0‘3 0. If»... “wio 01’. .. .4. a. 0—0 0.. 0. 7:13..” .............; .. . .. 0.0:u-1... 0 J..003‘. .. .0 000 .... ...v 3... ..I 0“... 0. U. 00'. 30.. .0? 0 ’00. . 0 V .’ a I! :- 0.00.0 ..00. ..'.0.. 1.. ... 0.6.. 0000 000000.00 20.. 00 . 0.0 00.0. 00001. 0 0 0.00. . 3:00.00”... 0 0 . .. . . 1.30.0.0. 0 .. ... . 3 .00.... _ 10.00.... .. 1r... 0. ...-7... . 00.000.000.001 0. 0". 0.... 000000. . 22401.0 00 0 0.04.0; . 00.00 . “1.03.00 ......t. 000. 00000. .0100... . .30.. 0. 0.0.0 ”H.000 . cl... ... . 0.3.600. .0. .000 ..(.t!1 0;.“I00000 3.0.0 000. .000. 000000. 0.0,}. 00.00. . .0 ’.‘ . 0 . . . . v 3 7. “0.... .00. 00.00000 0.0.. 10.00‘.‘ ”0... 00. 0.00.. 0. . 0v 0 1.0.00... 000 l... ..0. 0.5;. ..00 0 0. .100 0.‘ .00. 0. 00 0 ...-0.000 0 . 3‘0." — O 0. .0 .U000.10.‘v I?“ ’30.). m .. 9-. 00 0009...: 00 .0 0 0 0 0.00.000 00000.0 1.00.00.10. 00. '- 0 . .3 :‘go‘ 0030. 003. 9‘. .0. . 0000.... a 000..» .0 0. ...-0.3. .0 ..‘0 . .3000 00103.00 300‘ 0. 5.300030 .400...» 000.3. . 0.1. ’00. 0 0 00 0.0 "...-.0030 0 0 0 0 .0. 000. 00‘ 0 10:00 0000.000003L’030; .. 0. 0 0.001. ‘00.. 00 I 0.000 00 ..\ 0...... 0.0.0. 0. 00.90“": 30.0." . 1.00.-.. 0 00.0 .00..)‘00‘ :1. 1‘ 0.0.1.0.). 90:0 .. . . . 0.0.1000... . 99M .3 . .00 0.03 .0 00. . 0’ ...0‘00: 1 >0. . . . . . . . . . . 200.0 7 300.00. . 00! m’wu .00 .00 . . .. . . . . . . . . .. . . . . . . . , . .. .0...0 0.0.0.00‘0AN0 4“ “q 0. . 4... . ... . .. .. . . . . . .. . . 100:0 0. $03.01!.u000 1.0 . .. . . . . . . . .u . . . _ . _ . . . . . . . 0 $1.5. 0000!..m..'00.¢0500100l0 l”.','l‘ 9.03 00000.003300 0 ...7. 0“ . 0 .0‘ . a: 0 u. n 00‘! p. . .U . 00..~vu0'.0.v. . . . ”1‘05, 4 0 0.. 0000. . 0 .... 00- L.- . 1.....0.0..00.0...0..4. .. ' . 00... . 00.?!) 00.0.. ...... . 20.. .00. .. 20300.. 0- 0 ”$9992... m .0. ......0. .0 .. ...!. 0.... 00.. .... . .0 .... “00.0 .0... ...0. .Ioulwa “.0...00. ... .00.. ... .0 . 0 . .... 0. .0. 00.0.0... . . . .oLC-i z 1000:.04000-00fli'i00'0-I 0 00 . . _ . ., . . . . . . . .0...0..100’§'.000..l\0.?000. 003.02.... .0. .2 . .....0. .. a. 030. I. . .... 0... ... . . . . . . . .. . .. . . . . _. 0:... 0.0.0 0. 0. .. .. .0....l0....0.0 .. I03030... 0 0 ... .. 000400003 ."0I|.. .00....03030 0.0 . . . . .. . . . . ... .. . .. ... '1‘3‘0ir Out-0 0:000 .03.“;00f0‘0‘ll‘00 ’g‘rv’ .- 0. 0.00 0.000 . O.0\...~!.‘-000.l.100000 . I 300000? 00.0.00. 0 .Ix.a.00|. \0‘00v 000000 010-..!00000000J. ’.'0.)00‘0l.‘0 ‘(0 06"...S‘i ..‘..v.‘Y"400.3_¢800 00030000000030. 000.0 0 00.000.910.001!00.02.103.1¢I0.0:0900000J19.90. 00 00‘ 4 1‘0 $00.... I.“00.. 00.00-0000‘0113‘0 0.0.0"... .0 . ..‘r...00 00.00.1007"- 0 0.000.000... ’1‘00330‘00. 0.00010 000000. .0 2 '0 0. 0 .9000 0.0010 0 1|.‘J0!-001¢Ie. 000000. \0 W‘Rmmmj 0.. 0 0. 0 '23" 0. 0 v 0 . . ,. 000. .0030 . . .v .0 0. .0 00.00 . 0.. 0 . . 0.. O o 0.0 00-00-09. \100: . I 0 M03010.“ .00l.000.0.0.0. . O n 0 u. . ' ... . .U a . .. . . _ . 4 0n . o v 00. . .0 0. .301... “ .0 . I 0 0 0 . 0 .0 .0 0.! 00.10. .0 . .0 . 0 0 0 0 0 0 0 0 O 0 0 0. 0 0 00 0.0 .. . . 0. . . .. 0. .0 0 .0 .. 0 0 0 0 . 0 0 0 C ..00 0 .0000. .0 .. 0.0. . . 0.0. . . . 0 I 0 . . . . 00 . . 0. 0 . .0. 0.. . . 0 .0 o g. 0 0 0 . 0 . v .0 0 . . .. .0 . 0 0 0 0 0 0. I 00 . I 0 0 . 0 .0. 0 0. . . .. 0 . . I . . I. . n . . 0 . . . . . .. . ... 0 .0. _ 0 0 0 . I . . . 0. 0 0 0. . 00000 .. . .. 0.. 0 .. 0 0 . 0 . r I u I .l 0 . O. 0 0' O O 0 .. “ I 0 . o 0 0 0 0 I 0 0.0 .0 I 000 0 ‘¢ 0 . 0 . 0 0 .0 . 0 . . 0 . . . . .0 . 0 ' A 0 v . 00 . . 0: 0 0 0 00. 0.. .... ..... 0 0 .0 0 0 .0 . .. . 0 :0 Z .0 .0... o l 0. . 0 0 . 0 . I 0 0.0. . 0 2 m 0 0 . I . 0 . v 0. .00 .3 . 0 0 . . 0 . . I . a ... . 0 4 0 0 . 0 .00 0 . II 0 0.0- 0.0. 0 000 I .0 _ 0 . 0. 0 . ... . n v . 0 . . ... 0 .0 0 .... 00 0 I . . 0 0 . 00. 0 0 . . . 0 O I 0.- 0 0 0 I u 0 I .C 0"...0 06 .. 0' 0 .0 0 . 0 . . . 0 . .. 0. .. . 0. .0 . . . 0 0 . 0 0 .. . v. u 0 0 0 0-0 0. 0 I» . . 0 . . .- 0 0 u . ... 0 0 0 0. .0 0, _ 0 o . 0 .0 . .. A . . 0 . 0 .. 0 0 0 . .. .. .. 0 . . . I. 0 . . q . .v '0 .. 0 0 0. .1 . 0 0 00 A . \ . . I 0 . .. . 0 0 . . .I0 0 0 a . 0 . 0 .0 0 . 0 0 . 0 0 .. . 0 0 . 00 n 0 00 . o . 0 .. 0 0 . 0 0 0 ... . . 0. ...I 00. 0 .. o 0 0 . . .. 0 0 . . 0 0.0.. . . . . . . . «I u . 0 I 1. 0 i 0 0 0 I. . c . I . . 0 . . . o I n n 0 I . . . L . . 0 _ 0 :0 «v 0 . .. 0 0. . A. 0.. .000,.0.¢0'0.00'§.0.0 . . 0 n 0. 0 . 0 . 0. . 0 0. .300 0 .0 .....00...00000l00. . I 0. o . 0.0 0 0 .0 . .0 0.0 0 0'. 00 ..0‘.-I0.0...0..00...0 . . 0 .0. 0 0 .0 0 . 0 I . 0 I0. .0 0 .I 00 . I 0 0 00 v 0 0. a . 0‘ 0-0. 0 I n 0 _ I . v . 0 . . .0 . 0 . ‘0. 0. 0 0. .0 0 . . . 0 0. A 0 n .00 0 0 0. 0 0 . . 0 00 00 . . . y . u 0 0 . . 0 0 0 0 . . .. . .0 0 0. . . . . 0 .I I . 0 . 0 00 . . 0 0 0| 0 . . 0 . 0 0 0. . - . . . 0 0000 1 . . . . to 0 0 0 . ..0 .0 . . 0 . .. o .0. . .. 0 V 0 0.0 . 0 . .0 . . . 0. 00 . .0 u . 00: ... . . I o . 0 q 0 0 . .0 n 0 "0 I U 0. 0 0 . l.- 0 _~ 1 0 C 0 I 0 I . 0 . . 0 . 00 ., 0 0'0, . Q. . I . 0 0 . 0 .00 A. . . . , . . . . . . . . . 0 . . . . . . . 0 . . I . 0 . . , . . I r . . ' \ -00 . . 0 2 0 0 0 a 0 0 0 0 0 0 0 a 0 '0'...‘ I...‘r..~0000!00 «umquemsvumwm mom-«tens» ‘ . I 1 O I. . I a .. . . .u . . . . . . s .0. ...b 0.0.... 0 . . .. .0 . . . .0.. . 0 . . .. 00130.... 9... . . . C . . . . 0 . . . . . 0 . 0.010 . I. . . — 0 I O: . . 0 . . 0 .. 0 :0 . . 00 . . 0 0 . 0 . 0 0 0 0 0 i q 0 0: . .. . . . . . . I .. v . . t .. 0 . .. 0. . I . 0 0 I _ . r . 0.0.0 0 0. . . 0 O . 0. . 0 . 00 . I .. 0. ... . u. - . . 0 .0 0 . . u .v. 0 0 v. 0.0 . .007 .000..30 .0 00. . .0 — I 0. 0.00.0 .. . .0 C . . . . . . 0... 0 .0 . .. . . .0.0..00.A000.-I.0000000,0.000 0.0 . ... 0 . I 0 . J .0 0 0 .0 I. . . . 0 . .. .0 . x 0 . 0 u. ..0 . .1 o _ . . 0 . . I 0 n . 0 . . . . 0 0. . 0 0 0 0 . v , . u 0 u . . . I 0 . . 0 I . 0 . I 0 I . 0 . 0. _ . . . 0 V 0 . ., .. . . 0 ..0. 108.0...‘010L. 0O. . . . .... . . .3 . . . . . . . - .... 0 .0 .. . .. . . .00 I. . . ... . ... ..0 0 .. . '00 w... .0. . .04 ..0... :0 0 .00. .0 . 00.”. ......“0... . T000... .... .30 . 0.010).! 0 0. v.0 I. , «0.&0=n000..\'00“010.00 :Hrgfl hgit “flog—l.“ Ha), . . . _ I J I . Z 00 0.. . . 0.. . . ..00 3 . 0. .... 0. . 00 2 . 0 o. .0 . 0 0. . . _ ...... m'o . ..U 0 ..D ..II 0 0 . l0060u...0....0.0.n.00.€ ..0 ..0‘ 7?. Va... 0.. i... ..0 . 00.09300. . 0. ...d. . .0... o” “3.“. 00. 70‘ .. 00’. .000! .03....0: ....0903. I: 100000. _. . . 34“.. . “0'00. HIE-0.0.0.0000 ”“9"... I “Jaw-5.. 90.0.1000.“ . . 00. . O I . . .. . . . . . .. 4 20.0.9.3... . . .0)..0..0....0..I...0_.‘..0 0002:... . 0.. ...L......X8..0.:001.!10...000.... ........!0t....; :8... .... 0.0.2.051: . . . . 3.5.10. . .. I. . . ..I..0. :1... 0.. .. ow. ... . 0‘. .80..\0.0m 0.0” III- 000! 0 .9200. 0‘00... 0." 000. . 10050.13 0.. I. 0 O ... . $0. ..0 .. . '0... .... I . . . ’0. .... . 0 I 0 0 . This is to certify that the thesis entitled EFFECTS OF RADIO FREQUENCY NOISE ON COMMUNICATION CAPABILITIES OF ULTRA-HIGH FREQUENCY PASSIVE TRANSPONDER presented by Gregory Brian Robinson has been accepted towards fulfillment of the requirements for the Master of Science degree in Packaging //) .. .. ,w": - . (A (“6/6 / jMZéL— —- i- Y Major ProksgiggSignature 14%4’7' /(~ 2 c: / o / / Date MSU is an Affirmative Action/Equal Opportunity Employer _ LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 5/08 K:/Prolecc&Pres/ClRC/DateDue,indd EFFECTS OF RADIO FREQUENCY NOISE ON COMMUNICATION CAPABILITIES OF ULTRA-HIGH FREQUENCY PASSIVE TRANSPONDER By Gregory Brian Robinson A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Packaging 2010 Abstract EFFECTS OF RADIO FREQUENCY NOISE ON COMMUNICATION CAPABILITIES OF ULTRA-HIGH FREQUENCY PASSIVE TRANSPONDER By Gregory Brian Robinson The adoption of RFID in supply chain management provides complex issues to be overcome in order to function accordingly. These include people, objects, and atmospheric disturbances. Signal interference impacts essential components such as read range and rate of a functioning system. This research examined radio frequency (RF) noise in three separate buildings. The objective was to determine whether or not RF noise could affect the functionality between a reader and transponder. If RF noise is found at a specific frequency range, (i.e., UHF 902 to 928 MHz in the USA) and combined with certain physical environmental conditions, then this noise can become an interfering factor with an RFID UHF system. This study identified the importance of these components by; one, measuring ambient background noise; and two, introducing additional noise to the test location and whether they varied slightly or dramatically, based on findings from three different locations. The research found different locations having diverse physical make-ups had different effects from both ambient and identified RF noise. Furthermore, the environment with each location played a key role in the amount of interactions resulting in desired communication paths and non-desired paths due to the presence of external RF noise. Acknowledgements I would like to thank my committee: Dr. Robert Clarke and Dr. Gary Burgess of the School of Packaging, and Dr. Dean Aslam of the College of Engineering. I would especially like to thank Dr. Clarke for getting me actively involved in the field of RFID and being a mentor/friend throughout my education. Thanks to Voyantic Ltd. for allowing me to evaluate and use the Tagforrnance Lite starter kit in my research. Special thanks to CEO Jukka Voutilainen and CTO Jesse Tuominen for their time and dedication to answering my questions about your equipment. I would like to thank those students involved in my research: Reed Eppelheimer, Ting Sun, and my other co-workers at the AIRTC. Thank you for all of your encouragement and friendship throughout graduate school. Thank you to all of the professors, staff members, and fellow graduate students in the School of Packaging for supporting me when I needed it. I would like to thank the Statistical Consulting Center, especially, Juan David Munoz-Robayo. Thank you for all of the time you dedicated to my research, specifically, through the statistical analysis process. And finally, I would like to thank my friends and family for your encouragement and patience. Special thanks to Angela Ciccu, for your love and never giving up on me. Thanks Mom, Dad, Dave, Kevin and Kim for your never- ending support and influences in my life. I could not have done this without you. TABLE OF CONTENTS LIST OF TABLES ....... vii LIST OF FIGURES xlil CHAPTER 1: INTRODUCTION ......... 1 CHAPTER 2: LITERATURE REVIEW ................................................. 6 SECTION 2.1: RFID Uses ............ - 7 SECTION 2.2: TRANSPONDER TYPES ................................. 9 Subsection 2. 2.a: Active Transponders ................................................................................... 9 Subsection 2. 2.b: Passive Transponders ................................................................................ 9 Subsection 2. 2. c: Semi-Active Transponders ........................................................................ 10 SECTION 2.3: COMMUNICA‘HON Issues ....... 10 Subsection 2. 3.9: Air Interface ............................................................................................... 10 Subsection 2. 3.b: Transmitting Radio Frequency Signals ..................................................... 11 Subsection 2. 3. 0: High Frequency (HF) ................................................................................. 12 Subsection 2. 3. d: Ultra-High Frequency (UHF) ..................................................................... 13 Subsection 2.3.9: Coupling Communication .......................................................................... 14 Subsection 2. 3. f: Reader-to- Tag Communication .................................................................. 15 Subsection 2. 3. g: Tag-to-Reader Communication ................................................................. 16 SECTION 2.4: NOIse AND INTERFERENCE ....................................... 17 Subsection 2.4.a: Radio Frequency Noise ............................................................................. 17 Subsection 2.4.b: Destructive and Constructive Interference ................................................ 19 Subsection 2.4.c: Presence of Radio Frequency Noise In The Environment ........................ 20 Subsection 2.4.d: Multiple Tag-to-Reader Interference ......................................................... 21 Subsection 2.4.9: Multiple Reader-to- Tag Interference ......................................................... 22 Subsection 2.4.f: Reader-to-Reader Interference .................................................................. 22 Subsection 2.4. g: Jamming Signals ....................................................................................... 24 SECTION 2.5: MEASURING RADIO FREQUENCY Norse ................ 24 Subsection 2. 5.9 :Radio Frequency Site Audit ..................................................................... 24 Subsection 2. 5.b: Voyantic Measurement Unit ...................................................................... 27 Subsection 2. 5. c: Interference Feature .................................................................................. 27 Subsection 2. 5. d: Backscatter Feature .................................................................................. 28 Subsection 2.5.9: Threshold Feature ..................................................................................... 29 SECTION 2.6: SENsrrIVITY UNITS 30 Subsection 2. 6.a: Transmit Power ......................................................................................... 30 Subsection 2. 6.b.' Electric Field Strength ............................................................................... 31 Subsection 2. 6. c: Power on Tag Forward .............................................................................. 31 Subsection 2. 6. d: Theoretical Read Range Forward ............................................................. 32 SECTION 2.7: BACKSCATTER Unrrs 32 Subsection 2.7.9: Backseatter Power .................................................................................... 32 Subsection 2. 7. b: Backseatter Signal Phase ......................................................................... 33 Subsection 2. 7. c: Differential Radar Cross-Section (Delta RCS) .......................................... 33 Subsection 2. 7. d: Power on Tag Reverse ............................................................................. 33 Subsection 2. 7.9: Theoretical Read Range Reverse ............................................................. 34 iv CHAPTER 3: METHODOLOGY .................................................................................................... 35 SECTION 3.1: EQUIPMENT ............................................................................................................ 36 Subsection 3.1.9: Voyantic UHF RFID Measurement Unit .................................................... 37 Subsection 3.1.b: Impinj Speedway Reader .......................................................................... 38 Subsection 3.1.0: Statistical Counseling Center's Data Analysis Model ............................... 38 SECTION 3.2: ENVIRONMENTS/LOCATIONS ..................................................... 39 Subsection 3.2.9: Location 1 .................................................................................................. 39 Subsection 3. 2.b: Location 2 .................................................................................................. 4O Subsection 3. 2. 0: Location 3 .................................................................................................. 41 SECTION 3.3: TESTING PROCEDURE ..... .......................................................... 42 Subsection 3.3.9: Set Up of Voyantic Measurement Unit ...................................................... 42 Subsection 3. 3.b: Interference Feature .................................................................................. 42 Subsection 3.3.0: Threshold Feature ..................................................................................... 43 Subsection 3. 3. d: Backscatter Feature ................................................................................. 43 Subsection 3. 3.9: Set Up of Impinj UHF Reader (Identifiable RF Noise Source) .................. 45 Subsection 3. 3. f: Data Collection ........................................................................................... 45 SECTION 3.4: DATA ANALYSIS PROCEDURE .................................................................................. 46 CHAPTER 4: RESULTS- - ............................................................................ 48 SECTION 4.1: STATISTICAL ANALYSIS ........................................................................................... 49 Subsection 4.1.9: Statistical Analysis. ................................................................................... 49 Subsection 4.1.b: Check Statistical Assumptions .................................................................. 50 Subsection 4.1.0: Select Variance Co-valence Matrix for Repeated Measures .................... 52 Subsection 4.1.d: Performing F-test for Significance ............................................................. 53 Subsection 4.1.9: Fit Final Model ........................................................................................... 54 Subsection 4.1.f: Plot Results ................................................................................................ 55 SECTION 4.2: THEORETICAL AND ACTUAL CONNECTIONS BETWEEN COMMUNICATION CAPABILITIES ...... _- - 56 SECTION 4.3: SCENARIO 1 ...................................................... .......................... 60 SECTION 4.5: SCENARIO 2 ............................................................................... 79 SECTION 4.6: NULL HYPOTHESIS FINDINGS .................................................................................. 95 CHAPTER 5: CONCLUSIONS ...................................................................................................... 99 SECTION 6.1: LOCATION 1 ................................................................................. 101 SECTION 6.2: LOCATION 2 .......................................................................................................... 103 SECTION 6.3: LOCATION 3 .......................................................................................................... 104 SECTION 6.4: OVERALL CONCLusIONS ....................................................................................... 104 CHAPTER 6: FUTURE WORK ................................................ 107 APPENDIX A: Interference Graphs - Received Power (dBm) vs. Frequency Sweep (800 to 1.000 MHz) for All Locations from Tagforrnance -- ................ 11 1 APPENDIx 3: Testing Layouts and Set up ------ -- -- 113 < APPENDIX C: Mapped Locations of Nearby Cell Towers to Each Location ..................... 122 v ' f“ ,,L , Will I 9925?}. l :PiEICII l I”, le 'I":\vi .. .. . ml - Inn dun. d .90... .\ fingfl‘ thud APPENDIX D: Scenario 1 Tables — Presence of Ambient Radio Frequency Noise ......... 125 APPENDIX E: Scenario 2 Tables - Combination of Ambient and Identified RF Noise 162 APPENDIX F: Location 1 — Michigan State University Auto-ID Research and Testing Center Office Area Tables and Figures 199 APPENDIX G: Location 2 - Michigan State University School of Packaging Machine Lab Tables and Figures 227 APPENDIX H: Location 3 — Michigan State University Engineering Building Basement Tables and Figures 255 REFERENCES ............................... - 283 vi up. '5' A up.‘ a itvv ‘37-; List of Tables Table 1: UHF Frequencies throughout the World (Sanghera, 2007) .................. 13 Table 2: Example of Excel data formatted to use in Statistical Analysis Software (SAS) .................................................................................................................. 46 Table 3: Selecting the Most Appropriate Variance-Covalence Matrix ................. 53 Table 4: Example of F-test Results ..................................................................... 53 Table 5: Transmit Power (dBm) Scenario 1 Estimations .................................... 62 Table 6: Transmit Power (dBm) Scenario 1 Comparisons .................................. 64 Table 7: Scenario 1 — Sensitivity Unit Performance Summary at 924 MHz ........ 76 Table 8: Scenario 1 — Backscatter Unit Performance Summary at 908, 912, 914, and 916 MHz ...................................................................................................... 76 Table 9: Ideal Outcome Based on Causal Relationship for Sensitivity Units at 924 MHz .................................................................................................................... 77 Table 10: Ideal Outcome Based on Causal Relationship for Backscatter Units at 908, 912, 914, and 916 MHz .............................................................................. 77 Table 11: Scenario 1 — Number of Differences and Similarities for Operating Frequency Range ............................................................................................... 78 Table 12: Transmit Power (dBm) Scenario 2 Estimations .................................. 81 Table 13: Transmit Power (dBm) Scenario 2 Comparisons ................................ 83 Table 14: Scenario 2 - Sensitivity Unit Performance Summary at 906, 908, 922, and 924 MHz ...................................................................................................... 94 Table 15: Scenario 2 - Backscatter Unit Performance Summary at 900 and 902 MHz .................................................................................................................... 94 Table 16: Scenario 2 — Number of Differences and Similarities for Operating Frequency Range ............................................................................................... 95 Table 17: Ideal Outcome Based on Causal Relationship for Sensitivity Units at 906, 908, 922, and 924 MHz .............................................................................. 96 vii 4.3. v -|\ I I ... .0 I' I ‘fll ‘ ‘ hI trawl 5| . . ‘4 :IEU j, A: -‘vb . ' I: . .Zfi‘ D I\ 3 f CL.) . . i—‘T; 3.1) b (3,; II P ('1‘ 5-.— r\_ 0 it: 2: :’ I, ".A v?‘ Table 18: Ideal Outcome Based on Causal Relationship for Backscatter Units at 900 and 902 MHz ............................................................................................... 96 Table 19 Electric Field Strength (V/m) Scenario 1 Estimations ....................... 130 Table 20 Electric Field Strength (V/m) Scenario 1 Comparisons ..................... 132 Table 21 Absolute Power on Tag Forward (dBm) Scenario 1 Estimations ..... 134 Table 22 Absolute Power on Tag Forward (dBm) Scenario 1 Comparisons 136 Table 23 Theoretical Read Range Fonivard (m) Scenario 1 Estimations ......... 138 Table 24 Theoretical Read Range Forward (m) Scenario 1 Comparisons ...... 140 Table 25: Absolute Backscatter Power (dBm) Scenario 1 Estimations ............. 142 Table 26: Absolute Backscatter Power (dBm) Scenario 1 Comparisons .......... 144 Table 27: Absolute Received Power (dBm) Scenario 1 Estimations ................ 146 Table 28: Absolute Received Power (dBm) Scenario 1 Comparisons .............. 148 Table 29: Absolute Delta RCS (stqm) Scenario 1 Estimations ...................... 150 Table 30: Absolute Delta RCS (stqm) Scenario 1 Comparisons ................... 152 Table 31: Absolute Power on Tag Reverse (dBm) Scenario 1 Estimations ..... 163 Table 32: Absolute Power on Tag Reverse (dBm) Scenario 1 Comparisons 165 Table 33: Theoretical Read Range Reverse (m) Scenario 1 Estimations ......... 158 Table 34: Theoretical Read Range Reverse (m) Scenario 1 Comparisons 160 Table 35: Electric Field Strength (V/m) Scenario 2 Estimations ....................... 167 Table 36: Electric Field Strength (V/m) Scenario 2 Comparisons ..................... 169 Table 37: Absolute Power on Tag Forward (dBm) Scenario 2 Estimations ..... 171 viii Table 38: Absolute Power on Tag Forward (dBm) Scenario 2 Comparisons 173 Table 39: Theoretical Read Range Forward (m) Scenario 2 Estimations ......... 175 Table 40: Theoretical Read Range Fowvard (m) Scenario 2 Comparisons 177 Table 41: Absolute Backscatter Power (dBm) Scenario 2 Estimations ............. 179 Table 42: Absolute Backscatter Power (dBm) Scenario 2 Comparisons .......... 181 Table 43: Absolute Received Power (dBm) Scenario 2 Estimations ................ 183 Table 44: Absolute Received Power (dBm) Scenario 2 Comparisons .............. 185 Table 45: Absolute Delta RCS (stqm) Scenario 2 Estimations ...................... 187 Table 46: Absolute Delta RCS (stqm) Scenario 2 Comparisons ................... 189 Table 47: Absolute Power on Tag Reverse (dBm) Scenario 2 Estimations ..... 191 Table 48: Absolute Power on Tag Reverse (dBm) Scenario 2 Comparisons 193 Table 49: Theoretical Read Range Reverse (m) Scenario 2 Estimations ......... 195 Table 50: Theoretical Read Range Reverse (m) Scenario 2 Comparisons 197 Table 51: Transmit Power (dBm) Location 1 Estimations ................................. 201 Table 52: Transmit Power (dBm) Location 1 Comparisons .............................. 202 Table 53: Electric Field Strength (V/m) Location 1 Estimations ........................ 204 Table 54: Electric Field Strength (V/m) Location 1 Comparisons ..................... 205 Table 55: Absolute Power on Tag Fonivard (dBm) Location 1 Estimations ...... 207 Table 56: Absolute Power on Tag Forward (dBm) Location 1 Comparisons 208 Table 57: Theoretical Read Range Forward (m) Location 1 Estimations ......... 210 Table 58: Theoretical Read Range Forward (m) Location 1 Comparisons ..... 211 Table 59: Absolute Backscatter Power (dBm) Location 1 Estimations ............. 213 Table 60: Absolute Backscatter Power (dBm) Location 1 Comparisons ........... 214 Table 61: Absolute Received Power (dBm) Location 1 Estimations ................. 216 Table 62: Absolute Received Power (dBm) Location 1 Comparisons .............. 217 Table 63: Absolute Delta RCS (stqm) Location 1 Estimations ...................... 219 Table 64: Absolute Delta RCS (stqm) Location 1 Comparisons .................... 220 Table 65: Absolute Power on Tag Reverse (dBm) Location 1 Estimations ..... 222 Table 66: Absolute Power on Tag Reverse (dBm) Location 1 Comparisons... 223 Table 67: Theoretical Read Range Reverse (m) Location 1 Estimations ......... 225 Table 68: Theoretical Read Range Reverse (m) Location 1 Comparisons ..... 226 Table 69: Transmit Power (dBm) Location 2 Estimations ................................. 229 Table 70: Transmit Power (dBm) Location 2 Comparisons .............................. 230 Table 71: Electric Field Strength (V/m) Location 2 Estimations ........................ 232 Table 72: Electric Field Strength (V/m) Location 2 Comparisons ..................... 233 Table 73: Absolute Power on Tag FonNard (dBm) Location 2 Estimations ...... 235 Table 74: Absolute Power on Tag Forward (dBm) Location 2 Comparisons 236 Table 75: Theoretical Read Range Forward (m) Location 2 Estimations ......... 238 Table 76: Theoretical Read Range Forward (m) Location 2 Comparisons ....... 239 Table 77: Absolute Backscatter Power (dBm) Location 2 Estimations ............. 241 Table 78: Table 79: Table 80: Table 81: Table 82: Table 83: Table 84: Table 85: Table 86: Table 87: Table 88: Table 89: Table 90: Table 91: Table 92: Table 93: Table 94: Table 95: Table 96: Table 97: Absolute Backscatter Power (dBm) Location 2 Comparisons ........... 242 Absolute Received Power (dBm) Location 2 Estimations ................. 244 Absolute Received Power (dBm) Location 2 Comparisons .............. 245 Absolute Delta RCS (stqm) Location 2 Estimations ...................... 247 Absolute Delta RCS (stqm) Location 2 Comparisons .................... 248 Absolute Power on Tag Reverse (dBm) Location 2 Estimations ...... 250 Absolute Power on Tag Reverse (dBm) Location 2 Comparisons... 251 Theoretical Read Range Reverse (m) Location 2 Estimations ......... 253 Theoretical Read Range Reverse (m) Location 2 Comparisons ..... 254 Transmit Power (dBm) Location 3 Estimations ................................. 257 Transmit Power (dBm) Location 3 Comparisons .............................. 258 Electric Field Strength (V/m) Location 3 Estimations ........................ 260 Electric Field Strength (V/m) Location 3 Comparisons ..................... 261 Absolute Power on Tag Forward (dBm) Location 3 Estimations ...... 263 Absolute Power on Tag FonNard (dBm) Location 3 Comparisons 264 Theoretical Read Range Forward (m) Location 3 Estimations ......... 266 Theoretical Read Range Forward (m) Location 3 Comparisons ....... 267 Absolute Backscatter Power (dBm) Location 3 Estimations ............. 269 Absolute Backscatter Power (dBm) Location 3 Comparisons ........... 270 Absolute Received Power (dBm) Location 3 Estimations ................. 272 xi Table 98: Absolute Received Power (dBm) Location 3 Comparisons .............. 273 Table 99: Absolute Delta RCS (stqm) Location 3 Estimations ...................... 275 Table 100: Absolute Delta RCS (stqm) Location 3 Comparisons .................. 276 Table 101: Absolute Power on Tag Reverse (dBm) Location 3 Estimations 276 Table 102: Absolute Power on Tag Reverse (dBm) Location 3 Comparisons .. 276 Table 103: Theoretical Read Range Reverse (m) Location 3 Estimations ....... 276 Table 104: Theoretical Read Range Reverse (m) Location 3 Comparisons ..... 276 xii List of Figures Figure 1: Diagram of Backscatter Signal Transmission between a Reader and Transponder (Mayordomo, Berenguer, Garcia-Alonso, Fernandez, & Gutierrez, 2009) ................................................................................................................. 15 Figure 2: An example of The Voyantic Interference Feature. ............................. 28 Figure 3: An example of The Voyantic Backscatter Feature with 30 Trials ......... 29 Figure 4: An example of The Voyantic Threshold Feature with 30 Trials ........... 30 Figure 5: The Voyantic Tagforrnance Kit Components. ...................................... 37 Figure 6: Location 1 — The Michigan State University Auto-ID research and Testing Center (MSU AIRTC) ............................................................................. 30 Figure 7: Location 2 — The Packaging Building Machine Lab, Front View .......... 40 Figure 8: Location 2 - The Packaging Building Machine Lab, Right Side View.. 40 Figure 9: Location 3 — The Engineering Basement, Front/Left View ................... 41 Figure 10: Location 3 — The Engineering Basement, Rear View ........................ 41 Figure 11: Example of Data Distribution ............................................................. 51 Figure 12: Example Box Plots Comparing Locations .......................................... 52 Figure 13: Scenario 1 — Transmit Power (dBm) vs. Frequency (MHz) ............... 61 Figure 14: Scenario 1 — Electric Field Strength (V/m) vs. Frequency (MHz) ..... 66 Figure 15: Scenario 1 - Absolute Power on Tag Fonrvard (dBm) vs. Frequency (MHz) .................................................................................................................. 67 Figure 16: Scenario 1 — Theoretical Read Range Forward (m) vs. Frequency (MHz) .................................................................................................................. 68 Figure 17: Scenario 1 - Absolute Backscatter Power (dBm) vs. Frequency (MHz:9 Figure 18: Scenario 1 - Absolute Received Power (dBm) vs. Frequency (MHz) 70 Figure 19: Scenario 1 - Absolute Delta RCS (stqm) vs. Frequency (MHz) ..... 71 Figure 20: Scenario 1 — Absolute Power on Tag Reverse (dBm) vs. Frequency (MHz) .................................................................................................................. 72 xiii Figure 21: Scenario 1 - Theoretical Read Range Reverse (m) vs. Frequency (MHz) .................................................................................................................. 73 Figure 22: Scenario 2 — Transmit Power (dBm) vs Frequency (MHz). ............... 80 Figure 23: Scenario 2 - Electric Field Strength (V/m) vs. Frequency (MHz) ....... 85 Figure 24: Scenario 2 - Absolute Power on Tag Fonrvard (dBm) vs. Frequency (MHz) .................................................................................................................. 86 Figure 25: Scenario 2 - Theoretical Read Range Forward (m) vs. Frequency (MHz) .................................................................................................................. 87 Figure 26: Scenario 2 - Absolute Backscatter Power (dBm) vs. Frequency (MHz) ........................................................................................................................... 88 Figure 27: Scenario 2 - Absolute Received Power (dBm) vs. Frequency (MHz) ........................................................................................................................... 89 Figure 28: Scenario 2 - Absolute Delta RCS (stqm) vs. Frequency (MHz) ...... 90 Figure 29: Scenario 2 - Absolute Power on Tag Reverse (dBm) vs. Frequency (MHz) .................................................................................................................. 91 Figure 30: Scenario 2 - Theoretical Read Range Reverse (m) vs. Frequency (MHz) .................................................................................................................. 92 Figure 31: Scenario 1 - Location 1 Received Power (dBm) vs. Frequency Sweep (800 - 1,000 MHz) ............................................................................................. 112 Figure 32: Scenario 2 - Location 1 Received Power (dBm) vs. Frequency Sweep (800 - 1,000 MHz) ............................................................................................. 113 Figure 33: Scenario 1 - Location 2 Received Power (dBm) vs. Frequency Sweep (800 - 1.000 MHz) ............................................................................................. 