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ABSTRACT

THE EFFECT OF FITTING A UNIDIMENSIONAL IRT MODEL To

MULTIDIMENSIONAL DATA IN CONTENT-BALANCED COMPUTERIZED

ADAPTIVE TESTING

By

Tian Song

This study investigates the effect of fitting a unidimensional IRT model to

multidimensional data in content-balanced computerized adaptive testing (CAT).

Unconstrained CAT with the maximum information item selection method is chosen as

the baseline, and the performances of three content balancing procedures, the constrained

CAT (CCAT), the modified multinomial model (MMM), and the modified constrained

CAT (MCCAT), are evaluated in terms of measurement precision, item pool utilization

and item exposure control. Three simulation factors are considered: (1) multidimensional

structure; (2) ability distribution; and (3) difficulty level of content areas. Simulation

results Show that overall the content balancing methods are similar to or even better than

the maximum information method in terms of measurement precision, especially when

the content areas have uneven difficulty levels. However, there is no significant

difference in item pool usage and item exposure control. Finally, overall the three content

balancing methods perform very similarly, but MMM has the most efficient item pool

usage.
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Chapter 1

Introduction

Over the last few decades, interest in computerized adaptive testing (CAT) has grown

considerably. As an alternative to a conventional paper-and-pencil test, it uses a computer

to present test items and score responses. In CAT, each examinee is presented with an

individually tailored test. Generally, an adaptive test begins with an item with medium

difficulty. If the examinee answers it correctly, then he gets a more challenging item;

otherwise he gets an easier item. After each response, the examinee’s ability is estimated,

and the next item that is the most appropriate for the examinee is selected based on the

current ability estimate. This process continues until there is enough information to place

the person on the ability scale with a specified accuracy, or until a fixed number of items

have been administrated (Green, Bock, Humphreys, Linn & Reckase, 1984). A major

advantage of CAT is that it provides more efficient and precise ability or latent trait (0)

estimates (Weiss, 1982).

In the current CAT applications, however, there are also a number of challenging

issues, such as dimensionality (Green et al., 1984; Liu, 2007; Weiss & Suhadolnik, 1982),

content balancing (Kinsbury & Zara, 1991), and item overexposure (Chang & Ying, 1999;

Wainer, 2000). This study attempts to address the first two issues.

1.1 Dimensionality

Item response theory (IRT) is a family of mathematical models in which the

interactions of a person with test items can be adequately represented by a probabilistic



expression. It plays a central role in almost every aspect of CAT, such as item pool

calibration, item selection, and proficiency estimation.

Most IRT models assume that examinees’ responses to the items on a test can be

accounted for by a single latent trait (Lord, 1980). However, this assumption may rarely

hold since most sets of items are not strictly unidimensional and require multiple abilities

to obtain a correct response (Reckase, 1985). For example, a mathematical story problem

requires reading skills to transform word problem to equations as well as mathematical

knowledge to find a solution to the equations.

Due to their popularity and simplicity, most computerized adaptive testing programs

use unidimensional IRT models. However, when the unidimensionality assumption is

violated, the application of CAT could be seriously affected. If an item pool is composed

of items that require a complex of abilities to answer correctly, examinees may be

administrated different sets of items that measure completely different combinations of

skills. Weiss and Suhadolnik (1982) examined the robustness of adaptive testing to the

violation of the unidimensionality assumption. The authors used a factor analysis model

to generate multidimensional data and then performed unidimensional adaptive tests with

the maximum information. item selection strategy. The results showed that as

multidimensionality increased, the estimated ability parameters deviated more from their

true (first-factor) 0 values.

1.2 Content Balancing

Content balancing is a practical consideration in CAT. Unlike traditional paper-and-

pencil tests which are built on test blueprint or content specifications, adaptive tests do



not follow content specifications during item selection. Therefore, examinees may be

administrated different distribution of items by content area. For example, in a math test,

one examinee might receive a test consisting entirely of arithmetic items, and another

might receive a test entirely of geometry items. This lack of content comparability could

pose a threat to the validity of scores, and may not be acceptable to test takers and test

score users. In addition, in licensure and certification testing, if the items administered do

not cover all the content areas the test plan requires, it may bring legal challenges to the

test (Kinsbury and Zara, 1991).

Since Green et a1. (1984) first noted the need to content balance adaptive tests, a

number of procedures have been proposed to control the content specifications. Wainer

and Kiely (1987) suggested using testlets that are content balanced beforehand instead of

items; Kingsbury and Zara (1989) proposed a constrained CAT (CCAT) which selects the

most informative item from the content area farthest below its ideal administration

percentage; Chen and Ankenmann (2004) developed a modified multinomial model

(MMM) to satisfy the practical constraint of content balancing; and Leung, Chang and

Han (2000) proposed a modified constrained CAT (MCCAT) based on Kingsbury and

Zara’s method.

1.3 Purpose ofthe Study

The purpose of this study is to investigate, with control of content specifications, the

effect of fitting a unidimensional IRT model to multidimensional data in CAT.

Unconstrained CAT with the maximum information item selection method is considered



as the baseline, and the performances of three content balancing procedures, CCAT,

MMM, and MCCAT, are evaluated. Specifically, the research questions are:

(1) What is the effect of fitting a unidimensional IRT model to multidimensional data

in a content-balanced CAT? Does the estimation of ability become more or less

accurate when content balancing procedures are applied?

(2) Which content balancing procedure performs the best in terms of ability recovery,

item pool usage, and item exposure control?

The present study contributes to the literature in three important ways. First, the

robustness of CAT to the violation of unidimensionality assumption and content

balancing are jointly considered. Previous study by Ackerman (1991) investigated the

effects of fitting a unidimensional IRT model to two-dimensional data in an

unconstrained CAT. The results suggested that the estimated unidimensional

discrimination values increased when an item’s 61, 02 composite became similar to the

composite of the unidimensional calibrated 0 scale. These items thus had a greater chance

of being selected and administrated in an adaptive testing using the maximum-

information item selection strategy. The study also found that if a CAT item pool

consisted of items from several content areas measuring dissimilar 61, 62 composites,

examinees at different ability levels might receive different proportion of items from the

content areas. Since a balance across content areas is a requirement in practical CAT

programs, it is interesting to see how examinees’ proficiency would be recovered under

this practical constraint. Moreover, in previous literature, after we impose the content

constraint in the unidimensional CAT, the measurement precisions are found to be



comparable to the unconstrained maximum information method, with mean squared

errors (MSE) of 9 slightly higher (Leung, Chang & Hau, 2000; Cheng, Chang & Yi,

2007). Now given the assumption of unidimensionality is violated, applying content

balancing procedure might improve measurement efficiency by insuring adequate

representation of each dimension. Therefore, it is interesting to investigate the joint

effects ofthose two issues.

Second, three content balancing methods, CCAT, MMM, and MCCAT, are compared

in a different context from previous studies. Most existing studies (e.g., Leung, Chang

and Han, 2003a; Leung, Chang and Han, 2003b) focus on unidimensional data. The

results generally showed that the three methods had similar effects on measurement

efficiency and item pool utilization. The present study extends the comparison to

multidimensional data, where items are assumed to require multiple abilities to answer

correctly.

Third, most of the studies on multidimensionality focus on the simple two-

dimensional case. In our study, we start with the two-dimensional case, and then turn to

the more complicated three-dimensional case. In this way, the results might be

generalized to higher dimensional spaces.



Chapter 2

Computerized Adaptive Testing, Content Balancing Procedures, and

Multidimensional IRT Models

This chapter introduces the background knowledge and concepts involved in the

current project. The mechanism of computerized adaptive testing is described in great

detail in section 2.1. Three commonly used content balancing procedures are discussed in

section 2.2. Multidimensional IRT models and item characteristics are described in

section 2.3. In this section, special attention is also given to the orientation of the

unidimensional O-scale in a multidimensional space.

2.1 Computerized Adaptive Testing

2.1.1 Overview

Computerized adaptive testing (CAT) is a method for administrating tests to match

the examinee’s ability level. Several large-scale testing programs now use CAT as

alternatives to paper-and-pencil tests, for example, the Graduate Records Examination

(GRE; Eignor, Stocking, Way & Steffen, 1993), the Test of English as a Foreign

Language (TOEFL; Educational Testing Services, 2007), and the Armed Service

Vocational Aptitude Battery (ASVAB; US. Department ofDefense, 1982).

The idea of adapting the difficulty of a test to each individual examinee first appeared

in Alfred Binet’s (1905) intelligence test in the context of one-on-one administration.

From 19703, with the development of item response theory and the breakthrough in



computer technology, the idea was refined and deveIOped into the current CAT

procedures for large-scale testing.

In CAT, items are selected adaptively on the basis of the examinee’s responses to the

items previously administrated. Figure 2.1 shows the structure of a CAT procedure in a

flowchart. It begins with the first item based on an initial estimate of proficiency. After

each item response, a new proficiency is estimated and the next optimal item is selected.

