition is obvious

we will show only the sufficiency. Moreover, we may assume

X has real dimension two. We will prove'the case when

r is‘g since the others can be proven in the usual manner.

Let S be the unit sphere of X, E be the maximal inscribed

ellipse, I I be the norm determined by E, and D = SfiE.

If D f 3 there will exist z,w e D such that C(z,w)f\D a {2,w3 .

Then there exist a,b > 0 such that the vectors x = az+bw

and y = (p/l~9)ae - (A/l-X)bw satisfy IIx:II= 1, Iprs H < ¢/2,

and.IIY/IIY'II- z HI< ([2. Then a [x,y] < c so that

Ml—nIII MINI-My IF + Ml-MII In - (Ht)? II2 5

Ame-2w“ an IF + (l-A)(l~p)(xn-2M)II y IF 5.

whvzwlxlz + (humane-zany? ==

h(l-vIIMHl-Mylz + XII-MIDI - (HIylz =

13(1-11)IIM + (l-AIy IF + ma)“ I»: - (14.» IF.

-Thus equality holds throughout so x e D. But

 

x c C(z,w) contrary to the choice of z and w. Hence

D = S and X is an inner product space.

 

  I
FIGURE 4.6
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THEOREM 4.24: . Let X be a normed linear space. Then X
 

is an inner product space iff there exist 0 <‘p < l, a

relation r,,and c > 0 such that for x,y c X satisfying

a. [x,y] < c then there exists 0 < X < 1 such that

(any) c Miner)-

Proof:

If X is an inner product space then for all 0 < A < 1

and x,y t X we have (x,y) t A(X,p,=).

Assume such a p,¢, and r exist. We may assume X

is real and two-dimensional. Let r be 3.

What we wish to show is that if a [x,y] < c then

(x,y) c A(X,p,:) for all 0 < x < 1. By theorem 4.23 this

would imply that X is an inner product space.

Let a [x,y] < t. Then either there is an ellipse E

 with center 0 through x/H x H, 1]" y H, and px-(ljp)y

Il nit-(bah II

01' II nx-(l-v-IY II = all 1 II + (l-uIII I II or II ax-(l-nIy II =

In” x H - (l-uIII y H I. If either of the last two'cases

happens it follows immediately that for all 0 < A < 1 then

(x,y) c A(X,p,3). Thus suppose E exists and let I I

be the norm determined by E.

If the assertion is not true then there will exist

r,s c C(x,y) such that H r H = IrI = |Is II= IsI = l and

H ar+bs H < |ar+bsI for ab > 0. Let r = mx+ny and

s =PX'I'QY Where m.n.P:QZ°° Let A=Ifl1 ((lI‘pi%:Eg .

Because a [r,s]‘< c there exists 0 < X < 1 such that

nMufl-ZMHPIZ + (lel-MW‘th-ZMIIA‘IE =-

pMpfl-ZpMII r II? + (l~p)(l-M(pfl-2IAMII AB "2 _<_

 



THESIS

 

 

 

 



ta

“(1...)" Xr+(l—X)As IF + A(l—-X)II nr-(l—pMs IF <

11(1-‘DH’J'H1-MABI2 + x(1->.)|pr-(i-n)As|2 =-

prx-szIrIz + (l-v)(1-A)(u+A-2M)IMI2

which is a contradiction.

 
  

FIGURE 4.7

If r is‘f then essentially the same proof as the

above goes through with all inequalities reversed.

q.e.d.

This completes the results related to conjectures

4.5-4.7. The following table summarizes the results of

this section. It lists the validity of conjectures 4.5-4.7

when various additional hypotheses on X,p, and r are given.
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X p r Conjecture 4 5 Conjecture Conjecture

Bodies Cones 4.6 4.7

I 1/2 = T T T (ifl/e) T

D 1/2 = T T 7 T

I I = F T ? T

D I = F T ? T

D D = F F F F

I I .3 orig F F ? T

D I ‘2 or.f F F ? T

Notation:

T -- true

F -- false

I -- X (p) independent of x and y

D —- X (a) dependent on x and y

FIGURE 4.8

3. Restriction

There is a second type of localization which is occasion-

ally considered in normed linear spaces. This type of local-

ization has seen studied by Day and proplems of this type

were examined by Kolumban [45]. The actual conjecture

we study is a variation of conjecture 4.5.

CONJECTURE 4.252 A normed linear space X is an inner
 

product space iff there exist a nonempty eet K and a

relation r such that for x e K and y c X there are

0 < X,p < 1 such that (x,y; e A(X,p,r).
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Our previous work suggests that additional hypotheses

on X, X, p, and r might be necessary.

Let X be an inner product space and Y be a normed

linear space of dimension at least two. If Z = X X Y

and the norm is given by H (x,y) H2 = IIx IF + H y H2

then for all le,0), (x2,y) c z and all 0 < X,p < l

we have ((x1,0),(x2,y)) c AIX,p,=). But if Y is not

an inner product space then neither is Z. Thus a necessary

assumption on K is that Lin {X3 contains a hypersubspace.

Theorem 4.26 shows that this condition on K is also

sufficient (at least with additional hypotheses on X, p,

and r).

THEOREM 4.2'2 Let X be a normed linear space. Then X
 

is an inner product space iff there exist a set K and

O < X,p < 1 such that Lin {K} contains a hypersubspace of

X and for x e K and y e X then (x,y) c A(X,p,=).

Proof: .

If X is an inner product space let X = X and

O < X,p < 1 be any values.

Suppose. X exists. First note that it will suffice

to prove the theorem when X is a basis for a hypersubspace.

Secondly we observe that AT? aK has the same properties

as K.

Now assume X is real two dimensional and by the

above remarks let X = {ax I acR3 . Let 8 be the unit

sphere of X, El be the minimal circumscribing ellipse

of S with center 0, E2 be the maximal inscribed ellipse
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with center 0, and I I be the norm determined by El'

Now let u,v c ElnS be independent vectors and

assume u,v f x/“ x H . If x = au+bv and

= “a -y /1_11 u /l-X v then

mun—2w” an IF + (l-sHl—X)(s+>-2s}~)ll y IF =

le-pHI Xx+(l-X)y IF + XII-Mil ux-(l-My IF =

n(l-n) lkxfil-XITI2 + X(l-X) IDX-(1*D)YI2 =

mIs+x~2waIF 4» (l-s)(l-X)(s+A-2sX)IyI2 5

11K(I$+"-2pUIIX IF + (l-s)(l-X)(u+"-2M) II y IF.