114 Figure 34: Scenario 2 - Location 2 Received Power (dBm) vs. Frequency Sweep (800 - 1,000 MHz) ............................................................................................. 115 Figure 35: Scenario 1 - Location 3 Received Power (dBm) vs. Frequency Sweep (800 - 1,000 MHz) ............................................................................................. 116 Figure 36: Scenario 2 - Location 3 Received Power (dBm) vs. Frequency Sweep (800 - 1,000 MHz) ............................................................................................. 117 Figure 37: Location 1 - Michigan State University Auto-ID Research and Testing Center ............................................................................................................... 1 19 xiv Figure 38: Location 2 - School of Packaging Machine Lab ............................... 120 Figure 39: Location 3 - Engineering Building Basement ................................... 121 Figure 40: Location of Cell Towers Around Location 1 ..................................... 123 Figure 41: Location of Cell Towers Around Locations 1 and 2 ......................... 124 Figure 42: Location 1 - Transmit Power (dBm) vs. Frequency (MHz) ............... 200 Figure 43: Location 1 - Electric Field Strength (V/m) vs. Frequency (MHz) ...... 203 Figure 44: Location 1 - Absolute Power on Tag Fonrvard (dBm) vs. Frequency (MHz) ................................................................................................................ 206 Figure 45: Location 1 - Theoretical Read Range Forward (m) vs. Frequency (MHz) ................................................................................................................ 209 Figure 46: Location 1 - Absolute Backscatter Power (dBm) vs. Frequency (MHz) -- ................................................................................................................. 212 Figure 47: Location 1 - Absolute Received Power (dBm) vs. Frequency (MHz) - - - ................................................................................................................... 215 F:iQLIre 48: Location 1 - Absolute Delta RCS (stqm) vs. Frequency .............. 218 FiQUre 49: Location 1 - Absolute Power on Tag Reverse (dBm) vs. Frequency ( M Hz) ................................................................................................................ 221 FiQUIe 50: Location 1 - Theoretical Read Range Reverse (m) vs. Frequency MHz) ................................................................................................................ 224 r:iQLIre 51: Location 2 - Transmit Power (dBm) vs. Frequency (MHz) ............... 228 RiQUre 52: Location 2 - Electric Field Strength (V/m) vs. Frequency (MHz) ...... 231 ( iSure 53: Location 2 - Absolute Power on Tag Fonivard (dBm) vs. Frequency 'Vle) ................................................................................................................ 234 R ~ ( 'Sure 54: Location 2 - Theoretical Read Range Fonrvard (m) vs. Frequency 'Vl Hz) ................................................................................................................ 237 iglare 55: Location 2 - Absolute Backscatter Power (dBm) vs. Frequency (MHz) ‘ ‘ - ~ . . ................................................................................................................... 240 iSure 56: Location 2 - Absolute Received Power (dBm) vs. Frequency (MHz) ‘ ‘ ‘ - - . ................................................................................................................... 243 XV Figure 57: Location 2 - Absolute Delta RCS (stqm) vs. Frequency (MHz) 246 Figure 58: Location 2 - Absolute Power on Tag Reverse (dBm) vs. Frequency (MHz) ................................................................................................................ 249 Figure 59: Location 2 - Theoretical Read Range Reverse (m) vs. Frequency (MHz) ................................................................................................................ 252 Figure 60: Location 3 - Transmit Power (dBm) vs. Frequency (MHz) ............... 256 Figure 61: Location 3 - Electric Field Strength (V/m) vs. Frequency (MHz) ...... 259 Figure 62: Location 3 - Absolute Power on Tag Fonivard (dBm) vs. Frequency (MHz) ................................................................................................................ 262 Figure 63: Location 3 - Theoretical Read Range Fonrvard (m) vs. Frequency (MHz) ................................................................................................................ 265 Figure 64: Location 3- Absolute Backscatter Power (dBm) vs. Frequency (MHz) . ................................................................................................................... 268 Figure 65: Location 3 - Absolute Received Power (dBm) vs. Frequency (MHz) ................................................................................................................... 271 F:iQure 66: Location 3 - Absolute Delta RCS (stqm) vs. Frequency (MHz) 274 F:iQure 67: Location 3 - Absolute Power on Tag Reverse (dBm) vs. Frequency (M Hz) ................................................................................................................ 277 ( RQure 68: Location 3- Theoretical Read Range Reverse (m) vs. Frequency MHz) ................................................................................................................ 280 xvi Chapter 1: Introduction This chapter focuses on a growing topic of interest concerning transponder performance in UHF RFID systems in the presence of radio frequency noise. A brief discussion on influential people and Special equipment will set up further discussion on how testing began. This chapter discusses the lack of publications surrounding noise and interference, why radio frequency noise iS important, how transponder performance is affected by noise, and what hypotheses were tested in order to determine significance differences between Communication capabilities. Flinn H 7.1.. I! In” II r rut I1 0., Ln‘ 'vIul‘ I :3": 1 If .1- “ This research topic began by measuring RF power levels of an interrogation zone at various geological areas within the Michigan State University (MSU) Auto-Identification Research and Testing Center (AIRTC). Coordinated by Robert H. Clarke, Ph.D, the MSU AIRTC researches topics related to auto-identification including process control, inventory management, barcoding, RFID and other applications. Power measurement testing eventually led tO interest in spectrum analyzers for more accurate measurements than what was used in previous tests. Continued interest in the topic of RF power led to an opportunity from a Company with a new measurement device called the Voyantic Measurement Unit. This device was designed by Voyantic Ltd Staff, led by CEO Jukka Voutilainen and CTO Jesse Tuominen. It was borrowed by the AIRTC as part of a Starting kit trial. This device provided an opportunity to further test RF power levels but also provided an Interference Feature that monitored ambient and identified RF signals within the 800 to1,000 Megahertz (MHz) band. But how does power measurement relate to RFID application and the I mpact of noise in and around packaging? There has been an increasing interest a h(:I usage of radio frequency identification (RFID) technology in supply chain management. Radio frequency (RF) noise can be generated by an unintended source, Qften a device that normally does not emitted a signal at all (Thomas, & McLain, 2009). There has been a lack in open discussion about RF noise in the RFID ..A,A*¢ funni- ...: A, ' . fic‘» v fax“- 9. I l I l—u ii“ I 1.“! All I Ind v. SI';"'N db. .3. in" In. - I" I: If. SI 4" PSI» :1. P J "i 4.. 5.P"“II ' ‘ “1:4 '3 ,‘IF'I world. The difference between noise and interference is often blurred when discussing RFID. The term “noise” can be defined as an unwanted electrical wave or energy that is present in a signal/location (Sanghera, 2007). Some literature refers to the term “interference” but not many discuss the topic in great detail as it relates to RFID technology. Interference can be defined as the superposition of two or more waves, which results in the creation of a new wave pattern (Brown, Patadia, Dua, & Meyers, 2007). RF interference has been a known source of interference for electronic devices for years (Hallas, 2009). The two terms are treated as meaning the same meaning; however, this is not always accurate for many RFID applications. RF ID systems can be prone to complications just like other technologies. Complications can occur for a number of reasons such as installation issues, er‘Ivironmental effects (i.e., metal or liquid-based objects), RF noise, and size of inte rrogation zone. Any of these can cause serious performance issues for the System. Thus, every RFID application requires a customized setup based on the n '4 l'TIber of potential complications that exist in a location. Implementation is critical to the accuracy and efficiency of an ultra-high frequency (UHF) RFID S5’Stem. A pre-installation site survey can help identify some potential c<>r‘r‘iplications with the RFID system (Sweeney, 2007). This site analysis should be conducted at locations such as packaging facilities, office buildings, and I‘ . es.earch laboratorres. RF noise can be the cause of a number of different effects on the system’s Q Deration capabilities (transmitting, receiving, and energy gathering). Working 3 ‘ lib-r JIui ' 1 "il ‘5. o O! ... under the assumption that RF noise will likely be present in most environments, concern for how it could affect the communication capabilities of that system is justifiable. When the term interference is used during troubleshooting in a manufacturing plant, for example, it normally refers to UHF RF waves experiencing difficulties with metals or liquid-based substances somehow obstructing the signal's path between the reader and transponder. Seldom do people refer to the possibility that the system’s inability to work appropriately could be due to the amount of RF noise within the operating frequency. The main objective of this study is to provide quantitative information on the influence of RF noise upon the operation of an RFID system. Communication capabilities in general consist of transmitting and receiving Signals between the r eader and transponder. RF noise is not easily detected and can be virtually in“Dossible to locate if knowledge and appropriate equipment are lacking. When RF noise overlaps with the operating frequency of the system, it may disrupt the consistency/frequency rate of detectable backscatter response signals from the tra nsponder, or interfere with the transmitted signals from the reader before they reach the transponder. Even in a situation where RF noise is present, there may not be an interfering effect on system operation. Since RF noise consists of a m ixture of different radio frequency waves at various frequencies, it is possible that the degree of overlap between them and the operating frequencies (i.e. UHF S()2 — 928 MHz) is negligible. This study is to identify and quantify the effects of RF noise on a UHF massive transponder installed in different environments. To that end, two 4 qu,‘ - o-Ipl scenarios will be used; one in which only ambient RF noise is present and one in which the same ambient RF noise is combined with noise produced by an identifiable/known source. In order to test and evaluate these objectives, the following null hypotheses were developed. Hypotheses o Hypothesis 1: The presence of ambient radio frequency noise within the Operating frequency range of an ultra-high frequency radio frequency identification system will NOT have an effect on the communication capability of a passive transponder. o Hypothesis 2: Introducing additional radio frequency noise from an identified source, within the focused operating frequency range of 902 to 928 MHz, for a given location will NOT have an effect on the communication capabilities of a passive transponder. o Hypothesis 3: The surrounding environment in which a radio frequency identification system is implemented will NOT have an effect on the communication capabilities of a passive transponder. Chapter 2: Literature Review This chapter will set the stage for understanding the importance of RF noise. This section provides detailed background information on topics ranging from transponder types to measuring RF noise. The different communication capabilities will be defined and discussed in engineering and conceptual aspects RF noise can play a key role in an RFID system operation. Other related concepts include transmitting and receiving, communication types, interference, and measuring performance. J 7T1 v.9" '3'. I‘ y'fit I 5* “I“ It U I nip-wimp 0;! ||\- ‘ 1 Iv. % PHD Use. RFID systems consist of a transponder, reader antenna(e), reader, and a computer (middleware). Data is exchanged between transponder and reader through wireless connections operating within the same frequency (Xiao, Yu, Wu, Ni, Janecek, & Nordstad, 2007). These components are utilized to create unique systems for specific applications. RFID Uses RF ID technology has been around for many years, however, new application and innovations have made it a top 10 innovative technology in the past 25 years (Top 25: Innovations, 2005). Businesses looking for cost savings and mandates declared by Wal-Mart and Department of Defense (DOD) pushed growth in RFID. It continues to develop as a technology with increasing interest in supply chain management systems. This interest has also fueled the growth of r eSearch and testing center to develop standards and practices to produce application solutions, however, there are few plug and play solutions that apply to all invested parties (Singh, McCartney, Singh, & Clarke, 2007). RF ID has been accepted in three main areas; transportation and distribution, manufacturing, and security (Singh, McCartney, Singh, & Clarke, 2007). Other areas of interest include animal tagging, waste management attendance, tracking, and road tolls. Some areas of application are not as qependable as some expect them to be. Accidental Shipping, mislabeling, and IQSs/theft still occur (Singh, McCartney, Singh, & Clarke, 2007). 1:— I. d-F'Plfi" Add V U} I ...A'I‘Al'. A German retailing chain by the name of Metro opened a “store of the future” that implemented RFID tags in their inventory management system to create a store entirely dependent on RFID-tagged shelf items. These smart shelves were designed to provide information on product quantities, create self- servicing information kiosks and Smart Scales. The main focus of this trial run was to display how to cut expenses with the technology (Kanellos, 2003). However, trials such as this created excitement about the potential of this technology thus, increased the hype around it. Over-the counter (OTC) medication labels have been equipped with external tags behind them. This is used in inventory management and security fTom theft/counterfeiting. Similar ideas have been applied to OTC before “smart '8 bels”. Electronic article surveillance (EAS) tags are a subdivision of RFID teChnology, and are commonly used as an anti-theft device (Bix, Sansgiry, Clar’ke, Cardoso, 8. Shringarpure, 2004). These tags are applied directly to the C>l-Itside of packages. This can cause problems with covering essential product inf(Irmation contained on the labeling of the package. Studies conducted on this iSSue conclude that these external tags do obstruct essential information required by law (Bix, Sansgiry, Clarke, Cardoso, & Shringarpure, 2004). Therefore, RFID tags that are placed behind a paper label helps eliminate that issue. To understand more about the operation of an RFID system, it is heCessary to understand the components that can be affected by RF noise. Tiiispon 7h \ WIS. l V - F NIT-q I’r c Inn-I «I "3'"! r. at; l.. II A. T" ‘R 31"", .U - ‘A I“??? \ u my, § 9 .‘r- m . . :563: I \‘2' I,“ Transponder Types Three basic types of transponders are commonly used with RFID systems: passive, semi-passive, and active. Each type of transponder can be used for a number of applications. Active Transponders Active transponders are equipped a battery power source for initiating communication by transmitting their own signal. The addition of this battery source to the transponder eliminates the need for a wakeup signal from the reader (Sanghera, 2007). Active transponders depend on the battery to function. The life span of the battery is will vary depending on the usage of the transponder. The battery allows for the transmitted signal from the transponder to tr avel longer distance at high signal strength. This internal power source allows the transponder to operate in two different ways: it can either stay actively transmitting its signal all the time, or wake up only when it receives a signal from the reader. Active transponders have the ability to transmit a signal over a distance of 100 feet (Garfinkel & Rosenberg, 2006). The memory capacity of this tyne is generally larger than that of semi-passive and passive types due to their la rQer overall size (Sanghera, 2007)‘ ‘ aSsive Transponders A passive transponder does not have a battery power source, and, thus, reIies on the power from the reader to activate the chip (Weisman, 2002). This D"(M/ides an advantage in terms of the lifespan of this transponder compared to 9 . .. ‘i ‘ a " IP‘! ll \JP' u‘- '4 n.‘. 1". I m: L. .3“: a}. an active type. Passive transponders have low data throughput and require energy from the reader to function (Weisman, 2002). It must be in the interrogation zone of the reader in order to operate, limiting the read range of the transponder compared to the longer range of an active type. Depending on the size of the Chip, the memory capacity varies from 1 bit to several kilobytes (Sanghera, 2007). Semi-passive Transponders Semi-passive transponders contain attributes of both active and passive transponders. They contain their own battery source similar to active transponders, however, this power source is not used to initiate communication, and it is only used to operate the circuitry. The transponder still needs to gather adequate power from the reader in order to communicate to the reader. The advance for semi-passive types is a longer read distance than passive types because of the battery. Operation is dependent on battery life. The lifespan of this type is intermediate between that of passive and active transponders (Sanghera, 2007). communication Issues Air Interface Specific parameters for air interface communication have been set according to the lntemational Organization for Standardization (ISO) 18000-6 for the 860 — 980 MHz frequency range. This ISO standard defines common terms and provides technical specifications to promote compatibility among RFID 10 In. " :ur'v '- .nl “Ii I...“ 1~_‘ ‘F'I 1 ‘a l ' 1 I. equipment. Communication between the reader and transponder is based on modulation. Carrier/reader modulation is done by data transmission in pulses at different time intervals. The time between two intervals results in successful delivery of data. The reader uses an “interrogator talks first” method, which means it must attempt communication with the transponder first. The transponder must receive a decodable command from the reader before transmitting a response. Tag modulation occurs when the transponder switches between one of several states. The ‘space state’ is considered the normal condition, with the transponder being energized and ready to receive and decode data. The ‘mark state’ is a stand-by alternative created by switching antenna configuration. The more antennae used in configuring a system, the more channels of communication are needed to avoid interfering with each other (ISO, 2004). Transmitting Radio Frequency Signals When dealing with passive transponders, the transmission of RF Signals/power becomes essential to the operation of the RFID system. RFID sI'stems function by sending and receiving pulses from an antenna. This pulse is tbiz-3n transformed in to energy that is used to activate a transponder on an object. The transponder sends back a signal that is the reciprocal of the RF pulse received (Shirokov, 2009). RF power in any given environment is produced by 9 Signal at a RF wave pitch ranging from 3 Hertz (Hz) to 300 Gigahertz (GHz). The transmission of outside signals can prevent the passive transponder from gathering enough signal power to generate a response (Sweeney, 2007). Broadcasting a transmission through airspace allows that signal to be transmitted 11 1" C‘- .H I v.0: n.- ‘vi a certain distance from the source of the transmission. The transponder is can be limited outside factors such as the environment (Mayordomo, Ubarretxena, Valderas, Berenguer, & Gutierrez, 2007). Certain transponder types rely heavily on the presence of space to function properly. The term “free air” refers to space that is free of RF inhibitors such as RF-reflecting and -absorbing materials. High Frequency (HF) RF ID operation signals can occupy a large range of different wave bands within the RF Spectrum. The frequency band that a transponder requires for communication is referred to as the operating frequency (Glover & Bhatt, 2006). In the US, the two frequencies that have sparked the most interest in supply chains are high frequency and ultra-high frequency (UHF) wave bands. The HF band ranges from 3 to 30 Megahertz (MHz), with most RFID systems in this frequency band operating at 13.56 MHz. This frequency is available worldwide. The energy waves that are generated within the HF range can only maintain that frequency, at a Specific concentration, to about a meter away from the signal Source. The HF wavelength range from 10 meters (m) — 100 m provides an advantage because the waves are able to penetrate certain materials. Transponders operating in this frequency range have generated much interest for it(PITT-level tagging (Sanghera, 2007). HF transponders are suitable for limited read range applications. 12 w- [an _ . Jul 3' “I It: 97:-VF!- .l I u- d. F , “H953 9 ." l 'u- r' a U‘d'v i b H’p , ‘- ‘A‘ A9. L I. 373. I 02mg Table Ultra High Frequency (UHF) Radio energy is identified and described by the frequency and strength/power of the oscillation (Garfinkel, & Rosenberg, 2006).The UHF band ranges from 300 MHz to 3 GHz, but the specific frequency band allocated to RF ID systems varies in different regions of the world (Table 1). This makes it difficult for UHF systems to become universally adopted in global supply chains worldwide. Table 1: UHF Frequencies throughout the World (Sanghera, 2007) Frequency Band Maxrmum Country (MHz) Watts Allowed United States 902-928 4 Australia 91 8-926 1 Europe 865-868 2 Hong 865—868 2 Kong 920-925 4 Japan 952-954 4 UHF has the ability to broadcast electromagnetic (EM) waves over a much greater distance than HF. The UHF wavelengths range from 10 centimeters (cm) to 1 m, which provides the ability for these waves to travel farther without decaying, resulting in greater read ranges. However, it also limits the ability of tiIese waves to penetrate materials such as metals and water-containing PFOducts (Sanghera, 2007). The long read range of UHF systems appeals to Pallet-level and case-level tagging (Clarke, Tazelaar, Twede, & Boyer, 2006). 13 Coupling Communication Passive transponders generally use one of two communication methods: inductive coupling and backscatter coupling. The term coupling refers to the transfer of energy from one source to another. Passive transponders use this coupling to gather power and transfer data. Inductive coupling functions by generating a magnetic field, which limits the broadcasting range to close proximity to the reader (Weisman, 2002). Inductive coupling can operate using either a close coupling or a remote coupling. The difference between the two modes of operation is the distance the magnetic field can reach. Close coupling is limited to 1 cm in read range, whereas remote coupling has a range between 1 cm and 1 m. Inductive coupling is the method of communication usually used for applications such as low frequency and high frequency passive transponders (Brown, Patadia, Dua, & Meyers, 2007). Unlike inductive coupling, backscatter coupling as shown in Figure 1 focuses on the generation of an EM field that can be used to carry Signals from the reader to the transponder at a much farther distance. 14 s ‘.:3‘V A r '1‘ ll .- ":"r i-‘V‘ .._ V l (Ii Carrier Signal ._ Transmitter \ i“ , . ’/A.”i\\li“lli"’i"ln, ‘\ } \ i I i I ) i l i l liIIIIIII” ./ II II II {till ,\. SE )4 ///Illlllllfllfifwlw I \ / 7 / [I [I / / I . I i \ _ , , / I I I I I -— Receiver Reader / / / / / Antenna [M / se—v Reader Data Figure 1: Diagram Of Backscatter Signal Transmission between a Reader and Transponder (Mayordomo, Berenguer, Garcia-Alonso, Fernandez, & Gutierrez, 2009). Both communication methods transmit signals through air space; however, this is more critical for backscatter coupling. The read field is generated by radiating EM waves from the reader’s antenna; the direction and reach of this field creates the interrogation zone. This field contains energy and data from the reader that can be detected by a transponder. The signal is reflected back in the form of a backscatter signal when the EM field encounters a signal with at least half its own wavelength. This interaction is displayed by the carrier and response Signals in Figure 1. The efficiency at which the transponder is able to convert the field’s energy and Signal to a response is determined by the response (Brown, Patadia, Dua, & Meyers, 2007). Reader-to- Tag Communication The interrogation zone in which the transponder is located provides an Uplink communication system for the reader to deliver a decoded signal to the transponder. The communication process occurs when the reader's antenna 15 emits an electric field that contains a decoded RF signal, which creates an interrogation zone. The EM field is propagated by the transmitter inside the antenna performing multiple reflections and diffractions depending on the objects present in the environment (Sweeney, 2007; Shameli, et al, 2008). The interrogation zone is capable of generating energy that a passive transponder can gather to activate its integrated circuit (IC). Tag-to-Reader Communication A passive transponder needs to receive sufficient RF energy from a reader/interrogation zone in order to respond. This produces a reverse link communication system that decodes and replies to the reader’s Signal. In the case of a passive UHF transponder, communication was centered on modulated backscattered signals (McCarthy, Ayalew, Bulter, McDonnell, & Ward, 2009). Once the transponder is activated, it responds to the reader’s transmission using backscatter coupling. For the passive transponder to respond, 9 specific threshold of energy must be collected through its antenna. Once this energy threshold is met, the transponder’s IC can initiate a response by sending a decoded signal back to the reader (Lin, Lin, & Yuan, 2009). After a response Signal is emitted from the transponder, the energy level of its IC will fall below the threshold for further response. In order to send out another response signal, the energy level needs to be replenished to the activation level. Generally, as long as the transponder is in the interrogation zone and is receiving an adequate amount 0f energy, the response signal can seem to occur continuously. In general, accurate transponder read ranges are measured within controlled environment to 16 ensure purity (Rao, Nikitin, & Lam, 2005). However, even with its much smaller size and energy threshold, the response communication signal is still susceptible to interference. Similar to reader-to-tag communication, absorption, reflection and refraction can also affect the response signal (Shameli, et al, 2008). Noise and Interference Radio Frequency Noise In the presence of noise the detection of any signal becomes increasingly difficult. Not only is a receiver attempting to receive the desired Signal but will also unintentionally pick up noise from all over as well. Often times the designers are more interested in the amount of added noise from internal circuits. At the receivers input location, there will a certain amount of noise that is used to identify a noise floor. In order to compensate for this additional noise and receive signals dependably; the minimum detectable signal has to exceed the noise floor level by some signal-to—noise ratio (Rogers, & Plett, 2003). RF noise can be classified as either internal or external noise. Both types of noise may affect the functionality of the system. lntemal RF noise generally causes complications with the circuitry of the reader, the antenna, or the transponder's IC (Hickman, 1999). This noise can distort the reader’s output signal causing distortion and limited signal amplitude (Roger & Plett, 2003). Crosstalk noise is a type of interference that occurs when coupling of EM energy between adjacent traces or printed circuit boards (PCB) occurs. The generated energy between PCB’s will reduce the signal integrity of the main PCB. This can 17 cause instability within the main PCB circuitry. In order to reduce the amount and effect of crosstalk noise, the substrate that the PCB is placed on should take in consideration the sensitivities of the PCB (Sudo, Sasaki, Masuda, & Drewniak, 2004) External RF noise comes from an outside source and may influence transmit signals, backscatter signals, and the size of the interrogation zone. External RF noise generally must be concentrated at a specific frequency in order to cause adverse effects on a system. This external noise can arise from three sources: atmospheric, galactic, and man-made. Atmospheric noise is a result of lightning (electrical) storms in tropical areas. However, other sources include the aurora borealis and aurora australis. Atmospheric noise changes depending on the time of day, the season, the 11- year sunspot cycle, and the geographic location of the equipment. Atmospheric noise generally is a concern at frequencies up to 30 MHz (Hickman, 1999). Since galactic noise is of cosmic origin, it rarely is a concern for RFID systems. It affects the frequency range of 3 MHz to 300 MHz. Similar to atmospheric noises, it varies depending on the season. It tends to be more noticeable when it coincides with man-made noise levels. Man-made noise is unintentionally produced noise from a variety of sources. Electronic motors, light switches, and thermostats, for example, are capable of generating noise Signal in pulses. Radiation from ISM (industrial, scientific and medical) RF generators used for diathermy, metal treatments, and 18 polythene sealing for example, can generate a continuous noise signal (Hickman, 1999). The definition of man-made noise is not supposed to include intentional RF noise such as jamming signals, however, these intentional transmissions can be considered noise until the source of the signal is known. Destructive and Constructive Interference There are generally two main types of interference; destructive and constructive. Interference takes place when one or more electromagnetic waves interact with each other at a given location. The outcome of this interference depends on their phase, amplitude, and polarization. Constructive interference occurs when the combined wave experiences an amplitude increase. Destructive interference has the reverse effect on the amplitude of the combined wave. Since destructive interference results in a decrease of the new wave’s amplitude, there is a chance that the amplitude could be zero, or nearly zero. This type of interference is very important for passive transponders because they cannot harvest a sufficient amount of energy from these waves if signals are too low. This can lead to low amplitude locations in the interrogation zone or null spots (standing waves). This generally happens when two waves interact that are half a wavelength out of phase, resulting in elimination or cancellation of the signal (Sweeney, 2007). Presence of Radio Frequency Noise in the Environment RF noise is present virtually everywhere. Unless a given area is designed to Shield or block out RF noise in general, it is safe to assume that there is some 19 sort of RF noise present in a given environment. This assumption is very important for a user of RF ID technology, especially for those who are involved with implementing RFID systems for various applications. Every RF ID system implementation has the potential to be different from another one even if utilizing the same equipment for the same application, but in another location. Thus, each implementation Should be handled and assessed independently to ensure optimal efficiency and accuracy for that RF ID system (Clarke, Tazelaar, Twede, & Boyer, 2005). This procedure is important to remember because other electronic devices could be sources of unidentified or ambient RF noise. Since disturbances for communication capabilities can be caused by RF noise, awareness of its presence can help with troubleshooting. The surrounding environment itself is very important to consider, especially if a large amount of metal is present. In most cases, the combination of a non-RFID-friendly environment (in terms of surrounding materials) and RF noise in the operating frequency will increase the likelihood of interference with RFID communication. The existence of metal objects such as beams, equipment, products, electric motors, floors, and ceilings can introduce the possibility of absorption, reflection, refraction, and wave scattering that can ultimately lead to interference (Sanghera, 2007). Conductive materials such as metals tend to reflect waves at UHF frequencies without reducing the waves’ overall energy. Water is generally a good reflector and a good attenuator (absorber) of electromagnetic waves (Sweeney, 2007). A good solution is to avoid metal objects in the interrogation zone if at all possible. Some adjustments of the distance from the antenna to the 20 transponder may be necessary in order to avoid or limit the effects of the reflected RF signals (Sanghera, 2007). Interference can be cause by various aspects involved in the RFID application. The presence of RF noise is not the only contributing factor when it comes to interference. The positioning of a transponder that is attached to a product can play a critical role transponder readability. Products such as a package of refrigerated beef can cause the loss of communication between reader and transponder (Onderko, 2004). The interference generally does not come from the orientation of the transponder on the product. The material that the product contains or made of has a greater effect on the possibility of interference (Tazelaar, 2004). Multiple Tag-to-Reader Interference This type of interference occurs when multiple transponders within the interrogation zone of an RFID system are energized and attempt to respond to the reader at the same time. Referred to simply as tag interference, complications can occur when all transponders attempt to respond at the same time in a tightly enclosed area. This results in a massive amount of scattered, individual response signals from each transponder attempting to communicate with the reader, which makes the Signals difficult to differentiate. In order to help correct this issue, complex anti-collision algorithms are necessary (Kim, Yook, Yoon, & Jang, 2008). 