This process is repeated until it meets certain stopping rules, for instance, the precision of

proficiency is adequate, or a fixed number of items have been administrated.
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Figure 2.1 A flowchart describing computerized adaptive testing



Compared to a paper—and-pencil test, a CAT offers many advantages. The biggest

advantage is that it gives more precise estimates of examinees’ ability level with fewer

items (Wainer, 1993). This is because the most informative items are selected and

administrated, and the items outside of examinees’ ability range are excluded during the

CAT procedure. In addition, each examinee is presented a test with an appropriate range

of difficulty, neither too easy nor too difficult, which reduces the measurement errors

induced by confusion, frustration, or boredom. CAT also provides flexible testing

schedules and immediate feedback for the examinee after the test.

2.1.2 Components of computerized adaptive testing

A basic CAT application consists of four primary components: item pool, item

selection procedure, scoring procedure, and test termination rules (Reckase, 1989).

Item pool

Item pool1 is a collection of items from which the adaptive test is selected. Items in an

item pool are written based on test specifications, and calibrated and linked to a common

measurement scale using IRT. To give every examinee precise and efficient measurement,

there must be high-quality items with a wide span of difficulty levels. It also needs a

sufficient number of items in each content area. For the appropriate size of item pools, six

to twelve times the test length is suggested (Luecht, 1998; Patsula & Steffan, 1997;

 

I There are two types of item pools in practice: a master pool and an operational pool. A master pool

consists of a collection of items at various stage of development. An operational pool is a pool of items

from which individual tests are assembled (Van der Linden, 2005a). This study focuses on the operational

item pool.



Stocking, 1998). In practice, more items are needed due to the issues of item exposure,

item retirement and etc.

Item selection procedure

The two most widely used item selection procedures are maximum information

method (Weiss, 1982) and maximum expected precision method (Owen, 1975).

The maximum information strategy selects the item that provides the maximum

amount of item information, I,- (9}), at the examinee’s current ability estimates l9,

.. _ [PI-(671W

"(91" ‘ Prom — so»
 (2.1)

where 3}- is the ability estimate for examinee j after n preceding responses, Pi(§j) is the

probability of a correct response to item 1' given current ability estimate 9} , and P1091) is

the first derivative of Pi(§j)with respect to 0 evaluated at 9}. For unidimensional three-

pararneter logistic IRT model, the equation becomes:

2 2 _ .

11(9)) = D a‘ (1 C" (2.2)
(Ci+emi(9j—I)i))(1+er>ai(aj—bi))7

 

where at is the item discrimination parameter, bi is the difficulty parameter, C; is the

pseudo-guessing parameter, and D is the scaling constant (typically 1.7). From Equation

(2.2), we can see the item information increases as at increases, hi approaches 0, and Ci

approaches 0 (Harnbleton, Swarninathan, & Rogers, 1991). Therefore, in CAT, items

with large discrimination values and difficulty parameter close to the current estimate of



0 are usually desirable. They yield larger information and have a higher probability of

being selected when the maximum information method is used.

Owen’s maximum expected precision method uses a Bayesian approach. In this

procedure, the item that minimizes the expected posterior variance of the 0 estimate is

selected. Owen developed the mathematical formula for the posterior mean and variance

of 0 (See Owen (1975) for detailed mathematical formula). Compared to maximum

information which is based on iterative numerical methods, the computation burden is

smaller for Owen’s procedure. However, the 0 estimate from Owen’s procedure depends

on the order of the items administrated. That is, if two examinees are presented the same

items and have the same answers, but in different orders, their 0 estimates are different.

Because of this disadvantage, Owen’s procedure is now much less widely used (Wainer,

2000)

In the operational CAT programs, these item selection procedures usually need to be

modified for practical considerations, such as item exposure control and content

balancing.

Scoring Procedure

In CAT, after each response, the examinee’s proficiency is estimated. Based on this

estimate, the next item most appropriate for the examinee is selected. Two commonly

used estimation procedures are maximum likelihood method and Bayesian method (Bejar

& Weiss, 1979).

10



Maximum likelihood estimation (MLE)

Maximum likelihood estimation is to find an estimate that results in the highest

likelihood for the observed string of item responses. Given a response string and a set of

items with known parameters, the likelihood function is

L(UII91) = n P(u,,-|9,-) (7-3)

i=1

where L(Uj M) is the likelihood ofresponse string Uj for a person j located at 9i;

uii is the item response on item iby personj (l for correct response and 0 for

incorrect response);

P(uij I91“) is the probability of getting response u for item 1‘ by a personj located at

9i;

The maximum likelihood estimate of an examinee’s ability, 9}, is the value that

maximizes this likelihood function. In practice, we set the derivative of the log-likelihood

function (with respect to 9]) to zero and then solve the equation.

Maximum likelihood method has desirable properties like asymptotical unbiasedness.

However, problems can rise at early stage of CAT, since it cannot provide finite estimates

for responses to single items or for patterns of responses that are all correct or all

incorrect. To solve the problem, we can either constrain 0 to a reasonable range (e.g., -4

to 4) or use an alternative estimation method --- Bayesian estimation procedure.

11



Bayesian ability estimation

In Bayesian estimation, we use the information about the population ability

distribution. The initially assumed distribution is called the prior distribution. In CAT, we

usually assume that the population ability is normally distributed with a mean of O and a

standard deviation of 1. Given the prior distribution, after the examinee answers the first

item, the posterior distribution of 9 is given by the Bayes’ theorem,

L(UII9)f(9)

f6 L(U,-|9)f(9) d6

 

h(9IUj) = (2.4)

where f(9) is the prior probability density function for 0,

U} is the item response string for personj,

L(Uj I0) is the probability of the item response string given 9 (the likelihood

function),

and h(9|Uj) is the posterior probability density of 0 given the item response string.

This posterior distribution then becomes the new prior distribution for the next item. As

the test proceeds, this process continues in a sequential fashion.

There are three cormnon Bayesian-based approaches: Expected a posteriori (BAP),

Maximum a posteriori (MAP) and Owen’s method.

EAP. The EAP method uses the mean of the posterior distribution, h(9|U}-), as the

ability estimate:

12



a = F(9|U,-) = L:ah(e|uj) d0 (2.5)

Instead of computing the integral directly, we can approximate it using Gauss-Hermite

quadrature points (Stroud & Sechrest, 1966),

213:1 XkLI(UjIXk)W(Xk)

2:-.L.(Ujlxk)wcxk)

 a = E(0|Uj) = (2.6)

where Xk is one ofq quadrature points, W(Xk) is a weight associated with that point,

and L,- (U,- IXk) is the likelihood function after 1' items evaluated at Xk.

MAP. The MAP method pr0posed by Samejirna (1969) uses the mode of the posterior

distribution as the ability estimate, that is, the point that maximizes the posterior

probability density. It can be done by setting the derivative of the posterior probability

density, h(9|Uj), to zero and solving the equation.

Owen ’s method Owen (1975) used a normal approximation to the true posterior

distribution, which allowed us to derive the mathematical form of the mean and variance

of the posterior distribution (See Owen (1975) for detailed mathematical formula). The

mean ofthe posterior distribution is then used as the examinee’s ability estimate.

Among these three Bayesian estimation methods, EAP provides the most stable

estimates, although the estimates are biased except at the population mean (Bock and

Mislevy, 1982). Intuitively, it is better than the Owen’s method because it evaluates the

posterior distribution directly instead of using a normal approximation. This is also

confirmed by Wang and Vispoel (1998), in which the Owen’s method yielded the worst

performance. In addition, Lord (1986) and Warm (1989) suggested that MAP estimates

l3



could be seriously biased in CAT. Therefore, EAP estimate is adopted at early stage in

this study, when there is no finite estimate for the maximum likelihood method.

Stopping rule

An adaptive test can be terminated when a target measurement precision has been

achieved, or a fixed number of items have been administrated. Testing each examinee to

a prespecified degree of precision insures that the measurements for all individuals are

equally precise, but occasionally the test could run out of the items before the target

precision is reached or test time could be extremely long for examinees. Segall, Moreno,

& Hetter (1997) pointed out that in a variable-length test, examinees with extreme

proficiency levels tended to have long tests. It may cause fatigue and raise the chance of

careless errors, and each additional item provides little information about the examinee’s

ability. On the other hand, a fixed-length test is easy to implement and constrains the test

time to a reasonable range.

2.2 Content Balancing

Whether to balance the content of items administrated to examinees is one of the first

issues that must be addressed in developing a CAT application. By the nature ofCAT the

examinees receive different items in the same test, and each should get the same number

of items from each content area for fairness.

l4



Green et al. (1984) first commented on the need of content balancing in adaptive tests.

They noticed that in Bock and Mislevy (198l)’s study, on a test of general science, males

performed better than females on natural science items, while females performed better

than males on health and nutrition items. In an adaptive test, if a male examinee is

administrated all health and nutrition items, he might be disadvantaged and the validity of

the score would be threatened. Therefore, content balancing could reduce the impact of

subgroup differences. Kingsbury and Zara (1989) also pointed out that administrating a

test that covered all the content areas in a test blueprint gave an adequate assessment of

the examinee’s ability, and reduced the legal challenges to the test (e.g., licensure tests

and admission tests).