Hence equality holds throughout ”II—:11 c Elf! S. A

similar argument shows that “FE—H c sarIs.

Next suppose u t E108, w c Ean, u f w, and

u,w flr-i—n . Let w 8 cx+du and then

pXIp+X-2sX)II§ an IF + (l-le-XIIIsfl-IBMIII 1%; u IF =

Ml-vIIIw IF + XII-Mllfii’; x - 1&1? u IF 2

h(l—sIIWI2 + XII-XII-2§ X --ilié%9 “I2 =

MIu+A—2M)I§ acI2 + (l-p)(l-X)(v+k~219~)l 1%,; cl2 =

pX(p+A-2pX)II-§ x IF + (l-IsIII-XIIII'PX—ZpXIIIIg-x u IF.

Thus equality holds throughout so w t El(\S.

Hence El and E2 are ellipses through Trig—n

and w with centers 0. But it is easy to see from the

definitions of El and E2 that they have the same tangents

at IVE—II as S does. But there is an unique ellipse

satisfying these conditions so E1 = E2 8 S and X is

an inner product space.

Next assume X is complex two-dimensional and

K ={dx I a. t G}. Let y be a vector independent of

X and.consider X as a four dimensional real space. Then
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Lin iix, y, 1y? is a real three dimensional space, Linfy, 1y?

is an inner product space and every two-dimensional subspace

through ix is an inner product space by the above result.

Hence by lemma 4.2 Lin {ix,y,ii3 is an inner product

space. By applying the lemma once more it follows that

X is a real inner product space and hence a complex inner

product space.

Finally if the dimension of X is greater than two '

then the above two cases and lemma 4.3 imply X is an

q.e.d. ‘\ I

Finally we have an example to show that '=“ in 4.25

 inner product space.

cannot be replaced by £3“.

EXAMPLE 4.27: Let X be the 11 plane and K = {(0,1)} .

It is easy to check that for all (a,b) s 11 then

((0,1),(a,b)) e A(1/2,l/2.Z).

Conjecture 4.25 like conjecture 4.6 has not yet been

completely solved.
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CHARACTERIZATIONS OF INNER PRODUCT SPACES

In this chapter we continue to obtain characterizations

of inner product spaces. Several of the theorems are

direct generalizations of known results or new proofs of

known results, but many are new theorems. Whenever possible

geometric concepts are brought into the discussions.

1. Characterizations Using Convex Subsets

Theorem 5.2 is very representative of the theorems

'which are characterizations of inner product spaces. The

proof is rather geometric and there is a geometric inter-

pretation of the theorem. This theorem, like many of the

characterizations, is a special case of the following

principle.

PRINCIPLE 5.1: Let A, be a theorem true in Euclidean
 

geometry. A normed linear space X is an inner product

space iff A is true in X.

Every high school student of plane geometry is familiar.

with the property of a circle that from each point p

outside the circle there are two lines of tangency to the

circle and the distances from p to the points of tangency

are equal. It is not too difficult to show that this property

characterizes the circle among the plane, closed, bounded

77
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convex sets with nonempty interior. We show in theorem

5.2 that a similar property characterizes the spheres in

inner product spaces and characterizes the inner product

spaces among normed linear spaces.

THEOREM 5.2: Let x be a real normed linear space and x

be a closed, bounded, convex subset with nonempty interior.

Then the following are equivalent: F

l. X is an inner product space and K is a ball in X.

2. K has the prOperty that for each pair of hyper-

planes Hi and. 32 supporting K at x and y respectively

and each r c leIHZ with r,x and y linearly dependent

then II x-r II = II y-r II.

3. K has the prOperty that for f,g c X"t and

x,y s X satisfying f(x) - sup f(z) and g(y) = sup g(y) then

zcx ch

Ist) - s(x)l H f(y)x - f(x)! II= If(x) - fIy)l N stIT - SITIX Ho

m:

First we note the equivalence of 2 and 3. This

equivalence is basically the equivalence of continuous

linear functionals and closed hyperplanes which in this case

is H148 f'lf(x) and H2 = g‘leg). If f and g are

not linearly independent or x = y then both 2 and 3 are

trivial. If f and g are linearly independent and x f y

then the point r is given by r = ax+by where

a = st)(f(y) - f(X))/(f(y)s(x) - st)f(X))

b = f(x)(s(x} - s(y))’(f(y)s(x) - st)r(x)).

,
5
.
“
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Now

llxrr’ll= llybr H iff

ls(y)-g(1)l ll f(y)x—r(x)y II = lf(x)-f(y)l ll e(x)y-g(y)x ll.

That 1 implies 3 follows from the representation

theorems for linear functionals in inner product spaces.

Let K = S(w,p), f(x) = sup f(z), and g(y) = sup g(z).

ch ch

There exist u,v c x and 0,5 > 0 such that Ilu II='IIV'II= l,

x - w+pu, y a w+pv, f(z) = (chu), and g(z) = (zIbv). By

writing everything in terms of (qu), (uIv), and (vIw) it

is a straightforward calculation to show

|s(y)-s(x)l ll “fix-f(x)! II = lf(y)-r(1)l ll 3(y)x-g(x)y II.

To finish the proof it suffices to prove that 2 implies 1.

We begin by proving the theorem when the dimension of x is

two and using this to prove the theorem for higher dimensions.

We consider X as a Minkowski plane and often use the

language of plane geometry rather than that of normed linear

spaces in describing the proof.

Let I1 and 12 be parallel support lines to K and

:1 c Ilrmx for i - 1,2. Furthermore let 13, I4 be support

lines of K parallel to the line h determined by x1

and x2. Finally, let x1 c Iirlx for i a 3,4 and a = IlftI3,

b = 11014, c = 12fl14, d = 12" 13 and k be the line

determined by x3 and :4. The existence of such lines

follows from standard theorems on convex bodies.

By hypothesis H a—xl II = H a—x3 H,

I‘b'xl “" H b’34 "D H o‘xz N = H c-x4 ”a and

II d-x2 II =- II d—xs II. Thus
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2 H 8-D H = H a-b H + H d-0 H

= IIGPX1 U + H 11-h H + H chz N + H 12 - d H

= l'ans H + H b—x4 H + H °“x4 H + H 5’33 H

' H 8-d H + H 0-b H

I 2 M a—d H.

