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ABSTRACT 
 

SPATIOTEMPORAL DYNAMICS OF GIANT PANDA HABITAT: 
IMPLICATIONS FOR PANDA CONSERVATION UNDER A CHANGING ENVIRONMENT 

 
By 

 
Mao-Ning Tuan Mu 

 
Under the current rapidly changing environment, effective and efficient actions for 

biodiversity conservation rely on detailed knowledge on the spatiotemporal dynamics of species 

distribution and habitat.  However, inadequate spatiotemporal information on species habitat has 

compromised conservation effectiveness, even for one of the most endangered species on Earth, 

the giant panda (Ailuropoda melanoleuca).  To address this information gap, the objectives of 

this dissertation were to: (1) develop an approach for remotely detecting the distribution of 

understory bamboo, the panda’s staple food, across large geographic regions; (2) develop a 

modeling approach for monitoring panda habitat changes across space and time; (3) evaluate the 

effects of current conservation efforts on short-term panda habitat changes; and (4) assess the 

potential impacts of climate change on long-term panda habitat dynamics. 

Using two dominant bamboo species in Wolong Nature Reserve, China, I showed that an 

integration of species distribution modeling with land surface phenology obtained from high 

temporal resolution remotely sensed data is a promising approach for providing detailed 

information on understory bamboo distribution across large geographic regions.  Derived from 

time series data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), 

eleven land surface phenology metrics successfully captured the phenological characteristics of 

vegetation caused by understory bamboo.  In addition, a species distribution model (SDM) built 

using the maximum entropy modeling approach (Maxent) accurately captured the distribution of 

understory bamboo species across the reserve based on their phenological characteristics. 



I further demonstrated the usefulness of the phenology-based model for not only 

characterizing panda habitat across space, but also monitoring its dynamics over time.  By 

quantitatively examining the effects of different predictor variables portraying land surface 

phenology on a model’s ability to be reliably applied to different time periods, I showed that a 

model built with phenology metrics derived from multi-year remotely sensed data had the 

highest temporal transferability.  Based on the outputs of this model, I evaluated the 

effectiveness of a conservation program by investigating the spatiotemporal dynamics of panda 

habitat from 2001 to 2007 in Wolong Nature Reserve.  Results suggested that an innovative 

implementation of the Natural Forest Conservation Program, which encourages active 

participation of local residents in forest monitoring by providing direct payments and enhancing 

social norms among households, is an effective instrument for panda habitat conservation. 

While the current conservation programs have effectively reduced the threats of land 

use/cover change to panda habitat, I also showed that climate change may become the next major 

threat to the survival of the giant panda.  Focusing on the food resources of the panda population 

in the Qinling Mountains region, an ensemble of panda habitat projections obtained from 

bioclimatic envelope models indicated a substantial loss of panda habitat due to a potential 

shortage of food under projected climate change in the 21st century.  This poses a big challenge 

for panda conservation in the face of climate change and suggests an urgent need for developing 

proactive conservation practices. 

This dissertation makes substantial contributions to giant panda conservation by 

providing useful tools and essential information for a better understanding of the spatiotemporal 

dynamics of panda habitat.  The findings from this dissertation also have broad implications for 

biodiversity conservation under a changing environment.  
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CHAPTER 1 

 

BACKGROUND AND RESEARCH QUESTIONS 
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Background 

Loss of biodiversity and associated ecosystem services is one of the most serious crises 

that humanity is facing (IUCN 2011; Millennium Ecosystem Assessment 2005).  Human 

activities are threatening biodiversity at local to global scales through over-exploiting natural 

resources, damaging and degrading species habitats, introducing exotic species, polluting the 

environment and changing global climate (Butchart et al. 2010; Soule 1991).  Evidence has 

shown that the current species extinction rate is higher than the background rate obtained from 

fossil records and the sixth mass extinction may be happening due to human activities (Barnosky 

et al. 2011; Pimm et al. 1995).  Human-induced species extinction, population declines, species 

invasions and distributional range shifts and collapse not only have dramatically changed biotic 

structure and interactions in biological communities, but also have altered ecosystem properties 

and functions (Hooper et al. 2005).  These changes in turn have caused declines in human 

wellbeing by reducing many goods and services that biodiversity and ecosystems provide 

(Balmford and Bond 2005).  With growing human population and resource demand, the trend of 

biodiversity loss and associated declines in human wellbeing are expected to continue or even 

become worse in the future (Millennium Ecosystem Assessment 2005; Pereira et al. 2010; 

Thomas et al. 2004). 

In the face of this crisis, conservation efforts to significantly reduce the rate of 

biodiversity loss are critical and urgently needed (Hoffmann et al. 2010).  More than 100,000 

protected areas, which cover ca. 13% of the planet’s land surface, have been established for 

conserving terrestrial ecosystems and the biodiversity they support (Chape et al. 2005; Jenkins 

and Joppa 2009).  However, although conservation actions have beneficial effects on global 

biodiversity (Hoffmann et al. 2010), current efforts are still insufficient to offset the negative 
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environmental impacts caused by human activities (Butchart et al. 2010).  Since conservation 

resources are limited, more effective and efficient conservation practices depend on a wise 

allocation of resources, which in turn relies on detailed knowledge on the spatial patterns and 

temporal dynamics of species distribution and biodiversity patterns (Whittaker et al. 2005).  For 

example, based on knowledge on spatial patterns of biodiversity, systematic conservation 

planning (Margules and Pressey 2000) can prioritize the areas with high species richness (Myers 

et al. 2000), with good biodiversity representation (Olson and Dinerstein 1998), or sustaining 

keystone or umbrella species (Branton and Richardson 2011).  In addition, observed and 

projected spatiotemporal dynamics of species distribution and biodiversity patterns are also 

essential for evaluating the efficacy of current conservation efforts (Araújo et al. 2004; 

Hoffmann et al. 2010) and for guiding their adjustment under a changing environment (Carvalho 

et al. 2011; Hannah et al. 2007). 

However, current knowledge on species distribution and biodiversity patterns is seriously 

inadequate because only a fraction of the species on Earth have been described so far (Mora et al. 

2011) and very limited distributional information for those described species is available 

(Whittaker et al. 2005).  Broad-scaled information on species distribution for well-known taxa 

(e.g., mammals, birds and some plant groups) is mostly available in the form of checklists at 

country or ecoregion levels.  In addition, many range maps are based on expert opinion, and thus 

usually have very coarse spatial and temporal resolutions (Jetz et al. in press).  While this coarse 

information is important for guiding broad-scale conservation planning (e.g., Ceballos and 

Ehrlich 2002), it may sometimes lead to incorrect judgments about conservation needs and lead 

to problematic decision making (Jetz et al. 2008).  Fine-resolution data on species distribution 

can be obtained from specimen collections in museums and herbaria and from field surveys and 
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species inventories.  However, availability of those data is usually restricted in space and time 

(Jetz et al. in press; Whittaker et al. 2005), and thus may hinder effective conservation of 

biodiversity. 

Science-based conservation planning for tackling the crisis of biodiversity loss is 

particularly important for China, one of the most biodiverse and populous countries in the world 

(Liu 2010; Liu and Raven 2010).   Due to its vast geographic area, which covers diverse 

environmental conditions and ecosystem types, China has ca. 9% of all vascular plants and 

terrestrial vertebrates known in the world, and is estimated to contain ca. 1 million species (Liu 

et al. 2003b; Liu and Raven 2010).  However, continuous increase in human population and 

demand for natural resources, as well as the exponential growth of the economy in the last three 

decades (Liu and Diamond 2008) have led to serious biodiversity losses (Liu and Raven 2010).  

In response to this crisis, the Chinese government has established more than 2,500 protected 

areas, which cover more than 15% of China’s territory (Liu and Raven 2010).  Nevertheless, 

systematic conservation planning has not been used for the design and management of many of 

those reserves (Liu et al. 2003b) and the representativeness of current protected areas for the 

conservation of the diversity of ecosystem and vegetation types was not systematically evaluated 

until recently (Wu et al. 2011).  Assessing the effectiveness of current protected areas and other 

conservation efforts in conserving biodiversity, monitoring biodiversity changes and 

understanding underlying drivers, and developing science-based conservation planning are 

urgently needed for biodiversity conservation in China (Liu et al. 2003b; Xu et al. 2009a). 

The inadequacy of information on the spatial patterns and temporal dynamics of species 

distribution and their habitats may even impede effective conservation of one of the most 

endangered species in the world, the giant panda (Ailuropoda melanoleuca).  The giant panda 



 

5 
 

was once distributed across most of southern and eastern China (Loucks et al. 2001; Pan et al. 

2001), but currently only ca. 1,600 individuals survive within six mountain regions at the edge of 

the Tibetan Plateau (State Forestry Administration 2006).  Habitat loss and degradation due to 

human activities such as cultivation and timber harvesting were the major reasons for the drastic 

decline of wild panda populations and their habitat during the past several decades (Liu et al. 

2001; Loucks et al. 2001).  As a national treasure of China and an icon of biodiversity 

conservation, the giant panda has received unparalleled conservation resources.  For example, 

more than 60 nature reserves have been established specifically for giant panda conservation.  

However, lack of detailed knowledge on the distribution of panda habitat prior to the selection 

and design of reserves has led to the omission of some important habitats from the protection of 

current reserves (Viña et al. 2010; Xu et al. 2006) and has led to less effective reserve design 

(Hull et al. 2011; Liu and Li 2008). 

One of the major challenges for accurately mapping panda habitat is the lack of detailed 

information on the spatial patterns of understory bamboo across large spatial extents.  Because 

the giant panda is an extreme dietary specialist, with more than 99% of its diet being composed 

of bamboo species growing under forest canopies (Schaller et al. 1985), distribution of 

understory bamboo is one of the most important factors determining the quantity, quality and 

spatial distribution of panda habitat (Bearer et al. 2008; Schaller et al. 1985).  Due to the lack of 

essential information on understory bamboo, previous evaluations of panda habitat usually used 

coarse-scale bamboo maps, or used forest cover as a surrogate for bamboo distribution, resulting 

in considerable overestimations of the amount of panda habitat and its carrying capacity 

(Linderman et al. 2005). 
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Remote sensing provides spatially continuous observations of the Earth’s surface across 

large geographic areas, and thus constitutes a suitable tool for synoptically measuring vegetation 

characteristics.  In some cases, remote sensing can directly detect the presence and distribution of 

individual species or species assemblages (Turner et al. 2003).  For example, spatial distribution 

of some tree species can be obtained from remotely sensed imagery with very high spatial 

resolutions (e.g., < 1 m) through detecting individual tree crowns, or from imagery with high 

spectral resolutions (e.g., > 200 spectral bands) through species-specific spectral signatures 

(Turner et al. 2003).  However, remote detection of understory vegetation is challenging due to 

the interference of overstory canopies (Eriksson et al. 2006; Rautiainen et al. 2007).  Although 

many efforts have been made to overcome this challenge through advanced remote sensing 

techniques and image processing approaches (Linderman et al. 2004; Wang et al. 2009a; Wang 

et al. 2009b), applying those approaches to large areas is still limited by the availability of the 

required remotely sensed imagery.  An effective approach for remotely detecting understory 

bamboo distribution across large geographic regions is needed to provide the essential 

information for accurately measuring panda habitat. 

Another information gap for effective conservation of the giant panda relates to the 

temporal dynamics of panda habitat.  Knowledge about the changes in the quantity, quality and 

spatial distribution of panda habitat and the underlying drivers of the changes is essential for 

identifying threats, assessing the effectiveness of current conservation efforts, and guiding 

conservation planning under a changing environment, such as adaptive habitat management 

(Holling 1978; Swaisgood et al. 2011).  Although repeated field surveys can provide detailed 

information on habitat changes, they are time consuming, expensive, and labor intensive.  

Therefore, repeated field surveys are usually restricted to local scales and/or to low frequencies, 
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which reduce their ability to monitor habitat dynamics across large areas or over short time 

periods. 

Although remotely sensed data have been used to investigate panda habitat changes, 

previous studies were focused on land cover changes, mainly forest cover changes (Jian et al. 

2011; Liu et al. 2001; Viña et al. 2007; Xu et al. 2009b).  Forest cover is an important factor 

affecting not only the habitat use of the giant panda (Bearer et al. 2008; Liu et al. 2005b; Zhang 

et al. 2011), but also the growth and distribution of understory bamboo (Qin et al. 1993; Taylor 

and Qin 1987; Wang et al. 2009c).  Therefore, forest cover is a necessary component of panda 

habitat, and deforestation is a good indicator of loss and fragmentation of panda habitat (Liu et al. 

2001; Viña et al. 2007).  However, forest cover is only one of many components of panda habitat 

and many forests, including recently logged forests, plantations, and forests without understory 

bamboo, cannot provide suitable habitat to the giant panda (Bearer et al. 2008).  Therefore, an 

evaluation based on an increase in the amount of forested areas, without consideration of forest 

characteristics, such as presence or absence of understory bamboo, as an indicator of panda 

habitat improvement may produce biased results.  Better measures of panda habitat dynamics 

and enhanced understanding of their underlying drivers thus rely on habitat evaluation 

approaches that use vegetation information beyond nominal classification of land cover types. 

Information on projected future dynamics of species distribution and habitat is also 

essential for conservation planning, especially under currently rapid environmental changes 

(Hannah et al. 2002; Heller and Zavaleta 2009).  Shifts in species’ distributional ranges due to 

climate change have been observed (Chen et al. 2011; Parmesan 2006; Root et al. 2003) and 

projected (Araújo et al. 2006; Bakkenes et al. 2002; La Sorte and Jetz 2010) for many species in 

diverse taxa, posing challenges to biodiversity conservation (Coetzee et al. 2009; Hannah et al. 
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2002; Heller and Zavaleta 2009).  However, although repeated calls have been made for climate 

change impact assessments for China’s biodiversity, including the giant panda (Liu and Raven 

2010; Ministry of Environmental Protection of China 2010), assessments on the potential 

impacts of climate change on the giant panda are still missing, both in the literature and in 

conservation planning.  While current conservation efforts, including establishment of protected 

areas and several incentive-based conservation programs (e.g., the Nature Forest Conservation 

Program and the Grain-to-Green Program), have effectively alleviated the impacts of land 

use/cover change on giant panda habitat (Liu et al. 2008; Viña et al. 2011), climate change is 

believed to become the next major threat to the giant panda’s survival (Swaisgood et al. 2010; 

Yan et al. 2004).  Therefore, quantitative and spatially explicit assessments of the impacts of 

climate change on panda habitat are urgently needed. 

Recent advances in remote sensing technology and species distribution modeling may 

provide a solution for the problem of the above-mentioned information gaps.  High temporal 

resolution remotely sensed data, such as those collected by the Moderate Resolution Imaging 

Spectroradiometer (MODIS), provide detailed information on the seasonal variability in 

biophysical characteristics (e.g., biomass) of vegetation.  The phenological characteristics of 

vegetation captured by remotely sensed data, i.e., land surface phenology (Friedl et al. 2006), 

reflect different land cover, forest, and plant functional types (DeFries et al. 1995; Reed et al. 

1994; Sun et al. 2008).  Since understory vegetation also affects the phenological characteristics 

obtained from MODIS imagery (Viña et al. 2008), which has nearly global coverage and 

temporally continuous availability, land surface phenology has the potential to be used for 

mapping understory bamboo across large geographic regions. 
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In addition, in the past two decades, species distribution models (SDMs) have developed 

rapidly and have become a useful tool for assessing the distribution of species and their habitat 

across space and time (Elith and Leathwick 2009; Guisan and Thuiller 2005; Guisan and 

Zimmermann 2000).  SDMs relate species occurrence or abundance in geographic locations with 

the environmental properties (e.g., climate, soil types) and spatial characteristics (e.g., 

connectivity to forested patches, distance to water bodies) of those locations (Guisan and 

Zimmermann 2000).  The established species-environment relationships can then be used to map 

species distribution across space (or even beyond the geographic range of species’ occurrence 

and abundance data), given spatially continuous information on environmental conditions.  

When the relationships are applied to environmental conditions for different time periods, SDMs 

can also be used to predict temporal dynamics of species distribution in response to the changed 

environment (Guisan and Thuiller 2005).  In particular, SDMs are useful for assessing the 

impacts of climate change on the distribution of species and their habitat (Araújo et al. 2005; 

Pearson and Dawson 2003) and also for conservation planning in response to climate change 

(Araújo et al. 2011; Hannah et al. 2007; Marini et al. 2010). 

Although diverse statistical approaches have been used in SDMs to deal with different 

types of species data (e.g., presence-absence, presence-only and abundance data) and to establish 

species-environment relationships (Guisan and Zimmermann 2000), most SDMs are based on the 

concept of ecological niche, and thus SDMs are also referred to as ecological niche models (Elith 

and Leathwick 2009).  Hutchinson (1957) defined the ecological niche of a species as an ‘n-

dimensional hypervolume’ within which species can maintain viable populations.  Each 

dimension of the hypervolume is defined by each of the environmental conditions and resources 

that allow the species to persist indefinitely (Hutchinson 1957).  Hutchinson’s niche concept 
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distinguishes environmental space from geographic space.  While a species niche is defined in 

environmental space, the distribution of the species in geographic space is determined by the 

geographic distribution of the environmental conditions and resources defining the niche.  The 

process of establishing species-environment relationships in species distribution modeling can be 

viewed as a process of estimating species niches, and the mapping process is to project the 

niches from environmental space to geographic space. 

While SDMs provide the approach to link species distribution between environmental 

and geographic space, remote sensing provides spatially-explicit environmental data.  Remote 

sensing can measure diverse vegetation characteristics that reflect species distribution or relate to 

the quality of species habitat.  Therefore, variables derived from remotely sensed data portraying 

vegetation characteristics and other environmental conditions [e.g., topographic variables from 

the Shuttle Radar Topography Mission (SRTM; Farr et al. 2007) and precipitation data from the 

Tropical Rainfall Measuring Mission (TRMM; Kummerow et al. 1998)] have been used in 

SDMs to map the distribution of species and their habitat (Mason et al. 2003; Morisette et al. 

2006; Saatchi et al. 2008; Zimmermann et al. 2007).  In addition, remote sensing has the ability 

to repeatedly measure land surface characteristics at the same locations, and thus to detect 

landscape changes that drive the dynamics of species distribution (Turner et al. 2003).  Therefore, 

the integration of remote sensing technology and species distribution modeling can be a useful 

tool for not only mapping the spatial patterns of species distribution, but also monitoring their 

dynamics and investigating underlying drivers. 

This dissertation was developed with the goal to fulfill the above-mentioned information 

gaps that hinder effective conservation of the giant panda: lack of detailed information on 

understory bamboo distribution across large geographic regions, lack of detailed information on 
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short-term spatiotemporal dynamics of panda habitat and underlying drivers, and lack of 

information on the potential impacts of climate change on the long-term dynamics of panda 

habitat.  It is hoped that the findings of this research and the approaches developed in the study 

will provide essential information and useful tools to better understand the spatial patterns and 

temporal dynamics of giant panda habitat, and to assist in the design of conservation practices for 

this endangered species, as well as many other species that occur within the panda’s 

distributional range, under a rapidly changing environment.  It is also hoped that the findings and 

approaches will contribute to biodiversity conservation beyond the species and the geographic 

range evaluated here. 

 

Research Objectives 

The overall goals of this dissertation are to develop approaches for investigating 

spatiotemporal dynamics of giant panda habitat and to understand how panda habitat changes 

across space and time.  Specific objectives are to (1) develop a remote sensing approach for 

detecting the distribution of understory bamboo, the giant panda’s staple food, across large 

spatial extents; (2) develop a modeling approach for monitoring panda habitat changes across 

space and time; (3) evaluate the effects of current conservation efforts on spatiotemporal 

dynamics of panda habitat; and (4) assess the potential impacts of climate change on long-term 

dynamics of panda habitat.  The following four chapters (i.e., Chapter 2 to Chapter 5) address 

each of these objectives, respectively, while the final chapter synthesizes the findings of the 

previous chapters. 

In Chapter 2, I evaluate the effectiveness of land surface phenology in detecting presence 

of bamboo species under forest canopy.  By deriving metrics portraying the phenological 
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characteristics of vegetated land surface from a time series of MODIS data, I assess the 

differences in those phenology metrics between forests with and without understory bamboo and 

develop an approach based on these differences for mapping understory bamboo distribution.  In 

Chapter 3, the effectiveness of phenology metrics, which contain information on both forest and 

understory bamboo, for monitoring temporal changes in panda habitat is evaluated.  I develop 

species distribution models with different phenology metrics, examine how those metrics affect 

the predictive power and temporal transferability of the models, and identify the best metric set 

for monitoring panda habitat changes.  In Chapter 4, the best model generated in Chapter 3 is 

applied to detect panda habitat change in a nature reserve designated specifically for panda 

conservation.  Using spatial regression models, I investigate the effects of the implementation of 

an incentive-based conservation program, as well as several biophysical and anthropogenic 

factors, on the spatiotemporal dynamics of panda habitat.  In Chapter 5, the potential impacts of 

climate change on the spatial distribution of understory bamboo and giant panda habitat are 

investigated.  By generating an ensemble of projections of future panda habitat with different 

bamboo dispersal scenarios under projected climates from different global climate models and 

greenhouse gas emission scenarios, I evaluate the temporal changes in the amount and spatial 

distribution of panda habitat across the 21st century.  Finally in Chapter 6, I summarize the 

findings of previous chapters and discuss their implications for giant panda and global 

biodiversity conservation. 

 

Study Areas 

In Chapters 2, 3 and 4, I focus on Wolong Nature Reserve, Sichuan Province, China 

(Figure 1.1) mainly for four reasons.  First, this reserve is regarded as a flagship nature reserve.  
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What we learn from Wolong Nature Reserve may not only facilitate the conservation planning in 

this reserve, but also provide guidance for the design and management of other reserves in China 

and even around the world.  Second, this reserve is located within a global biodiversity hotspot 

(Myers et al. 2000).  Efforts for conserving panda habitat in this reserve may also protect the 

habitats of thousands of other species living within this region.  Third, field data (including the 

occurrence of bamboo species and the giant panda) collected during the third national giant 

panda survey, which covered almost all known panda habitat in the reserve, provide good on-the-

ground information on bamboo occurrence.  The data allow the development and evaluation of 

the remote sensing approach for mapping understory bamboo (Chapter 2).  Due to the long-term 

study of human-panda interactions in this reserve conducted by our research team, panda 

occurrence data collected during different time periods are also available for developing and 

evaluating the modeling approach for detecting panda habitat changes (Chapter 3).  Finally, 

knowledge on the long-term human-panda interactions and the effects of conservation policies 

on them provides background information for investigating the factors affecting the 

spatiotemporal dynamics of panda habitat (Chapter 4). 

