
 



This is to certify that the

thesis entitled

Side-Information Enhanced Localized Puncturing for Rate-

Adaptive, Reliable and Stable Wireless Protocols

presented by

Ahmed Majeed Khan

has been accepted towards fulfillment

of the requirements for the

MS degree in Electrical Engineering
 

 

 

/: //
/////Major Profesrs/rs Signature

Awst 9, 2010

Date

 

MSU is an Affirmative Action/Equal Opportunity Employer

 

LIBRARY

Michigal LStam

University
   

-
.
-
.
-
.
-
.
-
.
n
.
-
,
-

-
.
-
.
-
.
-

.
.

.
.

.
.

.
l

.
A

.
.
-
-

.
.
-

-
-

-
-
-
~
-
u
.
-
o
-
-
-
-
»
-
v
-
-
-
-
-
.
—
.
-
-
-
-
-
-
-
.
-
.
-
-
—
-
-
-
.
-
c
-
.
—
.
—
-
-
-
—
—
-
-
—
-
-
—

-
-



 

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

      
5/08 KzlProilAccsPresIClRClDaleDue,indd



SIDE-INFORMATION ENHANCED LOCALIZED PUNCTURING FOR RATE-

ADAPTIVE, RELIABLE AND STABLE WIRELESS PROTOCOLS

Bv

Ahmed Majeed Khan

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Electrical Engineering

2010



ABSTRACT

SIDE-INFORMATION ENHANCED LOCALIZED PUNCTURING FOR RATE-ADAPTIVE,

RELIABLE AND STABLE WIRELESS PROTOCOLS

By

Ahmed Majeed Khan

Time varying wireless channels are inherently susceptible to more errors than classical

(wired) media due to their vulnerable nature. The errors which are not corrected by the

physical layer are called Residual Errors, and residual errors result in link layer packet

draps. Design of wireless protocols that exploits useful data, the data which was

received correctly, in a received corrupted packet can benefit network’s throughput

substantially. A common way to control errors depends on feedback from channel and

several previous works made use of Rate-Compatible Punctured Codes to adapt code

rate to channel conditions but none of these took into account the bursty nature of

wireless channels. The primary objective of this thesis is to fill this gap.

In our work we consider side-information enhanced localized puncturing to adapt the

rates of channel codes to cope with time-varying wireless channel conditions. To give

proof of our idea, we employ rate-adaptive hybrid framework in the domain of LDPC

codes and embed them in wireless networking protocols. To the best of our knowledge,

this is the first effort to enhance puncturing efficiency using side-formation from

PHY/MAC layer and perform the puncturing operation in a localized manner. The

proposed approach does not require any modification in subsequent layers, and it

achieves significant gains in throughput efficiency, while ensuring reliable and stable

transmission of data.
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Chapter 1 - Introduction

1.1- Motivation:

Despite the tremendous promise of computer networks, they suffer from errors and

losses in the presence of network congestion and transmission medium degradation.

This results in decreased end-to-end network bandwidth utilization. Wireless channels

are more prone to errors than wired media due to their highly time-varying nature. The

design considerations for the wireless networks differ substantially from the wired

media due to the increased error—rate. The designers of the wireless networks introduce

enhanced robustness at the physical (PHY) and MAC layers of the protocol stack in order

to cater for these errors. Some of these errors are not corrected by the physical layer,

called as Residual Errors, and such errors result in link layer packet drops. Traditional

network protocols like IEEE 802.11 ARQ schemes drop packets and request

retransmission even if a single bit is in error. This design strategy leads to the wastage of

useful data in the packet, the data which was received correctly. Design of wireless

protocols that exploits useful data in a received corrupted packet can benefit network’s

throughput substantially and can result in significant improvement of end-to-end

network utilization.

Some previous works like Hybrid ARQ I/ll (HARQ-l/ll) [38, 39] use some sort of error

correction to improve wireless networks bandwidth. In fact more recent works like

Automatic Code Embedding (ACE), Reliable and Stable (RASE), and ZIPTX [34, 40, 37]



exploit partial packet recovery to harness the power of useful data in a corrupted

packet. All of these works rely on some sort of error correction scheme and require

feedback from the receiver about channel conditions.

A common way to control errors is to rely on the Channel State Information, and uses it

to predict suitable code rate under a given channel condition. In this way, controlled

redundancy is added to data based on predicted channel conditions. So the worse the

channel conditions are, lesser is the code rate and vice versa. Several previous works

[29, 30, 31, 32, 33] used puncturing to adapt to the time-varying network conditions and

the resultant codes are called as rate-compatible punctured codes. leongseok et al. [36]

applied this idea to LDPC codes to find rate-compatible punctured LDPC codes with a

single decoder for ’mother’ and ’daughter’ codes. Puncturing can be viewed as an

erasure channel; hence, puncturing over a wireless channel leads to the reception of

hybrid erasure-error codes at the decoder end. But the above-mentioned works [29, 30,

31, 32, 33, 36] focus on inherent code properties to design channel codes, and do not

take into account the channel properties while designing puncturing patterns. In this

way, there is a room to design puncturing patterns, based on wireless channels

characteristics and inherent properties, to adapt channel code rates to time-varying

wireless channel conditions. The primary objective of this thesis is to fill this gap.

We define a channel to be in ’On’ (’Off’) state If packets transmitted through it

experience small (large) number of errors. Wireless channels are bursty in nature and a

channel in 'On’ (’Off’) state has higher probability of staying in ’On’ (’Off’) state than to



go into ’Off’ (’On’) state. In other words, wireless channels have memory such that next

state is dependent on previous state(s), which determines the depth of Markov (hidden

Markov) chains used to model them. So, if a channel is in ’Off’ state, it experiences

errors at all (bit/byte/packet) levels in a bursty fashion. We take into account this

inherent property of wireless channels to design puncturing patterns to adapt code

rates to cope with bursty channel errors. Furthermore, we rely on side-information in

the form of reliabilities of source symbols received from PHY/MAC layer to design these

puncturing patterns and the retransmission data. In more explicit words, this thesis

focuses on designing localized puncturing patterns for rate-adaptability of wireless

channel protocols to cope with vulnerable, error-prone, and time-varying wireless

channel conditions.

1.1- Research Problem:

In our work, we consider localized puncturing for channel codes, particularly focusing on

LDPC codes. We show that localized puncturing can lead to construction of rate-

adaptive hybrid erasure-error codes (RHCs), which in turn, can be used to adapt rate of

channel codes in network protocols to perform well in varying network conditions. To

the best of our knowledge, this is the first effort to enhance puncturing efficiency by

performing it in a localized manner, leading to RHCs, using side-formation from

PHY/MAC layer. To give proof of our idea, we employ rate-adaptive hybrid framework in

the domain of Low-Density Parity-check (LDPC) codes and embed them in wireless

networking protocols.



A discrete random process with the property that the next state depends only on the

current state is called as Markov Chain. The Markov property states that the conditional

probability distribution for the system at the next step, and in fact at all future steps,

given its current state depends only on the current state of the system, and not

additionally on the state of the system at previous steps. We define a channel to be in

’On’ (’Off’) state if packets transmitted through it experience small (large) number of

errors. Wireless channels are bursty in nature and a channel in ’On’ (’Off’) state has

higher probability of staying in ’On’ (’Off’) state than to go into ‘Off’ (’On’) state. In other

words, wireless channels have memory such that next state is dependent on previous

state(s), which determines the depth of Markov (hidden Markov) chains used to model

them. So, if a channel is in 'Off’ state, it experiences errors at all (bit/byte/packet) levels

in a bursty fashion. We take into account this inherent prOperty of wireless channels to

design puncturing patterns to adapt code rates to cope with bursty channel errors.

Furthermore, we rely on reliabilities of source symbols received from PHY/MAC layer to

design these puncturing patterns and the retransmission data.

In order to keep the discussion generic and not dependant on a particular

implementation or standard, we consider three rather abstract communication

schemes: 1) transmission over error/erasure channels, which represents the

Conventional Standard (CS) protocols, like IEEE Automatic Repeat Request (ARQ)

schemes; 2) transmission in the presence of a Forward Error-Correction (FEC) based

schemes, like Hybrid ARQ [38, 39] and more recent schemes like ZIPTX [37], Automatic

Code Embedding (ACE) [34], and Reliable and Stable (RASE) [40]; 3) Side-information



Enhanced (transmission in presence of both, erasures and errors,) using a Forward-Error

Correction scheme (SEFEC) like the proposed scheme, Puncturing for Rate Adaptability

of Reliable and Stable (PRAISE) Wireless Protocols.

The three communication schemes considered by us can be explained by considering

two generic aspects: 1) forward error correction; 2) feedback mechanism. Forward-error

correction part can simply be segregated into two categories consisting of presence or

absence of FEC. Feedback mechanism can have many variants, ranging from simple

binary feedback about reception of correct/false packet like in case of ARQ, to feedback

with flags requesting additional parity data for corrupted packets like in case of recent

protocols like ACE [34] and RASE [40]. So under these two aspects, the following

happens

1) CS: the conventional standard protocol contains no forward error correction and

requests the same packet even if a single bit is in error, example being

IEEE802.11 ARQ scheme. In IEEE802.11 ARQ protocol, error-detection

information (ED) bits are added to data to be transmitted (such as cyclic

redundancy check, CRC) and retransmissions are solution for losses. If a

corrupted packet is received, it is discarded without regard to the number and

location of errors. This methodology ensures that the packet would eventually

be recovered. However, this approach leads to a great deal of throughput

degradation as even a single bit error leads to packet drops resulting in discard

of a large number of correctly received data bits, ending up ’wasting’ a lot of



2)

useful data. Thus, network utilization deteriorates rapidly as channel bit error

rate (BER) increases.

FEC: FEC based protocols, which represent schemes like IEEE802.11 Hybrid ARQ

schemes [38, 39] and more recent schemes like ZIPTX [37], ACE [34) and RASE

[40], contain some sort of forward error correction and request additional parity

data in case of reception of a corrupted packet. Hybrid ARQ (HARQ) protocols

are proposed as an alternative to CS. In HARQ protocols, forward error

correction (FEC) bits are also added to the existing Error Detection (ED) bits, such

as Reed-Solomon code, low-parity density-check code or Turbo code. In this way,

these schemes reduce the number of re-transmissions as required in case of ARQ

by making use of incremental channel codes. However, both ARQ and HARQ

based approaches do not address the throughput stability issues in varying

channel conditions, and thus lead to a great deal of throughput inefficiency.

Other protocols like ZIPTX and ACE address the issues of reliability and/or

stability in varying channel conditions but these fall short on many fronts. ZIPTX,

though provides a working system, ignores any aspect of stability. ACE takes into

account both the issues of reliability and stability by embedding channel codes

using well-defined code rates but ACE, i) lacks a practical demonstration system,

ii) do not consider rate—adaptability to address throughput efficiency in changing

network conditions.



3) SEFEC: SEFEC is an alternative to above schemes. Similar to FEC based schemes,

an SEFEC scheme requests additional parity using feedback flags, but the

requested parity data is localized and request depends upon side-information

received from physical (MAC) and link layers. 50 SEFEC is a cross-layer design

which extracts beliefs associated with received data either at MAC/physical

layer, or at link layer and decides to requests additional parity data for a

particular subset of code depending on values of beliefs for a particular subset of

code. Some previous works [35, 41, 42] have proposed cross-layer designs for

multimedia applications to overcome throughput degradations and performance

limitations imposed by traditional protocols. An example of such a work is UDP

Lite [41], which relies on the error-resilient nature of multimedia content and

makes adjustments to the protocol stack at the transport and the link layers in

order to improve the bandwidth utilization. A major drawback of the existing

cross-layer protocols is that their implementations require key modifications in

transport and application layers. However the proposed cross-layer SEFEC design

requires no modification in the subsequent layers since a single decoder is

required for ’mother’ and ’daughter’ codes and side-information used to request

parity data is received from physical (MAC) and link layers. Therefore, and unlike

receivers of FEC- based schemes, SEFEC receiver has RHCs, is rate-adaptive

depending on varying channel conditions, distinguishes between erasures and

errors in a received packet, and does not require any modification in transport

and application layers.



Suppose we have k data-bits to be transmitted over a wireless channel and we make it

bit codeword with those k bits such that rate of the code is:

r= ; k<n ......... (1.1)

It has been a tradition to define LDPC codes in terms of its degree-distribution pair

(A(x),p(x)) following [11] such that:

61:

1(x) = Lad—1 ......... (1.2)

Z

dz

p(x) = Zp,x“1 ......... (1.3)

i=2

Puncturing increases code rate as we decrease n for fixed k bits while doing puncturing.

Since the decoder for lowest rate ’mother’ code is compatible with higher rate

’daughter’ codes, no additional complexity is required for puncturing. We define pm) to

be the total puncturing fraction following [36],

(0) the number of punctured variable nodes

p z: 

the total number of variable nodes """""" (1'5)



Then rate of ’daughter’ code, r(l,p)”, is related to the rate of base/’mother’ code as:

r01. p)
1-—p(63 ......... (1.6)r01. pl” =

Several recent works tried to find bounds on code rates for reliable communication.