Hence H c-d H = H a—d II= IIan II= IIb-c IL Also h,13, and I4

are parallel so H a—xl H = H d—x2 H and H c-x2 II= IIb—xl IL mini

These imply

 
Ila-13 u; = Ila-x1 II = u d—xg u = n d-xs u and “I

II 1044 u -- ll Io-xl u = n «s-x2 u = II 0.44 n. \

many Ila-x1 n --= u ”3 u = 1/2H ,a-a II = 1/2u M II --

H b-x4 H = llb-xl H and H d-xg H = H d-x3 II= l/ZIIan II=

l/2” c-b H = IIc-x2 II= IIc-x4 H. In conclusion x1 are

the midpoints of the sides of the square with vertices a,b,c,d.

X1 .

 

 

 

 
     

FIGURE 5.1

If w = l/2(x1+x2) and p = l/2H xl-xz N then x3+x4 = 2w

and.IIx1-w’II= p for i=i,...,4. The norm I I given by
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Ia(xI-x2) + 9(x3-x4)| = ZpIaZ + 62)1/2 is determined.by

an inner product and le-le = H xi-xz II= Ixs-x4I = u xz-x4 H.

Let 2 f x1 be a boundary point of K and 3 be a

support line at 2. Let r = Isnj, s = Izflj, t = 1411.1

and assume the notation chosen so that z is between r

and s. Ifm +T—FL—TF then

|x3-rl =- u ans-r n = u M n air—3L

g-

uxz-e II= u M II=-Lil
m

Ixz-al

and Ix4-tI

t-

" x44 I: = u t-z u =i—El
m

I.

 
 

  

 

  
 

 
t

FIGURE 5.2 b

If n 8 Ir-xal and q = Is—le then by the above relations

and similar triangles:

Ir—sI = (n+q)m

ll’tl " (P‘Kan‘HlM/(P-Q)

lc-tl = (p-n)(p+q)/(p-Q)

Thus
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= D-Q)+I —n) +q}

°r l qép-q)*(p*§)§n*fi)

which simplifies to n = p'%;% .

But Ir-eI2 = Ir-dI2 + Id-sI2

2

2 + (p-q}

(p- P-QDZ + (o-Q)2

or m2(n+q)2 = (p-n)

 

  

?

or m” =:: = l
...q T '

( P £15 + Q)

Similarly ( x

- / P‘q
9 Te— ‘9 - pq "' Pq 1'

IZI2 = (p - (p-Q) 3+67 -2" + (P -------::—-—--£-----L )2

p q + q p p q + q
p m

=3 p2.

Thus K = S(w,p) and X is an inner product space.

Now suppose the dimension of x is greater than two.

Choose a basis {xal for x such that {xJCINT(K). For

any two-dimensional subspace L which contains an xa then

KAL satisfies the hypotheses of the theorem and condition 2

so L is an inner product space by the above argument.

Lemma 4.3 implies X is an inner product space.

It remains to show K is a sphere. First suppose

the dimension of x is finite. If L is a two—dimensional

subspace of X such that LIIINT(K) f.¢ then L(IK is a

ball in L. Since K is compact there must exist a two-

dimensional subspace L' such that the radius of this ball

is maximal. Let w be the center of this ball and p be

its radius. Choose x,y c U!) K so that II x-y II = 2p and

x and y are linearly dependent. Either x or y is not

0 so assume x f 0. If 2 is on the boundary of K and

independent of x then LAVIK satisfies the hypotheses
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of the theorem.and condition 2 where L" = Lin £z,x3 .

Hence LFfIK is a ball (in L“) with radius R's p. But

23‘: H x-y II= 2p so R = p and the center of this ball

is w = l/2(x+y). Thus IIwaz II= p Aand K = S(w,p).

Finally suppose x is infinite dimensional. Let H1

and H2 be parallel supporting hyperplanes to K and

:1 t sin K. Let y c INT(K) and 2 be any point on the

boundary of X. Then by the above argument Lin {xl,x2,y,z37Il

is a ball in Lin {xl,x2,y,z3 . But Lin {xl,x2,y,23031

are parallel supporting hyperplanes to this ball so it has

center l/2(x1+12) and radius l/2“ xl-x2 H. Thus

H l/2(x1+x2)-z H = l/2H xl-xz H and K = S(l/2(xl+x2),l/2“ xI-xzn).

q.e.d.

Condition 2 in 5.2 is somewhat weaker than assuming

that from a point r outside of K then all support lines

to K through r have the same length. The assumption

that x,y, and r are linearly dependent is particularly

significant geometrically when 0 e INT(K) but there is

no need to assume this. Theorem 5.2 was stated for real

spaces since complex spaces are usually considered as real

spaces when supporting hyperplanes are discussed.

The natural way to generalize this theorem would be

to use some subset of the class of all supporting hyper-

planes of K. One method of doing this would be to add

the condition in 2 that r must also lie on a given

surface containing K. Theorem 5.5 shows that this condition

no longer characterizes inner product spaces, however.
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QEFINITION 5.32 Let X be a real normed linear space and
 

K be a closed convex subset with nonempty interior. A

set K' is an E-set of K if for each r c K', f,g c X“,
 

and x,y e K which satisfy

1. f(x) = sup f(z)

 

ch

2. s(y) = sup g(z)

zcx an;

3. f(r) = f(x), g(r) = g(y), r e Linéx,y3 '

than u r—x u -- n r-y u.

.QEFINITION 5.42 Let X be a real normed linear space. \\
 

The set D(X) denotes the vectors r e X such that there

exist f,g e X‘ and x,y e X satisfying

1. IIxII==IIyII=l,x_I_y,rcLin{x,y3

2- |f(x)l = II 1‘ ll. ls<y>l 8 ll 8 ll

3. f(r) = f(x), g(r) = sh).

THEOREM 5.5: If X is a real normed linear space then
 

D(X) is an E-set of the unit sphere iff X has symmetric

orthogonality and is strictly convex.

Proof:

Suppose D(X) is an E—set of the unit sphere. Let

H x II= IIy'II= 1 and x‘l y. Choose f,g c X' so that

f(x) = g(y) = IIf II= IIg II== l and f(y) = 0. Let

r = x+(l-g(x))y. Then by assumption

II M! II= ll r-v ll 8° ll—s(x)l = II x-smy ll-

.Now apply the hypothesis to -x,y,-f,g, and rl= -x+(l+g(x))y.
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Then u r1+x u = u rl-y u so ll+s(X2l = n x-g<x>y n .

Hence g(x) = O and Y.l x. The fact that X must be

strictly convex is obvious.