In Chapter 5, I focus on the Qinling Mountains region, Shaanxi Province, China (Figure 

1.1) because this region sustains a panda population which has important contributions to the 

genetic diversity of remaining wild pandas (Lü et al. 2001; Wan et al. 2005), but lives in a 

habitat patch completely isolated from other patches.  Therefore, while its genetic peculiarity 

makes this population particularly valuable for conservation, geographic isolation makes it 

vulnerable to environmental changes.  In addition, geographic isolation also makes it possible to 

assess the potential impacts of climate change on panda habitat across the entire mountain region. 
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Figure 1.1. Locations and topography of the Wolong Nature Reserve, Sichuan Province and the 

Qinling Mountains region, Shaanxi Province, China.  For interpretation of the references to 

color in this and all other figures, the reader is referred to the electronic version of this 

dissertation. 
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Wolong Nature Reserve 

Wolong Nature Reserve (Figure 1.1), which lies between the Sichuan basin and the Tibetan 

highlands, is characterized by a wide vertical variation in topography, climate and soils, together 

with a diverse flora and fauna.  Established in 1963 and expanded to its current extent in 1975, 

this reserve is one of the largest nature reserves (ca. 2,000 km
2
) specifically designated for giant 

panda conservation.  It protects more than 4,000 plant species and 2,200 animal species (Schaller 

et al. 1985), including approximately 10% of the entire wild panda population (State Forestry 

Administration 2006).  Natural vegetation in the reserve varies along the elevation gradient 

(Schaller et al. 1985).  Broadleaf forests are dominated by evergreen species below 1,600 m, and 

by a mixture of evergreen and deciduous species between 1,600 and 2,000 m.  Above 2,000 m, a 

mixed coniferous and deciduous broadleaf forest gradually changes to a subalpine coniferous 

forest around 2,600 m.  The forest reaches about 3,600 m where it is replaced by alpine meadows.  

Under forest canopies, evergreen bamboo species dominate the understory layer.  While seven 

native bamboo species are found in the reserve, two of them, arrow bamboo (Bashania faberi) 

and umbrella bamboo (Fargesia robusta), are dominant and constitute the major food for giant 

pandas (Schaller et al. 1985).  While arrow bamboo is mainly distributed between 2,500 and 

3,400 m in elevation, umbrella bamboo usually occurs between 1,600 and 2,650 m.  The giant 

panda is mainly distributed in the mixed and subalpine coniferous forests between 2,250 and 

2,750 m (Liu et al. 1999). 

Wolong Nature Reserve entirely comprises Wolong and Gengda townships and part of 

Sanjiang township (Figure 1.1).  All the residents of Wolong and Gengda townships (ca. 4,900 

residents in ca. 1,200 households) live inside the reserve, whereas all the residents of Sanjiang 

(ca. 3,250 residents in ca. 900 households) live outside the reserve.  Agriculture is the major 
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economic activity and fuelwood is the major energy source among the households of the three 

townships.  Diverse human activities, including illegal timber harvesting, fuelwood collection, 

cultivation, livestock husbandry and infrastructure construction, are the major threats to the giant 

panda habitat in the reserve (Liu et al. 2001). 

 

Qinling Mountains 

The Qinling Mountains lie in an east-west direction across the south of Shaanxi Province, 

China (Figure 1.1).  Because it is a divide of two major watersheds, the Yellow River and the 

Yangtze River, this mountain region forms a natural boundary between northern and southern 

China and also constitutes a climatic transition, from cold and dry in the north to warm and wet 

in the south (Pan et al. 2001).  Due to the north-south climatic transition and its vertical zonation 

along elevational gradients (up to ca. 3,700 m), the Qinling Mountains exhibit high biodiversity, 

supporting more than 3,000 plant species, over 300 bird species, and more than 85 mammal 

species, including the endangered giant panda (Pan et al. 1988).   

This mountain region is home to ca. 275 wild giant panda individuals (about 17% of the 

entire wild population) and exhibits the highest population density of all the remaining panda 

habitat areas (State Forestry Administration 2006).  Nevertheless, the panda population in this 

region is isolated from other major populations due to a long history of human habitation 

(Loucks et al. 2003). 

The distribution of vegetation in the Qinling Mountains follows an elevation gradient.  

Natural vegetation below 1,350 m is broadleaf deciduous forests, but most of them have been 

replaced by croplands and built-up areas (Pan et al. 2001).  Mixed broadleaf/coniferous forests 

are mainly distributed between 1,350 and 2,400 m, coniferous forests located between 2,400 and 
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3,350 m, and alpine meadows dominate the areas above 3,350 m (Pan et al. 2001).  Three 

understory bamboo species, Qinling arrow (Fargesia qinlingensis), dragon-head (F. 

dracocephala), and wooden (Bashania fargesii), account for more than 90% of bamboo cover 

under the forests in this region and constitute the main diet of the panda population (State 

Forestry Administration 2006).  While Qinling arrow and wooden bamboos are distributed from 

1,800 – 3,000 m and from 900 – 1,900 m, respectively, the distribution of dragon-head bamboo 

is patchier and overlaps with the other two species at elevations between 1,100 and 2,300 m (Pan 

et al. 2001; State Forestry Administration 2006).  The giant pandas in this region forage for 

Qinling arrow bamboo at higher elevations from June to September and forage for wooden 

bamboo at lower elevations from October to May (Pan et al. 1988). 
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CHAPTER 2 

 

MAPPING UNDERSTORY BAMBOO USING PHENOLOGICAL CHARACTERISTICS 
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Abstract 

Understory vegetation is an important component in forest ecosystems not only because 

of its contributions to forest structure, function and species composition, but also due to its 

essential role in supporting wildlife species and ecosystem services.  Therefore, understanding 

the spatiotemporal dynamics of understory vegetation is essential for management and 

conservation.  Nevertheless, detailed information on the distribution of understory vegetation 

across large spatial extents is usually unavailable, due to the interference of overstory canopy on 

the remote detection of understory vegetation.  While many efforts have been made to overcome 

this challenge, mapping understory vegetation across large spatial extents is still limited due to a 

lack of generality of the developed methods and limited availability of required remotely sensed 

data.  In this study, we used understory bamboo in Wolong Nature Reserve, China as a case 

study to develop and test an effective and practical remote sensing approach for mapping 

understory vegetation.  Using phenology metrics generated from a time series of Moderate 

Resolution Imaging Spectroradiometer data, we characterized the phenological features of 

forests with understory bamboo.  Using maximum entropy modeling together with these 

phenology metrics, we successfully mapped the spatial distribution of understory bamboo (kappa: 

0.59; AUC: 0.85).  In addition, by incorporating elevation information we further mapped the 

distribution of two individual bamboo species, Bashania faberi and Fargesia robusta (kappa: 

0.68 and 0.70; AUC: 0.91 and 0.92, respectively).  Due to its generality, flexibility and 

extensibility, this approach constitutes an improvement to the remote detection of understory 

vegetation, making it suitable for mapping different understory species in different geographic 

settings.  Both biodiversity conservation and wildlife habitat management may benefit from the 
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detailed information on understory vegetation across large areas through the applications of this 

approach. 

 

Introduction 

Understory vegetation plays an important role in forest ecosystems (Gilliam 2007; Nilsson 

and Wardle 2005).  Different structure and species compositions of understory plants, including 

native and exotic species, can affect regeneration of tree species, alter forest succession, and 

change species diversity through physical, chemical, and biological mechanisms (Royo and 

Carson 2006; Urgenson et al. 2009).  Understory vegetation also provides essential shelter and 

food resources for wildlife, and thus its structure and composition is usually associated with the 

diversity and abundance of many wildlife species (Díaz et al. 2005; Hagar 2007).  Besides its 

ecological functions in forest ecosystems, non-timber forest products provided by many 

understory plants (e.g., fibers from bamboo and rattans and medicines from medicinal herbs) are 

economically important for many countries (Iqbal 1993).  Therefore, understanding the 

spatiotemporal dynamics of understory vegetation is essential not only for wildlife and 

biodiversity conservation (Deal 2007; Estades and Temple 1999), but also for sustainable forest 

management (FAO 1995). 

While the importance of understory vegetation is well known, detailed information on its 

spatial distribution across large areas and its dynamics at fine temporal resolutions is usually 

unavailable because conventional methods for gathering vegetation information emphasize 

ground-based surveys, which are time-consuming, labor-intensive, and sometimes logistically 

unfeasible.  Although remote sensing is a useful alternative tool for gathering vegetation 

information across large areas and over time (Jensen 2007; Roughgarden et al. 1991), remote 
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detection of understory plants is limited due to the interference of overstory canopies.  While the 

presence of understory vegetation influences the signals received by remote sensors, its relative 

contributions to the signals vary with the structure and species composition of both over- and 

under-story vegetation (Eriksson et al. 2006; Rautiainen et al. 2007).  Because of the complex 

and nonlinear interactions between the reflectance of over- and under-story components, 

distinguishing the signals of understory vegetation from overstory canopies and characterizing 

understory vegetation are challenging. 

Many efforts have been made to overcome this challenge via advanced classification 

algorithms.  For instance, using artificial neural networks to capture the non-linear relationship 

between the reflectance of over- and under-story vegetation, Linderman et al. (2004) have 

successfully detected understory bamboo distribution with an overall accuracy of 80% (and a 

kappa statistic of 0.56, which we calculated from the confusion matrix reported in Table 3 of 

Linderman et al., 2004).  Wang et al. (2009a) classified an Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) image into three understory cover classes with a 

kappa statistic of 0.60 by integrating a neural network and a Geographic Information System 

(GIS) expert system.  However, applying these methods in a larger spatial extent may be limited 

by the availability of cloud-free images with high spatial resolutions, and locally specific rules in 

the expert system.   

Other studies have used active sensor systems.  For example, data acquired using Light 

Detection and Range (LiDAR) sensors have been used to characterize the three-dimensional 

structure of forests (Lefsky et al. 2002; Vierling et al. 2008), and map understory plants in boreal 

forests (Korpela 2008; Peckham et al. 2009).  Combined with hyperspectral images, LiDAR data 

have also been used to map an understory invasive species in tropical forests (Asner et al. 2008).  



 

22 
 

However, the most important limitation for ecological applications of these airborne sensor data 

are their high acquisition costs and low availability, especially in developing countries (Vierling 

et al. 2008).  

Differences in phenology between over- and under-story vegetation have also been used to 

detect understory vegetation.  For instance, due to the earlier senescence of tree leaves as 

compared to the leaves of an understory invasive shrub species, Resasco et al. (2007) found that 

stands with high coverage of the understory shrub could be separated from those with low/zero 

coverage using late-fall Landsat imagery.  In addition, Chastain, Jr. and Townsend (2007) and 

Wang et al. (2009b) also successfully used leaf-off Landsat images to detect evergreen 

understory vegetation under deciduous forests (with kappa statistics of 0.755-0.806 and 0.59, 

respectively).  However, the limited temporal windows when the phenological difference 

between over- and under-story can be detected further reduce the data availability.  Furthermore, 

the inter-annual variability of vegetation phenology due to variable climatic conditions may 

change the optimal dates for separating over- and under-story components in different years 

(Resasco et al. 2007). 

High temporal resolution remotely sensed data, such as those collected by the Moderate 

Resolution Imaging Spectroradiometer (MODIS), may provide a solution for the problem of 

mapping understory vegetation across large areas.  With high frequency of acquisitions, those 

data reduce the problem of cloud contamination and provide detailed information on the 

temporal dynamics of the land surface.  As vegetation phenology causes changes in surface 

reflectance over time, they can be captured by multi-temporal remotely sensed data (Ahl et al. 

2006; Reed et al. 1994; Schwartz and Reed 1999).  The phenological patterns captured by 

remotely sensed data are termed land surface phenology (Friedl et al. 2006), in order to 
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distinguish them from the traditional definition of vegetation phenology.  Previous studies have 

shown that these phenological characteristics are useful for classifying different land cover types 

(DeFries et al. 1995; Hansen et al. 2000; Lloyd 1990), monitoring land cover change (de Beurs 

and Henebry 2004; Lenney et al. 1996), and differentiating forest classes and types (Townsend 

and Walsh 2001).  However, the phenological characteristics captured by multi-temporal 

remotely sensed data are affected by not only the dominant overstory vegetation, but also the 

understory vegetation.  Viña et al. (2008) have shown that the seasonal patterns of vegetation 

indices derived from MODIS data were different between forests with similar overstory 

vegetation but with different understory coverage.  This conspicuous difference in phenological 

patterns suggests that land surface phenology has the potential to be used for mapping understory 

vegetation across large areas. 

The main goal of this study was to develop an approach for deriving detailed information 

on the spatial distribution of understory vegetation using the phenological patterns detected by 

multi-temporal remotely sensed data.  We selected the bamboo species living under the canopy 

of temperate forests in Wolong Nature Reserve, China as a case study.  Because bamboo species 

dominate the understory vegetation within this region and provide essential food for several 

wildlife species (Schaller et al. 1985) including the endangered giant panda (Ailuropoda 

melanoleuca), identifying their spatial distribution has direct wildlife conservation implications.  

To develop and test our approach, we (1) generated phenology metrics from a time series of 

MODIS data and examined the phenological characteristics of forests with understory bamboo; 

(2) developed a spatial model for mapping understory bamboo distribution using field data, 

phenology metrics, and species distribution modeling; and (3) explored the potential application 

of this approach to mapping and differentiating individual bamboo species. 
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Materials and Methods 

Field data 

We obtained bamboo presence data from the Third National Giant Panda Survey (State 

Forestry Administration 2006).  Survey teams collected field data in Wolong Nature Reserve 

following transects across different vegetation types during the summer of 2001.  Along the 

transects, surveyors recorded, using Global Positioning System receivers, the geographic 

locations of 468 sites with signs of giant panda activity, including fecal droppings, feeding sites, 

dens, footprints, and visual sightings.  In each site, surveyors identified bamboo species and 

assigned the coverage of understory bamboo to one of four categories (0-24%, 25-49%, 50-74% 

and 75-100%).  Because low bamboo cover has a limited contribution to the surface reflectance 

registered by satellite sensors and may not provide enough food or shelter for wildlife species, 

we only used the locations where bamboo cover was estimated to be 25% or higher (Figure 2.1).  

In these locations, besides the two dominant bamboo species [i.e., arrow bamboo (Bashania 

faberi) and umbrella bamboo (Fargesia robusta)], F. nitida and Yushania brevipaniculata were 

also found.  Although bamboo species may occur in shrubland, in the study area shrubland with 

bamboo are only found in small patches within clear-cut areas for past timber production (Reid 

et al. 1991; Schaller et al. 1985).  In addition, only one of the 468 field sites has a vegetation type 

of shrubland with bamboo species in the dataset.  Therefore, we excluded that site from the 

following analyses and focused on the bamboo under forests in this study. 
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Figure 2.1. Locations of the field plots where arrow or umbrella bamboo cover was 25% or 

higher according to the Third National Giant Panda Survey conducted in Wolong Nature 

Reserve in 2001. 

 

Remotely sensed data and phenology metrics 

We obtained a time series of MODIS surface reflectance imagery (8-day L3 Global 250m 

product, MOD09Q1) acquired between May 2000 and April 2004 through the Land Processes 

Distributed Active Archive Center (https://lpdaac.usgs.gov/).  Using the surface reflectance 

values in the red (RRED, 620-670 nm) and near infrared (RNIR, 841-876 nm) spectral bands, we 

calculated the Wide Dynamic Range Vegetation Index (WDRVI; Gitelson 2004): 
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 WDRVI = (α·RNIR – RRED) / (α·RNIR + RRED)     (2.1) 

where α is a weighting coefficient set as 0.25 following Henebry et al. (2004).  This coefficient 

reduces the saturation problem of the Normalized Difference Vegetation Index (NDVI) under 

moderate-to-high biomass conditions (Gitelson 2004).  The WDRVI has been proved to be 

linearly related with leaf area index (LAI) and sensitive to changes in LAI up to 6 (Gitelson 2004; 

Viña et al. 2004b).  Therefore, the WDRVI appears to be more suitable than the widely-used 

NDVI for studying the changes in green biomass under high LAI values, such as the forests with 

dense understory bamboo in our study area.  In order to further reduce the cloud contamination, 

which lowered WDRVI values, we generated a time series of 16-day composites using the 

maximum value between two consecutive 8-day periods. 

Using TIMESAT 2.3 (Jönsson and Eklundh 2004, 2006), we smoothed the time series (May 

2000 – April 2004) of 16-day WDRVI composites for each pixel by means of the adaptive 

Savitzky-Golay filter.  With these data we obtained three full phenological cycles (2001-2003) 

and calculated 11 phenology metrics for each cycle: (1) the base level, corresponding to the 

average between the starting and ending minimum values of each cycle (A in Figure 2.2); (2) the 

maximum level, corresponding to the highest value in each cycle (B in Figure 2.2); (3) the 

amplitude, calculated as the difference between the maximum and the base levels (C in Figure 

2.2); (4) the date of the start of the season (SOS), determined as the date when WDRVI values 

increase to 20% of the difference between the maximum WDRVI value and the minimum value 

at the start of each cycle (D in Figure 2.2); (5) the date of the end of the season (EOS), defined as 

the date when WDRVI values decrease to 20% of the difference between the maximum value 

and the minimum value at the end of each cycle (F in Figure 2.2); (6) the date of the middle of 

the season (MOS), determined as the median of the two dates when WDRVI values increase 
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(decrease) to 80% from the minimum value at the start (end) of each cycle (E in Figure 2.2); (7) 

the length of the season, defined as the difference between SOS and EOS (G in Figure 2.2); (8) 

the large integral, obtained as the area under the smoothed curve between SOS and EOS (H in 

Figure 2.2); (9) the small integral, defined as the large integral minus the area below the base 

level (I in Figure 2.2); (10) the increase and (11) decrease rates, calculated as the slopes of two 

lines across the 20% and 80% level points on the left and right sides of the MOS, respectively (J 

and K in Figure 2.2).  

 

Figure 2.2. Phenology metrics (A – K) derived from the smoothed values (triangles) of a time 

series of WDRVI values.  A ‐ Base level; B ‐ Maximum level; C ‐ Amplitude; D ‐ Date of the start 

of the season; E ‐ Date of the middle of the season; F ‐ Date of the end of the season; G ‐ Length 

of the season; H ‐ Large integral; I ‐ Small integral; J ‐ Increase rate; K ‐ Decrease rate. 
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In some pixels, phenology metrics could not be obtained on a particular cycle due to either 

lack of detectable phenological cycles or incomplete cycles within a year.  To reduce both the 

effects of missing cycles and inter-annual variability in phenology metrics, we calculated the 

average of the annual values from 2001 to 2003 for each pixel.  We treated the pixels which had 

less than two valid annual values as missing data and excluded them from the following analyses. 

 

Phenological characteristics of forests with understory bamboo 

To test whether the phenological characteristics of the forests with understory bamboo can 

be distinguished from other land cover types using the 11 phenology metrics, we compared them 

among five groups of pixels.  For the first group (All), we randomly selected 1,000 pixels from 

the study area as a representative of the entire area.  The second group (For) was a random 

selection of 1,000 pixels with a forest cover.  Pixels with a forest cover were determined based 

on a binary forest cover map derived from a Landsat-5 Thematic Mapper image acquired on 13 

June 2001 (Viña et al. 2007) and re-sampled to 250 × 250 m/pixel using the majority algorithm.  

A series of tests on the selected pixels’ representativeness of the entire study area and forest area 

indicated that the variation of the means of pixel values (i.e., values of each phenology metric) 

decreased with the increase in the number of selected pixels, but the change became negligible 

when more than 500 pixels were selected.  On the other hand, selecting more pixels may increase 

the spatial autocorrelation among selected pixels.  To achieve representativeness and reduce the 

effects of spatial autocorrelation on statistical tests (see below), we used 1,000 randomly selected 

pixels in this analysis.  The third group (Bam) contained 356 pixels where bamboo cover was 

25% or higher (including all four bamboo species, i.e., B. faberi, F. robusta, F. nitida and Y. 

brevipaniculata) according to the field data.  The remaining two groups were composed of 145 
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pixels where arrow bamboo cover was 25% or higher (Arr), and 184 pixels where umbrella 

bamboo cover was 25% or higher (Umb), respectively.  We then compared the pixel values 

between each pair of the five groups using the Mann-Whitney U-test for each of the 11 

phenology metrics.  We used this non-parametric test because the pixel values were not normally 

distributed, according to a Shapiro-Wilk normality test performed.  The conclusions on 

significant differences drawn from this test are more conservative since the non-parametric U-

test is less powerful to detect significant differences between groups, as compared to parametric 

methods (e.g., t-test; Sheskin 2000).  

For this analysis, we conducted presence vs. background comparisons (e.g., forest pixels 

with bamboo vs. random selection of all forest pixels), rather than presence vs. absence 

comparisons (e.g., forest pixels with bamboo vs. forest pixels without bamboo) mainly for two 

reasons.  First, although possible, it is not practical to confirm absolute absence of understory 

species across a 6.25 ha field plot (i.e., the area of a 250 × 250m MODIS pixel).  And second, the 

modeling algorithm used to map understory bamboo is based on the difference in the values of 

predictor variables obtained in presence locations and in background (random) locations (see 

below).  Therefore, the presence vs. background comparisons examined the information content 

of the data directly used by the modeling algorithm to map understory vegetation. 

 

Overall bamboo distribution 

In order to distinguish the pixels with understory bamboo from the others based on their 

phenological characteristics, we used the maximum entropy modeling framework (Maxent).  

Maxent is an algorithm designed to make predictions based on incomplete information (Phillips 

et al. 2006) and has been proven to be one of the best methods for mapping species distribution 
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(Elith et al. 2006).  The algorithm contrasts the environmental conditions (characterized in a 

multi-dimensional space defined by environmental variables) in species presence locations vs. 

the conditions in background locations (i.e., the entire study area).  It then establishes the 

species-environment relationship by matching the contrasts and approaching a maximum entropy 

distribution (i.e., maximum uniform distribution) simultaneously (Phillips et al. 2006).  The 

relationship can be used to estimate the probability of species occurrence across the entire study 

area given the spatial patterns of the environmental variables (Phillips et al. 2006; Phillips and 

Dudík 2008). 

Besides its good performance on mapping species distribution (Elith et al. 2006), Maxent 

also has several characteristics which make it suitable for mapping understory vegetation based 

on phenological characteristics obtained from MODIS data.  First, it uses presence-only, rather 

than presence/absence data.  This is important since it is not logistically feasible to confirm 

absence of understory bamboo in an entire 250 × 250 m area.  Using the presence-only procedure, 

we can avoid the potential biases caused by uncertain or false absence data.  In addition, like 

other machine learning methods (e.g., neural networks), Maxent can capture complex and non-

linear species-environment relationships, even with noise in input data (Elith et al. 2006; Phillips 

et al. 2006).  Finally its continuous output values, i.e., species presence probabilities, make 

Maxent a fuzzy classifier that provides more detailed information on understory vegetation 

distribution than binary outputs (i.e., presence/absence). 

We used the software Maxent (version 3.3.1; Phillips et al. 2006) to generate a  model for 

mapping overall bamboo distribution.  For generating the model, we used the pixels whose 

bamboo cover was 25% or higher (including all four bamboo species) as presence data, 10,000 

pixels randomly selected from the study area as background data following the suggestions of 
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Phillips & Dudík (2008), and the 11 phenology metrics derived from a time series of MODIS-

WDRVI values as predictor variables.  We used 70% of the bamboo presence data (249 pixels) 

as a training dataset and the remaining 30% (107 pixels) as a validation dataset.  In order to 

reduce the potential effects of the random data partitioning, we ran the model 20 times (replicates) 

with different random data partitions for each run and averaged the predicted bamboo presence 

probabilities over the 20 runs for each pixel.  This number of replicates was used because pilot 

tests showed the variation of model outputs, measured as the mean of standard deviations among 

different runs, decreased with the increase in the number of runs, but changed negligibly after 20 

runs. 