Some recent efforts like ACE [34] and RASE [40] devel0ped a framework for reliable and

stable communication with guarantees on sustainable flows. If e,- is BSC channel’s error

(cross-over) probability and am is the error-correction capability of a code, then ACE

determines the code rate to be the following for reliable communication:

R=1-— ......... (1.7)

So if a channel is in ‘good’ state, we can increase the code rate and still have a reliable

and stable communication with same guarantees on sustainable flows. So for a

’daughter’ code with error-correction capability ad, we determine puncturing fraction

as:

At the encoder end, we divided n-bit codeword into c chunks or partitions in a manner

pre-determined by encoder and decoder. There are reliabilities associated with each

variable bit as data is received at the decoder. Belief Propagation algorithm identifies I

partitions of the lowest reliability and requests additional parity data for those I



partitions. Please note that we need f = [1092 (Di feedback bits to identify I out of c

chunks of lowest reliability. Based on this description, the flow chart of the proposed

scheme can be shown as in figure I-l below:
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The basic idea is as follows: suppose a ’mother’ code is designed with rate, r(/l, p), with

highest redundancy and containing c partitions. This code, with the largest number of

parity bits, can be used in the worst channel condition. We do puncturing determined

by channel error probability a, to transmit a ’daughter'icode with error-correction

capability ad. If decoding fails, decoder identifies l partitions of lowest reliability and

requests parity data for those I partitions using f additional feedback bits. Encoder

encodes additional parity bits with new packet and transmitter transmits that. This

process continues till whole data is successfully received and decoded.

So, our contributions can be summarized as follows:

1) We present new design architecture for rate adaptability of wireless protocols

using side-information enhanced localized puncturing to cater for corrupted

packets received in time-varying wireless channel conditions. This approach does

not require any modification in subsequent layers, and it achieves significant

gains in throughput efficiency, while ensuring reliable and stable transmission of

data.

2) GNU Radio is an open-source, free software toolkit for deploying Software

Defined Radio (SDR) based communication systems and Universal Software

Radio Peripheral (USRP) is its RF front-end. We use GNU-USRP based platform to

evaluate real-time wireless channel conditions using real-time traffic data, and

carry out comparative performance analysis of PRAISE and other link-layer

11



protocols by implementing and testing these over the GNU-USRP based

platform.

1.2- Thesis Organization:

Rest of the document is arranged as follows. Chapter 2 provides essential background

information on LDPC codes and channel types under consideration. Chapter 3 begins

with the code design aspects that we took into account to propose rate-adaptive codes

using localized puncturing, and continues with the discussion of designing puncturing

fractions for rate-adaptability of channel codes in time-varying channel conditions.

Chapter 4 provides the details of the channel model to develop the proposed scheme.

Chapter 5 begins with the discussion of Software-Defined Radios (SDRs) and explains

GNU-USRP based implementation of an SDR to be used in our work. It also provides

information about our experimental setup and our motivation to use GNU-USRP

platform. Chapter 6 presents the analysis on the element of burstiness in collected

traces, and in Chapter 7, we present results, conclusions and future directions.

12



Chapter 2 - Background

In this chapter we provide necessary background information on LDPC codes,

puncturing, residual errors and channel types under consideration.

2.1- LDPC Codes:

A low-density parity-check code (LDPC code) is a linear error correcting code and is

constructed using a sparse bipartite graph. LDPC codes are also known as Gallager

codes, in honor of Robert G. Gallager, who developed the LDPC concept in his doctoral

dissertation at MIT in 1960 [2]. LDPC codes are capacity-approaching codes, which

means that practical constructions exist that allow the noise threshold to be set very

close (or even arbitrarily close on the BEC) to the theoretical maximum (the Shannon

limit) for a symmetric memory-less channel. The noise threshold defines an upper

bound for the channel noise up to which the probability of lost information can be made

as small as desired. Using iterative belief propagation techniques, LDPC codes can be

decoded in time linear to their block length.

2.1.1- Encoding of LDPC codes:

LDPC codes are linear codes, and can be represented in the following two ways. First

way is the graph representation. Suppose a bipartite graph Chas n left nodes and r

right nodes. The graph G can give rise to a linear code of block length n and dimension

at least (it — r) if the n coordinates of the code-words are associated with the it

message nodes. Here, the left nodes are called as Message Nodes while the right nodes

are called as Check Nodes. The code-words are those vectors (C1,C2, ...,Cn) such that

13



for all check nodes the sum of the neighboring positions among the message nodes is

zero.

Another way of looking into the representation of LDPC codes is the matrix

representation. Suppose H is a binary (r * n) matrix in which the entry (i;j) is 1 if and

only if the 1"“ check node is connected to the jth message node in the corresponding

graph. So in this case, the LDPC code defined by the graph is the set of vector

C = (C1, C2, ...,Cn) such that ( H . CT = 0). In this case, the matrix H is called the Parity

Check Matrix for the code. Conversely speaking, any binary (r * n) matrix gives rise to a

bipartite graph between it message and r check nodes, and the null space of H defines

the code associated to this graph.

Many specific constructions can be encoded in time approximately or exactly linear in

the code size. For example, Repeat-Accumulate (RA) or serial-repeat-accumulate codes

have an explicit linear-time encoding method. For LDPC codes design, the following

approaches are noteworthy:

o The original regular LDPC codes due to Gallager with an H matrix [2]

o MacKay Codes with sparse H matrices [21, 22]

o Irregular LDPC codes by Richardson et al. [11] and Ruby et al. [3]

0 Finite Geometry Codes [20, 23]

0 Repeat Accumulate (RA) by D. Divalsar et al. [24]

o Irregular Repeat Accumulate (IRA) by H. Jin et al. [25]

0 Extended Irregular Repeat Accumulate (eIRA) by Yang and Ryan [5, 6, 7]
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0 Array Codes by Fan [26, 27] and Eleftheriou [9]

o Combinatorial LDPC Codes [13, 14, 18, 19, 20]

2.1.2- Decoding of LDPC Codes:

LDPC codes are often decoded using some type of iterative message-passing decoding

algorithms which are iterative in nature. An example of such an algorithm is Belief

Propagation (BP), and many other message-passing algorithms can be viewed as

approximations to BP. The reason for their name is that at each round of the algorithm,

messages are passed from message nodes to check nodes, and from check nodes back

to message nodes. The messages from a check node to message nodes are computed

based on the observed value of the check node and some of the messages passed from

the neighboring message nodes to that check node. It is important to note that the

message that is sent from a check node 6 to a message node 12 must not take into

account the message sent in the previous round from v to c. The same is true for

messages passed from message nodes to check nodes.

One important and the most commonly used subclass of message passing algorithms is

the Belief Propagation (BP) Algorithm. This algorithm is present in Gallager's work [2],

and it is also used in the Artificial Intelligence community [10]. In BP, the messages

passed along the edges in this algorithm are probabilities, or beliefs. So specifically, the

message passed from a message node v to a check node c is the conditional probability

that v has a certain value, given the observed value of that message node, and all the

values communicated to v in the prior round from check nodes incident to 12 other than
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c. Similarly, the message passed from c to v is the probability that v has a certain value

given all the messages passed to c in the previous round from message nodes other

than 17. Mostly authors prefer working with likelihoods, or sometimes log-likelihoods

instead of probabilities and we adapt the log-likelihood approach.

For a binary random variable x, let L(x) = Pr[x = 0] /Pr[x = 1] be the likelihood of x.

Given another random variable y, the conditional likelihood of x denoted L(xly) is

defined as Pr[x = 0 | y] /Pr[x = 1 | y]. Similarly, the log-likelihood of x is In L(x), and

the conditional log-likelihood of x given y is In L(x | y). By Baye’s rule, we know that

L(xly) = L(ylx) if x is an equi-probable random variable. Therefore, if (y1,...,yd) are

independent random variables, then we have:

d

InL(x|y1,...,yd) = zln L(xly,) ......... (2.1)

i=1

[3] expresses log-likelihoods as a function of hyperbolic-tangents. Suppose that

(x1....,x1) are binary random variables and (y1,...,y,) are random variables. Denote

addition over F2 by 3;. We proceed to calculate In L(xl :[t r]: x, I y1, ...,y1) as follows.

Note that if:

p = (2 Pr[x1 = O IY1] — 1), and ......... (2.2)

q = (2 Pr[xz = O | yz] - 1) ......... (2.3), then, ......... (2.3)

2 Pr[x1 :[E x2 = 0 | y1,y2] — 1) = pq ......... (2.4)
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Therefore,

2Prix1ic~¢ xi=0Iy1. ...... .yii—l)

= n:=1(2 Pr [x, = 0 |y,] -— 1) ......... (2.5)

Furthermore, since:

Pr[x,- = o | y,] = L (x,- |y,-) / (1 + L (x, |y,)) ......... (2.6)

=> 2 Pr[x,- = o |y,] — 1 = (L ‘ 1)/(L + 1) = tanh(l/2) ......... (2.7)

where L = L (x, lyi) and l = In L. Therefore, we obtain:

1 + ( Ill=1tanh(li/2) >

1 -(Ill=1 tanh(li/2))

 InL (x1 :I: :l: x) |y1,...,yl) = In ......... (2.8)

Where I,- = InL (x, lyi).

For the derivation of the BP algorithm for LDPC codes [3], let mg? be the message

passed from message node v to check node c at the It" round of the algorithm.

(1)

CU

(0)
. At round 0, mmSimilarly, define m is the log-likelihood of the message node v

conditioned on its observed value, which is independent of c. Let us denote this value

by mv. Then the update equations for the messages under belief-propagation can be

described as:
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l .

...3 = mv+ my]; , lfl _>_ 1 ......... (2.9)

m(l)_ln1+ Hv'cev \{v} tanh(mv’c/2)

_l—IUEVC \{U} tanh(m1(;l')c/2)

 ......... (2.10)

Where, CV is the set of check nodes incident to message node v, and V; is the set of

message nodes incident to check node c.

The computations at the check nodes can be simplified further by performing them in

the log-domain, in the form of log-likelihood ratios. Shokorollahi [4] suggests since the

value of tan h(x) can be negative, we need to keep track of its sign separately. As per

his method, let y be a map from the real numbers [-00, 00] to ( F2 * [0, 00] ) defined

by:

-( (ml)
y (x) — sgn(x), —In tanh —2— ......... (2.11)

So in this case, sgn(x) can be set as:

sgn(x) = 1, if x _>_ 1 and sgn(x) = 0, otherwise)

It is clear that y is bijective, so there exists an inverse function y ‘1. Moreover,

y(xy) = y(x) + y(y) ......... (2.12)

Where, addition is component-wise in F2 and in [0,00]. Then it can be shown that:
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mg} = ‘1 2 y (ms-21)) ......... (2.13)

v'eVC {17}

In practice, belief propagation may be executed for a pre-specified maximum number of

rounds or until the passed likelihoods are close to certainty under pre-determined

thresholds, whichever is achieved first. Some authors use the term Certain Likelihood to

denote beliefs, where a certain likelihood is a likelihood in which In L (x | y) is either 00

or—00.Ifiti500,thenPr[x=0ly] = 1,andifitis—00,thenPr[x= 1|y]=1.

To estimate the running time of the belief propagation algorithm, it is important to note

that the algorithm traverses the edges in the graph and the graph Is sparse. So, the

number of edges traversed in each round of the algorithm is very small. Moreover, if the

algorithm runs for a pre-specified constant number of times, then each edge is

traversed a constant number of times, and the algorithm uses a number of operations

that is linear in the number of message nodes. So, the running time is directly

proportional to the block length of the code. Another important note about belief

propagation is that the algorithm itself is entirely independent of the channel used,

though the messages passed during the algorithm are completely dependent on the

channel. It can be noticed that belief propagation is in general less powerful than

maximum likelihood decoding. [15]

2.1.3- LDPC Decoding on BEC:

Belief propagation’s application to LDPC codes over the BEC with erasure probability a

constitutes a very typical example of the algorithm. Because of the binary nature of the
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messages, belief propagation on the erasure channel can be described much easier in

the following:

1- Initialization: This step constitutes the initialization of the values of all the check

nodes to zero.

2- Direct Recovery: This step is performed for all message nodes 12. In this step, if

the node is received, then add its value to the values of all adjacent check nodes

and remove v together with all edges originating from it from the graph.

3- Substitution Recovery: For check nodes, if there is a check node c of degree one,

substitute its value into the value of its unique neighbor among the message

nodes, add that value into the values of all adjacent check nodes and remove the

message nodes and all edges originating from it from the graph.

This algorithm was first proposed in [12]. It is clear that the number of operations that

this algorithm performs is proportional to the number of edges in the graph. 50 for

sparse graphs the algorithm runs in time linear to the block length of the code.

2.1.4- Asymptotic Analysis of Belief Propagation and Density Evolution:

The messages passed at each round of the belief propagation algorithm are random

variables. The update equation correctly calculates the corresponding log-likelihood

based on the observations, if the incoming messages are statistically independent at

every round in the algorithm. Many authors have questioned the validity of this

assumption especially when the number of iterations is large. In fact, the independence
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assumption is true for the first 1 rounds of the algorithm only if the neighborhood of a

message node up to depth I is a tree. [12]

Belief propagation can be analyzed using a combination of tools from combinatorics and

probability theory. The first analysis for a special type of belief propagation and its

application to hard decision decoding of LDPC codes appeared in [4]. The analysis was

vastly generalized in [8] to belief propagation over a hefty class of channels.

The analysis states that for fixed I in random bipartite graphs, if n and r are large

enough then the neighborhood of depth I of most of the message nodes is a tree.