Suppose X has symmetric orthogonality and is strictly

convex. Let H x H = H y H = l and xii y. Then there

exist unique f,g c X‘ such that f(x; = eg3 = N f H =

H 8 H = l. Moreover, f(Y) = 8(X) = 0 80 .r a x+y satisfies

f(r} = f(x), g(r) = g(y), and H r-x H = H r-y H . That

all r are of this form follows from the symmetric

orthogonality.

With theorems 5.2 and 5.5 in mind we make the following

conjecture which is a very difficult problem since it is

unsolved even for the special case as a characterization

of the circle in the Euclidean plane.

CONJECTURE 5.62 Let X be a real normed linear space
 

and K as a closed, pounded, convex subset of X with

nonempty interior. Then X is strictly convex with

symmetric orthogonality and K is a sphere in X iff there

exists a closed subset K' of X which contains K in

its interior and whose ooundary is an E—set of K.

2. A Conjecture by HOpf

The next theorem verifies a conjecture of Hopf [321

in normed spaces. It is also stronger than a result by
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Ohira which is a special case of theorem 1.31.

THEOREM 5.7: A real normed linear space X is an inner
 

product space if and only if II 1: II = II y II = l and

x l y 1mm H x+y II = u x-y u.

Proof:

If X is an inner product space, H x II= IIy II=

and xi y then II x+y II = II x—y II = 2, ”A

Suppose X has the above preperty. First we show

 
that X has symmetric orthogonality. Let H x H = H y H = I

II ax+by II = l, x l y, and y _I ax+by. By appropriate choice \

of notation we may assume a,b Z 0 so by orthogonality I

1.2 a'z h.: 0. By assumption H x+y H = H x—y H and

H ax+(b+l)y II== IIax+(b-l)y H . Thus the convex function

g(r) = H x+ry H has the following properties: g(O) = l5g(r)

10%;)... g(-‘?-:-1-).for r c R, g(l) = g(--1), and g( But

'b+l b-l
"E‘—> 1 and O >'-E' > —l. Hence g(b:1) .2 g(l) Z l and

g(-1).3 g(-EE$)‘3 l which implies either a = l and

and b = O or H x+ry H = l for -2E$‘3 r‘z -1. If a = l

and b = 0 then y.l x. If H x+ry II= 1 for-2;; z r'z -1

then a':L = IIx+-§ y H“ so it remains to determine b.

Since y‘l x+by and

1 = ll 3' II = II y+(x+by) ll =ll y - (X+by) II we have

1 = H y+r(x+by) H for ’1.5 r.5 +1,

y+r(x+by) l x + by for -l.5 ”.5 +1, and x+ry I y

for b+l Z r‘z -1. In particular x+(b+l)y i x + by,

x+(b-l)y l y, x+(b-l)y l x + by, and x + (b+l)y I y.
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But if b f 0 then the unit sphere at x+(b-l)y has a

unique tangent line (namely one in the direction of y)

contrary to the above calculations. Hence b = O and y‘l x.

Also note that these equations imply orthogonality is right

unique so that X is strictly convex.

 

 
 

  
 

FIGURE 5.3

If the dimension of X is three or greater this implies

X is an inner product space. Thus we now assume the dimen-

sion of X is two. We use construction I of chapter 3

(i.e. the points of X are those of R2 and the norm is

the one determined by the unit sphere S graphically

represented by {(x,f(x)) I 95 x5 13 in the first quadrant

and by {(1/ xf'(x)-f(x), f'(x)/xf'(x)-f(x))}in the second

quadrant) to describe X. Also note that the norm of X

is Gateaux differentiable so f'(x) exists on [0,1).

Choose O<a,b,c,d,<l so that : —a = l/af'(a)--f(a),

f(b) = f'(b)/bf'(b)-f(b), f(c) = c, and f'(d) = -1. What

we show is that a a b = c = d = 1'/.{'2‘ and that (1,1) _I_ (-1,1).
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Since we could start with any pair of orthogonal unit vectors

as coordinate axes this implies that if H x H = IIy'II= 1

and x l y then II x+y II = H x—y H = J? and x+y _I x-y.

Since 1/c = II(l,l) II= H (-1,1) H = d + f(d) this

gives us one relationship between c and d. Also by

convexity of the unit sphere the tangent line at (d,f(d))

must intersect y = x at a point with x-coordinate at

least 0. The point of intersection is (d+f(d)/2, d+f(d)/2)

so d+r(d)/2'3 1/d+r(d) or d+f(d) 3 [EL Hence

H (1,1) H 2.I2' and by the above remark this also applies

 

to all r,s with H r H = IIs II= l and r‘l s. Thus

H (3*1/af'(a)-f(a). f(a) + f.(a)/af'(a)-f(a)) H =

II (0,1/a) 1| = 3L/a_>_.l'2' and

u (h - l/bf'(b)-f(b). f(b) - f"‘°>/br'(b)-r<b)> II =

II < 1Mb) . 0) II= 1/r(b)3./’é.

We now consider cases to see which relative orders

of a,b,c,d are permissible.

Suppose c < d.

Case 1. If a.5 c < d then

0 = -l/df'(d)-f(d) < “l/cf'(c)-f(c).§ ‘l/af'(a)-f(a) = a

which is a contradiction.

Case 2. If c < d‘f a then

a = ’1/af'(a)-f(a)‘5 ‘l/df'(d)-f(d) = c

which is again a contradiction.

Case 3. If 0 < a < d then

f(8)/a < 1 and f'(a) > -1. Hence
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1 = af(a)-a2f'(a) = a2( f("Q/m — f'(a)) < Baa _<_ l

which is also a contradiction.

Now suppose d < 0.

Case 4. If b.f d < c then

c = f(c) < f(d) 5 f(b) and

two . fWM =c> .99) =uw
cf'(c)-f(c) df'(d)-f(d) " bf'(b)-f(b)

which is a contradiction.

case 5. If a < c‘s b then f(b) 5 f(c) = c < f(d) and

f(b) = f'(b) , No) > f'(d)

bf'(b)-f(b) '_ cf’(c)-f(c) df'(d)-f(d)

'0
 
 
 

which is again a contradiction.

Case 6.} If d < b < c then f'(b) < -l and f(b) > b.

2
Then -1 > f'(b) = f (bl

l-bf(b) < r20»)

0 < f2(b) + bf(b) - 1 5 2f2(b) — l~

ljr§ < f(b)

which is also a contradiction.

Hence 0 = d which implies c = 1/‘_E. which in turn implies

a = b = c.