 

Individual bamboo distribution 

Besides mapping overall bamboo distribution, we also explored the ability of our approach 

to map individual bamboo species.  With the same method described earlier, we generated a 

model and obtained the average of presence probabilities over 20 model runs for each of the two 

dominant bamboo species, i.e., arrow and umbrella bamboo.  Because the two bamboo species 

are distributed within different elevation ranges, we hypothesized that adding elevation 

information into the model would improve the model’s ability to separate the two species.  To 

test this hypothesis, besides the model generated with 11 phenology metrics, we also generated a 

model using elevation as an additional predictor variable and compared the model performance 

(see below) between the two models.  We obtained the information on elevation from a digital 

elevation model created by the Shuttle Radar Topography Mission and re-sampled the original 

data to 250 × 250 m/pixel using the nearest neighbor algorithm to keep consistent spatial 

resolution with the other data. 
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Model validation and comparison 

We used both threshold-dependent and threshold-independent methods to validate models 

and evaluate their performance.  The Cohen’s kappa analysis, a chance-corrected measure of 

agreement (Cohen 1960), was selected for the threshold-dependent method because it is 

commonly used for evaluating classification accuracy of remote sensing imagery and also used 

in previous studies on mapping understory vegetation (Chastain Jr. and Townsend 2007; Wang et 

al. 2009a; Wang et al. 2009b).  The kappa value ranges between 0 and 1 with a larger value 

indicating better model performance (Cohen 1960).  Model performance can be judged as 

excellent if kappa > 0.75, good if 0.75 > kappa > 0.4, or poor if kappa < 0.4 (Araújo et al. 2005; 

Landis and Koch 1977).  Because only presence data on bamboo distribution were available, we 

performed the analysis by contrasting presence pixels to those randomly selected from the study 

area (background pixels).  To avoid the potential failure of kappa analysis with unbalanced 

validation data (McPherson et al. 2004), we randomly selected 100 background pixels to make 

the number be close to the number of presence pixels in validation datasets (i.e., 30% of bamboo 

presence data or 107 pixels).  The threshold for cutting off continuous outputs from each model 

run was determined by the kappa maximization approach, which finds the threshold 

corresponding to the maximum kappa value (Liu et al. 2005a).  Because 100 pixels (ca. 0.3% of 

total pixels) were not representative of the entire area, we calculated 30 kappa values for each 

model run by using the same presence pixels but different 100 random background pixels, and 

then obtained an average of the 30 values. 

The receiver operating characteristic (ROC) analysis, a threshold-independent method, is 

also a widely-used method for evaluating the accuracy of classification models (Fielding and 
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Bell 1997; Pearce and Ferrier 2000).  The ROC curve is generated by plotting sensitivity values 

(i.e., fraction of true positive) against 1-specificity values (i.e., fraction of false positive) for 

every possible threshold (Hanley and Mcneil 1982).  The area under the ROC curve (AUC) 

provides a single-value measurement of model performance.  While omission errors reduce 

sensitivity and commission errors reduce specificity, both types of errors equally reduce the 

AUC value.  While an AUC value of 1 indicates a perfect model, a value of 0.5 indicates a 

random model.  A standard for judging model performance based on AUC values (Araújo et al. 

2005; Swets 1988) is: excellent (AUC > 0.9), good (0.9 > AUC > 0.8), fair (0.8 > AUC > 0.7), 

poor (0.7 > AUC > 0.6), and failed (0.6 > AUC > 0.5).  Similar to the calculation of the kappa 

statistic, we also used presence/background validation data for calculating AUC values.  

However, because AUC values are not sensitive to unbalanced validation data (McPherson et al. 

2004; Zweig and Campbell 1993) and no statistical test is involved in the calculation of AUC 

values, the number of background pixels does not affect the calculated values if the background 

pixels are representative of the entire study area.  Therefore, we used the default background 

pixels in the Maxent software (i.e., 10,000 background pixels) to calculate AUC values.   

By using presence/background data, the kappa and AUC values calculated in this study tend 

to be underestimated because some of the background pixels are actually presence pixels, which 

artificially increase commission errors.  In addition, the degree of underestimation is determined 

by the proportion of actual presence pixels in the background pixels, which is, in turn, 

determined by the actual proportion of habitat in the entire study area.  Since the actual 

proportion of habitat is almost always unknown, direct comparisons of the values calculated in 

this study with the values reported in other studies should be done with caution.  Comparisons 

between different models using these statistics are valid only if the models are generated for the 
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same species in the same study area and are evaluated using the same presence/background data, 

as was done in this study (see below).   

In order to examine the relative importance of each phenology metric for mapping bamboo 

distribution, we conducted a jackknife analysis on model performance by using the Maxent 

software.  For this, the software calculated the AUC values of models containing only one of the 

11 metrics and of models containing all, but one of the metrics used as predictor variables, 

through a jackknife re-sampling approach.  In this analysis, a higher AUC value for a model 

containing only one metric indicates that the specific metric is more informative for mapping 

bamboo distribution than other metrics.  In contrast, a lower AUC value for a model without one 

specific metric indicates that the metric contains more information for mapping bamboo not 

provided by the other metrics.  

For comparing the performance of the individual bamboo models with and without 

elevation information, besides calculating kappa and AUC values, we also used the minimum 

predicted area (MPA) method (Engler et al. 2004).  The MPA is the minimum area which is 

constituted by all pixels whose species presence probabilities are above a defined threshold and 

encompasses a specified percentage (e.g. 95%) of presence locations (Engler et al. 2004).  With 

presence-only validation data, a model predicting species present everywhere has the best 

performance because it correctly predicts all presence locations, but the model is useless.  

Therefore, the MPA method evaluates model performance based on the parsimonious concept 

that a good model should predict the habitat as small as possible (i.e., with low commission 

errors), but it still encompasses a maximum number of presence locations (i.e., with low 

omission errors).  In this analysis, a threshold was selected for each model run so that the pixels 

with probabilities above the threshold encompassed 95% of presence locations.  Kappa and AUC 
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values and the proportions of MPA to the whole study area obtained for 20 runs of the models 

with and without elevation were compared using Mann-Whitney U-tests. 

 

Results  

Phenological characteristics of forests with understory bamboo 

Because of a lack of detectable seasonal cycles or incomplete annual cycles in at least two 

years, phenology metrics could not be calculated in 289 pixels (i.e., 0.76% of the total number of 

pixels) of the entire study area.  Among these pixels, only 112 pixels (i.e., 0.79% of the total 

number of forest pixels) were covered by forests, according to the forest cover map, and none of 

them contained field plots with a 25% or higher bamboo cover.  Therefore, the impact of their 

exclusion from the analysis is negligible due to the small proportions of these pixels in the five 

pixel groups. 

Significant differences in the values of 11 phenology metrics were found among the five 

groups of pixels (Figure 2.3), even with the more conservative significant tests conducted using 

the non-parametric method.  Compared to the pixels randomly selected from the whole study 

area (All), the pixels with understory bamboo (Bam) had significantly (p < 0.001) higher base 

and maximum levels, a higher amplitude, earlier SOS and MOS, a longer length of season, and 

higher large and small integrals (Figure 2.3).  Compared to pixels with forest cover (For), the 

pixels of the Bam group had a significantly higher maximum level, a higher amplitude, earlier 

SOS, MOS, and EOS, higher large and small integrals, and a higher increase rate (Figure 2.3).  

While the values of the pixels with arrow bamboo (Arr) were significantly different in eight and 

five of the 11 metrics from the All and For groups, respectively, they were different from the 

Bam group only in the maximum level and SOS (Figure 2.3).  The values of pixels with umbrella 
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bamboo (Umb) were significantly different from the All and For groups in all and eight of the 

metrics, respectively (Figure 2.3).  However, significant differences were found only in the 

maximum level and MOS between the Umb and Bam pixels (Figure 2.3). 

 

 Overall bamboo distribution 

The kappa and AUC values (mean ± 2 SEM) of the 20 runs of the overall bamboo 

distribution models were 0.591 ± 0.018 and 0.851 ± 0.005, respectively.  Both values, even 

though underestimated due to the use of presence/background validation data, indicated a good 

model according to the judgment standards (Araújo et al. 2005; Landis and Koch 1977; Swets 

1988).  The estimated bamboo presence probabilities for pixels ranged between 0 and 0.9 across 

the study area, with higher probability values occurring at low- and mid-elevations (Figure 2.4a).  

The highest standard deviation of the estimated presence probabilities was 0.3, but most pixels 

had standard deviations lower than 0.05 (Figure 2.4b).  The low standard deviations indicated 

that the estimated probabilities did not change much with different data partitioning for training 

and validation datasets.  Among the pixels whose phenology metrics could not be calculated, 137 

were located above 3600 m, thus beyond the distribution range of forests and bamboo species in 

the study area, and 40 of the other pixels were not covered by forests, according to the forest 

cover map.  Therefore, the missing data may affect the estimated bamboo presence probabilities 

in only 112 pixels (i.e., 0.29% of the total number of pixels). 
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Figure 2.3. Box plots of 11 phenology metrics calculated using 1,000 pixels randomly selected from the entire study area (All), 1,000 

pixels randomly selected from forested areas (For), 356 pixels where field plots with bamboo cover as 25% or higher were located 

(Bam), 145 pixels where field plots with arrow bamboo cover as 25% or higher were located (Arr), and 184 pixels where field plots 

with umbrella bamboo cover as 25% or higher were located (Umb).  The dark line inside a box indicates the median; the bottom and 

the top of a box show the 25th and 75th percentiles, respectively; the ends of the two whiskers indicate the lowest and the highest 
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values within 1.5 inter‐quartile ranges from a box; dots beyond whiskers show outliers whose values were outside the range 

indicated by the whiskers.  The letters above boxes show the results of pair‐wise comparisons on the phenology metric values 

conducted using Mann‐Whitney U‐tests.  Two boxes share the same letter if there was no significant difference (p > 0.001) between 

them. 

 

 
 
Figure 2.3. (Continued) 
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Figure 2.4. Overall bamboo distribution across Wolong Nature Reserve.  The pixel‐wise (a) mean 

values and (b) standard deviations of bamboo presence probabilities were calculated over 20 

runs of the overall bamboo distribution model.  The model was generated using 356 pixels with 

25% or higher bamboo cover as presence locations and 11 phenology metrics as predictor 

variables.  The 289 pixels where phenology metrics could not be determined in at least two 

years between 2001 and 2003 from a smoothed curve of a time series of WDRVI values by 

TIMESAT are represented in white. 

 

The results of the jackknife analysis on the relative importance of phenology metrics for 

mapping understory bamboo are shown in Figure 2.5.  The models with only the maximum level, 

base level, or large integral had the highest AUC values (Figure 2.5a), which indicated that those 

metrics contained the most useful information for mapping understory bamboo.  The models 
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without the SOS, small integral, or base level had the lowest AUC values (i.e., largest loss in 

AUC) (Figure 2.5b), and thus those metrics contained unique information for mapping bamboo 

distribution. 

 

Individual bamboo distribution 

Although the mean kappa and AUC values indicated that the performance of the arrow and 

umbrella bamboo models without elevation was fair to good and good to excellent, respectively 

(Table 2.1), the models could not effectively differentiate the distribution of the two species.  

While umbrella bamboo had higher presence probabilities at relatively lower elevations (Figure 

2.6b), consistent with the field data and our knowledge about the general distribution pattern of 

this species, the estimated probabilities for arrow bamboo were also high in some low-elevation 

areas (Figure 2.6a).  The relatively low kappa and AUC values obtained for arrow bamboo 

(Table 2.1) seem to reflect this overestimation at lower elevations. 

With the incorporation of elevation information, the mean kappa and AUC values increased 

and the proportion of MPA decreased significantly for both species (Table 2.1).  Higher kappa 

and AUC values and smaller MPA suggested that model performance on mapping individual 

bamboo species was significantly improved with the addition of elevation as a predictor variable.  

In addition, the spatial patterns of estimated presence probabilities also showed that the 

distribution patterns of the two bamboo species can be differentiated (Figure 2.6c and d) with the 

incorporation of elevation information into the models. 
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Figure 2.5. Mean AUC values of the overall bamboo distribution models (a) with only one of the 

11 phenology metrics and (b) with all, but one, metrics as predictor variables.  A higher AUC 

value for a model with only one metric indicates that the metric contained more useful 

information for mapping bamboo distribution in the full model.  A lower AUC value (larger loss 

of the AUC value) for a model without one metric indicates that the metric contained more 

information which cannot be represented by the other metrics for mapping bamboo 
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distribution.  Max ‐ Maximum level; Amp ‐ Amplitude; SOS ‐ Date of the start of the season; 

MOS ‐ Date of the middle of the season; EOS ‐ Date of the end of the season; L_Int ‐ Large 

integral; S_Int ‐ Small integral; I_Rate ‐ Increase rate; D_Rate ‐ Decrease rate. 

 

Table 2.1. Comparisons of the performance of models developed for individual bamboo species 

with and without elevation information, based on the results of 20 model runs. 

* Values are shown as mean ± 2 SEM. 

    Arrow Bamboo    Umbrella Bamboo 

   
Without 
Elevation 

With 
Elevation 

 
Without 
Elevation 

With 
Elevation 

Kappa 
*
 

  0.461 ± 0.017  0.681 ± 0.015    0.658 ± 0.022  0.703 ± 0.019 

p‐value of Mann‐
Whitney Test 

 
< 10

‐10
 

 
< 10

‐4
 

AUC 
*    0.798 ± 0.009  0.906 ± 0.004    0.900 ± 0.005  0.920 ± 0.005 

p‐value of Mann‐
Whitney Test 

 
< 10

‐7   
< 10

‐4 

Threshold for MPA
 *    0.211 ± 0.015  0.229 ± 0.009    0.192 ± 0.013  0.199 ± 0.013 

Proportion of MPA 

to Study Area 
* 

  0.476 ± 0.009  0.223 ± 0.005    0.297 ± 0.008  0.212 ± 0.005 

p‐value of Mann‐
Whitney Test 

 
< 10

‐10   
< 10

‐5 
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Figure 2.6. Spatial distribution of arrow and umbrella bamboo across Wolong Nature Reserve.  

Mean presence probabilities of pixels were calculated over 20 runs of the individual bamboo 

distribution models containing only 11 phenology metrics (a and b) and the models containing 

the 11 phenology metrics plus elevation (c and d).  Pixels where phenology metrics could not be 

determined in at least two years between 2001 and 2003 from a smoothed curve of a time 

series of WDRVI values by TIMESAT are represented in white. 
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Discussion 

In this study, we developed an effective approach for mapping understory vegetation across 

large spatial extents using remotely sensed data.  By taking the advantage of MODIS data’s high 

temporal resolution, we captured the phenological characteristics, in terms of WDRVI values, of 

forests with understory bamboo using phenology metrics.  We then established the relationship 

between bamboo presence and phenological characteristics and used it to map understory 

bamboo by using Maxent.  With this approach, we successfully mapped the spatial distribution 

of bamboo species under temperate forests in Wolong Nature Reserve, China.  While land 

surface phenology derived from time series of remotely sensed data has been used for land cover 

classification (DeFries et al. 1995), vegetation change detection (de Beurs and Henebry 2004, 

2005), canopy phenology monitoring (Ahl et al. 2006; Viña et al. 2004a; Zhang et al. 2003), 

invasive plant mapping and monitoring (Huang et al. 2009; Morisette et al. 2006), and wildlife 

habitat characterization (Viña et al. 2008), in this study their applications have been extended to 

evaluate the spatial distribution of understory plant species growing under a forest canopy. 

By analyzing the land surface phenology characterized by phenology metrics, we found that 

forest pixels with understory bamboo can be distinguished from background and forest pixels in 

the whole study area.  While higher base and maximum levels, an earlier SOS, a longer season 

length, and higher large and small integrals reflected the difference between forests and other 

land cover types (Figure 2.3), a still higher maximum level, much earlier SOS and MOS, higher 

yet integrals, and a higher increase rate showed the contributions of bamboo species to the land 

surface phenology of forest pixels with understory bamboo (Figure 2.3).  The high biomass and 

annual net primary productivity of understory bamboo (dry weights: 5-12 ton·ha
-1

 and 1.2-1.9 
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ton·ha
-1
·year

-1
 for arrow bamboo and 15-40 ton·ha

-1
 and 1.5-3.9 ton·ha

-1
·year

-1
 for umbrella 

bamboo) in the study area (Taylor and Qin 1993) may account for the higher maximum level and 

integrals.  The rapid growth in the height of bamboo shoots during the early growing season (Qin 

et al. 1993; Taylor and Qin 1993) may be the reason for the higher increase rate and earlier SOS 

of the pixels with bamboo.   

Since the bamboo species in the study area are evergreen, it was expected that their 

contribution to the green biomass was larger when overstory tree leaves undergo senescence (e.g., 

during winter months).  However, no difference in the base level between forests with bamboo 

and background forests was observed.  This result could be partially explained by snow cover 

during the winter months.  Although bamboo species under evergreen coniferous forests may not 

cause difference in land surface phenology as much as those under deciduous or mixed forests, 

pure evergreen coniferous forests are rare in the study area.  While firs (e.g., Abies faxoniana) 

are dominant in the subalpine coniferous forests above 2,600 m in elevation, birches (e.g., Betula 

utilis and B. albosinensis) and rhododendrons (e.g., Rhododendron oreodoxa and R. watsonii) 

are also abundant (Schaller et al. 1985).  However, although it is not a major concern in this 

study, the potential effect of evergreen overstory on the detectability of phenological difference 

caused by understory vegetation needs further study.  In addition, besides the direct contribution 

of understory bamboo, the difference in canopy tree species composition and density caused by 

different understory bamboo cover (Taylor et al. 2004; Taylor et al. 2006) may also affect the 

land surface phenology.  Therefore, further studies on the phenology of canopy trees and 

understory bamboo measured on the ground are needed for understanding the phenological 

characteristics captured by remotely sensed data. 
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According to the jackknife analysis, the most important predictor variables containing either 

the most useful or the most unique information for mapping understory bamboo were the base 

and maximum levels, SOS, and large and small integrals (Figure 2.5).  Significant differences 

between forest pixels with bamboo versus background pixels of the whole study area were 

observed in all of these five metrics (Figure 2.3).  In addition, except for the base level, the other 

four metrics were also significantly different between forests with bamboo versus background 

forests (Figure 2.3).  The results of these two analyses and the consistence between them indicate 

that the good performance of the approach developed in this study on mapping understory 

bamboo is due to (1) the ability of phenology metrics derived from a time series of MODIS data 

to capture differences in land surface phenology caused by understory bamboo, and (2) the 

ability of Maxent to extract and use the phenological difference for mapping bamboo distribution. 

Besides the good agreement between the field data and the bamboo distribution maps 

generated in this study, our approach has several improvements on mapping understory 

vegetation as compared to other methods.  First, our approach is more suitable for mapping the 

spatial patterns and monitoring temporal dynamics of understory vegetation across large areas.  

While several previous approaches have been proved useful for detecting understory vegetation 

at local scales (Korpela 2008; Linderman et al. 2004; Resasco et al. 2007; Wang et al. 2009a; 

Wang et al. 2009b), their applications to broader scales may be limited due to cloud 

contamination (e.g., Landsat data), high acquisition costs (e.g., LiDAR data) and/or lack of 

images acquired during specific time periods (e.g., leaf-off seasons).  In contrast, our approach 

solves the problem of data availability by using MODIS data, which have been acquired daily 

and globally since 24 Feb. 2000 and can be freely obtained.  Because of the short revisiting rate 

(1 day), the problem of cloud contamination can be reduced by using multi-date composites.  
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With high data availability in terms of both space and time, this approach not only can be easily 

applied to mapping understory vegetation across large geographic areas, but also has the 

potential for monitoring its temporal dynamics. 

In addition, our approach may not be limited to specific understory species or specific areas 

and time periods because of its generality.  Similar to some previous methods (Chastain Jr. and 

Townsend 2007; Resasco et al. 2007; Wang et al. 2009b), our approach is also based on the 

phenological difference between over- and under-story vegetation.  However, our approach uses 

a time series of MODIS data to capture phenological differences throughout a whole year, rather 

than using a single image to detect differences on a specific date.  Therefore, our approach does 

not need prior knowledge or testing on the optimal dates on which the phenological difference 

between over- and under-story canopy components can be detected.  It also does not need re-

testing and adjusting the optimal dates to account for the inter-annual variability of vegetation 

phenology when the approach is applied to monitoring temporal dynamics (Resasco et al. 2007).  

In addition, as required by a GIS expert system for adjusting maps derived from remotely sensed 

data (Wang et al. 2009a), knowledge on the relationships between the distribution of understory 

vegetation and environmental variables is not necessary in our approach.  Although the 

relationships can effectively improve the accuracy of mapping (Wang et al. 2009a), they are 

specific to particular vegetation types, understory species, and geographic areas.  Therefore, 

without the requirement of specific knowledge, our approach is more general and thus is easily 

applicable to other vegetation types, understory species, and geographic locations. 

An additional advantage of our approach is its flexibility and extensibility.  Although prior 

knowledge on the species-environment relationships is not necessary, if available, the new 

approach can incorporate this information easily to extend its ability to separate different 
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understory species.  In this study, we showed that the approach with only the phenology metrics 

could not differentiate individual bamboo species effectively from the overall bamboo 

distribution because there was no significant difference in most phenology metrics between all 

bamboo pixels versus those with arrow or umbrella bamboo (Figure 2.3).  However, by 

incorporating elevation as an additional predictor variable, we significantly improved the ability 

of our approach to separate the spatial distributions of the two species.  Therefore, while our 

approach has its generality for detecting overall understory vegetation or groups of species with 

similar phenological characteristics across large areas, it can be applied to mapping individual 

species within specific areas by adding species- and/or area-specific information, such as 

elevation in this study.  Contrasting to previous approaches which focused on either a group of 

similar species (Korpela 2008; Linderman et al. 2004; Wang et al. 2009a) or a single species 

(Resasco et al. 2007; Wang et al. 2009b), our approach provides a tool to separate individual 

species from a group of similar ones.  This advantage would be valuable for the assessment and 

management of understory species biodiversity. 

Like any other methods, the approach developed in this study also has some limitations.  

First, there is always a compromise between spatial and temporal resolutions of remotely sensed 

data.  By using WDRVI derived from MODIS data, our approach mapped understory vegetation 

with a spatial resolution of 250 × 250 m/pixel.  Although this resolution is coarser than those of 

the previous approaches which use higher spatial resolution data, such as Landsat (e.g., 

Linderman et al. 2004), ASTER (e.g., Wang et al. 2009a) and LiDAR (e.g., Korpela 2008), a 

previous study has shown that a time series of MODIS data performs as well as a Landsat image 

on mapping wildlife habitat because the finer temporal resolution of MODIS data compensates 

for the disadvantage of coarser spatial resolution (Viña et al. 2008).  Even though this study 
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tends to underestimate the model accuracy due to the use of presence/background, rather than 

presence/absence validation data, the kappa values of the overall bamboo model and the 

individual bamboo models with elevation generated in this study are comparable to, or even 

higher than, the values reported in previous studies mapping understory bamboo using higher 

resolution remotely sensed data (Linderman et al. 2004; Wang et al. 2009a; Wang et al. 2009b).  