Therefore, the belief propagation algorithm on these nodes correctly computes the

likelihood of the node for I rounds. Let us call these nodes the ’good’ nodes following

. [11]. Then the expected behavior of belief propagation is calculated by analyzing the

algorithm on the tree, and a martingale is used to show that the actual behavior of the

algorithm is mostly concentrated around its expectation since the conditional expected

value of an observation at some time t, given all the observations up to some earlier

time s, is equal to the observation at that earlier time 5.

So it has been proved that a heuristic analysis of belief propagation on trees correctly

depicts the actual behavior on the full graph for a fixed number of iterations, using the

martingale arguments and the tree assumption, which holds for large graphs and a fixed

iteration number I [3]. Furthermore, the behavior of belief propagation can be used to

calculate the probability of error among the good message nodes in the graph. This
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shows that the error probability of the good message nodes in the graph can be made

arbitrarily small for appropriate degree distributions.

Since we assume the channel to in ’good’ state most of the times, the ”bad" message

nodes will contribute only a sub-constant term to the error probability and their effect

will disappear asymptotically since their fraction is smaller than a constant. This means

that they are not relevant for an asymptotic analysis.

It should be noted that there is recursion for the density function of the messages

passed along the edges in the analysis of the expected behavior of belief propagation on

trees. 50 asymptotically speaking, the general machinery shows that the actual density

of the messages passed is very close to the expected density. Thus, tracking the

expected density during the iterations gives a very good picture of the actual behavior

of the algorithm. This method is called Density Evolution. We extensively used. density

evolution to find thresholds of our puncturing patterns.

2.1.5- Degree Distributions for Nodes in LDPC Code:

An LDPC code is called low-density code since it’s a linear block code for which the

parity check matrix H is sparse and has a low density of 1’s. A regular LDPC code is a

linear block code whose parity check matrix H contains exactly WC 1's in each column

and exactly (1),. = we (n/m) 1’s in each row, where;

n = Number of bits in the code-word

k = Number of bits in data to be coded
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m=n—k

w, «m

The code rate R = k/n is related to these parameters as, R = (1 — $ ), assuming H

r

is a full rank matrix. If H is low-density but number of 1’s in each column or row is not

constant, then the code is an irregular LDPC code. For irregular LDPC codes, the

parameters w, and w, are function of the column and row numbers and are

independent of each other.

It is usual in the literature (following [11]) to specify the v-node and c-node Degree

Distribution Polynomials, denoted by 2(x) and p(x) respectively. In the polynomial,

dv

/I(x) = Adxd-l ......... (2.14)

.2

2d denotes the fraction of all edges connected to a degree-d v-node and d,, denotes the

maximum v-node degree. Similarly in the polynomial:

dc

p(x) = Z pdxd"1 ......... (2.15)

dfl

pd denotes the fraction of all edges connected to a degree- d v-node and dc denotes

the maximum c-node degree.

A typical LDPC code can be shown as in Figure Il-I. Here, the number of left (message)

nodes is 10 and the number of right (check) nodes is 5.
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I
I

AMaximum v-node Degree, dv

Maximum c-node Degree, dc -I

0
0

900 = 23;, )odxd-1 = 0.2 x2 + 0.4 x4 + 0.2 x5+ 0.2 x7

d, _

“96) = 2,, :1 Adxd 1 = 0.6 x1 +0.2 x2 + 0.2 x3

The parity check matrix representation of above code be:

—

[_1110100100

0101011011

1101110111

0010100100

0100101101

__A
  

Please note that the degree distribution equations specify an ensemble of code, for

which following graph representation is showing a particular code.

24



X1+X2+X3+

‘1' *. rill-l ' .1 --_ \\ X2 + X4 + X6 + X7 +

' b - X9 + X10

\/ .li' viz- X1“ X2 + X4 + X5 + X6 +

X8 +X9+X10

.\‘\\ j ' I] \xx.‘ X3 + X5- +X3

 
Figure Il-l: Example of an LDPC code
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2.2 Puncturing:

Puncturing is the process of removing some of the parity bits after encoding the data

with an error-correction code and it is one of the basic techniques to modify the code

rate. This has the same effect as encoding with an error-correction code with lesser

redundancy, thus puncturing leads to a higher code rate.

A code C is characterized by three fundamental parameters; its length 71, its

dimension k, and its redundancy x = n — k. The code rate r can be defined as:

r = k/n;k < n ......... (2.16)

While doing puncturing, we decrease n, for a fixed k and thus increase the code rate. In

this way, the code dimension remains fixed but its length and redundancy is varied as

some redundancy symbols are deleted. Puncturing may cause the minimum distance to

decrease because to puncture the code, we delete columns from its generator matrix.

Suppose we have a codeword C,(K,-,X,-), where, K, data symbols are coded using X,-

parity symbols. The receiver attempts to retrieve K,- data symbols by utilizing X,- parity

symbols embedded in 6,. Depending on the decoding algorithm, the receiver can correct

up to a certain threshold of error directly proportional to the number of parity symbols

embedded in the message. For instance, for an error correcting code with error

correction capability at, for X,- parity symbols, the receiver is capable of correcting up to

(a *X,) errors out of |C,-| symbols in the message. Here a measures the expected

error-correcting capability of a particular rate decoder. For example, the error—
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correcting capability of Reed-Solomon codes is half as many as redundant symbols (i.e.,

= 0.5 ). The parameter a, thus, provides and upper bound on the error correction

capability of a decoder and it is approximated by having thresholds over cumulative

density function (CDF) of error distribution. With puncturing, we decrease the number

of X, parity symbols to X,, assuming the receiver is capable of correcting up to (a * Xg)

errors out of | Cill symbols in the message. In this way, code rate is increased and since

the same decoder can be used regardless of how many bits have been punctured,

puncturing considerably increases the flexibility of the system without significantly

increasing its complexity.

2.3- Residual Errors:

Traditional network protocols like IEEE 802.11 ARQ standard add some sort of forward

error correction at PHY/MAC layer, such as Reed-Solomon codes etc., to recover from

errors especially given the high data rates. This design strategy naturally prevents

PHY/MAC layer to pass faulty packets to higher layers and these schemes drop packets

and request retransmission even if a single bit is in error in the data passed from

PHY/MAC layer to the higher layers. This leads to the wastage of useful data in the

packet, the data which was received correctly. The errors which are not corrected by the

physical layer are called Residual Errors, and residual errors result in link layer packet

drops. This can be shown as figure-ll—ll below:
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Figure ”4!: Residual Errors

We define throughput over a transmission channel as:

throughput = # of bits received correct /totai # of bits ......... (2.17)

And we define goodput over a transmission channel as:

goodput = # of correct bits containing actual data/total # of bits ...... (2.18)

So for a session, goodput becomes ratio of total number of bits that contained actual

data and are received correctly to the total number of bits transmitted for that session.

In this way, the goodput parameter excludes parity bits from calculations of throughput

values. We measure the values of both, throughput and goodput, at link layer as shown

in figure ll-Ill. From figure ll-lll, we can see that link layer throughput corresponds to the

number of bits that are getting relayed to the network layer, that is, ratio of the number

of bits received by the link layer to the number of bits received by the network layer.
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Similarly link layer goodput corresponds to the number of bits containing actual data

that are getting relayed to the network layer, that is, ratio of the number of bits

containing actual data received by the link layer to the number of bits received by the

network layer.

 

 

Application Layer

 

Trans ort La er

p y Link Layer ‘throughput'

and‘goodput

Network Layer measurement at this point

 

 

Link Layer

 

PHY/MAC Layer      
 

Figure ”4": Throughput and goodput measurement at link layer of the protocol stack

2.4- Channel Characterization:

Most common wireless communication channels are of two types: 1) Binary Erasure

Channel (BEC); 2) Binary Symmetric Channel (BSC). In both cases the input alphabet is

binary, and the elements of the input alphabet are called bits. These channels can be

described as:

1) Binary Erasure Channel (BEC): A binary erasure channel with erasure

probabilityo is a channel with binary input, ternary output, and probability of

erasure o. LetX be the transmitted random variable with alphabet {0,1}

andYbe the received variable with alphabet {0, 1, e}, where e is the erasure
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2)

symbol. Then, the channel is characterized by the following conditional

probabilities:

a. Pr(Y=0|X=O) = l—o

b. Pr(Y=e|X=0) =0

Pr(Y=1|X=O) = 0P

d. Pr(Y=0|X=1) = o

Pr(Y=1|X=1)Y
D ll

H

I

Q

So, in the case of the binary erasure channel the output alphabet consists of

(0,1), and an additional element denoted e and called Erasure. Each bit is either

transmitted correctly (with probability 1 — a), or it is erased (with probability a).

The capacity of this channel is:

CBEC = 1 — C ......... (2.19)

Binary Symmetric Channel (BSC): Abinary symmetric channel with cross-over

probability denoted by a is a channel with binary input and binary output and

probability of error 8. So iins the transmitted random variable andYthe

received variable, then the channel is characterized by the conditional

probabilities as below:

a. Pr(Y=O|X=O)=1—£

b. Pr(Y=0|X=1)=£

c. Pr(Y=1|X=O)=£

d. Pr(Y=1|X=1)=1—£
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Figure Il-IV: Two examples of channels: (a) The Binary Erasure Channel (BEC) with

erasure probability a , and (b) The Binary Symmetric Channel (BSC) with error

probability 5

So, In the case of the BSC both the input and the output alphabet is F2. Each bit

is either transmitted correctly with probability (1 — a), or it is transitioned to

other with probability a. The capacity of the channel is 1 — H(£), where H(£) is

the Binary Entropy Function:

C355 = (1 + elogz(e) + (1 — £)iog2(1 — 8)) ......... (2.20)

Maximum likelihood decoding for this channel is equivalent to finding, for a given vector

of length n over F2, a codeword that has the smallest Hamming distance from the

received word.
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Chapter 3 - Code Design and Working of PRAISE

This chapter focuses on the code design aspects that we took into account to propose

rate-adaptive codes using localized puncturing. In the beginning, we provide details

about density evolution tools (LOPT and LODE) that we used to,

1) identify appropriate degree distributions with maximum noise variances for

given allowed degrees under specified parameters, and

2) calculate noise thresholds for the degree distributions that we actually used to

design our codes under practical constraints.

In the latter part, we continue with the discussion of designing puncturing fractions for

rate-adaptability of channel codes in time-varying channel conditions.

3.1- Density Evolution Tools:

LDPC Online Optimisation Tool (LOPT) is an online optimization tool and LDPC Online

Density Evolution (LODE) is an online density evolution calculator developed by Signal

Processing and Microelectronics Lab, School of Electrical Engineering and Computer

Science at University of Newcastle. We extensively used LOPT to find ’good’ degree

distributions for LPDC code generation. This gave us an idea about ratios for allowed

degrees for a given code rate. Moreover, we also used LODE to use density evolution

and find noise thresholds for the code with allowed degrees and given degree

distributions.
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3.1.1- LDPC Online Optimisation Tool:

LOPT is an online optimization tool, which uses density evolution to find the ensemble

which returns the best possible threshold for a given code-rate and allowed degrees. To

recall degree distributions as explained in Chapter 2, the variable (v-node) and check (c—

node) degree distribution polynomials, denoted by 2(x) and p(x) respectively. In the

polynomial,

dv

Mx) = z Adxd'l

(1 =1

2,, denotes the fraction of all edges connected to a degree-d v-node and (1,, denotes the

maximum v-node degree. Similarly in the polynomial:

dc

p(x) = Z M

d=1

d-1

pd denotes the fraction of all edges connected to a degree- d v-node and dc denotes

the maximum c-node degree.

In this way, code designer can look for the specified degree distributions to get the best

possible performance for a specified code rate and allowed degrees.

We extensively used LDPT to find the degree distributions and noise thresholds in code

designing process for a particular code rate. Since, it was not always possible to confine

to the degree distributions requirements specified by LOPT due to practical constraints;

we tried to design codes with degree distributions as near as possible to the suggested
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ones. Later on, we used LODE to find noise thresholds corresponding to actually used

degree distributions for code designing.

 

 

 

 

 

 

 

 

 
 

 

 

 

Parameters for LOPT

Code Rate 0.500000

Min LLR Value -20.000000 dB

Max LLR Value 20.000000 dB

Number of Iterations 1000

Minimum BER 1.000000e-10

11 Degrees 2, 3, 4

p Degrees 4, 5, 6

Results for LDPT

Mx) 0.352288, 0.127617, 0.520095

p(x) 0.059358, 0.082206, 0.858436

Noise Variance 0.9050000 s Var s 0.910000    
 

Table III-l: LOPT Parameters and Results

Theoretically speaking, the Probability Density Functions (PDFs) of density evolution are

continuous and defined for all possible log-likelihood ratios (LLRs). But, this is not

possible practically in the implementation process. Soto avoid this, both LOPT and LODE

limit the LLRs considered to those between Min LLR and Max LLR and chooses Number

of LLR points equally spaced samples between Min LLR and Max LLR. We chose Min LLR,

Max LLR and Number of LLR points as -20 dB, 20 dB and 511 respectively.
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Furthermore, in theory the sum-product decoder is allowed to run for an infinite

number of iterations and we expect the bit error rate to be zero for a successful

decoding run, it is again not possible in practice. Both LOPT and LODE limit the

simulations to the Number of iterations specified and consider BERs below Minimum

BER to be equivalent to a BER of zero. We restricted the number of iterations to 1000

and Minimum BER to 1.0E-10, whichever is achieved first. A sample use of LOPT is as

shown in Table Ill-l

3.1.2- LDPC Online Density Evolution:

LODE is an online density evolution calculator, and can be used to find the threshold of

an LDPC ensemble. To use LODE, we specified the degree distributions corresponding to

p’s and 11’s for our ensemble, where by definition, summation of 11(x) and p(x) over all

i equals 1. We extensively used LODE to find BER vs. Thresholds for our LDPC

ensembles.