We may now complete the proof. From the above results

we see that f on.[1/J§ , l]ldetermines the entire unit

sphere. Moreover, f'(x) exists except for x = l and

f"(x) exists almost everywhere but is never equal to zero.

In particular for x t [l/J-, 1) then

f'(x)/l

1U? I“ Arum—rm, f(x) " xf'(x)-f(x)) and

l l f'

/J§ (x— /xfl(x)_f(x)a f(x) - (x
)/ xf'(x)-f(x)) are
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orthogonal unit vectors. For those points x where f'(x)

exists we have

  

f' d f'

f(x) - (X)/Xf'(X)-I(X) 3 ‘33 (r(;:.+ (X)/Xf'(X)-f(X))

x-1/, d 1
If (X)-f(x) 'Hi( I + le'(X)-f(x))

which simplifies to f‘(x) = (xf'ix)-f(x) )3. This differential

eQuation must also satisfy the boundary conditions f(l) = O,

f'(l) = - co, “la—é) = 375 , and f'(l/yg) = -1. The

equation is not very difficult to solve and by the boundary

conditions has a unique solution. But we already know one

solution, namely f(x) aaIl — x2 and hence it is the

solution. Thus X is an inner product space.

q.e.d.

There are two immediate corollaries.

COROLLARY 5.8: Let X be a real normed linear space.
 

Then X is an inner product space iff there exists a

constant c such that H x H = H y H = l and x‘l y

then H x+y H = c.

_COROLLARI 5.9: Let X be a real normed linear space. Then

X is an inner product space iff projectional orthogonality

implies isosceles orthogonality.

It is interesting to note that von den Steinen [68]

proved a complex version of theorem 5.7.
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3. On a Theorem of Lorch

The following theorem was given by Lorch [49] , but

does not appear to be very well known.

THEOREM 5.10: If X is a Banach space then X is an inner
 

product space iff there exists T: X —-> X‘ such that T

is linear and bounded, T"1

[T(x)] m =- n T(x) II n x ll-

exists and is bounded, and

Similar theorems were also proven by Day [18] and

Kakutani [3S] . Such a property may be considered as a self

adjointness property on X. Theorem 5.11 shows that many

of the hypotheses of 5.10 can be removed or weakened. Also

we give a proof which is independent of 5.10 and which

is shorter than the original proof.

THEOREM 5.11: Let X be a normed linear space. There

exists a linear Operator T: X --> X? such that

[T(x)] (x) = II T(x) II II x II for all x and T f 0 iff

X is an inner product space.

Proof:

If X is an inner product space then the existence

of T follows from the classical representation theorems

for linear functionals.

Suppose T exists. First we wish to show T is one-

to-one. If T is not one-to-one there exists x.c X such
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that x f O, and T(x) = 0. Since T f 0 there exists

y t X, y f O, and T(y) f 0. Now consider two cases.

If {T(y)} (x) = 0 let r = 3” y H /” x “. Because

T(rx+y) = T(y) we have u T(y) u u rx+y II = [T(y)] (rx+y)

[T(y)] (y)

H T(y) II H y H

Since H T(y) II? 0

llyll= llrx+yll_>_| lerH- ||3lll=2l1yll

which is a contradiction.

If [T(y)] (x) 7* 0 let r = - “ Tm " ” y Mum“).

Again T(rx+y) = T(y) so

ll T(y) ll H mm II = [T(y)] (rx+y) = 0. Since u T(y) u r 0

we have H rx+y H = O which is a contradiction since x

and ’y must have been linearly independent. Thus T must

be one-to—one. .

Now suppose the dimension of X is two. Then T must

also be onto and bounded. First we wish to show that X

is strictly convex and the norm is Gateaux differentiable.

To show both of these it suffices to show

I [T(x)] (y) I < H T(x) H H y H if x and y are linearly

independent. Suppose to the contrary that there exist x,y c X

such that II x II= ll y H = 1. ll x-y II > 0. and

[T(x)](y) = H T(x) H. Then x+y I x-y and there is an

unique line which supports the unit sphere at l/2(x+y).

Thus [mm] (ac-y) = o --- [T(x)]m + [Teflon — [T(x)1<y>-[T<y)](y>

and hence [T(y)] (x) = [T(y)] (y). But this implies

H THE-Y) H II x—y II = [T(x-y)](x-y) = O which is a contradiction.
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Thus X is strictly convex and Gateaux differentiable and

by the results of James [:54] x' has the same prOperties.

Since X is reflexive these imply in particular

r .L s iff [T(r)](s) = 0 iff T(s) _I T(r). By theorem 3.1

we can find x,y c X such that x‘l y and y‘l x. Then

ax + by l cx + dy iff [T(ax+by)] (cx+dy) = 0

iff ac[T(x)] (x) + bd[T(y)](y) = 0

iff [T(ox+dyfl(ax+by) .. o

iff cx + dy.l ax + by.

Thus x.I y implies T(x) l T(y) and by lemma 3.3 there I

 
exists 2k such that H T(x) H = k H x H for x t X. Hence \‘

ll x+y ll * ll X-y “2 ' k'l([T(x+y)1(X+y) + [T(x-y)1(x-y))

1:1 (2[T(x)1(x) + enemy) )

=2( IIx ”2+ lly “2 ).

Thus X is an inner product space.

Now suppose the dimension of X is greater than two.

Let H be any two-dimensional subspace of X and H' = T(H).

By the hypothesis of the theorem H T(z)IH H = H T(z) H

for z e H so that H' is congruent to H“ . By the two-

dimensional case H is an inner product space and hence X

is an inner product space.

q.e.d..

4. On Ficken's Theorem

In chapter 2 we gave an alternate proof of Ficken's

theorem and from theorem 4.15 Ficken's theorem would follow

as a corollary. We give two more proofs which are based on
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classical characterizations of ellipsoids that can be found

in Busemann [12].

THEOREM 5.12: A closed convex surface C is an ellipsoid
 

iff the locus of the midpoints of any family of parallel

chords in contained in a hyperplane.

THEOREM 5.13: A closed convex surface C is an ellipsoid
 

iff there is a fixed point z inside of C such that

for each pair p,q c 0 there exists an affine transformation

of the space onto itself which maps C onto itself, takes

p to q, and fixes z.

The proofs are mostly a matter of interpreting Ficken's

theorem in terms of the above two theorems.

THEOREM: Let X be a normed linear space. Then X is
 

an inner product space iff H ax+by H = Ibe+ay H for all

a,b c R and x,y e X such that H x H = H y H = 1.