In addition, coarse spatial resolutions may be detailed enough to reveal biologically and 

ecologically meaningful information in studies and applications where finer spatial resolutions 

are not necessary, such as those used for characterizing the habitat of wildlife species with large 

home ranges, as the giant pandas (Schaller et al. 1985). 

Second, this approach can only be applied to mapping the understory vegetation whose 

presence causes detectable differences in phenological characteristics.  In this study, we found 

phenological differences between forest pixels with understory bamboo and background pixels 

of forests due to the high biomass and rapid growth of bamboo species.  However, many 

understory plant species, including several non-native invasive species, have the ability to form 

dense understory layers and affect forest structure and function (Royo and Carson 2006; 

Urgenson et al. 2009).  Therefore, we believe that our approach can be applied to mapping many 

other understory species whose presence causes differences in land surface phenology.  

Finally, calculating phenology metrics from a time series of WDRVI values derived from 

MODIS data requires more data processing time and computational resources than many 

previous methods.  However, a global phenology product with a spatial resolution of 1 km 

(MOD12Q2, Zhang et al. 2003), and a 250 m product for North America 

(http://accweb.nascom.nasa.gov/), are being generated from MODIS data and being made freely 

accessible.  In addition, the recent availability of software especially developed for extracting 
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phenological characteristics from remotely sensed data (e.g., TIMESAT; Jönsson and Eklundh 

2004) has made the data processing easier and more efficient.  With the growing interests and 

continuous improvements in related research on land surface phenology (Morisette et al. 2009), 

more data and improved tools will become available in the near future.  

 

Conservation Implications and Conclusions 

Understory vegetation not only has important contributions to and significant effects on the 

biodiversity of plant species in forest ecosystems (Gilliam 2007; Royo and Carson 2006), but 

also shapes the environments and provides resources for many wildlife species (Deal 2007; Díaz 

et al. 2005; Hagar 2007).  Therefore, understanding the spatial patterns and temporal dynamics 

of understory vegetation is important for biodiversity conservation and habitat management.  In 

this study, we developed an effective and practical approach for mapping understory vegetation 

using phenological characteristics derived from a time series of remotely sensed data.  Due to the 

easy access, global coverage, and temporally continuous availability of MODIS data, our 

approach solves the problem of limited data availability that other methods may encounter when 

applied to larger spatial extents or finer temporal resolutions.  Without the need of prior and 

specific information on the phenological difference between over- and under-story vegetation 

and on the relationships between understory vegetation and environmental variables, our 

approach can be easily applied to different species in different geographic areas.  Due to its 

flexibility and extensibility, besides detecting general understory vegetation, the approach can be 

also used to differentiate individual species by incorporating species-specific information. 

The approach developed in this study could provide valuable information for ecosystem 

management and for biodiversity conservation.  For example, while remote sensing has been 
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widely used to map and monitor the distribution of invasive plants across large spatial extents 

(Asner and Vitousek 2005; Huang and Asner 2009), its application for invasive understory 

species is limited (but see Asner et al. 2008; Resasco et al. 2007).  Because of high biomass and 

rapid growth of many invasive species and their strong influence on species compositions, which 

may alter the land surface phenology, the approach developed in this study could provide a 

useful tool for the management of invasive understory plants at broad spatial scales. 

In addition, wildlife habitat management and conservation could also benefit from the new 

approach.  Understory bamboo species, for example, are staple food for giant pandas and one of 

the most important factors determining the quality of giant panda habitat (Bearer et al. 2008; Liu 

et al. 1999; Reid et al. 1989; Schaller et al. 1985).  Without the essential information on bamboo 

distribution, a habitat evaluation may overestimate the carrying capacity of the giant panda by 

more than 40% (Linderman et al. 2005).  Besides providing the distribution patterns of overall 

understory bamboo across large areas for panda habitat evaluations, our approach can also map 

individual species.  Because different bamboo species have unequal contributions to comprising 

giant pandas’ diet and determining habitat quality (Schaller et al. 1985), identifying the 

distribution of individual bamboo species may provide more detailed information for 

characterizing panda habitat.  Furthermore, with the individual species information, the potential 

impacts on panda habitat of species-specific dynamics of understory bamboo (e.g., mass die-offs 

following flowering) can be incorporated into management planning.    Since many other 

wildlife species around the world also depend on the understory vegetation whose information 

on spatiotemporal dynamics across large spatial extents is unavailable, habitat management and 

conservation of those species might benefit from the approach we developed in this study as well. 
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Abstract 

Temporal transferability is an important issue when habitat models are used beyond the 

time frame corresponding to model development, but has not received enough attention, 

particularly in the context of habitat monitoring.  While the combination of remote sensing 

technology and habitat modeling provides a useful tool for habitat monitoring, the effect of 

incorporating remotely sensed data on model transferability is unclear.  Therefore, our objectives 

were to assess how different satellite-derived variables affect temporal transferability of habitat 

models and their usefulness for habitat monitoring.  We modeled giant panda habitat in Wolong 

Nature Reserve, China with the maximum entropy algorithm using panda presence data collected 

in two time periods and four different sets of predictor variables representing land surface 

phenology.  Each predictor variable set contained either a time series of smoothed wide dynamic 

range vegetation index (WDRVI) or eleven phenology metrics, both derived from single-year or 

multi-year (i.e., 3-year) remotely sensed imagery acquired by the Moderate Resolution Imaging 

Spectroradiometer (MODIS).  We evaluated the ability of models obtained with these four 

variable sets to predict giant panda habitat within and across time periods by using threshold-

independent and threshold-dependent evaluation methods and five indices of temporal 

transferability.  Our results showed that models developed with the four variable sets were all 

useful for characterizing and monitoring giant panda habitat.  However, the models developed 

using multi-year data exhibited significantly higher temporal transferability than those developed 

using single-year data.  In addition, models developed with phenology metrics, especially when 

using multi-year data, exhibited significantly higher temporal transferability than those 

developed with the time series.  This study indicates that the integration of land surface 

phenology, captured by high temporal resolution remotely sensed imagery, with habitat 
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modeling constitutes a suitable tool for characterizing wildlife habitat and monitoring its 

temporal dynamics.  Using multi-year phenology metrics reduces model complexity, 

multicollinearity among predictor variables, and variability caused by inter-annual climatic 

fluctuations, thereby increasing temporal transferability of models.  This study provides useful 

guidance for habitat monitoring through the integration of remote sensing technology and habitat 

modeling, which may be useful for the conservation of the giant panda and many other species. 

 

Introduction 

Habitat loss and degradation due to human activities and human-induced climate change 

have impacted and will continue to affect many animal and plant species (Sala et al. 2000).  To 

minimize negative impacts and threats, there have been increased efforts to protect species 

habitats.  Monitoring the spatiotemporal dynamics of species habitats is therefore essential not 

only for improving current conservation efforts but also for guiding future conservation 

strategies (Balmford et al. 2003; Lengyel et al. 2008; Pereira and Cooper 2006). 

Although routine field surveys can detect fine-scale changes in species habitat, they 

seldom provide complete spatial coverage of the areas of interest.  While empirical habitat 

models are a useful tool for generalizing field information (Guisan and Zimmermann 2000), 

remote sensing technology provides synoptic information of the land surface and, in some 

instances, with a high temporal resolution (Turner et al. 2003).  Therefore, the combination of 

remotely sensed data, field survey data, and habitat modeling makes it possible to map species 

habitats and monitor their temporal changes across large areas.  

Seasonal variability in biophysical characteristics (e.g., biomass) of vegetation as 

portrayed by multi-temporal remotely sensed data, i.e., land surface phenology (Friedl et al. 
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2006), is an important feature of the land surface for characterizing species habitat.  Land surface 

phenology reflects different land cover types as well as different characteristics of vegetation 

(DeFries et al. 1995; Reed et al. 1994), and thus has been used for mapping land use change (de 

Beurs and Henebry 2004) and for monitoring vegetation dynamics (Beck et al. 2006; Koltunov et 

al. 2009).  In addition, several variables representing land surface phenology have been used in 

habitat models for mapping plant and animal habitats at a single point in time (Morisette et al. 

2006; Tuanmu et al. 2010; Viña et al. 2008).  However, the usefulness of land surface phenology 

for monitoring the temporal dynamics of species habitat has not been assessed. 

When habitat models are intended to be used beyond the areas and time periods over 

which they were originally developed, one critical characteristic is their transferability, i.e., the 

ability of a model developed in one area or time period to be reliably applied in different areas or 

time periods.  While spatial transferability has drawn increasing attention (e.g., Peterson et al. 

2007; Randin et al. 2006; Zanini et al. 2009), the issue of temporal transferability has 

comparatively received less attention (but see Thuiller et al. 2004; Varela et al. 2009; Zharikov et 

al. 2009), particularly in the context of habitat monitoring.  As diverse characteristics of the land 

surface portrayed by remotely sensed data have become increasingly available for habitat 

modeling (Kerr and Ostrovsky 2003; Turner et al. 2003), it is essential to assess how different 

use of remotely sensed data may affect model transferability.  

The goal of this study was to evaluate the utility of different land surface phenology 

variables for monitoring the temporal dynamics of wildlife habitat, particularly addressing their 

effects on model transferability.  Using the giant panda (Ailuropoda melanoleuca) habitat as a 

case study, our objectives were to: (1) evaluate the predictive power and temporal transferability 

of habitat models derived from different land surface phenology variables; (2) identify the best 



 

56 
 

land surface phenology variable set for modeling, and hence monitoring giant panda habitat; (3) 

explore potential factors affecting model transferability; and (4) discuss implications for 

monitoring the temporal dynamics of wildlife habitat with the integration of habitat modeling 

and remotely sensed data. 

 

Materials and Methods 

Giant panda presence data 

We obtained giant panda presence data in Wolong Nature Reserve from two field 

datasets.  The first dataset was acquired by the Third National Giant Panda Survey (State 

Forestry Administration 2006) during the summer of 2001.  This survey covered all areas that 

were known or had the potential to support giant pandas (Figure 3.1).  The surveyed area was 

divided into ca. 2 km
2
 sections and each surveyor was assigned one section per day to search for 

and geo-reference giant panda signs (including faecal droppings, feeding sites, dens, footprints, 

and visual sightings) using Global Positioning System (GPS) receivers (Loucks and Wang 2004; 

State Forestry Administration 2006).  The second dataset was obtained from wildlife surveys we 

conducted from August 2006 to February 2008.  We followed the same procedure used in the 

national survey, but concentrated our survey efforts in one of the regions considered to possess 

the best giant panda habitat in the reserve (Liu et al. 2001; Figure 3.1). 
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Figure 3.1. Locations of panda activity signs recorded during the Third National Giant Panda 

Survey in 2001 and during wildlife surveys from 2006‐2008. 

 

Remotely sensed data 

We used a time series of the Moderate Resolution Imaging Spectroradiometer  (MODIS) 

imagery (MOD09Q1) acquired between May 2000 and April 2008 for portraying phenological 

characteristics of vegetation.  This image time series is composed of 8-day composite surface 

reflectance in the red (620-670 nm) and near infrared (841-876 nm) spectral bands, with a spatial 

resolution of ca. 250×250m/pixel.  Using surface reflectance, we calculated the Wide Dynamic 
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Range Vegetation Index (WDRVI; Gitelson 2004) for each 8-day composite image.  To further 

reduce potential effects of cloud cover on the WDRVI values, we generated a time series of 16-

day WDRVI composites using the maximum value between two consecutive 8-day periods. 

Using TIMESAT 2.3 (Jönsson and Eklundh 2004), we smoothed pixel-wise the time 

series of WDRVI composites by means of the adaptive Savitzky-Golay filter (Savitzky and 

Golay 1964).  We then generated 11 phenology metrics for each of the seven full-year cycles 

(2001-2007) from the time series of smoothed WDRVI values to capture the shape and 

phenological characteristics of the smoothed curve of WDRVI values.  Detailed information on 

the definitions and calculations of the metrics can be found in Chapter 2 and Figure 2.2. 

 

Predictor variables 

To assess the effects of different land surface phenology variables on temporal 

transferability of habitat models, we created four different variable sets and built panda habitat 

models for two time frames.  Each variable set contained either the time series of smoothed 

WDRVI composites or the 11 phenology metrics, whose values were derived from single-year or 

multi-year (i.e., 3-year) MODIS data (Table 3.1).  For the variables derived from multi-year data, 

the values of each WDRVI composite or phenology metric were averaged over three years.  

Since multi-year averages smoothed out inter-annual variability in variable values, the four 

variable sets allowed us to assess not only the effects of variable type (i.e., WDRVI or phenology 

metrics), but also those of inter-annual variability on model transferability.   
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Table 3.1. Properties of habitat models developed with four different sets of land surface phenology variables in two time frames. 

a
 WDRVI: Wide Dynamic Range Vegetation Index; 

b
 Values were calculated between every pair of variables in the variable set and 

are shown as mean ± 2 standard errors from the mean; 
c
 Values were calculated from 20 variants of the habitat models and are 

shown as mean ± 2 standard errors from the mean 

    WDRVI 
a
     Phenology Metrics  

   
Single‐year 

(SYVI) 
Multi‐year 
(MYVI)   

Single‐year 
(SYPM) 

Multi‐year 
(MYPM) 

Variables             

Time Frame 1   
A time series of 
smoothed WDRVI 

in 2001 

A time series of 
smoothed WDRVI 

averaged over 2001‐2003 
 
Phenology metrics 

in 2001 
Phenology metrics 

averaged over 2001‐2003

Time Frame 2   
A time series of 
smoothed WDRVI 

in 2007 

A time series of 
smoothed WDRVI 

averaged over 2005‐2007 
 
Phenology metrics 

in 2007 
Phenology metrics 

averaged over 2005‐2007

Number of Variables (in 
both time frames) 

  23  23    11  11 

Correlation Coefficient 

Between Variables 
b 

           

Time Frame 1    0.87 ± 0.01  0.90 ± 0.01    0.16 ± 0.12  0.20 ± 0.12 

Time Frame 2    0.87 ± 0.01  0.90 ± 0.01    0.21 ± 0.13  0.18 ± 0.13 

Number of Terms in Final 

Models 
c
 

           

Time Frame 1    103.5 ± 3.3  84.9 ± 2.7    39.4 ± 1.6  34.0 ± 1.4 

Time Frame 2    118.8 ± 4.0  96.7 ± 3.1    41.7 ± 2.1  40.7 ± 1.4 
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For each land surface phenology variable set, we obtained values from MODIS data in 

2001 or the averages over 2001 to 2003 to represent land surface phenology in the first time 

frame, and obtained values from 2007 data or averages over 2005 to 2007 to portray land surface 

phenology in the second time frame (Table 3.1).  For single-year variable sets, phenology 

metrics could not be calculated for some pixels (5.7% of total pixels for 2001 and 3.4% for 2007) 

due to either lack of detectable seasonal cycles or incomplete cycles within a year.  We excluded 

those pixels from further analyses.  For multi-year variable sets, we excluded pixels that lacked 

phenology metrics in ≥ 2 years (0.8% of total pixels for both 2001-2003 and 2005-2007 periods) 

from further analyses. 

Using the values of 10,000 randomly selected pixels (ca. 26% of total pixels in the study 

area), we calculated Pearson’s correlation coefficients for every pair of variables, and used them 

as indicators of the degree of multicollinearity among variables.  With this procedure, a 

correlation matrix was obtained for each variable set in each time frame.   

 

Analytical design 

The analytical design included three steps: (1) model development, (2) habitat prediction, 

and (3) model evaluation (Figure 3.2).  Detailed methods of these steps are explained in the 

following sections. 
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Figure 3.2. The analytical design included three steps: (1) model development (arrow with 

double lines), (2) habitat prediction (arrow with single solid line), and (3) model evaluation 

(arrow with dashed line).  (1) Panda habitat models were developed with four different sets of 

land surface phenology (LSP) variables in two time frames (t1 and t2) using panda presence 

data collected in 2001 and 2006‐2008, respectively.  (2) The models were used to predict panda 

habitat within (WTP) and beyond the time frame (BTP) in which the models were developed.  (3) 

The habitat maps from WTP and BTP were evaluated using the presence data collected in the 

time frame in which the habitat was predicted.  AUC and MPA were calculated for the habitat 

maps from both WTP (AUCt1t1, AUCt2t2, MPAt1t1, and MPAt2t2) and BTP (AUCt1t2, AUCt2t1, 

MPAt1t2, MPAt2t1).  The habitat maps from WTP and BTP were compared (arrow with dashed‐

dotted line) within each time frame, and values of agreement coefficients (ACt1 or ACt2) and 

the proportions of systematic disagreement (PSDt1 or PSDt2) were calculated.  The AUC, AC and 

PSD values were then used to evaluate model transferability. 
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Model development 

We developed panda habitat models using the maximum entropy algorithm (Maxent), a 

machine-learning approach for making predictions from incomplete information (Phillips et al. 

2006).  Maxent estimates the probability of species presence by finding the most uniform 

probability distribution (i.e., with the maximum entropy) as constrained by the data distribution 

of predictor variables associated with confirmed species locations (Phillips et al. 2006; Phillips 

and Dudík 2008).   Maxent uses presence-only data, and thus it is especially suitable for mapping 

the distribution of species when confirmed absence data are difficult to obtain, as is the case for 

the giant panda.   

Maxent contrasts the values of predictor variables associated with species presence 

locations against the values of the same variables for all available locations (i.e., background).  

We randomly selected 10,000 pixels as a representation of the entire study area (Phillips and 

Dudík 2008), and defined the background by only using pixels where giant pandas could 

possibly occur following the suggestion of Phillips et al. (2009) for single species applications.  

For this, as giant pandas seldom occur in non-forest areas (Schaller et al. 1985), the background 

was defined by pixels with forest cover according to a binary forest cover map which was 

derived from a Landsat-5 TM image acquired on 13 June 2001 (Viña et al. 2007) and resampled 

to the spatial resolution of the MODIS data (i.e., 250 m). 

Maxent derives and uses different forms of input variables (i.e., feature types) to 

represent non-linear and interactive effects of predictor variables on species presence probability 

(Phillips et al. 2006).  The contributions of these derived predictors to the model prediction are 

then evaluated during model development and only those having significant contributions are 

retained in a final model (Phillips et al. 2006).  We used a combination of linear, quadratic, and 
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product feature types, which represent the means, variances, and co-variances of the predictor 

variables, respectively (Phillips et al. 2006).  The number of terms retained in the final model 

was used for indicating the complexity of model structure. 

We developed four habitat models in two different time frames (i.e., Time Frame 1 and 

Time Frame 2, Figure 3.2) using our two panda presence datasets.  We considered a 250×250 m 

pixel as a confirmed presence pixel if it contained at least one panda location according to field 

surveys.  Field datasets contained 399 and 220 presence pixels in 2001 and 2006-2008, 

respectively.  For each dataset, we used 70% of the presence pixels for model development and 

the remaining 30% for model evaluation (see below).  In order to reduce the effects of data 

partitioning on model outputs, we randomly re-partitioned the data and created 20 different data 

partitions for each field dataset.  Twenty variants of each model were then developed using these 

20 partitions for each time frame.  This number of partitions was used because a previous study 

showed that the variation of model outputs decreased with the increase in the number of 

partitions, but changed negligibly with more than 20 partitions (see Chapter 2). 

  

Habitat prediction 

For each time frame, 20 variants of each model were used to predict panda habitat within 

the time frame (i.e., within-time-frame prediction, WTP) and beyond the time frame (i.e., 

beyond-time-frame prediction, BTP; Figure 3.2).  Therefore, in each time frame, 80 panda 

presence probability maps (i.e., 4 models × 20 variants) were obtained from the WTP and 80 

additional maps were obtained from the BTP (Figure 3.2). 
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Model evaluation 

To evaluate the accuracy of model predictions, we used both threshold-independent and 

threshold-dependent methods.  The threshold- independent method consisted in the receiver 

operating characteristic (ROC) curve analysis, a common method for evaluating the accuracy of 

classification models (Fielding and Bell 1997).  The area under the ROC curve (AUC) provides a 

single-value measurement of model accuracy, with a value of 1 indicating a perfect prediction 

and 0.5 indicating a random prediction (Hanley and Mcneil 1982).  In habitat modelling, models 

with AUC values higher than 0.7 are considered useful (Boyce et al. 2002). 

The ROC curve analysis is typically conducted by contrasting presence to absence data.  

Here, we calculated AUC values by contrasting presence pixels to those randomly selected from 

the study area (i.e., background pixels) as suggested by Phillips et al. (2006) and used in other 

studies (e.g., Marini et al. 2010).  For each time frame, we used 30% of panda presence pixels 

and the background pixels selected during model development to calculate AUC values for both 

WTP and BTP (Figure 3.2).  By contrasting presence to background data in the ROC curve 

analysis, the maximum achievable AUC value is less than 1 and is negatively correlated with the 

proportion of actual presence pixels in the background pixels, but the value of a random 

prediction is still equal to 0.5 (Phillips et al. 2006).   

Some concerns have been raised on the application of the ROC curve analysis for 

comparing the accuracy of models using different modelling approaches or among different 

species, because AUC values are subject to the range of model output values, reliability of 

species presence and absence data, and the delineation of a study area, especially when it is used 

to define the background in presence-only models (Lobo et al. 2008; Peterson et al. 2008).  

However, comparisons among different AUC values performed in this study are considered to be 
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valid since all models were generated for the same species, by the same modelling algorithm (i.e., 

Maxent), within the same study area, and were generated and validated with the same presence 

and background data (see below). 

The threshold-dependent evaluation method used was based on the calculation of the 

minimal predicted area (MPA; Engler et al. 2004).  The MPA method evaluates model 

performance based on the parsimony concept that a good model should predict the smallest 

habitat area as possible (i.e., minimize commission errors as much as possible), while its 

omission errors are under control (Engler et al. 2004).  Since the MPA depends on the actual 

proportion of species habitat in a study area, which is almost always unknown, it is only suitable 

for comparing models generated for the same species in the same area, as is the case of this study.  

In addition, it is relative magnitudes of MPA among models, rather than absolute values for 

individual models, that matter for evaluating model performance.  Following Engler et al. (2004), 

we defined a threshold for each panda presence probability map so that 90% of presence 

locations in the validation dataset were encompassed (i.e., 10% omission error).  Instead of using 

absolute area, we calculated the MPA as the ratio of the number of above-threshold pixels to the 

total number of pixels.   

 

Model transferability 

We evaluated the temporal transferability of panda habitat models based on three criteria 

adapted from Randin, et al. (2006).  First, a model with good temporal transferability should 

have similar accuracy between its predictions within and beyond the time frame corresponding to 

its development.  Therefore, for our analytical design (Figure 3.2), there should be similar 

accuracy between WTP in Time Frame 1 (t1) and BTP in Time Frame 2 (t2), as well as between 
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WTP in t2 and BTP in t1.  Second, the model should have similar performance no matter in 

which time frame it was developed.  That is, the accuracy of WTP (or BTP) should be similar 

between t1 and t2 (Figure 3.2).  This criterion, together with the first criterion, implies that the 

model should have similar transferability in both transferring directions between the two time 

frames.  Third, besides model accuracy, the spatial patterns of predicted habitat from within- and 

beyond-time-frame predictions also should be similar.  Therefore, the spatial patterns of WTP 

and BTP in t1 (or t2) should match each other (Figure 3.2). 