21 Multiple Reader-to- Tag Interference Interference from multiple readers occurs when more than one reader operating at the same frequency attempts to activate and read the same transponder simultaneously. This is also referred to as the reader collision problem. This collision problem generally occurs in a dense reader environment that contains numerous readers attempting to identify or detect the transponder at the same time and in the same vicinity. The results can be of substandard accuracy and consistency, compared with valid reads. In an attempt to resolve this issue, Europe has introduced 9 “Listen before Talk” (LBT) provision for RFID systems (Leong, Ng & Cole, 2005). According to European Regulations, the reader has to listen and identify that a specific channel is not in use before that channel can be used to interrogate a transponder. However, this regulation could provide problems in an area with a large number of actively operating readers since a number of the communication channels may be occupied by a single reader, thus making them inactive to other readers who also operate in the same channels. This issue has raised doubt whether a global RFID initiative can ever be implemented (Leong, Ng & Cole 2005). Reader-to—Reader Interference This interference type is due to one reader’s signal reaching the other readers and causing an altered effect on normal system operation. Reader-to- reader interference is distinct from the other two types of interference because it can occur even in the absence of intersecting points between interrogation 22 zones. The transmitted signals from a remote reader can be sturdy enough to obstruct the accuracy of the decoding process from the transponder (Kim, Yoon, Jang, & Yook, 2009).The transmission signal of the reader and the backscattered signal of the transponder exist on separate spectrum domains. Odd or even-numbered channels are designated for reader only transmissions, however, this does not terminate the threat of reader-to-reader interference (Kim, Yook, Yoon, & Jang, 2008). It can still have an effect on the backscattered signal from the transponders. Minor interference can be increased in environments that contain multiple readers in a given area, such as warehouses. Reader-to-reader interference, also called reader collisions, can occur if a reader using the same channels simultaneously and at a certain distance causes other readers to stop reading transponders altogether. The environment can play a large role by magnifying the interference possibilities especially in an RF-noisy environment (Kim, Yoon, Jang, & Yook, 2009). A number of studies have been conducted on the effects of reader-to- reader interference. Many of these studies focus on deriving an equation to reduce effects of other readers on a desired reader, or to identify a way of analyzing the effects of interference on a reader interrogation zone (Kim, Yoon, Jang, & Yook, 2009). Other studies have taken a different approach to solving the complex reader collision problem. A suggested solution to this problem is using a central cooperator (CC). It is a central communication hub that would mitigate the communication between tags and readers. The idea is to share 23 9.8: r fl'i-l '4‘: ’n~' , I- .y :51 . I (ll LIA ' .-.-i! a . information among readers instead of individual reader attempting to receive the same data signal from a transponder at once (Wang, Wang, & Zhao, 2006). Jamming Signals Jamming signals are often thought of as a signal used to disrupt an incoming transmission or Signal. Normally, jamming signals are not aimed at interfering with a particular transmitted Signal. Instead they are aimed at disrupting the receiver’s ability to receive the signal. It is a common misconception that the transmission signal is disrupted, but that is not the case. It may seem the case because a radar system normally has its transmit and receive antennae at the same location and, often times, come from the same antenna (transceiver). This same strategy can be applied to a network of transceivers (Adamy, 2008). Another form of jamming signal is called deception jamming. Radar jamming signals use replicas of the targeted echo Signal in order to confuse the radar system and complicate the system’s ability to receive and decipher the true signal. This particular method is known as false target generation (Schuerger, & Garrnatyuk, 2008). Measuring Radio Frequency Noise Radio Frequency Site Audit When troubleshooting complications with a system, the possibility of interference based on EM or RF noise Should be considered. This depends on a number of factors which include operating frequency of the system, strength of RF noise signal, and consistency, or how frequent the RF noise occurs. 24 Measuring RF noise has been a necessary and common procedure in site auditing. When conducting a RF site audit it is important to follow some guidelines around infrastructure assessment, RF characteristics, business process documentation, site survey report. 0 Infrastructure Assessment Know the area well. Obtain a blueprint layout of the entire facility. Notes should be kept on the size of the building and what materials were used to construct the floor, roof and walls. Identify personnel and equipment moving paths and locations of static equipment. Identify what type of product is used throughout the facility, include hazardous materials. This is necessary since the environment can have a large impact on the RF ID interrogation zone (Brown, Patadia, Dua, & Meyers, 2007). 0 RF Characteristics Identifying sources of possible interference to an RFID system can begin without the use of a spectrum analyzer. Start by checking the operating frequency of the equipment. After locating suspected sources, a spectrum analyzer will help identify the difficult ones. Cell towers, two-way radios, and manufacturing equipment can all be sources for unidentified/ambient noise. Remember that cordless phones and mobile phones can operate at 900 MHz (Brown, Patadia, Dua, & Meyers, 2007). Many times the source of RF noise can be caused by “unintended emitters or devices that should not be radiating a signal” (Thomas, & McLain, 2009). Look for equipment 25 like electric motors, powerjacks, and air-conditioners because they can all potentially produce harmonic interference. Do not focus solely on the operating frequency range of the RFID system; it is important to widen the search outside that frequency as well to identify other nearby signal spikes (Brown, Patadia, Dua, & Meyers, 2007). 0 Business Process Documentation Each RFID system requires an application specific installation depending on what the system need to accomplish. In order to implement a system properly, an understanding of how that task is currently done should be understood. This will allow the implementer a better idea how to integrate the RFID system and how to get the best results (Brown, Patadia, Dua, & Meyers, 2007). 0 Site Survey Report Document everything, even if it seems like a minor detail. This means that pictures, documents on current business procedures and answers to all questions asked should be documented to make sure that nothing was missed. This report will help design the best RF ID system possible for that facility and application (Brown, Patadia, Dua, & Meyers, 2007). Voyantic Measurement Unit A company based in Espoo, Finland, Voyantic is the developer of the Tagforrnance RFID Measurement System, designed specifically to help tag 26 designers and manufacturers produce a better product (Tagformance, 2009). However, this system has been leveraged beyond its original purpose and is now being used at universities and research facilities. The Voyantic measurement unit can be used as a spectrum analyzer for detecting various signals within the UHF band range. Essential communication capabilities such as transmission of energy, response signals and distance are measured and calculated using a number of software features. The three main features of the system, Interference, Backscatter, and Threshold are discussed below. Interference Feature Interference measurements detect the given frequency range to reveal all inband RF activity. Ambient noise can be identified and compared to measurements from environments that provide additional noise from identified sources. This feature allows the user to monitor the amount of backscattered signals (RF noise) on a single frequency or a frequency sweep ranging from 800 to 1,000 MHz. Figure 2 is an example of a noise measurements in a given locations recorded by the Interference Feature. When a signal is detected, a spike occurs at that frequency on the graph as seen at 870 MHz, below. 27 Figure 2: An example Of The Voyantic Interference Feature. A frequency evaluation allows the user to identify potential signs of reader- tag communication issues such as high levels of noise within operating frequencies for transponders. If conditions are right, an environment will have no noticeable levels of RF noise thus providing a noise-free environment similar to that of an anechoic chamber. This feature is useful for applications such as site surveys for manufacturing facilities and hospitals where interference from RF noise is a concern. It can also be used to monitor the channel allocation of' nearby readers to identify free channel slots (Tagformance, 2010). Backscatter Feature Using the Backscatter feature, a power sweep within a selected frequency band will measure and plot a comparison between Sensitivity and Backscatter units (Figure 3). This feature provides a quick and easy way to compare sensitivity and backscatter units to identify potential interactions. 28 l if???“ I l I 3 24 25 26 27 28 29 13 14 15 16 17 18 19 20 21 22 2 Figure 3: An example of The Voyantic Backscatter Feature with 30 Trials. Under ideal conditions, at a single frequency, as transmit power increases, the backscatter power will also increase. Comparisons can be displayed on a graph of Sensitivity units against a Backscatter unit. Unlike a frequency sweep, comparisons are limited to a single frequency at a time. The final separate measurements must be taken at each desired frequency before analysis can take place (Tagformance, 2010). Threshold Feature Thresholds are levels or points above which something will take place and below which it will not. This particular feature operates by performing a sweep through a user-selected frequency range, power step (increase), and frequency step (increase) to detect the minimum required transmit power to energize a transponder at each frequency point. Figure 4 is a representative example of graphed data using this feature with a frequency range of 800 to 1,000 MHz, 9 power step of 1decibel (dB), 9 frequency step of 5 MHz. 29 Figure 4: An example Of The Voyantic Threshold Feature with 30 Trials. Calculated values are expressed using Sensitivity and Backscatter measurement units. The main applications of this feature are to verify the performance and tuning of transponder designs, measure the detuning and achievable read range, and provide simulated and measured results (Tagformance, 2010). Sensitivity Units Sensitivity units can be broken out in multiple settings. These include Transmit Power, Electric Field Strength, Power on Tag Forward, and Theoretical Read Range Fonivard. Transmit Power (dBm) Identified as a sensitivity measurement unit, Transmit Power (TP) is the power output at the RF out-port of the reader (Tuominen, 2009). It determines the threshold limit of a transponder by measuring the power output necessary from the reader to activate it (Figure 4). This threshold limit will vary depending 30 on the frequency at which the measurement is taken. A transponder with a low sensitivity value (or threshold) means the necessary transmit power from the reader to energize it is minimized. The Tagforrnance unit’s output measurements for transmit power range from 0 to 30 decibels measured in milliWatts (dBm). Electric Field Strength (V/m) Electric Field Strength (EFS) is the field strength at the transponder’s location. This calculation is the minimum necessary field strength to activate a transponder (Tuominen, 2009). The electric field generated helps gather energy to energize the transponder. The field strength at the transponder coincides with the transmit power. High transmit power measurements generally have high electric field strength measurements. EFS values indicate how hard the transponder works in order to gather energy. Similar to transmit power, lower values generally means a more efficient connection between transmitted energy and harvesting it. Power on Tag Fomard (dBm) This sensitivity unit refers to the uplink communication from the reader (antenna connection points) to the transponder. Power on Tag Fonivard (POTF) is the power at the transponder’s location sent from the reader’s transmit antenna (Tuominen, 2009). Similar to Transmit Power, Power on Tag Forward is often referred to as a more accurate depiction of the activation threshold for a transponder because it is calculated at the transponder’s location rather than at the reader’s out-port. 31 Theoretical Read Range Fomard (m) The Theoretical Read Range Fonrvard (TRRF) means that the operating distance is limited to being able to activate the tag from distance. In this case, the TRRF is the maximum operating range (Tuominen, 2009). RF-reflections from floor, walls, structures, etc. can naturally affect the reach of the interrogation zone in all directions. This measurement is used as an estimation to how far the interrogation zone is able to reach out. The longer the read range, generally, the larger the interrogation zone will be. Backscatter Units Backscatter units can be broken out as well. Its settings include Backscatter Power, Backscatter Signal Phase, Differential Radar Cross-Section, Power on Tag Reverse, and Theoretical Read Range Reverse. Backscatter Power (dBm) Backscatter Power (BP) is a calculation of backscattered signal from the reader’s RF in-port (Tuominen, 2009). Similar to the Transmit Power, the actual calculation is taken based from the response of an energized transponder. A significantly weaker signal in terms of strength compared to Transmit Power, Backscatter Power is measured in negative dBm. Backscatter Power (also referred to as Received Power (RP) in the Interference feature) can represent two quantities: response signal from a transponder and presence of noise. 32 Backscatter Signal Phase (degrees) Backscatter signal phase is the phase difference between the transmitted signal and the received transponder response (Tuominen, 2009). This can be used to determine the transponders distance (how much does the phase change when frequency is increased) from the reader. If the transmitted signal and backscattered signal overlay each other they are said to be “in phase”. However, if they do not overlay each other and are 180 degrees displaced they are “out of phase”. This can be an indicator of how well the transmitted and received signals operate in the presence of each other. Differential Radar Cross-Section (decibels per square meter, or stqm) Differential Radar Cross-Section (Delta RCS) is a calculation of how effectively the transponder can turn incoming carrier power into its response to the reader (T uominen, 2009). This calculation becomes vital when determining how well established the reader-to-tag communication is within the system. The higher the value, the more efficiently the transmitted signal is being received and, generally, the better the communication. A lower value can mean that the transmitted signal is not reaching the transponder at a high enough concentration thus, the transponder does not responding frequently. Power on Tag Reverse (dBm) This measurement calculation refers to the downlink communication from the tag to the reader (antenna connection points). Power on Tag Reverse (POTR) is the radiated backscatter signal power “sent” by the tag back to the 33 reader at the tag location (T uominen, 2009). This measurement is a true indicator of the response strength from the transponder. Unlike Backscatter Power, this measurement has less of a chance to encounter external interference. Theoretical Read Range Reverse (m) The Theoretical Read Range Reverse (TRRR) value is an Electronic Product Code (EPC) globally specified quantity that tells what distance the backscatter signal strength would be sufficient for an average reader if the tag could always be activated. If the TRRR is larger than TRRF (it usually is), the tag is uplink limited (T uominen, 2009). Unlike the TRRF, this calculation does not represent the range limit of the interrogation zone. Generally, as long as the transponder receives enough power, the backscattered signal can be received at a much further distance than the reach of the interrogation zone. 34 Chapter 3: Methodology This chapter will provide details on the testing methods, equipment, locations, and procedures used for this study. This begins by discussing the equipment used during both testing scenarios. It is followed by the setup and running of scenarios in three separate locations. This chapter concludes with a discussion on the data analysis procedure. 35 Two separate UHF-based RFID systems (Voyantic Measurement Unit and lmpinj Speedway) were used to analyze the functionality between the reader-to- transponder and transponder-to-reader communication capabilities. Three testing environments/locations were chosen, these being the MSU Auto-ID Research and Testing Center (Location 1), the MSU School of Packaging (Location 2) and the MSU Engineering Building (Location 3). Each location had different levels of RF noise and/or environmental surroundings, known as UHF inhibitors. To provide statistical validity for testing, 30 test trials were conducted for the two testing scenarios and each measurement unit. These two scenarios were: Scenario 1 — the measurement of ambient RF noise; and Scenario 2 — the combination of ambient and identified RF noise. Equipment Before any testing occurred, all equipment including the readers, antennae, transponder and cables were checked to make sure everything was in proper working order. Initial tests to choose an appropriately functioning transponder were conducted by recording the number of reads in a given time period of numerous transponders of the same model to find a consistent read rate between a number of the transponders. The transponder with the highest read rate was chosen. 36 '9'? il“A Ii I ‘LIIJ‘J A l ri'l Voyantic UHF RFID Measurement Unit System This RFID system included a single circular antenna, antenna stand, transponder and transponder stand, a reader/measurement unit, and a laptop with Tagformance 3.5.1. Figure 5 shows an image of the Tagformance reader and components included in the kit. Figure 5: The Voyantic Tagformance Kit Components The Tagformance measurement unit has two main ports: an in-50 ohms and out-50 ohms (essentially transmit and receive ports). A 6 dB attenuator was attached to the received cable for appropriately calibrating the system with the cable loss and gain. The antenna used for this system was a Motorola model AN200. This antenna is circularly polarized and bi-static which allows transmitting and receiving signals in two planes through one connection point on the antenna. The transponder type was an Alien Technologies Higgs-2 transponder. A single circularly-polarized antenna was used for all measurements. The antenna stand consisted of a wood base and a 3-foot long piece of polyvinyl chloride (PVC) pipe. A connector for attaching the antenna was at the top of the antenna stand. The transponder stand was made of an aluminum base, high density 37 polyethylene (HDPE) tubing, and a polystyrene transponder holder. The Tagformance software contains seven different features that were used to measure and analyze the performance of the transponder and antenna communication capabilities. lmpinj Speedway Reader This system was set up using a single circularly-polarized antenna, antenna stand, coaxial cable, crossover Ethernet cable, a laptop and an lmpinj Speedway UHF reader. This UHF RFID reader was used as the identifiable RF noise source that was introduced into each location to provide additional concentrated amounts of RF energy within the operating frequency of the Voyantic Measurement Unit in the form of noise. Statistical Consulting Center’s Data Analysis Model The experimental model was designed by the Statistical Consulting Center (SCC), which is affiliated with the College of Agriculture and Natural Resources at Michigan State University. It was designed to analyze the feedback data and produce multiple outputs that are statistical valid. Scenarios, locations, and frequency were compared to show, statistically, the differences and similarities among them, focusing mainly on probability/significance values. 38 Environments/Locations Location 1 The first location was an office area of the MSU AIRTC containing a wireless network, nearby cellular tower, and various metal cabinets (Figure 6). For the past few years, the AIRTC has been the location for numerous RFID related tests and experiments. The surrounding buildings contain a variety of companies and businesses including manufacturing and business office setups. In addition, two radio stations and a cell tower are within a half mile of the AIRTC. Although testing was conducted in an area where physical obstructions were not a direct factor, the large amount of external RF activity could be the source of measurement complications. The testing scenario layout for this location is displayed in Figure 37 in Appendix B. Figure 6: Location 1 —The Michigan State University Auto-ID Research and Testing Center (MSU AIRTC) 39 .I-FP ur-U‘ u -.-, .I- F Location 2 The School of Packaging is a standalone building on the MSU campus, compiled of multiple labs and offices. The machinery lab was chosen as Location 2 for testing within the Packaging building. This location has a large amount of space with metal objects in the environment (Figures 7 and 8). Testing took place in an open aisle close to the center of the room. This area was chosen to simulate a working environment for RFID in a manufacturing environment. The testing scenario layout for this location is displayed in Figure 38 in Appendix B. Figure 8: Location 2 - The Packaging Building Machine Lab, Right Side View 40 Location 3 Unlike the first two locations, Location 3 was in a basement of the MSU Engineering building that houses many labs and pieces of equipment. The testing area (Figures 9 and 10) was completely surrounded by cinderblock walls, conduit and piping in the ceiling, and various metal objects that are potential inhibitors of RF signals. This location was free of wireless signals from lntemet routers and mobile phone service. This location displayed the cleanest RF environment compared to Locations 1 and 2. It, too, provided a potential simulation of an actual working environment for an RFID system. The testing scenario layout for this location is displayed in Figure 39 in Appendix B. Figure 10: Location 3 — The Engineering Basement, Rear View 41 Testing Procedure Set Up of Voyantic Measurement Unit The Voyantic Measurement Unit was connected to the laptop and antenna using a 50-ohm convertor and 20-foot coaxial cable that was plugged into the transmitted port of the base unit. The opposite end of the coaxial cable was connected to the circular antenna. This antenna was attached to an antenna stand at a height of 3-feet above the floor. The transponder stand was placed 48- inches away from the front center position of the antenna. The transponder was placed in the center of the polystyrene transponder holder with the front side of the transponder facing the front center of the antenna. A single transponder and single bi-static, circular antenna were used throughout testing in the threshold and backscatter features. For both of these features, the transponder was placed in the center of the stand, parallel to the antenna’s center. Interference Feature To ensure that the overall results from the measurements of the ambient RF noise in each location were an accurate account of the RF noises present in that location, the interference feature provided an initial look at the RF noise condition of the surrounding environment. Each testing session in each location began with a reading of the ambient RF noise present. The feature settings were: . Measurement Mode: 0 Frequency Sweep . Sweep Settings : 42 u I‘] I'll 1:32! v'u-‘U al 0 Start Frequency : 800 MHz 0 Stop Frequency : 1000 MHz 0 Frequency Step : 5 MHz Threshold Feature This feature was used to evaluate the communication abilities of the reader to the transponder. It looks at the efficiency and accuracy of the reader’s ability to communicate. The frequency sweep ranged from 800 to 1,000 MHz. The measurements were displayed by comparing one of nine measurement options to the frequency band. The settings for this feature were: 0 Command Mode : 0 ISO 18000-6C Query . Sweep Settings : 0 Start Frequency : 800 MHz 0 Stop Frequency : 1000 MHz 0 Frequency Step : 5 MHz 0 Power Step : 1 dB Backscatter Feature The backscatter feature was used to evaluate the efficiency and accuracy of the reader’s ability to communicate with the transponder by focusing on a specific frequency rather than conducting a frequency sweep. The measurements were displayed comparing one of three power-transmitting based measurement options (Transmitted Power, Electric Field Strength, and Power on 43 (I) {ll L J so. I 5 | (I) {ll ‘ ‘0 "o . ”A .- if Tag Forward) to any of the other five remaining measurement options (Backscatter Power, Backscatter Signal Phase, Delta RCS, Power on Tag Reverse, and Theoretical Read Range Reverse). The feature settings were: 0 Command Mode: 0 ISO 18000-6C Query . Sweep Settings : 0 Start Power: 0 dBm 0 Stop Power : 30 dBm 0 Frequency : 915 MHz 0 Power Step : 1 dB After the settings for each feature were set, the test trial began by pressing either the “Start” button or “Start Sweep” button to begin the measurement sequence for that specific option. Once the measurements were completed for a test trial, the software automatically stopped recording and ended the test trial, thus, there was no reason to press the “Stop” button at anytime. The succeeding test trials were started immediately after the conclusion of the previous one without any changes by simple pressing the “Start” button again. When 30 test trials were completed, all the data was saved as one file. After concluding the 30 test trials with the ambient RF noise only, the identifiable RF noise system was set up, put into place and activated. The settings for the all of the feature remained unchanged. Then, an additional 30 test trials were run using the same procedure for each measurement unit. 44 Set Up of lmpinj Speedway UHF Reader (Identifiable RF noise source) Areas at which this system could be set up were limited due to available space and access for Internet connection points and power outlets. The set up in Location 3 (Engineering building) varied from Locations 1 and 2 due to the distance from the nearest power outlet. However, this test was validated since the amounts of background noise produced in all locations were comparable. Data Collection Data was manually collected by using the Threshold feature of the Tagformance software. Within the operating frequency band of 900 to 930 MHz, data point were collected for the frequencies of 900, 902, 904, 906, 908, 910, 912, 914, 916, 918, 920, 922, 924, 926, 928, and 930 MHz. These data points were downloaded to a Microsoft Excel spreadsheet that was customized to calculate the mean, mode and standard deviation for 30 trials and all 16 frequencies. The data collecting process consisted of 9 measurement units, at three locations, with the two scenarios. These data sheets were ultimately combined into a sample file, which incorporated all data collected for analysis using the Statistical Analysis Software (SAS). Table 2 shows an example of the formatting that was necessary for processing the data from the Tagformance software. 45 Table 2: Example of Excel data formatted to use in Statistical Analysis Software (SAS). Scenario Location F Trial T 1 1 1 14.3 1 1 1 14.3 1 1 1 14.3 Data Analysis Procedure The data was ready for analysis by SCC once it was appropriately formatted. The analysis calls the data file from the folder, loads it to memory, and creates the data set named Noise. After the data set is loaded, each response variable must be pulled and analyzed individually. Each of the ten measurement units were abbreviated as followed; Transpwer, Backpwer, Recpwer, Electfield, Delta RCS, Backsignal, POTF, POTR, TRRF, and TRRR. After selecting a response variable, the data was plotted to identify if the shape of the data followed a normal distribution. Distribution is identified by looking at plotted data graphs. If necessary, the data was subjected to a transformation command to try and fit the data to a normal distribution. Transformations were necessary for all response variables that contained negative values. To correct this issue, the absolute value of the response variable was used to convert negatives to positive values. The affected response variables included Backpwer, Delta RCS, POTF, POTR, and Recpwer. Deciding the appropriate variance-covariance structure was a vital part in calculating the correct probability/significance values. All of the data used one of two structures; autoregressive or autoregressive homogeneous. 46 The final model to analyze the data set in the appropriate manner was determined. It was derived to incorporate individual components from various testing into a lone command. It outputted results based on least-square-means (LSM). In addition, effect slices (a feature in the SAS program) were produced to identify the comparisons among the repeating structure, that which provided key significance. Results were produced by graphs and tables. The graphs and tables can display both a 2-way or 3-way comparisons between the variables in the repeated structure. 47 Chapter 4: Results This chapter will discuss and display the result from the tested hypotheses. The discussion begins with the statistical analysis processing of the data. This continues on with defining a causal relationship between communication capabilities focusing on Sensitivity and Backscatter units. The results are displayed based on scenario. Each scenario displays figures for each Sensitivity and Backscatter units. Scenarios are summarized at the end of each section. Finally, the hypotheses are restated with a brief discuss. 48 Sta-tie .- t-UU fin... Qr'dt (ft :Ap-e . F ‘ v‘o‘u. (in &D 33,, q l #5 u C'- W'L“ q;_‘ .» If t. Statistical Analysis The data set for this study consists of nine response variables and three fixed factors. The first factor was scenario with two levels, the 2”“ factor was location with three levels and, the 3rd factor was frequency with 16 levels. Thus, a single response variable was measured in two scenarios each with three locations and 16 frequencies. A total of 30 test trials were run as replicates for the experiment. For each response variable, a total of 2,880 observations were measured and considered for analysis. The data analysis for this study contained six essential steps: 1. Define the statistical model; 2. Check statistical assumptions; 3. Select variance-covariance matrix for repeated measures term; 4. Performing F-test to identify significance in each term; 5. Use final model for comparisons; and 6. Plot the results. Define the Statistical Model The experimental design is a three-way factorial with frequency being repeated measures. Since each combination of location and scenario was measured 16 times, this is considered to be a potential source of correlation. This statistical analysis follows a general linear: 49 (Equation 1) Yijk = u + see: + lac,- + (see, x loci) + frek + (loci x frek) + (scej x frek) + (fre,c x loci x scei) + Eijk Whereas, Y, 1,, = Response Variable, u = Great mean, scei = Scenario, too; = Location, frek = Frequency, Eijk = Error(residual), Check Statistical Assumptions After constructing an equation for the model, two main assumptions needed to be validated. The first assumption required a normal distribution in the residuals. Since the data sets were so large and had multiple replications, the results were more precise and accurate statistically. However, large data sets can also provide challenges if the distribution of the data does not follow a normal distribution. A bell-shaped distribution was found for all of the data sets but with a higher peak around zero values. Figure 11 is a sample of the data distribution which shows a general bell-shaped curve however the center peak extends slightly higher than what is normally preferred. 