Previous research on content balancing has developed a number ofmethods.

Kingsbury and Zara (1989) proposed a constrained CAT (CCAT) procedure. In this

procedure, the selection ofthe next optimal item is restricted to the content area that is

the farthest below its target percentage. Detailed steps are described as follows:

1. Calculate the target percentages of content areas for the test based on the test

blueprint;

2. Estimate the examinee’s provisional proficiency after he answers an item;

3. Calculate the percentage of items already administrated in each content area for

this examinee;

4. Compare the empirical percentages to the target percentages, and select the

content area with the largest discrepancy;

5. Within this selected content area, select and administrate the item with the

maximum information at the provisional ability estimate.

15



In this way, the adaptive test would have any desired content distribution. However, Chen

and Ankenmann (2004) argued that this method could lead to high predictability ofthe

content area. Instead, they developed a modified multinomial model to meet the content

requirement:

1. Form a cumulative multinomial distribution based on the target percentages of

content areas;

2. Generate a random number from the uniform distribution U(0,1) and use it to find

the corresponding content area in the cumulative distribution;

3. Within this selected content area, select and administrate the item with the

maximum information;

4. This process continues until a content area has reached its target percentage. A

new multinomial distribution is formed by adjusting the unfilled percentages of

the remaining content areas.

Leung, Chang and Han (2000) also proposed a modified version of CCAT procedure

to eliminate the undesirable order effect. The procedure is similar to CCAT, except that

items can be selected from all the content areas for which target percentages are not

reached.

Leung, Chang and Han (2003b) compared these three content balancing methods in a

CAT using the maximum information item selection strategy. With simulated

unidimensional data they demonstrated that using content balancing methods caused

some loss in the measurement efficiency. In addition, the three methods had similar

effects on measurement efficiency and item pool utilization, but the MMM method had

16



the fewest overexposed items. The present study also compares the three methods, but in

a different context, where items are assumed to require multiple abilities to answer

correctly.

2.3 Multidimensional Item Response Theory (MIRT)

AS described in section 2.1, item response theory plays a central role in computerized

adaptive testing, from item pool calibration, item selection, to ability estimation. Most

computerized adaptive testing programs use unidimensional IRT models, which assumes

examinees’ responses to test items can be accounted for by a single latent trait. However,

the cognitive and psychological processes ofresponding to test items are very complex,

and many researchers believe that multiple skills influence the performance on a test (Ip,

2010; Reckase, 1985; Reckase, Ackerman and Carlson, 1988; Traub, 1983; Walker and

Beretvas, 2003). Multidimensional item response theory is a collection of mathematical

models that describe the interaction between persons and test items when more than one

ability are required to account for test performance.

There are two major types of multidimensional IRT models: compensatory and

noncompensatory. The compensatory model is based on a linear combination of ability

dimensions, and a high ability on one dimension can compensate for a low ability on

another dimension. For example, the compensatory form of the multidimensional three-

parameter logistic model is given by (Mckinley and Reckase, 1983),

eD(a'in+di)

1 + eD(a'iO,-+di)

 

POI.” = 1|0,,a1,di,ci) —_— Ci 'I' (1 "" Ci) (2.7)
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Where P(u,-j = 1'01, at, di, Ci) is the probability ofa correct response to item 1' by

person j ;

at] is the response on item i by personj (l is correct and 0 is incorrect);

9, is a column vector (m by 1) of personj’s abilities in a m-dimensional space;

at is a column vector (m by 1) of discrimination parameters for item 1';

d, is a scalar that related to item difficulty;

6,- is the guessing parameter or low asymptote for item i , and

D is the scaling constant (typically 1.7).

In the multidimensional version, 9I and (I, are vectors instead of scalars. From equation

(2.7), the exponent of e is a linear function of6s plus the intercept term d, a;a, + di. The

additivity of the Os implies the compensatory nature of the model.

Sympson (1978) argued that the compensatory model is not realistic for certain

types of items. For example, for a mathematics item that requires both arithmetic

computation skills and reading skills, if an examinee’s reading skills are very low, he

might not understand the problem and hence cannot solve the problem even if he has high

arithmetic computation skills. For this situation, he develOped a noncompensatory model:

eDaik(9jk'-dik)

=1 1 + eDaik(9th—dik)

 P(u,.,- = 119,, a“ dl, c,) = c. + (1 — c.) (2.8)
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where m is the number of dimensions, am and dik are the discrimination and difficulty

parameter respectively, for item i and dimension k, and other parameters are defined as

before. In this model, the test item is decomposed into individual components, and the

probability of a correct answer is the product ofthe probabilities of doing each

component correctly. Due to the multiplicative nature of the model, the probability of a

correct response to an item cannot exceed the lowest probability in the product. The

probability does increase with ability increase in one dimension, but up to a limit set by

the lowest probability in the product. Therefore, this model is also called partially

compensatory model.

Some researchers believe that the partially compensatory model is more theoretically

sound, but is less realistic. For example, Ansley (1984) pointed out that data generated

with this model did not resemble real test data. Bolt and Lall (2003) also compared the fit

of compensatory and partially compensatory models to a common data set from a test of

English usage, and found that the compensatory model fit the data better than the

partially compensatory model. In addition, estimation difficulty for the partially

compensatory model hinders its development and application. As a result, compensatory

model is more prevalent in the current literature, and we will not deal with partially

compensatory model further in this study.

In a compensatory MIRT model, the parameters sometimes lack intuitive meaning,

so Reckase (1985) and Reckase and Mckinley (1991) developed two statistics to interpret

the characteristics of the items for compensatory models: multidimensional

discrimination (MDISC) and multidimensional difficulty (MDIFF). They are defined as
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1

m 2

MDICSi = Waja, -'= (Z afk) (2.9)

k=1

_d.

MDIFFi =m (2.10)

I

where parameters are defined as before. These two statistics are analogous to

discrimination and difficulty parameters from the unidimensional IRT models. MDICS,- is

the slope ofthe item response surface at the steepest point, and indicates the

discriminating power of the item. MD!FPi is the distance from the origin to the point of

the steepest slope. It represents the multidimensional difficulty of the item: high values

indicate difficult items and low values indicate easy items. In addition, the direction of

the steepest slope fi'om the origin of the space is given by

aik

—- 2.11

(ka=1 aizk)% ( )

cosaik =

where am is the angel between the kth coordinate axis and the line from the origin to the

point that has the greatest slope overall. The cosines above are often called direction

cosines.

Using the concept of multidimensional discrimination, multidimensional difficulty,

and direction cosines, items can be displayed graphically in the space. Each item is

represented by an arrow. The base of the arrow is at the point of maximal slope, the

length ofthe arrow indicates the discrimination ofthe item, MDISCi. The distance from

the origin to the base ofthe arrow represents the difficulty ofthe item, MDIFF}, and the
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direction of the arrow, at, is derived from the direction cosines of the item. Figure 2.2

shows an item vector plot of 45 items in a two-dimensional space.

 

   
Figure 2.2 Representation of the characteristics of45 items in a two-dimensional space:

item arrows and reference composite.

21



Orientation of the unidimensional G-scale in the multidimensional space

Wang (1995, 1996) showed that if we fitted a unidimensional model to a

multidimensional test, the orientation ofunidimensional 0-scale was related to the matrix

of discrimination parameters from the compensatory MIRT model. Specifically, this

unidimensional line is defined as the eigenvector of the a'a matrix associated with the

largest eigenvalue, and is called the reference composite of the test. In Figure 2.2, the

reference composite ofthe 45 items is represented by the bold dashed arrow.

The projection of the 0-point in the multidimensional space onto the reference

composite gives an estimate of the unidimensional 0 that would result if the response data

from the test items were analyzed using a unidimensional IRT model. Formally, it is

given by

9: = RC'a (2.12)

Where 0* is the projected unidimensional 0; RC is the reference composite vector; and 0

is the multidimensional ability vector.
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Chapter 3

Methodology

To examine the effect of fitting a unidimensional IRT model to multidimensional data

in a content-balanced CAT, Monte Carlo simulations are conducted. This chapter

describes the simulation design and evaluation criteria in details.

3.1 Item Pool

The item pool consists of400 items, from three content areas. Content 1 has 160 items,

and Content 2 and 3 each have 120 items. The unbalanced distribution of items across

three content areas resembles a typical item pool in real testing programs. We assume

that multiple skills are required to answer the items correctly, and hence assume that the

item pool has a multidimensional structure. Two types of representative dimensional

structures are adapted from Reckase (2009):

1. Three content areas in a two-dimensional space

In this structure, Content 1 and 2 mainly load on either of the two dimensions

respectively; Content 3 loads on the composite of the two dimensions. For

example, in a mathematics test, there are three content areas: arithmetic, geometry,

and algebra. The arithmetic items mainly measure the examinees’ computation

skills, the geometry items measure the problem solving skills, and the algebra

items require both computation and problem solving skills.
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2. Three content areas in a three-dimensional space

In this structure, Content 1 measures Dimension 1, Content 2 measures

Dimension 2, and Content 3 measures the composite of all three dimensions.