To quantify temporal transferability based on these three criteria, we calculated five 

indices for each of the four habitat models.  We calculated the single-direction (TIt1→t2 and 

TIt2→t1)  and overall transferability indices (TIoverall), which were adapted from Randin et al. 

(2006) as: 

TIt1→t2 = 1 - |AUCt1t1 – AUCt1t2| / 0.5;     (3.1) 

TIt2→t1 = 1 - | AUCt2t2 – AUCt2t1| / 0.5;     (3.2) 

TIoverall = [0.5 × (TIt1→t2 + TIt2→t1)] / 1 + | TIt1→t2 - TIt2→t1|,  (3.3) 

where AUCt1t1 and AUCt2t2 are AUC values for WTP in Time Frame 1 and Time Frame 2, 

respectively, and AUCt2t1 and AUCt1t2 are for BTP in the two time frames, respectively (Figure 

3.2).  TIt1→t2 and TIt2→t1 measure the ability of a model to be transferred from t1 to t2 and vice 

versa, respectively.  They range from 0 to 1 as AUC values are typically between 0.5 and 1, and 

they are closer to 1 when the AUC values for WTP and BTP are similar (i.e., high transferability 

based on the first criterion).  TIoverall measures transferability in both directions and puts a 

penalty on the difference between two directions.  It also ranges from 0 and 1 and is closer to 1 
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when single-direction transferability indices in both directions are higher and closer to each other 

(i.e., high transferability based on the second criterion). 

We compared the spatial patterns of WTP and BTP in each time frame (Figure 3.2), by 

calculating an agreement coefficient (AC; Ji and Gallo 2006) for each variant of each habitat 

model as: 

AC = 1 - ∑ ሺ௡
௜ୀଵ Xi – Yi)

2
 / ∑ ሾሺ௡

௜ୀଵ | തܺ - തܻ | + | Xi - തܺ|) × (| തܺ -  തܻ | + Yi - തܻ |)],  (3.4) 

where Xi and Yi are pixel values (i.e., estimated panda presence probability) of habitat maps 

from WTP and BTP, respectively; X  and  Y  are the mean values of Xi and Yi, respectively; and 

n is the total number of pixels.  AC is a standardized sum of squared difference between Xi and 

Yi, and its maximum value is 1, indicating a perfect agreement in pixel values between two maps 

(Ji and Gallo 2006). 

Because two maps may have a low AC value even when they show the same spatial 

patterns with different absolute pixel values, we also calculated the proportion of systematic 

disagreement (PSD), following Ji and Gallo (2006) as: 

 PSD = 1 - ∑ ሾሺ௡
௜ୀଵ |Xi - ෠ܺi|) × (|Yi - ෠ܻ i|)] / ∑ ሺ௡

௜ୀଵ Xi – Yi)
2
,   (3.5) 

where ෠ܺi  and ෠ܻ i  are the estimated values of Xi and Yi, respectively, from a linear regression 

between Xi and Yi, based on a  geometric mean functional relationship model.  The denominator 

of the main term of equation 3.5 measures the total disagreement between Xi and Yi, and the 

numerator is the sum of residuals from the regression line, which indicates non-systematic or 

random disagreement.  As PSD equals one minus the ratio of non-systematic disagreement to 
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total disagreement, this index measures the proportion of systematic disagreement captured by a 

linear regression between the pixel values in two maps (Ji and Gallo 2006).  In our case, a higher 

PSD indicates that a larger proportion of the disagreement between two habitat maps is due to a 

linear shift of pixel values, and thus the two maps show a more similar spatial pattern of habitat 

but just with different absolute pixel values. 

 

Model comparisons 

We conducted the mixed-design analysis of variance (ANOVA) for comparing AUC and 

MPA values among habitat models with model variants as a random factor, and used paired t-

tests for pairwise comparisons.  With the same random factor, we used two-way ANOVA to 

evaluate the effects of land surface phenology variable type and the length of original time series 

data used for generating them, as well as their interaction effects on model transferability 

measured by TI (Eqs. 3.1-3.3), AC (Eq. 3.4) and PSD (Eq. 3.5).  We used these parametric 

statistical tests after verifying the validity of the normality assumption with Shapiro-Wilk tests.  

All statistical tests were conducted using R 2.10.1. 

 

Results 

Multicollinearity and model complexity 

The correlation analysis among land surface phenology variables in each variable set 

showed that smoothed time series of WDRVI values, regardless of single- or multi-year data, 

were highly correlated in both time frames, but phenology metrics were less correlated with each 

other (Table 3.1).  In both time frames, the models developed with phenology metrics or 

variables derived from multi-year time series data tended to have fewer terms, suggesting lower 
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model complexities (Table 3.1).  In addition, each of the four models tended to contain more 

terms when developed in Time Frame 2 than in Time Frame 1 (Table 3.1). 

Model accuracy 

According to the threshold-independent evaluation, all habitat models had median AUC 

values ranging between 0.85 and 0.95 for predicting giant panda habitat within the time frame of 

model development (i.e., WTP; Figure 3.3a and c).  In general, accuracy decreased when models 

were used to predict habitat beyond time frames (i.e. BTP), but all median AUC values were still 

higher than 0.79, indicating that they constitute useful models (Figure 3.3b and d).  Significant 

differences in AUC values were found among the four habitat models in both time frames (F = 

11.96, 267.06, 194.53 and 489.49 for AUCt1t1, AUCt1t2, AUCt2t2 and AUCt2t1, respectively; d.f. 

= 3, 57 and p < 10
-5 for all).  In Time Frame 1, the MYVI and MYPM models had the highest 

predictive power within the time frame (Figure 3.3a), but the MYPM model was significantly 

better than the MYVI model for beyond-time-frame predicting (Figure 3.3b).  In Time Frame 2, 

the MYVI model was significantly better for both WTP and BTP, although the ranking of the 

MYPM model improved when it was used for predicting habitat beyond the time frame (Figure 

3.3c and d). 

The threshold-dependent evaluation procedure showed very similar patterns of model 

accuracy among the four models (Figure 3.3e-h; note the reversed y-axes).  The major difference 

from the threshold-independent evaluation was found when the models developed in Time Frame 

1 were used for predicting habitat in Time Frame 2.  While the MYPM model was the best in 

terms of AUC values, the SYVI and MYVI models were as good as the MYPM model in terms of 

MPA values (Figure 3.3b and f). 
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Figure 3.3. Box plots of the area under the receiver operating characteristics curve (AUC) and 

the minimal predicted area (MPA) for the panda habitat models developed with four different 

land surface phenology variable sets (SYVI, MYVI, SYPM and MYPM in Table 3.1) in two time 

frames (t1 and t2).  The AUC and the MPA values were calculated from 20 variants of each 

habitat model when the model was developed in t1 and used to predict habitat in t1 [(a) and (e)] 
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and t2 [(b) and (f)], as well as developed in t2 and used to predict habitat in t2 [(c) and (g)] and 

t1 [(d) and (h)].  Each box plot shows the maximum, 75th percentile, median, 25th percentile 

and minimum values.  Note that y‐axes for the MPA are reversed since lower MPA values 

indicate higher model accuracies.  The letters above box plots indicate the results of pair‐wise 

comparisons conducted using paired t‐tests.  The alphabetical order shows the order of model 

accuracy from high to low.  There is no significant difference (p > 0.05 after the Holm–

Bonferroni adjustment) between two models if they share the same letter. 

 
Model transferability 

Single-direction and overall transferability indices indicated different transferability 

among the four habitat models.  The MYPM model had the highest values of all three 

transferability indices (Figure 3.4), indicating it was the most transferable among the four models 

in terms of model accuracy.  Results of the two-way ANOVA showed that both the variable type 

and length of original time series data had significant main effects on model transferability 

(Table 3.2).  The models developed with phenology metrics were more transferable than those 

with time series WDRVI, and the models developed with the variables derived from multi-year 

data had higher transferability than those with the variables from single-year data (Table 3.2). 

Comparing the two single-direction transferability indices indicated that model 

transferability was also different between transferring directions (Figure 3.4a and b).  All models 

were less transferable from Time Frame 2 to Time Frame 1 than in the opposite direction (Figure 

3.4a and b).  Although the variable type and data length had the same effects on transferability in 

both transferring directions, their relative magnitudes were different.  While the variable type 
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was more influential on TIt1→t2, the data length was more influential on TIt2→t1 (Figure 3.4a 

and b). 

Regarding the match between spatial patterns of WTP and BTP, significant differences in 

the agreement coefficients (AC) and the proportions of systematic disagreement (PSD) were 

found among models (Figure 3.5).  For both time frames, the habitat maps produced by the 

MYPM model showed the most similar spatial patterns, indicated by both the highest agreement 

in predicted panda presence probabilities (i.e., highest AC) and the highest proportion of 

disagreement that can be captured by a linear regression (i.e., highest PSD; Figure 3.5).  This 

indicates that the MYPM was the most transferable among the four models in terms of the spatial 

patterns of model predictions. 

Land surface phenology variable type and length of original time series both had 

significant effects on AC and PSD values (Table 3.3).  Using the variables derived from multi-

year data as predictors increased both AC and PSD values.  Significant interaction effects on 

PSD (Table 3.3) indicated that the effect of data length was more influential on the models based 

on phenology metrics (Figure 3.5c and d). 

The variable type affected AC and PSD differently.  While using phenology metrics as 

predictors increased the agreement in the pixel values of habitat maps (i.e., AC), it reduced the 

proportions of systematic disagreement in habitat predictions (i.e., PSD; Table 3.3).  However, 

the significant interaction effects on PSD (Table 3.3) indicated that the negative effect of 

phenology metrics was not influential when multi-year data were used to generate the metrics 

(Figure 3.5c and d). 
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Figure 3.4. Mean values of the single‐direction and overall transferability indices for the four habitat models.  These models were 

developed with either a time series of WDRVI (VI) or phenology metrics (PM), which were derived from either single‐year (SY) or 

multi‐year (MY) MODIS data.  The indices were calculated from 20 variants of each habitat model for evaluating: (a) the ability of the 

model developed in Time Frame 1 (t1) to predict panda habitat in Time Frame 2 (t2), (b) the ability of the model developed in t2 to 

predict habitat in t1, and (c) the overall ability of the model to predict habitat beyond time frames.  The error bars indicate 2 

standard errors from the mean.  The lines do not imply any linear relationship, but are shown just for helping visualise value 

differences. 
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Table 3.2. Analyses of variance on the effects of variable type (Type) and the length of original time series data (Length), as well as 

their interaction effects (Type × Length) on the single‐direction and overall transferability indices calculated for the habitat models 

developed with different land surface phenology variables. 

    TI t1→t2
 

  TI t2→t1
 

  TI overall 

    Difference 
* 

F‐value  p‐value    Difference 
* 

F‐value  p‐value    Difference 
* 

F‐value  p‐value 

Type    PM > VI  22.3  < 10
‐3
    PM > VI  313.2  < 10

‐12
    PM > VI  238.7  < 10

‐11
 

Length    MY > SY  113.2  < 10
‐8
    MY > SY  101.0  < 10

‐8
    MY > SY  42.9  < 10

‐5
 

Type ×Length      2.9  0.11      12.2  0.002      14.0  0.002 

* 
PM: phenology metrics; VI: a time series of WDRVI values; MY: multi‐year data; SY: single‐year data 
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Figure 3.5. Mean values of agreement coefficients (AC) and the proportions of systematic 

disagreement (PSD) for the four habitat models.  These models were developed with either a 

time series of WDRVI (VI) or phenology metrics (PM), which were derived from either single‐

year (SY) or multi‐year (MY) MODIS data.  The values of AC and PSD were calculated between 

the maps generated from within‐ and beyond‐time‐frame predictions for the panda habitat in 

Time Frame 1 ((a) and (c), respectively) and in Time Frame 2 ((b) and (d), respectively).  The 

error bars indicate 2 standard errors from the mean.  The lines do not imply any linear 

relationship, but are shown just for helping visualise value differences. 
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Table 3.3. Analyses of variance on the effects of variable type (Type) and the length of original time series data (Length), as well as 

their interaction effects (Type × Length) on agreement coefficients (AC) and proportions of systematic disagreement (PSD), which 

were calculated from within‐ and beyond‐time‐frame predictions of panda habitat in the two time frames. 

    Time Frame 1    Time Frame 2 

    Difference 
*  F‐value  p‐value    Difference 

*  F‐value  p‐value 

AC                 

Type    PM > VI  282.5  < 10‐
12
    PM > VI  192.8  < 10

‐10
 

Length    MY > SY  339.6  < 10
‐12

    MY > SY  218.4  < 10
‐11

 

Type × Length      6.64  0.018      0.14  0.717 

PSD                 

Type    VI > PM  220.7  < 10
‐11

    VI > PM  19.2  < 10
‐3
 

Length    MY > SY  365.1  < 10
‐13

    MY > SY  2079.6  < 10
‐16

 

Type × Length      552.7  < 10
‐14

      72.5  < 10
‐7
 

* 
PM: phenology metrics; VI: a time series of WDRVI values; MY: multi‐year data; SY: single‐year data
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Discussion 

Model transferability is an important characteristic of empirical habitat models when they 

are used beyond the area and time in which they were originally developed.  Diverse factors may 

affect spatial or temporal transferability of habitat models, such as the environmental variability 

of species habitat captured by field data (Bamford et al. 2009; Phillips 2008; Thuiller et al. 2004), 

relevance of predictor variables for describing underlying processes affecting species distribution, 

especially for those that vary across space or over time (Vanreusel et al. 2007; Zharikov et al. 

2009), the ability of modelling methods to capture species-environment relationships (Araújo et 

al. 2005; Randin et al. 2006), and consistency of the relationships across space (Zanini et al. 

2009) and time (Pearson and Dawson 2003).  By controlling other factors, such as focusing on a 

single species, using the same field data for model development and validation, and using the 

same modelling algorithm, we showed that the methods for generating predictor variables, in 

particular from remotely sensed data, has significant effects on model transferability. 

 

Effects of variable type on model transferability 

Panda habitat models developed with phenology metrics, especially when they were 

generated using multi-year data, exhibited higher temporal transferability than those developed 

with time series of WDRVI in terms of both model accuracy and the spatial match in model 

predictions.  The advantage of using phenology metrics as predictor variables on model 

transferability may be related to the reduction of (1) model complexity and (2) multicollinearity 

among variables.   

Our results showed that the models developed with time series of WDRVI had more 

complex structure than the models with phenology metrics.  More complex models have a higher 



 

78 
 

chance of over-fitting the training data, and thus to lose the ability of capturing general 

relationships between species occurrence and predictor variables and lose their transferability 

(Araújo and Guisan 2006; Randin et al. 2006).  Therefore, the lower risk of over-fitting caused 

by less complex models may be a probable reason for the higher transferability of the models 

developed with phenology metrics.  

In addition, the models developed in Time Frame 2 tended to be more complex than Time 

Frame 1 models.  We also found that temporal transferability was lower and the effects of 

variable type were stronger when the models were applied from Time Frame 2 to Time Frame 1.  

The lower transferability of Time Frame 2 models may be due to an incomplete environmental 

range of panda habitat captured by field data (Thuiller et al. 2004), since the panda presence data 

were collected only in high quality habitat within Time Frame 2.  However, the relationships 

among higher model complexity, lower transferability, and stronger effects of variable type for 

Time Frame 2 models suggest that the lower transferability could also be attributed to higher 

over-fitting risks caused by more complex Time Frame 2 models, and using phenology metrics 

in a habitat model can reduce these risks and thus increase its transferability.  

In regression models, multicollinearity influences the estimation of coefficients and their 

standard errors, affects significance tests on the coefficients, changes model structure, and thus 

reduces the robustness of the established species-environment relationships in habitat models 

(Graham 2003; Mac Nally 2000).  Although no significance tests on coefficients are involved in 

model development of non-regression-based modelling approaches such as decision trees (Berk 

2006) or Maxent, models developed with these approaches may not be completely free of 

multicollinearity problems (Mac Nally 2000).  When models are used for predicting species 

habitats for different areas or time periods, spatially or temporally inconsistent correlations 
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among predictor variables may reduce the predictive ability of the established species-

environment relationships, even if they were determined with statistically robust approaches.  

Therefore, multicollinearity reduction by using phenology metrics may also be the reason for 

their positive effects on model transferability. 

Although several approaches can be used to reduce over-fitting and multicollinearity, 

they are not suitable for the habitat models developed with land surface phenology variables.  

For instance, one common approach is to remove highly correlated variables based on their 

biological importance for the species of interest (Graham 2003).  However, for a time series of 

remotely sensed data representing land surface phenology, all variables are highly correlated 

(e.g., the lowest correlation coefficient was 0.73 in this study).  Therefore, even if only two 

variables are selected from the time series, multicollinearity may still exist.  In addition, with the 

selection of fewer variables, less information on land surface phenology can be represented.  

Principal component analyses are also commonly used for solving multicollinearity and 

over-fitting problems (Aguilera et al. 2006; Graham 2003), and are useful in models predicting 

habitat within the same area and time frame corresponding to model development (e.g., Viña et 

al. 2010).  However, the combinations of predictor variables in principal components are data-

dependent and thus subject to change through time (Schowengerdt 2007).  As variable values 

change over time, the inconstancy of principal components may limit their utility for predicting 

habitat beyond the time frame of model development.  Fixed combinations of variables, like the 

Tasselled-cap transformation commonly used in digital image processing of remotely sensed 

imagery (Schowengerdt 2007), may be useful for predicting habitat changes over time.  However, 

finding general and meaningful tasselled-cap components that reflect the underlying processes 

determining habitat quality and driving its change is quite challenging. 
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Effects of time series length on model transferability 

Our results showed that length of original time series data had significant effects on both 

model accuracy and transferability.  The models developed with variables derived from multi-

year remotely sensed data had higher accuracy for both within- and beyond-time-frame 

predictions and had higher temporal transferability than those with variables derived from single-

year data.  The major advantage of using multi-year data is in smoothing inter-annual variability 

of the biophysical and phenological characteristics of the vegetation caused by inter-annual 

climatic fluctuations (Ichii et al. 2002), which may not reflect real habitat changes.  For example, 

while higher vegetation index values in one year may correspond to higher temperatures (Ichii et 

al. 2002), this may not indicate long-term changes in the quality of panda habitat.  Thus, a habitat 

model that uses land surface phenology variables derived from single-year data may be affected 

by the particularities of that year and thus lose its temporal transferability.  In addition, different 

plant species may have different responses to inter-annual fluctuations of climatic conditions, 

which may cause more non-systematic disagreements in habitat predictions of the models with 

variables derived from single-year data. 

High sensitivity to inter-annual variability of vegetation characteristics is not specific to 

models developed with land surface phenology variables.  Any model using remotely sensed data 

to reflect vegetation information may have the same problem when used for studying temporal 

dynamics of species habitat.  While average values of climatic variables over several years are 

commonly used in habitat models to reflect long-term climatic conditions, variables derived from 

single-year remotely sensed data or even a single image are often used in habitat models (e.g., 

Zimmermann et al. 2007), mostly due to limited availability of remotely sensed data.  While 

incorporating remote sensing variables into habitat models can improve model accuracy for the 
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time period corresponding to model development (Zimmermann et al. 2007), predicting species 

habitat across time frames and using these results to monitor habitat dynamics should be done 

with caution.  As some high temporal resolution remotely sensed data (e.g., MODIS data) and 

multi-temporal data of median spatial resolution (e.g., Landsat TM, ETM, ALOS) are becoming 

increasingly available, variables derived from multi-season and multi-year data appear to be 

more appropriate for monitoring temporal dynamics of species habitat at broader spatial and 

longer temporal scales. 

 

Usefulness of land surface phenology for mapping and monitoring species habitats 

Our study showed that land surface phenology is useful for characterising giant panda 

habitat and also monitoring its temporal dynamics.  Forest cover, understory bamboo, 

topography, and human disturbances are the most important documented determinants of panda 

habitat (Bearer et al. 2008; Liu et al. 2001).  Land surface phenology not only reflects different 

land cover types and their dynamics (Beck et al. 2006; de Beurs and Henebry 2004), but it also 

reflects the characteristics of understory bamboo occurring under the forest canopy (Tuanmu et 

al. 2010; Viña et al. 2008).  In addition, human disturbances on panda habitat are usually 

associated with land cover or vegetation change (Bearer et al. 2008; Liu et al. 2001).  Therefore, 

besides capturing the characteristics of vegetation that is suitable for the giant panda (Viña et al. 

2008; Viña et al. 2010), land surface phenology may also capture its temporal dynamics due to 

human disturbances.  While previous studies have found the usefulness of land surface 

phenology for detecting vegetation changes due to human and natural disturbances (Eklundh et 

al. 2009; Koltunov et al. 2009), this study showed that changes in land surface phenology could 

be directly linked to changes in wildlife habitat through the use of habitat models. 
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However, the usefulness of different land surface phenology variables depends on their 

application.  Since the habitat model developed with a time series of WDRVI derived from 

multi-year MODIS data (i.e., MYVI model) can produce the most accurate habitat maps in the 

time frame when the model was developed, it is a good tool for evaluating the habitat conditions 

in that particular time frame (e.g., Viña et al. 2010).  Alternatively, the model developed with 

multi-year phenology metrics (i.e., MYPM model) reduced the problem of multicollinearity and 

the risk of over-fitting, and thus it appears to be the best in terms of temporal transferability.  

Therefore, the MYPM model constitutes a suitable tool for monitoring the temporal dynamics of 

giant panda habitat and providing essential information for the conservation of the species.   

Under changing environments, monitoring the temporal dynamics of species habitats at 

regional or global scales is essential for reducing biodiversity loss and maintaining sustainable 

ecosystem services (Balmford et al. 2003; Lengyel et al. 2008; Pereira and Cooper 2006).  

Combining remote sensing and habitat modelling provides a practical and efficient tool for 

monitoring temporal dynamics of biodiversity and species habitats at different spatial and 

temporal scales (Lengyel et al. 2008; Pereira and Cooper 2006).  In particular, land surface 

phenology has been found to be sensitive to vegetation changes due to short-term human and 

natural disturbances (Eklundh et al. 2009; Koltunov et al. 2009) and long-term climate changes 

(Morisette et al. 2009; Zhang et al. 2004).  Phenology-based models have also been successfully 

applied to predicting species habitat at different spatial scales (Morisette et al. 2006; Tuanmu et 

al. 2010; Viña et al. 2010).  Therefore, the combination of land surface phenology and habitat 

modelling constitutes an excellent tool for biodiversity conservation under changing 

environments. 
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Although we used giant panda habitat in Wolong Nature Reserve as a case study, the 

approaches and conservation implications of this study can go beyond this specific species, 

geographical area and spatial scale.  Previous studies have shown considerable variability in 

model transferability among species (Randin et al. 2006).  The direct causes indicated in this 

study underlying the differences in transferability among models (i.e., model complexity, 

multicollinearity among variables, and relevance of variables to habitat quality and its change) 

have also been reported in other studies (Mac Nally 2000; Peterson et al. 2007; Randin et al. 