50 ”(ODOCDCDPTI Residual Figure 11: Example of Data Distribution. This type of issue is normally resolved by using transformations. A number of transformations such as square root, cube root, logarithm base 10, and some angular transformations were used but had little to no effect on the distribution of the residuals. Therefore, these transformations were not used on the data set. After further analyses, the distribution for all data sets was sufficient and did not have a significant impact on the final results. Conversely, all the data sets that contained negative values required a transformation to positive values. The second assumption is to check the variances across treatment groups. With this assumption, the variance is checked by focusing on the residuals again. This was done by looking at box plots of residuals based on scenario, location, and frequency. As seen in Figure 12, the box plots show equal variance among the location because the box sections of the box plots are of 51 relatively equal size. In order to determine whether or not the variances are equal or not, Levene’s test was used. This test concluded whether or not the populations were different. If determined that the variances are different, then each variable must use different variance (Ramachandran, & Tsokos, 2009). -mco.-m Fixed Vanable Combinations DF DF Value F Scenario 1 235 4.59 0.0332 Location 2 235 681 .69 <.0001 Scenario*Location 2 235 38.86 <.0001 Frequency 15 1 144 250.85 <.0001 Scenario*Frequency 15 1 144 20.01 <.0001 Location*Frequency 30 1553 55.71 <.0001 Scenario*Location*Frequency 30 1553 13.57 <.0001 53 The F-Test provided away to avoided wasting time looking for significance difference in comparisons that were not relevant. Unfortunately, this was normally not the case due to the results showing that all comparisons presented significant differences. There were significant differences noticed through all comparisons within each of the nine response variables. Table 4 further displays the different interaction combinations between the three fixed variables. These interactions are described as one-, two-, or three- way interactions. Based on the probability values displayed in Table 3, there were significant differences among all interaction combinations within this data set. Significance for all testing was based on an alpha value of .05. This means if the probability value is less than the alpha value, then the difference between an interaction and a comparison was significant. Since this table shows three-way interactions exist, any one- or two-way interactions used to form conclusive results would be inaccurate. Fit Final Model The initial probability (probt) results were very liberal. These probabilities were formed by comparisons involving locations and scenarios. The comparisons were based on All-Pair Wise comparisons used in T-testing. Using this method generated estimation values using least-square-means (LSM) and least-square- difference (LSD). Therefore, a more strict and conservative adjustment was implemented in order to identify true significance from comparisons. 54 This data contained multiple test and comparisons. The LSM and LSD methods were not recommended due to the amount of comparisons required. They require multiple T-tests for every possible combination. Not only were multiple tests necessary, but this would also increase the significance level dramatically. One way to approach this was to use a common technique for multiple comparisons called Tukey-Kramer method (Ramachandran, & Tsokos, 2009). The Tukey tested all possible differences of means to determine if one or both of the differences are significantly different from zero. Both methods assume confidence intervals of 95% (0.05) throughout adjustments, however, with the robust size of the data set, probt produced using LSD were not accurate. The LSD criteria for determining significance did not account for the number of comparisons involved, thus overcompensati‘ng the criteria for finding significance and producing false significance. Tukey is similar to LSD but takes a conservative approach in adjustment criteria for measuring significance. This adjustment accounted for the number of comparisons involved, and thus adjusted the criteria for measuring significance between comparisons appropriately (Ramachandran, & Tsokos, 2009). Plot Results After all of the processing was completed the results were displayed in a simple and effective way that made forming conclusions simpler. The data had multiple ways to be presented, but forming conclusions that were supported by the data as well as relevant to RF ID communication was complicated. The two- way interactions between scenarios and locations were easy to show and 55 analyze. However, based on the findings in Table 4, there was significance within the three-way interaction of scenarios, locations, and frequencies. A total of five graphs for each response variable were created based on results from Scenario 1, Scenario 2, Location 1, Location 2, and Location 3. Theoretical and Actual Connection Between Communication Capabilities Transforming data into an overall performance of the transponder’s communication capabilities under each scenario and location was complex. This theorized relationship was only meant to increase understanding of these results, thus may not always be borne out in testing. It was based on an understanding of desired values to indicate “good” or “bad” performances in terms of communcation capabilities between the reader and transponder. The formula was applied within specific frequency ranges where significant differences among all locations or scenarios existed for either Sensitivity or Backscatter units.The following causal relationships were formed for Sensitivity and Backscatter units: (Equation 2) Sensitivity units: if TPLOW and EFSLOW and POTFLOW, then TRRFHigh o Transmit Power (TP in dBm) : Favors low estimation values 0 Electric Field Strength (EFS in Vlm) : Favors low values . Power on Tag Forward (POTF in dBm) : Favors low values 0 Theoretical Read Range Forward (TRRF in m) : Favors high values 56 “only ll'fl. ‘ n \ ‘ fies it? C {7:609 \v (Equation 3) Backscatter units: if BPm-ghand Delta RCSmghand POTngh, then TRRRHigh o Backscatter/Received Power (BPIRP in dBm) : Favors estimation high values . Differential Radar Cross-Section (Delta RCS in stqm) : Favors high values 0 Power on Tag Reverse (POTR in dBm) : Favors high values 0 Theoretical Read Range Reverse (TRRR in m) : Favors high values The sensitivity unit deals with the transponder’s ability to receive the transmitted signal from the interrogation zone generated by the reader. These units include Transmit Power, Electric field strength, Power on Tag Forward, and Theoretical Read Range Forward. Power on Tag Fonrvard is the only measurement recorded using negative dBm, therefore, all of the data in this section for this response variable were displayed using the absolute value. The backscatter measurement units relate to the transponder’s response signal after activation from the reader. These units include Backscatter Power, Received Power, Delta RCS, Power on Tag Reverse, and Theoretical Read Range Reverse. All of these measurements (excluding Theoretical Read Range Reverse) were recorded using negative dBm values; therefore the absolute values were used and are represented in these results. The Received Power represents the ambient and identifiable RF noise measurements from the Interference feature. This value was considered independent of the other 57 measurement units because the other measurement units are dependent on Received Power. A highlighted section on each figure represents the frequency range (s) that contain significant differences among all three locations. Figure 13 (pg. 63) is a visual representation of the Transmit Power data from Tables 5 and 6 (pg. 64-67) respectively. To demonstrate the analysis by example, Table 6 breaks down location comparisons for each frequency. If the adjusted probability (Ade) areas were less than .05, then these values were shaded for visual representation . It can be seen that only 924 MHz has a three-way significance among locations, hence the box on Figure 13. The shaded areas in Table 6 show that there are other frequencies with significant difference, however these are two-way interactions instead of three-way interactions. All measurenment units for each scenario have two similar tables that display all the information found in the respective Figure. These tables can be found in Appendix D. In some cases, the figures may not have any sections highlighted. This does not mean that there was no significance found, but can mean one of three things: 1. All frequencies showed significant differences among all locations and frequencies. This is only relevant for Figures 47, 56, and 65 where data for the Absolute Recevied Power is compared among scenarios at each location. These figures are found in Appendix F-H . The data 58 contained in these figure has been incorporated in the the figures in this chapter, however, when combined with other variables, no figures demonstrated this result. . There are significant differences, but not among all three locations at one given frequency. However,differences could exist among two of the three locations as seen in Figure 27. . No significant differences exist. This is only relevant for Figures 60-68 , which are found in Appendix H . The data contained in these figures has been incorporated in the the figures in this chapter, however, when combined with other variables, no figures demonstrated this result. 59 Scenario 1 — The Measurement of Ambient RF Noise 60 H QmLmP-GUW #1335362". .m> E53 .825“. 3839:. . _. otmcoom 6.. 2:9“. 3:2. Econ—.2“. omm wNm mNm VNm NNm o~m mam mam .va Nam cam mom mom com 33+ ~8le 33+ a otmcoom Nom Q: NH m.~H ma 92 v.“ méfi m." m.m.n ma mdfi (map) JDMOd unusual 61 Table 5: Transmit Power (dBm) Scenario 1 Estimations sce fre Estimate StdErr DF tValue Probt 1 1 14.27 0.07243 215 197.02 <.0001 1 2 900 13.7033 0.07243 215 189.2 <.0001 1 3 12 0.07243 215 165.68 <.0001 I 1 1 14.4767 0.06779 249 213.56 <.0001 I I 1 2 902 14.22 0.06779 249 209.77 <.0001 I I 1 3 12.24 0.06779 249 180.56 «00014 1 1 14.65 0.08463 261 173.11 <.0001 I 1 2 904 14.7367 0.08463 261 174.14 <.0001 I I 1 3 12.4267 0.08463 261 146.84 <.0001 I 1 1 14.8167 0.08354 258 177.36 <.0001 I 1 2 906 14.96 0.08354 258 179.08 <.0001 1 3 12.8067 0.08354 258 153.3 <.0001 1 1 15.04 0.0734 247 204.91 <.0001 1 2 908 14.88 0.0734 247 202.73 <.0001 1 3 13.0933 0.0734 247 178.38 <.0001 1 1 15.2733 0.08972 246 170.23 <.0001 1 2 910 14.8 0.08972 246 164.96 <.0001 1 3 13.4667 0.08972 246 150.09 <.0001 1 1 15.4683 0.0711 254 217.55 <.0001 1 2 912 15.0267 0.0711 254 211.34 <.0001 1 3 13.31 0.0711 254 187.2 <.0001 1 1 15.6367 0.08047 266 194.33 <.0001 1 2 914 15.2533 0.08047 266 189.56 <.0001 1 3 13.18 0.08047 266 163.8 <.0001 1 1 15.6433 0.08486 273 184.34 <.0001 1 2 916 15.48 0.08486 273 182.42 <.0001 1 3 13.0767 0.08486 273 154.1 <.0001 I 1 1 15.4667 0.09041 284 171.08 <.0001 I 1 2 918 15.7067 0.09041 284 173.73 <.0001 I 1 3 13.0667 0.09041 284 144.53 <.0001_‘j 1 1 15.2767 0.1165 295 131.17 <.0001 I 1 2 920 15.9333 0.1165 295 136.8 <.0001 F 1 3 13.0533 0.1165 295 112.08 <.0001 1 1 15.6767 0.09568 299 163.85 <.0001 I 1 2 922 15.56 0.09568 299 162.63 <.0001 r 1 3 13.4367 0.09568 299 140.44 <.0001 62 Table 5: Continued _——_—_—__ l 1 1 16.0833 0.09556 295 168.31 <.0001 1 2 924 15.1867 0.09556 295 158.93 <.0001 1 3 13.7167 0.09556 295 143.54 <.0001 1 1 16 0.09565 285 167.28 <.0001 1 2 926 14.8467 0.09565 285 155.22 <.0001 1 3 14.1567 0.09565 285 148 <.0001 1 1 15.47 0.103 278 150.15 <.0001 1 2 928 14.54 0.103 278 141.12 <.0001 1 3 14.45 0.103 278 140.25 <.0001 1 1 14.87 0.1393 252 106.77 <.0001 1 2 930 14.2333 0.1393 252 102.19 <.0001 1 3 14.7467 0.1393 252 105.88 <.0001 63 Table 6: Transmit Power (dBm) Scenario 1 Comparisons 1Iloc Estimate StdErr DF tValue Probt Adjust Ade 2 0.5667 0.1024 215 5.53 <.0001 Tukey-Kramer 0.0002 3 2.27 0.1024 215 22.16 <.0001 Tukey-Kramer 1140001 3 1.7033 0.1024 215 16.63 <.0001 Tukey-Kramer <.0001t 2 0.2567 0.09587 249 2.68 0.0079 Tukey-Kramer 09883 3 2.2367 009587 249 23.33 <.0001 Tukey-Kramer <.0001 3 1.98 0.09587 249 20.65 <.0001 Tukey-Kramer £10001 2 -0.08667 0.1 197 261 -0.72 0.4696 Tukey-Kramer 1 3 2.2233 0.1197 261 18.58 <.0001 Tukey-Kramer <.0001 3 2.31 0.1197 261 19.3 <.0001 Tukey-Kramer 92.0001 2 -0.1433 0.1181 258 -1.21 0.2262 Tukey-Kramer 1 3 2.01 0.1181 258 17.01 <.0001 Tukey-Kramer <.0001 3 2.1533 0.1181 258 18.23 <.0001 Tukey-Kramer <.0201 2 0.16 0.1038 247 1.54 0.1245 Tukey-Kramer 1 3 1.9467 0.1038 247 18.75 <.0001 Tukey-Kramer <.0001: 3 1.7867 0.1038 247 17.21 <.0001 Tukey-Kramer <.0001 2 0.4733 0.1269 246 3.73 0.0002 Tukey-Kramer 0.2972 3 1 .8067 0.1269 246 14.24 <.0001 Tukey-Kramer <.0001 3 1.3333 0.1269 246 10.51 <.0001 Tukey-Kramer “s 00011 2 0.4417 0.1006 254 4.39 <.0001 Tukey-Kramer 0.0345 3 2.1583 0.1006 254 21.46 <.0001 Tukey-Kramer <.0001 3 1.7167 0.1006 254 17.07 <.0001 Tukey-Kramer (“00011. 2 0.3833 0.1138 266 3.37 0.0009 Tukey-Kramer 0.618 3 2.4567 0.1 138 266 21.59 <.0001 Tukey-Kramer <.OQQ1 3 2.0733 0.1 138 266 18.22 <.0001 Tukey-Kramer <.0001 2 0.1633 0.12 273 1.36 0.1746 Tukey-Kramer 1 3 2.5667 0.12 273 21.39 <.0001 Tukey-Kramer <.0001 3 2.4033 0.12 273 20.03 <.0001 Tukey-Kramer <20001 2 -0.24 0.1279 284 -1.88 0.0615 Tukey-Kramer 1 3 2.4 0.1279 284 18.77 <.0001 Tukey-Kramer <.0001 3 2.64 0.1279 284 20.65 <.0001 Tukey-Kramer <.0001 2 -0.6567 0.1647 295 -3.99 <.0001 Tukey-Kramer 0.1442 3 2.2233 0.1647 295 13.5 <.0001 Tukey-Kramer <.0001I 3 2.88 0.1647 295 17.49 <.0001 Tukey-Kramer <.0001 2 0.1 167 0.1353 299 0.86 0.3892 Tukey-Kramer 1 3 2.24 0.1353 299 16.55 <.0001 Tukey-Kramer <.0001] 3 2.1233 0.1353 299 15.69 < .0001 Tukey-Kramer <.0001 64 Table 6: Continued 1 2 0.8967 0.1351 295 6.64 <.0001 Tukey-Kramer 5.0001 I 1 924 3 2.3667 0.1351 295 17.51 <.0001 Tukey-Kramer "2.0001 I 2 3 1.47 0.1351 295 10.88 <.0001 Tukey-Kramer 5.0001 1 2 1 .1533 0.1353 285 8.53 <.0001 Tukey-Kramer <.0001?- 1 ‘ 926 3 1.8433 0.1353 285 13.63 <.0001 Tukey-Kramer Eta 59.25 23E 3.32m . _. otmcoow ”E. 3.52“. #1.): 55:00.: H ocmcoum lw/Al 111303115 plau sinners 66 H Omkmcmum firs: 65:62". .m> AEmE Beacon. mm... .6 326m 83.32 .. F otocoom 6.. 2:9”. firs: 3:039: mom com mom 0mm mmm mNm VNm NNm omm mam mam va Nam cam mom m 63+ ~ 63+ H 63+ H otmcoum com de .3 ma.“ NH m.~.n m.“ Wm” ea ma...” ma Wm." (map) paeuuogl 821 no JaMOd eznjosqv 67 .H Ohhmcmuw firs: 3:33.32“. .m> E: Boston. once: one: $039.02.... 5.. 2:9“. 3.5: 3:259: omm wNm mNm emm NNm on me gm «.3 NHm on mom mom 3m New com 1. _ _ 1. L L z W _ .../7 _ 2 n A. . r _ _ 3 m.m m 03+ N 63 1a.: H 6311 H otmcoum (w) paeuuog afiueu peau jeapmoaiu, 68 firs: 3:262". 31:: Boston. 35: one: 30:202.... 6.. 2:9". 0mm NNm owm 3...): 3:259: 36 mHm 3m NHm on mom mom 3m New com 33+ 33131 33+ a H . . . _ _ _ _ H otmcoom (w) paeuuog afiueu peau jeonajoaql 68 fizz. 3:252". .m> .Emo. 326.. :ouoowxomm 23.32 - F atocoom Q... 6.59.... 3.5.. 3:233: mHm mHm .VHm H 25:25 NHm on mom mom com mom va wv Wm: me mm: om mdm Hm mHm (map) JaMOd Jauempea emjosqv 69 AA Aux—z. 3:262". .m> E53 .826“. 63233. 32022 . .. 23:25 3.. 2:2... 0mm 3...): 3:259: wNm mNm vwm Nmm omm me mHm «Hm NHm OHm mom mom 3m mom H ctmcoum com (map) JaMOd panacea amjosqv 70 firs—13:33.38". .m> .Ecmmu. mom 2.30 33.32 - _. otmcoow 5.. 2:9“. m 631.1 N 631.31 H 63+ 3.5.. 3:253: mHm mHm .VHm w p 36 H otmcoom NH lwbsap) 53821180 aznrosqv 71 3...... 3:252". .m> 25:. 3235: mm... :o .830: 8232 . P ctncoom 5N 2:9“. 3.2. 3:263: 0mm wmm mNm 2m 03 mom mom 3m New com #Nm NNm omm mHm mHm .VHm .VH méH mH m.mH m uo..+ N 63 Li 2 H uo._+ m.mH NH 9: 3. m.mH H otmcoom (map) weneu Se; uo JaMOd eznlosqv 72 -L Aux—z. 3:252". 61E. $.85: oncom— uuom 30.5.82... . .. otocoom "..N 25.“. 5.5.. 3:259: omm mNm mNm cum NNm omm me mHm eHm m 63 LT N 63 JT H 63 I H otmcoom NHm on mom mom 3m Nom com 0H de NH mKH wH m.wH mH de 0N mdN HN m.HN NN m.NN mN m.m~ em méN (at) 35.131133 aSueu peas |23113103Q1 73 -L Scenario 1 The received power measurements showed like differences according to data analysis. Figure 31 in Appendix A is an example of a misleading visualization representation of how a RFID system might perform under this condition. The figure show two large signal spikes that represent ambient RF noise at this location. Similar figures can be found in Appendix A. Constructed by Voyantic Measurement Unit, these figures are graphs ranging from 800 to 1,000 MHz that represent each location’s RF noise levels. They show a distinct difference between locations however the focus was on the operating frequency range of the transponder. Taking a closer look at these graphs within the range of 900 to 930 MHz, clear differences are harder to recognize. The seemingly flat line from the Received Power graph in Location 3 is not actually fiat. Instead, if magnified, this flat line would appear with demonstrated peaks and valleys. This low-level noise is representative of background noise (Weisman, 2002). Locations 1 and 2 both had continuous signals produced from unconfirmed sources. Based on the frequency range that these signals appeared, and the locations, 3 number of educated assessments can be made. Figures 40-41 in Appendix C identify cell towers located near each location that could be responsible for some of the disturbance. The results from 900 to 930 MHz bandwidth directly compared differences between locations. The Sensitivity units shared multiple frequencies where Significant differences were identified. However, there was a limited range of 74 frequencies where all three locations showed differences. At these frequencies, conclusions about the scenarios and locations can be made valid. The Backscatter units also have a similar frequency range that allows for similar valid comparisons as well. In some cases, a specific frequency or range of frequencies contain significant differences and was common among all measurement units. This allowed for direct comparisons among both sensitivity and Backscatter units. However, this was not the case with these particular results. The Sensitivity units displayed a common frequency at 924 MHz (Tables 5-6 & 19-24 and Figures 13-16), while Backscatter units shared the frequencies of 908 and 912 to 916 MHz (Tables 25-34 and Figures 17—21). 924 MHz was the only frequency that appeared with significant differences among all locations for Sensitivity units. . Tables 7 and 8, displays the performance evaluation of the measurement units in Scenario 1 within specific frequency ranges. Based on the causal relationship recreated in Tables 9 -10, communication should be at a peak when the Transmit Power, Electric Field Strength and Power on Tag Forward estimations are ranked “low”. If these conditions are met, then a “high” estimation value should appear from the theoretical read range fonrvard. The rankings given in Tables 7 and 8 represent the best estimation value (1 st) to the worst (3rd). Location 3 matches the ideal conditions for all sensitivity and backscatter 75 estimations by receiving the 1st place ranking with all measurement units. Locations 1 and 2 were ranked 3rd and 2nd respectfully. Table 7: Scenario 1 - Sensitivity Unit Performance Summary at 924 MHz . .. .. " F- 5535’ 5m mm *m’ . Rank: 1st Location 3 Location 3 Location 3 Location 3 . ‘61-: ‘ ’. '.. f . 5 Rank: 2nd Location 2 Location 2 Location 2 Location 2 Rank: 3rd Location 1 Location 1 Location 1 Location 1 Table 8: Scenario 1 - Backscatter Unit Performance Summary at 908, 912, 914, and 916 MHz Delta RCS POTR TRRR RP 1 55438332338405 31“~3..-‘1 Rank: 1St Location 3 Location 3 Location 3 Location 3 Location 3 Status: Good «1:2... 866321.134: ...... .. 3* Rank: 2nd Location 2 ' Location 2 Location 2 Location 2 Location 2 Status: Good ,1 « ,. LL?“ 15.3%,wa“1‘?” 94. "WE. N *6 3 . -.. ‘1 it 5.“; *5?st 33.; 4.34 +4.25“ Location 1 Location 1 Location 1 Location 1 Location 1 Rank: 3rd Status: Good 76 Table 9: Ideal Outcome Based on Causal Relationship for Sensitivity Units at 924 MHz 924 MHzI If TP and EFS and POTF Then, TRRF I Values I Low Low Low High 1 Table 10: Ideal Outcome Based on Causal Relationship for Backscatter Units at 908, 912, 914, and 916 MHz MHz RCS High 5 High High 908,912 Delta to 916 If BP and and POTR Then, TRRR Values 5 High It is important to note that the initial rankings from Tables 7 and 8 are not always representative of all the frequency within the transponder’s operating frequency range. Looking at the overall performance and the number of better quality estimation values through the operating frequency of 900 to 930 MHz, Tables 7 and 8 demonstrates Location 3 received an overall 1st place ranking while Locations 1 and 2 received the rankings of 3rd and 2nd respectively. Table 11 presents the number of differences and similarities among all 16 operating frequencies. The differences column represents significant differences one location had between the other two locations. Similarities represent having at least one other location at that frequency that does not display a significant difference in estimation value. In theory, the higher number of differences showed less equivalent comparisons among other locations, thus displaying the purity of the initial rankings shown in the Tables 7 and 8. For example, looking at the Transmit Power in Location 2 at 924 MHz from Tables 7, the estimation value 77 ranked 2nd best out of the three locations. However, the number of differences and similarities illustrates 12 out of 16 frequencies had no significant differences between Location 1 or 3. This showed that the 2nd place ranking at 924 MHz does not actually represent the overall result throughout the 900 to 930 MHz bandwidth. Table 11: Scenario 1 - Number of Differences and Similarities for Operating Frequency Range Location 1 Location 2 Location 3 # # # # # # Difference Similaritie Difference Similaritie Difference Similaritie s s s s s 3 TP 5 11 4 12 14 2 EFS 4 12 2 14 13 3 POTF 4 12 3 13 2 14 TRRF 5 11 5 11 14 2 BP 10 6 6 10 10 6 Delta RCS 14 2 13 3 15 1 POTR 10 6 9 7 15 1 TRRR 7 9 7 9 13 3 78 Scenario 2 - Combination of Ambient and Identified RF Noise 79 firs: 5:252... .m> AEmB ..miom “Emcee... . N oracoow "Nu 8:9“. 3...): 35:3: 0mm mmm mmm emm NNm ONm mam mam Vum Nam Cam mom mom 3m m uo._+ N oodlfll H uo._+ N otmcmum Nam com méa NH m.~a MH m.mH .3 m4; ma Wm." ma mdu NH mKfl (map) .lBMOd uwsueu 80 Table 12: Transmit Power (dBm) Scenario 2 Estimations sce loc fre Estimate Std Err DF tValue Probt 2 1 14.2833 0.07243 215 197.2 <.0001 2 2 900 12.3 0.07243 215 169.82 <.0001 2 3 12.0333 0.07243 215 166.14 <.0001 2 1 14.72 0.06779 249 217.15 <.0001 2 2 902 12.6067 0.06779 249 185.97 <.0001 2 3 12.1133 0.06779 249 178.7 <.0001 2 1 15.1667 0.08463 261 179.22 <.0001 2 2 904 12.91 0.08463 261 152.55 <.0001 2 3 12.1933 0.08463 261 144.08 <.0001 2 1 15.3967 0.08354 258 184.3 <.0001 2 2 906 13.37 0.08354 258 160.04 <.0001 2 3 12.4767 0.08354 258 149.35 <.0001 2 1 15.425 0.0734 247 210.15 <.0001 2 2 908 13.9667 0.0734 247 190.28 <.0001 2 3 12.93 0.0734 247 176.16 <.0001 2 1 15.4467 0.08972 246 172.16 <.0001 2 2 910 14.5667 0.08972 246 162.35 <.0001 2 3 13.4 0.08972 246 149.35 <.0001 2 1 15.77 0.0711 254 221.79 <.0001 2 2 912 15.1117 0.0711 254 212.53 <.0001 2 3 13.3433 0.0711 254 187.66 <.0001 2 1 16.0867 0.08047 266 199.92 <.0001 2 2 914 15.6333 0.08047 266 194.28 <.0001 2 3 13.3167 0.08047 266 165.49 <.0001 2 1 16.2933 0.08486 273 192 <.0001 2 2 916 16.0333 0.08486 273 188.94 <.0001 2 3 13.3033 0.08486 273 156.77 <.0001 i 2 1 16.4067 0.09041 284 181.48 <.0001 I 2 2 918 16.23 0.09041 284 179.52 <.0001 L2 3 13.2967 009041 284 147.08 <.0001 2 1 16.5133 0.1165 295 141.78 <.0001 2 2 920 16.4 0.1165 295 140.81 <.0001 2 3 13.3 0.1165 295 114.19 <.0001 2 1 16.9533 0.09568 299 177.19 <.0001 2 2 922 15.97 0.09568 299 166.92 <.0001 2 3 13.6167 0.09568 299 142.32 <.0001 81 Table 12: Continued 82 I 2 F1 17.3917 0.09556 295 182 <.0001 I r2 2 924 15.59 0.09556 295 163.15 <.0001 I 2 3 13.9333 0.09556 295 145.81 <.0001 1 2 1 17.295 0.09555 285 180.81 <.0001 2 2 926 14.8933 0.09565 285 155.71 <.0001 | I 2 3 14.1733 0.09565 285 148.18 <.00014 2 1 16.6283 0.103 278 161.39 <.0001 I 2 2 928 14.045 0.103 278 136.32 <.0001 I 2 3 14.2967 0.103 278 138.76 <.0001 l 2 1 16.035 0.1393 252 115.13 <.0001 2 2 930 13.1867 0.1393 252 94.68 <.0001 I | 2 3 14.4833 0.1393 252 103.99 <.0001 I Table 13: Transmit Power (dBm) Scenario 2 Comparisons loc fre :00 Estimate Std Err It? tValue Probt Adjust Ade 1 2 1.9833 0.1024 215 19.36 <.0001 Tukey-Kramer <.0001 I 1 900 3 2.25 0.1024 215 21.97 <.0001 Tukey-Kramer <.0001 I 2 3 0.2667 0.1024 215 2.6 0.0099 Tukey-Kramer 0.994 1 . 2 2.1 133 0.09587 249 22.04 <.0001 Tukey-Kramer <.0001 1 902 3 2.6067 0.09587 249 27.19 <.0001 Tukey-Kramer <.0001 2 3 0.4933 0.09587 249 5.15 <.0001 Tukey-Kramer 0.00%I 1 2 2.2567 0.1 197 261 18.86 <.0001 Tukey-Kramer <.0001 1 904 3 2.9733 0.1 197 261 24.84 <.0001 Tukey-Kramer <.000fl 2 3 0.7167 0.1 197 261 5.99 <.0001 Tukey-Kramer «00% 1 . 2 2.0267 0.1181 258 17.15 <.0001 Tukey-Kramer <.0001 1 . 906 3 2.92 0.1181 258 24.72 <.0001 Tukey-Kramer <.0001 I 2 3 0.8933 0.1181 258 7.56 <.0001 Tukey-Kramer <.0001I 1 . 2 1.4583 0.1038 247 14.05 <.0001 Tukey-Kramer <.0001 1 908 3 2.495 0.1038 247 24.04 <.0001 Tukey-Kramer <.0001 2 3 1.0367 0.1038 247 9.99 <.0001 Tukey-Kramer <.0001jI 1 2 0.88 0.1269 246 6.94 <.0001 Tukey-Kramer <.0001 1 910 3 2.0467 0.1269 246 16.13 <.0001 Tukey-Kramer <.0001 I 2 3 1 .1667 0.1269 246 9.19 <.0001 Tukey-Kramer <.0003 1 2 0.6583 0.1006 254 6.55 <.0001 Tukey-Kramer <.0001 1 912 3 2.4267 0.1006 254 24.13 <.0001 Tukey-Kramer <.0001] 2 3 1.7683 0.1006 254 17.59 <.0001 Tukey-Kramer <.0001I 1 2 0.4533 0.1 138 266 3.98 <.0001 Tukey-Kramer 0.1456 1 914 3 2.77 0.1138 266 24.34 <.0001 Tukey-Kramer <.0001 I 2 3 2.3167 0.1 138 266 20.36 <.0001 Tukey-Kramer <.0001 1 2 0.26 0.12 273 2.17 0.0311 Tukey-Kramer 1 1 3 2.99 0.12 273 24.91 <.0001 Tukey-Kramer <.0001 2 3 Ir2.73 0.12 273 22.75 <.0001 Tukey-Kramer <.0001 1 2 0.1767 0.1279 284 1.38 0.1681 Tukey-Kramer 1 1 3 3.1 1 0.1279 284 24.32 <.0001 Tukey-Kramer <.0001 2 3 2.9333 0.1279 284 22.94 <.0001 Tukey-Kramer <.0001 — — 1 2 0.1 133 0.1647 295 0.69 0.4919 Tukey-Kramer 1 1 3 3.2133 0.1647 295 19.51 <.0001 Tukey-Kramer <.0001 2 3 3.1 0.1647 295 18.82 <.0001 Tukey-Kramer <.0001 I i —— 1 2 0.9833 0.1353 299 7.27 <.0001 Tukey-Kramer <.0001 1 922 3 3.3367 0.1353 299 24.66 <.0001 Tukey-Kramer <.0001] 2 3 2.3533 0.1353 299 17.39 ('Ofl Tukey-Kramer <.0001 I 83 Table 13: Continued 1 2 1.8017 0.1351 295 13.33 <.0001 Tukey-Kramer .<.0001| 1 924 3 3.4583 0.1351 295 25.59 <.0001 Tukey-Kramer <.000’t’| 2 3 1.6567 0.1351 295 12.26 <.0001 Tukey-Kramer r'~‘<.0001 1 2 2.4017 0.1353 285 17.75 <.0001 Tukey-Kramer <.0001“ 1 926 3 3.1217 0.1353 285 23.08 <.0001 Tukey-Kramerwi—DOMI 2 3 0.72 0.1353 285 5.32 <.0001 Tukey-Kramer "0.0005‘ 1 2 2.5833 0.1457 278 17.73 <.0001 Tukey-Kramer <.0001I 1 928 3 2.3317 0.1457 278 16 <.0001 Tukey-Kramer ,._.<..0001| 2 3 -0.2517 0.1457 278 -173 0.0852 Tukey-Kramer 1 I 1 2- 2.8483 0.197 252 14.46 <.0001 Tukey-Kramer 65.0001 1 930 3 1.5517 0.197 252 7.88 <.0001 Tukey-Kramer <.0001I 2 3 -1.2967 0.197 252 -6.58 <.0001 Tukey-Kramer :.<;.0001I 84 3...): 55:60.."— 61.53 59.25 Ear. 0535 - N eta—Bow ”mm 959“. 3...): 35:02“. 0mm mmm mmm «mm NNm ONm mam mam «Am Nam on mom mom com m ug lil- N uo._ 1H: H “5.. '9' N eta—Bum Nom oom lww mums Praia 91113313 85 Aux—2V 3:252". .m> E53 22:0“. an... :0 326m 3232 . N 25:00...» ”cm 2:9“. 3...): 35:69“. omm wNm mNm «mm NNm omm me mHm va NHm on mom mom 3m Nom m 63+ N 63+ H 871 ~ atmcmum com md oH de HH m.HH NH m.~H MH WMH VH de mH m.mH (map) memos Se], uo Jamod am|osqv 86 #1:: >052er 61.5 Huston. 69.8... comm 30:23:... . N 2.325 "mm 952“. fizsz 3:252“. omm w~m mNm va NNm ONm me mHm va NHm on mom mom 3m mom m uo.._l.il N uo.. I1] H uo._+ N eta—Bum com (w) memo; aflueu peau Ieauaaoatu 87 firs: 55:02“. .m> AEmE 330m 3333.25 33.32 . N 25:95 6N 2:2“. 3...): 5:252”. 0mm wNm mNm «Nm NNm ONm me mHm va NHm on mom mom 3m New muo._+ NuOglfll H uo._+ N otmcmum com he mKV we Wm? me mdv om mdm Hm (map) JaMOd Jaueasxaea amlosqv 88 firs: 3:252". .m> E53 .326...— uozooom 83.32 .. N 35:25 um 2:2“. 3...): 35:—.2“. 0mm wNm mNm «Nm NNm ONm me on va NHm on mom mom 3m New com M 23+ N oodlfll H uo._+ N eta—Bum mN om mm me om mm mm on (map) lama paniaoau amiosqv 89 ANT—s: 5:252“. .m> AEuwmg mom 8.69 82002 - N 25:25 6N 0.5a.“— Auzcs 35:09.“. 0mm wNm mNm ¢Nm NNm on mHm mHm VHm NHm OHm mom mom 3m m 63+ N 631-..- H 63+ N 83:08 Nom com NH wH mH 0N HN NN MN «N mN lwnbsepl 53881160 amiosqv 90 firs: 5:252". .m> E53 6233". GE. :0 ..oBoa 83.062 5N 2:2“. 3...): 35:62“. mHm mHm QHm N eta—Bum NHm on mom mom com Nom com ¢H méH mH m.mH mH de NH mKH wH (map) wanes 881 no Janna amosqv 91 An12v>oce=c2u 61.5 3.551 omcam teem 30:202.... . N atncoum an 959". 3...): 35:02“. 0mm wNm mNm VNm NNm ONm me mHm «Hm NHm OHm mom mom 3m Nom m 63+ ~ 8.731 H 03+ N atmcoum com NH mNH wH de mH de oN mdN HN m.HN NN m.NN MN m.MN eN méN mN m.mN mN (w) wanau afiueu peau leonaaoatu, 92 Scenan‘o 2 There were no significant differences in the Received Power that were shared among all locations. This means that no one frequency showed significant differences in all locations. This further means that, statistically, there should be no difference between the Locations as far as the level of RF noise in the environment. Furthermore, this brings up the possibility that the environment has a stronger influence on the results than does RF noise. Scenario 2 followed a similar pattern to that of Scenario 1. Both sensitivity and Backscatter units have similar frequency ranges that displayed significant differences among all locations. The Sensitivity units shared the ranges of 906 to 908 MHz and 922 to 924 MHz (Tables 14-15 & 35-40 and Figures 2225) while the Backscatter units share the range of 900 to 902 MHz (Tables 41-50 and Figures 26-30). The 924 MHz frequency within the Sensitivity units was a commonly shared frequency with significant differences among all locations for both scenarios which means that comparisons and conclusions about the best and worst performing locations can be made among all of these units. Comparisons within this particular frequency will be further discussed in the sections for each location. The overall results shown in Tables 14 and 15 showed that Location 3 once again had the best overall results despite the presence of additional RF noise from an Identified Source. This became more evident because this location consistently had the best estimation values among all measurement units at a 93 majority of the frequencies. According to the same table, Locations 1 and 2 showed the same overall rankings of 3rd and 2nd best. Since these results do not show the entire picture for the transponder’s operating frequency range, a closer look at the amount of differences and similarities between locations and frequencies is displayed in Table 16. Similar to Table 11 in the Scenario 1 results, differences and similarities help to determine how closely related the estimation values were for each measurement unit. Table 14: Scenario 2 - Sensitivity Unit Performance Summary within 906, 908, 922, and 924 MHz EFS POTF TRRF . '. “If; 4 x <1 www 33%: 23456.8 m ;; 1;:s ~ .. ......"flm rs 1:32 “rim: .‘Zf‘d ~ 122:. mm: mass as. N magi Rank: 3rd Location 1 Location 1 Location 1 Location 1 Table 15: Scenario 2 - Backscatter Unit Performance Summary within 900 to 930 MHz BP Delta RCS POTR TRRR .4: s g... gs... Rank: 1st . . I . . if"; is 1‘8" . sss \; gs .. s, ._ s, - , ’IJ‘II’ E‘s-k: 1‘ Ifij‘vxf \‘ kg-\ ”‘0': _. 1.5M; .IIIIIIII Rank: 2nd R _ . . . . . -' 4...}; (7.1.. {5‘81 I III I ‘ bi IHIIIIKIII~I .-.... mg. . 3's... .03. s... . Location 1 Location 1 Location 1 Location 1 Location 1 Rank: 3d Status: Bad 94 Table 16: Scenario 2 - Number of Differences and Similarities for Operating Frequency Range Location 1 Location 2 Location 3 — _ # # # # # # Difference Similaritie Difference Similaritie Difference Similaritie s s s s s s _ — __ TP 12 4 10 6 14 2 EFS 13 3 9 7 12 4 POTF 13 3 11 5 14 2 TRRF 11 5 11 5 13 3 I I BP 8 8 5 11 9 7 Delta RCS 14 2 14 16 0 POTR 7 9 7 9 6 10 TRRR 7 9 7 9 8 8 Looking at Equations 2 and 3 introduced at the beginning of the Results chapter, Location 3 followed this ideal situation once again (Tables 17 and 18). Unlike Locations 1 and 2 in Scenario 1, these locations provided a more difficult challenge because the number of estimation values within each measurement unit appeared to show less similarities and more variance in actual estimation values. In Scenario 1, these locations had more similarities among each other and consistently were higher (or lower) than Location 3, which made the gap between Location 3 estimation values and the other locations clear cut. However in Scenario 2, this trend vanished. In Scenario 2, the Locations appeared to bounce back and forth between stronger and weaker estimation values. 