Here again, due to practical constraints as in case of LOPT, we needed to specify Min

LLR, Max LLR, Number of LLR points, Number of iterations, and Minimum BER and

chose the same values as in case of LOPT. Furthermore, here we were able to select the

output format and there are two output formats available.

1- Threshold Option

2- Eb/No Option

In our work, we used thethreshold option, which searches between Minimum

(dB) and Maximum (dB) to find the noise threshold of the specified ensemble. In this
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case, the result is accurate to within Minimum difference (dB) and the output is the

threshold, given as both the signal-to-noise ratio in dB and the corresponding noise

variance (Var).

Table III-II: LODE Parameters and Results for Threshold Search

 

Parameters for Threshold search in LODE

 

 

 

 

Code Rate 0.460197

Min LLR Value -20.000000 dB

Max LLR Value 20.000000 dB

Number of Iterations 1000

 

 

 

 

 

 

 

 

Minimum BER 1.000000e-10

11 Degrees 2, 3, 4

Mx) 0.2939, 0.0923, 0.6141

p Degrees 4, 5, 6

p(x) 0.0921, 0.1323, 0.7756

Threshold Min (dB) 0

Threshold Max (dB) 10

Minimum Difference 1e-5 
 

Results for Threshold search in LODE

 

Eb/No Threshold (dB) 0.731077

  Var  
0.958207
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3.2- Designing Puncturing Fractions:

An LDPC code is called low-density code because it’s a linear block code for which the

parity check matrix H is sparse and has a low density of 1’s. A regular LDPC code is a

linear block code whose parity check matrix H contains exactly WC 1’s in each column

and exactly a), = 0),. (Tl/m) 1’s in each row, where:

n = Number of bits in the code-word

k = Number of bits in data to be coded

; k < n ......... (4.1)

If H is a full rank matrix, then the code rate r is related to these parameters as,

WC

R = (1 — —)

WT

If H is low-density but number of 1’s in each column or row is not constant then the code

is called an Irregular LDPC Code. For irregular LDPC codes, the parameters wc and w,

are function of the column and row numbers and are independent of each other. We

consider only regular ensembles of LDPC codes in our work.
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In Chapter 2, we denote the variable-node (v-node) and check-node (c-node) degree

distribution polynomials by 2(x) and p(x) respectively. In the polynomial,

dv

2(x) = 2 Adxd‘l

d =1

2,, denotes the fraction of all edges connected to a degree-d v-node and (1,, denotes the

maximum v-node degree. Similarly in the polynomial:

dc

[906) = 2 PM

d=1

d—l

pd denotes the fraction of all edges connected to a degree- d v-node and dc denotes

the maximum c-node degree.

Following these notations, the rate of the code in terms of its degree distributions pair

become:

fol p(x)dx
1, =1—

“ p) f012(x)dx

......... (3.1)

Following [36], the total puncturing fraction p(O) can be defined as,

the number of punctured variable nodes

the total number of variable nodes

 pm) = ......... (1.5)

In Chapter 4, we develop the channel model and introduce the notation of Transmission

Intervals [T,; for i = 1, 2, . ..,00] , where the index i refers to the ith time slot. We also
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assume that packets are transmitted over the channel under consideration during

discrete time slots. For i‘h transmission interval (Ti), we define p“) to be the total

puncturing fraction in the i‘h interval,

p(i)

the # of punctured variable nodes in the ith transmission interval (3 2)

_ the total # of variable nodes '

 

Puncturing increases code rate because we decrease n for fixed k bits in doing

puncturing operation. To recall the operating procedure, a ’mother’ code is designed

with rate, r(/l, p), with highest redundancy. This code, with the largest number of parity

bits, is used in the worst channel condition. We do puncturing as determined by the

(0,5) pair for channel characterization, as discussed in Chapter 4, to transmit a

’daughter’ code with error-correction capability ad and code rate r(/l,p)(”). An

important aspect to mention here is that the (o, a) pair value at the ith time interval is

used to design puncturing fraction pa“) and thus, the code-rate for the packet to be

transmitted at (i + 1)th time interval.

th
The rate of ’daughter’ code in the i interval,r(/l,p)(~‘), is related to the rate of

base/’mother’ code as:

r01. p)

ilk/DH) = my; ......... (3.3)

Several recent works tried to find bounds on code rates for reliable communication.

Examples of such works include ACE [34] and RASE [40], which developed a framework
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for reliable and stable communication with guarantees on sustainable flows. ACE

defines stability as “System is stable when higher layers are neither starved for

information packets nor is there a glut of packets leading to buffer overflow”. If e,- is BSC

channel’s error (cross-over) probability and am is the error-correction capability of a

code, then ACE determines the code rate for reliable and stable communication as:

51'

R = 1 — — ......... (3.4)

am

This means that if a channel is in ’good’ state, we can increase the code rate and still

have a reliable and stable communication with the same guarantees on sustainable

flows. So PRAISE’s working in terms of code-designing can be summarized as follows:

At the encoder end, we divide n-bit codeword into c chunks or partitions in a manner

pre-determined by encoder and decoder. During T,, a sender transmits a message

which is represented by the tuple M,- = (C,(k,-, X,); Y,), where k,- represents the

number of data symbols which are not being retransmitted in the ith transmission

interval. In each T,, a transmitter encodes k,- with parity symbols X,- creating a

codeword C,(k,-, X,) with c chunks. We refer to these parity symbols as Type-l Parity

following [34]. The receiver utilizes X,- to decode C,- and in case of successful decoding,

k,- data symbols are passed up to the higher layers. In the case of error-correction (and

thus, decoding) failure, the receiver stores C, in its buffer, identifies l chunks of the

lowest reliability out of c chunks with the help of side-information received from

PHY/MAC layer, and requests additional parity data for those 1 partitions. The
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transmitter also sends additional parity symbols for l chunks of the lowest reliability,

denoted by Y,-. We call these Type-ll Parity Symbols following [34]. The receiver utilizes

Y,- symbols to recover old corrupted code-words accumulated in the buffer (e.g.,

Cj;j=1,2,...,i—1).

The transmitted codeword after reception at the decoder end is called the Received

Word. Received word has both, errors and erasures in it along with, if any, correctly

received data-bits. The decoder identifies the location of erasures in received word

caused by puncturing operation at the encoder and because it can determine the code-

rate of the received word. Moreover, since we used LDPC codes, whenever a received

word is decoded correctly, we are able to figure out exactly the number and position of

errors in the received word at the decoder end. The decoder uses the BEC erasure

probability a,- as determined by the puncturing fraction, and BSC error probability a,- as

introduced by wireless channel to figure out the (o, a) pair value of the channel at the

ith interval. For details on the channel model, please refer to Chapter 4 of the thesis.

The PRAISE’s receiver has a finite buffer which can accommodate up to b corrupted

messages waiting additional parity data from encoder. If a newly corrupted packet finds

all the spaces in the buffer occupied, it does not enter the buffer and is dropped. The

status of the receiver is reported to the transmitter via certain flags in an

acknowledgment message which are called Buffer Status Flags. Specifically, b flags are

encapsulated in every acknowledgement packet. Let buffer status flags in ACK,- be

represented as:
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[F, [k]; k = 1,2, ...,b],and

[F, [k] = [1 + f], bits

f = llogz (DI

Please note that we need f = [109, (3)] feedback bits to identify 1 out of c chunks of

lowest reliability and the additional 1 bit is required to flag the status of the kth space.

In this way, each buffer status flag is associated with a particular packet—space in the

buffer and represents the status of that space, along with the number of the lowest

reliability l chunks, to request additional parity data for. In addition, the receiver

estimate of channel condition, determined by (0,8) pair in T, is also encapsulated in

acknowledgment message. The ACK, value for the buffer status flags is transmitted

back to encode a new packet with:

1- puncturing fraction p0“) and thus, the code-rate for the packet to be

transmitted at (i+1)th time interval. For a ’daughter’ code with error-

correction capability ad, we determine puncturing fractions as:

p<i+1> = 1 — ——— ......... (3.5)

2- additional parity data for l chunks of the lowest reliability for the corrupted

code-words residing in the buffer at the receiver in the ith transmission interval.

This process continues till whole data is successfully received and decoded.
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Chapter 4 - The Channel Model

This chapter provides the details of the channel model that we used to develop the

proposed scheme for rate-adaptability of wireless protocols in time-varying channel

conditions. A channel model describes the process under which errors are introduced in a

transmitted packet over a wireless link. For modeling purposes, we assume that packets

are transmitted over the channel under consideration during discrete time slots which

we refer to as Transmission Intervals, T. We denote transmission intervals

by [T,; fori = 1, 2,...,00], where the index i refers to the ith time slot. To proceed

with our channel model, we divide our discussion in two levels. The modeling begins

with developing channel model in a particular transmission interval and then continues

with a complete channel model based on all transmission intervals.

During the i‘h transmission interval, a packet is transmitted over cascaded BEC and BSC

channels. Here, the BEC channel with erasure probability 0 models the puncturing

operation to puncture the input codeword. The input codeword to the BEC channel is

encoded with the code rate for ’mother’ code, r(,1, p), and the output is the ’daughter’

code with code rate r(/l,p)(~). Hence we model the puncturing fraction pm by BEC

erasure probability a, and the puncturing operation by a BEC channel. Please refer to

Chapter-3 for more details on code rates and their design aspects.

In our channel model, the BSC with cross-over probability 8 models the wireless channel

transmitting the punctured codeword. These two channels are parameterized by the

following:
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o: BEC erasure probability (as determined by the puncturing fraction)

3: BSC error probability

Hence, the (o, a) pair characterizes the channel during each transmission interval T. The

transmitted codeword after reception at the decoder end is called the Received Word.

Received word has both, errors and erasures in it along with, if any, correctly received

data-bits. The decoder Identifies the location of erasures in received word caused by

puncturing operation at the encoder end because it can determine the code-rate of the

received word. Moreover, since we used LDPC codes, whenever a received word is

decoded correctly, we are able to figure out exactly the number and position of errors in

the received word at the decoder end. In this way, the decoder uses the (0,, 8,) pair to

figure out the channel state at the ith interval.

It is important to note that puncturing causes erasures in a transmitted packet. Strictly

speaking, it’s not a part of the channel over which we are transmitting a packet as it is

performed at the encoder end before transmission. Still we can assume it is a part of the

channel for modeling purposes as at the decoder end, because decoder finds both,

errors and some erasures in the received word. 50 for the i‘h transmission interval, the

channel model can be as shown in the figure IV-I below:
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Figure lV-l: Cascaded BEC and BSC Channels with erasure and error probabilities a and

8 respectively.

A discrete random process with the property that the next state depends only on the

current state is called as Markov Chain. The Markov property states that the conditional

probability distribution for the system at the next step, and in fact at all future steps,

given its current state depends only on the current state of the system, and not

additionally on the state of the system at previous steps:

Pr (X,+1 |X,,X2, ...,Xn) = Pr (X,,.,1 an) ...... (4.1)

We call the process under-discussion “a discrete random stochastic process” because

the wireless channel, which is in a certain state characterized by its particular (0,, 8,)

pair at ith transmission interval, changes randomly between intervals. Moreover in our
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proposed scheme to adapt rate of wireless protocols in different network conditions,

the decoder transmits the (0, 8) pair value back to the encoder via feedback and the

encoder uses the (0,, 8,) pair value at the ith time interval to design puncturing fraction

pa“) and thus, the code-rate for the packet to be transmitted at (i + 1)‘h time

interval. This suggests a Markov-based channel characterization.

Hence, to derive a channel model for all transmission intervals, we assume that each

(0,, 8,) pair value of a particular T, is valued from a finite set FN with length N i.e.

(Ci, 8,) E .FNIO IFNI = N ...... (4.2)

As a result, we can consider the channel model as a combination of N various cascaded

BECs and BSCs with unique (0, 8) pairs, i.e.,

(0m, am) at (on, 8,,);form at n; m,n = 1, 2, ...,N ...... (4.3)

In every T,, the channel is in one of the N possible states (51,52, ...,SN) where each

state corresponds to a particular cascade of BECs and BSCs as depicted in figure above.

The changes of state of a Markovian system are called as Transitions, and the

probabilities associated with various state-changes are called Transition Probabilities.