2006; Vanreusel et al. 2007; Zharikov et al. 2009).  Therefore, we believe that the suggestions 

provided for increasing model transferability (i.e., using phenology metrics and multi-year 

remotely sensed data) can be generally applied for modelling the habitat of many other species in 

different geographical settings.  This is important, since model transferability cannot be directly 

evaluated for many species, particularly endangered species, due to low availability of field data 

collected over multiple years.  In such cases, habitat models developed using remotely sensed 

data may still be useful for habitat monitoring if the suggestions provided in this study are taken 

into consideration. 
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Abstract 

Conflicts between local people’s livelihoods and conservation goals have led to many 

failures of conservation practices and created a debate between establishing strict protected areas 

and improving local people’s livelihoods.  Here we show that an incentive-based conservation 

instrument which encourages active participation of local people in natural resource management 

may provide a solution for the debate.  Our empirical and spatially explicit assessment indicates 

the effectiveness of the instrument at conserving giant panda habitat and shows a positive 

contribution of local engagement to a panda habitat recovery, which has reversed a more-than-

30-year trend of panda habitat degradation in a world-renowned nature reserve.  This study 

suggests that the implementation of this nationwide conservation program may achieve a greater 

overall benefit to ecosystems and their services by encouraging local engagement through 

economic incentives and social norms.  It also provides implications for solving people – park 

conflicts not only in China, but around the world. 

 

Introduction 

The establishment of protected areas has long been the leading instrument for protecting 

biodiversity and ecosystem services worldwide (Millennium Ecosystem Assessment 2005; 

Naughton-Treves et al. 2005).  However, by limiting or entirely excluding human access to 

natural resources without sufficient respect for local people’s right to use natural resources, this 

“fences-and-fines” strategy has caused negative social and economic impacts on the people 

living in and around protected areas (Adams et al. 2004; McShane et al. 2011).  Since more lands 

and seas are being covered by protected areas in response to the crisis of global biodiversity loss 

(Butchart et al. 2010) and both human population and resource demand are growing (Millennium 
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Ecosystem Assessment 2005), the conflicts between natural resource exploitation and 

conservation are getting more serious. 

In response to these conflicts, along with a paradigm shift from viewing humans 

separately from nature to viewing humans as an important component in coupled human and 

natural systems (Berkes 2004; Liu et al. 2007), people-oriented conservation is rapidly becoming 

popular.  By providing alternative livelihood options that cause less pressure on biodiversity and 

lead to sustainable use of natural resources (e.g., agroforestry and ecotourism), community-based 

conservation programs, including integrated conservation and development projects (ICDPs), 

have been developed to reduce resource-depleting activities (Berkes 2004; Kremen et al. 1994).  

Furthermore, programs of payments for ecosystem services (PES) provide direct incentives for 

local people to reduce resource extraction and even actively participate in conservation by 

compensating the costs of forgone livelihoods (Ferraro and Kiss 2002; Pattanayak et al. 2010).  

While these people-oriented instruments are intended to simultaneously protect biodiversity and 

sustain human livelihoods, their effects on natural resource conservation have been mixed 

(Andersson and Gibson 2007; Hughes and Flintan 2001; Pattanayak et al. 2010).  The mixed 

effectiveness has resulted in a call for stricter management of protected areas and has provoked 

the heated “park vs. people” debate (Miller et al. 2011). 

This debate is particularly relevant to China, one of the most biodiverse and populous 

countries in the world (Liu 2010).  In response to biodiversity loss, the number and the spatial 

coverage of protected areas in China have increased exponentially since the 1980s (Liu and 

Raven 2010).  While conventional “fences-and-fines” and top-down management is prevalent 

among these protected areas (Liu and Diamond 2008), the livelihoods of tens of millions of poor 

rural people living in and around protected areas are negatively affected (An et al. 2001; Xu and 
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Melick 2007).  Without adequate consideration of local people’s dependency on natural 

resources and potential people – park conflicts, failures in biodiversity conservation are common 

in China’s protected areas, even in flagship protected areas (Liu et al. 2001). 

At the end of the last century, the Chinese government implemented one of the largest 

PES-like policies in the world, the Natural Forest Conservation Program (NFCP), to protect and 

restore natural forests through logging bans and afforestation (Liu et al. 2008).  NFCP provides 

payments to forest enterprises and local governments to compensate their economic losses due to 

a shift from timber harvesting to afforestation and forest management.  With NFCP payments, 

ca. 0.7 million former logging and timber-processing workers have retired, obtained jobs in other 

economic sectors, or been hired for tree plantation and forest monitoring (Yin and Yin 2010).  

Since the implementation of NFCP in 1998, a considerable amount of natural forest has been 

protected and many new forested areas have been created (Liu et al. 2008; Yin and Yin 2010).  

While this is believed to be beneficial for biodiversity conservation (Liu et al. 2008; Loucks et al. 

2001), it is unclear whether, and to what extent, the increase in forest cover translates into 

improved habitats for forest species.  It is also unclear whether this PES-like program can be a 

solution for improving conservation in many protected areas. 

To address the issues raised above, it is essential to conduct rigorous empirical 

assessments that disentangle the effects of one instrument from the effects of other instruments 

and confounding factors (Andersson and Gibson 2007; Pattanayak et al. 2010).   In this study, we 

conducted the first empirical and spatially explicit assessment of the effectiveness of NFCP in 

conserving the habitat of one of the most endangered species (the giant panda; Ailuropoda 

melanoleuca) in a world-renowned protected area (Wolong Nature Reserve).  Our assessment 

showed an improvement of panda habitat after the NFCP implementation, which reversed a 
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more-than-30-year habitat degradation trend observed in the reserve (Liu et al. 2001).  After 

controlling for confounding factors, our assessment also suggests that an innovative NFCP 

implementation, which encourages active participation of local residents in forest monitoring, is 

particularly effective at protecting panda habitat.  These findings not only have implications for 

the NFCP implementation and panda conservation in China, but also for the “park vs. people” 

debate on biodiversity conservation around the world. 

 

Materials and Methods 

NFCP implementation in Wolong Nature Reserve 

The Natural Forest Conservation Program has been implemented in the reserve since 

2000.  While in most of China NFCP only involves state-owned forestry enterprises and local 

governments (Liu et al. 2008), in Wolong Nature Reserve it involves both the local government 

and local residents.  Approximately one third of the total NFCP monitoring area (ca. 400 out of 

1,200 km
2
) is assigned to ca. 250 household groups of various sizes (ranging from 1 to 16 

households per group) for monitoring activities, and the remaining area is monitored by 

government officials (Figure 4.1).  Each participating household in Wolong and Gengda receives 

an annual payment of ca. US$110 (ca. 8% of household income in 2001) for monitoring an 

assigned forest parcel, while the households in Sanjiang receive about half of that amount.  All 

households within a monitoring group suffer payment reductions as punishment for any 

anthropogenic damage found in their co-monitored forest parcel.  The differences in monitoring 

types (i.e., household vs. government monitoring) and payment levels make this reserve an 

excellent place to examine how different NFCP implementations affect conservation outcomes. 
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Figure 4.1. Spatial patterns of giant panda habitat change from 2001 to 2007 in Wolong Nature 

Reserve, China.  Changes in habitat suitability index (HSI) were calculated from the outputs of 

the panda habitat model built with multi‐year phenology metrics in Chapter 3.  The locations of 

households and household‐monitored forest parcels in the three townships (Gengda, Wolong 

and Sanjiang) comprising the reserve are also shown. 
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Spatiotemporal dynamics of panda habitat 

We used a satellite-based habitat model to obtain the values of panda habitat suitability 

index (HSI ranging from 0 to 1 with higher values indicating higher suitability) in 2001 and 2007 

for each pixel (250×250 m) across the study area.  The habitat model was built based on panda 

feces locations obtained during a field survey in 2001 and land surface phenology metrics 

derived from a time series of remotely sensed imagery acquired by the Moderate Resolution 

Imaging Spectroradiometer (MODIS) during multiple years (i.e., 2001 – 2003; Chapter 3).  This 

model is particularly useful for monitoring changes in panda habitat as it captures information on 

the distribution of the most important determinants of panda habitat (i.e., forest cover and 

understory bamboo) and exhibits high accuracy at estimating HSI values across the study area 

[area under the receiver operating characteristic curve (AUC) is 0.853 and 0.855 for 2001 and 

2007, respectively].  Details on the data, the metrics, and the modeling and validation approaches 

are reported in Chapter 3 and Tuanmu et al. (2011). 

We calculated HSI change (i.e., 2007 value minus 2001 value) for each pixel across the 

study area.  We also estimated the areal change in suitable habitat in the entire reserve by 

applying a threshold to convert continuous HSI values into binary outcomes (habitat or non-

habitat).   We used a threshold corresponding to a 10% omission error.  While commission errors 

are, in general, negatively related to omission errors, we did not explicitly consider commission 

errors because only confirmed presence data (i.e., locations of panda feces) were available for 

model evaluation.  To assess the effect of choosing different thresholds on results, we also 

calculated habitat areas using thresholds corresponding to 5 and 15% omission errors. 
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Effects of NFCP implementation 

To analyze the effects of NFCP on the spatiotemporal dynamics of panda habitat, we 

used regression models to spatially relate observed HSI changes with different NFCP 

implementations (i.e., government monitoring or household monitoring with high or low NFCP 

payments; Table 4.1) at the pixel level.  To control for potential confounding effects, we 

included in the models several biophysical and anthropogenic factors (Table 4.1), which have 

been found important for determining the spatial patterns and temporal dynamics of panda 

habitat in the reserve (Bearer et al. 2008; He et al. 2009; Liu et al. 1999; Viña et al. 2011).  We 

also included the HSI values in 2001 to account for the potential dependency of HSI changes on 

initial values.  Information on the data and processing approaches to obtain these factors is 

provided in Table 4.1. 

We randomly selected 3,000 pixels (ca. 15%) from the study area below the tree line (i.e., 

3,600m in elevation) for generating regression models because the area above the tree line does 

not constitute giant panda habitat (Schaller et al. 1985).  Using the ordinary least squares (OLS) 

method, we generated a regression model with HSI change being the dependent variable and the 

above mentioned being the independent variables (standardized prior to model generation) to 

access the partial effect of NFCP monitoring types (i.e., government monitoring vs. household 

monitoring) on panda habitat change (Model 1 in Table 4.2).  To account for spatial 

autocorrelation among pixels, we also generated spatial simultaneous autoregressive lag and 

error models (Model 2 and 3, respectively, in Table 4.2).  We defined a spatial weights matrix 

for the lag and error models by considering a pixel as a neighbor of another pixel if the Euclidean 

distance between them is shorter than the range in the variogram of the residuals from the OLS 

model.  Finally, to further examine the effect of monitoring types under different payment levels 
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(i.e., higher payments in Wolong and Gengda and lower payments in Sanjiang), we correlated 

HSI changes to four different implementation methods (2 monitoring types × 2 payment levels; 

Model 4 in Table 4.2).  We conducted all statistical analyses using R (R Development Core 

Team 2011) with the packages “car”, “gstat” and “spdep”. 
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Table 4.1. Independent variables included in regression models that relate the changes in panda habitat suitability index (HSI) with 

the NFCP implementation and other biophysical and anthropogenic factors. 

Variable Unit Description 

HSI_2001 unitless value of habitat suitability index (ranging from 0 to 1) in 2001 for each pixel (250 × 250m) of 

the HSI map (HSI pixel) 

FC_2001 % percentage of forested pixels (30 × 30m) of a binary forest cover map [derived from a 2001 

Landsat TM image (Viña et al. 2007)] within the surrounding eight pixels of each HSI pixel 

Elevation m average of elevation over the pixels (90 × 90m) of a digital elevation model from the Shuttle 

Radar Topography Mission (DEM pixel; Farr et al. 2007) within each HSI pixel 

Roughness m standard deviation of elevation over the DEM pixels within each HSI pixel 

Aspect_north degree deviation from north (0 – 180°) 

Aspect_east degree deviation from east (0 – 180°) 

CTI m
2
/radian Compound Topographic Index, a function of both the slope and the upstream contributing area 

per unit width orthigonal to the flow direction (Moore et al. 1993) 

Dist2Household m Euclidean distance from each HSI pixel to the nearest household 

Dist2Road m the nearest Euclidean distance from each HSI pixel to paved roads 

Monitoring dummy NFCP monitoring type (household monitoring vs. government monitoring) 

Monitoring × Payment dummy two monitoring types × two payment levels (high payment vs. low payment) 
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Table 4.2. Summary of regression models that relate the changes in panda habitat suitability 

index (HSI) with a set of independent variables. 

Variable Standardized Coefficient (standard error) 

Model 1  –  
OLS 

Model 2  –  
Lag 

Model 3  –  
Error 

Model 4  –  
Error 

HSI_2001 -0.0731
***

 
(0.0027) 

-0.0650
*** 

(0.0029) 
-0.0947

***
 

(0.0031) 
-0.0951

***
 

(0.0032) 

FC_2001  0.0186
***

 
(0.0024) 

 0.0170
***

 
(0.0023) 

 0.0215
***

 
(0.0029) 

 0.0216
***

 
(0.0029) 

Elevation -0.0475
***

 
(0.0029) 

-0.0369
***

 
(0.0030) 

-0.0374
***

 
(0.0045) 

-0.0416
***

 
(0.0046) 

Roughness -0.0049
*
 

(0.0023) 
-0.0043

* 
(0.0022) 

-0.0027 
(0.0024) 

-0.0032 
(0.0024) 

Aspect_north  0.0088
***

 
(0.0021) 

 0.0092
***

 
(0.0021) 

 0.0129
***

 
(0.0023) 

 0.0131
***

 
(0.0023) 

Aspect_east 0.0038 
(0.0023) 

0.0019 
(0.0022) 

-0.0020 
(0.0023) 

-0.0022 
(0.0023) 

CTI -0.0076
***

 
(0.0023) 

-0.0052
* 

(0.0022) 
-0.0045

*
 

(0.0021) 
-0.0053

*
 

(0.0021) 

Dist2Household -0.0076
**

 
(0.0029) 

-0.0019 
(0.0029) 

-0.0183
*
 

(0.0074) 
-0.0199

**
 

(0.0071) 

Dist2Road -0.0067
*
 

(0.0026) 
-0.0065

*
 

(0.0025) 

-0.0085 
(0.0069) 

 0.0008 
(0.0072) 
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Table 4.2. (Continued)   

Variable Standardized Coefficient (standard error) 

Model 1  –  
OLS 

Model 2  –  
Lag 

Model 3  –  
Error 

Model 4  –  
Error 

Monitoring     

     Government 0.0184
***

 
(0.0029) 

0.0065
*
 

(0.0029) 
0.0184

**
 

(0.0065) 

 

     Household 0.0424
***

 
(0.0039) 

0.0297
***

 
(0.0038) 

0.0411
*** 

(0.0074) 

 

Monitoring × Payment     

     Government – High     0.0271
***

 
(0.0076) 

     Household – High     0.0539
***

 
(0.0083) 

     Government – Low     -0.0023 
(0.0107) 

     Household – Low      0.0033 
(0.0151) 

Auto-regressive Term   0.4418
***

 
(0.0289) 

 0.6776
***

 
(0.0251) 

0.6616
***

 
(0.0259) 

Moran’s I of residuals  0.1737
***

  0.0544
***

  0.0131 -0.0121 

AIC -4583 -4770 -4995 -5000 
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Results 

From 2001 to 2007, the average HSI values increased ca. 6.7% (from 0.210 to 0.224) 

across the entire reserve, and increased ca. 7.1% (from 0.366 to 0.392) under the tree line.  The 

area of suitable habitat increased ca. 3.4% (from 686 to 709 km
2
) during the same period.   

Choosing different thresholds affected the magnitude, but not the trend, of panda habitat change 

since the habitat area increased ca. 2.4% and 5.9% with thresholds corresponding to 5% and 15% 

omission errors, respectively.  However, considerable spatial heterogeneity of the HSI changes 

was observed across the reserve.  For example, larger HSI increases occurred near human 

settlements in Wolong and Genda townships, while large HSI decreases occurred in the north of 

Sanjiang (Figure 4.1). 

To understand what factors affected the spatial heterogeneity, HSI changes were 

correlated with several biophysical and anthropogenic factors, as well as different forest 

monitoring types, in a pixel-wise OLS regression model (Model 1 in Table 4.2) with an adjusted 

R
2
 equal to 0.26.  A score test for non-constant variance (χ

2
 = 1.29, df = 1, p = 0.26) and an 

examination of variance inflation factors (< 3 for all independent variables) conducted using the 

R package “car” (Fox and Weisberg 2011) indicated no heteroscedasticity or multicollinearity 

problems.  The significant Moran’s I for model residuals (Table 4.2) indicates the need to 

account for spatial autocorrelation.  The autoregressive terms were significant in both lag and 

error models, but significant Moran’s I for the residuals of the lag model and the smaller Akaike 

Information Criterion value for the error model (Table 4.2) suggest that the error model (Model 3) 

better controls for the spatial autocorrelation.   
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  The error model showed that several biophysical and anthropogenic factors are 

significantly correlated with HSI changes (Table 4.2).  Better panda habitat improvement tended 

to occur in areas located in south-facing slopes, at lower elevations, with lower Compound 

Topographic Index values, surrounded by forests, and closer to local households (Table 4.2).  As 

expected, there was a negative relationship between HSI changes and starting HSI values (i.e., in 

2001) because pixels with higher values had less room to increase.  While significantly positive 

coefficients for both monitoring types (Table 4.2) suggest an overall improvement of panda 

habitat in the reserve, the significant difference between the two coefficients indicates a better 

habitat recovery within household-monitored areas than within government-monitored areas 

(Figure 4.2a).  However, the significant effect of household monitoring was only observed under 

the higher, but not the lower payment level (Model 4 in Table 2 and Figure 4.2b). 

 

 

Figure 4.2. Effects of the implementation of the Natural Forest Conservation Program (NFCP) on 

giant panda habitat change in Wolong Nature Reserve, China.  Boxplots show the partial 

residuals [controlling for biophysical and anthropogenic factors (Table 4.1)] for two different 

NFCP monitoring types [government‐ (red) vs. household‐monitoring (blue)].  Plotted values are 

the residuals of the full model plus the partial predicted values (black lines) in the entire study 
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area (a) and under two different NFCP payment levels (b).  Results of Student’s t‐tests on the 

difference between monitoring types are shown (* p < 0.05; N.S. p > 0.05). 

 

Discussion 

To the best of our knowledge, this study is the first empirical and spatially explicit 

assessment of the effect of NFCP implementation on the habitat dynamics of an endangered 

species.  Our results showed an overall improvement of panda habitat in Wolong Nature Reserve 

after the NFCP implementation.  This reversed a trend of continuous habitat loss and degradation 

since the 1960s (Liu et al. 2001; Viña et al. 2007), and thus suggests a positive contribution of 

NFCP implementation to panda habitat recovery. 

As expected, several biophysical and anthropogenic factors affected the spatial patterns 

of panda habitat change.  The positive effect of surrounding forest cover on panda habitat 

recovery not only reflects the important roles of forest cover in affecting bamboo growth and 

distribution and in constituting panda habitat (Schaller et al. 1985), but also suggests that forest 

regeneration could be an important underlying process of the habitat recovery.  Higher 

vegetation regeneration rates associated with higher temperature and solar radiation may explain 

the larger HSI increases observed on south-facing slopes at lower elevations.  Since the 

Compound Topographic Index is highly correlated with several physical and chemical attributes 

of soils (Moore et al. 1993), its significant relationship with HSI changes suggests the influence 

of soil attributes on vegetation regeneration and in turn on panda habitat recovery.  Our 

regression models also indicated better habitat recovery in areas closer to local households, 

where higher intensity of human activities is expected (He et al. 2009).  This suggests that human 
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activities involving resource exploitation may be diminishing after the NFCP implementation, 

and are thus inducing a net beneficial effect on panda habitat. 

Comparing panda habitat suitability before vs. after NFCP implementation alone cannot 

totally rule out the potential effects of other temporally variable factors (e.g., changes in 

socioeconomic conditions of local households and other conservation instruments implemented 

simultaneously with the NFCP).  However, by correlating spatial heterogeneity of the observed 

habitat dynamics with NFCP implementation, our regression models indicated a significantly 

positive effect of NFCP monitoring, especially household monitoring, on panda habitat.  This 

suggests that NFCP implementation, particularly with an active engagement of local residents, is 

at least one of the major reasons for the panda habitat recovery.  In addition, some other 

conservation policies may not contribute as much as NFCP to panda habitat recovery.  For 

example, the Grain-to-Green Program (GTGP), which provides local farmers with cash or grain 

subsidies to encourage a conversion of cropland on steep slopes into forest or grassland (Liu et 

al. 2008; Yin and Yin 2010), has also been implemented in the reserve since 2000.  However, its 

direct contribution to panda habitat recovery is negligible because GTGP-enrolled croplands 

only cover a small portion of the reserve [ca. 367 ha (Wolong Nature Reserve 2005) and < 0.2% 

of the entire reserve], and the tree seedlings and saplings planted cannot provide suitable panda 

habitat within the 7-year timeframe of this assessment (Bearer et al. 2008).  Finally, since human 

population increased ca. 6% and the number of households increased ca. 23% in the three 

townships between 2001 and 2007 (Wenchuan Statistics Bureau 2008), an expected increase in 

resource consumption during the same period (Liu et al. 2003a) cannot explain the observed 

panda habitat recovery. 
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While further studies are warranted to understand the mechanisms behind the 

effectiveness of the innovative implementation of NFCP, two reasons may explain its 

conservation effectiveness over the previous “fences-and-fines” strategies.  First, the direct 

payments to local residents compensate the costs of forgoing resource-depleting activities and 

thus may create stronger conservation incentives (Engel et al. 2008; Ferraro and Kiss 2002).  The 

association between the stronger effect of household monitoring on panda habitat recovery and 

the higher payment level indicates the important role of the payments in determining NFCP’s 

effectiveness, and implies that NFCP benefits panda conservation when the associated payments 

are high enough to create conservation incentives (Engel et al. 2008).  Besides creating 

incentives, the payments may also encourage electricity purchases and thus reduce the 

dependency of local residents on fuelwood as an energy source (An et al. 2002).  Second, the 

shared responsibility for forest monitoring and sanctions among households in a monitoring 

group may enhance rule compliance through social norms (Chen et al. 2009; Dietz et al. 2003).  

Thus, people may fulfill their monitoring duties to avoid payment reductions that could harm 

their social relations with other members of the same monitoring group.  People may also avoid 

causing damage on the parcels monitored by other groups if they do not want to harm their social 

relations with the people in those groups.  

Although biodiversity conservation is not a main aim of NFCP, this study empirically 

shows that NFCP is effective in conserving the habitat of an endangered species, in addition to 

protecting forests and soils (Liu et al. 2008), and even better effectiveness can be achieved by 

engaging local residents in forest monitoring with direct payments.  Since in most of China local 

residents do not directly participate in NFCP implementation (Yin and Yin 2010), a greater 

overall benefit to ecosystems and their services could be achieved if the successful experience of 



 

101 
 

incentive-based and local-engaged NFCP implementation can be spread to other places.  