95 Table 17: ldeal Outcome Based on Causal Relationship for Sensitivity Units at 906, 908, 922, and 924 MHz 906 to 908, 922 to 924 MHz 7 Values If TP and EFS and POTF Then, TRRF Low Low Low 7 High j Table 18: Ideal Outcome Based on Causal Relationship for Backscatter Units at 900 and 902 MHz 900 to Delta 902MHz If BP and RCS and POTR Then, TRRR m ' High High High High 96 Null Hypotheses Findings Null Hypothesis 1: The presence of ambient radio frequency noise within the operating frequency range of an ultra-high frequency radio frequency identification system will NOT have an effect on the communication capability of a passive transponder. This null hypothesis was supported by the data. The ambient RF power measurements from each location varied, however the power measurements within the operating frequency range of the transponder was determined to be not significantly different. Using a more conservative significant value method, it was determined that all three locations were virtually the same in terms of ambient RF noise levels. Therefore, the presence of ambient RF noise alone had no significant effect on the communication capabilities of the transponder.IThis conclusion stated above does not include ambient RF noise and the possible effects of the environment together. Null Hypothesis 2: Introducing additional radio frequency noise from an identified source, within the focused operating frequency range of 902 to 928 MHz, for a given location will NOT have an effect on the communication capabilities of a passive transponder. This null hypothesis was supported and not supported by the data. Introducing additional RF noise from an identified source affected the sensitivity and backscatter measurements in comparisons to the result with only ambient RF noise present. Locations 1 and 2 showed the most significant differences 97 :etseen 116851118 passive 1 L1 teclsscat sight-car $188“ 81 021011 a In 1 iiLocatic $380800! :1 ( I) —-‘ (D o.) rt) 111.810 af-d as 01‘ L00 9113i between Scenarios 1 and 2. These held true for both sensitivity and backscatter measurements. This shows an affected the communication capabilities of the passive transponder. This data not supports the null hypothesis. Location 3 showed minimal effects based on the sensitivity and backscatter measurements. This means that the data showed little to no significant differences between Scenarios 1 and 2. Thus, it did not show an overall effect on the communication capabilities of the passive transponder in this location and, therefore, did support the null hypothesis. In closer examination of this mixed finding, a question arose with respect to Location 3, Scenario 2. Was the lack of significant differences between Scenarios 1 and 2 due to this location acting as an anechoic chamber, or was there a system configuration difference between locations? Location 3 provided limitations on available power outlets to construct the additional RF noise source, and as a result, the positioning of the additional RF noise source varied from that of Locations 1 and 2. Although the distance from antenna to antenna stayed consistent, the angle varied at which the antenna from the identified RF noise source was placed in comparison to the Location 1 and Location 2 systems. It has yet to be determined whether or not the difference in identified RF noise configuration had an effect on the overall results. Further discussion on this topic, which includes additional suggestions on verification measures, can be found in the Future Work chapter. 98 Null HyP .je“tlfical mmlJlll Tl measure a1 effect ’18 pos: measure addition iesl-ruct effects 1 environ: iflEFlElE m‘par Null Hypothesis 3: The surrounding environment in which a radio frequency identification system is implemented will NOT have an effect on the communication capabilities of a passive transponder. This null hypothesis was not supported by the data. Based on the measurements from both scenarios, the surrounding physical environment had an effect on the overall communication capabilities of the passive transponder. The possible effects shown in the differences in sensitivity and backscatter measurement units by the combination of the physical environment and the addition of identified RF noise were the cause for both constructive and destructive effects on the communication capabilities for each location. These effects were displayed especially in data concerning Location 2. This environment displayed possible signs of both constructive and destructive interference based on the extreme peaks and valleys in data patterns when comparing results from both scenarios in more than one response variable. 99 East lo: CGi'TdilSE 3135:8113 results a Chapter 5: Conclusion This chapter discusses and summarizes overall results and conclusions. Each location displayed different results based on the two scenarios. The conclusions formed were based on the three hypotheses and the results displayed in this study. The causes and reasoning for observations from the results are discussed. 100 This .1358 .111 an 100811 at the This research supports the following conclusions: . There are 3-way interactions show a dependence relationship existing among all combinations of Scenarios, Locations, and Frequencies. o 2-way interactions exist, but due to the existence of 3-way interactions, statistical conclusions must be made based on 3-way interactions. 0 Minimal significant differences between all locations were observed with ambient RF noise measurements existing within the transponder’s operating frequency range. 0 Minimal significant differences between all locations were observed with the combination of ambient and identified RF noise measurements existing within the transponder’s operating frequency range. 0 Introducing additional RF noise increases the likelihood of both constructive and destructive interference effects. 0 Introducing additional RF noise into locations with numerous reflective surfaces can cause inconsistency in sensitivity and backscatter measurements. 0 Location 3 (MSU Engineering Building Basement) showed no significant differences between Scenarios 1 and 2. Location 1 Location 1 showed comparisons among the two scenarios. An easier look at the differences and similarities are displayed in Tables 51-68 and Figures 42- 101 166” RE no: {OHCI 3‘6 MH; Rem‘s‘m ‘isnd lc al 333k .1le. 3' 084531 I W31 ll 11.888” Hugh 09961 813113: @1198 Mold 0668's envirOI 50. The Sensitivity units for this location showed significant differences within the frequency range of 924 to 930 MHz. Among Transmit Power, Electric Field Strength, and'Power on Tag Fonivard measurements, Scenario 1 provided a more desired estimation value than that of Scenario 2. In the case of Theoretical Read Range Forward, Scenario 2 provided the better estimation values. This did not follow the causal relationship (Equations 2 and 3) proposed. The Backscatter units for Location 1 share the frequency range of 912 to 916 MHz, which displayed significant differences among both scenarios. Remember that these given ranges were not the only significant differences found for each measurement unit, but represented significant differences among all Backscatter or Sensitivity units. Among all Backscatter units within 912 to 916 MHz, Scenario 2 provided better results than that of Scenario 1. In this case, the causal relationship (Equations 2 and 3) does hold true. After looking at the initial analysis, Location 1 seemed like it would be the worst location to conduct RFID testing based on the ambient RF noise measurements from the Interference feature (Figure 31). However, initial thoughts did not show the complete picture of how an RFID system would operate there. Although this location consistently performed the worse in terms of activations power needed, strength of signal, and readable distance, it was more consistent than Location 2. Sometimes consistency can be just as important as recording the best overall measurement. Consistency shows more reliable measurements and repeatability of similar results for future testing in the same environment. The additional RF noise in the environment along with the physical 102 esirr C'ifz‘el'g 379 Ur shows Within a113, interaction with materials in the environment had some effect which at times were positive and at other times negative. The additional RF noise in the environment somehow allowed for stronger/weaker overall backscatter signals to reach the reader respectively. This could be from the effects of constructive interference on the response signals from the transponder or destructive interference of other RF noise in the environment. Location 2 This location shows the most variability between strong and weak estimation values, which resulted in values similar at times to both Locations 1 and 3. Tables 69-86 and Figures 51-59 show the comparisons between the two scenarios at this location. This provided a larger range of significant differences between scenarios. The Sensitivity units had a range of 900 to 906 MHz and the Backscatter units ranged from 900 to 908 and 926 to 928 MHz. Unlike Location 1, Scenario 2 provided more desired estimation values for all Sensitivity units. This location followed the causal relationship as well. Since there were two different frequency ranges that provided significant difference among the scenarios for the Backscatter units, this could mean that the units at this location were affected by the change in scenario. Scenario 2 showed better estimation values than that of Scenario 1 for the Backscatter units within both frequency ranges. Once again, the causal relationship (Equations 2 and 3) holds true in this location. 103 mm 1' 11$th 05 El“ Lora; It is theorized that most of the different effects on the performance of the communication capabilities of the transponder in this location were due to a mixture of the physical environment and the addition of identified RF noise into the environment. This location had a larger amount of metal based objects compared to the other locations. This would provide many opportunities for RF waves to reflect, interact, and interfere with each other. Location 3 This location showed the least amount of significant differences between the two tested scenarios. This point is further demonstrated by looking at Tables 87-104 and Figures 60-68. There were no significant differences at all displayed in these figures and tables. This shows that the two scenarios had no significant effect on the Sensitivity or Backscatter units at this location. There were some instances where Scenario 1 performed worse than Scenario 2, but also, vice versa. However, overall, there were not enough significant differences to conclude one scenario outperformed the other. This means that no matter which scenario was being tested, the results would have mostly been the same. The crossing interactions between the data lines on the graph further shows the differences between scenarios were minimal and less significant. Overall Conclusions In general, it is inconclusive whether or not the presence of RF noise will instantly translate into RF interference issues for an RFID system’s 104 301081 138 im 00pm hill“. Si , ”.pa ECCUlE 8801 51,101 hr 888 181 25 communication capabilities with transponders operating in the UHF band 902 to 928 MHz. The results and conclusion on the overall effects of ambient RF noise and identifiable RF noise on reader and transponder communication capabilities were inconclusive based on this data because of the presence of a 3-way comparison between the two scenarios, three locations, and 16 frequency points. With significant differences found between these three variables, a two-way comparison between the scenarios and locations did not provided a honest and accurate depiction of these findings. Each location showed different effects from both the ambient and identified RF noise, some more so than others. The consistency, accuracy and efficiency of an RFID system depend on the ability for the system’s components to communicate with each other. The opportunity for complications from RF noise present in the environment is not guaranteed just because it is detected/present in a particular operating frequency band. Location 3 was the closest thing to an ideal location to set up an RF ID system based on the lack of ambient RF noise present initially, the physical locations providing a barrier to external RF noise, and the lack of defined change in the communication capabilities of the transponder even with the presence of the identified RF noise. However, location 2 showed a clear disturbance in communication capabilities from the amount of RF noise and the amount of reflective surfaces present in the surrounding environment. This location is a prime example of a location that is not ideal for implementing an RFID system. Location 1 also showed similar disturbances as 105 well. Although the results from locations and scenarios varied, the transponder remained operational. It is often understood that field strength of a system will vary based on the set up placement location. This difference is often caused by the interference patterns that are generated by combining energy from a direct source and reflected energy from an object. Since the phase of reflected signals can return in any other angle from that of a direct energy pattern, this can affect the signal by amplifying or diminishing the strength of the signal. Areas that contain multiple emitters operating at various frequencies the field strength patterns can become very complex (4.1.2 Interference Patterns, 2003). Unless some effort is made to shield out and reduce RF noise from the system placement location, the mixture of RF noise and reflective surface in the physical environment could diminish the performance of the system. The results from these tests help to identify the need for users of RFID equipment to be aware of the surrounding environment in which they plan to implement an RFID system. There is always a chance that RF noise present in a given location will have an effect on the communication abilities of the system, however, one needs to be aware of the possible effects from the combination of physical surrounding and RF noise. The presence of RF noise and the environment that houses the RFID system can have an effect on transponder’s functionality. Appropriate precautions such as performing a site audit, identifying RF noise emitters, and reducing the amount of reflective surface in the interrogation zone can help limit the amount of future complications in the functionality of an RF ID system. 106 This 1 spun oil fror adguslments were not 00 or time was Chapter 6: Future Work This chapter discusses testing ideas beyond this study. These ideas are spun off from the original work for this study. Many of these ideas are minor adjustments to the procedures and ideals used in this study. The following ideas were not conducted as part of this study because resources were not available, or time was not available. 107 an iii. fitter in] I i" d i19g 8r 0: Although this research was unable to definitively determine how much of an influence RF noise truly has on transponder and reader communication, further research and testing needs to be conducted for further understanding. Initial plans for testing Scenario 1 were to provide varying significant levels of ambient RF noise in different locations in order to better display effects from RF noise of this sort. Each location provided a different ambient RF noise measurement within the 800 to 1,000 MHz frequency range by the Tagformance system. However, after further analyzing the test results, it was determined the initial testing scenario was not fully tested because the levels of ambient RF noise within the transponder’s operating frequency were determined to be insignificant between locations. Further research and testing on the effects of RF noise in a highly noisy RF environment would be the next step in continuing this research. It is suggested that similar testing procedure to that used in this testing should be followed, with a few adjustments. Instead of using various locations to provide a difference in ambient noise measurements, a single location with the purest ambient noise measurements such as Location 3 should be used. Within this environment, the number of indentified RF noise sources such as the lmpinj Speedway UHF Reader used in this testing should be increased. Increasing the number of readers used within the environment at the same time should provide a more straight fonivard way to test, research, and further understand the effects of RF noise particularly from reader-to-reader interference noise. 108 1139’ '11 U‘w I "rm .: F- A. Similar to the previous suggestion, it is believed that further research should also include testing with multiple transponders. Similar testing procedures could be followed as the previous example, however, instead of using multiple readers as the source of interference, multiple transponders can be used within very close proximity. Instead of a single transponder, use multiple ones to provide a means of creating tag interference. Although this normally is not considered to be interference from RF noise, this could provide a better understanding of tag interference or the tag coupling effect. Since this work was unable to conconfirrn my 2nd null hypothesis definitively, continued testing in environments with ambient noise at various energy concentrations within transponder operating frequencies is recommended. This would include performing a complete site survey including temperature and humidity analysis, and identification of all RF noise sources using a spectrum analyzer with direction antenna. After closer examination of this mixed finding, a question arose with respect to Location 3, Scenario 2 findings. The question surrounding these results were based on the positioning of the identified RF noise source in Location 3, in comparison to the positioning of this same system in the other two locations. The identified RF noise sources in Location 1 and 2 were positioned 20 feet away, at an angle of 90 degrees, to the right of the front center position of the antenna. In Location 3, the same identified RF noise source was 20 feet away, at an angle of 45 degrees, to the left of the front center position of the antenna. In addition, the identified RF noise source was partially visible from the 109 set up '01 ciderblc 11380 13139 88' set up location of the Voyantic measurement unit due to blockage from a cinderblock wall. To verify whether or not this difference in set up configuration affected the finding of Location 3, Scenario 2, reconstructing the identified RF noise set up of Location 1 and 2 at Location 3 will provide answers this question. 110 gisrrdix A: Appendix A: Interference Graphs - Received Power (dBm) vs. Frequency Sweep (800 to 1,000 MHz) for All Locations from Tagformance 111 3...: cos; - 88 .525 6:252". .m> AEmE 326m 324.com _. cozmoo; - P 25:95 “Fm 959”. owm 92mm“. mocmumthE 112 Aux: coo; - 88 325 3:03—52". .m> E93 $263 3233. _. :ozmeoa - N 25:25 ”N” 959”. $.23QO mocmhwtmfir: 113 Aux—2 coo; - 88 3626 65:62... .m> 353 .8sz 33301 N c2230.. - _. oracoom ”mm 9.39.... 93mm“. mocmcmtBE 114 firs. coo... - 88 3626 5:032“. .m> AEmE 626m bozooem N cosmos - N atmcoow Hen 2:9... mhzummn— mocmgmtmfi: 115 €15. c8... - 88 3on 35:62”. .m> AEmE 526m 3333. m cosmoo; - v 2.2.3.0: ”mm 952". owm 23mm; mocmumtoHE 116 ~15. Soc... . com. aeeiw 5:352”. .m> E53 325.". oozooom. m 6.300.. - N ctmcoum "on 0.59". 93mm“. mocmLmtoE. 117 Appendix B: TESTING LAYOUTS AND SETUP 118 .350 @532. cc: genome”. 9-2.3 3.29.:3 3me 53.5.5. . .. 5.300.. Km 2:9... 0:05: 350 can 53$... 03H ....mcfimu .32). 7V. \ :J \Hl. Elfin. /. 850m 0.92.352 HE: EmEmSmmms. \ . .U .H. D J I, :33. N 1 action. I/ 52:30”. mcicto .H. D V ucmum 532.32.. E D .H. .U U 119 nu.— mchmE 9.59.05; *0 Begum . N 5:30.. "on 959". $| 8.883 j cows. dons. mchms. .om__>_ .83 _ 9.285. .022 .83 v/ 2%» .2032 zcsEmEmSmmmE D Al ncfiwfiocoqmcmfi .o>m>cou \ \ fl L \ 2an I mchms. $528.2 7 .622 .522 .582 .622 I r. 850w EnmEEmE I] \4 Jar/m D) g 0:285. @5585. @5285. _| m n 120 EmEommm @5225 uESoEQfi .. n .5330.— nmn 2:2“. \ ..oumsmm. 850m mzmczcmu. \ mchmS. 2:522 umzma 9.22:2 \1 @5522 ccmum .mncoamcmfi u \‘ ta: acmEmL—ammmz D /r 53:30; 9.355 3:2 95: \_ 121 Appendix C: Mapped Locations of Nearby Cell Towers to Each Location 122 _, cow—woo.— ocsocm 22.6... .30 co cozaooq 5v 2:9“. .mizvozcvm ..030« :9: m 9.593 mmccmutw 0.0535 x .05 .mmEa 6058.39 uF0 Qou C0 wccmEm 0:26 6:65 950 r 3.0.08 ...wEm « 1 . n OCCOEns 0.0.55 I. grillvrbo'nta‘ofifi.)34(7)?.«(xf‘bu .. 1 ..(m‘. , sE ...... «5.52: i, . $5.44 9. POO? .5 afieaflgfln— ...O Emu—05030” nun—.8 .. “02mm Ogle-5‘ C 123 Cd hilt—Mm Hm ill - -31 .. Aluowmflmbmfl‘ufllfii-‘Fmt - uni-Nata- nits. m ucm N 95:30.. 9595 «.326... =00 ho cozoood "3. 2:2". .ocsfizbm .05 .9200. .mmcfizzo. to Q2 :0 Egg :9: w mctwsm mwccmfw 0.2233. « accoutm 0:06 6:65 9.50 —. 26.00: =wEm « 00.5.5025“. 0.5835— 4...‘ avian-bi 0.0.55 1.— ... a F Red Cedar Rd *- . .563? 1‘“... ......u. .Po.~....b:.. ¥-n§ Rd or R _.. .. . . J‘ .;,.. .2,- u . a. 7.“.- _ . . .. 252... _ 0.5.25 1. ‘ » 3305 303:: ...-08.9.0.5. .3525.— uaumv - nosw account. 0 124 Appendix D: Scenario 1 Tables - Presence of Ambient Radio Frequency Noise 125 Table 5: Transmit Power (dBm) Scenario 1 Estimations —— _—_ _ j sce loc fre Estimate StdErr DF tValue Probt 1 1 14.27 0.07243 215 197.02 <.0001 I 1 2 900 13.7033 0.07243 215 189.2 <.0001 I I 1 3 12 0.07243 215 165.68 1 1 14.4767 0.06779 1 2 902 14.22 0.06779 I 1 3 12.24 0.06779 1 1 14.65 0.08463 1 2 904 14.7367 0.08463 1 3 12.4267 0.08463 _ — 1 1 14.8167 0.08354 1 2 906 14.96 0.08354 I 1 3 12.8067 0.08354 1 1 15.04 0.0734 1 2 908 14.88 0.0734 247 202.73 <.0001 I 1 3 13.0933. 0.0734 247 178.38 <.0001 1 1 15.2733 0.08972 246 170.23 <.0001 1 2 910 14.8 0.08972 246 164.96 <.0001 I 1 3 _ 13.4667 r0.08972 246 150.09 <.0001 1 1 15.4683 0.0711 254 217.55 <.0001 1 2 912 15.0267 0.0711 254 211.34 <.0001 1 3 13.31 0.0711 254 187.2 <.0001 1 1 15.6367 0.08047 266 194.33 <.0001 1 2 914 15.2533 0.08047 266 189.56 <.0001 1 3 13.18 0.08047 266 163.8 <.0001 1 1 15.6433 0.08486 273 184.34 <.0001 1 2 916 15.48 0.08486 273 182.42 <.0001 1 3 13.0767 0.08486 273 154.1 <.0001 1 1 15.4667 0.09041 284 171.08 <.0001 1 2 918 15.7067 0.09041 284 173.73 <.0001 1 3 13.0667 0.09041 284 144.53 <.0001 1 1 15.2767 0.1165 295 131.17 <.0001 1 2 920 15.9333 0.1165 295 136.8 <.0001 1 3 13.0533 0.1165 295 112.08 <.0001 I 1 1 15.6767 0.09568 299 163.85 <.0001 r 1 2 922 15.56 0.09568 299 162.63 <.0001 | 1 3 299 140.44 <.0001 13.4367 0.09568 126 —177—17_1_1_1_1_ 1F; 1— Table 5: Continued 1 1 16.0833 0.09556 295 168.31 <.0001 1 2 924 15.1867 0.09556 295 158.93 <.0001 1 3 13.7167 0.09556 295 143.54 <.0001 1 1 16 0.09565 285 167.28 <.0001 1 2 926 14.8467 0.09565 285 155.22 <.0001 1 3 14.1567 0.09565 285 148 <.0001 1 1 15.47 0.103 278 150.15 <.0001 1 2 928 14.54 0.103 278 141.12 <.0001 1 3 14.45 0.103 278 140.25 <.0001 1 1. 14.87 0.1393 252 106.77 <.0001 1 2 930 14.2333 0.1393 252 102.19 <.0001 1 3 14.7467 0.1393 252 105.88 <.0001 127 Ww- ‘l— 1.1— RIFL- J.|-Fl.l1h n!-- 11% 4 _ Table 6: Transmit Power (dBm) Scenario 1 Comparisons 128 Fre _loc Estimate StdErr DF tValue Probt Adjust 2 0.5667 0.1024 215 5.53 <.0001 Tukey-Kramer 900 3 2.27 0.1024 215 22.16 <.0001 Tukey-Kramer 3 1.7033 0.1024 215 16.63 <.0001 Tukey-Kramer' 2 0.2567 0.09587 249 2.68 0.0079 Tukey-Kramer 902 3 2.2367 0.09587 249 23.33 <.0001 Tukey-Kramer 3 1.98 009587 249 20.65 <.0001 Tukey-Kramer 2 -0.08667 0.1 197 261 -0.72 0.4696 Tukey-Kramer 904 3 2.2233 0.1197 261 18.58 <.0001 Tukey-Kramer . 3 2.31 0.1197 261 19.3 <.0001 Tukey-Kramer 2 -0.1433 0.1181 258 -1.21 0.2262 Tukey-Kramer 906 3 2.01 0.1181 258 17.01 <.0001 Tukey-Kramer 3 2.1533 0.1181 258 18.23 <.0001 Tukey-Kramer 2 0.16 0.1038 247 1.54 0.1245 Tukey-Kramer 908 3 1.9467 0.1038 247 18.75 <.0001 Tukey-Kramer 3 1.7867 0.1038 247 17.21 <.0001 Tukey-Kramer . 2 0.4733 0.1269 246 3.73 . 0.0002 Tukey-Kramer 910 3 1.8067 0.1269 246 14.24 <.0001 Tukey-Kramer 3 1.3333 0.1269 246 10.51 <.0001 Tukey-Kramer 2 0.4417 0.1006 254 4.39 <.0001 Tukey-Kramer 912 3 2.1583 0.1006 254 21.46 <.0001 Tukey-Kramer 3 1.7167 0.1006 254 17.07 <.0001 Tukey-Kramer 2 0.3833 0.1 138 266 3.37 0.0009 Tukey-Kramer 914 3 2.4567 0.1138 266 21.59 <.0001 Tukey-Kramer 3 2.0733 0.1 138 266 18.22 <.0001 Tukey-Kramer 2 0.1633 0.12 273 1.36 0.1746 Tukey-Kramer 916 3 2.5667 0.12 273 21.39 <.0001 Tukey-Kramer 3 2.4033 0.12 273 20.03 <.0001 Tukey-Kramer 2 -0.24 0.1279 284 -1.88 0.0615 Tukey-Kramer 918 3 2.4 0.1279 284 18.77 <.0001 Tukey-Kramer 3 2.64 0.1279 284 20.65 <.0001 Tukey-Kramer 2 -0.6567 0.1647 295 -3.99 <.0001 Tukey-Kramer 920 3 2.2233 0.1647 295 13.5 <.0001 Tukey-Kramer 3 2.88 0.1647 295 17.49 <.0001 Tukel-Kramer 2 0.1 167 0.1353 299 0.86 0.3892 Tukey-Kramer 1 922 3 2.24 0.1353 299 16.55 <.0001 Tukey-Kramer <.0001I 3 2.1233 0.1353 299 15.69 <.0001 Tukey-Kramer <.0001I —l1—1_2F- V_ 2n 17174177..— Table 6: Continued 129 2 0.1351 295 6.64 <.0001 Tukey-Kramer <.000-1I 3 0.1351 295 17.51 <.0001 Tukey-Kramer <.0001I 3 0.1351 295 10.88 <.0001 Tukey-Kramer <.0001! 2 0.1353 285 8.53 <.0001 Tukey-Kramer <.0001 3 0.1353 285 13.63 <.0001 Tukey-Kramer <.ooofl 3 0.1353 285 5.1 <.0001 Tukey-Kramer 0.00151 2 0.1457 278 6.38 <.0001 Tukey-Kramer <.0001 3 0.1457 278 7 <.0001 Tukey-Kramer <.0001I 3 0.1457 278 0.62 0.5373 Tukey-Kramer 1 I 2 0.197 252 3.23 0.0014 Tukex—Kramer 0.7405 3 0.197 252 0.63 0.5318 Tukey-Kramer 1 I 3 0.197 252 -2.61 0.0097 Tuke -Kramer 0.9939 Table 19: Electric Field Strength (V/m) Scenario 1 Estimations sce loc fre Estimate StdErr DF tValue Probt 1 1 1.515 0.01532 165 98.88 <.0001 1 2 900 1.405 0.01532 165 91.7 <.0001 1 3 1.15 0.01532 165 75.06 <.0001 i 1 1 1.5472 0.02764 184 55.98 <.0001 1 2 902 1.52 0.02764 184 55 <.0001 1 3 1.1883 0.02764 184 43 <.0001 1 1 1.58 0.01965 224 80.42 <.0001 1 2 904 1.6013 0.01965 224 81.51 <.0001 1 3 1.2137 0.01965 224 61.77 <.0001 1 1 1.6217 0.0163 247 99.47 <.0001 1 2 906 1.642 0.0163 247 100.71 <.0001 1 3 1.2683 0.0163 247 77.8 <.0001 1 1 1.6605 0.01309 249 126.87 <.0001 1 2 908 1.63 0.01309 249 124.54 <.0001 1 3 1.32 0.01309 249 100.85 <.0001 1 1 1.706 0.01521 256 112.15 <.0001 1 2 910 1.616 0.01521 256 106.23 <.0001 1 3 1.371 0.01521 256 90.13 <.0001 F1 1 1.7352 0.01333 273 130.17 <.0001 r 1 2 912 1.6663 0.01333 273 125.01 <.0001 l 1 3 1.35 0.01333 273 101.28 <.0001 1 1 1.7628 0.01541 290 114.42 <.0001 I 1 2 914 1.7053 0.01541 290 110.69 <.0001 F1 3 1.3317 0.01541 290 86.44 <.0001 1 1 1.7708 0.0168 301 105.43 <.0001 I 1 2 916 1.7567 0.0168 301 104.59 <.0001 F1 3 1.3133 0.0168 301 78.19 <.0001 1 , 1 1.7463 0.01951 316 89.51 <.0001 I 1 2 918 1.806 0.01951 316 92.57 <.0001 F1 3 1.3133 0.01951 316 67.32 <.0001 1 1 1.7208 0.02568 332 67.01 <.0001 I 1 2 920 1.8367 0.02568 332 71.53 <.0001 1 3 1.31 0.02568 332 51.02 <.0001 1 1 1.8017 0.02235 336 80.63 <.0001 I 1 2 922 1.7863 0.02235 336 79.94 <.0001 | 1 3 1.3947 0.02235 336 62.41 <.0001 130 Table 19: Continued 1 1 1.8878 0.02353 328 80.23 <.0001 1 2 924 1.6967 0.02353 328 72.1 1 <.0001 1 3 1.45 0.02353 328 61.62 <.0001 1 1 1.8753 0.02341 311 80.1 <.0001 1 2 926 1.637 0.02341 311 69.92 <.0001 1 3 1.4953 0.02341 311 63.87 <.0001 1 1 1.7702 0.02256 295 78.47 <.0001 1 2 928 1.571 0.02256 295 69.64 <.0001 * 1 3 1.572 0.02256 295 69.69 <.0001 1 1. 1.6625 0.03025 258 54.96 <.0001 L 1 2 930 1.509 0.03025 258 49.89 <.0001 r 1 3 1.6203 0.03025 258 53.57 <.0001 131 Table 20: Electric Field Strength (Vlm) Scenario 1 Comparisons i 132 fre Estimate StdErr DF tValue Probt Adjust Ade I 1 900 2 0.11 0.02167 165 5.08 <.0001 Tukeyiramer 0.0017 I 1 900 3 0.365 0.02167 165 16.85 <.0001 Tukey-Kramer <.0001. 2 900 3 0.255 0.02167 165 1 1.77 <.0001 Tukey-Kramer 5.0001 1 902 2 0.02717 0.03909 184 0.7 0.4879 Tukey-Kramer 1 1 902 3 0.3588 0.03909 184 9.18 <.0001 Tukey-Kramer €000? 2 902 3 0.3317 0.03909 184 8.49 <.0001 Tukey-Kramer <.000‘q 1 904 2 -0.02133 0.02779 224 -0.77 0.4434 Tukey-Kramer 1 1 904 3 0.3663 0.02779 224 13.18 <.0001 Tukey-Kramer <.0001 I 2 904 3 0.3877 0.02779 224 13.95 <.0001 Tukey-Kramer <.0001 1 906 2 -0.02033 0.02306 247 -0.88 0.3787 Tukey-Kramer 1 1 906 3 0.3533 0.02306 247 15.32 <.0001 Tukey-Kramer T<.0001 2 906 3 0.3737 0.02306 247 16.21 <.0001 Tukey-Kramer <.0001. 1 908 2 0.0305 0.01851 249 1.65 0.1007 Tukey-Kramer 1 1 908 3 0.3405 0.01851 249 18.4 <.0001 Tukey-Kramer <.0001 I 2 908 3 0.31 0.01851 249 16.75 <.0001 TukeLKramer <.0001I 1 910 2 0.09 0.02151 256 4.18 <.0001 Tukey-Kramer 0.0751 1 910 3 0.335 0.02151 256 15.57 <.0001 Tukey-Kramer 2 910 3 0.245 0.02151 256 11.39 <.0001 Tukey-Kramer 1 912 2 0.06883 0.01885 273 3.65 0.0003 Tukey-Kramer 1 912 3 0.3852 0.01885 273 20.43 <.0001 Tukey-Kramer I . 2 912 3 0.3163 0.01885 273 16.78 <.0001 Tukey-Kramer 1 914 2 0.0575 0.02179 290 2.64 0.0088 Tukey-Kramer . 1 914 3 0.4312 0.02179 290 19.79 <.0001 Tukey-Kramer <.0001 2 914 3 0.3737 0.02179 290 17.15 <.0001 Tukey-Kramer <.0001 1 916 2 0.01417 0.02375 301 0.6 0.5514 Tukey-Kramer 1 1 916 3 0.4575 0.02375 301 19.26 <.0001 Tukey-Kramer <.0001 2 916 3 0.4433 0.02375 301 18.66 <.0001 Tukey-Kramer <.0001 1 918 2 -0.05967 0.02759 316 -2.16 0.0313 Tukey-Kramer 1 1 918 3 0.433 0.02759 316 15.69 <.0001 Tukey-Kramer <.0001 I 2 918 3 0.4927 0.02759 316 17.86 <.0001 Tukey-Kramer <.0001 I I 1 920 2 -0.1158 0.03631 332 -3.19 0.0016 Tukey-Kramer 0.7752 I 1 920 3 0.4108 0.03631 332 11.31 <.0001 Tukey-Kramer <.0001 I 2 920 3 0.5267 0.03631 332 14.5 <.0001 Tukey-Kramer <.0001 1 922 2 0.01533 0.0316 336 0.49 0.6278 Tukey-Kramer 1 I 1 922 3 0.407 0.0316 336 12.88 <.0001 Tukey-Kramer <.0001 I 2 922 3 0.3917 0.0316 336 12.39 <.0001 Tukey-Kramer <.0001 - 1%1_2-1_1_2- 1_1_ 2- lFt; 7.— l 0.1912 Table 20: Continued 0.03328 328 5.74 <.0001 Tukex-Kramer 0.4378 0.03328 328 13.16 <.0001 Tukey-Kramer 0.2467 0.03328 328 7.41 <.0001 Tukey-Kramer 0.2383 0.03311 311 7.2 <.0001 Tukey-Kramer 0.38 0.03311 311 11.48 <.0001 Tukey-Kramer 0.1417 0.03311 311 4.28 <.0001 Tukey-Kramer 0.1992 0.0319 295 6.24 <.0001 Tukey-Kramer 0.1982 0.0319 295 6.21 <.0001 Tukey-Kramer -0.001 0.0319 295 -0.03 0.975 Tukey-Kramer 0.1535 0.04278 258 3.59 0.0004 Tukey-Kramer 0.04217 0.04278 258 0.99 0.3252 Tukey-Kramer QQNWQDNQQNQODN -0.1113 0.04278 258 133 -2.6 0.0098 Table 21: Absolute Power on Tag Forward (dBm) Scenario 1 Estimations sce loo fre Estimate StdErr DF tValue Probt 1 1 12.7133 0.07129 220 178.34 <.0001 1 2 900 13.3033 0.07129 220 186.62 <.0001 1 3 15 0.07129 220 210.42 <.0001 1 1 12.565 0.06457 254 194.6 <.0001 1 2 902 12.7867 0.06457 254 198.03 <.0001 1 3 14.8133 0.06457 254 229.42 <.0001 1 1 12.4217 0.08087 266 153.6 <.0001 1 2 904 12.29 0.08087 266 151 .97 <.0001 1 3 14.64 0.08087 266 181.03 <.0001 I 1 1 12.2267 0.083 264 147.31 <.0001 1 2 906 12.0467 0.083 264 145.14 <.0001 1 3 14.3167 0.083 264 172.49 <.0001 1 1 11.9733 0.07273 252 164.62 <.0001 1 2 908 12.12 0.07273 252 166.63 <.0001 1 3 13.93 0.07273 252 191.52 <.0001 1 1 11.72 0.08883 247 131.93 <.0001 1 2 910 12.2 0.08883 247 137.34 <.0001 1 3 13.5 0.08883 247 151.97 <.0001 1 1 11.5883 0.07585 251 152.77 <.0001 1 2 912 12.0333 0.07585 251 158.64 <.0001 1 3 13.7133 0.07585 251 180.79 <.0001 1 1 11.4617 0.08056 262 142.28 <.0001 1 2 914 11.79 0.08056 262 146.35 <.0001 #1 3 13.8833 0.08056 262 172.34 <.0001 1 1 11.4833 0.08209 270 139.89 <.0001 1 2 916 11.57 0.08209 270 140.95 <.0001 1 3 14.0133 0.08209 270 170.71 <.0001 1 1 11.62 0.08946 281 129.89 <.0001 1 2 918 11.3833 0.08946 281 127.25 <.0001 1 3 14.0467 0.08946 281 157.02 <.0001 r1 1 11.77 0.1137 293 103.55 <.0001 I 1 2 920 11.1767 0.1137 293 98.33 <.0001 I 1 3 14.0767 0.1137 293 123.85 <.0001 1 1 11.4233 0.1001 297 114.18 <.0001 r 1 2 922 11.54 0.1001 297 115.34 <.0001 I 1 3 13.7667 0.1001 297 137.6 <.0001 134 Table 21: Continued 1 11.02 0.0994 1 2 924 11.9133 0.0994 1 3_ 13.3867 0.0994 294 134.67 <.0001 1 1 11.1 0.09691 284 114.54 <.0001 I 1 2 926 12.32 0.09691 284 127.13 <.0001 I 1 3 13.0333 0.09691 284 134.49 <.0001 1 1 F 11.645 0.1056 277 110.27 <.0001 r 1 2 928 12.62 0.1056 277 119.51 1 3 12.7 0.1056 277 120.26 1 1 12.1717 0.1403 249 86.78 I 1 2 930 12.95 0.1403 249 92.33 <.0001 1 3 12.4667 0.1403 135 Table 22: Absolute Power on Tag Forward (dBm) Scenario 1 Comparisons loc fre _|oc Estimate StdErr DF tValue Probt Adjust Ade I 1 2 -0.59 0.1008 220 -5.85 <.0001 Tukey-Kramer ’<.0_,001I 1 900 3 -2.2867 0.1008 220 -22.68 <.0001 TukeLKramer <.0001 2 3 -1.6967 0.1008 220 -16.83 <.0001 Tukey-Kramer 1£10001 1 2 -0.2217 0.09131 254 -2.43 0.0159 Tukey-Kramer 0.9991 1 902 3 -2.2483 0.09131 254 -24.62 <.0001 Tukey-Kramer 2 3 -2.0267 0.09131 254 -22.19 <.0001 Tukey-Kramer 1 2 0.1317 0.1144 266 1.15 0.2507 Tukey-Kramer 1 904 3 -2.2183 0.1144 266 -19.4 <.0001 Tukey-Kramer 2 . 3 -2.35 0.1144 266 -20.55 <.0001 Tukey-Kramer . 1 2 0.18 0.1174 264 1.53 0.1264 Tukey-Kramer 1 1 906 3 -2.09 0.1174 264 -17.81 <.0001 Tukey-Kramer <_ ,1 2 3 -2.27 0.1174 264 -19.34 <.0001 Tukey-Kramer <.0001 1 2 -0. 1467 0.1029 252 -1.43 0.1551 Tukey-Kramer 1 1 908 3 -1.9567 0.1029 252 -19.02 <.0001 Tukey-Kramer <.0001 2 3 -1.81 0.1029 252 -17.6 <.0001 Tukey-Kramer <.0001 1 2 -0.48 0.1256 247 -3.82 0.0002 Tukey-Kramer 0.2345 1 910 3 -1.78 0.1256 247 -14.17 <.0001 Tukex—Kramer £50001 2 3 -1.3 0.1256 247 -10.35 <.0001 Tukey-Kramer <.0001 1 2 -0.445 0.1073 251 -4.15 <.0001 Tukey-Kramer 0.0848 I 1 912 3 -2.125 0.1073 251 -19.81 <.0001 Tukey-Kramer <.000LI 2 3 -1.68 0.1073 251 -15.66 <.0001 Tukey-Kramer <.00_01+ 1 2 -0.3283 0.1 139 262 -2.88 0.0043 Tukey-Kramer 0.9478 1 914 3 -2.4217 0.1139 262 -21.26 <.0001 Tukey-Kramer <.0001I 2 3 -2.0933 0.1 139 262 -18.37 <.0001 Tukey-Kramer <.0001 1 2 -0.08667 0.1 161 270 -0.75 0.456 Tukey-Kramer 1 1 916 3 -2.53 0.1161 270 -21.79 <.0001 Tukey-Kramer <.0001I 2 3 -2.4433 0.1 161 270 -21.05 <.0001 Tukey-Kramer <.0001 1 2 0.2367 0.1265 281 1.87 0.0624 Tukey-Kramer 1 1 918 3 -2.4267 0.1265 281 -19.18 <.0001 Tukey—Kramer <’.0001 2 3 -2.6633 0.1265 281 -21.05 <.0001 Tukey-Kramer 1 2 0.5933 0.1607 293 3.69 0.0003 Tukey-Kramer . 1 ‘ 920 3 -2.3067 0.1607 293 —14.35 <.0001 Tukey-Kramer <.0001 2 3 -2.9 0.1607 293 -18.04 <.0001 Tukey-Kramer <.0001 1 ‘ 2 -0.1167 0.1415 297 -0.82 0.4103 Tukey-Kramer 1 1 922 3 -2.3433 0.1415 297 -16.56 <.0001 Tukey-Kramer <.0001] 2 3 -2.2267 0.1415 297 -15.74 <.0001 Tukey-Kramer <.0001 136 137 Table 22: Continued 1 . 2 -0.8933 0.1406 294 -6.35 <.0001 Tukey-Kramer 1 924 3 -2.3667 0.1406 294 -16.84 <.0001 Tukey-Kramer 2 3 -1.4733 0.1406 294 -10.48 <.0001 Tukey-Kramer 1 2 -1.22 0.137 284 -8.9 <.0001 Tukey-Kramer 1 926 3 -1.9333 0.137 284 -14.11 <.0001 Tukey-Kramer 2 3 -0.7133 0.137 284 -5.21 <.0001 Tukey-Kramer 1 2 -0.975 0.1493 277 -6.53 <.0001 Tukey-Kramer 1 928 3 -1 .055 0.1493 277 -7.06 <.0001 Tukey-Kramer 2 3 -0.08 0.1493 277 -0.54 0.5926 Tukex-Kramer 1 —1 L 1 2 -0.7783 0.1984 249 -3.92 0.0001 Tukey-Kramer 0.1746 1 930 3 -0.295 0.1984 249 -1 .49 0.1382 Tukey-Kramer 1 I 2 ___3__0.4833 0.1984 249 2.44__i 0.0155 Tukey-Ham 0.999 I F. _ _ . _ _ . _ _ . 