The set of all states and transition probabilities completely characterizes a Markov

chain. By convention, we assume all possible states and transitions have been included

in the definition of the processes, so there is always a next-state and the process goes

on forever. In our proposed scheme, the (0,8) pair value is calculated at the receiver,

which reports it back for training of the Markovian channel and predicting code rate for
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next word to be transmitted. Since our state space is finite, the transition probability

distribution can be represented by a matrix, called the Transition Matrix, with the

(s, t)th element of the matrix P5,, equals to:

p5,, = Pr (Xn+1 = s | Xn = t) ...... (4.4)

For simplicity of modeling, we can assume that probability of transition between states

is independent of the state index n.This makes the Markov chain a Time-homogeneous

Markov chain, and in this way, the process is described by a single, time-independent

matrix, P5,. For a time-homogeneous Markov chain:

Pr (Xn+1 = s |X,, = t) = Pr (Xn = s | Xn_1 = t) ...... (4.5)

In such a case, the vector J1 is called a Stationary Distribution, and the associated

probabilities as Steady-state Probabilities, if the entries J1, of the vector J] sum to 1 and

it satisfies:

J1, = 2 J15 .ps, ...... (4.6)

385

Based on the above-mentioned channel model, the wireless channel for the proposed

Side-Information Enhanced Forward Error Correction (SEFEC) scheme is modeled by a

discrete Markov chain with N possible states where each Markov state is represented

by a cascade of BECs and BSCs with a particular (0, 8) pair. We assume a homogenous

and stationary Markov chain with transitional probability matrix P5,, and the limiting

state (stationary) probabilities (J1 =111’112,...,JIN). The Markovian channel model is
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trained on real channel traces by using the statistics of previous transmission intervals.

This captures the effects of multipath fading and interference on the (0, 8) pair in every

transmission interval using a single aggregated model. This can be shown in figure IV-II.

It’s well known that the capacity of the cascaded BEC(0) and BSC(8) channel is

(1 — 0). (1 — H(8)). Using the steady state probabilities, the average channel capacity

in the ith transmission interval is determined as follows:

N

cT = 2 1r, (1 -- 0,)(1 — H(8,)) ...... (4.7)

i=1

The channel capacity gives an upper bound on the average (reliable) information

transmission rate for the wireless channel under consideration in the ith transmission

interval.

We explained the Conventional Standard (CS) schemes like IEEE 802.11 ARQ in Chapter-

I. Some prior works [35, 41, 42] have proposed cross-layer designs to achieve

improvements in end-to-end bandwidth utilization and overcome performance

limitations imposed by CS. We have included details of such works in Chapter-II of the

thesis, with the fact that their primary drawback is that their implementation requires

major modifications in higher layers. However, the analysis of the Hybrid Erasure-Error

Protocols (HEEPs) [42] shows that cross-layer protocols in general can significantly

improve the overall performance as measured by video quality and provide capacity

improvement in many realistic scenarios. The proposed SEFEC scheme is a cross-layer
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design with all advantages of a cross-layer design and does not require any modification

in higher layers for extraction of side-information.
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Figure lV-II: Markovian Channel Model
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Chapter 5 - Experimental Setup

This chapter begins with giving a brief idea about Software-Defined Radios (SDRs) and

explains GNU-USRP based implementation of a Software Defined Radio (SDR) to be used

in our work. We continue with our motivation to use GNU-USRP platform to collect real-

time channel traces and provide details about our experimental setup. In the end, we

report parameters to collect data.

5.1- Software-Defined Radios:

The term Software Defined Radio was first used in 1991 by Joseph Mitola, who

published the first paper on the topic in 1992. A software-defined radio system, or SDR,

is a radio communication system where components of a typical radio communication

system, like mixers, filters, amplifiers, modems (modulators/demodulators), detectors,

etc., that have been typically implemented in hardware are instead implemented by

means of software on a personal computer or on embedded computing devices. Hence

in an SDR, software defines shape of waveforms, modulation/demodulation schemes

and other parameters of transmission like packet size, data rate and bursty modes. This

brings before user a whole new area of design by transforming typical hardware

problems into software ones. In this way, a user is more flexible to play with these

parameters by changing different software building blocks which was not possible

earlier due to hardware limitations.

A very basic SDR communication system may consist of a personal computer equipped

with a sound card, or other analog-to-digital (A/D) converter, preceded by some form
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of RF front end. Typically major part of signal processing is handed over to the general-

purpose processor, rather than being done in special-purpose hardware. Such a design

produces a radio which can receive and transmit widely different radio protocols based

solely on the software used.

SDRs have found significant utility for the military and cell phone services, as both of

these always look to serve a wide variety of changing radio protocols demands in real

time. In the long term, SDRs are expected to become the dominant technology in radio

communications systems. SDRs, along with software defined antennas are the enablers

of the cognitive radio computing and are being used extensively by research community

and academia.

5.2- GNU Radio:

GNU Radio is an Open-source, free software toolkit for learning about, building, and

deploying SDR communication systems. The project started in 2001 and is now an

officialGNU project, released under the GPL version 3 license. Philanthropistlohn

Gilmore initiated and has sustained GNU Radio as of now with the funding of $320,000

(US) to Eric Blossom for code creation and project management duties.

GNU Radio is a signal processing package with the goal to give ordinary software people

the ability to understand the electromagnetic radio spectrum and think of clever ways

to use it. So it makes possible for a user to explore many domains of cognitive

computing using software modules only.
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GNU Radio signal processing blocks are written in C++, while creating flow graphs and

connecting signal blocks is done using Python. So, the developer is able to implement

real-time SDR with high-throughput capability, in a simple-to-use and rapid-application-

development environment.

As with all SDR communication systems, re-configurability is the key feature of GNU

Radio. Instead of purchasing multiple expensive radios, a single more generic hardware

is purchased, which feeds into powerful signal processing software and serves the

purpose. Currently only a few forms of radio are implemented in GNU Radio, but one

can reconfigure GNU Radio to receive any radio transmission system by understanding

the math behind it.

5.3- Universal Software Radio Peripheral:

The Universal Software Radio Peripheral (USRP) is a high-speed USB-based board for

making software radios, and acts as an RF front-end for an SDR. USRP is a comparatively

inexpensive hardware device (under $1K) facilitating the building of an SDR. USRP has

got open source drivers and software to incorporate GNU Radio. Furthermore, the USRP

board schematics and the associated Verilog code are also freely available for download.

It is also designed to be flexible, allowing developers to make their own daughter-

boards for specific needs with regard to connectors, different frequency-bands, etc.

The USRP is developed by GNU Radio project and a team led by Matt Ettus. USRP is a

digital acquisition system containing A/D and D/A converters, and support circuitry

including a high-speed USB 2.0 interface. The USRP is capable of processing signals with
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bandwidth up to 16 MHz. Several transmitter and receiver plug-in daughter boards are

available covering various bands between 0 and 5.9 GHz. Technical details of USRP are

asunden

5.4-

Four high-speed 64 MS/s A/D converters, each having a resolution of 12 bit

Four high-speed 128 MS/s D/A converters, each having a resolution of 14 bit

An Altera Cyclone EP1C12Q240C8 FPGA

A Cypress EZ-USB FX2 High-speed USB 2.0 controller

4 extension sockets (2 TX, 2 RX) in order to connect up to 4 daughter-boards

64 general purpose l/O pins available through four Basich/BasicRx

daughterboards (16 pins each)

Daughter-Boards with USRP:

Daughter-boards serve as the RF frontend for SDR. They allow the output signal to be

modulated to a higher frequency and an input signal to be demodulated of its carrier.

USRP comes with a variety of daughter-boards and three different types of boards exist:

1. Receivers

2. Transmitters

3. Transceivers

1- Receivers: Receivers are a type of daughter-boards that only support RX and consume

only one RX port:

BasicRX, 1 - 250 MHz Receiver, for use with external RF hardware.

LFRX, DC - 30MHz Receiver

TVRX, 50 MHz - 870 MHz Receiver
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o DBSRX, 800 MHz - 2.4 GHz Receiver

0 BURX, 300 MHz - 4 GHz Receiver

2- Transmitters: Transmitters are a type of daughter-boards that only support TX and

consume one TX port:

0 BasicTX, 1 - 250 MHz Transmitter, for use with external RF hardware

0 LFTX, DC - 30M Hz Transmitter

3- Transceivers: Transceivers are a type of daughter-boards that are both TX and RX and

consume 2 ports, one for transmission and the other for reception:

0 WBX0510, 50 MHz - 2.2 GHz Transceiver

o RFX400, 400 - 500 MHz Transceiver

o RFX900, 800 - 1000 MHz Transceiver

o RFX1200, 1150 - 1450 MHz Transceiver

- RFX1800, 1.5 - 2.1 GHz Transceiver

o RFX2400, 2.3 - 2.9 GHz Transceiver

o XCVR2450, Dual-band Transceiver, i.e. 2.4 - 2.5 GHZ and 4.9 - 5.85 GHz

5.5 Motivation for GNU-USRP Platform:

Wireless network refers to any type ofcomputer network that is wireless, and is

implemented using remote information transmission system. Common types of wireless

networks include Wireless Personal Area Networks (e.g., Bluetooth, Zigbee), Wireless

Local Area Networks (e.g., Wi-Fi, Fixed Wireless Data), Wireless Metropolitan Area

Networks (e.g., WiMAX), Wireless Wide Area Networks (e.g., Gaiacom Wireless

Network), and Mobile devices networks (with development of smart phones, like GSM,
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PCS and D-AMPS). Wireless market is having many options to establish communication

among different users in various different environments.

Current wireless network devices such as USB network adaptors (e.g., Samsung WIS-

09ABGN, Linksys WUSB54G), Peripheral Component Interconnect (PCI) wireless adaptor

cards for computer desktops (e.g., D-Link DWL-GSZO, Linksys WMP54G) and notebooks

(e.g., Linksys WPC54G, TP-Link TL-WN3606), wireless Ethernet bridges (e.g., TiVo

AN0100 , Linksys WET54G), and Wireless Compact Flash Card Adapters for PDAs (e.g.,

Linksys WCF54G, Netgear MA701) are utilized to establish communication channels

among different wireless users in various wireless environments. By design, these

devices use IEEE802.11 standard to attain channel access, contention, and error control

at the Physical (PHY) and MAC layers.

IEEE 802.11 standard has some sort of basic error correction at PHY layer, like Reed

Solomon codes etc. and this design strategy naturally leads to preventing PHY layer to

pass distorted packets to the higher layers. The distorted packets are dropped right

away at PHY layer, wasting a lot of useful data. So we faced the major challenge of

utilization and alternation of link-layer corrupted packets, containing residual errors, at

the receiver to:

1- Capture and measure the behavior of an error process of a wireless channel,

2- Analyze the residual errors, at link-layer, in a wireless channel to design suitable

puncturing fractions in localized manner for rate-adaptability of error control

protocols,
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3- Implement error control protocols at the link-layer that employ and manipulate

received corrupted packets, and

4- Extract side information from MAC/PHY layers to request localized parity for

subsets with potentially highest number of errors.

To cope with this issue, we need to modify the configuration of these devices to attain

the distorted packets at the PHY/MAC layer. But, these off-the-shelf wireless devices are

not open source products, thus modification of the source code functionality is not

possible.

To overcome this problem, we use Software-Defined Radio (SDR) technology.

Specifically, we use GNU-USRP platform as the communication system front-end on

each sender and receiver node in our experiments. Since, GNU Radio is an open-source

software development toolkit, we are able to easily reconfigure and modify its building

blocks. In this way, we have complete control over the communication system

configurations down to the FPGA/antenna level, and down to PHY/MAC layers and we

are able to capture distorted packets received at the PHY/MAC layer and pass packets

with residual errors to link layer. Furthermore, we are able to extract side information

associated with each packet.

5.6- Layered Architecture:

Figure V-l shows the layered architecture of the experimental realization of the wireless

communication for this thesis. At the top level, Application Layer resides which is

designed to generate data packets and pass them down to the link-layer. It is important
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to note that we are interested in point-to-point link-layer wireless communication

enhanced by side-information from MAC/PHY layer,

modifications are irrelevant for this work.
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At the link-layer, the data packets are encoded to link-layer packets using a particular

error control protocol. We used LDPC codes for this task. These packers are then sent to

the PHY layer (i.e., GNU Radio) where they are transmitted over the wireless channel.

We use Universal Software Radio Peripheral (USRP) as an RF frontend of GNU Radio.

USRP can simultaneously receive and transmit on two antennas. Daughter-boards

mounted on URSP provide flexible, fully integrated RF front-ends. USRP has an open

design, with freely available schematics and drivers that can be integrated with GNU

Radio. This enables us to modify MAC/PHY layer of our communication system and

extract side information for error localization in received packets with residual errors.

Similarly, at the receiver end, packets are received by USRP. Here packet, along with

side information is passed on to link-layer. LDPC decoder at link-layer decodes the

packet and passes it on to Application layer on the top.

5.7- Experimental Test-Bed:

We use GNU-URSP platform to conduct experiments, collect traces and do analysis over

real-time traffic data. In our work, we use XCVR2450 daughter-board which is a Dual-

band Transceiver and transmits at 100+mW output at 2.4-2.5 GHz and 50+mW output

4.9-5.85 GHz. The XCVR2450 covers both the ISM band at 2.4 GHz and the entire 4.9 to

5.9 GHz band, including the public safety, UNII, ISM, and Japanese wireless bands.

Our experimental test-bed consists of two USRP devices: one connected to a desktop PC

which we refer to as the Data-Host (DH) PC and the other connected to the Data-Ghost

(06) laptop computer. DH is hosting the data to be transmitted and DG is streaming
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data from DH. In our experiments, the application layer in DH and DG respectively

generates packet data and the acknowledgment packets. We set up the wireless

communication system between DH and DG using the parameters as listed below.