Proof I:
 

As usual we only prove the sufficiency of the condition

and obviously we may assume that the dimension of X is two.

Let x,y, ax+by,cx+dy e S the unit sphere of X and

(ax+by) - (cx+dy) = L(x-y) for some real number X (i.e.

the chord Joining ax+by to cx+dy is parallel to the

chord Joining x to y). Since the locus of midpoints

of chords parallel to x-y goes through the origin it will

f
"
.
—

I
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suffice to show (ax+by) + (cx+dy) = p( x+y) for some

real number p. We may assume that the segment Joining

ax + by to ex + dy does not lie on the unit sphera,since

this case follows by continuity so that ex + dy is uniquely

determined by ax + by. But bx + ay has all of the prop—

erties attributed to ex + dy, whence (cx+dy) + (ax+by) 8

(a+b) (x+y). Thus by theorem 5.12 S is an ellipse and

hence X is an inner product space.

_Eroof II:
 

If x,y t X and H x H = H y H = 1 then by hypothesis

the mapping ¢ : ax+by —-> bx+ay is an isometry on X

and hence maps the unit sphere S onto itself. Thus O

is an affine transformation of the points of X onto them-

selves which maps 3 onto itself, x to y, and fixes 0.

By theorem 5.13 S is an ellipsoid and thus X is an

inner product space.

q.e.d.

For still another proof of the theorem see Day [20].

5. Comments on Principle 5.1

In this section we give some more specific examples

based on principle 5.1. We begin by stating some theorems

from plans geometry and reformulating them in terms of

linear spaces. In order to do this we make the following

definitions.
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DEFINITION 5.14: Let X be a real normed linear space and
 

x,y c X. Then we may consider the triangle with vertices

0,x,y and let the base be the side determined by x and

y. An altitude to the base is any vector ax+by such
 

that ax + by.l x - y.

DEFINITION 5.15: Let X be a real normed linear space and
 

x,y c X. A vector 2 = ax + by is said to lie on the

bisector of the angle between x and y if the Sundaresan
 

angles <z,x> and <z,y> are equal (i.e. min H z - ax II=

a

min H z - cy H so that the bisector may be considered as the

a

set of points equidistant from the sides of the angle).

These definitions are used primarily as motivation and

insight into the theorems discussed. With this in mind

we state the following Euclidean theorems and-their linear

space analogues.

(5.16) For 1.5 1.5 9 i-N is a real normed linear space

analogue of the Euclidean theorem i-E.

L—E. The altitudes to the equal sides of an isosceles

triangle are equal.

1-N. If H x H = H y H and x-by I y and y-ax I x

then II x-by II = II y—ax II.

2~E. The altitudes of an isosceles triangle are copunctal.

2—N. If H x H'= H y H, y—ax I x, and x-by I y then

a(l-b)x + b(1-a)y _I_ x—y.
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3—E. The median to the base of an isosceles triangle

is also an altitude. '

3-N. If IIxH=Hy|Ithenx+yix-y.

4-E. The median to the base of an isosceles triangle

lies on the angle bisector of the vertex angle.

4-N. If IIx.II= IIy IL y-ax I x, and x-by I y then

 H x-by II = II y-ax |-

5—E. If a,b,c are the vertices of an isosceles

triangle with ab = ac and e,f are the feet of the

altitudes to the equal sides then the median to the side

cf of the triangle a,e,f bisects the angle at a.

5-N. If IIx II= IIy IL xeay I y, and y-beI x then

lbl ll x-ay II = lal ll y—bx ll-

S-E. If p is a point outside a circle C and if

x,y are points on C such that the lines px and py are

tangent to the circle then D lies on the bisector of the

angle xpy.

6-N- If H x H = H y H. x-ayi y. y-bx _L 1. x1 y-OX.

and_ y.l x-dy then I l-d I H y-bx H = I l-c I H x-ay H.

7-E. If p is the intersection of the altitudes to

the equal sides of an isosceles triangle then p lies on

the bisector of the vertex angle.

7-N. If H x H = H y H, x-ay I y, and y-bx I x then

a = b.

S-E. If p is the intersection of the altitudes to

the equal sides of an isosceles triangle then p lies on

the median to the base.
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B-N. If H x H = H y H, x-ay I y, and y-bx l x then

a = b.

9-E. The bisectors of the angles of a triangle are

copunctal.

9-N. If x,y c X there exists e,f c R such that

min H ex + fy - ax H = min H ex + fy - ay H = min H ex+fy-a(x~y) H-

a a c

There are naturally many more possibilities, but these

seem to be rather representative in both the statement of

results and the methods of proof. Note that l-N and 4-N

are the same and they were used in 3.5. Also note that

3-N is another way of saying isosceles orthogonality implies

'proJective orthogonality. Corollary 2.11 is based on 7-N

or B-N. Finally 9-N is true in any real normed linear

space.

Befbre giving more theorems based on 5.16 we prove

the following lemma.

LEMMA §;£Zi Let X be a real normed linear space which

is strictly convex and has symmetric orthogonality. If

x,y c X, a,b c R, x — by.l y, and y - ax‘l x then ab.2 0.

Proof:

It will suffice to prove the result when the dimension

of x is two since the higher dimensional cases are obvious.

Coordinatize so that x = (H x H,0), z = (0,1), and

x.I 2. Let y = (c,d). Since x is strictly convex c = aII x H.

From construction I in chapter 3 it follows that
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( “X Il-bc) (bd) (c) (M30

(1 - ah) (ab) 2 o

butlablfl so ab_>_0.

The first theorem is based on 2—N.

THEOREM 5.18: Let X be a real normed linear space. Then
 

x is an inner product space iff x,y c X and a,b e R

satisfying H x H = H y H = l, y — ax.l x, and x - by'l y

then a(l-b)x + b(l-a)y I x - y.

Proof:

To establish the necessity of the last condition we

prove the stronger result that if x,y c X, y — ax.l x,

and x - by‘l y then a(l-b)x + b(l-a)y I x - y. It is easy

to verify a = (“XI/H x “2 , b = (“fl/n y ”2 , and that

(a(l-b)x + b(l—a)y I x — y) = 0.

To establish the sufficiency of the condition suppose

H x H'= H y H = l, y - ax‘l x, and x_- by'l y. Then the

pair x,-y c X has the prooerties that H x II= II-y II= l,

(-y) - (-a)x l x, and x — (-b)(-y} i -y so that

a(l+b)x - b(l+a)y_I x + y.