2 2 .u-1-.1:44444441\1\1~1\1\1\1\1\1\1\1\1\ Table 23: Theoretical Read Range Forward (m) Scenario 1 Estimations sce loc fre Estimate Std Err DF tValue Probt 1 1 6.52 0.05727 230 113.85 <.0001 1 2 900 6.99 0.05727 230 122.05 <.0001 1 3 8.5 0.05727 230 148.42 <.0001 1 1 6.4067 0.04414 256 145.14 <.0001 1 2 902 6.64 0.04414 256 150.42 <.0001 1 3 8.2833 0.04414 256 187.65 <.0001 1 1 6.305 0.04841 266 130.24 <.0001 1 2 904 6.2267 0.04841 266 128.62 <.0001 1 3 8.02 0.04841 266 165.67 <.0001 1 1 6.1633 0.04618 271 133.46 <.0001 1 2 906 6.03 0.04618 271 130.58 <.0001 1 3 7.8067 0.04618 271 169.05 <.0001 1 1 5.9767 0.04687 269 127.52 <.0001 1 2 908 6.08 0.04687 269 129.73 <.0001 1 3 7.4167 0.04687 269 158.25 <.0001 1 1 5.8133 0.05849 272 99.39 <.0001 1 2 910 6.14 0.05849 272 104.97 <.0001 1 3 7.0467 0.05849 272 120.47 <.0001 1 1 5.7133 0.04547 274 125.66 <.0001 1 2 912 5.9767 0.04547 274 131.45 <.0001 1 3 7.19 0.04547 274 158.14 <.0001 1 1 5.6317 0.0438 284 128.56 <.0001 1 2 914 5.8333 0.0438 284 133.17 <.0001 1 3 7.3767 0.0438 284 168.4 <.0001 1 1 5.6233 0.0447 290 125.8 <.0001 1 2 916 5.6633 0.0447 290 126.7 <.0001 1 3 7.43 0.0447 290 166.22 <.0001 1 1 5.695 0.03992 283 142.67 <.0001 1 2 918 5.52 0.03992 283 138.28 <.0001 1 3 7.4433 0.03992 283 186.46 <.0001 r 1 1 5.7817 0.04942 274 116.99 <.0001 I 1 2 920 5.35 0.04942 274 108.25 <.0001 F1 3 7.4467 0.04942 274 150.67 <.0001 1 1 5.5133 0.03724 260 148.06 <.0001 I 1 2 922 5.6267 0.03724 260 151.1 <.0001 I 1 3 7.26 0.03724 260 194.96 <.0001 138 Table 23: Continued 139 1 1 5.2567 0.03611 252 145.56 <.0001 I 1 2 924 5.8133 0.03611 252 160.97 <.0001 I 1 3 6.8867 0.03611 252 190.69 <.0001 I 1 1 5.31 0.03879 248 136.89 <.0001 1 2 926 6.0767 0.03879 248 156.66 <.0001 I 1 3 6.5333 0.03879 248 168.43 <.0001 I 1 1 5.6317 0.04469 252 126.02 <.0001 1 2 928 6.3267 0.04469 252 141.58 <.0001 I 1 3 __§.3667 0.04469 252 142.47 <.0001 I 1 1 6.0083 0.05986 234 100.38 <.0001 1 2 930 6.5633 0.05986 234 109.65 <.0001 I 1 3 6.1167 0.05986 234 102.19 <.0001 Table 24: Theoretical Read Range Forward (m) Scenario 1 Comparisons 5 o fre loc Estimate StdErr DF tValue Probt Adjust Ade 900 -0.47 0.08099 230 -5.8 <.0001 Tukex—Kramer <.0001 -1.98 0.08099 230 -24.45 <.0001 Tukey-Kramer <., .01 -1.51 0.08099 230 -18.64 <.0001 Tukey-Kramer <.0001 902 -0.2333 0.06243 256 -3.74 0.0002 Tukey-Kramer 0.2918 -1.8767 0.06243 256 -30.06 <.0001 Tukey-Kramer £0507— -1.6433 0.06243 256 -26.32 <.0001 Tukey-Kramer {0001 904 0.07833 0.06846 266 1.14 0.2536 Tukey-Kramer 1 -1.715 0.06846 266 -25.05 <.0001 Tukey-Kramer "<.0001 I -1.7933 0.06846 266 -26.19 <.0001 Tukey-Kramer 906 0.1333 0.06531 271 2.04 0.0422 Tukey-Kramer ”<.0001 I 1 -1.6433 0.06531 271 -25.16 <.0001 Tukey-Kramer 12.0501 -1.7767 0.06531 271 -27.2 <.0001 Tukey-Kramer 908 -0.1033 0.06628 269 -1.56 0.1202 Tukey-Kramer .».<.0'o‘01 1 -1.44 0.06628 269 -21.73 <.0001 Tukey-Kramer f5.01301 I -1.3367 0.06628 269 -20.17 <.0001 Tukey-Kramer 910 -0.3267 0.08272 272 -3.95 0.0001 Tukey-Kramer <.0001I 0.1619 -1.2333 0.08272 272 -14.91 <.0001 Tukey-Kramer 1.09017] -0.9067 0.08272 272 -10.96 <.0001 Tukey-Kramer ‘ <.0001f 912 -0.2633 0.0643 274 -4.1 <.0001 Tukey-Kramer 0.1015 -1.4767 0.0643 274 -22.97 <.0001 Tukey-Kramer <.0001 -1.2133 0.0643 274 -18.87 <.0001 Tukey-Kramer <.0001 914 -0.2017 0.06195 284 -3.26 0.0013 Tukey-Kramer 0.7208 -1.745 0.06195 284 -28.17 <.0001 Tukey-Kramer <.0001 I -1.5433 0.06195 284 -24.91 <.0001 Tukey-Kramer <.0001 916 -0.04 0.06322 290 -0.63 0.5274 Tukey-Kramer -1.8067 0.06322 290 -28.58 <.0001 Tukey-Kramer <.0001 I -1.7667 0.06322 290 -27.95 <.0001 Tukey-Kramer <.0001 918 0.175 0.05645 283 3.1 0.0021 Tukey-Kramer 0.8409 —1.7483 0.05645 283 -30.97 <.0001 Tukey-Kramer <.0001 I -1.9233 0.05645 283 -34.07 <.0001 Tukey-Kramer 920 0.4317 0.06989 274 6.18 <.0001 Tukey-Kramer -1.665 0.06989 274 -23.82 <.0001 Tukey-Kramer —2.0967 0.06989 274 -30 <.0001 Tukex—Kramer N—L—lN—L—LN—l—hN—LAN-L—LN—LAN—L—LNAAN—h—tN—l—LN-A—bN—L—L 922 -0.1133 0.05266 260 -2.15 0.0323 Tukey-Kramer -1.7467 0.05266 260 -33.17 <.0001 Tukey-Kramer <.0901 l (JOCJDNOOOONODODN(DOOM(DQNQJCDNQJQJNQODNWCDNQQJNQQNQWN -1.6333 0.05266 260 -31.02 <.0001 Tukey-Kramer 140 <.0001 Table 24: Continued 1 2 -0.5567 0.05107 252 -10.9 <.0001 Tukey-Kramer <.oog1I 1 924 3 -1.63 0.05107 252 -3192 <.0001 Tukey-Kramer ..<.ooo1 2 3 -1.0733 0.05107 252 -21.02 <.0001 Tukey-Kramer "<.0001 1 2 -0.7667 0.05486 248 -13.98 <.0001 Tukex-Kramer <.0001" 1 926 3 -1.2233 0.05486 248 -22.3 <.0001 Tukey-Kramer 300ml 2 3 -0.4567 0.05486 248 -8.32 <.0001 Tukey-Kramer «9001 1 2 -0.695 0.0632 252 -11 <.0001 Tukey-Kramer <.0001 1 928 3 -0.735 0.0632 252 -11.63 <.0001 TukeLKramer "<0 01 2 3 -0.04 0.0632 252 -0.63 0.5273 Tukey-Kramer l— 1 - 2 -0.555 0.08465 234 -6.56 <.0001 Tukey-Kramer <.0001 1 930 3 -0.1083 0.08465 234 -1.28 0.2019 Tukey-Kramer 1 2 3 0.4467 0.08465 234 5.28 <.0001 Tukey-Kramer how 141 Table 25: Absolute Backscatter Power (dBm) Scenario 1 Estimations sce loc fre Estimate Std Err DF tValue Probt 1 1 50.6417 0.1075 215 470.92 <.0001 1 2 900 50.49 0.1075 215 469.51 <.0001 1 3 47.8967 0.1075 215 445.39 <.0001 1 1 50.74 0.08893 248 570.54 <.0001 1 2 902 50.365 0.08893 248 566.32 <.0001 1 3 47.9633 0.08893 248 539.32 <.0001 1 1 50.87 0.1069 263 476.01 <.0001 1 2 904 50.2383 0.1069 263 470.1 <.0001 1 3 48.0267 0.1069 263 449.4 <.0001 1 1 50.8417 0.108 263 470.88 <.0001 1 2 906 50.1 0.108 263 464.01 <.0001 1 3 48.1733 0.108 263 446.16 <.0001 1 1 50.68 0.09665 248 524.35 <.0001 1 2 908 49.9567 0.09665 248 516.87 <.0001 1 3 48.4 0.09665 248 500.76 <.0001 1 1 50.4917 0.1201 237 420.27 <.0001 1 2 910 49.825 0.1201 237 414.72 <.0001 1 3 48.68 0.1201 237 405.19 <.0001 1 1 50.7567 0.09783 242 518.8 <.0001 1 2 912 49.77 0.09783 242 508.72 <.0001 1 3 48.5933 0.09783 242 496.69 <.0001 1 1 51.0217 0.1226 254 416.31 <.0001 1 2 914 49.6883 0.1226 254 405.43 <.0001 1 3 48.49 0.1226 254 395.65 <.0001 1 1 50.845 0.129 251 394.05 <.0001 1 2 916 49.355 0.129 251 382.5 <.0001 1 3 48.47 0.129 251 375.64 <.0001 1 1 50.1483 0.1203 246 416.93 <.0001 1 2 918 48.5683 0.1203 246 403.79 <.0001 1 3 48.5667 0.1203 246 403.78 <.0001 1 1 49.4467 0.1382 258 357.68 <.0001 1 2 920 47.9267 0.1382 258 346.68 <.0001 1 3 48.64 0.1382 258 351.84 <.0001 1 1 49.6633 0.09647 271 514.83 <.0001 I 1 2 922 48.4283 0.09647 271 502.02 <.0001 I 1 3 48.4933 0.09647 271 502.7 <.0001 J 142 Table 25: Continued 1 1 49.9167 0.0857 1 2 48.8317 0.0857 1 3 48.3533 0.0857 282 564.21 <.0001 —— 1 1 49.83 0.08378 287 594.77 <.0001 1 2 926 48.87 0.08378 287 583.31 <.0001 1 3 48.23 0.08378 287 575.67 <.0001 1 1 49.38 0.09099 293 542.7 <.0001 1 2 928 48.5617 0.09099 293 533.71 <.0001 1 3 48.1 1 0.09099 293 528.74 <.0001 1 1 48.95 0.1227 266 398.96 < .0001 1 2 930 48.2583 0.1227 266 393.32 <.0001 I 1 3 _ 48.0133 0.1227 266 391.33 <.0001 143 Table 26: Absolute Backscatter Power (dBm) Scenario 1 Comparisons Ioc fre loc Estimate StdErr DF tValue Probt Adjust Ade 1 2 0.1517 0.1521 215 1 0.3198 Tukey-Kramer 1 1 900 3 2.745 0.1521 215 18.05 <.0001 Tukey-Kramer $0001 2 3 2.5933 0.1521 215 17.05 <.0001 Tukey-Kramer 2.15001 1 2 0.375 0.1258 248 2.98 0.0032 Tukey-Kramer 0.9083 1 902 3 2.7767 0.1258 248 22.08 <.0001 Tukey-Kramer <0001: 2 3 2.4017 0.1258 248 19.1 <.0001 Tukey-Kramer <.0001 1 2 0.6317 0.1511 263 4.18 <.0001 Tukey-Kramer . 1 1 904 3 2.8433 0.1511 263 18.81 <.0001 Tukey-Kramer 2 3 2.2117 0.1511 263 14.63 <.0001 Tukey-Kramer 1 2 0.7417 0.1527 263 4.86 <.0001 Tukey-Kramer _ ‘. 1 906 3 2.6683 0.1527 263 17.47 <.0001 Tukey-Kramer 2 3 1.9267 0.1527 263 12.62 <.0001 Tukey-Kramer 1 2 0.7233 0.1367 248 5.29 <.0001 Tukey-Kramer A . 1 908 3 2.28 0.1367 248 16.68 <.0001 Tukey-Kramer 2 3 1.5567 0.1367 248 1 1.39 <.0001 Tukey-Kramer 1 2 0.6667 0.1699 237 3.92 0.0001 Tukey-Kramer 1 910 3 1.8117 0.1699 237 10.66 <.0001 Tukey-Kramer ; . 2 3 1.145 0.1699 237 6.74 <.0001 Tukey-Kramer 1 2 0.9867 0.1384 242 7.13 <.0001 Tukex—Kramer 1 912 3 2.1633 0.1384 242 15.64 <.0001 Tukey-Kramer 2 3 1.1767 0.1384 242 8.5 <.0001 Tukey-Kramer 1 2 1.3333 0.1733 254 7.69 <.0001 Tukey-Kramer ' 1 914 3 2.5317 0.1733 254 14.61 <.0001 Tukey-Kramer 2 3 1.1983 0.1733 254 6.91 <.0001 Tukey-Kramer 1 2 1.49 0.1825 251 8.17 <.0001 Tukey-Kramer 1 916 3 2.375 0.1825 251 13.02 <.0001 Tukey-Kramer 2 3 0.885 0.1825 251 4.85 <.0001 Tukey-Kramer 1 2 1.58 0.1701 246 9.29 <.0001 Tukey-Kramer 1 918 3 1.5817 0.1701 246 9.3 <.0001 Tukey-Kramer . 2 3 0.001667 0.1701 246 0.01 0.9922 Tukey-Kramer 1 1 2 1.52 0.1955 258 7.77 <.0001 Tukey-Kramer <.0001 1 920 3 0.8067 0.1955 258 4.13 <.0001 Tukey-Kramer 0.0916 2 3 -0.7133 0.1955 258 -3.65 0.0003 Tukey-Kramer 0.3618 1 2 1.235 0.1364 271 9.05 <.0001 Tukex—Kramer <.0001I 1 922 3 1.17 0.1364 271 8.58 <.0001 Tukey-Kramer <.0001 2 3 -0.065 0.1364 271 -0.48 0.6341 TukgtKramer 1 144 — 121,2—171—2— 1_1_ 2— 1r1_ 2— Table 26 : Continued Tukey-Kramer 0.1212 282 12.9 <.0001 Tukey-Kramer 0.0001 Tukey-Kramer <.0001 Tukey-Kramer <.0001 Tukey-Kramer <.0001 Tukey-Kramer <.0001 Tukey-Kramer <.0001 Tukey-Kramer <.0001 0.0005 Tukey-Kramer 0.4846 <.0001 Tukey-Kramer 0.1446 Tukey-Kramer ODODNOOOONODODNI 145 Table 27: Absolute Received Power (dBm) Scenario 1 Estimations sce _|oc fre Estimate _ Std Err DF tValuej Probt 1 1 79.51 1.3084 2157 60.77 <.0001 1 2 900 82.44 1.3084 2157 63.01 <.0001 1 3 _ 82.4267 1.3084 2157 63 <.0001 1 1 79.4067 1.3084 2157 60.69 <.0001 1 2 902 82.1967 1.3084 2157 62.82 <.0001 1 3 82.4267 1 .3084 2157 63 <.0001 — _—7 1 1 79.46 1.3084 2157 60.73 <.0001 1 2 904 81.9333 1.3084 2157 62.62 <.0001 1 3 82.42 1 .3084 g 57 63 - <.0001 1 1 77.82 1.3084 2157 59.48 <.0001 1 2 906 81.8967 1.3084 2157 62.6 <.0001 1 _3 82.4233 _1.3084 2157 _ 63 <.0001 1 1 77.9333 1.3084 2157 59.57 <.0001 1 2 908 82.09 1.3084 2157 62.74 <.0001 1 3 i82.4233 1.3084 2157 63 <.0001 1 1 79.2833 1 .3084 2157 60.6 1 2 910 82.26 1.3084 2157 62.87 <.0001 1 3 82.4333 fill-.3084 2157 63.01 <.0001 1 1 79.2833 1.3084 2157 60.6 <.0001 1 2 912 82.3233 1.3084 2157 62.92 <.0001 1 3 _ 82.3833 L1 .3084 2157 62.97 <.0001 1 1 79.25 1.3084 2157 60.57 <.0001 1 2 914 82.37 1.3084 2157 62.96 <.0001 1 3 82.3467 1 .3084 2157 62.94 <.0001 1 1 79.22 1.3084 2157 60.55 <.0001 1 2 916 82.3867 1.3084 2157 62.97 <.0001 1 3 82.32 1.3084 2157 62.92 <.0001 1 1 79.22 1.3084 2157 60.55 <.0001 1 2 918 82.38 1.3084 2157 62.96 <.0001 1 3 82.3267 1.3084 2157 62.92 <.0001 1 1 79.2133 1.3084 2157 60.54 <.0001 1 2 920 82.36 1.3084 2157 62.95 <.0001 1 3 82.3367 1.3084 2157 62.93 <.0001 1 1 79.0133 1.3084 2157 60.39 <.0001 1 2 922 82.37 1.3084 2157 62.96 <.0001 1 3 82.37 1.3084 2157 62.96 <.0001 146 Table 27: Continued 147 1 78.9067 1.3084 2157 60.31 <.0001 1 2 924 82.3633 1.3084 2157 62.95 <.0001 1 3 82.41- 1.3084 2157 62.99 <.0001 1 1 78.0667 1.3084 2157 59.67 <.0001 1 2 926 81.3667 1.3084 2157 62.19 <.0001 1 3 82.44 1.3084 2157 63.01 <.0001 1 1 74.05 1.3084 2157 56.6 <.0001 1 2 928 79.4733 1.3084 2157 60.74 <.0001 1 3 82.4367 1.3084 2157 63.01 <.0001 1 1 65.09 1.3084 2157 49.75 <.0001 1 2 930 77.5633 1.3084 2157 59.28 <.0001 1 3 82.44 1.3084 2157 63.01 <.0001 Table 28: Absolute Received Power (dBm) Scenario 1 Comparisons loc _Lre__loc Estimate StdErr _ tValue 1 2 -2.93 1.8503 2157 -1.58 Tukey-Kramer 1 1 900 3 -2.9167 1.8503 2157 -1.58 0.1151 Tukey-Kramer 1 2 __3_ 0.01333 1.8503 2157 0.01 0.9943 1 1 2 -2.79 1.8503 2157 -1.51 0.1317 Tukey-Kramer 1 1 , 902 3 -3.02 1.8503 2157 -1.63 0.1028 Tukey-Kramer 1 2 3 -0.23 1.8503 2157 -0.12 0.901 1 Tukey-Kramer 1 1 2 -2.4733 1.8503 2157 -1.34 0.1815 Tukey-Kramer 1 1 904 3 -2.96 1.8503 2157 -1.6 0.1098 Tukey-Kramer 1 2 3 -0.4867 1 .8503 2157 -0.26 0.7926 Tukey-Kramer 1 1 2 -4.0767 1.8503 2157 -2.2 0.0277 Tukey-Kramer 1 1 906 3 -4.6033 1 .8503 2157 -2.49 0.0129 Tukey-Kramer 2 3L -0.5267 1 .8503 2157 _-0.28 0.7752- 1 2 -4.1567 1 .8503 2157 -2.25 0.0248 Tukey-Kramer 1 908 3 -4.49 1.8503 2157 -2.43 0.0153 Tukey-Kramer 0.9992 2 3 -0.3333 1 .8503 2157 -0.18 0.8571 Tukey-Krarrlti 1 1 2 -2.9767 1.8503 2157 -1.61 0.1078 Tukey-Kramer 1 1 910 3 -3.15 1.8503 2157 -1.7 0.0888 Tukey-Kramer 1 2 _ 3 -0.1733 1.8503 2157 -0.09 0.9254 Tukey-Kramer 1 1 2 -3.04 1.8503 2157 -1 .64 0.1005 Tukey-Kramer 1 1 912 3 -3.1 1.8503 2157 -1.68 0.094 Tukey-Kramer 1 2 __.3_ -0.06 1.8503 215-7' 003 0.9% Tuke -Kramer 1 1 2 -3.12 1.8503 2157 -1.69 0.0919 Tukey-Kramer 1 1 , 914 3 -3.0967 1.8503 2157 -1.67 0.0944 Tukey-Kramer 1 2 3 0.02333 1.8503 _2157 0.011 0.9899 Tukex-Kramer 1 1 . 2 -3.1667 1.8503 2157 -1.71 0.0871 Tukey-Kramer 1 1 916 3 -3.1 1.8503 2157 -1 .68 0.094 Tukey-Kramer 1 2 __3_ 0.06667 1.8503 2157 0.04 0.971;3_l Tuke -Kramer 1 1 2 -3.16 1.8503 2157 -1 .71 0.0878 Tukey-Kramer 1 1 918 3 -3.1067 1.8503 2157 -1.68 0.0933 Tukey-Kramer 1 2 3 0.05333 1.8503 2157 0.03 0.977 Tuke -Kramer 1 1 2 -3.1467 1.8503 2157 -1.7 0.0892 Tukey-Kramer 1 1 920 3 -3.1233 1.8503 2157 -1.69 0.0916 Tukey-Kramer 1 2 3 0.02333 1.8503 2157 0.01 0.9899 Tuke —Kramer 1 1 2 -3.3567 1.8503 2157 -1 .81 0.0698 Tukey-Kramer 1 1 922 3 -3.3567 1.8503 2157 -1 .81 0.0698 Tukey-Kramer 1 2 3 2.04E-14 1.8503 2157 0 1 Tuke -Kramer 1 148 — 12112—45112— 1%1W— H102— Table 28: Continued 149 0.0085 1 2 -3.4567 Tukey-Kramer 1 . 924 3 -3.5033 1.8503 2157 -1.89 0.0584 Tukey-Kramer 2 __3_-£4667 1.8503 2157 -0.03 0.9799 Tukey-Kramer 1 2 -3.3 1.8503 2157 -1.78 0.0746 Tukey-Kramer 1 926 3 -4.3733 1 .8503 2157 -2.36 0.0182 Tukey-Kramer 2 3....L1'0733 1.8503 2157 -0.58 0.5619 Tukey-Kramer 1 2 -5.4233 1 .8503 2157 -2.93 0.0034 Tukey-Kramer 1 928 3 -8.3867 1 .8503 2157 -4.53 <.0001 Tukey-Kramer 2 __3_ -2.9633 1.823- 2157 -1.6 0.1094 Tukey-Kramer 1 2 -12.4733 1.8503 2157 -6.74 <.0001 Tukey-Kramer 1 930 3 -17.35 1.8503 2157 -9.38 <.0001 Tukey-Kramer <.0001 2 3 -4.8767 1.8503 2157 -2.64 Tuke -Kramer 0.9921 Table 29: Absolute Delta RCS (stqm) Scenario 1 Estimations sce loc fre Estimate Std Err DF tValue Probt 1 1 22.53 0.06879 241 327.52 <.0001 1 2 900 20.73 0.06879 241 301 .35 < .0001 1 3 17.48 0.06879 241 254.1 <.0001 1 1 22.8033 0.05175 284 440.61 <.0001 1 2 902 21.5733 0.05175 284 416.84 <.0001 1 3 17.79 0.05175 284 343.74 <.0001 1 1 23.0733 0.05928 300 389.23 <.0001 1 2 904 22.56 0.05928 300 380.57 <.0001 1 - 3 18.08 0.05928 300 304.99 <.0001 1 1 23.2533 0.06073 298 382.9 <.0001 1 2 906 22.8433 0.06073 298 376.14 <.0001 1 3 18.5133 0.06073 298 304.85 <.0001 1 1 23.3183 0.05707 275 408.59 <.0001 1 2 908 22.3967 0.05707 275 392.44 <.0001 1 3 19.1367 0.05707 275 335.32 <.0001 1 1 23.3967 0.08024 250 291.6 <.0001 1 2 910 21.9467 0.08024 250 273.53 <.0001 1 3 19.72 0.08024 250 245.78 <.0001 1 1 23.7817 0.06471 243 367.49 <.0001 1 2 912 22.2767 0.06471 243 344.23 <.0001 1 3 19.49 0.06471 243 301.17 <.0001 1 1 24.2 0.08271 267 292.58 <.0001 1 2 914 22.5833 0.08271 267 273.04 <.0001 1 3 19.2333 0.08271 267 232.53 <.0001 1 1 23.975 0.08333 271 287.7 <.0001 1 2 916 22.8033 0.08333 271 273.64 <.0001 1 3 19.15 0.08333 271 229.8 <.0001 1 1 23.095 0.07213 246 320.2 <.0001 1 2 918 23 0.07213 246 318.88 <.0001 1 3 19.24 0.07213 246 266.75 <.0001 1 1 22.3333 0.07515 249 297.18 <.0001 1 2 920 23.13 0.07515 249 307.78 <.0001 1 3 19.31 0.07515 249 256.95 <.0001 F1 1 22.9417 0.05087 278 450.96 <.0001 r 1 2 922 22.8 0.05087 278 448.17 <.0001 I 1 3 19.4933 0.05087 278 383.18 <.0001 150 Table 29: Continued 1 1 23.5817 0.05668 282 416.02 <.0001 1 2 924 22.4733 0.05668 282 396.46 <.0001 1 3 19.7033 0.05668 282 347.6 <.0001 1 1 23.355 0.05673 250 411.7 <.0001 1 2 926 21.8133 0.05673 250 384.52 <.0001 1 3 19.9067 0.05673 250 350.91 <.0001 1 1 22.4083 0.05403 219 414.75 <.0001 1 2 928 20.8467 0.05403 219 385.85 <.0001 1 3 20.1167 0.05403 219 372.34 <.0001 1 1 21.4183 0.07357 200 291.13 <.0001 1 2 930 19.8733 0.07357 200 270.13 <.0001 1 3 20.35 0.07357 200 276.6 <.0001 151 Table 30: Absolute Delta RCS (stqm) Scenario 1 Comparisons loc fre Iloc Estimate StdErr DF tValue Probt Adjust Ade 1 2 1.8 0.09728 241 18.5 <.0001 Tukey-Kramer <.0001 1 900 3 5.05 0.09728 241 51.91 <.0001 Tukey-Kramer «DE? 2 3 3.25 0.09728 241 33.41 <.0001 Tukey-Kramer 4., #001 1 2 1.23 0.07319 284 16.81 <.0001 Tukex-Kramer <.0 .1 1 902 3 5.0133 0.07319 284 68.5 <.0001 Tukey-Kramer <.0001 2 3 3.7833 0.07319 284 51.69 <.0001 Tukey-Kramer <.0001” 1 2 0.5133 0.08383 300 6.12 <.0001 Tukey-Kramer 30001.- 1 904 3 4.9933 0.08383 300 59.56 <.0001 Tukey-Kramer <.. 001‘ 2 3 4.48 0.08383 300 53.44 <.0001 Tukey-Kramer ..<.' 001 1 2 0.41 0.08589 298 4.77 <.0001 Tukey-Kramer 0.01.69 1 906 3 4.74 0.08589 298 55.19 <.0001 Tukey-Kramer <.0001 2 3 4.33 0.08589 298 50.42 <.0001 Tukey-Kramer (000‘? 1 2 0.9217 0.08071 275 11.42 <.0001 Tukey-Kramer 42.0001 1 908 3 4.1817 0.08071 275 51.81 < .0001 Tukey-Kramer 3.0001 2 3 3.26 0.08071 275 40.39 <.0001 Tukey-Kramer <.0001 1 2 1.45 0.1 135 250 12.78 <.0001 Tukex-Kramer <.0001 1 910 3 3.6767 0.1135 250 32.4 <.0001 Tukey-Kramer <.0001 I 2 3 2.2267 0.1135 250 19.62 <.0001 Tukey-Kramer <.0001 I 1 2 1.505 0.09152 243 16.44 <.0001 Tukey-Kramer 2.000;! 1 912 3 4.2917 0.09152 243 46.89 <.0001 Tukey-Kramer 13.2001 I 2 3 2.7867 0.09152 243 30.45 <.0001 Tukey-Kramer <.0001 1 2 1.6167 0.117 267 13.82 <.0001 Tukey-Kramer <.0001 1 914 3 4.9667 0.1 17 267 42.46 <.0001 Tukey-Kramer <.0001 2 3 3.35 0.117 267 28.64 <.0001 Tukey-Kramer <.0001 1 2 1.1717 0.1178 271 9.94 <.0001 Tukex-Kramer 1 1 916 3 4.825 0.1178 271 40.94 <.0001 Tukey-Kramer 2 3 3.6533 0.1178 271 31 <.0001 Tukey-Kramer <.0001_I 1 2 0.095 0.102 246 0.93 0.3526 Tukey-Kramer 1 1 918 3 3.855 0.102 246 37.79 <.0001 Tukey-Kramer 2 3 3.76 0.102 246 36.86 <.0001 Tukey-Kramer 1 2 -0.7967 0.1063 249 -7.5 <.0001 Tukey-Kramer 1 920 3 3.0233 0.1063 249 28.45 <.0001 Tukex-Kramer <.0001I 2 3 3.82 0.1063 249 35.94 <.0001 Tukey-Kramer <.0001 1 2 0.1417 0.07195 278 1.97 0.0499 TukeL-Kramer 1 1 . 922 3 3.4483 0.07195 278 47.93 <.0001 Tukex-Kramer <.0001 2 3 3.3067 0.07195 278 45.96 <.0001 Tukey-Kramer <.0001 152 Table 30 : Continued 924 1.1083 0.08016 282 13.83 <.0001 Tukey-Kramer <.0001 3.8783 0.08016 282 48.38 <.0001 Tukey-Kramer <.0001 2.77 0.08016 282 34.55 <.0001 Tukey-Kramer <.0001 926 1.5417 0.08023 250 19.22 <.0001 Tukey-Kramer <.0001 3.4483 0.08023 250 42.98 <.0001 Tukey-Kramer <.0001 1.9067 0.08023 250 23.77 <.0001 Tukey-Kramer <.0001 928 1.5617 0.07641 219 20.44 <.0001 Tukey-Kramer <.0001 2.2917 0.07641 219 29.99 <.0001 Tukey-Kramer <.0001 0.73 0.07641 219 9.55 <.0001 Tukey-Kramer <.0001 N—b—lN—t‘NJJN—t—x 930 1.545 0.104 200 14.85 <.0001 Tukey-Kramer <.0001 1 .0683 0.104 200 10.27 <.0001 TuketKramer <.0001 QQNQWNQQJNWOON -0.4767 0.104 200 -4.58 <.0001 Tukey-Kramer 0.016 153 Table 31: Absolute Power on Tag Reverse (dBm) Scenario 1 Estimations sce Ioc fre Estimate StdErr DF tValue Probt 1 1 17.6533 0.1007 226 175.29 <.0001 1 2 900 16.43 0.1007 226 163.14 <.0001 1 3 14.92 0.1007 226 148.15 <.0001 1 1 17.77 0.08459 262 210.08 <.0001 1 2 902 16.8133 0.08459 262 198.77 <.0001 1 3 14.97 0.08459 262 176.97 <.0001 1 1 17.8967 0.1024 276 174.74 <.0001 1 2 904 17.2567 0.1024 276 168.49 <.0001 1 - 3 15.02 0.1024 276 146.65 <.0001 I 1 1 17.8583 0.1052 274 169.73 <.0001 I 1 2 906 17.2733 0.1052 274 164.17 <.0001 I 1 3 15.1633 0.1052 274 144.12 <.0001 1 1 17.6633 0.09129 257 193.5 <.0001 I 1 2 908 16.8867 0.09129 257 184.99 <.0001 L 1 3 15.4167 0.09129 257 168.88 <.0001 1 1 17.48 0.1161 247 150.62 <.0001 1 2 910 16.5067 0.1161 247 142.24 <.0001 1 3 15.6567 0.1161 247 134.91 <.0001 1 1 17.7483 0.09585 250 185.17 <.0001 1 2 912 16.5933 0.09585 250 173.12 <.0001 1 3 15.55 0.09585 250 162.23 <.0001 1 1 17.9983 0.1161 266 155.05 <.0001 1 2 914 16.6967 0.1161 266 143.84 <.0001 1 3 15.43 0.1161 266 132.93 <.0001 1 1 17.77 0.1181 267 150.49 <.0001 1 2 916 16.72 0.1181 267 141.6 <.0001 1 3 15.42 0.1181 267 130.59 <.0001 1 1 17.0667 0.1069 258 159.72 <.0001 1 2 918 16.6367 0.1069 258 155.7 <.0001 1 3 15.49 0.1069 258 144.97 <.0001 I 1 1 16.395 0.1356 254 120.9 <.0001 I 1 2 920 16.57 0.1356 254 122.19 <.0001 I1 3 15.5667 0.1356 254 114.79 <.0001] 1 1 16.5967 0.1028 254 161.46 <.0001 I 1 2 922 16.6067 0.1028 254 161.55 <.0001 I I 1 3_ 15.4167 0.1028 254 149.98 <.0001J 154 A‘A—l—t—L—I—I—l—t-‘A Table 31: Continued 16.8017 0.09421 258 178.35 <.0001 924 16.6133 0.09421 258 15.25 0.09421 258 16.6883 0.09469 264 926 16.32 0.09469 264 15.1067 0.09469 264 16.2433 0.09708 276 928 15.6233 0.09708 276 14.9767 0.09708 276 15.8283 0.1285 254 930 14.99 0.1285 254 14.8467 0.1285 254 155 Table 32: Absolute Power on Tag Reverse (dBm) Scenario 1 Comparisons Ioc fre 11loc Estimate StdErr DF tValue Probt Adjust Ade 1 2 1.2233 0.1424 226 8.59 <.0001 Tukey-Kramer <.0001 1 900 3 2.7333 0.1424 226 19.19 <.0001 Tukey-Kramer «.0001 2 3 1.51 0.1424 226 10.6 <.0001 Tukey-Kramer <.0001 1 2 0.9567 0.1196 262 8 <.0001 Tukey-Kramer l<.000.1 1 902 3 2.8 0.1196 262 23.41 <.0001 Tukey-Kramer g. ~1 2 3 1.8433 0.1196 262 15.41 <.0001 Tukey-Kramer <.0001 1 2 0.64 0.1448 276 4.42 <.0001 Tukey-Kramer '0.0312 1 904 3 2.8767 0.1448 276 19.86 <.0001 Tukey-Kramer <.0001 2 3 2.2367 0.1448 276 15.44 <.0001 Tukey-Kramer m w 1 2 0.585 0.1488 274 3.93 0.0001 Tukey-Kramer 0.1707 1 906 3 2.695 0.1488 274 18.11 <.0001 Tukey-Kramer <.0001- 2 3 2.11 0.1488 274 14.18 <.0001 Tukey-Kramer <.0001 1 2 0.7767 0.1291 257 6.02 <.0001 Tukey-Kramer <.0001I 1 908 3 2.2467 0.1291 257 17.4 <.0001 Tukey-Kramer '<.0001I 2 3 1.47 0.1291 257 11.39 <.0001 Tukey-Kramer <.0001 1 2 0.9733 0.1641 247 5.93 <.0001 Tukey-Kramer <.0001 1 910 3 1.8233 0.1641 247 11.11 <.0001 Tukey-Kramer~<.0001I 2 3 0.85 0.1641 247 5.18 <.0001 Tukey-Kramer 0.001 1 2 1.155 0.1356 250 8.52 <.0001 Tukey-Kramer <.0001 1 912 3 2.1983 0.1356 250 16.22 <.0001 Tukey-Kramer <.0001I 2 3 1.0433 0.1356 250 7.7 <.0001 Tukey-Kramer '<.0001 1 2 1.3017 0.1642 266 7.93 <.0001 Tukey-Kramer <.0001 1 914 3 2.5683 0.1642 266 15.65 <.0001 TukekKramer <.0001I 2 3 1.2667 0.1642 266 7.72 <.0001 Tukex—Kramer .<.0001I 1 2 1.05 0.167 267 6.29 <.0001 Tukey-Kramer <.0001 1 916 3 2.35 0.167 267 14.07 <.0001 Tukey-Kramer <.0001I 2 3 1.3 0.167 267 7.78 <.0001 Tukey-Kramer <.0001I 1 2 0.43 0.1511 258 2.85 0.0048 Tukey-Kramer 0.9585 1 918 3 1.5767 0.1511 258 10.43 <.0001 Tukey-Kramer <.0001I 2 3 1.1467 0.1511 258 7.59 <.0001 Tukey-Kramer <.0001 1 2 -0.175 0.1918 254 -0.91 0.3624 Tukey-Kramer 1 1 920 3 0.8283 0.1918 254 4.32 <.0001 Tukey-Kramer 0.0457 2 3 1.0033 0.1918 254 5.23 <.0001 Tukey-Kramer 0.0008 1 2 -0.01 0.1454 254 -0.07 0.9452 Tukey-Kramer 1 1 922 3 1.18 0.1454 254 8.12 <.0001 Tukey-Kramer <.0001I 2 3 1.19 0.1454 254 8.19 <.0001 Tukey-Kramer <.0001 156 0.1883 Table 32: Continued — 0.1332 258 1.41 0.1587 Tukey-Kramer 1.5517 0.1332 258 11.65 <.0001 Tukey-Kramer <.0001 1 .3633 0.1332 258 10.23 10001 Tukey-Kramer <.0001 0.3683 0.1339 264 2.75 0.0064 Tukey-Kramer 0.9788 1.5817 0.1339 264 11.81 <.0001 Tukey-Kramer <.0001 1.2133 0.1339 264 9.06 <.0001 Tukey-Kramer 0.62 0.1373 276 4.52 <.0001 Tukey-Kramer 1 .2667 0.1373 276 9.23 <.0001 Tukey-Kramer 0.6467 0.1373 276 4.71 <.0001 Tukey-Kramer 0.8383 0.1818 254 4.61 <.0001 Tukey-Kramer 0.9817 0.1818 254 5.4 <.0001 Tukey-Kramer woorowooro 0003100000“) 0.1818 .979 0.4311 Tukez—Kramer 157 .L \ ~L41~Q1\1~1\1\1\ Table 33: Theoretical Read Range Reverse (m) Scenario 1 Estimations sce loc fre Estimate StdErr DF tValue Probt 1 1 17.4067 0.2375 227 73.28 <.0001 1 2 900 20.1467 0.2375 227 84.82 <.0001 1 3 23.8333 0.2375 227 _ 100.34 <.0001 1 1 17.1533 0.2029 264 84.54 <.0001 1 2 902 19.2567 0.2029 264 94.91 <.0001 1 3 23.7 0.2029 264 116.8 <.0001 1 1 16.8933 0.2605 278 64.85 <.0001 1 2 904 18.2433 0.2605 278 70.03 <.0001 1 3 23.5333 0.2605— 278 90.34 _ <.0001 1 1 16.925 0.2628 276 64.41 <.0001 1 2 906 18.1533 0.2628 276 69.09 <.0001 1 3 23.1 133 0.2628 87.97 <.0001 1 1 17.2433 77.05 <.0001 1 2 908 18.93 84.59 <.0001 1 3 22.4 100.09 <.0001 1 1 17.56 61.7 <.0001 I 1 2 910 19.72 0.2846 243 69.29 <.0001 I 1 3 21.72 0.2846 243 76.32 <.0001 1 1 16.96 0.2423 247 70.01 <.0001 1 2 912 19.4667 0.2423 247 80.35 <.0001 1 3 21.9267 0.2423 247 90.51 <.0001 1 1 16.4317 0.3164 261 51.93 <.0001 I 1 2 914 19.2 0.3164 261 60.68 <.0001 1 3 22.18 0.3164 261 70.1 <.0001 1 1 16.955 0.3331 257 50.9 <.0001 1 2 916 19.1367 0.3331 257 57.45 <.0001 1 3 22.16 0.3331 257 66.53 <.0001 1 1 18.3633 0.2761 257 66.51 <.0001 1 2 918 19.2467 0.2761 257 69.71 <.0001 1 3 21.9033 0.2761 257 79.33 <.0001 1 1 19.7867 0.3315 275 59.68 <.0001 1 2 920 19.3533 0.3315 275 58.37 <.0001 1 3 21.68 0.3315 275 65.39 <.0001 1 1 19.2267 0.2409 281 79.81 <.0001 I 1 2 922 19.23 0.2409 281 79.82 <.0001 1 3 22.04 0.2409 281 91.48 <.0001 158 Table 33: Continued 19.1267 0.2227 85.89 I 1 18.7083 0.2227 281 84.02 <.0001 I <.0001 1 I._1 1 _ —l Tl": — —l 23.3 0.3552 65.6 1 2 3 22.4033 0.2227 100.61 <.0001 1 18.9267 0.2202 85.95 <.0001 I 1 2 19.88 0.2202 90.27 <.0001 I 1 3 22.7233 0.2202 103.19 <.0001 1 1 19.9217 0.2607 76.41 <.0001 2 21 .4967 0.2607 82.45 <.0001 3 23.0367 0.2607 88.36 <.0001 I 1 20.8983 0.3552 58.84 <.0001 2 23.0267 0.3552 64.83 <.0001 I 3 <.0001 159 Table 34: Theoretical Read Range Reverse (m) Scenario 1 Comparisons loc fre _Ioc Estimate StdErr DF tValue Probt Adjust Ade 1 2 -2.74 0.3359 227 -8.16 <.0001 Tukey-Kramer <.0001 1 900 3 -6.4267 0.3359 227 -19.13 <.0001 Tukey-Kramer $0001 2 3 -3.6867 0.3359 227 -10.98 <.0001 Tukey-Kramer <.0001 1 2 -2.1033 0.2869 264 -733 <.0001 Tukey-Kramer <.0001 1 902 3 -6.5467 0.2869 264 -22.81 <.0001 Tukey-Kramer <.0001 2 3 44433 0.2869 264 -15.48 <.0001 Tukey-Kramer <.0001 1 2 -1.35 0.3684 278 -3.66 0.0003 Tukey-Kramer 0.3487 1 904 3 -6.64 0.3684 278 -18.02 <.0001 Tukey-Kramer ‘<.°01 2 3 -5.29 0.3684 278 -14.36 <.0001 Tukey-Kramer <.0001 1 2 -1.2283 0.3716 276 -331 0.0011 Tukey-Kramer 0.6762I 1 906 3 -6.1883 0.3716 276 -16.65 <.0001 Tukey-Kramer 2 3 -4.96 0.3716 276 -13.35 <.0001 Tukey-Kramer 1 2 -1.6867 0.3165 257 -5.33 <.0001 Tukey-Kramer 1 908 3 -5.1567 0.3165 257 -16.29 <.0001 Tukey-Kramer 2 3 -3.47 0.3165 257 -10.96 <.0001 Tukey-Kramer 1 2 -2.16 0.4025 243 -5.37 <.0001 Tukey-Kramer 1 910 3 -4.16 0.4025 243 -10.34 <.0001 Tukey-Kramer 2 3 -2 0.4025 243 4.97 <.0001 Tukey-Kramer 1 2 -2.5067 0.3426 247 -732 <.0001 Tukey-Kramer 1 912 3 -4.9667 0.3426 247 -14.5 <.0001 Tukey-Kramer <.0001I 2 3 -2.46 0.3426 247 -7.18 <.0001 Tukey-Kramer <.0001 1 2 -2.7683 0.4475 261 -6.19 <.0001 Tukey-Kramer <.0001 1 914 3 -5.7483 0.4475 261 -12.85 <.0001 Tukey-Kramer <1ng1| 2 3 -2.98 0.4475 261 -6.66 <.0001 Tukey-Kramer <.0001 1 2 -2.1817 0.471 257 -4.63 <.0001 Tukey-Kramer 0.0129I 1 916 3 -5.205 0.471 257 -1105 <.0001 Tukey-Kramer <.0001I 2 3 -3.0233 0.471 257 -6.42 <.0001 Tukey-Kramer 1 2 -0.8833 0.3905 257 -2.26 0.0245 TukekKramer 1 918 3 -3.54 0.3905 257 -9.07 <.0001 Tukey-Kramer AEmE .526; :Emcmc. - F cosmoo; ”NV 239". 0mm mmm mmm «Na Nmm ONm 3:2. 35:09.... mam mam 3m Nam on mom mom com Nom com H cot—woo.— ma WMH 3 m4; ma m.mH m.ma NH mKH wH (map) Jamod tjwsueu 200 Table 51: Transmit Power (dBm) Location 1 Estimations sce Ioc fre Estimate Std Err DF tValue Probt 1 1 900 14.27 0.07243 215 197.02 <.0001 2 1 14.2833 0.07243 215 197.2 <.0001 1 1 902 14.4767 0.06779 249 213.56 <.0001 2 1 14.72 0.06779 249 217.15 <.0001 1 1 904 14.65 0.08463 261 173.11 <.0001 2 1 15.1667 0.08463 261 179.22 <.0001 1 1 906 14.8167 0.08354 258 177.36 <.0001 2 1 15.3967 0.08354 258 184.3 <.0001 1 1 908 15.04 0.0734 247 204.91 <.0001 2 1 15.425 0.0734 247 210.15 <.0001 1 1 910 15.2733 0.08972 246 170.23 <.0001 2 1 15.4467 0.08972 246 172.16 <.0001 1 1 912 15.4683 0.0711 254 217.55 <.0001 2 1 15.77 0.0711 254 221.79 <.0001 1 1 914 15.6367 0.08047 266 194.33 <.0001 2 1 16.0867 0.08047 266 199.92 <.0001 1 1 916 15.6433 0.08486 273 184.34 <.0001 2 1 16.2933 0.08486 273 192 <.0001 1 1 918 15.4667 0.09041 284 171.08 <.0001 2 1 16.4067 0.09041 284 181.48 <.0001 1 1 920 15.2767 0.1165 295 131.17 <.0001 2 1 16.5133 0.1165 295 141.78 <.0001 1 1 922 15.6767 0.09568 299 163.85 <.0001 2 1 16.9533 0.09568 299 177.19 <.0001 1 1 924 16.0833 0.09556 295 168.31 <.0001 2 1 17.3917 0.09556 295 182 <.0001 1 1 926 16 0.09565 285 167.28 <.0001 2 1 17.295 0.09565 285 180.81 <.0001 1 1 928 15.47 0.103 278 150.15 <.0001 2 1 16.6283 0.103 278 161.39 <.0001 1 1 930 14.87 0.1393 252 106.77 <.0001 2 1 16.035 0.1393 252 115.13 <.0001 201 Table 52: Transmit Power (dBm) Location 1 Comparisons sce fre _sLe Estimate StdErr DJF tValue Probt Adjust 2 -0.01333 0.1024 215 -0.13 0.8966 Tukey-Kramer 2 -0.2433 0.09587 249 -2.54 0.01 18 Tukey-Kramer 2 -0.5167 0.1197 261 -4.32 <.0001 Tukey-Kramer 2 -0.58 0.1181 258 -4.91 <.0001 Tukey-Kramer 2 -0.385 0.1038 247 -3.71 0.0003 Tukey-Kramer 2 -0.1733 0.1269 246 -1.37 0.1732 Tukey-Kramer 2 -0.3017 0.1006 254 -3 0.003 Tukey-Kramer 2 -0.45 0.1 138 266 -3.95 <.0001 Tukey-Kramer 2 -0.65 0.12 273 -5.42 <.0001 Tukey-Kramer 2 -0.94 0.1279 284 -7.35 <.0001 Tukey-Kramer 2 -1 .2367 0.1647 295 -7.51 <.0001 Tukey-Kramer 2 -1 .2767 0.1353 299 9.44 <.0001 Tukey-Kramer 2 -1.3083 0.1351 295 -9.68 <.0001 Tukey-Kramer 2 -1.295 0.1353 285 -9.57 <.0001 Tukex-Kramer 2 -1 .1583 0.1457 278 -7.95 <.0001 Tukey-Kramer _2_I__-1.165 0.197__25_2_ ~5.91 <.0001 Tukex-Kramer 202 firs: 5:362“. .m> AE\>V 59.9.5 20E oEoofi - _. cozmooq ”9. 8.59“. N mum+ HmHTIOI. 0mm 3.5: 3:252“. wNm mmm #Nm NNm omm mam mam cam Nam 93 mom mom 3m H cozmoog mom com (WI/A) 1113118115 PI3!:l 31119913 203 Table 53: Electric Field Strength (Vlm) Location 1 Estimations Isce Ioc fre Estimate StdErr DF tValue Probt 1 1 900 1.515 0.01532 165 98.88 <.0001I 2 1 1.5187 0.01532 165 99.12 <.0001 I1 1 1.5472 0.02764 184 55.98 <.0007I 902 I2 1 1.6087 0.02764 184 58.2 <.0001I 1 1 904 1.58 0.01965 224 80.42 <.0001 2 1 1.6948 0.01965 224 86.26 <.0001 1 1 906 1.6217 0.0163 247 99.47 <.0001 2 1 1.743 0.0163 247 106.91 <.0001 I 1 1 908 1.6605 0.01309 249 126.87 <.0001I 2 1 1.7417 0.01309 249 133.07 <.0001 I 1 1 910 1.706 0.01521 256 112.15 <.0001 2 1 1.744 0.01521 256 114.65 <.0001 L1 1 912 1.7352 0.01333 273 130.17 <.0001 2 1 1.8163 0.01333 273 136.26 <.0001 I 1 1 914 1.7628 0.01541 290 114.42 <.00cfl I; _1_ 1.8897 0.01541 290 122.66 <.0001 1 1 916 1.7708 0.0168 301 105.43 <.0001I 2 1 1.9433 0.0168 301 115.7 <0001I I1 1 918 1.7463 0.01951 316 89.51 <.0001 2 1 1.9747 0.01951 316 101.21 <.0001 I1 1 920 1.7208 0.02568 332 67.01 <.0001 2 1 2.0113 0.02568 332 78.33 <.0001 I 1 1 922 1.8017 0.02235 336 80.63 <.000—1I 2 1 2.1115 0.02235 336 94.49 <.0001 I 1 1 924 1.8878 0.02353 328 80.23 <.0001I 2 1 2.2183 0.02353 328 94.28 <.0001 I1 1 926 1.8753 0.02341 311 80.1 <.005I 2 1 __22067 0.02341 311 94.26 <.0001 I 1 1 928 1.7702 0.02256 295 78.47 <.0001I 2 1 2.0437 0.02256 295 90.6 <0001 I 1 1 930 1.6625 0.03025 258 54.96 <0001I I 2 1 1.9047 0.03025 258 62.97 <0001I 204 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 54: Electric Field Strength (Vlm) Location 1 Comparisons fre 900 902 904 906 908 910 912 914 916 918 920 922 924 926 928 930 SCG NNNNNNNNNNNNNNNN Estimate -0.00367 -0.0615 -0.1 148 -0.1213 -0.081 17 -0.038 -0.081 17 -0.1268 -0.1725 -0.2283 -0.2905 -0.3098 -0.3305 -0.3313 -0.2735 -0.2422 StdErr 0.02167 0.03909 0.02779 0.02306 0.01851 0.02151 0.01885 0.02179 0.02375 0.02759 0.03631 0.0316 0.03328 0.03311 0.0319 0.04278 DF 165 184 224 247 249 256 273 290 301 316 332 336 328 31 1 295 258 205 tValue -0.17 -1.57 -4.13 -5.26 -4.39 -1.77 -4.31 -5.82 -7.26 -8.28 -8 -9.8 -9.93 -10.01 -8.57 -5.66 Probt 0.8658 0.1173 <.0001 <.0001 <.0001 0.0785 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 Tuk Tuk Tuk Tuk Tuk Tuk Tuk Tuk Tuk Tuk Tuk T T Ad ust Kramer Kramer Ad P 1 1 0.0895 0.0007? 0. 3.25 55:62". .m> AEmE Emzcou mm... :0 326m 33.3.2 - _. cos—woo.— ”SV 2:9". N mumlll H wum+ . omm wNm mNm “Na Na omm 3.5: 5:262“. me mHm VHm H 5383 NHm on mom mom 3m New com Wm B V 43 m ml. 3 d m HH n 0 u I. e 3 n: m. m e W 9 m M 92 2 206 Table 55: Absolute Power on Tag Forward (dBm) Location 1 Estimations Isce Ioc fre Estimate StdErr DF tValue Proth 1 1 900 12.7133 0.07129 220 178.34 <.0001I 2 1 12.6967 0.07129 220 178.11 <.0001 I1 1 902 12.565 0.06457 254 194.6 <.0007I 2 1 12.2617 0.06457 254 189.9 <.0001 I1 1 904 12.4217 0.08087 266 153.6 <.0001 2 1 11.8267 0.08087 266 146.24 <.0001 I1 1 906 12.2267 0.083 264 147.31 <.0001 I2 1 11.6067 0.083.r 264 139.84 <.0001 1 1 908 11.9733 0.07273 252 164.62 <.0001I 2 1 11.58 0.07273 252 159.21 <.0001 1 1 910 11.72 0.08883 247 131.93 mod _ 2 1 11.5533 0.08883 247 130.06 <.0001 1 1 912 11.5883 0.07585 251 152.77 <.0001I 2 1 11.2383 0.07585 251 148.16 <.0001 1 1 914 11.4617 0.08056 262 142.28 wood 2 1 10.9117 0.08056 262 135.45 <.0001I I 1 1 916 11.4833 0.08209 270 139.89 <.0001 I 2 1 10.7467 0.08209 270 130.92 <.0001 1 1 918 11.62 0.08946 281 129.89 <.0001 2 1 10.6567 0.08946 281 119.12 <.0001 1 1 920 11.77 0.1137 293 103.55 <.0001 2 __1_r 10.6317 0.1137 293 93.54 <.0001 1 1 922 11.4233 0.1001 297 114.18 <.0001 2 1 10.25 0.1001 297 102.45 <.0001 t1 1 924 11.02 0.0994 294 110.86 <.0001 2 1 9.8067 0.0994 294 98.66 <.0001 h 1 926 11.1 0.09691 284 114.54 <.0001 2 1 9.8917 0.09691 284 102.07 <.0001 I1 1 928 11.645 0.1056 277 110.27 <.0001 2 1 10.51 0.1056 277 99.52 <.0001 I1 1 930 12.1717 0.1403 249 86.78 <.0001 I2 1 11.02 0.1403 249 78.57 <0001I 207 Table 56: Absolute Power on Tag Forward (dBm) Location 1 Comparisons sce fre _sce Estimate StdErr DF tValue Probt Adjust Ade 1 900 2 0.01667 0.1008 220 0.17 0.8688 Tukey-Kramer 1 1 902 2 0.3033 0.09131 254 3.32 0.001 Tukey-Kramer 0.6614 1 904 2 0.595 0.1144 266 5.2 <.0001 Tukey-Kramer “0.0009 1 906 2 0.62 0.1 174 264 5.28 <.0001 Tukey-Kramer 0.0006 1 908 2 0.3933 0.1029 252 3.82 0.0002 Tukey-Kramer 0.2324 1 910 2 0.1667 0.1256 247 1.33 0.1859 Tukey-Kramer 1 1 912 2 0.35 0.1073 251 3.26 0.0013 Tukey-Kramer 0.7144 1 914 2 0.55 0.1139 262 4.83 <.0001 Tukey-Kramer '0.0054 1 916 2 0.7367 0.1161 270 6.35 <.0001 Tukey-Kramer <.0001 1 918 2 0.9633 0.1265 281 7.61 <.0001 Tukey-Kramer $00011 1 920 2 1.1383 0.1607 293 7.08 <.0001 Tukey-Kramer <.0001 1 922 2 1.1733 0.1415 297 8.29 <.0001 Tukey-Kramer <.0001 1 924 2 1.2133 0.1406 294 8.63 <.0001 Tukey-Kramer <.0001 1 926 2 1.2083 0.137 284 8.82 <.0001 Tukey-Kramer $0001 1 928 2 1.135 0.1493 277 7.6 <.0001 Tukey-Kramer <.0001 1 930 2 1.1517 0.1984 249 5.81 <.0001 Tukey-Kramer g<.0001 208 firs: 5:03.52.