However, while our study suggests that this instrument is more effective than reserve 

establishment, higher conservation effectiveness and efficiency may be achieved by 

implementing both strategies.  For instance, the costs of monitoring local people’s compliance 

and conservation outcomes under PES programs may be reduced if the resident monitoring is 

combined with regular patrols by reserve officials.  The regulations applied in protected areas 

may also reduce the expected benefits from non-compliance and thus increase incentives to 

participate in PES programs (Engel et al. 2008).  Therefore, the incentive-based and local-

engaged instrument should not be used as a substitution for, but a complement to, reserve 

establishment.  Complementary instruments that pursue resource conservation but explicitly 

incorporate human needs (e.g., the combination of PES, decentralized management, logging ban 

and reserve regulations) may offer a potential solution to the “park vs. people” debate. 
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Abstract 

Climate change is one of the most serious threats to global ecosystems because of its 

significant impacts not only on the survival of individual species, but also on their ecological 

functions.  Understory plant species play important roles in forest ecosystems by regulating 

forest succession and structure, facilitating nutrient and energy cycling, and supplying shelter 

and food resources for many wildlife species.  However, studies on the effects of climate change 

on understory plants, particularly on their role as a food resource for wildlife species, are scarce 

in the literature.  Here we report the first quantitative and comprehensive climate change impact 

assessment for understory bamboo species and their trophically dependent giant pandas 

(Ailuropoda melanoleuca).  An ensemble of projected changes in bamboo distribution associated 

with multiple climate change projections and bamboo dispersal scenarios indicates a substantial 

reduction in the distributional ranges of three dominant bamboo species in the Qinling 

Mountains, China during the 21st century.  As these three species comprise almost the entire diet 

of the panda population in the region, the projected changes in bamboo distribution suggest a 

potentially dangerous shortage of food for this population.  This study underscores the 

importance of incorporating inter-specific cascading effects of climate change into impact 

assessments and associated conservation planning. 

 

Introduction 

Global climate change is one of the most serious threats that human society faces in the 

21st century.  Not only human well-being, but also ecosystems and biodiversity have been and 

will be further influenced by climate change (IPCC 2007).  Observations around the world have 

shown that the altered climate is impacting natural systems in many ways and the impacts are 
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across biological taxa, ecosystem types, and geographic regions (Parmesan 2006; Parmesan and 

Yohe 2003; Root et al. 2003).  Among other impacts, climate change-induced shifts in species’ 

distributional ranges have been observed (Chen et al. 2011; Parmesan 2006; Root et al. 2003) 

and been projected (Araújo et al. 2006; Bakkenes et al. 2002; La Sorte and Jetz 2010) for many 

species.  Changes in species distributional ranges may not only cause extinction of individual 

species and populations, but also result in changes in the structure of biological communities and 

properties and function of ecosystems (Parmesan 2006).  Thus they pose a particular challenge to 

biodiversity conservation (Coetzee et al. 2009; Hannah et al. 2002; Heller and Zavaleta 2009).   

Understory vegetation plays an important role in forest ecosystems by regulating forest 

structure, maintaining ecological functions, and sustaining biodiversity (Gilliam 2007; Hagar 

2007).  Like many understory plants, understory bamboo species are also an essential component 

in many forest ecosystems (Griscom and Ashton 2003; Taylor et al. 2004).  They not only 

influence species composition and structural complexity of forests (Griscom and Ashton 2003; 

Taylor et al. 2004), but also provide essential food resources for diverse wildlife species, 

including one of the most endangered species in the world, the giant panda (Pan et al. 2001; 

Schaller et al. 1985).  While deforestation and forest degradation are threatening the survival of 

about half of all bamboo species worldwide (including many understory species) (Bystriakova 

and Kapos 2006), climate change may present an additional significant threat.  Bamboo species 

are particularly vulnerable to climate change because their unusual extended sexual reproduction 

intervals (from 10 to 120 years) (Janzen 1976) render them less capable of adapting to the 

rapidly changing climate projected to occur within this century (IPCC 2007).  However, 

knowledge of climate change-induced dynamics of bamboo distribution and cascading effects on 
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other species is limited.  This leaves an important knowledge gap of particular significance for 

biodiversity conservation efforts. 

Understory bamboo is one of the most important components of giant panda habitat 

because pandas are extreme dietary specialists who devote most of their active time feeding on 

large amounts of bamboo (up to 38 kg/day) to compensate their poor ability to digest cellulose 

(Pan et al. 2001; Schaller et al. 1985).  The dependency of giant pandas on understory bamboo 

not only affects current panda distribution (Bearer et al. 2008; Liu et al. 2005b; Reid et al. 1989), 

but is also believed to have driven historical changes in panda distribution as bamboo 

distributions shifted in response to climate fluctuations (Pan et al. 2001; Schaller et al. 1985).  

Therefore, the close relationship between bamboo species and giant pandas provides an excellent 

opportunity to address the knowledge gap on the impacts of climate change on understory plants 

and their cascading effects on trophically dependent wildlife species. 

The main goal of this study was to quantitatively assess the potential impacts of climate 

change on bamboo distribution, with an emphasis on the cascading effects on giant panda habitat.  

With a focus on three bamboo species dominating the forest understory in the Qinling Mountains 

region (i.e., Qinling arrow, dragon-head and wooden), this study investigated the potential 

changes in climatically suitable areas for the three bamboo species under projected climate 

change, and evaluated the cascading effects of these changes on the spatiotemporal dynamics of 

the amount and distribution of giant panda habitat.  The assessment may not only provide 

essential information for giant panda conservation in the face of climate change, but also address 

the knowledge gap on the cascading effects of climate change through inter-specific interactions. 
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Materials and Methods 

Field data 

To collect bamboo presence data, we established 293 field plots (ca. 300 m
2
) across the 

Qinling Mountains and geo-referenced the center of each plot using a Global Positioning System 

(GPS) receiver in 2005, 2007 and 2008.  Field plots were established in diverse types of forest 

(including broadleaf deciduous, coniferous and mixed primary and secondary forests, as well as 

in tree plantations) and within an elevation range from 1,000 to 3,000 m, which roughly covers 

the elevational range of the distributions of the three bamboo species studied and the giant 

pandas in this region (Pan et al. 2001; State Forestry Administration 2006).  We recorded the 

presence of Qinling arrow, dragon-head, and wooden bamboos in 86, 40, and 79 plots, 

respectively. 

 

Baseline climate conditions 

We obtained gridded climate data from the WorldClim database 

(http://www.worldclim.org/; Hijmans et al. 2005) as a representation of the baseline climate 

conditions.  The WorldClim dataset was generated using a thin plate spline scheme that 

considers longitude, latitude and elevation [obtained from the Shuttle Radar Topography Mission 

(SRTM; http://www2.jpl.nasa.gov/srtm/)] to interpolate observations of monthly mean, 

maximum, and minimum temperature and monthly total precipitation for 1950 – 2000 from 

weather stations worldwide to a 30 arc-second resolution grid (Hijmans et al. 2005).  The dataset 

additionally includes 19 biologically meaningful (i.e., bioclimatic) variables (e.g., mean diurnal 

temperature, mean temperature in the warmest month and precipitation seasonality), derived 

from the monthly temperature and precipitation gridded fields. 
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Future climate projections 

We obtained gridded projections of bioclimatic variables from the database of the 

International Center for Tropical Agriculture (CIAT; http://ccafs-

climate.org/download_sres.html).  The projected values are derived from monthly temperature 

and precipitation gridded fields downscaled from several general circulation models (GCMs; 

Supplementary Table 5.1) for the third (TAR) and fourth assessment reports (AR4) of the 

Intergovernmental Panel on Climate Change (IPCC 2001, 2007) under SRES A2 and B2 

greenhouse gas emissions scenarios.  Differences in monthly temperature fields and ratios of the 

precipitation fields between GCM simulations for a reference periods (1961 – 1990) and a future 

time slice (e.g., 2040 – 2069) were calculated for each GCM grid point.  The differences (or 

ratios) were interpolated by using the thin plate spline approach to the 30 arc-second grid used by 

the WorldClim and then were added to (or multiplied by) the climatological fields in the 

WorldClim database. 

 

Bioclimatic models 

We used the maximum entropy modeling (Maxent; Phillips et al. 2006) to generate 

bioclimatic models for characterizing and mapping climatically suitable areas (CSAs) for each 

bamboo species.  Maxent is a machine-learning and niche-based approach for establishing the 

relationship between geographic locations of species occurrence and corresponding 

environmental conditions, and for mapping the spatial distribution of suitable habitat for the 

species based on the species-environment relationship (Phillips et al. 2006; Phillips and Dudík 

2008).  This modeling approach estimates the probability of species presence (or habitat 

suitability) across space, given the spatially continuous values of environmental variables, by 
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finding the most evenly distributed probabilities (i.e., with the maximum entropy) as constrained 

by the distribution of values of environmental variables associated with species presence 

locations.  Because it is practically impossible to confirm absence of bamboo species within an 

area of ca. 1 km
2
 (the grid size of the climate data and the spatial unit of our bioclimatic models), 

the requirement of presence-only data makes maximum entropy modeling one of the most 

suitable approaches for this study. 

To generate bioclimatic models, we selected seven bioclimatic variables (Table 5.2) that 

were: (1) statistically important for fitting the bamboo presence data, (2) biologically important 

for the three bamboo species, and (3) less correlated with each other.  For this, we selected 

statistically important variables based on the results of a jackknife analysis.  In this analysis, we 

compared the accuracy of the model built using all 19 variables with models built with each 

individual variable, and with models built with all but each one of the variables.  Higher 

accuracy of a single-variable model indicates that the variable in question contains more useful 

information for modeling bamboo distribution, while a larger reduction of accuracy of a leave-

one-out model indicates that the omitted variable contains more unique information.  Using the 

values of 50,000 randomly selected pixels (~14% of total pixels in the study area), we calculated 

pair-wise Pearson’s correlation coefficients to identify highly correlated variables.  For the 

variables that were statistically important but highly correlated with others, our choice of which 

variables to retain was based on observational and experimental studies on the influence of 

climate conditions on bamboo species (Li 1997; Qin et al. 1993). 
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Table 5.1.  General circulation models (GCMs) from which downscaled future climate projections were obtained.  GCMs from the 

IPCC Third Assessment were used for evaluating temporal dynamics of bamboo distribution and panda habitat over the 21st century.  

The other models are from the IPCC Fourth Assessment and were used to better capture uncertainty introduced by different GCMs. 

GCM Center SRES 
Scenarios 

Time Periods of 

Downscaled Data
†
 

IPCC 

Assessment
# 

BCCR-BCM2 Bjerknes Centre for Climate Research, Norway A2 2050s AR4 

CCSR/NIES Center for Climate System Research, Japan 

National Institute for Environmental Studies, Japan 

A2 & B2 2020s, 2050s & 
2080s 

TAR 

CGCM2 Canadian Center for Climate Modelling and 
Analysis, Canada 

A2 & B2 2020s, 2050s & 
2080s 

TAR 

CGCM3.1 (T47) Canadian Center for Climate Modelling and 
Analysis, Canada 

A2 2050s AR4 

CGCM3.1 (T63) Canadian Center for Climate Modelling and 
Analysis, Canada 

A2 2050s AR4 

CNRM-CM3 Centre National de Recherches Meteorologiques, 
France 

A2 2050s AR4 

CSIRO-Mk2 Commonwealth Scientific and Industrial Research 
Organisation, Australia 

A2 & B2 2020s, 2050s & 
2080s 

TAR 

CSIRO-Mk3.0 Commonwealth Scientific and Industrial Research 
Organisation, Australia 

A2 2050s AR4 
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Table 5.1.  (Continued) 

†
 2020s: 2010 – 2039; 2050s: 2040 – 2069; 2080s: 2070 – 2099 

#
 TAR: IPCC Third Assessment Report; AR4: IPCC Fourth Assessment Report 

GCM Center SRES 
Scenarios 

Time Periods of 

Downscaled Data
†
 

IPCC 

Assessment
# 

ECHO-G Meteorological Institute, University of Bonn, 
Germany 

Meteorological Research Institute of KMA, Korea 

Model and Data Group at MPI-M, Germany 

A2 2050s AR4 

FGOALS-g1.0 Institute of Atmospheric Physics, China A2 2050s AR4 

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory, USA A2 2050s AR4 

GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory, USA A2 2050s AR4 

GISS-AOM Goddard Institute for Space Studies, USA A2 2050s AR4 

HadCM3 Hadley Centre for Climate Prediction and Research, 
UK 

A2 & B2 2020s, 2050s & 
2080s 

TAR 

IPSL-CM4 Institut Pierre Simon Laplace, France A2 2050s AR4 

MIROC3.2 (hires) National Institute for Environmental Studies, Japan A2 2050s AR4 

MIROC3.2 
(medres) 

National Institute for Environmental Studies, Japan A2 2050s AR4 

MRI-CGCM2.3.2 Meteorological Research Institute, Japan A2 2050s AR4 

PCM National Centre for Atmospheric Research, USA A2 2050s AR4 
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Table 5.2.  Bioclimatic variables used in the final bioclimatic models for the three bamboo species studied. 

WorldClim Code Name Description 

Bio2 Mean Diurnal Range Average of the differences between monthly maximum and 

minimum temperatures 

Bio4 Temperature Seasonality Standard deviation of monthly mean temperatures 

Bio10 Mean Temperature of Warmest Quarter Average of the mean temperatures in the warmest three months 

Bio11 Mean Temperature of Coldest Quarter Average of the mean temperatures in the coldest three months 

Bio15 Precipitation Seasonality Coefficient of variation of monthly total precipitations × 100 

Bio18 Precipitation of Warmest Quarter Total precipitation in the warmest three months 

Bio19 Precipitation of Coldest Quarter Total precipitation in the coldest three months 
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We randomly selected 70% of the presence data of each bamboo species for model 

development and used the remaining 30% for validation.  To account for the uncertainty in the 

model structure introduced by potential biases in data partitioning, we generated 10 bioclimatic 

models for each species using 10 different data partitions.  The variation among the results of the 

10 models may also partially reflect the uncertainty associated with potentially incomplete and 

biased observations of bamboo presence in the field.  We used the receiver operating 

characteristic (ROC) curve analysis (Fielding and Bell 1997) for model validation and calculated 

the area under the ROC curve (AUC) to measure model accuracy.  While an AUC value of 1 

indicates a perfect prediction, a value of 0.5 indicates a random prediction (Hanley and Mcneil 

1982).  As suggested for the application on presence-only models (Phillips et al. 2006), we 

calculated AUC values by contrasting presence pixels against those randomly selected from the 

study area (i.e., background pixels).  We selected 10,000 background pixels within the 

elevational range of the distributions of the three bamboo species (i.e., 900 – 3,000 m) (Pan et al. 

2001) for the ROC analysis.  We then calculated average AUC values over the 10 models for 

each bamboo species.   

 

Climatically suitable areas for bamboo species 

Using the bioclimatic models and the bioclimatic variables under the baseline climate, we 

mapped the spatial distributions of baseline climatically suitable areas (CSAs) across the study 

area for each bamboo species.  For the output of each bioclimatic model, we used a threshold 

corresponding to a 10% omission error for converting the continuous presence probabilities into 

binary values (i.e., suitable vs. non-suitable).  We determined thresholds based on omission 

errors only because we were limited to presence-only validation data.  Therefore, without 
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controlling for commission errors, the output binary maps may overestimate the extent of CSAs 

for the three bamboo species.   

Using the bioclimatic models and the bioclimatic variables under the projected future 

climate, we then projected future distributions of CSAs for the three bamboo species.  We 

examined temporal dynamics of the CSAs over the 21th century using the climate projections 

from four IPCC TAR GCMs (Table 5.1) for the SRES A2 and B2 greenhouse gas emissions 

scenarios because fine-resolution downscaled climate projections are readily available for three 

time slices (2010 – 2039, 2040 – 2069 and 2070 – 2099) for these models.  To better capture the 

uncertainty introduced by different GCMs, we also incorporated projections from 15 IPCC AR4 

GCMs (Table 5.1) that had been downscaled to a fine resolution using the same methods as 

applied to the IPCC TAR GCMs, although available only for the time slice of 2040 – 2069 under 

the SRES A2 scenario. 

 

Extent of giant panda habitat 

We defined giant panda habitat areas as those projected to be occupied by any of the 

three bamboo species studied.  We generated occupation maps for each of the bamboo species 

based on the CSA maps and on two bamboo dispersal scenarios: unlimited dispersal and no 

dispersal.  Under the unlimited dispersal scenario, all pixels within the future CSAs projected by 

the bioclimatic models were considered to be occupied.  Under the no dispersal scenario, only 

the projected future CSAs of a bamboo species that overlap with its baseline CSAs were 

considered to be occupied. 

To calculate the area of panda habitat, we counted the number of pixels that were 

projected to be occupied by at least one bamboo species for every possible combination of the 



 

114 
 

projections of occupied CSAs for each bamboo species (10×10×10 bioclimatic models × 2 

dispersal scenarios).  This calculation is based on the assumption that the occurrence of at least 

one of the three bamboo species is sufficient for providing food for the pandas.  Since the 

presence of bamboo is a necessary but not sufficient habitat condition for the panda, this 

assumption may lead to an overestimation of habitat amount.  We calculated the habitat area 

under the baseline climate and under each future climate projection for the different time slices 

[4 (or 15) GCMs × 2 (or 1) greenhouse gas emissions scenarios × 3 (or 1) time slices].  We then 

reported the projected change in the habitat area as a percentage relative to the baseline.   

 

Results 

Using bioclimatic models to associate bamboo presence locations recorded in the field 

with bioclimatic variables, we characterized and mapped current suitable climate conditions for 

each of the three bamboo species (Figure 5.1). The predicted spatial patterns of the climatically 

suitable areas (CSAs) effectively captured the observed bamboo presence locations according to 

model accuracy evaluations.  The average AUC values (0.98, 0.96 and 0.97 for Qinling arrow, 

dragon-head and wooden bamboos, respectively) indicated good model performance on 

capturing the observed presence locations of the three bamboo species.  The spatial patterns were 

also consistent with our understanding of the current distribution of understory bamboo (i.e., 

Qinling arrow and wooden bamboos are distributed from 1,800 m to 3,000 m, and from 900 m to 

1,900 m, respectively, with the distribution of dragon-head bamboo overlapping between 1,100 

and 2,300 m; Figure 5.2) (Pan et al. 2001; State Forestry Administration 2006). 
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Figure 5.1. Location of the study area relative to current giant panda distributional range and 

the baseline climatically suitable areas (CSAs) for the three bamboo species studied.  Blue, red, 

and green colors indicate the CSAs for Qinling arrow, dragon‐head, and wooden bamboos, 

respectively, based on the bioclimatic models under the baseline climate.  The mixtures of the 

three colors indicate overlaps of the CSAs for individual species.  The brightness of colors shows 

the number of bioclimatic models (among the 10 models with different presence data 

partitions) predicting pixels as suitable for each species, with brighter colors indicating a larger 

number of models.   
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Figure 5.2. Projected elevational distributions of the climatically suitable areas (CSAs) for the 

three bamboo species studied.  The elevation values were obtained for pixels which were 

projected to be climatically suitable for the wooden (a and d), dragon‐head (b and e), and 

Qinling arrow bamboo (c and f) by at least one of 10 bioclimatic models with future climate 

projections for three time slices in the 21th century from four IPCC TAR GCMs (Table 5.1) under 

the SRES A2 (a – c) and B2 (d – f) greenhouse gas emissions scenarios.  Each box plot shows the 

maximum, 75th percentile, median, 25th percentile, and minimum values.  The grey zone on 

the background shows the inter‐quartile range (75th percentile – 25th percentile) of elevation 

for the baseline CSAs (the CSAs under the baseline climate).  The white line within the grey zone 

indicates median values and black dashed lines indicate the maximum and minimum values of 

elevation for the baseline CSAs. 
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The projections of our bioclimatic models under the climate projections from the four 

IPCC TAR GCMs show substantial changes in the CSAs during the 21st century with 

considerable differences among GCMs (Figure 5.3).  Areas in the north and northwest of the 

Qinling Mountains become climatically suitable for the three bamboo species under some 

climate projections, especially for the lower-elevation species, i.e., the wooden bamboo (Figure 

5.3).  However, within the Qinling Mountains region, our projections suggest that the CSAs shift 

to, and become restricted at, higher elevations (Figure 5.2).  These projected northward and 

upward shifts are consistent with observations and simulations for many other species worldwide 

(Chen et al. 2011; IPCC 2007; Parmesan 2006; Skov and Svenning 2004).  The projected CSAs 

under the climate projections from the 15 IPCC AR4 GCMs also indicate large GCM-introduced 

uncertainty about the extent and spatial distribution of CSAs of the three bamboo species (Figure 

5.4).  However, compared to the CSA projections associated with the TAR GCMs (Figure 5.3), 

those associated with the newer GCMs show a higher degree of consensus since all of them 

indicate a reduction of CSA extent (Figure 5.4). 
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Figure 5.3. Projected future distributions of climatically suitable areas (CSAs) for the three 

bamboo species studied under the climate projections from four IPCC TAR GCMs (Table 5.1) for 

three time slices under SRES A2 and B2 greenhouse gas emissions scenarios.  Blue, red, and 

green colors indicate the CSAs for the Qinling arrow, dragon‐head, and wooden bamboos, 

respectively.  See the legend of Figure 5.1 for the detailed information on the color 

representation. 
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Figure 5.3. (Continued) 

 

The substantial changes in CSAs for bamboo species, in turn, result in drastic panda 

habitat changes.  Our assessment suggests that almost the entire panda habitat in the region 

disappears by the end of the 21st century (80 – 100% projected decreases in median area) if 

bamboo species are not able to colonize new CSAs beyond their current distributional ranges 

(Figure 5.5b and d).  With unlimited bamboo dispersal ability, a considerable amount of panda 

habitat is projected to persist over the entire century, but only if future climate is closer to the 

projections from two of the four GCMs (CSIRO-Mk2 and HadCM3), and then only with a lower 

greenhouse gas emissions scenario (SRES B2; Figure 5.5a and c).  All panda habitat projections 

based on the downscaled projections from the 15 IPCC AR4 GCMs show substantial habitat 

losses (59 – 100% projected decreases in median area), with about half of the projections 
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indicating an almost complete loss, by the middle of this century under both bamboo dispersal 

scenarios (Figure 5.6).  Compared with the habitat projections derived from the IPCC TAR 

GCMs, those associated with the AR4 GCMs, including those obtained from newer versions of 

TAR GCMs (CSIRO-Mk3.0 vs. CSIRO-Mk2 and CGCM3.1 vs. CGCM2), indicate more drastic 

losses of panda habitat (Figure 5.6).  This comparison suggests that the projected habitat 

expansion associated with two of the older GCMs (CSIRO-Mk2 and HadCM3; Figure 5.5) may 

be overly optimistic (Figure 5.6a). 