Using the same example above: in the test, arithmetic and geometry items remain

unchanged and mainly need skills in either computation or problem solving, but

the algebra items are story problems now, which require reading skills in addition

to computation and problem solving Skills.

To construct the dimensional structure, angles between item vectors and dimensions

are specified. In the two-dimensional case, the direction cosines are (1,0), (0,1) and

(fi, %) for the three content areas respectively. And in the three-dimensional case, the

direction cosines are (1,0,0), (0,1,0) and (%, 4%! fi). Within each content area, the

angular variation is 15" (Roussos, Stout and Marden, 1998). For example, for Content 1

in Structure 1, the angle between the item vector arrow and the first dimension, a1, is

randomly selected from the uniform distribution U(0°, 15°); for Content 2 and 3, a1 is

randomly selected from U(75°, 90°) and U(37.5°, 52.50) respectively. Then the angle

between the item arrow and the second dimension, ((2, is calculated by 90° — a1.

Similarly, angles for the three-dimensional case are generated. In Figure 3.1, the two

dimensional structures are illustrated.

The item parameters for the compensatory MIRT model are simulated fi'om

commonly used distributions. The logs of item discrimination parameters (MDISCi) are

randomly drawn from a normal distribution with a mean of0 and a standard deviation of
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0.5, N(0, 0.52). Difficulty parameters (MDIFFi) are drawn from N(O, 0.752) (Fang,

2008). For simplicity, all items have the same low asymptote value (c-parameters) of 0.2.

Given MDISCi, MDIFF1, and the angles, the parameters a,- and d,- for the

compensatory MIRT model are calculated by

aik = MDISCi * cosai,C (3.1)

d,- = —MDIFF,- .. M0156,- (3.2)

3.2 Simulation factors

1. Dimensional Structure

Two dimensional structures are considered in this study: a) three content areas in

a two-dimensional space; b) three content areas in a three-dimensional space. The

two-dimensional case is the simplest situation of multidimensionality to start with,

and then the more complicated three-dimensional case is examined. By studying

these two representative structures, results might be generalized to higher

dimensions.

Ability Distribution

Examinees’ abilities are simulated from multivariate normal distributions with

zero mean vector and three different variance—covariance matrices. Table 3.1

shows mean vector (u), variance-covariance matrices (z), and correlation

coefficients between abilities (p). Three levels of ability correlations are used: 0,

0.4, and 0.8. A correlation ofzero implies that there is no correlation between
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multiple abilities; 0.4 indicates a moderate correlation; and 0.8 represents a high

correlation. In the three-dimensional case, pairwise correlations are slightly varied

to produce a more realistic relationship between multidimensional abilities.

Table 3.1 Three ability distributions used in the simulation study

 

 

 

 

 

Two dimensions Three dimensions

D b 0 1 0 0

istri ution l _ 0 __ 1 0 pg[:121== [0 1 0]

p=0 ”’IoI'z‘Io 1 o o o 1

Distribution 2 — [0] — 1 0'4 04' 0'3

”‘ 0'2’I04 1I 0.35

p = 0'4 0.3 o.35 1

D- -b - 3 __ o _ 1 0.8 0.7

mm ”no“ I‘ " I0] ,2: '" I0 3 1 I 0 75

p = 0'8 o.7 0.75 1   
 

3. Difficulty levels for content areas

Two cases are examined: a) The average difficulty levels are same for all three

content areas: the mean of difficulties (MDIFFs) are assumed to be zero; b)

Content 1 has less difficult items, and Content 2 has more difficult items: the

MDIFFs are decreased by 0.6 for items in Content 1, increased by 0.6 for Content

2, and kept unchanged for Content 3. We choose 0.6 to represent a moderate to

high change of item difficulty (Swaminathen and Rogers, 1990).

4. Content balancing methods
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Three content balancing methods, CCAT, MMM and MCCAT, are compared.

Unconstrained CAT with the maximum information item selection strategy is

used as the baseline.

In total, the four simulation factors yield 2*3*2*4=48 conditions.

3.3 Simulation procedure

The simulation procedure involves the following steps:

1. We simulate an item pool of 400 items for each combination of dimensional

structure and difficulty level conditionz. And we simulate the ability parameters for

2000 examinees using the distribution described above.

2. Given the item and ability parameters, we generate item responses to all items in

the given item pool for 2000 examinees. Using the compensatory three-parameter

multidimensional IRT model (Eq. 2.7), the probability of a correct answer for a

given item and a given examinee (p) is calculated. The 0/1 response is obtained by

comparingp to a random number (x) from a uniform distribution U(0,1). Ifp>x,

then a correct response is obtained, otherwise, an incorrect response is obtained. In

this way, a 2000 by 400 item response matrix is generated.

 

More precrsely, we simulate the Items for each drmensronal structure wrth even content difficulty levels.

Then we alter the difficulty values for the items in Content 1 and 2 to get items for the condition ofuneven

content difficulty levels. The purpose is to reduce the random noises when comparing the two difficulty-

level conditions.
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3. Based on all the items in the given item pool, we calculate the reference composite

from the a’a matrix and the projections ofthe O-points in the multidimensional

space onto the reference composite. To be consistent with the scaling of the

estimates fi'om the unidimensional IRT program (BILOG-MG), the projected Gs are

scaled to have a mean of 0 and a standard deviation of 1. It gives a theoretical

estimate ofthe unidimensional 0 that would result if the response data from the test

items were analyzed using a unidimensional IRT model. The resulting Os are

considered as the true Os when the recovery of 0 is evaluated.

4. The response data resulted in Step 2 is calibrated using BILOG-MG (Zimowski et

al., 2003) to estimate unidimensional item parameters. The three-parameter logistic

model3 with a scaling constant D=1.7 is applied. In BILOG-MG, the convergence

criterion is set to be 0.005, and the number of quadrature points for the EM

algorithm is set at the default value.

5. Unidimensional CAT is conducted. In this study, the test consists of 30 items. The

first item is randomly selected from the 100 items with medium difficulty. The

corresponding response is read from the item response matrix generated in Step 2.

Based on this response, the provisional ability is estimated. The expected a

posterior (BAP) method is adopted at the beginning of the test, assuming N(0,1) is

 

3 The unidimensional three-parameter logistic model is

exp (1.7ai(9j-bi))

 

discrimination, difficulty, and guessing parameter, respectively, for item i; 9}- is the ability parameter for

person}.
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the prior distribution. The maximum likelihood estimation (MLE) method is used

until at least five items have been administrated and the response pattern contains

both 0 and 1 (Cheng, Chang, and Yi, 2007). After each item is administrated, the

next most appropriate item for the examinee is selected using the maximum

information method. The process continues until a 30-item test has been

administrated. During this procedure, the three -parameter logistic model is

assumed, and the unidimensional parameters in Step 4 are used for both ability

estimation and item selection.

6. Repeat Step 5 with content balancing methods during the item selection procedure.

In addition, to examine the conditional measurement precision, simulation is also

conducted for limited points in the ability space, with 50 replications at each ability point.

Five equally spaced values of 0 from -2 to +2 (6= -2, -1, 0, 1, 2) are used. Hence, 25

fixed points (5 x S) are evaluated in the two-dimensional case, and 125 (5 x 5 x 5)

points in the three-dimensional case.

3.4 Evaluation Criteria

1. Measurement precision.

The recovery of ability proficiency is assessed by overall bias, mean square error

(MSE) of O, and the correlation between 6 and its estimate (p93). Overall bias and MSE

are calculated by
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N

Bias: (§--9-)/N (3.3)

and

N

MSE: (a--—e-)2/N (3.4)

where 9} is the estimated ability of the jth exarrrinee from the unidimensional CAT, 6,- is

the true ability of the jth examinee, and N is the number of examinees. Bias and MSE

both provide a good indication of the quality of the recovery of examinees’ abilities. The

smaller the absolute biases and MSES are, the better the abilities are measured. In

addition to overall statistics, conditional measurement precision is calculated at the fixed

points.

2. Content balancing

The number of items administrated from each content area is recorded. If the target

percentage of certain content area is over or under fulfilled, the test fails to satisfy the

content balancing constraint. The percentage oftests violating the content constraint is

reported. By design, the CAT with content balancing is expected to have zero percentage

of violation.

3. Item pool usage

The three content balancing methods and the maximum information method are also

compared in terms of item pool usage. In order to have a maximum item pool usage, a

uniform exposure rate distribution is desirable. Chang and Ying (1999) have proposed a

scaled chi-square statistics to evaluate the skewness of exposure rate distribution:
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M ._i 2
2'2 = Z (ER‘L M) (3.5)

.=1 n

where Mis the size of item pool, L is the test length, and ER,- is the observed exposure

rate for the ith item. This chi-square statistics quantifies the item pool usage efficiency,

and indicates the discrepancy between the observed and ideal item exposure rates. Low

chi-square statistics is preferred, which implies a more efficient item pool usage.