— .m> AEV Emzcou. oucom comm _nozocooch - _. c0330.. "me. 2:9". 3...): 6:252“. 0mm wNm mNm va N~m o~m me mHm va NHm on mom mom 3m Nom N 951' H mumIOl H .6383 com (w) pJeuuog aflueu peau 1839610an, 209 Table 57: Theoretical Read Range Forward (m) Location 1 Estimations l I sce Ioc fre Estimate StdErr DF tValue Probtq I 1 1 900 6.52 0.05727 230 113.85 <.0001 2 1 6.99 0.05727 230 122.05 <.0001 I 1 1 902 6.4067 0.04414 256 145.14 <.0001 2 1 6.64 0.04414 256 150.42 <.0001 I 1 1 904 6.305 0.04841 266 130.24 <.00fiI I 2 1 6.2267 0.04841 266 128.62 <.00fi 1 1 906 6.1633 0.04618 271 133.46 <.0001 2 1 6.03 0.04618 271 130.58 <.0001I 1 1 908 5.9767 0.04687 269 127.52 <.0001 2 1 6.08 0.04687 269 129.73 <.0001 1 1 910 5.8133 0.05849 272 99.39 <.0001 2 1 6.14 0.05849 272 104.97 <.0001 I 1 1 912 5.7133 0.04547 274 125.66 <.0001 2 1 5.9767 0.04547 274 131.45 <.0001 I 1 1 914 5.6317 0.0438 284 128.56 <.0001 I 2 _1__ 5.8333 0.0438 284 133.17 <.0001 IT 1 916 5.6233 0.0447 290 125.8 <.0001 2 1 5.6633 0.0447 290 126.7 <.0001 I 1 1 918 5.695 0.03992 283 142.67 <.0001I 2 1 5.52 0.03992 283 138.28 <.0001 I1 1 920 5.7817 0.04942 274 116.99 <.0001 I 2 1 5.35 0.04942 274 108.25 <.0001 I 1 1 922 5.5133 0.03724 260 148.06 <.0001 2 1 5.6267 0.03724 260 151.1 <.0001 I 1 1 924 5.2567 0.03611 252 145.56 <.0001I 2 1 5.8133 0.03611 252 160.97 <.0001 k 1 926 5.31 0.03879 248 136.89 <.0001 I 2 1 _ 6.0767 .01'03879 248 156.66 <.0001 1 1 928 5.6317 0.04469 252 126.02 <.0001 2 III1__ 6.3267 0.04469 252 141.58 <.0001 1 1 930 6.0083 0.05986 234 10053: <.0001 I 2 1 6.5633 0.05986 234 109.65 <.000fl 210 Table 58: Theoretical Read Range Forward (m) Location 1 Comparisons 53:-m} Estimate StdErr DF tValue Probt Adjust Ade 1 900 2 -0.47 0.08099 230 -5.8 <.0001 Tukey-Kramer <.0001 1 902 2 -0.2333 0.06243 256 -3.74 0.0002 Tukey-Kramer 0.2918 1 904 2 0.07833 0.06846 266 1.14 0.2536 TukgtKramer 1 1 906 2 0.1333 0.06531 271 2.04 0.0422 Tukey-Kramer 1 1 908 2 -0.1033 0.06628 269 -1 .56 0.1202 Tukex-Kramer 1 1 910 2 -0.3267 0.08272 272 -3.95 0.0001 Tukey-Kramer 0.1619 n 912 2 -0.2633 0.0643 274 -4.1 <.0001 Tukey-Kramer 0.1015 I 1 914 2 -0.2017 0.06195 284 -3.26 0.0013 Tukey-Kramer 0.7208 1 916 2 -0.04 0.06322 290 -0.63 0.5274 Tukey-Kramer 1 L 918 2 0.175 0.05645 283 3.1 0.0021 Tukey-Kramer 0.8409 1 920 2 0.4317 0.06989 274 6.18 <.0001 Tukey-Kramer <.0001 1 922 2 -0.1 133 0.05266 260 -2.15 0.0323 Tukey-Kramer 1 L1 924 2 -0.5567 0.05107 252 -10.9 <.0001 Tukey-Kramer <.0001 I1 926 2 -0.7667 0.05486 248 -13.98 <.0001 Tukey-Kramer <.0001 1 928 2 -0.695 0.0632 252 -1 1 <.0001 Tukey-Kramer <.0001 I 1 930 2 -0.555 0.08465 234 -6.56 <.0001 Tukey-Kramer <.0001 211 firs: 5:252“. .m> AEmB ..wiom Lozaomxomm 3232 - _. cozaooa not 959... N wum+ 0mm wwm mmm ¢~m NNm owm 3...): 3:03.92". me mHm «Hm H 5333 NHm on mom mom 3m New com mfiv wv m.wv me m.m¢ om mdm Hm mHm lwapl JaMOd 13132991398 amlosqv 212 Table 59: Absolute Backscatter Power (dBm) Location 1 Estimations Ioc fre Estimate StdErr DF tValue Probt 1 900 50.6417 0.1075 215 470.92 <.0001I 2 1 49.4067 0.1075 215 459.43 <.0001 1 1 902 50.74 0.08893 248 570.54 wood 2 1 l 49.8233 0.08893 248 560.23 <.0001 1 1 904 50.87 0.1069 263 476.01 <.0001I 2 1 50.24 0.1069 263 470.11 <.0001 1 1 906 50.8417 0.108 263 470.88 wood 2 1 50.2733 0.108 263 465.61 <.0001 1 1 908 50.68 0.09665 248 524.35 <.0001I 2 1 49.8967 0.09665 248 516.25 <.0001 1 1 910 50.4917 0.1201 237 420.27 <.0001 2 1 49.5333 0.1201 237 412.29 <.0001I I 1 1 912 50.7567 0.09783 242 518.8 <.0001I 2 1 49.62 0.09783 242 507.18 <.0001 k 1 914 51.0217 0.1226 254 416.31 <.0001 I_2_L_1‘_ 49.72 0.1226 25_4 405.69 <.000_1:I 1 1 916 50.845 0.129 251 394.05 <.0001 2 1 49.7633 0.129 251 385.67 <.0001I 1 1 918 50.1483 0.1203 246 416.93 <.0001 2 1 49.6933 0.1203 246 413.15 <.0001 I51 1 920 49.4467 0.1382 258 357.68 <.0001 2 1 49.6267 0.1382 258 358.98 <.0001 I1 1 922 49.6633 0.09647 271 514.83 <.0001I 2 1 49.6633 0.09647 271 514.83 <.0001 I 1 1 924 49.9167 0.0857 282 582.45 <.0001 2 1 49.7133 0.0857 282 580.08 <.0001 I1 1 926 49.83 0.08378 287 594.77 <.0001I I_2__1__ 49.44 I_0L08378 287 590.12 <.0001 1 1 928 49.38 0.09099 293 542.7 <.0001I 2 _1__ 48.7867 0.09099 293 53631 <.0001 1 1 930 48.95 0.1227 266 398.96 <.0001I I 2 1 48.1633 0.1227 266 392.55 <.0001I 213 Table 60: Absolute Backscatter Power (dBm) Location 1 Comparisons sce fre _sLe Estimate StdErr DF tValue Probt Adjust Ade 1 900 2 1.235 0.1521 215 8.12 <.0001 Tukey-Kramer <.0001 1 902 2 0.9167 0.1258 248 7.29 <.0001 Tukey-Kramer <.0001 1 904 2 0.63 0.1511 263 4.17 <.0001 Tukey-Kramer 0.0791 1 906 2 0.5683 0.1527 263 3.72 0.0002 Tukey-Kramer 0.3036 1 908 2 0.7833 0.1367 248 5.73 <.0001 Tukey-Kramer <.0001 1 910 2 0.9583 0.1699 237 5.64 <.0001 Tukey-Kramer <.0001 I_1 912 2 1.1367 0.1384 242 8.22 <.0001 Tukey-Kramer <.0001 I 1 914 2 1.3017 0.1733 254 7.51 <.0001 Tukey-Kramer <.0001 I; 916 2 1.0817 0.1825 251 5.93 <.0001 Tukey-Kramer <.0001 1 918 2 0.455 0.1701 246 2.67 0.008 Tukey-Kramer 0.9885 1 920 2 -0.18 0.1955 258 -0.92 0.3581 Tukey-Kramer 1 1 922 2 1 .47E-14 0.1364 271 0 1 Tukey-Kramer 1 1 924 2 0.2033 0.1212 282 1.68 0.0945 Tukey-Kramer 1 1 926 2 0.39 0.1 185 287 3.29 0.001 1 Tukey-Kramer 0.6888 1 928 2 0.5933 0.1287 293 4.61 <.0001 Tukey-Kramer 0.0141 1 930 2 $7867 0.1735 266 4.53_I <.0001 Tuke -Kramer 0.0196 214 3.5. 6:252“. .m> AEmo. .826; 3233. 3232 . _. cosmos Ev 239.... 3.22. Eco—59.". 0mm mum mNm «mm NNm o~m mHm mHm ¢Hm NHm on mom mom 3m Nom N 6813... H mum+ H .5383 com (map) JaMOd panjaaeu aznjosqv 215 Table 61: Absolute Received Power (dBm) Location 1 Estimations sce Loc fre Estimate Std Err DF tValue Probt 1 1 900 79.51 1.3084 2157 60.77 <.0001 2 1 66 1.3084 2157 50.45 <.0001 1 1 902 79.4067 1.3084 2157 60.69 <.0001 2 1 55.6667 1.3084 2157 42.55 <.0001 1 1 904 79.46 1.3084 2157 60.73 <.0001 2 1 44.5333 1.3084 2157 34.04 <.0001 1 1 906 77.82 1.3084 2157 59.48 <.0001 2 1 45.9333 1.3084 2157 35.11 <.0001 1 1 908 77.9333 1.3084 2157 59.57 <.0001 2 1 39.2 1.3084 2157 29.96 <.0001 1 1 910 79.2833 1.3084 2157 60.6 <.0001 2 1 43.9667 1.3084 2157 33.6 <.0001 1 1 912 79.2833 1.3084 2157 60.6 <.0001 2 1 41.5 1.3084 2157 31.72 <.0001 1 1 914 79.25 1.3084 2157 60.57 <.0001 2 1 36.6 1.3084 2157 27.97 <.0001 1 1 916 79.22 1.3084 2157 60.55 <.0001 2 1 45.1333 1.3084 2157 34.5 <.0001 1 1 918 79.22 1.3084 2157 60.55 <.0001 2 1 43.1 1.3084 2157 32.94 <.0001 1 1 920 79.2133 1.3084 2157 60.54 <.0001 2 1 44.0333 1.3084 2157 33.66 <.0001 1 1 922 79.0133 1.3084 2157 60.39 <.0001 2 1 38.4 1.3084 2157 29.35 <.0001 1 1 924 78.9067 1.3084 2157 60.31 <.0001 2 1 37.6333 1.3084 2157 28.76 <.0001 1 1 926 78.0667 1.3084 2157 59.67 <.0001 2 1 39.1 1.3084 2157 29.88 <.0001 1 1 928 74.05 1.3084 2157 56.6 <.0001 2 1 42.1333 1.3084 2157 32.2 <.0001 1 1 930 65.09 1.3084 2157 49.75 <.0001 2 1 57.4667 1.3084 2157 43.92 <.0001 216 Table 62: Absolute Received Power (dBm) Location 1 Comparisons sce fre _sce Estimate StdErr DF tValue Probt Adjust Ade I 1 900 2 13.51 1.8503 2157 7.3 <.0001 Tukey-Kramer <.0001 1 902 2 23.74 1.8503 2157 12.83 <.0001 Tukey-Kramer <.0001 1 904 2 34.9267 1.8503 2157 18.88 <.0001 Tukey-Kramer <.‘000 1 906 2 31.8867 1.8503 2157 17.23 <.0001 Tukey-Kramer "<.0001 1 908 2 38.7333 1.8503 2157 20.93 <.0001 Tukey-Kramer .<.0061 1 910 2 35.3167 1.8503 2157 19.09 <.0001 Tukey-Kramer <.0001 1 912 2 37.7833 1.8503 2157 20.42 <.0001 Tukey-Kramer <.0001. 1 914 2 42.65 1.8503 2157 23.05 <.0001 Tukey-Kramer 30001 1 916 2 34.0867 1.8503 2157 18.42 <.0001 Tukey-Kramer t.<.0061 1 918 2 36.12 1.8503 2157 19.52 <.0001 Tukey-Kramer <.0001 1 920 2 35.18 1.8503 2157 19.01 <.0001 Tukey-Kramer <.0001 1 922 2 40.6133 1.8503 2157 21.95 <.0001 Tukey-Kramer $0001 1 924 2 41.2733 1.8503 2157 22.31 <.0001 Tukex—Kramer «.0009 1 926 2 38.9667 1.8503 2157 21.06 <.0001 Tukey-Kramer <.0001 1 928 2 31.9167 1.8503 2157 17.25 <.0001 Tukey-Kramer <.0001 1 930 2 7.6233 1.8503 2157 4.12 <.0001 Tukey-Kramer 0.0923 217 3.:2. 5:262“. .m> AEommu. mom SEQ 320mg . _. cos—woo.— ”3 2:9“. 3.:2. 3:262“. 0mm mNm mNm eNm NNm omm me mHm eHm NHm on mom mom 3m New N 68+ H 681?. H .5333 com HN m.HN NN m.- m~ m.m~ «N méN (wbsap) saueuao amiosqv 218 Table 63: Absolute Delta RCS (stqm) Location 1 Estimations sce Ioc Fre Estimate Std Err DF tValue Probt 1 1 900 22.53 0.06879 241 327.52 <.0001 2 1 22.4133 0.06879 241 325.82 <.0001 1 1 902 22.8033 0.05175 284 440.61 <.0001 2 1 22.6833 0.05175 284 438.29 <.0001 1 1 904 23.0733 0.05928 300 389.23 <.0001 2 1 22.9933 0.05928 300 387.88 <.0001 1 1 906 23.2533 0.06073 298 382.9 <.0001 2 1 23.0933 0.06073 298 380.26 <.0001 1 1 908 23.3183 0.05707 275 408.59 <.0001 2 1 22.9767 0.05707 275 402.6 <.0001 1 1 910 23.3967 0.08024 250 291.6 <.0001 2 1 22.8333 0.08024 250 284.58 <.0001 1 1 912 23.7817 0.06471 243 367.49 <.0001 2 1 23.12 0.06471 243 357.27 <.0001 1 1 914 24.2 0.08271 267 292.58 <.0001 2 1 23.415 0.08271 267 283.09 <.0001 1 1 916 23.975 0.08333 271 287.7 <.0001 2 1 23.2733 0.08333 271 279.28 <.0001 1 1 918 23.095 0.07213 246 320.2 <.0001 2 1 22.7217 0.07213 246 315.03 <.0001 1 1 920 22.3333 0.07515 249 297.18 <.0001 2 1 22.24 0.07515 249 295.94 <.0001 1 1 922 22.9417 0.05087 278 450.96 <.0001 2 1 22.9683 0.05087 278 451.48 <.0001 1 1 924 23.5817 0.05668 282 416.02 <.0001 2 1 23.7667 0.05668 282 419.28 <.0001 1 1 926 23.355 0.05673 250 411.7 <.0001 2 1 23.678 0.05673 250 417.39 <.0001 1 1 928 22.4083 0.05403 219 414.75 <.0001 2 1 22.8483 0.05403 219 422.9 <.0001 1 1 930 21.4183 0.07357 200 291.13 <.0001 2 1 21.7833 0.07357 200 296.09 <.0001 219 Table 64: Absolute Delta RCS (stqm) Location 1 Comparisons sce fre _sce Estimate StdErr DF tValue Probt Adjust Ade 1 900 2 0.1167 0.09728 241 1.2 0.2316 Tukey-Kramer 1 1 902 2 0.12 0.07319 284 1.64 0.1022 Tukey-Kramer 1 1 904 2 0.08 0.08383 300 0.95 0.3407 Tukey-Kramer 1 1 906 2 0.16 0.08589 298 1.86 0.0635 Tukey-Kramer 1 1 908 2 0.3417 0.08071 275 4.23 <.0001 Tukey-Kramer 0.0629 1 910 2 0.5633 0.1135 250 4.96 <.0001 Tukey-Kramer 0.0029 1 912 2 0.6617 0.09152 243 7.23 <.0001 Tukey-Kramer <.0001 1 914 2 0.785 0.117 267 6.71 <.0001 Tukey-Kramer <.0001 1 916 2 0.7017 0.1178 271 5.95 <.0001 Tukey-Kramer <.0001 1 918 2 0.3733 0.102 246 3.66 0.0003 Tukey-Kramer 0.3524 1 920 2 0.09333 0.1063 249 0.88 0.3807 Tukey-Kramer 1 1 922 2 -0.02667 0.07195 278 -0.37 0.7112 Tukey-Kramer 1 1 924 2 0185 0.08016 282 -2.31 0.0217 Tukey-Kramer 0.9998 1 926 2 -0.323 0.08023 250 -4.03 <.0001 Tukey-Kramer 0.1275 1 928 2 -0.44 0.07641 219 -5.76 <.0001 Tukey-Kramer <.0001 1 930 2 -0.365 0.104 200 -3.51 0.0006 Tukey-Kramer 0.4864 220 3:2. 55:09.". .m> E53 0296”. mn... :o .5263 3232 - _. cozoooa 5v 2:9". N 8.6.1.... H mum-bl 0mm mum mNm #Nm NNm omm 3:2. 35:02”. mHm mHm va H .3333 NHm on mom mom com Nom méH mH m.mH mH de NH mNH wH de (map) auanau 8e; no 13111104 amgosqv 221 Table 65: Absolute Power on Tag Reverse (dBm) Location 1 Estimations sce Ioc fre Estimate StdErr E tValue Proth 1 1 900 17.6533 0.1007 226 175.29 <.0001 2 1 17.52 0.1007 226 173.96 <.0001 1 1 902 17.77 0.08459 262 210.08 <.0001 . 2 1 17.37 0.08459 262 205.3; <.0001 1 1 904 17.8967 0.1024 276 174.74 <.0001 2 1 17.2183 0.1024 276 168.11 <.0001 1 1 906 17.8583 0.1052 274 169.73 <.0001 2 1 17.0783 0.1052 274 162.32 <.0001 I1 1 908 17.6633 0.09129 257 193.5 <.0001I 2 1 16.935 0.09129 257 185.52 <.0001 1 1 910 17.48 0.1161 247 150.62 <.0001 2 1 16.8017 0.1161 247 144.78 <.0001 I 1 1 912 17.7483 0.09585 250 185.17 <.0001 2 1 16.74 0.09585 250 174.65 <.0001 I 1 1 914 17.9983 0.1161 266 155.05 <.0001 I_2__1_._16.6667 _91161 266 143.58 «00%| 1 1 916 17.77 0.1181 267 150.49 <0001 2 1 16.2683 0.1181 267 137.77 <.0001 1 1 918 17.0667 0.1069 258 159.72 <.0001I r2 1 15.605 0.1069 258 146.05 <.000_1I 1 1 920 16.395 0.1356 254 120.9 <.0001 2 1 14.9567 0.1356 254 110.29 <.0001I 1 1 922 16.5967 0.1028 254 161.46 <.0001 2 1 15.3483 0.1028 254 149.31 <.0001 I1 1 924 16.8017 0.09421 258 178.35 <.0001 2 1 15.7217 0.09421 258 166.88 <.0001 I1 1 926 16.6883 0.09469 264 176.24 <.0001I I:2___1d 15.7467 0.09469 264 166$. <.0001 1 1 928 16.2433 0.09708 276 167.32 <.0001I 2 1 15.45 0.09708 276 159.15 <.0001 1 1 930 15.8283 0.1285 254 123.16 <.0001I I2 1 15.14 0.1285 254 117.8 <.0001I 222 Table 66: Absolute Power on Tag Reverse (dBm) Location 1 Comparisons sce fre Isce Estimate StdErr DF tValue Probt Adjust Ade 1 900 2 0.1333 0.1424 226 0.94 0.3502 Tukey-Kramer 1 1 902 2 0.4 0.1 196 262 3.34 0.0009 Tukey-Kramer 0.6412 1 904 2 0.6783 0.1448 276 4.68 <.0001 Tukey-Kramer 0.0104 1 906 2 0.78 0.1488 274 5.24 <.0001 Tukey-Kramer #00091 1 908 2 0.7283 0.1291 257 5.64 <.0001 Tukey-Kramer <.0001 1 910 2 0.6783 0.1641 247 4.13 <.0001 Tukey-Kramer 0.0894 1 912 2 1.0083 0.1356 250 7.44 <.0001 Tukey-Kramer (999:. 1 914 2 1.3317 0.1642 266 8.11 <.0001 Tukey-Kramer <.0001 1 916 2 1.5017 0.167 267 8.99 <.0001 Tukey-Kramer <. ' 01? 1 918 2 1.4617 0.1511 258 9.67 <.0001 Tukey-Kramer <.0001 1 920 2 1.4383 0.1918 254 7.5 <.0001 Tukey-Kramer €000 1 922 2 1.2483 0.1454 254 8.59 <.0001 Tukey-Kramer <.0001I 1 924 2 1.08 0.1332 258 8.11 <.0001 Tukey-Kramer <.0001 1 926 2 0.9417 0.1339 264 7.03 <.0001 Tukey-Kramer <.0001" 1 928 2 0.7933 0.1373 276 5.78 <.0001 Tukey-Kramer <.0001 1 930 2 0.6883 0.1818 254 3.79 0.0002 Tukey-Kramer 0.2568 I 223 322. 5:262". 61E. 336m. macaw. anom— _uo_Ho..oon - _. cozoooa 6m 2:2”. N mum-IF?! H 8.6.191 0mm wNm mNm «Nm NNm ONm 3.:2. 55:62". me mHm va H 5333 NHm on mom mom 3m Nom com mH de NH mKH wH de mH de oN mdN HN m.HN NN m.NN MN m.m~ «N (w) enema asueu peau panama“, 224 Table 67: Theoretical Read Range Reverse (111) Location 1 Estimations sce Ioc fre Estimate StdErr DF tValue Proth 1 1 900 17.4067 0.2375 227 73.28 <.0001 2 1 17.8017 0.2375 227 74.95 <.0001 I1 1 902 17.1533 0.2029 264 84.54 <.0001 2 1 18.11 0.2029 264 89.25 <.0001 I1 1 904 16.8933 0.2605 278 64.85 <.0001 2 1 18.4167 0.2605 278 70.7 <.0001 I 1 1 906 16.925 0.2628 276 64.41 <.0001 2 1 18.6717 0.2628 276 71.06 <.0001 I1 1 908 17.2433 0.2238 257 77.05 <.0001 2 1 18.8833 0.2238 257 84.38 <.0001 1 1 910 17.56 0.2846 243 61.7 <.0001 2 1 19.085 0.2846 243 67.06 <.0001 1 1 912 16.96 0.2423 247 70.01 <.0001 2 1 19.2967 0.2423 247 79.65 <.0001 1 1 914 16.4317 0.3164 261 51.93 <.0001 2 1 19.53 0.3164 261 61.72 <.0001 __— 1 1 916 16.955 0.3331 257 50.9 <.0001 2 1 20.3567 0.3331 257 61.12 <.0001 E 1 918 18.3633 0.2761 257 66.51 <.0001 2 1 21.7067 0.2761 257 78.62 <.0001 1 1 920 19.7867 0.3315 275 59.68 <.00tfl I2 1 23.4667 0.3315 275 70.78 <.0001I 1 1 922 19.2267 0.2409 281 79.81 <.0001 2 1 22.3717 0.2409 281 92.86 <.0001 I1 1 924 18.7083 0.2227 281 84.02 <.0001 2 1 21.28 0.2227 281 95.56 <.0001 I1 1 926 18.9267 0.2202 278 85.95 <.0001 I_2__;_ _2_1.2533 0.2202 278 96.51 <.0001 1 1 928 19.9217 0.2607 275 76.41 <.0001 I_2__1__— 22.1 _0.‘2607 275 84.77 <.0001 1 1 930 20.8983 0.3552 246 58.84 <.0001I 2 1 22.5633 0.3552 246 63.52 <.0001I 225 Table 68: Theoretical Read Range Reverse (m) Location 1 Comparisons 226 7:? Estimate StdErr DF tValue Probt Ad'ustt Ad'P 900 2 -0.395 0.3359 227 -1.18 0.2409 Tukey-Kramer 1 __90_2._I_2_II -0.9567 0.2869 264 -3.33 0.001 Tukey-Kramer 0.6503 2 -1 .5233 0.3684 278 -4.13 <.0001 Tukey-Kramer 0.0888 2 -1.7467 0.3716 276 -4.7 <.0001 Tukey-Kramer 0.0096 _2_ -1.64 0.3165 257 -5.18 <.0001 Tukey-Kramer 0.001 2i -1.525 0.4025 243 -3.79 0.0002 Tukey-Kramer 0.2555 _2_fl-_2.3367 0.3426 247 -6.82 <.00.0_1_l Tuke -Kramer <.0001 2 -3.0983 0.4475 261 -6.92 <.0001 Tuke -Kramer 2 -3.4017 0.471 257 -7.22 <.0001 Tukey-Kramer <.0001 _2_ -3.3433 0.3905 257 L856 <.0001 Tukey-Kramer <.0001 21 -3.68 0.4689 275 -7.85 <.0001 Tukey-Kramer 2 -3.145 0.3407 281 -9.23 <.0001 Tukey-Kramer <.0001 2 -2.5717 0.3149 281 -8.17 <.0001 Tukey-Kramer <.0001 2 -2.3267 0.31 14 278 -7.47 <.0001 Tukey-Kramer <.0001 2 -2.1783 0.3687 275 -5.91 <.0201 Tukey-Krame_r_ <.0001 2 -1.665 0.5023 I246 -3.31 0.0011 Tuke -Kramer 0.668 ill I Appendix G: Location 2 - Michigan State University School of Packaging Machine Lab Tables and Figures 227 3.5. 5:362". .m> Emu. .826“. :Emcmb. . N 20:30.. "..m 959“. 3:2. Econ—02H. 0mm wNm mNm VNm NNm QNm me mHm «Hm N mumlll H mumIOl N 5333 NHm on mom mom 3m New NH m.NH mH m.MH vH méH mH m.mH 0H de NH (map) JaMOd uwsueu, 228 Table 69: Transmit Power (dBm) Location 2 Estimations sce Ioc fre Estimate Std Err DF tValue Probt 1 2 900 13.7033 0.07243 215 189.2 <.0001 2 2 12.3 0.07243 215 169.82 <.0001 1 2 902 14.22 0.06779 249 209.77 <.0001 2 2 12.6067 0.06779 249 185.97 <.0001 1 2 904 14.7367 0.08463 261 174.14 <.0001 2 2 12.91 0.08463 261 152.55 <.0001 1 2 906 14.96 0.08354 258 179.08 <.0001 2 2 13.37 0.08354 258 160.04 <.0001 ' 1 2 908 14.88 0.0734 247 202.73 <.0001 2 2 13.9667 0.0734 247 190.28 <.0001 1 2 910 14.8 0.08972 246 164.96 <.0001 2 2 14.5667 0.08972 246 162.35 <.0001 1 2 912 15.0267 0.0711 254 211.34 <.0001 2 2 15.1117 0.0711 254 212.53 <.0001 1 2 914 15.2533 0.08047 266 189.56 <.0001 2 2 15.6333 0.08047 266 194.28 <.0001 1 2 916 15.48 0.08486 273 182.42 <.0001 2 2 16.0333 0.08486 273 188.94 <.0001 1 2 918 15.7067 0.09041 284 173.73 <.0001 2 2 16.23 0.09041 284 179.52 <.0001 1 2 920 15.9333 0.1165 295 136.8 <.0001 2 2 16.4 0.1165 295 140.81 <.0001 1 2 922 15.56 0.09568 299 162.63 <.0001 2 2 15.97 0.09568 299 166.92 <.0001 1 2 924 15.1867 0.09556 295 158.93 <.0001 2 2 15.59 0.09556 295 163.15 <.0001 1 2 926 14.8467 0.09565 285 155.22 <.0001 2 2 14.8933 0.09565 285 155.71 <.0001 1 2 928 14.54 0.103 278 141.12 <.0001 2 2 14.045 0.103 278 136.32 <.0001 1 2 930 14.2333 0.1393 252 102.19 <.0001 2 2 13.1867 0.1393 252 94.68 <.0001 229 Table 70: Transmit Power (dBm) Location 2 Comparisons sce fre sce Estimate Std Err DF tValue Probt Adjust Ade1 1 900 2 1.4033 0.1024 215 13.7 <.0001 Tukey-Kramer <.0001 1 902 2 1.6133 0.09587 249 16.83 <.0001 Tukey-Kramer <.0001 1 904 2 1.8267 0.1197 261 15.26 <.0001 Tukey-Kramer <.0001 1 906 2 1.59 0.1181 258 13.46 <.0001 Tukey-Kramer <.0001 1 908 2 0.9133 0.1038 247 8.8 <.0001 Tukex—Kramer <.0001 1 910 2 0.2333 0.1269 246 1.84 0.0671 Tukey-Kramer 1 1 912 2 —0.085 0.1006 254 -0.85 0.3987 Tukey-Kramer 1 I 1 914 2 -0.38 0.1138 266 -3.34 0.001 Tukey-Kramer 0.6453 1 916 2 -0.5533 0.12 273 -4.61 <.0001 Tukey-Kramer 0.0141 1 918 2 -0.5233 0.1279 284 -4.09 <.0001 Tukey-Kramer 0.1023 1 920 2 -0.4667 0.1647 295 -2.83 0.0049 Tukey-Kramer 0.9618 1 922 2 -0.41 0.1353 299 -3.03 0.0027 Tukey-Kramer 0.8834 1 924 2 -0.4033 0.1351 295 -2.98 0.0031 TukekKramer 0.9069 1 926 2 -0.04667 0.1353 285 -0.34 0.7304 Tukey-Kramer 1 1 928 2 0.495 0.1457 278 3.4 0.0008 Tukey-Kramer 0.591 1 930 2 1.0467 0.197 252 5.31 <.0001 Tukey-Kramer 0.0005 230 3.5. 55:69.". .m> HES. 59.9.5 23E otuoofi .. N cow—woo.— &m 959“. N mum A] H mumI omm 3.:2. 3:362“. wNm mNm va NNm ONm me mHm «Hm NHm on mom mom 3m N .3533 Nom com lwlA) moans Plaid 91119313 231 Table 71: Electric Field Strength (V/m) Location 2 Estimations sce Ioc fre Estimate Std Err DF tValue Probt 1 2 900 1.405 0.01532 165 91.7 <.0001 2 2 1.206 0.01532 165 78.71 <.0001 1 2 902 1.52 0.02764 184 55 <.0001 2 2 1.2837 0.02764 184 46.44 <.0001 1 2 904 1.6013 0.01965 224 81.51 <.0001 2 2 1.2967 0.01965 224 66 <.0001 1 2 906 1.642 0.0163 247 100.71 <.0001 2 2 1.3717 0.0163 247 84.13 <.0001 1 2 908 1.63 0.01309 249 124.54 <.0001 2 2 1.4603 0.01309 249 111.58 <.0001 1 2 910 1.616 0.01521 256 106.23 <.0001 2 2 1.5683 0.01521 256 103.1 <.0001 1 2 912 1.6663 0.01333 273 125.01 <.0001 2 2 1.674 0.01333 273 125.59 <.0001 1 2 914 1.7053 0.01541 290 110.69 <.0001 2 2 1.7943 0.01541 290 116.47 <.0001 1 2 916 1.7567 0.0168 301 104.59 <.0001 2 2 1.8777 0.0168 301 111.79 <.0001 1 2 918 1.806 0.01951 316 92.57 <.0001 2 2 1.9257 0.01951 316 98.7 <.0001 1 2 920 1.8367 0.02568 332 71.53 <.0001 2 2 1.9737 0.02568 332 76.86 <.0001 1 2 922 1.7863 0.02235 336 79.94 <.0001 2 2 1.8757 0.02235 336 83.94 <.0001 1 2 924 1.6967 0.02353 328 72.11 <.0001 2 2 1.784 0.02353 328 75.82 <.0001 1 2 1.637 0.02341 311 69.92 <.0001 926 2 2 1.6613 0.02341 311 70.96 <.0001 1 2 928 1.571 0.02256 295 69.64 <.0001 2 2 1.4973 0.02256 295 66.38 <.0001 1 2 930 1.509 0.03025 258 49.89 <.0001 2 2 1.34 0.03025 258 44.3 <.0001 232 Table 72: Electric Field Strength (Vlm) Location 2 Comparisons 233 fre tsce Estimate StdErr DF tValue Probt Adjust Ade lg)0__2__£)i99 0.02167 165 9.18 <.0001 Tuke -Kramer <.0001 902 2 0.2363 0.03909 184 6.05 <.0001 Tukey-Kramer <.0001 904 2 0.3047 0.02779 224 10.97 <.0001 Tukey-Kramer <.0001 906 2 0.2703 0.02306 247 1 1.72 <.0001 Tukey-Kramer <.0001 908 2 0.1697 0.01851 249 9.17 <.0001 Tukey-Kramer <.0001 fl 2 0.04767 0.02E1 256 2.22 0E5"I Tukex—Kramer 1 912 2 -0.00767 0.01885 273 -0.41 0.6845 Tukey-Kramer 1 914 2 -0.089 0.02179 290 -4.08 <.0001 Tukey-Kramer 0.1053 fl 2 -0.121 0.02375 MEI-fl <.0001 Tuke -Kramer 0.0015 918 2 -0.1197 0.02759 316 —4.34 <.0001 TukeLKramer 0.0428 920 2 -0.137 0.03631 332 -3.77 0.0002 Tukey-Kramer 0.2669 922 2 -0.08933 0.0316 336 -2.83 0.005 Tukey-Kramer 0.9633 924 2 -0.08733 0.03328 328 ' -2.62 0.0091 Tukey-Kramer 0.9927 _9£6__L -0.02433 0.03311 fl -0.73 0.4629 Tuke -Kramer 1 928 2 0.07367 0.0319 295 2.31 0.0216 Tukey—Kramer 0.9998 930 2 0.169 0.04278 258 3.95 0.0001 Tuke —Kramer 0.1613 ...1 3.22. 55:69.". .m> AEmo. Boston. an... :o .26.. 3232 . N :ozoood "mm 959... 3.22. 35:62“. 0mm wNm mNm ¢Nm NNm ONm mHm mHm VHm NHm on mom mom 3m Nom N 68+ H mumIOI N .5333 com oH de HH m.HH NH m.NH MH m.MH eH méH mH (map) pJBMJOj 321 no JaMOd amojsqv 234 Table 73: Absolute Power on Tag Forward (dBm) Location 2 Estimations 12.95 0.1403 930 l 14.0267 235 Ioc fre Estimate StdErr DF tValue Probt I 1 2 13.3033 0.07129 220 186.62 <.0001 2 2 14.6667 0.07129 220 205.74 <.0001I 1 2 12.7867 0.06457 254 198.03 <.0001 2 2 14.3667 0.06457 222.5 1 2 904 12.29 0.08087 266 2 2 14.08 0.08087 266 174.1 <.0001 I1 2 906 12.0467 0.083 264 145.14 <.0001 2 2 13.63 0.083 264 I 1 2 908 12.12 0.07273 252 2 2 13.1 0.07273 252 I 1 2 910 12.2 0.08883 247 2 2 12.47 0.08883 247 IT 2 912 12.0333 0.07585 251 2 2 11.97 $07585 25J1 I:1 2 914 1 1.79 0.08056 262 2 2 1 1.4033 0.08056 262 1 2 916 11.57 0.08209 270 140.95 2 2 1 1.0233 0.08209 270 134.29 1 2 918 11.3833 0.08946 281 127.25 <.0001 2 2 10.83 0.08946 281 121.06 <.0001I 1 2 920 11.1767 0.1137 293 98.33 <.0001 2 2 10.62 0.1137 293 93.44 <.0001I 1 2 922 11.54 0.1001 297 115.34 <.0001 2 2 11.1033 0.1001 297 110.98 1 2 924 11.9133 0.0994 294 119.85 2 2 11'5_8. 0.0994 294 116.5 1 2 926 12.32 0.09691 284-T 127.13 2 2 12.22 0.09691 284 126.1 1 2 928 12.62 0.1056 277 119.51 2 2 13.1467 0.1056 277 124.49 1 2 2 _2_; 0.1403 249 | 100.01 I <.0001 I Table 74: Absolute Power on Tag Forward (dBm) Location 2 Comparisons _ _ sce fr_e_sce Estimate Std Err DF tValue Probt Adjust Ad jP 1 3%; -1.3633 0.1008 220 -13.52 <.0001 Tukex-Kramer <.0001 1 902 2 -1.58 0.09131 254 -17.3 <.0001 Tukey-Kramer <.0001 1 904 2 -1.79 0.1144 266 -15.65 <.0001 Tukey-Kramer <.0001 1 906 2T -1.5833 0.1 174 264 -13.49 <.0001 Tukey-Kramer <.0001 1 908 2J -0.98 0.1029 252 -9.53 <.0001 Tu key-Kramer <.0001 1 fl_2 -0.27 0.1256 247 -2.15 fl326 Tukey-Kramer 1 1 912 2 0.06333 0.1073 251 0.59 0.5555 Tukey-Kramer 1 1 914 2 0.3867 0.1 139 262 3.39 0.0008 Tukg—Kramer 0.5941 1 fl 2 0.5467 _(2 161 270 4.71 <.0001 Tuke -Kramer 0.0092 1 918 2 0.5533 0.1265 281 4.37 <.0001 Tukey-Kramer 0.0371 1 920 2 0.5567 0.1607 293 3.46 0.0006 Tukey-Kramer 0.5285 1 922 2 0.4367 0.1415 297 3.09 0.0022 Tu keLKramer 0.8499 1 924 2 0.3333 0.1406 294 2.37 0.0184 Tukey-Kramer 0.9996 1 $6.; 0.1 0._137 284 0.73 0.4662 Tukex—Kramer 1 1 928 2 -0.5267 0.1493 277 -3.53 0.0005 Tukey-Kramer 0.4692 1 930 2 -1.0767 0.1984 249 -5.43 <.0001 Tuke ~Kramer 0.0003 236 I? 3.5. 5:302". 61E. Enzcon. 39.3. 031 _mozocooE. - N cozmoog 34m 959“. 3.:2. 65:09: 0mm wNm mNm «Nm NNm on me mHm «Hm NHm on mom mom 3m New com N mumlmdl H mumI 237 (w) memos afiueu peau 1931131081“, N .5383 Table 75: Theoretical Read Range Forward (m) Location 2 Estimations I sce Ioc fre Estimate StdErr DF tValue Frog I 1 2 900 6.99 0.05727 230 122.05 <.0001 2 2 900 8.1967 0.05727 230 143.12 <.0001 I 1 2 902 6.64 0.04414 256 150.42 <.000—1—I 2 2 902 7.91 0.04414 256 179.19 <.0001 I 1 2 904 6.2267 0.04841 266 128.62 <.0001 I 2 2 904 7.6233 0.04841 266 157.47 <.0001 I 1 2 905 6.03 0.04618 271 130.58 <.0001 I 2 2 906 7.2633 0.04618 271 157.28 <.0001 I L 1 2 908 6.08 0.04687 269 129.73 <.0001 I 2 2 908 6.77 0.04687 269 144.45 <.0001 1 2 910 6.14 0.05849 272 104.97 < .0001 2 2 910 6.33 0.05849 272 108.22 < 0100 1 2 912 5.9767 0.04547 274 131.45 < .oocfi 2 2 912 5.9333 0.04547 274 130.5 < .000 I 1 2 914 5.8333 0.0438 284 133.17 < .OOCFI 2 2 914 5.5633 0.0438 284 127 <.0001 I 1 2 915 5.6633 0.0447 290 126.7 < .OOOTII 2 2 916 5.2733 0.0447 290 117.97 < .0001 I 1 2 913 5.52 0.03992 283 138.28 < .OOWI I 2 2 918 5.1767 0.03992 283 129.68 <.0001 I 1 2 920 5.35 0.04942 274 108.25 <.0001 2 2 920 5.0467 0.04942 274 102.1 1 <.0001 1 2 922 5.6267 0.03724 260 151.1 < .0001 I 2 2 922 5.33 0.03724 260 143.13 < .0001 1 2 924 5.8133 0.03611 252 160.97 < .0001I 2 2 924 5.5867 0.0361 1 252 154.7 I 1 2 926 6.0767 0.03879 248 156.66 < (.003—1I 2 2 926 6.0933 0.03879 248 157.08 <.0001 I 1 2 928 6.3267 0.04469 252 141.58 <.0001I 2 2 _9_28__6.71 0.04469 222 150.16 <.0001 1 2 930 6.5633 0.05986 234 109.65 <.0(£i1-I I 2 2 930 7.3733 0.05986 234 123.18 <.0001 I 238 Table 76: Theoretical Read Range Forward (m) Location 2 Comparisons sce fre lsce Estimate StdErr DF tValue Probt Adjust Adi:J 1 900 2 -1.2067 0.08099 230 -14.9 <.0001 Tukey-Kramer <.0001 1 902 2 -1.27 0.06243 256 -20.34 <.0001 Tukey-Kramer {000.1 1 904 2 -1.3967 0.06846 266 -20.4 <.0001 Tukex-Kramer ”<.0001 1 906 2 -1.2333 0.06531 271 -18.88 <.0001 Tukey-Kramer <.00'0'1 1 908 2 -0.69 0.06628 269 -10.41 <.0001 Tukey-Kramer <.0001 1 910 2 -O.19 0.08272 272 -2.3 0.0224 Tukey-Kramer 0.9999 1 912 2 0.04333 0.0643 274 0.67 0.5009 Tukey-Kramer 1 1 914 2 0.27 0.06195 284 4.36 <.0001 Tukey-Kramer -’0.039 I 1 916 2 0.39 0.06322 290 6.17 <.0001 Tukey-Kramer <.0001 1 918 2 0.3433 0.05645 283 6.08 <.0001 Tukey-Kramer <.0001 1 920 2 0.3033 0.06989 274 4.34 <.0001 Tukey-Kramer 0.0322 1 922 2 0.2967 0.05266 260 5.63 <.0001 Tukey-Kramer <.0001 1 924 2 0.2267 0.05107 252 4.44 <.0001 Tukey-Kramer 0.0288 1 926 2 —0.01667 0.05486 248 -0.3 0.7615 Tukey-Kramer 1 1 928 2 -0.3833 0.0632 252 -6.07 <.0001 TukeLKramer {<.0001 1 930 2 -0.81 0.08465 234 -9.57 <.0001 Tukey-Kramer <.0001 239 firs: 5539.“. .m> E53 ..oion. ..otmomxoam 220mg - N con—woo.— ”mm 2:2". N mum+ a 8T9: 0mm mmm mmm VNm NNm owm mfim 3...): 3:03.92“. mam 3m Nam on mom mom vom Nom com hv va mo mdv me. mdv om mdm Hm N 5:83 (map) Jamod Jaueasxaea atmosqv 240 Table 77: Absolute Backscatter Power (dBm) Location 2 Estimations Fce Ioc fre Estimate StdErr DF tValue Probt4 1 2 900 50.49 0.1075 215 469.51 <.0001 2 2 48.635 0.1075 215 452.26 <.0001 I1 2 902 50.365 0.08893 248 566.32 <.ooofl 2 2 48.5417 0.08893 248 545.82 <.0001 h 2 904 50.2383 0.1069 263 470.1 <.0001I L2 2 48.3467 0.1069 263 452.4 «001% 1 2 906 50.1 0.108 263 464.01 <.0001 2 2 48.53 0.108 263 449.47 <.0001 1 2 908 49.9567 0.09665 248 516.87 <.0001I 2 2 48.985 0.09665 248 506.81 <.0001 I 1 2 910 49.825 0.1201 237 414.72 <.0001I 2 2 49.4717 0.1201 237 411.78 <.0001 I1 2 912 49.77 0.09783 242 508.72 <.0001I 2 2 49.5367 0.09783 242 506.33 <.0001 I 1 2 914 49.6883 0.1226 254 405.43 <.0007I I'LL— 49.5567 0.1226 254 404gI <.0001 1 2 916 49.355 0.129 251 382.5 <.0001I 2 2 49.78 0.129 251 385.8 <.0001 I1 2 918 48.5683 0.1203 246 403.79 <.0001I 2 2 50.18 0.1203 246 417.19 <.0001 I1 2 920 47.9267 0.1382 258 346.68 <.0001I 2 2 50.5733 0.1382 258 365.83 <.0001 I 1 2 922 48.4283 0.09647 271 502.02 <.0001I 2 2 49.4867 0.09647 271 513 <.0001 I 1 2 924 48.8317 0.0857 282 569.79 <.0001I 2 2 48.4417 0.0857 282 565.24 <.0001 I1 2 926 48.87 0.08378 287 583.31 <.oooTI I_2__3___47_.7947 0.08378 287 5% <.0001 1 2 928 48.5617 0.09099 293 533.71 <.0001I 2 2 47.5733 0.09099 293 522.84 <.0001 I 1 2 930 48.2583 0.1227 266 393.32 <.0001I I 2 2 47.345 0.1227 266 385.88 <.0001I 241 Table 78: Absolute Backscatter Power (dBm) Location 2 Comparisons sce fre _sce Estimate StdErr DF tValue Probt Adjust Ade I 1 900 2 1.855 0.1521 215 12.2 <.0001 Tukey-Kramer <.0001 1 902 2 1.8233 0.1258 248 14.5 <.0001 Tukey-Kramer "<.0001 1 904 2 1.8917 0.1511 263 12.52 <.0001 Tukey-Kramer ,<.0001 1 906 2 1 .57 0.1527 263 10.28 <.0001 Tukey-Kramer <.0001 1 908 2 0.9717 0.1367 248 7.11 <.0001 Tukey-Kramer <.0001 1 910 2 0.3533 0.1699 237 2.08 0.0386 Tukey-Kramer 1 1 912 2 0.2333 0.1384 242 1.69 0.093 Tukey-Kramer 1 1 914 2 0.1317 0.1733 254 0.76 0.4482 Tukey-Kramer 1 1 916 2 -0.425 0.1825 251 -2.33 0.0207 Tukey-Kramer 0.9998 1 918 2 -1.6117 0.1701 246 -9.47 <.0001 Tukey-Kramer <.000‘1" 1 920 2 -2.6467 0.1955 258 -13.54 <.0001 Tukey-Kramer <.0001 1 922 2 -1.0583 0.1364 271 -7.76 <.0001 Tukey-Kramer ‘<.000*1 1 924 2 0.39 0.1212 282 3.22 0.0014 Tukey-Kramer 0.7525 1 926 2 1.0753 0.1 185 287 9.08 <.0001 Tukey-Kramer <.0001. 1 928 2 0.9883 0.1287 293 7.68 <.0001 Tukey-Kramer {0001. 1 930 2 0.9133 0.1735 266 5.26 <.0001 Tukey-Kramer ._ .0006; 242 Anzsa 3:362“. .m> E53 .326.“ 3333. 8232 - N cow—woo; 6m 2:9". N 8min: H 08+ 0mm 3...): Econ—.0: mNm mNm «Na Na 03 mum mam 3m Nam on mom mom 3m Nom com N .8383 (map) .IaMOd panacea azn|osqv 243 __- Table 79: Absolute Received Power (dBm) Location 2 Estimations sce Ioc fre Estimate Std Err DF tValue Probt 1 2 900 82.44 1.3084 2157 63.01 <.0001 2 2 64.9667 1.3084 2157 49.66 <.0001 1 2 902 82.1967 1.3084 2157 62.82 <.0001 2 2 56.9667 1.3084 2157 43.54 <.0001 1 2 904 81.9333 1.3084 2157 62.62 <.0001 2 2 48.6 1.3084 2157 37.15 <.0001 1 2 906 81.8967 1.3084 2157 62.6 <.0001 2 2 43 1.3084 2157 32.87 <.0001 1 2 908 82.09 1.3084 2157 62.74 <.0001 2 2 39.7 1.3084 2157 30.34 <.0001 1 2 910 82.26 1.3084 2157 62.87 <.0001 2 2 37.1 1.3084 2157 28.36 <.0001 1 2 912 82.3233 1.3084 2157 62.92 <.0001 2 2 35.7667 1.3084 2157 27.34 <.0001 1 2 914 82.37 1.3084 2157 62.96 <.0001 2 2 34.7 1.3084 2157 26.52 <.0001 1 2 916 82.3867 1.3084 2157 62.97 <.0001 2 2 33.6 1.3084 2157 25.68 <.0001 1 2 918 82.38 1.3084 2157 62.96 <.0001 2 2 32.1667 1.3084 2157 24.59 <.0001 1 2 920 82.36 1.3084 2157 62.95 <.0001 2 2 30.9667 1.3084 2157 23.67 <.0001 1 2 922 82.37 1.3084 2157 62.96 <.0001 2 2 32.6667 1.3084 2157 24.97 <.0001 1 2 924 82.3633 1.3084 2157 62.95 <.0001 2 2 34.0667 1.3084 2157 26.04 <.0001 1 2 926 81.3667 1.3084 2157 62.19 <.0001 2 2 39.3667 1.3084 2157 30.09 <.0001 1 2 928 79.4733 1.3084 2157 60.74 <.0001 2 2 48.6333 1.3084 2157 37.17 <.0001 1 2 930 77.5633 1.3084 2157 59.28 <.0001 2 2 57.9667 1.3084 2157 44.3 <.0001 244 Table 80: Absolute Received Power (dBm) Location 2 Comparisons 245 I see fre _ice Estimate StdErr DF tValue Probt Adjust Ade 1 900 2 17.4733 1.8503 2157 9.44 <.0001 Tukey-Kramer <.0001 1 902 2 25.23 1.8503 2157 13.64 <.0001 Tukey-Kramer <.0001 1 904 2 33.3333 1.8503 2157 18.02 <.0001 Tukey-Kramer <.0001 1 906 2 38.8967 1.8503 2157 21.02 <.0001 Tukey-Kramer <.0001 1 908 2 42.39 1.8503 2157 22.91 <.0001 Tukey-Kramer <.0001 1 910 2 45.16 1.8503 2157 24.41 <.0001 Tukey-Kramer <.0001 1 912 2 46.5567 1 .8503 2157 25.16 <.0001 Tukey-Kramer 1 914 2 47.67 1.8503 2157 25.76 <.0001 Tukey-Kramer 1 916 2 48.7867 1 .8503 2157 26.37 <.0001 Tukey-Kramer L_1 918 2 50.2133 1.8503 2157 27.14 <.0001 Tukey-Kramer 1 920 2 51 .3933 1 .8503 2157 27.78 <.0001 Tukey-Kramer 1 922 2 49.7033 1 .8503 2157 26.86 <.0001 Tukey-Kramer 1 924 2 48.2967 1 .8503 2157 26.1 <.0001 Tukey-Kramer 1 926 2 42 1 .8503 2157 22.7 <.0001 Tukey-Kramer F 928 2 30.84 1 .8503 2157 16.67 <.0001 Tukey-Kramer 1 930 2 19.5967 1fluh21fl 10.59 <.0001 firs: >23:ch .m> AEcmmE mom 530 93.022 .. N 5:30.. Km 2:9“. ~ Swill H 8.71. 0mm wNm mNm wNm NNm 0N0 mam 3...): 35:02“. mam cam N c0383 Nam Cam mom mom 3m Nom com mKH Wmfi de mdN mHN m.~N m.m~ méN (wbsspl 53821130 amlosqv 246 SCB fre Estimate Std Err DF tValue Table 81: Absolute Delta RCS (stqm) Location 2 Estimations Probt 900 20.73 0.06879 241 301.35 <.0001 18.6367 0.06879 241 270.92 <.0001 902 21.5733 0.05175 284 416.84 A— <.0001 18.78 0.05175 284 362.87 <.000 AN—tN—L 904 22.56 0.05928 300 380.57 3.. <.00 18.92 0.05928 300 319.16 <.00 T: 906 22.8433 0.06073 298 376.14 CO _3_; <.00 19.5033 0.06073 298 321.15 <.00 908 22.3967 0.05707 275 392.44 <.00 CO _3_; 20.53 0.05707 275 359.73 <.00 910 21.9467 0.08024 250 273.53 CO u—l—b — <.00 21 .5667 0.08024 250 268.79 <.00 912 22.2767 0.06471 243 344.23 CO _3_3. <.00 22.1833 0.06471 243 342.79 <.00 NAN—iN-‘N-‘N fr 914 22.5833 0.08271 267 273.04 CO 4.3 <.00 22.87 _ 916 0.08271 267 22.8033 0.08333 271 276.5 — 273.64 <.0001 <.0001 i 23.4533 0.08333 271 281.44 <00 1 O 918 23 0.07213 246 318.88 <00 0 _s 24.0333 0.07213 246 333.21 <.00 920 23.13 0.07515 249 307.78 CO _3_; <.00 24.6167 0.07515 249 327.56 <.00 922 22.8 0.05087 278 448.17 CO _3_; <.00 23.0767 0.05087 23 453.61 <.0001 924 22 .4733 0.05668 282 396.46 J. <.0001 21.56 0.05668 282 380.35 <.00 ——*—— AN—LN—LN—lN—LN 926 1 -* N-‘IN N NM . — 928 | 930 21.8133 0.05673 250 384.52 CO _L—L <.00 20.2267 0.05673 A59 356.55 <.00 20.8467 0.05403 219 385.85 <.000 o _sl_s 19.1167 19.8733 —-1 0.05403 219 353.83 <.00 O _L 0.07357 200 270.13 <.0001 18.0133 0.07357 200 244.84 <.0001 I 247 Table 82: Absolute Delta RCS (stqm) Location 2 Comparisons 248 fre _Sfi Estimate StdErr DF tValue Probt Adjust 900 2 2.0933 0.09728 241 21 .52 <.0001 Tukey-Kramer 902 2 2.7933 0.07319 284 38.16 <.0001 Tukey-Kramer 904 2 3.64 0.08383 300 43.42 <.0001 Tukey-Kramer 906 2 3.34 0.08589 298 38.89 <.0001 Tukey-Kramer 908 2 1 .8667 0.08071 275 23.13 <.0001 Tukey-Kramer 910 2 0.38 0.1 135 250 3.35 0.0009 Tukey-Kramer 912 2 0.09333 0.09152 243 1.02 0.3088 Tukey-Kramer 914 2 -0.2867 0.1 17 267 -2.45 0.0149 Tukey-Kramer 916 2 -0.65 0.1178 271 -5.52 ‘ <.0001 Tukey-Kramer 918 2 -1.0333 0.102 246 -10.13 <.0001 Tukey-Kramer 920 2 -1 .4867 0.1063 249 -13.99 <.0001 Tukey-Kramer 922 2 -0.2767 0.07195 278 -3.85 0.0001 Tukey-Kramer 924 2 0.9133 0.08016 282 1 1 .39 <.0001 Tukey-Kramer 926 2 1 .5867 0.08023 250 19.78 <.0001 Tuke -Kramer 928 2 1.73 0.07641 219 22.64 <.0001 Tukey-Kramer 930 2 4 .86 0.104 220; 17.88 <.0001 Tukex-Kramer firs: 55:69.". .m> Eng 3351 mm... :o 330.. 2239‘ . N .3333 5m 2:9". 3...): 35:09.“. 0mm wNm mNm «mm NNm omm mam mam 3m Nam on mom mom 3m New com Va mg; m." mi N «owl—T H 8mIol 8 WE ma ms.