We conducted our experiments in two phases. In the first phase, we collected traces to

analyze the element of burstiness in the packet and to train our Markovian model. The

detailed analysis for burstiness and the details of the deployed channel model can be

found in Chapter-4 of the thesis. To train our Markovian channel model and to measure

the number of errors introduced in every packet during a transmission session over a

specific channel, in this phase of the experimental data collection, DH transmits

predefined 100, 000 packets with 1500-byte packet payloads in every transmission

session. Accordingly, DG captures the received packet and performs XOR operations

with the predefined payload. Through this, we measure the number of byte (and bit)

errors introduced in each packet.

In the second phase of experiments, using our GNU-USRP based wireless platform, we

conducted several communication scenarios to capture the behavior of wireless error in

the presence of fading, interference and mobility. We characterize wireless channel

condition with average Bit Error Rate (BER) and average Packet Error Rate (PER). Our

analysis consists of measuring 100 wireless channel conditions which are categorized in

four groups:

1- Environment factor: To cater for the environments effects on wireless channel

conditions, we carried out extensive set of experiments in both, open-spaced
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out-door environment, i.e. outside the building, and in closed-space in-door

environment, i.e. inside the building. For in-door setting, several factors

contributed in wireless channel conditions as explained in coming lines.

However, for out-door setting, the wireless communication was mostly line-of-

sight (LOS) communication and we noticed that distance was the only metric for

wireless connection failure and packet dropping.

Fading factor: In this set of scenarios, the DG laptop is located within certain

distances of DH. The distance between D6 and DH governs the impact of fading

on the wireless communication. In particular, the error conditions for channels

where DH and DG are relatively close to each other (e.g., less than 3m) are

remarkably better than those with D6 and DH are farther. It is also important to

note that placing DG and DH very close to each other (e.g., less than 1/2 m) causes

a lot of missing packet at DG due to interference caused by DH, so we did not

consider such close distances.

Interference factor: To capture the impact of interference on wireless channel

condition, we establish wireless communication in the presence of other

wireless networks. These networks include Wi-Fi in our lab (i.e. WAVES lab), Wi-

Fi in the building (i.e. College of Engineering), and in the presence of other hot-

spots established over some laptop computers. It is evident that as more active

wireless networks are presented in the environment, the likelihood of packet

collisions increases leading to frequent packet errors due to interference.
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4- Mobility factor: The DH transmits data packets to the DG laptop which is a

mobile node and changes its location frequently. Please figure Ill-III to get an

idea of the room locations. In this set of experiments, the mobility is conducted

within a room (i.e. WAVES lab), within the hallway (next to the room where DH

resides), and within the room opposite to hallway. However the wireless

connection never fails; all the transmitted packets are received by DG.

Using the GNU Radio-USRP based platform, we determine the performance efficiency of

different link-layer protocols over above-mentioned channel conditions. In particular,

we implement five link-layer protocols. One belongs to the Conventional Standard (CS)

protocol category (IEEE802.11 ARQ), three belong to Forward Error Correction (FEC)

protocol category (Hybrid ARQ type-l (HARQ-l), Hybrid ARQ type-ll (HARQ-ll), Reliable

and Stable (RASE)), and one for Side—information Enhanced Forward Error Correction

(SEFEC) protocol category (PRAISE) on our platform. The details of CS, FEC and SEFEC

can be found in Chapter-1 of the thesis. These protocols reside in link-layer section of

the layered architecture shown in Figure III-l and are implemented using C++ modules

and glued in GNU-USRP platform with Python.

Though two identical USRPs are connected to both PCs, we will use the terms DH and

DG for USRP and the associated PC jointly. Unless otherwise specified, following are the

default parameters for conducting experiments and collecting channel traces:
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Frequency: 5.1G

Packet Size: 1500 Bytes (Range = 0-4096 bytes)

No. of Packets in a session: 100,000

Modulation Scheme: GMSK

Bursty Mode: Disabled

We analyzed the performance of five network protocols; 1) Puncturing for Rate

Adaptability of Reliable and Stable Wireless Protocols (PRAISE), 2) Reliable and Stable

(RASE), 3) Hybrid ARQ-II, 4) Hybrid ARQ-I, and 5) Automatic Repeat Request (ARQ) over

GNU-USRP platform. To keep discussion generic, we divided these protocols in three

categories; 1) Conventional Standard (CS, like ARQ), 2) Forward Error Correction enabled

Protocols (FEC, like HARQ-l, HARQ-II, and RASE), 3) Side-Information Enhanced Forward

Error Correction enabled Protocols (SEFEC, like PRAISE). The details of CS, FEC and SEFEC

can be found in Chapter-1 of the thesis.

To gauge the performance of these protocols over the wireless channel, we make use of

two protocol-dependent parameters namely, 1) throughput; 2) goodput. We define

throughput over a transmission channel as:

throughput = # of bits received correct /total # of bits ...... (5.1)

And we define goodput over a transmission channel as:

goodput = # of correct bits containing actual data/total # of bits ...... (5.2)
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So for a session, goodput becomes ratio of total number of bits that contained actual

data and are received correctly to the total number of bits transmitted for that session.

In this way, the goodput parameter excludes parity bits from calculations of throughput

values.

We compare the values of the above-mentioned protocol-dependent parameters

against two wireless channel metrics, 1) Packet Error Rate (PER); 2) Bit Error Rate (BER).

Bit Error Rate (BER) is defined as the rate at which errors occur in a transmission system.

BER is a unit-less performance quantity and is expressed as a percentage number. The

definition of bit error rate can be expressed as:

BER = number of bits in errors/total number of bits ...... (5.3)

And, the Packet Error Rate (PER) is the number of incorrectly transferred data packets

divided by the number of transferred packets. A packet is assumed to be incorrect if at

least one bit is incorrect. PER is a unit-less performance quantity and is expressed as a

percentage number. Mathematically, PER can be expressed as:

PER = number of packets in errors/total number of packets ...... (5.4)

Hence our results (explained in Chapter-7) fall in two categories depending upon

wireless channel metrics and we measure each of the two protocol-dependent

parameters against each of the channel metric.

Depending on channel conditions, we vary the code rate from (10—50)% and collected

several traces. From the first phase of experiments, we concluded that the code-rate of
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33.33% is optimum for performance in varying channel conditions for fixed rate FEC

schemes. It is neither too much to affect goodput in good channel conditions nor that

bad to cause a lot of retransmissions in bad channel conditions.
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Chapter 6 -Analysis of Burstiness in a Packet

An Error Burst over a data transmission channel can be defined as a

contiguous sequence of n symbols such that the first and last symbols are in error. In this

way, there does not exist any contiguous subsequence of m correctly received symbols

within the error burst of n symbols, where m < n.

The Length of a Burst of Bit Errors in a Frame is defined as the number of bits from the

first error to the lost, both inclusive. The integer parameterm is used to specify the

length of the burst and is referred to as the Guard Band of the error burst. The last

symbol in a burst and the first symbol in the following burst are accordingly separated

by m correct bits or more.

We explained our experimental setup in Chapter-S of the thesis. Our experimental test-

bed consists of two USRP devices: one connected to a desktop PC which we refer to as

the Data-Host (DH) PC and the other connected to the Data-Ghost (DG) laptop

computer. DH is hosting the data to be transmitted and DG is streaming data from DH.

In our experiments, the application layer in DH and DG generates packet data and the

acknowledgment packets respectively. We set up the wireless communication system

between DH and DG using the parameters detailed in Chapter—5.

Using our GNU-USRP based wireless platform, we conducted several communication

scenarios to capture the behavior of wireless error in the presence of fading,

interference and mobility. As we explain in Chapter-S, we conducted our experiments in

two phases. In the first phase, we collected traces to analyze the element of burstiness
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in the packet and to train our Markovian model. To measure the amount of error

introduced on every packet during a transmission session over a specific channel, in this

phase of the experimental data collection, DH transmits 100, 000 packets with

predefined 1500 byte packet payloads in every transmission session. Accordingly, DG

captures the received packet and performs XOR operations with the predefined

payload. Through this, we measure the number of byte (and bit) errors introduced in

each packet. Our proposed scheme enhances end-to-end bandwidth utilization in case

of bursty errors in a packet. So burstiness analysis for data in a received packet in this

phase of date collection constitutes an important part of the thesis. This burstiness

analysis is divided into three following subtopics:

1- Distribution of Errors in a Packet

2- Bit Error Rate (BER) vs. Cumulative Density Function (CDF)

3- End-to-End (EZE) Burst in a Packet

6.1- Distribution of Errors in a Packet

We define Distribution of Errors as the arrangement of continuing and successive errors

in space. Hence the error distribution describes the range of possible values that an

error variable can attain in succession and the probability that the value of the error

variable is within any (measurable) subset of that range. In our experimental setup,

space consists of a packet length and the unit to specify errors is taken as bytes. We

show plots of the error distributions of the collected traces in the following pages to get
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proof of the proposed idea. We are including three error distributions in the thesis for

reference purposes.

Each of the error distribution plots burst length vs. number of received packets in a

session. In this way, x-axis corresponds to number of successive error bytes in a packet

of length 1500 bytes, and y-axis refers to the %age of received packets containing

specific error burst lengths. To explore burstiness of errors in a packet, we scaled our

burst length axis from 2-1500 because a burst length of zero refers to a packet without

errors (i.e. a packet that was received correct) and a burst length of one shows an

alternate occurrence of a pattern of zeros/ones referring to sporadically distributed

error bytes. The resulting error distributions are as shown below in figures VI-l, VI-II, and

Vl-lll.

Figure VI-I shows distribution of errors in traces with Packet Error Rate, PER, in the

range of 30-40%. Since the channel in this case is in ’good’ state, we notice values of

burst lengths represented by a smaller percentage of received packets. For example, the

highest burst length is around 80 bytes and only 4.2% of received packets have a burst

length of 80 bytes. Furthermore, except the burst length of 85 bytes, represented by

3.4% of received packets, all other burst lengths can be seen in less than 1.5% of

received packets. As we move-on to the traces with higher PER values, we notice that

burstiness in a packet increases and we start observing packets with greater burst

lengths. For example, in traces with PER values ranging between 60-70% and 80-90%,
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the highest burst length values are again around 80 bytes, but this value is represented

by 7.3% and 8% of the received packets respectively, as shown in figures VI-II and VI-III.

Distribution of Error Bursts in Traces with PER = 30-40%
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Figure Vl-I: Distribution of Errors in Traces with PER = 30-40%

Moreover, we find significant peaks in burst distributions represented by over 2% and

over 4% of received packets in traces with PER values 60-70% and 80-90% respectively.

From these error distributions, we see that burstiness at packet level increases with

higher PER values. So we conclude here that as the channel state gets worse, the error

distributions increase too resulting in increased burstiness effects at packet level. This

gave us the motivation to design codes catering for bursty errors in a packet and coping

with bursty nature of wireless channels by adapting code-rates in varying channel

conditions.
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6.2- Bit Error Rate (BER) vs. Cumulative Density Function (CDF):

We know that a probability distribution can be completely described by its cumulative

distribution function when a random variable takes values in the set of real numbers,

whose value at each real value x is the probability that the random variable is smaller

than or equal to x. Cumulative Density Function (CDF) of error distribution, plotted

against Bit error rate (BER) is another useful metric to gauge burstiness in a packet.

Suppose we have a codeword C,(K,,X,), where, K, data symbols are coded using X,

parity symbols. If we define Distortion as an undesired change in the output signal

resulting from imperfections in the wireless channel, then the Distortion Level E, is

always random and unknown to the receiver and therefore the notion of partial

recovery is unrealistic in the context of error correction. This means that the receiver

can either correct all errors in C, and declare successful decoding, or just states that no

recovery is achieved.

The receiver attempts to retrieve K,- data symbols by utilizing X, parity symbols

embedded in C,. Depending on the decoding algorithm, the receiver can correct up to a

certain threshold of error directly proportional to the number of parity symbols

embedded in the message. For instance, for an error correcting code with error

correction capability a, for X, parity symbols, the receiver is capable of correcting up to

(a *X,) errors out of |C,| symbols in the message. Here a measures the expected

error-correcting capability of a particular rate decoder. For example, the error-
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correcting capability of Reed-Solomon codes is half as many as redundant symbols (i.e.,

= 0.5 ).

The parameter a, thus, provides and upper bound on the error correction capability of a

decoder and it is approximated by having thresholds over CDF of error distribution.

Figure lV-Vl plots BER vs. CDF for traces with shown PER values. For PER values of 10-

15%, since the channel is in a ’good’ state, we notice that up to 80% corrupted packets

can be successfully decoded if provided enough parity data to correspond for a BER of

0.7. This means a decoder with a = 0.7 can correct 80% packets in such a scenario. For

other cases, to correct 80% of corrupted packets, the corresponding a-values are 0.78,

0.85 and 0.93 for PER values of 40-45%, 60-65% and 80-85% respectively.
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6.3- End-to-End (EZE) Burst in a Packet:

We define End-to-End (EZE) burst as the number of bits between the first error bit and

the last error bit, both inclusive, in a packet received over a transmission channel. This

definition provides room for existence of multiple contiguous subsequences of m

correctly received symbols and error bursts of n symbols within E2E burst.