4. Percentages ofunderexposed and overexposed items

The exposure rate of an item is defined as the ratio of the number oftimes the item

administrated to the number of examinees. A low exposure rate indicates the item is

rarely used. If there are a large proportion of items with low exposure rates in the item

pool, the cost-effectiveness of developing the items might not be achieved. On the other

hand, if an item is over-selected, it might be known to prospective examinees and test

security is threatened. Therefore, an item with either low or high exposure rate is not

desirable in CAT programs. In this study, following the literature (Cheng, Chang & Yi,

2007), an item is considered as an underexposed item if its exposure rate is less than 0.02,

and an overexposed item if the exposure rate is larger than 0.2. To evaluate the

effectiveness of each content balancing method, the percentages ofunderexposed and

overexposed items are reported.
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Chapter 4

Results

The simulation results are discussed in this chapter. Section 4.1 summarizes the

descriptive statistics of the simulated item parameters. Section 4.2 and 4.3 discuss the

estimation of item parameters and person parameters. Section 4.4 to 4.6 evaluate the

maximum information method and the three content balancing methods, in terms of the

percentage of tests violating the content-balancing requirements, the item pool usage, and

the percentages ofunderexposed and overexposed items.

4.] Simulated item parameters

The descriptive statistics of the simulated multidimensional item parameters for the

two-dimensional case are given in Table 4.1. Along with the standard item parameters

(discrimination a1 and 02, difficulty d), the generalized discrimination and difficulty

indices (MDISC and MDIFF), and the angles with the coordinate axes (a1 and a2) are

also shown.

Generally, items are sensitive to differences on a single dimension if they have high

discrimination parameters for the dimension and small angles with the corresponding

coordinate axis. In Table 4.1, for Content 1, the mean discrimination value for the first

dimension (a1) is 1.07, and the mean angle with the first dimension (a1) is 7.8 degree. It

is clear that items in Content 1 are mostly sensitive to the first dimension. Similarly,

items in Content 2 are mostly sensitive to the second dimension. With roughly equal a
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parameters and angels with 61, 02 axes, items in Content 3 measure a combination of the

two dimensions. These three distinct sets of items are also shown in Figure 4.1.

Table 4.1 also shows the change ofdifficulty for the three content areas across

conditions. In Panel A, the average MDIFFs for the three content areas are -0.09, -0.01

and -0.02, respectively. In Panel B, the difficulty is decreased by 0.6 for Content 1 and

increased by 0.6 for Content 2. It results in an average MDIFF of -0.69 for Content 1, and

0.59 for Content 2. The change of difficulty is also illustrated in Figure 4.1. In the vector

plot of items, the distance from the origin to the base of the arrow indicates the difficulty,

MDIFF. From Figure 4.1a to 4.1b, the distance changes by -0.6 and 0.6 for Content 1

and 2 respectively.

Similarly, the descriptive statistics of the simulated item parameters and the item

vector plots for the three-dimensional case are given in Table 4.2 and Figure 4.2. They

demonstrate a clear dimensional structure for the three content areas. Items in Content 1

measure predominantly along 61, items in Content 2 measure predominantly along 62,

and items in Content 3 measure an equally weighted combination of 91, 02, and 93.
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Table 4.1 The mean simulated item parameters by content areas in the two-dimensional

case

 

 

Content a1 a2 d MDISC MDIFF a1 a2

Panel A: Equal difficulty levels across the three content areas: Difficulty =(0, 0, 0)

1 1.07 0.14 0.15 1.08 -0.09 7.80 82.20

2 0.15 1.08 0.00 1.09 -0.01 81.97 8.03

3 0.78 0.78 0.03 1.10 -0.02 44.97 45.03

Panel B: Unequal difficulty levels across the three content areas: Difficulty =(-0.6,0.6,0)

1 1.07 0.14 0.80 1.08 -0.69 7.80 82.20

2 0.15 1.08 -0.65 1.09 0.59 81.97 8.03

3 0.78 0.78 0.03 1.10 -0.02 44.97 45.03
 

Table 4.2 The mean simulated item parameters by content areas in the three-dimensional

case

 

Content a1 a2 a3 (1 MDISC MDIFF a1 a2 a3
 

Panel A: Equal difficulty levels across the three content areas: Difficulty =(0, 0, 0)

1 1.07 0.08 0.11 0.15 1.08 -0.09 7.80 85.76 84.01

2 0.06 1.08 0.11 0.00 1.09 -0.01 86.85 6.97 84.32

3 0.63 0.64 0.62 0.03 1.10 -0.02 54.70 53.99 56.07

Panel B: Unequal difficulty levels across the three content areas: Difficulty =(-0.6,0.6,0)

1 1.07 0.08 0.1 1 0.80 1.08 -0.69 7.80 85.76 84.01

2 0.06 1.08 0.11 -0.65 1.09 0.59 86.85 6.97 84.32

3 0.63 0.64 0.62 0.03 1.10 -0.02 54.70 53.99 56.07
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Figure 4.1 Item vector plots in the two-dimensional case
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Figure 4.2 Item vector plots in the three-dimensional case
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4.2 Estimation of unidimensional item parameters

Following the simulation procedure described in Chapter 3, the item response

matrices are generated using the compensatory three-parameter multidimensional IRT

model (Eq. 2.7). In order to get the unidimensional item parameters for the CAT

procedure, the data is calibrated using the unidimensional three-parameter logistic model

(see footnote 3). In BILOG-MG, all the calibration runs converge for both the EM steps

and the Newton steps and reach the convergence criterion of 0.005, which indicate that

the estimations of item and person parameters reach a good accuracy. Table 4.3 reports

the overall chi-square indices of fit from BILOG—MG when the unidimensional model is

fitted to our data. Under all simulation conditions, the test shows a good fit of the

unidimensional model, with p-values close or equal to 1. It is surprising that

unidimensional model fits well when the dimensionality is not one and the correlation is

zero. It might be due to the multidimensional structure used in the simulation study.

There are two possible reasons. First, by design, items in content 3 measure an equally

weighted combination of all constructs, and hence are very close to the estimated

unidimensional 9 scale. Second, although items in Content 2 and 3 measure a single

construct, they are not very far from the estimated unidimensional 9 scale. For example,

in the two-dimensional case, for Content 1, the angle between the item vector arrow and

the first dimension varies from 0° to 15". So it gives us an average angle difference of

37.50 between Content 1 and the estimated unidimensional 9 scale.

Table 4.4 presents the summary statistics of the estimated unidimensional item

parameters across content areas for the two-dimensional case. As we expect, Content 3

has a larger estimated discrimination value (a) than Content 1 and 2. This is because the
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orientation ofthe items in this content area is more aligned with the orientation of the

reference composite. This founding is also consistent with the results from Ackerman

(1991).

Table 4.3 The overall chi-square indices offit fiom BILOG-MG calibrations

 

 

 

 

Two-dimensional case Three-dimensional case

Chi-square DF P-value Chi-swe DF P-value

Difliculty=(0,0,0)

p = 0 2545.8 3502 1 2726.1 3518 1

p = 0.4 2486.3 3476 1 2649.3 3480 1

p = 0.8 2551.4 3447 1 2376.7 3395 l

Difficulty=(-0.6,0.6,0)

p = 0 3066.8 3491 1 3453.0 3545 0.8631

p = 0.4 2586.5 3491 1 2817.5 3463 l

p = 0.8 2467.9 3398 1 2394.1 3345 1
 

The estimation of the item difficulty is overall satisfactory. When all the three

content areas have an average MDIFF of 0, the mean ofthe unidimensional difficulty

values (b) is generally close to 0. When MDIFF changes by -0.6 and 0.6 for Content 1

and 2, the mean of bs also has a similar change in the same direction. For example, with a

medium ability correlation of 0.4, the mean unidimensional difficulties are 0.025, 0.070,

and 0.023 for the three content areas in Panel A, while they change to -0.637, 0.773, and

0.083 in Panel B. Table 4.4 also shows that as the correlation between true abilities

increases, the overall recovery of difficulty improves. For example, in Panel A, with an

even difficulty level and an ability correlation of 0.8, the mean unidimensional

difficulties are -0.042, 0.016 and 0.006 respectively, which are the closest to the MDIFF

values.
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Finally, most ofthe guessing parameters are close to 0.2 with small standard

deviations.

Similarly, the summary statistics for the estimated unidimensional item parameters

in the three-dimensional case are provided in Table 4.5. The observations are largely

consistent with those in the two-dimensional case. For example, Content 3 still has the

largest mean discrimination value under all conditions.