“ ma N .3333 (map) among 821 no JaMOd aznjosqv 249 Table 83: Absolute Power on Tag Reverse (dBm) Location 2 Estimations sce loc fre Estimate StdErr DF tValue Probt 1 2 900 16.43 0.1007 226 163.14 <.0001 I 2 2 15.7367 0.1007 226 156.26 <.0001 1 2 902 16.8133 0.08459 262 198.77 <.0001 2 _2_r 15.5467 0.08459 262 183.79 <.0001 I—1- 2 904 17.2567 0.1024 276 168.49 <.0001 2 2 15.3867 0.1024 276 150.23 <.0001 I 1 2 906 17.2733 0.1052 274 164.17 <.0001I l 2 2 15.5133 0.1052 274 147.45 <.0001 I 1 2 908 16.8867 0.09129 257 184.99 <.0001 2 2 15.9767 0.09129 257 175.02 <.0001 1 2 910 16.5067 0.1161 247 142.24 <.oocfi 2 2 16.44 0.1161 247 141.66 <.0001 I 1 2 912 16.5933 0.09585 250 173.12 <.0001I 2 2 16.4767 0.09585 250 171.9 <.0001 I 1 2 914 16.6967 0.1161 266 143.84 <.0001I I 2 2 16.52 0.1161 @- 142.32 <.0001 I 1 2 916 16.72 0.1181 267 141.6 <.0001 2 2 16.74 0.1181 267 141.77 <.0001 I 1 2 918 16.6367 0.1069 258 155.7 <.0001I 2 2 17.13 0.1069 258 160.32 <.0001 I 1 2 920 16.57 0.1356 254 122.19 <.0001 2 2 17.5 0.1356 254 129.05 <.0001 I 1 2 922 16.6067 0.1028 254 161.55 <.0001I I 2 2 16.5067 0.1028 254 160.58_ <.0001I 1 2 924 16.6133 0.09421 258 176.35 <.0001 2 2 15.33 0.09421 258 162.72 <.0001 I 1 2 926 16.32 0.09469 264 172.35 <.0001I 2 2 14.73 0.09469 264 155.56 <.0001 1 2 928 15.6233 0.09708 276 160.93 <.0001 I_2__2__ 14.4167 0.09708 _2_76 148.5 <.000_1_I 1 2 930 14.99 0.1285 254 116.63 <.0001 I2 2 14.2033 0.1285 254 110.51 <0001I 250 Table 84: Absolute Power on Tag Reverse (dBm) Location 2 Comparisons sce fre sce Estimate StdErr DF tValue Probt Adjust Ade I 1 900 2 0.6933 0.1424 226 4.87 <.0001 Tukey-Kramer 0.0045 1 902 2 1 .2667 0.1 196 262 10.59 <.0001 Tukey-Kramer <.0001 1 904 2 1.87 0.1448 276 12.91 <.0001 Tukey-Kramer “<.0001 1 906 2 1.76 0.1488 274 1 1.83 <.0001 Tukey-Kramer <.0001 1 908 2 0.91 0.1291 257 7.05 <.0001 Tukey-Kramer <.0001 1 910 2 0.06667 0.1641 247 0.41 0.6849 Tukey-Kramer 1 1 912 2 0.1167 0.1356 250 0.86 0.3902 Tukex—Kramer 1 1 914 2 0.1767 0.1642 266 1.08 0.2828 TukeLKramer 1 1 916 2 -0.02 0.167 267 -0.12 0.9048 Tukey-Kramer 1 1 918 2 -0.4933 0.1511 258 -3.26 0.0012 Tukey-Kramer 0.7126 1 920 2 -0.93 0.1918 254 -4.85 <.0001 Tukey-Kramer "0.0049 1 922 2 0.1 0.1454 254 0.69 0.4922 Tukey-Kramer 1 I 1 924 2 1.2833 0.1332 258 9.63 <.0001 Tukey-Kramer .<. ,01 1 926 2 1.59 0.1339 264 1 1.87 <.0001 Tukey-Kramer <.0001- 1 928 2 1.2067 0.1373 276 8.79 <.0001 Tukey-Kramer 2.0061 1 930 2 0.7867 0.1818 254 4.33 <.0001 Tukey-Kramer 0.044 . 251 #15: 35:02". 61.5 3.851 oacam comm 30:23:... "mm 959“. N mumlll H mumIOI 0mm mNm mNm «Nm NNm ONm 3...): 35:09.“. mam mam 3m N 5383 NS on mom mom 3m New NH mKN w.“ mda ma de 0N mdN HN m.HN NN m.NN MN m.m~ VN méN mN m.m~ mN (w) asnneu aaueu peaa jeonaJoaiu, 252 Table 85: ' Table 85: Theoretical Read Range Reverse (m) Location 2 Estimations fre Estimate StdErr DF tValue Proth 20.1467 0.2375 227 84.82 <.0001 21.7767 0.2375 227 91.68 <.0001 19.2567 0.2029 264 94.91 <.0001 22.1933 0.2029 264 109.38 <.000_1I 18.2433 0.2605 278 70.03 <.0001 22.6033 0.2605 278 86.77 <.0001 I 900 902 m NAN-to I m 5' o 904 18.1533 0.2628 276 69.09 <.0001 22.1733 0.2628 276 84.39 €000] 906 —I 18.93 0.2238 257 84.59 <.0001 20.9933 0.2238 257 93.81 <.0001QI 1 19.72 0.2846 243 69.29 <.000 19.85 0.2846 243 69.75 <.0001 I 1 19.4667 0.2423 247 80.35 <.000 19.6933 0.2423 247 81.29 «OCH 1 914 19.2 0.3164 261 60.68 <.000 19.5633 0.3164 261 61.83 <.0001 916 19.1367 0.3331 257 57.45 <.0001 19.0833 0.3331 257 57.29 <.0001jI 908 910 912 '1 ANANANANANANA NAN—ANAN—lw—‘N 19.2467 0.2761 257 69.71 <.0001 18.2467 0.2761 257 66.08 <.0001I 19.3533 0.3315 275 58.37 <.0001 17.4267 0.3315 275 52.56 <.0001I 918 920 19.23 0.2409 281 79.82 <.0001 19.9467 0.2409 281 82.79 <.0001 19.1267 0.2227 281 85.89 <.0001 22.44 0.2227 281 100.77 <.0001 926 19.88 0.2202 278 90.27 <.0001 23.9867 0.2202 278 108.92 <0001 +—_ I. 928 21.4967 0.2607 275 82 .45 <.0001 24.59 0.2607 27_5_ 94.32 <.0001 23.0267 0.3552 246 64.83 <.0001 25.18 0.3552 246 70.89 <.0001I 922 924 fl 1 930 1 - N 253 Table 86: Theoretical Read Range Reverse (m) Location 2 Comparisons I sce fre sce Estimate StdErr DF tValue Probt Adjust Ade L1 900 2 -1 .63 0.3359 227 -4.85 <.0001 TukeLKramer 0.0048 1 902 2 -2.9367 0.2869 264 -10.23 <.0001 Tukey-Kramer <.0001 1 904 2 -4.36 0.3684 278 -1 1.83 <.0001 Tukey-Kramer <.0001 1 906 2 -4.02 0.3716 276 -10.82 <.0001 Tukey-Kramer <.0001 1 908 2 -2.0633 0.3165 257 -6.52 <.0001 Tukey-Kramer <.0001 1 910 2 -O.13 0.4025 243 -0.32 0.747 Tukey-Kramer 1 1 912 2 -0.2267 0.3426 247 -0.66 0.5089 Tukey-Kramer 1 1 914 2 -0.3633 0.4475 261 -0.81 0.4176 Tukey-Kramer 1 1 916 2 0.05333 0.471 257 0.1 1 0.9099 Tukey-Kramer 1 1 918 2 1 0.3905 257 2.56 0.01 1 Tukey-Kramer 0.9961 1 920 2 1 .9267 0.4689 275 4.1 1 <.0001 Tukey-Kramer 0.097 1 922 2 -0.7167 0.3407 281 -2.1 0.0363 Tukey-Kramer 1 1 924 2 -3.3133 0.3149 281 -10.52 <.0001 Tukey-Kramer <.0001 1 926 2 -4.1067 0.3114 278 -13.19 <.0001 Tukey—Kramer <.0001 I: 928 2 -3.0933 0.3687 275 -8.39 <.0001 Tukey-Kramer <.0001 I 1 930 2 -2.1533 0.5023 242 -4.29 <.0001 Tuke -Kramer 0.0517 254 Appendix H: Location 3 — Michigan State University Engineering Building Basement Tables and Figures 255 3...... 5:03.52“. .m> .Emu. 326m ..Emcmc... - n cosmos 5m 9.3m.“— ANIE. 55:—.2”. omm wNm mNm .VNm NNm ONm mam mam 3m Nam 03 mom mom 3m N mum Jul m 22.33 Nom com man NH m.NH ma m.ma «H m4; ma (map) JaMOd unusual 256 Table 87: Transmit Power (dBm) Location 3 Estimations sce Ioc fre Estimate StdErr DF tValue Probt 1 3 900 12 0.07243 215 165.68 <.0001 2 3 12.0333 0.07243 215 166.14 <.0001 1 3 902 12.24 0.06779 249 180.56 <.0001 2 3 12.1133 0.06779 249 178.7 <.0001 1 3 904 12.4267 0.08463 261 146.84 <.0001 2 3 12.1933 0.08463 261 144.08 <.0001 1 3 906 12.8067 0.08354 258 153.3 <.0001 2 3 12.4767 0.08354 258 149.35 <.0001 1 3 908 13.0933 0.0734 247 178.38 <.0001 2 3 12.93 0.0734 247 176.16 <.0001 1 3 910 13.4667 0.08972 246 150.09 <.0001 2 3 13.4 0.08972 246 149.35 <.0001 1 3 912 13.31 0.0711 254 187.2 <.0001 2 3 13.3433 0.0711 254 187.66 <.0001 1 3 914 13.18 0.08047 266 163.8 <.0001 2 3 13.3167 0.08047 266 165.49 <.0001 1 3 916 13.0767 0.08486 273 154.1 <.0001 2 3 13.3033 0.08486 273 156.77 <.0001 1 3 918 13.0667 0.09041 284 144.53 <.0001 2 3 13.2967 0.09041 284 147.08 <.0001 1 3 920 13.0533 0.1165 295 112.08 <.0001 2 3 13.3 0.1165 295 114.19 <.0001 1 3 922 13.4367 0.09568 299 140.44 <.0001 2 3 13.6167 0.09568 299 142.32 <.0001 1 3 924 13.7167 0.09556 295 143.54 <.0001 2 3 13.9333 0.09556 295 145.81 <.0001 1 3 926 14.1567 0.09565 285 148 <.0001 2 3 14.1733 0.09565 285 148.18 <.0001 1 3 928 14.45 0.103 278 140.25 <.0001 2 3 14.2967 0.103 278 138.76 <.0001 1 3 930 14.7467 0.1393 252 105.88 <.0001 2 3 14.4833 0.1393 252 103.99 <.0001 257 $09 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 fre 900 902 904 906 908 91 0 912 914 916 91 8 920 922 924 926 928 930 Table 88: Transmit Power (dBm) Location 3 Comparisons sce Estimate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -0.03333 0.1267 0.2333 0.33 0.1633 0.06667 ~0.03333 -0.1367 -0.2267 —0.23 -0.2467 -0.18 -0.2167 -0.01667 0.1533 0.2633 StdErr 0.1024 0.09587 0.1197 0.1181 0.1038 0.1269 0.1006 0.1138 0.12 0.1279 0.1647 0.1353 0.1351 0.1353 0.1457 0.197 DF 21 5 249 261 258 247 246 254 266 273 284 295 299 295 285 278 252 258 tValue -0.33 1.32 1.95 2.79 1.57 0.53 033 -1.2 -1.89 -1.8 -1.5 -1.33 -1.6 -0.12 1.05 1.34 Probt 0.7452 0.1876 0.0523 0.0056 0.1169 0.5998 0.7405 0.2308 0.06 0.0731 0.1353 0.1844 0.1099 0.902 0.2936 0.1824 -l-l-l-l—l-l-l-l-l-l-l V A firs: 39.3.92“. .m> 3.5. 59.25 .26.“. oEoofi . m c0530.. "5 2:9“. 3...): 35:08.. 0mm wNm wNm va NNm on me mam cam Nam 95 mom mom wom Nom Dom _ _1_ __ ..1_H_W.H.__._Mw...wmfl _:_‘w.__._"_____. ”A _ . .__.__.u..._. :_:_:_.__._:__.._;.f_ _ N 8m ...... _l H 879.. .6. 5:80.. HA (w/A) mums Plau annals 259 Table 89: Electric Field Strength (V/m) Location 3 Estimations sce Ioc fre Estimate Std Err DF tValue Probt 1 3 900 1.15 0.01532 165 75.06 <.0001 2 3 1.1567 0.01532 165 75.49 <.0001 1 3 902 1.1883 0.02764 184 43 <.0001 2 3 1.17 0.02764 184 42.33 <.0001 1 3 904 1.2137 0.01965 224 61 .77 <.0001 2 3 1.1967 0.01965 224 60.91 <.0001 1 3 906 1.2683 0.0163 247 77.8 <.0001 2 3 1.2367 0.0163 247 75.85 <.0001 1 3 908 1.32 0.01309 249 100.85 <.0001 2 3 1.305 0.01309 249 99.71 <.0001 1 3 910 1.371 0.01521 256 90.13 <.0001 2 3 1.3667 0.01521 256 89.84 <.0001 1 3 912 1.35 0.01333 273 101.28 <.0001 2 3 1.3633 0.01333 273 102.28 <.0001 1 3 914 1.3317 0.01541 290 86.44 <.0001 2 3 1.365 0.01541 290 88.6 <.0001 1 3 916 1.3133 0.0168 301 78.19 <.0001 2 3 1.3567 0.0168 301 80.77 <.0001 1 3 918 1.3133 0.01951 316 67.32 <.0001 2 3 1.3617 0.01951 316 69.79 <.0001 1 3 920 1.31 0.02568 332 51.02 <.0001 2 3 1.3617 0.02568 332 53.03 <.0001 1 3 922 1.3947 0.02235 336 62.41 <.0001 2 3 1.4317 0.02235 336 64.07 <.0001 1 3 924 1.45 0.02353 328 61.62 <.0001 2 3 1.4767 0.02353 328 62.76 <.0001 1 3 926 1.4953 0.02341 311 63.87 <.0001 2 3 1.515 0.02341 311 64.71 <.0001 1 3 928 1.572 0.02256 295 69.69 <.0001 2 3 1.555 0.02256 295 68.94 <.0001 1 3 930 1.6203 0.03025 258 53.57 <.0001 I 2 3 1.5783 0.03025 258 52.18 <.0001 I 260 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 90: fre 900 902 904 906 908 910 912 914 916 918 920 922 924 926 928 930 SCG NNNNNNNNNNNNNNNN Electric Field Strength (Vlm) Location 3 Comparisons Estimate -0.00667 0.01833 0.017 0.03167 0.015 0.004333 -0.01333 -0.03333 -0.04333 -0.04833 -0.05167 -0.037 -0.02667 -0.01967 0.017 0.042 StdErr 0.02167 0.03909 0.02779 0.02306 0.01851 0.02151 0.01885 0.02179 0.02375 0.02759 0.03631 0.0316 0.03328 0.03311 0.0319 0.04278 OF 165 1 84 224 247 249 256 273 290 301 316 332 336 328 31 1 295 258 261 tValue -0.31 0.47 0.61 1.37 0.81 0.2 -0.71 -1.53 -1.82 -1.75 -1.42 -1.17 -0.8 -0.59 0.53 0.98 Probt 0.7587 0.6396 0.5413 0.1709 0.4185 0.8405 0.48 0.1271 0.0691 0.0808 0.1558 0.2425 0.4235 0.5529 0.5945 0.3271 T T Tu T T T Tu Tu Tu T T T T Tu Tu T _lu-L—L—fiu-t—K—l—fi—l—L—AA—l—L—L—L ANT—.2. 35:62". .m> .Emo. Emzcou an... :o 326.". 3239‘ . m 5330.. "No 95?. 3...): 35:32". mam mam 3m Nam on mom mom 3m Nom com 4_ .1 fl. 111. u . . fl _ fiffl1 NH 1. _ _ _ . ._ _ .1 . _1 . . A T T J m.NH MH N 8m 141 Wm“ H mumIOI v... méa ma 7- -_ _ __. b -_—.- __ r7- ? H + _ ._ T _ .1 _ m.mH m cot—woo. 262 (map) pJBMJOj 821 no JaMOd amjosqv Table 91: Absolute Power on Tag Forward (dBm) Location 3 Estimations j I 5C9 StdErr 0.07129 0.07129 0.06457 0.06457 0.08087 0.08087 OF 220 220 254 254 266 266 Probt <.0001 <.0001 <.0001 <.0001 <.0001 <.00 tValue 210.42 209.95 229.42 23014- 181.03 182.63 Estimate 15 14.9667 14.8133 14.86 14.64 14.77 Ioc fre _J A 900 902 i 904 N dN—KN 906 14.3167 0.083 264 172.49 <.OO 14.4733 0.083 264 174.38 <.00 908 13.93 0.07273 252 191.52 <.00 0000 ...—3.5.3 14.0833 0.07273 252 193.63 910 13.5 0.08883 247 151.97 <.0001 <.0001 _L 13.6367 0.08883 247 153.51 <.0001 912 13.7133 0.07585 251 180.79 <.0001 13.72 0.07585 251 180.88 <.00 ij _LNANANANA wwwmwwwwwwwwwwww F 13.8833 0.08056 262 172.34 CO _3_; <.00 914 916 13.7733 * 0.08056 14.0133 0.08209 270 22 170.97 170.71 <.0001 <.0001 J. 13.7867 0.08209 270 167.95 <.0001 918 14.0467 0.08946 281 157.02 <.0001 13.7667 0.08946 281 153.89 <.00 ‘1 AN—bN—tN 920 14.0767 0.1137 293 123.85 CO _L_|. <.00 13.7433 0.1137 293 120.92 <.0001 922 13.7667 0.1001 297 137.6 <.0001 13.41 13.3867 _21001 297 134.03 0.0994 294 134.67 <.0001 <.0001 _L 924 13.16 0.0994 294 132.39 <.00 926 13.0333 0.09691 284 134.49 CO _3_; <.00 928 284 12.96 0.09691 12.7 0.1056 277 133.74 <.0001 120.26 <.0001 N 930 12.81 12.4667 0.1056 0.1403 277 249 121.3 88.88 <.0001 <.0001 12.6767 0.1403 249 90.38 <.0001 I 263 Table 92: Absolute Power on Tag Forward (dBm) Location 3 Comparisons $06 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 fre 900 902 904 906 908 91 0 91 2 91 4 91 6 91 8 920 922 924 926 928 930 (n 0 CD NNNNNNNNNNNNNNNN Estimate 0.03333 -0.04667 -0.13 -O.1567 -0.1533 -0.1367 -0.00667 0.11 0.2267 0.28 0.3333 0.3567 0.2267 0.07333 -0.11 -0.21 StdErr 0.1008 0.09131 0.1144 0.1174 0.1029 0.1256 0.1073 0.1139 0.1161 0.1265 0.1607 0.1415 0.1406 0.137 0.1493 0.1984 OF 220 254 266 264 252 247 251 262 270 281 293 297 294 284 277 249 264 tValue 0.33 -0.51 -1.14 -1.33 -1.49 -1.09 -0.06 0.97 1.95 2.21 2.07 2.52 1.61 0.54 -0.74 -1.06 Probt 0.7412 0.6098 0.2567 0.1831 0.1373 0.2777 0.9505 0.3352 0.0519 0.0277 0.039 0.0122 0.1079 0.593 0.462 0.2908 -l-l-i-l-l-l-l-l-l-l-l-I-l-l-i-l Ad A O. P 3.5.. 35:62... .m> AE. Enzcon. cucum— uaom 50:202.... . m 5:30.. "no 2:9“. Nmumlfll omm 3...): 35:5: wNm mNm «Nm NNm ONm mam mam 3m Nam 93 mom mom 3.5 NS com m 5:33 (in) pJeuuog aiueu peau jeauaioatu, 265 E] Table 93: Theoretical Read Range Forward (m) Location 3 Estimations Std Err e Ioc fre Estimate DF tValue ProtEI I 1 3 900 8.5 0.05727 230 148.42 <.0001 2 3 8.47 0.05727 230 147.9 <.0001 1 3 902 8.2833 0.04414 256 187.65 <.0001 2 3 8.37 0.04414 256 189.61 <.0001 I 1 3 904 8.02 0.04841 266 165.67 <.001fl 2 3 8.2867 0.04841 266 171.17 <.0001 I 1 3 906 7.8067 0.04618 271 169.05 <.00HI 2 3 8.0267 0.04618 271 173.81 <.0001 I 1 3 908 7.4167 0.04687 269 158.25 mod 2 3 7.66 0.04687 269 163.44 <.0001 I 1 3 910 7.0467 0.05849 272 120.47 «000] 2 3 7.2567 0.05849 272 124.06 <.0001 I 1 3 912 7.19 0.04547 274 158.14 <.0005I 2 3 7.2867 0.04547 274 160.26 <.0001 I1 3 914 7.3767 0.0438 284 168.4 <.0001I I;2__Lj__ 7.3133 0.0438 284 166.95 «0004 1 3 916 7.43 0.0447 290 166.22 <.0001 2 3 7.3167 0.0447 290 163.68 <.0001 I 1 3 918 7.4433 0.03992 283 186.46 <.0007I 2 3 7.2867 0.03992 283 182.54 <.0001 I1 3 920 7.4467 0.04942 274 150.67 <.0001 2 3 7.2667 0.04942 274 147.03 <.0001 I1 3 922 7.26 0.03724 260 194.96 mod 2 3 7.0367 0.03724 260 188.96 <.0001 I1 3 924 6.8867 0.03611 252 190.69 <.0001I 2 3 6.7833 0.03611 252 187.83 <.0001 1 3 926 6.5333 0.03879 248 168.43 <.0001I 2 3 6.5867 0.03879 248 169.8 <.0001 1 3 928 6.3667 0.04469 252 142.47 <.0001I 2 3 6.4867 0.04469 252 145.16 <.0001 I1 3 930 6.1167 0.05986 234 102.19 <.0001I I 2 3 6.35 0.05986 234 106.08 <0001I 266 Table 94: Theoretical Read Range Forward (m) Location 3 Comparisons sce fre lsce Estimate StdErr DF tValue Probt Adjust Ade I 1 900 2 0.03 0.08099 230 0.37 0.7114 Tukey-Kramer 1 I 1 902 2 -0.08667 0.06243 256 -1 .39 0.1663 Tukey-Kramer 1 1 904 2 -0.2667 0.06846 266 -3.9 0.0001 Tukjy-Kramer 0.1901 1 906 2 -0.22 0.06531 271 -3.37 0.0009 Tukey-Kramer 0.6179 1 908 2 -0.2433 0.06628 269 -3.67 0.0003 Tukey-Kramer 0.3431 1 910 2 -0.21 0.08272 272 -2.54 0.0117 Tukey-Kramer 0.9969 1 912 2 -0.09667 0.0643 274 -1 .5 0.1339 Tukey-Kramer 1 1 914 2 0.06333 0.06195 284 1.02 0.3075 Tukey—Kramer 1 1 916 2 0.1 133 0.06322 290 1.79 0.074 Tukey-Kramer 1 1 918 2 0.1567 0.05645 283 2.78 0.0059 Tukey-Kramer 0.9745 1 920 2 0.18 0.06989 274 2.58 0.0105 Tukey-Kramer 0.9955 1 922 2 0.2233 0.05266 260 4.24 <.0001 Tukey-Kramer 0.061TI 1 924 2 0.1033 0.05107 252 2.02 0.0441 Tukey-Kramer 1 I 1 926 2 -0.05333 0.05486 248 -0.97 0.3319 Tukey-Kramer 1 1 928 2 -0.12 0.0632 252 -1.9 0.0587 Tukey-Kramer 1 1 930 2 -0.2333 0.08465 234 -2.76 0.0063 Tukey—Kramer 0.9779 267 3.5.. 35:69.... .m> AEmE 530a. .mfiuomxomm 03.032 - m 5:30.. ”3 2:9“. N 8.8.1.1 H «81 3...): 35:5: 0mm wNm mNm .NNm NNm on mam :3 3m Nam on mom mom 3m Nom com va 1 - BK: - ms: j .'. . 1 <1” 1 7‘. 7 .4 1 171711711 1T .. -... ‘ 41 1 A. - H H? - - 1. -- m? - 1L1 1g 1 - Wm: A - - -. 41+ 34 7.11 1.1 1.2-11.1.31. 1.1? 1.1.1 1.2-1-1301. 1.. 11 1.1. 1.-- v1.. 1L1, 14111». 11+.1 1r 11+l119I1L1411I1111T311+I1 -|1+11L. 1411f|1+11111k11 111411 I m.w¢ 1, . A . _. 1 ..11 .- 11H a11_ .+1. .11? 41 N. +1411L1 .- . , p . _ . . .-. . .1“1 1 1 11 1 .1 - e141... m 5:30.. (map) JaMOd Aeneas-noes amjosqv 268 Table 95: Absolute Backscatter Power (dBm) Location 3 Estimations fre Estimate swEn DF tValue Probt 900 47.8967 0.1075 215 445.39 .1 <.0001 47.7467 0.1075 215 444 <.00 47.9633 0.08893 248 539.32 CO _3_5 <.00 902 47.95 0.08893 248 539.17 <.0001 1— 904 48.0267 0.1069 263 449.4 3 * 48.1567 0.1069 263 450.62 906 48.1733 0.108 263 446.16 48.3467 0.108 263 447.77 908 48.4 0.09665 248 500.76 'A_/\.A.A.A 00000 00000 00 A—A OO _3_: * 48.5067 0.09665 248 501.86 <.00 910 48.68 0.1201 237 405.19 A O O 39. 48.6767 0.1201 237 405.16 <.00 48.5933 0.09783 242 496.69 CO 4.; — 912 48.4433 0.09783 242 495.16 dN—‘N-‘N-‘N—‘N-‘N 48.49 0.1226 254 395.65 914 916 48.21 48.47 0.1226 0.129 254 393.37 AAA_/\ 0000 0000 so _A-A 251 375.64 <.00 48.1533 0.129 251 373.19 <.00 918 48.5667 0.1203 246 403.78 0000 4.3" <00 —8 48.23 0.1203 246 400.98 <.0001 920 48.64 0.1382 258 351.84 <.0001 48.3067 0.1382 258 349.43 <.0001 1:27:13]: 48.4933 0.09647 271 502.7 <.0001 922 48.2267 0.09647 271 499.93 <.0001 48.3533 0.0857 282 564.21 <.0001 924 48.1467 0.0857 282 561.8 <.0001 AN—LN —— 926 48.23 0.08378 287 575.67 <.0001 _3 MAIN 928 48.1667 48.11 0.09099 0.08378 287 293 574.92 528.74 <.0001 <.0001 N 930 0.09099 48.24 _ 48.0133 0.1227 266 29; 530.17 391.33 <.0001 <.0001 48.3667 0.1227 266 394.21 <.0001 I 269 Table 96: Absolute Backscatter Power (dBm) Location 3 Comparisons StdErr DF 0.1521 215 0.1258 248 0.1511 263 0.1527 263 0.1367 248 0.1699 237 Probt Ad A 0.3251 0.9157 0.3905 0.2573 0.4359 0.9844 0. tValue P 0.99 0.11 -0.86 -1.14 -0.78 0.02 sce Estimate 0.15 0.01333 -0.13 -0.1733 -0.1067 0.003333 sec fre 900 902 904 906 908 91 0 —l Tuk 912 914 916 918 920 922 924 0.15 0.28 0.3167 0.3367 0.3333 0.2667 0.2067 0.1384 0.1733 0.1825 0.1701 0.1955 0.1364 0.1212 242 254 251 246 258 271 282 1.08 1.62 1.74 1.98 1.7 1.95 1.71 0.2794 0.1074 0.0839 0.0489 0.0894 0.0516 0.0893 926 928 930 0.06333 -0.13 -0.3533 0.1185 0.1287 0.1735 287 293 266 0.53 -1.01 -2.04 0.5934 0.3132 0.0427 NNNNNNNNNNNNNNNN 44444—54444444444 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -l-l-l-l-l-l-l-l-l-l-l-l-l-l 270 3...... 35:5: .m> E53 530“. 5:300”. 03.022 . m 5:30... "no 2:2". 3...): 35:5: 3.. 8m 0mm wNm wNm eNm NNm ONm mam mam 3m Nam on mom mom com Nmumiui m 5:30.. (map) JaMOd panjaaau atnjosqv 271 Table 97: Absolute Received Power (dBm) Location 3 Estimations fre Estimate Std Err DF tValue 82.4267 1 .3084 2157 63 Prob4 <.0001 900 64.7667 1.3084 2157 49.5 <.0001 902 82.4267 1 .3084 2157 63 <.0001 57.3 1 .3084 2157 43.8 <.0001 904 82.42 1 .3084 2157 63 <.0001 _— 49.5333 1 .3084 2157 37.86 <.000 906 82.4233 1 .3084 2157 63 .21: <.000 43.9333 1.3084 2157 33.58 <.0001 dN-‘N N 908 82.4233 1 .3084 2157 63 <.0001 41.2 1 .3084 2157 31 .49 <.0001 82.4333 1 .3084 2157 63.01 <.0001 910 38.2667 1 .3084 2157 29.25 <.0001 82.3833 1 .3084 2157 62.97 EL <.00 912 38.5667 1 .3084 2157 29.48 <.00 ——*_7 AN—tN-A dN 914 82.3467 1 .3084 2157 62.94 0 _3_; <.000 916 38.4667 1 .3084 2157 39.4 <.0001 82.32 1 .3084 2157 62.92 <.0001 —I— 39.3 1 .3084 2157 30.04 <.0001 918 82.3267 1 .3084 2157 62.92 + <.0001 40.3667 1 .3084 2157 30.85 ANA” 920 1: 82.3367 1 .3084 2157 62.93 <.0001 1 — O 41.8 1 .3084 2157 31 .95 O 82.37 1 .3084 2157 62.96 <00 4 1 O 922 40.9333 1.3084 2157 31 .29 82.41 1 .3084 2157 62.99 <.00 <.0001I <.0001 924 39.8 1.3084 2157 30.42 AN—lN—t 926 82.44 1 .3084 2157 63.01 <.00 <.0001 I <.0001 928 _3 MAIN 44.3333 82.4367 1 .3084 1 .3084 2157 2157 33.88 63.01 <.0001_I <.0001 930 F N 54.2667 82.44 1 .3084 — 1 .3084 2157 _ 2157 41 .48 63.01 <.0011I <.0001 63.7667 1.3084 2157 48.74 <.0001I 272 Table 98: Absolute Received Power (dBm) Location 3 Comparisons sce fre sce Estimate StdErr DF tValue Probt Ad ust AdP _L .A—k—L—h—L—L—L—L—L—A—LA—k—L—k 900 902 904 906 908 910 912 91.4 916 918 920 922 924 926 928 930 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 17.66 25.1267 32.8867 38.49 41.2233 44.1667 43.8167 43.88 43.02 41.96 40.5367 41.4367 42.61 38.1067 28.17 18.6733 18503 18503 18503 18503 18503 18503 1.8503 18503 1.8503 1.8503 18503 18503 18503 1.8503 1.8503 18503 2157 2157 2157 2157 2157 2157 2157 2157 2157 2157 2157 2157 2157 2157 2157 2157 273 9.54 13.58 17.77 20.8 22.28 23.87 23.68 23.72 23.25 22.68 21.91 22.39 23.03 20.59 15.22 10.09 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 -Kramer <.0001 <.0001 <.0001 <.0001 <.0001- <.0001 I .0001 1 .A _A _A .A .A_ .A .A A‘ 3.5: 35:00.... .m> AEcmmE mom 5.00 03.002 - m 5:003 no: 2:2". N oumI-I H mumIOl 0mm wNm mNm .VNm NNm ONm 3.5.. 35:5: me mHm va m 5:30.. NHm on mom mom 3m New com NH mKH wH m.wH mH de oN mdN (wbsapl 538123130 amlosqv 274 Table 99: Absolute Delta RCS (stqm) Location 3 Estimations sce Ioc fre Estimate Std Err DF tValue Probt 1 3 900 17.48 0.06879 241 254.1 <.0001 2 3 17.31 0.06879 241 251.63 <.0001 1 3 902 17.79 0.05175 284 343.74 <.0001 2 3 17.66 0.05175 284 341.23 <.0001 1 3 904 18.08 0.05928 300 304.99 <.0001 2 3 17.9867 0.05928 300 303.42 <.0001 1 3 906 18.5133 0.06073 298 304.85 <.0001 2 3 18.4567 0.06073 298 303.91 <.0001 1 3 9 0 8 19.1367 0.05707 275 335.32 <.0001 2 3 19.05 0.05707 275 333.8 <.0001 1 3 910 19.72 0.08024 250 245.78 <.0001 2 3 19.63 0.08024 250 244.66 <.0001 1 3 912 19.49 0.06471 243 301.17 <.0001 2 3 19.38 0.06471 243 299.47 <.0001 1 3 914 19.2333 0.08271 267 232.53 <.0001 2 3 19.1133 0.08271 267 231.08 <.0001 1 3 916 19.15 0.08333 271 229.8 <.0001 2 3 19.0067 0.08333 271 228.08 <.0001 1 3 918 19.24 0.07213 246 266.75 <.0001 2 3 19.11 0.07213 246 264.95 <.0001 1 3 920 19.31 0.07515 249 256.95 <.0001 2 3 19.2567 0.07515 249 256.24 <.0001 1 3 922 19.4933 0.05087 278 383.18 <.0001 2 3 19.44 0.05087 278 382.13 <.0001 1 3 924 19.7033 0.05668 282 347.6 <.0001 2 3 19.6333 0.05668 282 346.36 <.0001 1 3 926 19.9067 0.05673 250 350.91 <.0001 2 3 19.8467 0.05673 250 349.86 <.0001 1 3 928 20.1167 0.05403 219 372.34 <.0001 2 3 20.1 0.05403 219 372.03 <.0001 1 3 930 20.35 0.07357 200 276.6 <.0001 2 3 20.39 0.07357 200 277.15 <.0001 275 306 —L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 100: Absolute Delta RCS (stqm) Location 3 Comparisons fre 900 902 904 906 908 91 0 91 2 914 91 6 91 8 920 922 924 926 928 930 sce Estimate NNNNNNNNNNNNNNNN 0.17 0.13 0.09333 0.05667 0.08667 0.09 0.11 0.12 0.1433 0.13 0.05333 0.05333 0.07 0.06 0.01667 -0.04 StdErr 0.09728 0.07319 0.08383 0.08589 0.08071 0.1135 0.09152 0.117 0.1178 0.102 0.1063 0.07195 0.08016 0.08023 0.07641 0.104 OF 241 284 300 298 275 250 243 267 271 246 249 278 282 250 219 200 276 tValue 1.75 1.78 1.11 0.66 1.07 0.79 1.2 1.03 1.22 1.27 0.5 0.74 0.87 0.75 0.22 -0.38 Probt 0.0818 0.0768 0.2665 0.5099 0.2839 0.4284 0.2306 0.3059 0.225 0.2037 0.6162 0.4591 0.3833 0.4552 0.8275 0.701 1 T Tu Tu Tu Tu Tu Tu Tu Tu Tu Tu Tu T Tu Tu T Ad A ‘U firs: 35:5: .0> AEmE 0053”. m0... :0 530: 05.002 . m .5503 ”no 0.5:: 3...): 35:5: 0mm wNm mNm .VNm NNm ONm me mHm va NHm on mom mom 3m Nom N manual H mumlol m 5:05.. com méH 06H fivH wéH méH mH H.mH N.mH m.mH v.mH m.mH m.mH h.mH w.mH m.mH (map) auanau Se; 00 “mod aznjosqv 277 Table 101: Absolute Power on Tag Reverse (dBm) Location 3 Estimations 278 Ioc fre Estimate Std Err DF tValue 1 3 900 14.92 0.1007 226 148.15 2 3 14.7733 0.1007 226 146.69 1 3 902 14.97 0.08459 262 176.97 2 3 14.9633 0.08459 262 176.9 1 3 904 15.02 0.1024 276 146.65 2 3 15.1567 0.1024 276 147.98 <.0001 1 3 906 15.1633 0.1052 274 144.12 <.0001 2 3 1534- 0.1052 274 145.8 <.0001 1 3 908 15.4167 0.09129 257 168.88 <.0001 I 2 3 _ 15.4667 0.091g 257 169.43 <.0001 1 3 910 15.6567 0.1161 247 134.91 <.0001 2 3 15.6533 0.1161 247 134.88 <.0001 __- 1 3 912 15.55 0.09585 250 162.23 <.0001 2 3 15.4133 0.09585 250 160.81 <.0001 1 3 914 15.43 0.1161 266 132.93 <.0001 2 3 15.1767 0.1161 266 130.74 <.0001 1 3 916 15.42 0.1181 267 130.59 <.0001 2 3 15.0867 0.1181 267 127.77 <.0001 1 3 918 15.49 0.1069 258 144.97 <.0001 2 3 15.1767 0.1069 258 142.04 <.0001 _i , 1 3 920 15.5667 0.1356 254 114.79 <.0001 2 3 15.26 0.1356 254 112.53 <.0001 1 3 922 15.4167 0.1028 254 149.98 <.0001 2 3 15.15 0.1028 254 147.38 <.0001 _—__ 1 3 924 15.25 0.09421 258 161.87 <.0001 2 3 15.0567 0.09421 258 159.82 <.0001 fi—_ _ 1 3 926 15.1067 0.09469 264 159.53 <.0001 2 3 15.0467 0.09469 264 158.9 <.0001 1 3 928 14.9767 0.09708 276 154.27 <.0001 2 3 15.1167 0.09708 155.72 3 14.8467 115.52 3 15.1933 0.1285 254 118.21 Table 102: Absolute Power on Tag Reverse (dBm) Location 3 Comparisons 8C9 A—A—L—k—L—h—L—L—A—l—L—L—L—k—L—L fre 900 902 904 906 908 910 912 914 916 918 920 922 924 926 928 930 sce Estimate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.1467 0.006667 -0.1367 -0.1767 -0.05 0.003333 0.1367 0.2533 0.3333 0.3133 0.3067 0.2667 0.1933 0.06 -0.14 -0.3467 StdErr 0.1424 0.1196 0.1448 0.1488 0.1291 0.1641 0.1356 0.1642 0.167 0.1511 0.1918 0.1454 0.1332 0.1339 0.1373 0.1818 OF 226 262 276 274 257 247 250 266 267 258 254 254 264 254 279 tValue 1.03 0.06 -0.94 -1.19 -0.39 0.02 1.01 1.54 2 2.07 1.6 1.83 1.45 0.45 -1.02 -1.91 Probt 0.3042 0.9556 0.3462 0.2361 0.6988 0.9838 0.3143 0.124 0.0469 0.0391 0.1111 0.0678 0.148 0.6545 0.3087 0.0576 Ad ust -Kramer A d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p fits: 3:252". 61.5 3.35”. 09.3. omom 303202.... . n cor-woo; "no 959.... N momlfll H mumIOI omm wmm mNm «Na NNm owm 3.5: 35:09.”. mam mum 3m m 6333 Nam on mom mom 3m Nom com man NN m.~N mm m.m~ em mém (an) enema afluea peeu [eouajoeql 280 Table 103: Theoretical Read Range Reverse (m) Location 3 Estimations sce Ioc fre Estimate StdErr DF tValue Probt 1 3 900 23.8333 0.2375 227 100.34 <.0001 2 3 24.2967 0.2375 227 102.29 <.0001 1 3 902 23.7 0.2029 264 116.8 <.0001 2 3 23.7267 0.2029 264 116.94 <.0001 1 3 904 23.5333 0.2605 278 90.34 <.0001 2 3 23.1767 0.2605 278 88.97 <.0001 1 3 906 23.1133 0.2628 276 87.97 <.0001 2 3 22.63 0.2628 276 86.13 <.0001 1 3 908 22.4 0.2238 257 100.09 <.0001 2 3 22.23 0.2238 257 99.33 <.0001 1 3 910 21.72 0.2846 243 76.32 <.0001 2 3 21.7733 0.2846 243 76.51 <.0001 1 3 912 21.9267 0.2423 247 90.51 <.0001 2 3 22.3533 0.2423 247 92.27 <.0001 1 3 914 22.18 0.3164 261 70.1 <.0001 2 3 22.9067 0.3164 261 72.39 <.0001 1 3 916 22.16 0.3331 257 66.53 <.ooo14 2 3 23.0567 0.3331 257 69.22 <.0001 1 3 918 21.9033 0.2761 257 79.33 <.0001 2 3 22.7767 0.2761 257 82.49 <.0001 1 3 920 21.68 0.3315 275 65.39 <.0001 2 3 22.51 0.3315 275 67.89 <.0001 1 3 922 22.04 0.2409 281 91.48 <.0001 2 3 22.7567 0.2409 281 94.46 <.0001 1 3 924 22.4033 0.2227 281 100.61 <.0001 2 3 22.9333 0.2227 281 102.99 <.0001 1 3 926 22.7233 0.2202 278 103.19 <.0001I 2 3 22.94 0.2202 278 104.17 <.0001I 1 3 928 23.0367 0.2607 275 88.36 <.0001 2 3 22.6833 0.2607 275 87.01 <.0001 1 3 930 23.3 0.3552 246 65.6 <.0001 2 3 22.4333 0.3552 246 63.16 <.0001 281 Table 104: Theoretical Read Range Reverse (m) Location 3 Comparisons 282 _Lr2__sce Estimate StdErr DF tValue Probt_ Adjust Ad'P 900 2 -0.4633 0.3359 227 -1.38 0.1691 Tukey-Kramer 1 902 _2_- -0.02667 0.2869 264 -0.09 0.926 Tukey-Kramer 1 904 2 0.3567 0.3684 278 0.97 0.3338 Tukey-Kramer 1 906 2 0.4833 0.3716 276 1 .3 0.1944 Tukey-Kramer 1 908 2 0.17 0.3165 257 0.54! 0.5916 Tukey-Kramer 1 910 2 -0.05333 0.4025 243 -0.13 0.8947 Tukey-Kramer 1 fl! 2 -0.4267 0.3426 247 -1 .25 0.21£_T_ukey-Kramer 1 914 2 -0.7267 0.4475 261 -1.62 0.1056 Tuke -Kramer 1 916 2 -0.8967 0.471 257 -1 .9 0.0581 Tukey-Kramer 1 918 2 -0.8733 0.3905 257 -2.24 0.0262 Tuke -Kramer 0.9999 920 24L -0.83 0.4689 275 -1 .77 0.0778 Tukey-Kramer 1 922 2 -0.7167 0.3407 281 -2.1 0.0363 Tukey-Kramer 1 924 -2 -0.53 0.3149 281 -1 .68 0.0935 Tukex-Kramer 1 926 2 -0.2167 0.31 14 272 -0.7 0.48_7_2_II Tukez—Kramer 1 _928_ 2 0.3533 0.3687 £7.5- 0.96 0.3387 Tuke -Kramer 1 _9_30 2 I 0.8667 i 0.5023 a 1.73 _0_.0857 I Tukez—Kramer 1 References 3130 Sovereign Dr, Lansing, MI, 48911. Google Map (2010). Retrieved from http://www.antennasearch.com/sitestart.asp?sourcepaqename=reportviewer2 8prevsessionidnum=499137294&prevordernum=18previtemnum=18sectionn ame=txreview8pagename=txreview8paqenum=1&cmdrequest=paqehandler 4.1.2 Interference Patterns. (2003). iEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 khz-300 GHz. New York, NY: The Institute of Electrical and Electronics Engineers, Inc. Adamy, D. (2008). Communication Jamming. Journal of Electronic Defense, 31(12), 48-49. Bix, L., Sansgiry, 8., Clarke, R., Cardoso, F., & Shringarpure, G. (2004). Retailers' Tagging Practices: A Potential Liability? Packaging Technology and Science, 1 7, 3-1 1 . Brown, Mark, Patadia, Sam, Dua, Sanjiv, & Meyers, Michael. (2007). Mike Meyers' RFID-I- Radio Frequency Identification Certification Passport. McGraw-Hill Osborne Media. Clarke, R., Tazelaar, J., Twede, D., & Boyer, K. (2006, February 1). Four Steps to Making RF ID Work for You. Harvard Business Review Clarke, R., Twede, D., Tazelaar, J., & Boyer, K. (2005). Radio Frequency Identification (RFID) Performance: The Effect of Tag Orientation and Package Contents. Packaging Technology and Science, 19, 45-54. East Lansing, MI 48824-1223. Google Map, (2010). Retrieved from http://www.antennasearch.com/sitestart.asp?sourcepaqename=reportviewer2 &prevsessionidnum=499137294&prevordernum=1&previtemnum=1§ionn ame=txreview&paqename=txreview8paqenum=1&cmdrequest=paqehandler Finkenzeller, K. (2000). RFID Handbook: Radio-Frequency Identification Fundamentals and Applications. West Sussex, England: Wiley. Garfinkel, S., & Rosenberg, B. (2006). RFID: Applications, Security, and Privacy. Upper Saddle River, NJ: Pearson Education, Inc. Glover, Bill, & Bhatt, Himanshu. (2006). RFID Essentials. O'Reilly. Hallas, J. (2009). A Quick Look at Radio Frequency Interference. General Interest Module, 93(5), 61 -62. 283 Hickman, I. (1999). Practical Radio Frequency Handbook Second Edition. Wobum, MA: Newnes. Kanellos, M. (2003, April 23). Intel, Sap Shop Store of the Future. Retrieved from http://news.cnet.com/2100-1006-998038.html Kim, D.Y., Yook, J.G., Yoon, H.G., & Jang, B.J. (2008). Interference Analysis of UHF RFID Systems. Progress in Electromagnetics Research B, 4, 115- 126. Kim, D.Y., Yoon, H.G., Jang, B.J., & Yook, JG. (2009). Effects of Reader-to- Reader Interference on the UHF RFID Interrogation Range. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 56(7), 2337-2346. Kleist, Robert, Jarvis, Brad, & Sakai, David. (2005). RFID Labeling. Greenleaf Book Group Llc. Leong, K., Ng, M., 8. Cole, P. (2005). The Reader Collision Problem in RFID Systems. Wireless Communications Proceedings, 658-661. Lin, H., Lin, C., & Yuan, S. (2009). Using RFID Guiding Systems to Enhance User Experience. The Electronic Library, 27(2), 319-330. Marrocco, G., Di Giampaolo, E., & Aliberti, R. (2009, December). Estimation of UHF RFID Reading Regions in Real Environment. IEEE Antennas and Propagation Magazine, 51(6), 44-57. Mayordomo, I., Berenguer, R., Garcia-Alonso, A., Fernandez, l., & Gutierrez, I. (2009). Design and Implementation of a Long-Range RFID Reader for Passive Transponders. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1283-1290. Mayordomo, I., Ubarretxena, A., Valderas, D., Berenguer, R., & Gutierrez, l. (2007). Design and Analysis of a Complete RFID System in the UHF Band Focused on the Backscattering Communication and Reader Architecture. http://www.rfid- systech .eu/2007061 2_1 A_1 440_Mayordomo_AnalysisCompleteUHF System. pdf McCarthy, U., Ayalew, G., Bulter, F., McDonnell, K., & Ward, S. (2009). The Effects of Item Composition, Tag Inlay Design, Reader Antenna Polarization, Power and Transponder Orientation on the Dynamic Coupling Efficiency of Backscatter Ultra-High Frequency Radio Frequency Identification. Packaging Technology and Science, (22), 241-248. 284 Onderko, J. (Ed.). (2004). Radio Frequency Identification Transponder Performance on Refrigerated and Frozen Beef Loin Muscle Package. East Lansing, MI Ramachandran, K., & Tsokos, C. (2009). Testing the Assumptions for One- Way ANOVA. (2009). Mathematical Statistics with Applications. Burlington, MA: Elsevier Academic Press. Rao, K., Nikitin, P., & Lam, S. (2005). Antenna Design for UHF RFID Tags: A Review and a Practical Application. IEEE Antennas and Propagation Magazine, 53(12), 3870-3876. Rogers, J., & Plett, C. (2003). Radio Frequency Integrated Circuit Design. Norvvood, MA: Artech House, Inc. Sanghera, Paul. (2007). RFID+ Study Guide and Practice Exams. Syngress Publishing. Schuerger, J., & Garmatyuk, D. (2008). Deception Jamming Modeling in Radar Sensor Networks. Manuscript submitted for publication, Department of Physics, Department of Electrical and Computer Engineering, Miami University, Oxford, Ohio. Shameli, A., Safarian, A., Rofougaran, A., Rofougaran, M., & Castaneda, J, De Flaviis, F. (2008). A UHF Near-Field RFID System with Fully Integrated Transponder. IEEE Transactions on Microwave Theory and Techniques, 56(5), 1267-1277 Shirokov, I. (2009). The Multitag Microwave RFID System. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1362-1369. Singh, S.P., McCartney, M., Singh, J., & Clarke, R. (2007). RFID Research and Testing for Packages of Apparel, Consumer Goods and Fresh Produce in the Retail Distribution Environment. Packaging Technologies and Science, 21, 91-102. Sudo, T., Sasaki, H., Masuda, N., & Drewniak, J. (2004). Electromagnetic Interference (EMI) of System-on-Package (SOP). IEEE Transactions on Advance Packaging, 27(2), 304-314. Sweeney, P. (2007). CompTia RFID+ Study Guide. Indianapolis, IN: Wiley. Tagformance Measurement Software's Features. (2010). Retrieved from http:I/www.vovantic.com/index.php?trg=browse&id=109 285 Tazelaar, J. (Ed.). (2004). The Effect of Tag Orientation and Package Content on the Readability of Radio Frequency Identification (RFID) Transponders. East Lansing, MI Thomas, S., & McLain, D. (2009). Eliminating RF Interference in Healthcare Wireless Networks. Medical Design, 25-28. Top 25: Innovations. (2005, June 19). Retrieved from http://www.cnn.com/2005/TECH/01/03/cnn25.t0025.innovations/ Tuominen, J. (2009). Different Units of Tagformance Lite., Manual for Tagformance Measurement Unit. Wang, D., Wang, J., & Zhao, Y. (2006). A Novel Solution to the Reader Collision Problem in RFID System. Infonnally published manuscript, School of Electronics Engineering and Computer Science, Peking University, Beijing PR, China. Weisman, C. (2002). The Essential Guide to RF and Wireless. Upper Saddle River, NJ: Prentice Hall PTR. Xiao, Y., Yu, 8., Wu, K., Ni, 0., & Janecek, C., Nordstad, J. (2007). Radio Frequency Identification: Technologies, Applications, and Research Issues. Wireless Communications and Mobile Computing, 7, 457-472. 286 MICHIGAN STATE UNIVERSITY L I III III IIII 31293 III“ 3163 6719 .... I -' x. . I .. .. . ‘ I _ 2': - 3- ‘ '- ‘ . x _; .1 I l' . . ......... , 5 I ‘ 4... :1 ’ ‘ .‘ . . .' .a. " . . .... ". l.. , , _. ...... , 4_ ; ....... . .. r. .