E2E burst is a useful way of looking into corrupted area of a packet. It gives an

overall/big picture view of the faulty portion of the packet. This caters for even the

sporadic distribution of errors inside a packet, providing the code designer an insight to

design codes keeping in view the fact that errors may be randomly distributed inside a

packet, aside from their occurrence in bursts. So, E2E burst length specifies the total

corrupted portion of a received packet enabling one to design parity data keeping in

view the maximum possible length of burst. We, in our work, used E2E burst length as a

measure to analyze the traces and found the results as given below. For EZE burst

length plots, y—axis shows percentage of the corrupted received packets and x-axis

shows the percentage of the faulty portion in a packet.

Figure Vl-V shows E2E burst length for traces with Packet Error Rate, PER, of 40-50%.

We see that about 30% of the corrupted received packets have E2E burst length equal

to 10% of the packet. This means, in case of decoding failure, if parity data is

transmitted only for 10% corrupted portion of a packet, about 30% of the corrupted

received packets can be recovered. The corrupted portion can easily be identified by the

side-information, as in our case. Then, each of 20%, 30% and 40% E2E burst length is

73



found in 10% of the corrupted packets. These results are very favorable and give proof

of our idea to divide a packet into chunks and transmit parity data with the help of side-

information for selected subsets only, instead of:

1- discarding whole packet, as in case of Conventional Standard (CS) schemes, like

IEEE 802.11 ARQ schemes, explained in Chapter-I, or

2- requesting parity data for whole packet like in case of Forward-Error-Correction

(FEC) schemes, like Automatic Code Embedding (ACE), explained in Chapter-l
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Figure Vl-Vl shows E2E burst length for traces with PER 70-80%. It is important to note

that this PER value corresponds to a channel in very bad state. Only 3-4% of corrupted

packets have 10% E2E burst length. Here, each of 60%, 70% and 80% E2E burst length is

found in 10% of the corrupted packets. Still we see that about 3-4% of the corrupted
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received packets can be recovered by requesting parity data for only 10% of the packet

size.
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Figure VI-Vll shows E2E burst length for traces with PER 80-90%. Notice that this very

high PER value corresponds to a channel in extremely bad state. Less than 1% of

corrupted packets have 10% E2E burst length. Here, each of 70%, 80% and 90% E2E

burst length is approximately found in 10% of the corrupted packets. Even in this

scenario, over 10% packets require parity data for only 70% of the received packet.

E2E Burst Length

 

 

  
 

  
 

0.4 I 1 T r 47

-E- PER = 40-50%

1 —e— PER = 70-80% 5

3 0.3 ----------- Jr- PER = 80-90% ............ -

(I) E E 3 5

x E E >

8 s s

o_ 0.2 ------------- -------------- -------------- . ............. . ........... -

'0 E i

B = s

3 0.1 ------------------- = .......... - ................. _

5 s

0 . a .

00 20 40 60 80 100

Corrupted Portion in a Packet (%)
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Figure Vl-VIIl shows plots above in a single canvas for comparison purposes. We notice

that as channel state gets worse and worse, E2E burst length increases on average. This

reason for such results is that increasing PER values correspond to higher BER values,

which contribute in increasing E2E burst lengths. As we mentioned in Chapter-l that
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some previous works have made use of incremental parity data to cope with varying

channel conditions. Examples of such works Automatic Code Embedding (ACE) and

Reliable and Stable (RASE). But none of these works use side-information to enhance

their performance. In fact, ACE requests incremental parity data for whole packet in all

channel conditions. This leads to requesting parity data for subsets of a corrupted

received packet which do not require any parity data for decoding. As a result, we see in

Chapter-V that PRAISE outclasses state-of-art network protocols in terms of throughput,

goodput and end-to-end bandwidth utilization in good and average network conditions.

Even when the channel is in extremely bad states, PRAISE’s performance is comparable

to that of RASE as in extremely bad channel conditions, parity data for whole packet (i.e.

all of the subsets) is needed to be transmitted.
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Chapter 7 - Results, Conclusions and Future Work

Let us recall that in Chapter-1, in order to keep the discussion generic and not

dependant on a particular implementation or standard, we consider three rather

abstract communication schemes: 1) transmission over error/erasure channels, which

represents the conventional standard (CS) protocols, like IEEE Automatic Repeat

Request (ARQ) schemes; 2) transmission in the presence of a forward error-correction

(FEC) based schemes, like Hybrid ARQ [38, 39] and more recent schemes like ZIPTX [37],

Automatic Code Embedding (ACE) [34], and Reliable and Stable (RASE) [40]; 3) side-

information enhanced transmission in presence of both, erasures and errors, using a

forward-error correction scheme (SEFEC) like the proposed scheme, Parity localization

for Rate Adaptability of Reliable and Stable Protocols (PRAISE).

The two generic aspects of 1) forward error correction; 2) feedback mechanism (F8), are

enough to explain the three communication schemes as described above. Forward error

correction part can simply be segregated into two categories consisting of presence or

absence of any forward error correction mechanism. Feedback mechanism can have

many variants, ranging from simple binary feedback about reception of correct/false

packet like in case of ARQ, to the feedback with flags requesting additional parity data

for corrupted packets like in case of recent protocols like ACE [34] and RASE [40]. So

under these two aspects, the following happens.

1) CS: the conventional standard protocol contains no FEC and requests the same

packet even if a single bit is in error, example being IEEE802.11 ARQ scheme. In

78

 



2)

IEEE802.11 ARQ protocol, error-detection information (ED) bits are added to

data to be transmitted (such as cyclic redundancy check, CRC) and

retransmissions are solution for losses. If a corrupted packet is received, it Is

discarded without regard to the number and location of errors. This

methodology ensures that the packet would eventually be recovered. However,

this approach leads to a great deal of throughput degradation as even a single bit

error leads to packet drops resulting in discard of a large number of correctly

received data bits, ending up ’wasting’ a lot of useful data. Thus, network

utilization deteriorates rapidly as channel bit error rate (BER) increases.

FEC: FEC based protocols, which represent schemes like IEEE802.11 Hybrid ARQ

schemes [38, 39] and more recent schemes like ZIPTX [37], ACE [34] and RASE

[40], contain some sort of forward error correction and request additional parity

data in case of reception of a corrupted packet. Hybrid ARQ (HARQ) protocols

are proposed as an alternative to CS. In HARQ protocols, forward error

correction bits are also added to the existing Error Detection (ED) bits, such

as Reed-Solomon code, low-parity density-check code or Turbo code. In this way,

these schemes reduce the number of re-transmissions as required in case of ARQ

by making use of incremental channel codes. However, both ARQ and HARQ

based approaches do not address the throughput stability issues in varying

channel conditions, and thus lead to a great deal of throughput inefficiency.

Other protocols like ZIPTX and ACE address the issues of reliability and/or

stability in varying channel conditions but these fall short on many fronts. ZIPTX,
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3)

though provides a working system, ignores any aspect of stability. ACE takes into

account both the issues of reliability and stability by embedding channel codes

using well-defined code rates but ACE, i) lacks a practical demonstration system,

ii) do not consider rate-adaptability to address throughput efficiency in changing

network conditions.

SEFEC: SEFEC is an alternative to above schemes. Similar to FEC based schemes,

an SEFEC scheme requests additional parity using feedback flags, but the

requested parity data is localized and request depends upon side-information

received from physical (MAC) and link layers. 50 SEFEC is a cross-layer design

which extracts beliefs associated with received data either at MAC/physical

layer, or at link layer and decides to requests additional parity data for a

particular subset of code depending on values of beliefs for a particular subset of

code. Some previous works [35, 41, 42] have proposed cross-layer designs for

multimedia applications to overcome throughput degradations and performance

limitations imposed by traditional protocols. An example of such a work is UDP

Lite [41], which relies on the error-resilient nature of multimedia content and

makes adjustments to the protocol stack at the transport and the link layers in

order to improve the bandwidth utilization. A major drawback of the existing

cross-layer protocols is that their implementations require key modifications in

transport and application layers. However the proposed cross-layer SEFEC design

requires no modification in the subsequent layers since a single decoder is

required for 'mother’ and ’daughter’ codes and side-information used to request
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parity data is received from physical (MAC) and link layers. Therefore, and unlike

receivers of FEC- based schemes, SEFEC receiver has RHCs, is rate-adaptive

depending on varying channel conditions, distinguishes between erasures and

errors in a received packet, and does not require any modification in transport

and application layers.

As we explained in Chapter 5 that current wireless network devices such as USB network

adaptors, Peripheral Component Interconnect (PCI) wireless adaptor cards for computer

desktops and notebooks, wireless Ethernet bridges, and Wireless Compact Flash Card

Adapters for PDAs etc. are utilized to establish communication channels among

different wireless users in various wireless environments. By design, these devices use

IEEE802.11 standard to attain channel access, contention, and error control at the

Physical (PHY) and MAC layers. IEEE 802.11 standard has some sort of basic error

correction at PHY layer, like Reed Solomon codes etc. and this design strategy naturally

leads to preventing PHY layer to pass distorted packets to the higher layers. The

distorted packets are dropped right away at PHY layer, wasting a lot of useful data. So

we faced the major challenge of utilization and alternation of link-layer corrupted

packets, containing residual errors, at the receiver to:

1- Capture and measure the behavior of an error process of a wireless channel,

2- Analyze the residual errors, at link-layer, in a wireless channel to design suitable

puncturing fractions in localized manner for rate-adaptability of error control

protocols,
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3- Implement error control protocols at the link-layer that employ and manipulate

received corrupted packets, and

4- Extract side information from MAC/PHY layers to request localized parity for

subsets with potentially highest number of errors.

To cope with this issue, we need to modify the configuration of these devices to attain

the distorted packets at the PHY/MAC layer. But, these off-the—shelf wireless devices are

not Open source products, thus modification of the source code functionality is not

possible.

To overcome this problem, we use Software-Defined Radio (SDR) technology.

Specifically, we use GNU-USRP platform as the communication system front-end on

each sender and receiver node in our experiments. Since, GNU Radio is an open-source

software development toolkit, we are able to easily reconfigure and modify its building

blocks. In this way, we have complete control over the communication system

configurationsdown to the FPGA/antenna level, and down to PHY/MAC layers and we

are able to capture distorted packets received at the PHY/MAC layer and pass packets

with residual errors to link layer. Furthermore, we are able to extract side information

associated with each packet which we used to request additional parity data from

encoder in case of decoding failure.

Unless otherwise specified, following are the default parameters for conducting

experiments and collecting channel traces:
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Frequency: 5.1G

Packet Size: 1500 Bytes (Range = 0-4096 bytes)

No. of Packets in a session: 100,000

Modulation Scheme: GMSK

Bursty Mode: Disabled

To gauge the performance of the CS, FEC and SEFEC protocols over the wireless channel,

we make use of two protocol-dependent parameters namely, 1) throughput; 2)

goodput. We define throughput over a transmission channel as:

throughput = # of bits received correct /total # of bits ...... (7.1)

And we define goodput over a transmission channel as:

goodput = # of correct bits containing actual data/total # of bits ...... (7.2)

So for a session, goodput becomes ratio of total number of bits that contained actual

data and are received correctly to the total number of bits transmitted for that session.

In this way, the goodput parameter excludes parity bits from calculations of throughput

values.

We compare the values of the above-mentioned protocol-dependent parameters

against two wireless channel metrics, 1) Packet Error Rate (PER); 2) Bit Error Rate (BER).

So our results fall in two categories depending upon wireless channel metrics and we

measure each of the two protocol-dependent parameters against each of the metric.
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7.1- Wireless Channel Metric BER

Bit Error Rate (BER) is defined as the rate at which errors occur in a transmission system.

BER is a unit-less performance quantity and is expressed as a percentage number. The

definition of bit error rate can be expressed as:

BER = number of bits in errors/total number of bits ...... (7.3)

BER is a parameter which gives an excellent indication of the performance of a wireless

channel. As one of the main parameters of interest in any channel is the number of

errors that occur, the bit error rate is a key parameter. So we chose it as one of the

channel metrics to gauge the performance of protocol-dependent parameters.

Figure VII-l shows the plot for Throughput vs. Channel BER for the five protocols falling

in three categories. From plot below, we see that the Conventional Standard (CS) ARQ

suffers the most with increasing channel BER values. The average throughput of the CS-

ARQ scheme falls to 10% as channel’s average BER increases to 0.1. RASE makes use of

incremental parity data to retrieve packets, resulting in increased channel bandwidth

and throughput, and hence it performs better than HARQ-l and HARQ-II among FEC

schemes. It is evident from the plot that SEFEC-PRAISE outperforms all CS and FEC

schemes in terms of throughput in all channel conditions. PRAISE’s performance is

comparable to CS and FEC schemes in channel with very low BER values. But as channel

BER increases, PRAISE’s superiority over CS and FEC schemes becomes evident. At the

channel’s average BER of 0.15, PRAISE outperforms the state-of-art FEC scheme, RASE

by about 12% high throughput value.
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Figure VII-l: Throughput Vs. Channel BER

Figure VII-ll shows the plot for Goodput vs. Channel BER for the five protocols falling in

three categories. From plot below, we again see that the Conventional Standard (CS)

ARQ suffers the most with increasing channel BER values. When the channel is in good

condition (BER<0.02), CS-ARQ’s performance is the best among all five protocols as in

these scenario, goodput and throughput values are equal and all the data received is the

’useful’ data in case of CS-ARQ scheme. But as BER values increase, CS—ARQ’s goodput

drastically falls. Since the values of goodput and throughput are same in case of CS-ARQ.

we see that the average goodput of the CS-ARQ scheme falls to 10% as channel’s

average BER increases to 0.1.
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In FEC schemes, forward error correction bits are added to the existing ED bits to correct

a subset of all errors while relying on ARQ to detect uncorrectable errors. As a result

FEC-HARQ I/Il perform better than CS-ARQ in poor signal conditions, but in its simplest

form this comes at the expense of significantly lower goodput in good signal conditions.