Table 4.4 Summary statistics for the estimated unidimensional item parameters in the

two-dimensional case

 

 
  

 

Ability a b c

Correlation Content mean std mean std mean std

Panel A: Difficulty= (0, 0, 0)

0 1 0.739 0.227 -0.031 0.826 0.240 0.050

2 0.738 0.245 0.142 0.868 0.252 0.053

3 1.131 0.544 0.005 0.689 0.220 0.037

0.4 1 0.940 0.299 0.025 0.736 0.240 0.046

2 0.886 0.331 0.070 0.758 0.225 0.043

3 1.326 0.651 0.023 0.584 0.214 0.034

0.8 1 1.107 0.426 -0.042 0.701 0.222 0.039

2 1.098 0.456 0.016 0.676 0.218 0.037

3 1.488 0.744 0.006 0.534 0.216 0.033

Panel B: Difficulty= (-0.6, 0.6, 0)

0 1 0.754 0.276 -0.789 0.810 0.201 0.045

2 1.222 0.425 0.928 0.537 0.318 0.087

3 1.216 0.554 0.114 0.658 0.253 0.053

0.4 1 0.896 0.345 -0.637 0.764 0.21 1 0.041

2 1.094 0.418 0.773 0.658 0.264 0.059

3 1.331 0.624 0.083 0.582 0.229 0.044

0.8 1 1.095 0.440 -0.599 0.716 0.225 0.043

2 1.159 0.519 0.607 0.656 0.221 0.033

3 1.483 0.743 0.004 0.531 0.211 0.034
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Table 4.5 Summary statistics for the estimated unidimensional item parameters in the

three-dimensional case

 

 
 

 

Ability a b c

Correlation Content mean std mean std mean std

Panel A: Difficulty= (0, 0, 0)

0 1 0.622 0.170 -0.053 0.944 0.232 0.049

2 0.712 0.203 0.257 0.902 0.287 0.053

3 1.079 0.488 0.030 0.680 0.228 0.047

0.4 1 0.842 0.258 -0.013 0.793 0.228 0.046

2 0.855 0.299 0.066 0.775 0.229 0.043

3 1.370 0.639 0.023 0.539 0.219 0.035

0.8 1 1.088 0.411 -0.057 0.660 0.210 0.040

2 1.154 0.460 0.058 0.665 0.229 0.040

3 1.696 0.790 0.003 0.456 0.21 1 0.031

Panel B: Difficulty: (-0.6, 0.6, 0)

0 1 0.658 0.226 -0.864 0.898 0.197 0.049

2 1.025 0.321 1.100 0.615 0.336 0.091

3 1.134 0.503 0.115 0.652 0.253 0.057

0.4 1 0.804 0.287 -0.747 0.773 0.197 0.048

2 1.142 0.389 0.827 0.614 0.278 0.068

3 1.444 0.649 0.071 0.512 0.234 0.044

0.8 1 1.106 0.442 -0.614 0.657 0.211 0.044

2 1.200 0.496 0.628 0.603 0.235 0.042

3 1.717 0.783 0.018 0.445 0.215 0.029

 

4.3 Measurement precision

4.3.1 Two-dimensional case:

Table 4.6 presents the estimated bias, mean squared error (MSE) and the correlation

between 0 and its estimate (p93) for the four methods in the two-dimensional case.

When the three content areas have the same difficulty level, the maximum

information method tends to result in lower biases and MSEs than the three content

balancing methods, except for a high ability correlation of 0.8. However, the three

content balancing methods also yield good measurement precision. The biases and MSEs
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are close to those from the maximum information method, and the correlations between 0

and its estimate are around 0.96.

On the other hand, when the three content areas have uneven difficulty levels, the

maximum information method tends to perform worse. It yields higher MSES and lower

correlations p93 than the three content balancing methods. For example, when there is no

correlation between true abilities, the maximum information procedure produces a MSE

of 0.173 and a correlation of 0.937. In contrast, the three content balancing methods give

MSES around 0.13 and correlations around 0.95. However, the differences in MSE

between the maximum information method and the content balancing methods become

smaller as the ability correlation increases. With a correlation of 0.8, the four methods

perform comparably. Intuitively, high ability correlation reduces multidimensionality.

When the ability correlation approaches 1, multidimensionality diminishes and reduces to

a simple unidimensional case. Previous research (Cheng, Chang & Yi, 2007) has

suggested that in the unidimensional context, content balancing methods yield the

measurement precision close to the maximum information method. Therefore, our finding

is consistent with previous research on the unidimensional case.

The difficulty levels for the content areas seem to affect the measurement precision

of the four methods, particularly the maximum information method. For example, when

the ability correlation is 0, the MSE for the maximum information method increases from

0.131 to 0.173 as the difficulty levels becomes uneven. By design, Content 3 is closer to

the orientation of the calibrated unidimensional 0-scale or the reference composite.

Therefore, its items have larger unidimensional discriminations and hence have a greater

probability of being selected when the maximum information method is used. However,
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Table 4.6 Measurement precision for maximum information method and three content

balancing methods in two-dimensional case

 

 

Cgiibtliition Method Bias MSE p93

Panel A: Difficulty= (0, 0, 0)

0 Max Information 0.024 0.131 0.968

0 CCAT 0.026 0.146 0.964

0 M 0.031 0.149 0.961

0 MCCAT 0.033 0.145 0.962

0.4 Max Information 0.052 0.138 0.967

0.4 CCAT 0.047 0.144 0.968

0.4 M 0.050 0.152 0.965

0.4 MCCAT 0.049 0.141 0.967

0.8 Max Information -0.001 0.189 0.954

0.8 CCAT 0.017 0.196 0.965

0.8 MMM 0.013 0.197 0.965

0.8 MCCAT 0.015 0.178 0.966

Panel B: Difficulty= (-0.6, 0.6, 0)

0 Max Information 0.038 0.173 0.937

0 CCAT 0.039 0.132 0.954

0 MMM 0.040 0.133 0.952

0 MCCAT 0.040 0.135 0.951

0.4 Max Information 0.067 0.153 0.951

0.4 CCAT 0.063 0.138 0.961

0.4 MMM 0.061 0.143 , 0.959

0.4 MCCAT 0.064 0.136 0.961

0.8 Max Information 0.029 0.124 0.961

0.8 CCAT 0.038 0.126 0.971

0.8 M 0.035 0.124 0.970

0.8 MCCAT 0.039 0.122 0.971

 

when the difficulty levels for the content areas become uneven, for those who have a very

low or high ability, the items with high discrimination from Content 3 may no longer be

the most optimal items to be selected, while the items from Content 1 or 2 which have

similar difficulty level to their ability level become more informative. As a result, the

maximum information method will select a different combination of items in terms of
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content areas, which might deviate more from the reference composite and hence affect

the measurement precision.

Finally, the three content balancing methods perform comparably. They yield

similar biases, MSES and the correlations between 0 and its estimate. However, in terms

ofMSE, MCCAT tends to have slightly lower values thanMand CCAT, especially

when three content areas have the same difficulty level.

4.3.2 Three-dimensional case:

Table 4.7 summarizes the overall measurement precision for the three-dimensional

case. Unlike the two-dimensional case, the maximum information method does not

perform the best when three content areas have the same difficulty level. The three

content balancing methods yield overall similar values in biases, MSES and the

correlations between 0 and its estimate as the maximum information method. Among the

three content balancing methods, MCCAT results in the smallest MSES.

When the three content areas have uneven difficulty levels, the performances of the

four methods follow similar patterns as in the two-dimensional case. Clearly, evidenced

by larger correlations between 0 and its estimate and smaller MSES, the three content

balancing methods give better recovery ofperson parameter than the maximum

information method. In addition, as the correlation between true abilities increases, the

bias becomes smaller and the correlation between 0 and its estimate becomes larger. For

example, for CCAT, the absolute mean bias decreases from 0.052 to 0.031, and the
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Table 4.7 Measurement precision for maximum information method and three content

balancing methods in three-dimensional case

 

 

fixation Method Blas MSE p93

Panel A: Difficulty= (0, 0, 0)

0 Max Information 0.037 0.181 0.950

0 CCAT 0.039 0.161 0.955

0 M 0.031 0.178 0.949

0 MCCAT 0.039 0.151 0.955

0.4 Max Information 0.028 0.172 0.962

0.4 CCAT 0.038 0.174 0.963

0.4 M 0.029 0.172 0.962

0.4 MCCAT 0.038 0.170 0.962

0.8 Max Information 0.016 0.163 0.964

0.8 CCAT 0.034 0.184 0.967

0.8 MMM 0.029 0.197 0.963

0.8 MCCAT 0.035 0.169 0.968

Panel B: Difliculty= (-0.6, 0.6, 0)

0 Max Information 0.052 0.238 0.915

0 CCAT ' 0.059 0.162 0.944

0 M 0.050 0.182 0.936

0 MCCAT 0.051 0.193 0.935

0.4 Max Information 0.038 0.167 0.944

0.4 CCAT 0.042 0.135 0.959

0.4 MMM 0.036 0.138 0.956

0.4 MCCAT 0.041 0.155 0.951

0.8 Max Information 0.023 0.151 0.953

0.8 CCAT 0.031 0.147 0.966

0.8 MMM 0.030 0.154 0.962

0.8 MCCAT 0.040 0.136 0.968
 

correlation between 0 and its estimate increases from 0.944 to 0.966, when the ability

correlation increases from 0 to 0.8. This is not surprising, since with high correlation

between true abilities, the effect of multidimensionality would become smaller and the

estimation procedure would become more accurate. Meanwhile, the difference in MSE
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between the maximum information method and the three content balancing methods

decreases as the correlation between true abilities increases.