  



 

121 
 

 

 

Figure 5.4. Projected future distributions of climatically suitable areas (CSAs) for the three 

bamboo species studied under the climate projections from 15 IPCC AR4 GCMs.  The climate 

projections were from the GCMs (Table 5.1): (a) BCCR‐BCM2, (b) CGCM3.1 (T47), (c) CGCM3.1 

(T63), (d) CNRM‐CM3, (e) CSIRO‐Mk3.0, (f) ECHO‐G, (g) FGOALS‐g1.0, (h) GFDL‐CM2.0, (i) GFDL‐

CM2.1, (j) GISS‐AOM, (k) IPSL‐CM4, (l) MIROC3.2 (hires), (m) MIROC3.2 (medres), (n) MRI‐

CGCM2.3.2, and (o) PCM for the time slice of 2040 – 2069 under the SRES A2 greenhouse gas 

emissions scenarios.  See the legend of Figure 5.1 for the detailed information on the color 

representation. 
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Figure 5.5. Temporal dynamics of the projected changes in the area of giant panda habitat over 

the 21st century.  The changes (%) are relative to the area of panda habitat (climatically suitable 

areas for the three bamboo studied combined) under the baseline climate.  The projected 

values were obtained from 1,000 combinations of the bioclimatic models for the three bamboo 

species (10 models for each species) under the unlimited (a and c) and no (b and d) bamboo 

dispersal scenarios and under multiple future climate projections for three time slices from four 

IPCC TAR GCMs (Supplementary Table S1) under the SRES A2 (a and b) and B2 (c and d) 

greenhouse gas emissions scenarios.  The points indicate median values of the projections from 

the 1,000 projections, and the vertical bars indicate the range of projected values.  
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Figure 5.6. GCM‐related uncertainty of projected changes in giant panda habitat area for the time slice of 2040 – 2069 under the 

SRES A2 greenhouse gas emissions scenario.  The percent changes are relative to the area of panda habitat (climatically suitable 

areas for the three bamboo studied combined) under the baseline climate.  The projected values were obtained from 1,000 

combinations of the bioclimatic models for the three bamboo species (10 models for each species) under the unlimited (a) and no (b) 

bamboo dispersal scenarios and under multiple future climate projections from four IPCC TAR and 15 AR4 GCMs (Table 5.1).  Each 

boxplot shows the maximum, 75th percentile, median, 25th percentile and minimum of the projected values.  A: BCCR‐BCM2; B: 

CCSR/NIES; C: CGCM2; D: CGCM3.1(T47); E: CGCM3.1(T63); F: CNRM‐CM3; G: CSIRO‐Mk2; H: CSIRO‐MK3.0; I: ECHO‐G; J: FGOALS‐

g1.0; K: GFDL‐CM2.0; L‐GFDL‐cm2.1; M: GISS‐AOM; N: HadCM3; O: IPSL‐CM4; P: MIROC3.2(hires); Q: MIROC3.2(medres); R: MRI‐

CGCM2.3.2; S: PCM.

G N M F  L H O B C  R K  J  D I  E  Q P A  S N G M H  F O L B  R C J  K  D E  I  Q P A  S 
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Discussion 

While repeated calls have been made to quantify the potential impacts of climate change 

on China’s biodiversity (Liu and Raven 2010; Ministry of Environmental Protection of China 

2010), this study provides the first quantitative and spatially explicit climate change impact 

assessment for understory bamboo and the trophically dependent giant panda.  Our ensemble of 

model projections indicated potential challenges for the conservation of the three bamboo species 

and thus the giant panda.  In the worst situations (in terms of the projected extent of bamboo 

distributional ranges and panda habitat) shown in our assessment, almost the entire region will 

become climatically unsuitable for the three bamboo species by the middle of this century 

(Figure 5.6).  As these species currently constitute almost the entire diet of giant pandas in this 

region (Pan et al. 2001), the pandas may face a shortage of food, unless they can find alternative 

food resources, an unlikely outcome because of the panda’s specific diet needs.  Although giant 

pandas have survived large area die-offs of single bamboo species by shifting their home ranges 

and foraging on non-affected bamboo species (Pan et al. 2001; Reid et al. 1989), they may face 

regional extinction if climate change, as projected by this study, induces simultaneous die-offs of 

multiple bamboo species.  Other bamboo species of the region, especially those currently 

growing at lower elevations (e.g., Phyllostachys sulphurea), might have the potential to occupy 

the areas currently dominated by the three species evaluated.  A concern is that low-elevation 

species may not be able to meet pandas’ needs mainly because of their thicker culms, which may 

reduce pandas’ forage efficiency (Tarou et al. 2005). 

Even under the most optimistic projections, the bamboos and pandas may still face 

substantial challenges due to climate change.  The climatically suitable areas (CSAs) for the 

three bamboo species, although still relatively large in extent, are distant from current bamboo 
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distributional ranges and panda habitat (Figure 5.3u and x), and lie outside of current protected 

areas (Figure 5.7).  With a long history of intense human activities surrounding the Qinling 

Mountains (e.g., Xi’an, at the northern foot of the Mountains, is a city with more than eight 

million people), keeping the projected CSAs from human disturbance, and maintaining or re-

establishing ecological connectivity among those areas will be difficult.  This fragmented 

landscape may thus hinder the range shifts of bamboos and pandas in response to climate change. 

 

 

Figure 5.7. Percentage of projected giant panda habitat within current nature reserves in the 

Qinling Mountains over the 21st century.  The extent of panda habitat was obtained by 

combining the occupied portions of the projected future climatically suitable areas for the 

Qinling arrow, dragon‐head, and wooden bamboo, under the unlimited bamboo dispersal 

scenario.  The percentages are associated with the panda habitat projections from 1,000 

combinations of the bioclimatic models for the three bamboo species (10 models for each 

species) under future climate projections from four IPCC TAR GCMs (Table 5.1) under the SRES 

A2 (a) and B2 (b) greenhouse gas emissions scenarios.  The points indicate the median values of 
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the 1,000 projections and the vertical bars indicate the maximum and minimum values.  The 

horizontal solid lines indicate the median values and dashed lines indicate the maximum and 

minimum values for the percentages under the baseline climate. 

 

As a global icon of biodiversity conservation, the giant panda has attracted unparallel 

conservation efforts and resources to reduce the loss and  degradation of its habitat due to land 

use/cover change (Liu et al. 2001).  Besides more than 60 nature reserves established specifically 

for panda conservation, recent implementation of national conservation programs (e.g., Natural 

Forest Conservation Program and Grain-to-Green Program) has halted and even reversed a trend 

of deforestation not  only within the panda distributional range (Viña et al. 2011) but in all of 

China (Liu et al. 2008).  While it is believed that these programs are beneficial to panda 

conservation (Chapter 4) because deforestation has been a major threat to both the panda (Liu et 

al. 2001; Pan et al. 2001) and bamboo species (Bystriakova and Kapos 2006) for decades, our 

assessment suggests that these benefits may be potentially compromised by climate change.  

Therefore, current conservation efforts may lose their effectiveness if they do not explicitly 

address potential impacts of climate change.  Besides proactive and adaptive conservation 

strategies for protecting current and projected habitat, and maintaining habitat connectivity 

(Heller and Zavaleta 2009), more aggressive actions, such as assisted colonization (Hoegh-

Guldberg et al. 2008) for bamboo and the panda, also need to be considered.  The success of 

captive breeding and ongoing re-introduction projects for giant pandas provide a good 

foundation for their assisted colonization.  However, there is an urgent need to better understand 

the risks and challenges associated with assisted colonization (Hoegh-Guldberg et al. 2008), and 

to increase their effectiveness as conservation tools in the face of climate change. 
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Like other assessments of potential climate change impacts on species distributions using 

bioclimatic models, the present study is based on many assumptions, which constitute sources of 

uncertainty in model projections (Araújo and Guisan 2006; Guisan and Thuiller 2005).  However, 

due to the particularities of this study, some assumptions are quite reasonable.  For example, 

bamboo species’ evolutionary adaptations to novel climatic regimes may occur at a much slower 

pace than the predicted climate changes because of their unusual extended sexual reproduction 

intervals [from several decades to more than one century (Janzen 1976)], making niche 

conservatism (Wiens and Graham 2005) a reasonable assumption for the species studied.  In 

addition, uncertainties due to other assumptions, including those associated with future climate 

projections and bamboo dispersal ability, have been captured, at least partially, by the projection 

ensemble. 

However, like all other climate change impact assessments, our projection ensemble 

cannot capture all potential uncertainties and may represent a narrower range of the full 

uncertainty (Winkler et al. 2011).  For example, our bioclimatic models did not account for many 

biotic and abiotic factors other than climate (e.g., soil types, canopy cover, interactions with 

other plant species) which also limit current bamboo distributions.  Omitting these factors may 

lead to an underestimation of climatically suitable areas (CSAs) because the bioclimatic models 

may not be able to capture the areas where other limiting factors cause the absence of the 

bamboo species even under suitable climate.  In contrast, the extent of projected future CSAs 

shown in this study may be overestimated without considering the influence of above-mentioned 

limiting factors on bamboos’ colonization.  However, some of these limiting factors (e.g., soil 

properties) may be climate dependent (Franzluebbers et al. 2001; McKenzie and Ryan 1999), 
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and thus part of their effects may be implicitly considered by the model through climate 

variability.   

Our definition of giant panda habitat in this study is based on two assumptions which are 

not captured by our projection ensemble and tend to cause an overestimation of the extent of 

panda habitat.  First, we assume that giant panda habitat is determined only by the presence of 

bamboo species.  Because giant pandas almost exclusively depend on bamboo species as food 

resources (Pan et al. 2001), bamboo availability is a necessary component of panda habitat.  

However, without the consideration of other factors [e.g., forest cover, human activities, and 

pandas’ climatic tolerance and dispersal ability (Liu et al. 2001; Pan et al. 2001)] which further 

limit panda distribution, this assumption may cause an overestimation of future giant panda 

habitat or an underestimation of panda habitat loss due to climate change.  The second 

assumption is that the presence of any one of the three bamboo species evaluated is sufficient to 

support the giant panda’s demand for food.  Therefore, without considering the spatial coverage 

and the amount of biomass of each bamboo species, our assessment tends to overestimate the 

area of panda habitat.  Furthermore, because the giant pandas in the Qinling Mountains currently 

forage different bamboo species in different seasons (Pan et al. 2001), a single bamboo species 

may not be able to sufficiently support giant pandas year round.  This may also cause an 

overestimation of projected panda habitat.  However, because the same models and assumptions 

were applied to predicting the baseline habitat and projecting the future habitat, the percent 

changes relative to the baseline, which we reported in this study, can cancel out some of the 

biases caused by the bioclimatic models and associated assumptions, as well as those caused by 

the future climate projections. 
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The implications of this study are broad and well beyond the specific case presented here.  

While we focused on understory bamboo as food for giant pandas, providing food resources for 

wildlife is just one of many ecological functions performed by understory bamboos (Griscom 

and Ashton 2003; Taylor et al. 2004) and by many other understory plants (Gilliam 2007; 

Nilsson and Wardle 2005).  Although several studies have observed and/or projected that climate 

change drives many species to shift their distributional ranges or go extinct in diverse ecosystems 

(Chen et al. 2011; IPCC 2007; Parmesan 2006; Skov and Svenning 2004), the cascading effects 

of these changes through inter-specific interactions, especially those across trophic levels (Van 

der Putten et al. 2010), are usually neglected.  This may result in an underestimation of the 

impacts of climate change on ecosystems and seriously compromise the benefits obtained from 

current biodiversity conservation efforts.  This study underscores the importance of incorporating 

these cascading effects not only in impact assessments but also in conservation planning in the 

face of climate change.   

 

  



 

130 
 

CHAPTER 6 

 

SYNTHESIS AND CONCLUSIONS 
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Summary 

As a global icon of biodiversity conservation and one of the most endangered and most 

beloved species around the world, the giant panda has attracted substantial conservation 

resources.  However, many previous efforts for conserving wild panda populations have had 

limited effectiveness and efficiency, partly due to lack of detailed information on the spatial 

patterns of panda habitat and their temporal dynamics under a changing environment.  To 

address these information gaps, in this dissertation I developed effective and practical 

approaches for obtaining detailed information on the distribution of pandas’ staple food (i.e., 

understory bamboo) across large geographic regions and on the dynamics of panda habitat over 

time.  I also investigated the effects of current conservation practices on the short-term panda 

habitat changes and the potential impacts of climate change on long-term habitat dynamics.  

These approaches and information substantially contribute to giant panda conservation. 

Using two dominant bamboo species in Wolong Nature Reserve, I showed that a 

combination of species distribution modeling and land surface phenology obtained from high 

temporal resolution remotely sensed data is a promising approach for providing detailed 

information on understory bamboo distribution across large geographic regions.  This approach 

has several improvements on mapping understory vegetation as compared to other methods.  Due 

to high availability of MODIS data in terms of areal cover and temporal resolution, this approach 

solves the problem of data limitation faced by many other methods.  Thus, it may be easily 

applied not only for mapping understory bamboo across large geographic areas, but also for 

monitoring its temporal changes.  In addition, while previous approaches focused on either a 

group of similar species or a single species, this approach has the ability to separate individual 

species.  Since different bamboo species contribute unequally to the diet of the giant panda in 
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different seasons, knowledge on the distribution of individual bamboo species is useful for better 

measuring panda habitat.  For example, it could be helpful for examining seasonal habitat use of 

the giant panda and for assessing the influence of species-specific dynamics of understory 

bamboo on panda habitat. 

Since land surface phenology obtained from MODIS data contains spatially and 

temporally continuous information on both forests and understory bamboo, which are important 

components of panda habitat, it is particularly useful for investigating the spatiotemporal 

dynamics of panda habitat.  Using Wolong Nature Reserve as a case study, I showed the 

usefulness of land surface phenology in a species distribution model (SDM) for monitoring 

temporal dynamics of panda habitat.  In addition, I also examined the effects of different 

predictor variables portraying land surface phenology on a model’s temporal transferability, 

which is an important, but often overlooked, characteristic of SDMs.  Taking these effects into 

consideration, a phenology-based habitat model constitutes a useful tool for measuring panda 

habitat conditions across space and time, identifying potential threats to panda habitat and 

populations, evaluating the effectiveness of current conservation practices, and guiding 

conservation planning.   

To demonstrate the applications of the phenology-based model to panda conservation, I 

evaluated the effectiveness of a conservation program by investigating the spatiotemporal 

dynamics of panda habitat from 2001 to 2007 in Wolong Nature Reserve.  Using spatial 

autoregressive models, I identified a significantly positive effect of the Natural Forest 

Conservation Program (NFCP) on the observed habitat improvement after controlling for 

confounding effects introduced by spatial autocorrelation and several biophysical (e.g., 

topography, forest cover and soil attributes) and anthropogenic factors (e.g., distance to local 
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household as a surrogate of human activity intensity).  Results of this study suggest that an 

innovative implementation of NFCP, which encourages active participation of local residents in 

forest monitoring by providing direct payments and enhancing social norms among households, 

is an effective instrument for panda habitat conservation.  Since local residents do not directly 

participate in the current implementation of NFCP in other places of China, better conservation 

of the giant panda and many other species could be achieved if the successful experience of 

engaging local residents with direct payments can be spread to other places. 

While the current conservation programs have effectively reduced the threats of land 

use/cover change to panda habitat, I showed that climate change may become the next major 

threat to the survival of the species.  Focusing on the food resources of the panda population in 

the Qinling Mountains region (i.e., three dominant understory bamboo species: Qinling arrow, 

dragon-head and wooden), an ensemble of panda habitat projections obtained from bioclimatic 

envelope models indicated a substantial loss of panda habitat due to a potential shortage of food 

under projected climate change in the 21st century.  These results indicate a potentially big 

challenge for giant panda conservation in the face of climate change.  Benefits from current 

conservation efforts (e.g., the improvement of panda habitat due to NFCP implementation) may 

be offset by climate-induced food shortages and habitat losses if the potential climate change 

impacts are not incorporated into conservation planning or addressed by proactive conservation 

practices.  In response to this potential threat, it is important to maintain and increase ecological 

connectivity not only among current habitat patches, but also among current and projected 

patches.  Due to unavoidable uncertainties associated with climate change impact assessments, 

adaptive conservation strategies should be developed so that they can be adjusted when 

uncertainties are resolved and/or new knowledge becomes available.  Finally, since almost all 
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suitable panda habitat was projected to disappear in the Qinling Mountains under the most 

pessimistic climate situation modeled, more aggressive actions, such as assisted colonization for 

bamboo and the panda, may need to be seriously considered.  While the success of captive 

breeding and ongoing re-introduction projects for giant pandas provide a good foundation for 

their assisted colonization, there is an urgent need to better understand the risks and challenges 

associated with this action. 

 

Conclusions 

The research described in this dissertation demonstrates the usefulness of species 

distribution modeling and remote sensing technology for providing detailed information on 

spatiotemporal dynamics of species habitat across large geographic regions and over long time 

periods.  This information is usually unavailable through traditional field surveys, but is crucial 

for effective and efficient conservation of species and their habitats, especially under the current 

rapidly changing environment.  Although the remote sensing and modeling approaches 

developed in this dissertation were applied to investigate the spatiotemporal dynamics of 

understory bamboo and panda habitat in China, they also have the potential to be applied to other 

species and geographic regions.  For example, many other understory plants, including some 

invasive species, also have substantial effects on the species compositions, structure and function 

of forest ecosystems, and may form dense understory layers which can cause detectable 

differences in land surface phenology.  Therefore, SDMs with land surface phenology variables 

may be applicable to investigating the spatiotemporal dynamics of those understory plants and 

the habitats of animal species which rely on them, and thus may provide essential information for 

better managing forest ecosystems and conserving forest biodiversity. 
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However, applications of land surface phenology for investigating species distribution 

and biodiversity patterns face some limitations.  For example, there is a trade-off between spatial 

and temporal resolutions of remotely sensed data.  To take the advantage of high temporal 

resolution imagery in portraying land surface phenology, a compromise of spatial resolutions is 

unavoidable.  Although the spatial resolution of MODIS data (250×250 m) is fine enough for 

large-scale habitat evaluations (e.g., range-wide evaluation) for many species, it may be too 

coarse to reveal habitat heterogeneity suitable for local-scale applications (e.g., studies on habitat 

selection of animal individuals).  Another limitation relating to MODIS data is the relatively 

short temporal depth (i.e., data are available after February, 2000).  Although the time series data 

acquired by the Advanced Very High Resolution Radiometer (AVHRR) make it possible to 

apply the approach to investigating species habitat back to the 1980s, the spatial resolution of 

AVHRR time series is even coarser than that of MODIS data.  Coarse spatial resolutions 

challenge the possibility of linking information on land surface phenology with biodiversity 

information obtained on the ground.  Further research on advanced remote sensing techniques, 

such as multi-sensor data fusion which combines information from high spatial resolution 

imagery with that from high temporal resolution data, may provide a solution for this limitation. 

Besides these technique limitations, further research is also needed for applying land 

surface phenology to biodiversity studies.  While land surface phenology has mostly been used 

for studying human-induced land use/cover changes and climate-related phenology dynamics of 

plant species, its use for investigating spatiotemporal dynamics of species habitat and 

biodiversity patterns has not received enough attention.  More studies are needed to further 

evaluate the usefulness of land surface phenology for detecting the distribution and 

characterizing the habitat of different species in different geographic settings.  In addition, 
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further studies are also needed to understand how the biophysical and phenological 

characteristics of individual plant species, as well as species assemblages, affect land surface 

phenology obtained from remotely sensed data, and to understand how different vegetation 

characteristics and plant species assemblages affect the habitat quality of animal species.  This 

knowledge will be useful for effectively extracting more detailed information relevant to 

biodiversity from land surface phenology.  

In addition to land surface phenology, information on many other vegetation 

characteristics and other environmental conditions (e.g., topography and climatic conditions) can 

also be obtained through remotely sensed data.  While most previous studies about remote 

detection of habitat dynamics focused on changes in land cover types, SDMs with satellite-

derived continuous variables have the potential for revealing more detailed habitat changes, even 

within a single land cover type.  This dissertation provides useful guidance for the integration of 

remote sensing technology and species distribution modeling with a focus on model 

transferability and algorithms for generating variables from high temporal resolution remotely 

sensed data.  However, further studies are needed to understand the influence of diverse satellite-

derived variables and modeling approaches on SDMs’ characteristics and their performance on 

characterizing species habitats and monitoring their temporal dynamics. 

Beyond the contribution in the development of tools for biodiversity research and 

conservation, this dissertation also has broad implications for biodiversity conservation.  First, 

this dissertation indicates the importance of viewing humans as one important component in 

coupled human and natural systems (CHANS) and encouraging active participation of local 

people for biodiversity conservation.  Conservation practices excluding human access to natural 

resources without sufficient respect for local people’s need for them may cause serious conflicts 
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between biodiversity conservation and local people’s livelihoods, and thus reduce the 

effectiveness of conservation efforts.  While this dissertation evaluated the effectiveness of a 

payment-for-ecosystem-services scheme for panda habitat conservation, further studies about the 

underlying mechanism of the effectiveness are warranted.  In addition, studies about effects of 

this conservation strategy on human systems and interactions between human and natural 

systems are also needed to provide comprehensive information for guiding policy making.  

Better understanding of the complexity of human-nature interactions under a CHANS framework 

is necessary for developing more effective and efficient conservation strategies. 

This dissertation also highlights the urgent need to consider the potential impacts of 

climate change on biodiversity conservation.  Without adjustments for potential changes in 

species distributions and biodiversity patterns under changed climates, current conservation 

strategies may lose their effectiveness in the future and conservation benefits obtained from them 

may be offset.  While information on the potential impacts of climate change is the foundation 

for developing conservation strategies in the face of climate change, SDMs have been widely 

used for assessing the impacts of climate change on species distribution and biodiversity patterns, 

and for informing conservation planning under a changed climate.  However, SDMs are usually 

criticized for establishing correlative, not causal, relationships between species distribution and 

climate conditions, being based on many assumptions whose validity is questionable (e.g., 

consistent and equilibrant species-climate relationships), and omitting important factors affecting 

species-climate relationships (e.g., biotic interactions among species and dispersal ability).  For 

example, this dissertation indicates that not only the survival of individual species (e.g., bamboo 

species), but also their ecological functions and their interactions with other species (e.g., 

providing food for giant pandas) are vulnerable to climate change.  Thus it underscores the 
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importance of incorporating cascading effects of climate change through inter-specific 

relationships into impact assessments and associated conservation planning. 

Although process-based dynamic models may have a better ability to reflect mechanistic 

influences of climate conditions on species and to incorporate relevant biological and ecological 

processes, the required knowledge for establishing such models is currently unavailable for most 

species on Earth.  Since developing conservation strategies to cope with climate change impacts 

cannot wait until all knowledge becomes available, SDMs provide practical alternatives for 

guiding conservation planning.  However, given the limitations of SDMs, especial caution 

should be taken when using information provided by them.  In particular, uncertainty about 

climate change impacts introduced by SDMs and associated assumptions should be taken into 

conservation.   

In conclusion, in the face of the current crisis of biodiversity loss, knowledge about the 

spatial patterns and temporal dynamics of species distributions are crucial for effective and 

efficient biodiversity conservation.  This dissertation makes substantial contributions to giant 

panda conservation by providing effective and practical approaches and essential information on 

the spatiotemporal dynamics of its habitat.  However, further basic and applied research is 

needed to foster understanding of the spatiotemporal dynamics of biodiversity and its underlying 

drivers, and to build links between scientific knowledge and real-world conservation under a 

changing environment. 
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