Now suppose H x H = H y H = l, y - 33.1 x, x'l y.

If a = 0 then y‘l x. If a f 0 then Dy hypothesis

xii x + y and x.i x—y. Thus Lin {x,y} is an 11 plane

and hence Y.l x. In any case x has symmetric orthogonality.

For the remainder of the proof we may assume the dimen-

son of x is two. Also in the above argument the only
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time orthogonality was not left unique was in the 11 plane.

But the 11 plane does not have symmetric orthOgonality so

orthogonality in x is actually left uniQue. Hence X

is strictly convex and the norm is Gateaux differentiable.

Suppose X is expressed as in Construction I in

chapter 3. Then the unit sphere S in the first quadrant

is given by £(x,f{x})3b and f'(x) exists on [0,1). Let

D=fx|0_<_x_<_l and f'(x)= fx/flx) or x=l}.

There exist xl,x2 c [0,1] such that

2 2
2 + f2(x).5 x? + f2(x2) for x c [0,1] .x1 + f2(xl)‘5 x

If s is not a circle then at least one of the values

xl,x2 is distinct from O and 1. By elementary consid-

erations x1,x2 c D. If D f [0,1] there exist x3,x4 c [0,11

at least one of which is neither 0 or 1 and such that

[x3,x4]nD={x3,x43 . Let x be (x3,f(x3)) and

y be (x4,f(x4)) and I I be the norm determined by

the unit circle. Then x - by‘I y and y - ax‘l x where

a = (ny)/'x'2 and b = (YIX;/Iy|2 since x3,x4 c D.

Because x and y lie in the first quadrant and at least

one does not lie on the coordinate axes it follows that

O < a,b < 1 since x is strictly convex. By hypothesis

a(l-b)x + b(l-a;y I x - y. From the relationships on a

and b w° have (x5’f(35)) = a(l-b)x + b(l-a)y/“ a(l-b)x+b(l-a}YH

satisfies x.5 < x5 < :4 and x5 c D. But this is a

contradiction to the choice of x;5 and x4. Thus D = [0,1]

and f'(x) = ~x/f(x) for x e [0,1] . Hence f(x) = (l-x2)1/2

and x is an inner product space.

q.e.d.
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Theorem 5.19 is based on B-N.

THEOREM 5.19: If X is a real normed linear space then
 

the following are equivalent:

1. X is an inner product space

2. If x,y c x and a,b,c,d c R satisfy H x H =

 

H y H = l, x - ay‘l y, y - bx‘l x, x‘i y - ex, and :%

y.l y - dx then I l - d I H y - bx H = I l - c I H x - ay H.

Proof: ‘

(l==>2) This is obvious since a = b = c = d = (xly). I

(2==>l) Suppose x _I_ y, II x II = II y II = l, y _I_ x -- dy, \

and y - bx‘l x. By hypothesis I l - d I H y - bx H = 1.

Now apply the hypothesis to -x and y. Then

I l + d I H y - bx H== 1. Hence I l - d I a I l + d I,

0. Thus x has symmetric orthogonality andwhence d

is strictly convex.

Hence a = d, b = c and by theorem 3.5 H y—bx II=

Ivaay H. By theorem 2.14 IaI, IbI.S 1. Thus condition

2 reduces I l - a I = I l - b I whence a = b. Hence

L(x,y):z L(x,y) whenever H x H = IIy II= 1 and by corollary

2.11 x is an inner product space.

q.e.d.

5-N provides the following theorem.

THEOREM 5.20: If x is a real normed linear space then
 

the following are equivalent!

1. X is an inner product space..
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2. If H x II= IIy'II= l, x -.ay 1 y, and y - bx'l x

then lblllx-ay||=lallly-b1|l

229.913.

(l==>2) This is again obvious since a = b = (xly).

(2==>l) Condition 2 clearly implies a = 0 iff b = 0

which implies X has symmetric orthogonality and is strictly

convex. Since H x - ay H = H y - bx H for such a space

we have IaI = IbI. By lemma 5.17 this implies a = b so

by corollary 2.11 X is an inner product space.

q.e.d.

Since 3-N has already been used (theorem 1.31) we prove

a slightly stronger theorem.

THEOREM 5.21: If X is a real normed linear space then
 

the following are equivalent:

1. X is an inner product space.

2. If x,y c X satisfy H x H = H y II= l, x'l y,

then x + y'I x - y.

Proof:

(l==>2) This is obvious.

(2==>l) First note that x‘l y and H x H = IIy II= 1

imply x.l -y and H x H = HI—y II= 1 so that x + y.l x - y

and x - y.l x + y.

It suffices to prove the theorem when the dimension

of X is two. Choose x,y c X such that x‘l y, y.I x,

and, II: H = H y H:"-= 1. Assume the unit sphere S is given
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in polar coordinates by (f(O),0) for 0.5 0 < 2n, where

(1,0) = x and (1,"/2) = y. As 0 varies from O to "/2

one of the unit vectors orthogonal to it varies from "/2 to

n and the sum of these two vectors varies in angle from

"/4 to 3n/4. But the sum and difference vectors are mutually

orthogonal so this implies X has symmetric orthogonality.

 
 

  

Suppose x _I y and II x II = II y II = 1. Then

x + y 4. X "' y X + I _ x "' y

“x+y" Hx-yH ux+yu ux-yu

01‘

l 1 l 1
+ + —

‘ /||x+y u ’IIx-yu’ ‘ ‘ /llx+yll ’IIx—y n ’ y i

l 1 l 1
— + + .

< /u x+y“ ’u x—y n ’ x ‘ /u x+y u ’u x—y u”

If II x+y II 7‘ II x-Y II this implies ax + by l bx + q

1 1

where xly, IIxII= ”Y H: 3‘ /|Ix+yII+ llIx-y II’

1 l
b = - d b 0. B b

/“ x+yH /“ x—y H, an a, f ut o viously

from construction I this cannot happen since orthogonal

vectors cannot lie in the same quadrant. Thus

H x + y H:= H x - yH. By theorem 5.7 X is an inner

product space.

q.e.d.
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APPENDIX A

Most of the geometric aepects (convexity, supporting

hyperplanes, etc.) of normed linear spaces are most easily

discussed in real normed linear spaces. However, much of

the analytic theory (eigenvalues, spectral theory, etc.)

finds a natural setting in complex normed linear space.

The usual technique for studying the geometric aspects of

a complex space is to “change" it into a real space. We

wish to discuss how this change is made and prove some

theorems based on it.