4.3.3 Conditional Bias and MSE

In addition, the conditional biases and MSES for limited points are presented in

Figure 4.3 to Figure 4.10. Five equally spaced values of 0 from -2 to +2 (0 = -2, -1, 0, 1, 2)

are used. Hence, 25 fixed points (5 X 5) are evaluated in the two-dimensional case, and

125 (5 x 5 x 5) points in the three-dimensional case.

Figure 4.3 and 4.4 show the conditional biases for the four methods in the two-

dimensional case. Clearly, the maximum information method and the three content

balancing methods yield similar conditional biases. The figures demonstrate that the

examinees located at the two ends ofthe 0 distribution have more volatile biases, while

those who are in the middle have biases close to 0. Generally, with unidimensional data,

the estimated 0-values from the three-parameter logistic model have larger measurement

errors for high and low ability examinees than for middle ability examinees. In particular,

high ability examinees tend to be underestimated and low ability examines tend to be

overestimated. However, the shape of conditional biases in this study does not follow the

pattern strictly. This is mainly because additional estimation errors are introduced when

we fit a unidimensional model to multidimensional data.

Figure 4.5 and 4.6 show the conditional MSES for the four methods. Again, the four

methods perform very similarly. The MSES are small in the middle while large at the two

ends. Also, the MSES at the lower end are larger than those at the upper end, which is due
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to the guessing issue in the three-parameter IRT model. In addition, the difference

between the two ends shrinks when the difficulty levels for the three content areas

become uneven.

The conditional biases and MSES for the three-dimensional case generally follow

the same patterns as those in the two dimensional case. As shown in figure 4.7 and 4.8,

the four methods yield similar conditional biases. Since the estimated 0 values are

restricted to -4 and 4, the conditional biases are bounded between -4- 0 and 4- 0. In

addition, in the three-dimensional case, the differences between the maximum

information method and the three content balancing methods are more apparent in terms

ofMSE. In figure 4.9 and 4.10, the MSES at the lower end of 0 distribution for the

maximum information method are larger than those for the content balancing methods.

This difference is magnified when the difficulty levels for content areas become uneven.

The three content balancing methods performed similarly, although MCCAT gives

slightly higher MSE than CCAT and MMM at the lower end of 0, especially when the

content areas have the same difficult level.
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Figure 4.3 Conditional Biases for the four methods, Difficulty=(0, 0, 0), two-dimensional
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Figure 4.4 Conditional Biases for the four methods, Difficulty=(-0.6, 0.6, 0), two-
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4.4 Content balancing

Table 4.8 presents the percentage of tests violating the content-balancing requirement

for each method. As expected, the three content-balancing methods perform very well

and there is no content violation. In contrast, the maximum information method yields a

large number of unbalanced tests. The violation rate ranges from 98.75% to 100% across

the conditions. In other words, almost all tests fail to satisfy the content balancing

requirement when the maximum information method is used.

Table 4.8 Violation rate of the content-balancing requirement

Violation Rate1%)

Maximum

Information CCAT MMM MCCAT

Difficulty Correlation

 Panel A: Two-dimensional case

 

 

 

(0, 0, 0) 0 100 0 0 0

0.4 98.75 0 0 0

0.8 98.95 0 0 0

(-0.6, 0.6, 0) 0 100 0 0 0

0.4 100 0 0 0

0.8 100 0 0 0

Panel B: Three-dimensional case

(0, 0, 0) 0 100 0 0 0

0.4 99.1 0 0 0

0.8 99.55 0 0 0

(-0.6, 0.6, 0) 0 100 0 0 0

0.4 100 0 0 0

0.8 100 0 0 0

 

Table 4.9 reports the average number of items selected from each content area for the

maximum information method. Because two dimensional structures provide very similar

results, only the results for the two-dimensional case are discussed.
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First, in the two-dimensional case, Content 3 clearly dominates. For example, with

even difficulty and uncorrelated abilities, there are on average 2.87 items selected from

Content 1, 3.92 items from Content 2, and 23.21 items from Content 3. Intuitively,

Content 3 measures the composite of the two dimensions, and hence it is closer to the

orientation ofthe calibrated unidimensional O-scale. Therefore, the unidimensional

discrimination estimates are higher for Content 3 items, which make those items more

likely to be administrated when the maximum information method is used.

Table 4.9 The mean number of items selected from each content area for maximum

information method

 

 

 

 

 

Difficulty Correlation Content 1 Content 2 Content 3

Panel A: two-dimensional case

(0, 0, 0) 0 2.87 3.92 23.21

0.4 4.39 5.56 20.04

0.8 6.31 6.36 17.33

(-0.6, 0.6, 0) 0 4.32 6.71 18.97

0.4 4.81 6.23 18.96

0.8 5.67 7.51 16.82

Panel B: Three-dimensional case

(0, 0, 0) 0 2.19 3.47 24.34

0.4 3.62 4.36 22.02

0.8 5.30 6.41 18.29

(—0.6, 0.6, 0) 0 3.79 5.45 20.76

0.4 4.53 6.58 18.90

0.8 5.48 6.82 17.70

 

Second, when the three content areas have uneven difficulty levels, relatively more

items are chosen from Content 1 and 2, although Content 3 still dominates. For example,

with an ability correlation of 0, there are on average 4.32 items selected from Content 1,

6.71items from Content 2, and 18.97 items from Content 3. To understand this change,

recall that the mean difficulty is decreased by 0.6 for Content 1 and increased by 0.6 for
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Content 2. Therefore, items from Content 1 or 2 become more informative now for those

who have very low or high ability and thus have higher chance of being selected.

Finally, as abilities become more correlated, items are selected more evenly across

the content areas.

4.5 Item pool usage

Table 4.10 compares the item pool usages for the four methods.

In the two-dimensional case, when the difficulty levels for the three content areas are

the same, the maximum information method results in the highest scaled x2 statistics and

hence has the most unbalanced item pool utilization. For instance, it yields a scaled x2

statistics of 103.13 when the correlation between true abilities is zero. In comparison, the

three content balancing methods produce the scaled )(2 statistics no larger than 94.11.

This is not surprising, because imposing content constraints forces items to be selected

more evenly from all three content areas. As a result, more items are likely to be used.

Among the three content balancing methods, MMM performs the best with the lowest

scaled 12 value, while CCAT does the worst.

The results are different when the difficulty levels for the three content areas are

uneven. The maximum information method now becomes more efficient in item pool

usage. It yields similar scaled x2 value as MMM except for the condition with high

ability correlation. This is consistent with the previous founding that uneven difficulty
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leads to more items selected from Content 1 and 2. Among the three content balancing

methods, MMM still performs the best.

In addition, when the true abilities become more correlated, the scaled x2 statistics

drop for all methods, which implies a more even item pool utilization when

multidimensionality is reduced.

Panel B presents the results for the three-dimensional case, which shows similar

patterns as the two-dimensional case. In particular, the maximum information method

leads to a more balanced item pool usage when the three content areas have uneven

difficulty levels. It yields an even lower scaled x2 statistics than the three content

balancing methods, although the differences are relatively small.

Table 4.10 item pool usage for four methods

 

 

 

 

 

 

Chiiquare

Difficulty Correlation Max

Information CCAT MMM MCCAT

Panel A: Two-dimensional case

(0, 0, 0) 0 103.13 94.11 89.03 90.3

0.4 89.45 83.15 77.82 79.62

0.8 76.68 71.45 67.81 70.74

(-0.6, 0.6, 0) 0 88.85 94.56 88.53 90.15

0.4 84.02 89.6 85.3 87.42

0.8 75.71 74.67 70.71 74.44

Panel B: Three-dimensional case

(0, 0, 0) 0 105.3 101.17 94.08 95.25

0.4 86.93 84.4 78.78 80.44

0.8 70.07 69.42 65.62 67.7

(-0.6, 0.6, 0) 0 98.79 106.32 99.81 101.43

0.4 79.93 88.28 83.94 87.5

0.8 68.01 74.36 70.37 73.02
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4.6 Percentages ofunderexposed and overexposed items

In this study, we also calculate the exposure rate of each item for the four methods.

An item is classified as underexposed if its exposure rate is less than 0.02, and

overexposed if larger than 0.2. The percentages of underexposed and overexposed items

for different simulation conditions are summarized in Table 4.11 and 4.12. The

observations for the two dimensional structures are very similar. For brevity, only the

results for the two-dimensional case are discussed.

In the two—dimensional case, when the three content areas have the same difficulty

level, the maximum information method tends to produce more underexposed and

overexposed items than the three content balancing methods. For example, with a zero

ability correlation, 66.5% of items are underexposed for the maximum information

method, while the percentage drops to 64.5% for CCAT, 63% for MMM, and 63.5% for

MCCAT. Among the three content balancing methods, MMM seems to be the best,

although the differences are rather small.

For other conditions, there are no significant differences among these four methods.

Generally, about 60% of items are underexposed and about 15% of items are

overexposed in the item pool. The high percentages ofunderexposed and overexposed

items are mostly due to the fact that no exposure control technique is employed in this

study.
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Table 4.11 Percentages ofunderexposed and overexposed items for the four methods in

the two-dimensional case

 

 

Correlation Method UnderExposed OverExposed

Panel A: Difficulty= (0, 0, 0)

0 Max Information 66.5 15.5

0 CCAT 64.5 14.3

0 M 63.0 14.0

0 MCCAT 63.5 14.8

0.4 Max Information 64.8 17.0

0.4 CCAT 61.5 15.5

0.4 M 60.3 15.3

0.4 MCCAT 61.3 17.0

0.8 Max Information 61.3 15.8

0.8 CCAT 58.8 15.5

0.8 M 57.3 15.8

0.8 MCCAT 58.0 16.5

Panel B: Difficulty= (-0.6, 0.6, 0)

0 Max Information 62.0 15.5

0 CCAT 64.5 15.0

0 MMM 63.3 15.3

0 MCCAT 65.0 16.3

0.4 Max Information 63.0 16.3

0.4 CCAT 63.3 14.3

0.4 MMM 61.5 15.0

0.4 MCCAT 63 .5 15.0

0.8 Max Information 61.3 17.0

0.8 CCAT 60.0 15.0

0.8 MMM 58.8 14.8

0.8 MCCAT 60.0 15.3
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Table 4.12 Percentages of underexposed and overexposed items for the four methods in

the three-dimensional case

 

 

Correlation Method UnderExposed OverExposed

Panel A: Difficulty= (0, O, 0)

0 Max Information 68.5 15.5

0 CCAT 65.8 14.5

0 M 64.5 14.8

0 MCCAT 65.5 15.3

0.4 Max Information 64.3 15.0

0.4 CCAT 60.5 16.3

0.4 MMM 61.3 15.5

0.4 MCCAT 61.5 16.3

0.8 Max Information 59.0 17.5

0.8 CCAT 57.5 17.3

0.8 M 56.5 17.3

0.8 MCCAT 57.8 16.5

Panel B: Difficulty= (-0.6, 0.6, 0)

0 Max Information 64.8 14.5

0 CCAT 65.8 15.3

0 MMM 64.0 14.5

0 MCCAT 65.3 15.0

0.4 Max Information 62.0 15.5

0.4 CCAT 62.5 15.8

0.4 MMM 61.0 15.3

0.4 MCCAT 62.5 16.3

0.8 Max Information 59.3 16.5

0.8 CCAT 60.0 15.5

0.8 MMM 58.5 14.5

0.8 MCCAT 59.0 15.8
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Chapter 5

Conclusions and Discussions

Most of the current CAT programs are based on the assumption that a

unidimensional IRT model represents the interactions between persons and test items.

However, many researchers have argued that this assumption rarely holds in the real

world and multiple abilities are required to account for the performance on a test.

Meanwhile, content balancing is also a practical consideration in CAT, since lack of

content comparability could pose a threat to the validity of scores, and may not be

acceptable to test takers and test score users. The purpose of this study is to investigate

the effect of fitting a unidimensional IRT model to multidimensional data in a content-

balanced CAT. Specifically, unconstrained CAT with maximum information item

selection method is chosen as the baseline, and the performances of the three content

balancing procedures, the constrained CAT (CCAT), the modified multinomial model

(MMM), and the modified constrained CAT (MCCAT), are evaluated in terms of

measurement precision, item pool utilization and item exposure control.

5.1 Conclusions

Prior research has shown that when test data is unidimensional, unconstrained CAT

with the maximum information method gives the best measurement precision (Kingsbury

and Zara, 1991; Cheng, Chang, & Yi, 2007). In contrast, the use ofcontent balancing

increases the acceptance of the tests by practitioners, but may cause some loss in the

measurement accuracy.
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However, the present study shows that when test data is multidimensional, the

content balancing methods actually result in similar or even better accuracy than the

maximum information method. The reason might be that controlling the percentages of

items from individual content areas insures adequate representation of each dimension of

the data, and hence improves the measurement precision.

The results also show that the difficulty level of the content areas is a significant

factor that affects the performances ofthe four methods. When the content areas have the

same difficulty level, the content balancing methods yield comparable measurement

precisions to the maximum information method. In particular, they produce similar biases,

MSES, and correlations between the true and estimated ability. In addition, the content

balancing methods tend to result in more efficient item pool utilization, and slightly lower

percentages ofunderexposed items.

On the other hand, when the content areas have uneven difficulty levels, the content

balancing methods outperform the maximum information method in terms of

measurement precision. However, the differences shrink as the correlation between true

abilities increases. Moreover, the maximum information method becomes relatively

more efficient in item pool usage. In terms of the percentages of underexposed and

overexposed items, there is no significant difference between the four methods.

The study also shows that the results for the two dimensional structures are

generally consistent, which indicates the results might be generalized to a higher

dimensional space.
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Finally, there is no significant difference between the three content balancing

methods. They perform similarly in terms ofmeasurement precision and item exposure

rate. However, MMM appears to have the most efficient item pool utilization. It yields

the smallest scaled 12 statistics among the three methods across all conditions.

Table 5.1 Comparison between the maximum information method and the three content

balancing methods.

 

Measurement Content Item pool Under Over

Difficulty Method Precision balancing usage exposed exposed

(0, 0, 0) Max

Information . . . .

' srmllar srmllar
Content

Balancing \/ ‘l ‘1

(-0.6, 0.6, 0) Max

Information similar similar similar

Content

Balancirg \i V

Table 5.2 Comparison between the three content balancing methods.

 

 

Measurement Item pool Under Over

Difficulty Method Precision usage exposed exposed

(0. 0, 0) CCAT

MMM \/ similar similar

MCCAT \I (Smaller MSE)

(-0.6, 0.6, 0) CCAT

MMM similar 1/ similar similar

MCCAT

Table 5.1 and 5.2 summarize the conclusions of this study. Overall, the content

balancing methods are better than the maximum information method, especially for tests

with low correlations in the constructs. They not only produce content-balanced tests for

examinees and increase the acceptance ofthe adaptive test by practitioners, but also
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improve the measurement efficiency, particularly when the content areas have uneven

difficulties. On the other hand, the three content balancing methods perform similarly,

but MMM gives the most efficient item pool usage.

The current study has an important practical implication for CAT. Previous literature

has shown that using content balancing may induce a loss in measurement precision for

unidimensional data. In contrast, we show that it may improve measurement precision

when a unidimensional model is fit to multidimensional data. In real testing programs,

unidimensional IRT models are often used because oftheir simplicity and popularity.

Meanwhile, many studies found evidences of multidimensionality in real data. For

example, Reckase et al. (1988) examined a test from the ACT Assessment Battery and

showed that the test was clearly multidimensional. Therefore, if the context in this study

resembles the reality more closely, then content balancing is recommended for its

improved acceptance by practitioners and better measurement precision.

5.2 Future research

There are several potential extensions to this simulation study. First, we only

examine a limited set of item pool structures and the item parameters are simulated from

commonly used distributions. Alternatively, we can examine more general and realistic

item pool structures generated from real test data. Those “real data” evidences can serve

as a good complement to our “pure simulation” results.

Second, the results from this study only apply to fixed-length CATS. Fixed-length

CATs are easy to implement in practice, but they might lead to aberrant response patterns
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(Chen & Ankenmann, 2004). Therefore, examining variable-length CATS can provide an

important robustness check.

Third, in the current simulation study, the three content balancing methods, CCAT,

MMM, and MCCAT, are fixed content balancing methods. That is, the number of items

from each content area is fixed. However, flexible content balancing is used in several

large-scale CAT programs. It allows the number of items from each content area to be

between a lower bound and an upper bound (Stocking & Swanson, 1993). Many methods

have been developed to handle flexible content—balancing control, such as the weighted

deviation model (WDM) (Stocking and Swanson, 1993), the shadow test approach (van

der Linden, 2005b; van der Linden and Chang, 2003), and the weighted penalty model

(Shin, Chien, Way, & Swanson, 2009). These methods can handle many practical

constraints, including item content and item type. It would be interesting to investigate

how these flexible content balancing methods perform in the current context.

Finally, this study yields a large percentage of underexposed and overexposure items,

because no exposure control is applied. However, in addition to content balancing, item

exposure control is another important practical consideration in CAT. Using item

selection purely based on maximum information, some items may be administrated too

frequently and become known to test takers. As a result, test security and reliability can

be threatened. At the same time, when a small proportion of items are over-selected, there

are also a large number of items in the item pool rarely used. Therefore, to increase test

efficiency and security, mechanics needs to be imposed on the item selection procedure .

to control the exposure rate of items. This issue has been addressed in great detail in the

literature (Chang & Ansley, 2003; Georgiadou, Triantafillou & Economides, 2007; Hetter
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& Sympson, 1997; Pastor, Dodd & Chang, 2002; Stocking & Lewis, 1998, 2000; Way,

1998), and a number of strategies for controlling item exposure have been developed (e.g.,

alpha-stratified design, Chang, Qian & Ying, 2001; Sympson & Hetter’s method, 1985).

So a natural extension would be incorporating those item exposure control methods into

the study. This can make our CAT procedure more realistic, and it would be also

interesting to examine the interactions between content balancing and item exposure

control.
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