If X is a complex normed linear space we can associate

a real normed linear space ‘X with it in the following

manner. The vectors in X, are those of X, addition in

X is the same as that in X, scalar multiplication in X,

is the same as multiplication by a real number in X, and

finally the norm in X' is the same as the norm in X.

It is a straightforward calculation that X, is a real

normed linear space. Next we wish to determine the relation

M

between the dual spaces of X and X.

THEOREM A.lZ If r c x* then He r defined by [as f] (x) =
 

He [f(x)] belongs to 2" and H r H =1 II Re 1‘ II . Further—

more,if g c 23 then the function r defined by

f(x) = g(x)-ig(ix) belongs to xe and u r n = u g u .

Proof:

Let f s X‘. Then I He f(x) I.5 I f(x) I.S H f H H x H

so He f s X; and H Re f ".5 H f H . Let x1 c X such that
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IIxi’
H x1 II= l and If(x1)I -—> H r M. Then if a1 =-——————-

If(xi)l

we have H (xix.1 II= 1 and IRe f(a1x1)I --> H f H. Hence

llRofll= llfll-

Let g c is and r be given by f(x) = g(x) - ig(ix).

For a c C then af(x) = a (g(x) - ig(ix))

(Re a)g(X) * (Im a)s(ix)

+ 1((Im a)s(x} - (Re a)s(1x))

8(ax) - 19(a1x)

f(ax).

Also I f(x) I = I g(x) - ig(ix) I

.5 l s(X) I + I s<1x) l

sensnuxu

so H f “'5 2 H g H and f c X‘. But He f ('1‘ and

Re f’= g. Hence H f H = IIRe f H:= H g H by the above.

q.e.d.

we can also determine the relation of x and ‘2' in

the characterization problem.

THEOREMAA.22 X is a complex inner product space iff ‘X

is a real inner product space.

Proof:

Suppose ( I ) is an inner product on X. Then by

straightforward calculation it can be shown that 0(x,y) =

Re (ny) is an inner product on ‘X.

Now suppose ¢( , ) is an inner product on X2 We

show (ny) a ¢(X,Y) - i¢(iX,y) is an inner product on X.
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Obviously ( I ) satisfies 1—1 and I-2 is satisfied

by a calculation similar to the one in A—l.

For a t C then 1

II at "2 + 2 “(91.43) + II any ll2 0(ax+ay.ax+ay)

II mx+ny II2

lalzll x+y II2

It“2 “(X+y.1+y)

laI2{ll an IF + 2¢Ix.y> + II II IF}

II

or Q(ax,ay) = IaI2 @(X.Y)-

Hence (ny) = @(x,y) - 1¢(1X.Y)

= ¢(Y.I) - 10(Y.1X)

= T(Y.X) - i¢(iy,-x)

= ¢(y,x) + i¢(iy,x)

= TiTi'T

Finally 2" x IF + 20(ix,x) = seamen)

= II an H2

= 2II x IF

or ¢(ix,x) = 0.

Hence (xIx) = ¢(x,x) = H x H2 and ( I ) is an inner

product on X.

q.e.d.

Since X and X are so closely connected, in the

text we have taken the liberty of using such phrases as

“consider X as a real normed linear space" or “X is a

complex inner product space iff X is a real inner product

space“. Naturally what we mean is “consider ‘X' instead of

X“ or “X is a complex inner product space iff X is a

‘real inner product space“.
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APPENDIX 8

Suppose X is a normed linear space with norm H H .

Quite often we wish to define a second norm I I on the

vectors of X. Usually it is convenient to say more simply

that we have defined a second norm on X. Moreover, we

say I I is induced by an innerproduct if there exists

an inner product defined on the vectors of X such that

(xIx) = I x I2.

There is a technique which is very valuable for char- I

acterizing inner product spaces. Let X be a normed linear

space with norm II II and {xi'IC X. Suppose I I is a

second norm on X which is induced by an inner product and

I x1 I = H x1 H . We then show by some method that I x I =

H x H for all x c X. Thus we wish to discuss several

methods of determining such a norm I I.

THEOREM B.1! Let X be a real two-dimensional normed
 

linear space. Suppose x,y c X and a,b c R such that

H ax H + H by H > H ax+by H > | H ax H - H by H I- Then

there exists a norm I I on X which is induced by an

inner product such that I x I = H x H , I y I = H y H ,

and I ax+by.I = II ax+by II .

Proof!

Define

(rx+eylpx+qy) = 1‘9 II x II3 + (PWDBIA + 8‘1 ll y H2

we... A ._. II ax+by IF - iLax IF - ILby If

2ab
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Let I rx+sy I2 = (rx+syIrx+sy). The only nontrivial

condition to check is that I rx+sy I is well defined.

But (rx+syIrx+sy) = r2 H x H2 +2rsA + 92 H y IF

>(r‘llx II-e lly II >2

3 0

since I A I < u x n n y I .

Suppose we consider X as a Minkowski space. Then

8.1 is equivalent to the statement that there exists an

v ax+by

9 v 9

II I II H y II II at“)? H

and I I is the norm determined by E.

  ellipse E with center 0 through

Theorem 8.2 is due originally to Loewner and proofs

of the two cases may be found in Day [18] and Schoenberg [62].

THEOREM 8.2! Let S be a convex curve in the Euclidean
 

plane which is symmetric about 0. There exists an unique

ellipse E with center 0 such that S is contained inside

of E ( E is contained inside of S ) and E has the

minimal area (maximal area) of all ellipses with this

preperty. Moreover EfIS contains at least one pair of

independent points.

The ellipse E is usually called the minimal circum-

scribed ellipse or the maximal inscribed ellipse, respectively.

Suppose X is a real two-dimensional normed linear

space. If we consider X as a Minkowski space then the
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unit sphere satisfies the hypotheses on S in 8.2 so

that by theorem 1.12 we have the following.

THEOREM 8.3! Let X be a real two-dimensional normed
 

linear space. Then there exists a norm I I on X which

is induced by an inner product such that I x I.§ H x H

(I x I‘z H x H ) for all x c X and such that there exists

a pair of linearly independent vectors y,z e X with I

llyll=ly| and IIZII=IZI-

 
In practice it is often convenient to refer to both

the ellipse E and the norm I I . In doing so we are

naturally considering X as a Minkowski space even if we

do not explicitly mention this fact.

 



THESIS

 

 



 

THESIS

' £1211.

'J

 

 



THESIS

 