Here the signal quality cross-over point below which FEC-HARQ is better, and above

which CS-ARQ is better is at BER = 0.02 in case of HARQ-ll and at BER = 0.03 in case of

HARQ-I. RASE makes use of incremental parity data to retrieve corrupted packets,

resulting in increased channel bandwidth and goodput, and hence it performs better

than HARQ-I and HARQ-ll among FEC schemes. Here the signal quality cross-over point

below which FEC-RASE is better, and above which CS-ARQ is better is at BER = 0.01.

It is evident from the plot that SEFEC-PRAISE outperforms FEC-HARQ I/ll schemes in

terms of goodput in all channel conditions. The signal quality cross-over point below

which SEFEC-PRAISE is better, and above which CS-ARQ is better is at BER = 0.01. Since

. . C . .

PRAISE needs additional f = [logz (1)] feedback bits to request parity for 1 out of c

chunks of lowest reliability, its performance in terms of goodput suffers insignificantly

(due to small number of f bits) than that of FEC-RASE at lower BER values (BER<0.02).

But as channel BER increases to 0.15, it outperforms state-of-art FEC-RASE by 0.9%

higher goodput values.
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7.2- Wireless Channel Metric PER

The Packet Error Rate (PER) is the number of incorrectly transferred data packets divided

by the number of transferred packets. A packet is assumed to be incorrect if at least one

bit is incorrect. PER is a unit-less performance quantity and is expressed as a percentage

number. Mathematically, PER can be expressed as:

PER = number of packets in errors/total number of packets ...... (7.4)

PER is a parameter which gives an excellent big-picture of the overall performance of a

wireless channel. As one of the main parameters of interest in any channel is the

frequency of occurrence of errors, the packet error rate is a key parameter. That’s why
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we chose it as one of the channel metrics to gauge the performance of protocol-

dependent parameters.

Figure Vll-lll shows the plot for Throughput vs. Channel PER for the five protocols (ARQ,

HARQ-I/ll, RASE and PRAISE) falling in three categories of CS, FEC and SEFEC as described

above.

Here we again see that the Conventional Standard (CS) ARQ suffers the most with

increasing channel PER values. The average throughput of the CS-ARQ scheme falls to

10% as channel’s average PER increases to 0.85. RASE makes use of incremental parity

data to retrieve packets, resulting in increased channel bandwidth and throughput, and

hence it performs better than HARQ-l and HARQ-ll among FEC schemes. it is evident

from the plot that SEFEC-PRAISE outperforms all CS and FEC schemes in terms of

throughput in all channel conditions. PRAISE’s performance is comparable to FEC

schemes in channel with low PER values. But as channel PER increases to over 20%,

PRAISE’s superiority over FEC schemes becomes evident. At the channel’s average PER

of 0.80, PRAISE outperforms HARQ-l by about 27%, HARQ—II by 23%, and the state-of-art

FEC scheme, RASE by about 4% higher throughput value.
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Figure VII-IV shows the plot for Goodput vs. Channel PER for all the five protocols. From

plot below, we again see that the Conventional Standard (CS) ARQ suffers the most with

increasing channel PER values. When the channel is in good condition (PER<0.1), CS-

ARQ’s performance is the best among all five protocols because in these scenario,

goodput and throughput values are equal and all the data received is the ’useful’ data in

case of CS-ARQ scheme. But as PER values increase, CS-ARQ’s goodput drastically falls.

Since the values of goodput and throughput are same in case of CS-ARQ, we see that the

average goodput of the CS-ARQ scheme falls to 10% as channel’s average PER increases

to 0.85.
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In FEC schemes, forward error correction bits are added to the existing ED bits to correct

a subset of all errors while relying on ARQ to detect uncorrectable errors. As a result

FEC-HARQ l/II perform better than CS-ARQ in poor signal conditions, but in its simplest

form this comes at the expense of significantly lower goodput in good signal conditions.

Here the signal quality cross-over point below which FEC-HARQ is better, and above

which CS-ARQ is better is at PER = 0.2 in case of HARQ-ll and at PER = 0.36 in case of

HARQ-I. RASE makes use of incremental parity data to retrieve corrupted packets,

resulting in increased channel bandwidth and goodput, and hence it performs better

than HARQ-I and HARQ-ll among FEC schemes. Here the signal quality cross-over point

below which FEC-RASE is better, and above which CS-ARQ is better is at PER = 0.1.

It is evident from the plot that SEFEC-PRAISE outperforms FEC-HARQ l/ll schemes in

terms of goodput in all channel conditions. The signal quality cross-over point below

which SEFEC-PRAISE is better, and above which CS-ARQ is better is at PER = 0.01. Since

PRAISE needs additional f = [10926)] feedback bits to request parity for I out of c

chunks of lowest reliability, its performance in terms of goodput suffers insignificantly

(due to small number of f bits) than that of FEC-RASE at lower PER values (PER<0.3). But

as channel PER increases to 0.9, it outperforms state-of-art FEC-RASE by 0.2% higher

goodput values.
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Figure VII-IV: Goodput Vs. Channel PER

73- Analysis of Results for Different Channel Metrics:

We explained our experimental setup in Chapter-5 of the thesis. Our experimental test-

bed consists of two USRP devices: one connected to a desktop PC which we refer to as

the Data-Host (DH) PC and the other connected to the Data-Ghost (06) laptop

computer. DH is hosting the data to be transmitted and 06 is streaming data from DH.

In our experiments, the application layer in DH and 06 generates packet data and the

acknowledgment packets respectively. We set up the wireless communication system

between DH and 06 using the parameters detailed in Chapter-5.
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Using our GNU-USRP based wireless platform, we conducted several communication

scenarios to capture the behavior of wireless error in the presence of fading,

interference and mobility. We deployed a Markovian channel model to collect data, and

details of the deployed channel model can be found in Chapter-4 of the thesis. Our

analysis consists of measuring 100 wireless channel conditions which are categorized in

four groups:

1- Environment factor: To cater for the environments effects on wireless channel

conditions, we carried out extensive set of experiments in both, open-spaced

out-door environment, i.e. outside the building, and in closed-space in-door

environment, i.e. inside the building. For in-door setting, several factors

contributed in wireless channel conditions as explained in coming lines.

However, for out-door setting, the wireless communication was mostly line-of-

sight (LOS) communication and we noticed that distance was the only metric for

wireless connection failure and packet dropping.

Fading factor: In this set of scenarios, the 06 laptop is located within certain

distances of DH. The distance between 06 and DH governs the impact of fading

on the wireless communication. In particular, the error conditions for channels

where DH and 06 are relatively close to each other (e.g., less than 3m) are

remarkably better than those with 06 and DH are farther. It is also important to

note that placing D6 and DH very close to each other (e.g., less than 1/2 m) causes

a lot of missing packet at 06 due to interference caused by DH, so we did not

consider such close distances.
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3- Interference factor: To capture the impact of interference on wireless channel

condition, we establish wireless communication in the presence of other

wireless networks. These networks include Wi-Fi in our lab (i.e. WAVES lab), Wi-

Fi in the building (i.e. College of Engineering), and in the presence of other hot-

spots established over some laptop computers. It is evident that as more active

wireless networks are presented in the environment, the likelihood of packet

collisions increases leading to frequent packet errors due to interference.

Mobility factor: The DH transmits data packets to the DG laptop which is a

mobile node and changes its location frequently. Please figure lll-lll to get an

idea of the room locations. In this set of experiments, the mobility is conducted

within a room (i.e. WAVES lab), within the hallway (next to the room where DH

resides), and within the room opposite to hallway. However the wireless

connection never fails; all the transmitted packets are received by 06.

We characterize wireless channel condition with average Bit Error Rate (BER) and

average Packet Error Rate (PER). In figure VII-V, we compare these parameters (i.e.

channel BER and channel PER) for the collected traces after deployment of a specific

protocol, to get an insight on the results.

From Figure Vll-V, we see that the range of corresponding channel average BER and

average PER values lie in the range of 10% for all traces collected for the deployed

protocols. The collected data reveals that even when the channel average PER

approaches 0.8, the channel average BER value is 0.13, 0.07, 0.13, 0.14 and 0.07 in case

93



of SEFEC-PRAISE, FEC-RASE, FEC-HARQ-II, FEC-HARQ-l, and CS-ARQ respectively. These

values present quite lower channel average BER values for the corresponding higher

channel average PER values. This trend is platform and implementation specific and

explains lower advantage of SEFEC-PRAISE (in terms of throughput and goodput) over

FEC-RASE in terms of channel PER values as compared to channel BER values. We can

also safely state that if we get higher BER values for corresponding PER values for some

other platform/implementation, SEFEC-PRAISE’s performance (in terms of throughput,

goodput, and end-to-end bandwidth utilization) will get more boost as compared to the

state-of-art FEC-RASE for both channel metrics, i.e. BER and PER values.

Channel PER vs. Channel BER
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7.4 Conclusions and Future Directions:

In this work, we provided a framework for the rate adaptability of wireless protocols.

Wireless channel is more prone to errors than wired media and we proposed localized

puncturing patterns to adapt rates of wireless protocols with time-varying wireless

channel conditions. First we developed the channel model that we used to develop the

proposed scheme. We deployed a Markovian channel model to model the errors

introduced in the channel. The Markovian channel is characterized by its Hybrid Erasure-

Error Rate (HEER) in each state, and within each state, the channel is modeled by a

cascade of a Binary Erasure Channel (BEC), to model the puncturing operation at

encoder end, and a Binary Symmetric Channel (BSC) to model the wireless channel.

We used GNU-USRP based implementation of a Software Defined Radio (SDR) to

conduct experiments. We divided our experimentation phase in two stages. In the first

stage, we collected traces to train our Markovian channel model and to analyze the

element of burstiness in a packet. We analyzed the element of burstiness using three

standard techniques; 1) Error Distributions within a Packet; 2) Bit Error Rate (BER) vs.

Cumulative Density Function (CDF); 3) End-to-End (E2E) Burst Length within Packets.

In the second phase of experiments, using our GNU-USRP based wireless platform, we

conducted several communication scenarios to capture the behavior of wireless error in

the presence of fading, interference and mobility. Our analysis in this phase consists of

measuring 100 wireless channel conditions which are categorized in four groups; 1)

Environment Factor; 2) Fading Factor; 3) Interference Factor; 4) Mobility Factor.
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We then focus on code-designing aspects and present limits on designing localized

puncturing fractions. We used Density Evolution techniques to find noise thresholds and

extract degree distributions out of LDPC ensembles for given code rates and allowed

degrees. Based on these results, we designed puncturing patterns for the proposed

scheme.

We analyzed the performance of five network protocols; 1) Parity Localization for Rate

Adaptability of Reliable and Stable Wireless Protocols (PRAISE), 2) Reliable and Stable

(RASE), 3) Hybrid ARQ-ll, 4) Hybrid ARQ-l, and 5) Automatic Repeat Request (ARQ) over

GNU-USRP platform. To keep discussion generic, we divided these protocols in three

categories; 1) Conventional Standard (CS, like ARQ), 2) Forward Error Correction enabled

Protocols (FEC, like HARQ-l, HARQ-II, and RASE), 3) Side-Information Enhanced Forward

Error Correction enabled Protocols (SEFEC, like PRAISE).

To gauge the performance of these protocols over the wireless channel, we make use of

two protocol—dependent parameters namely, 1) throughput; 2) goodput. We compared

the values of the above-mentioned protocol-dependent parameters against two

wireless channel metrics, 1) Packet Error Rate (PER); 2) Bit Error Rate (BER). So our

results fall in two categories depending upon wireless channel metrics and we measure

each of the two protocol-dependent parameters against each of the metric. The results

show that SEFEC-PRAISE outperformed state-of-art FEC-RASE by 0.9% and 0.2% higher

goodput values as channel BER and channel PER increase to 0.15 and 0.9 respectively.

96



Similarly, SEFEC-PRAISE showed 12% and 0.4% higher throughput values than FEC-RASE

as channel BER and channel PER increase to 0.15 and 0.8 respectively.

During the course of this work we identified some future directions. We will work on the

development of a more comprehensive set of error traces. This set will comprise of the

error traces collected for IEEE standard networking protocols (like IEEE 802.11, IEEE

802.15 etc.) at all bitrates for varying client positions and network configurations. The

effects of environment, interference, fading and mobility will be further distinguishable

with this complete data set. This is an active area_of research and our preliminary

analysis depicts that the position of the client plays an instrumental role in determining

the overall throughput of the network particularly in Iine-of—sight out-door

environments.

Moreover, cross- layer strategies that can enhance the side-information provided by the

PHY/MAC layer in our case need further investigation. We would like to supplement

these strategies with modeling and information extraction from link and transport layers

without doing any modification at these layers to boost the overall performance of the

system. We would also like to investigate information extraction from intermediate

stages of Belief Propagation Algorithm while decoding LDPC codes.

In our previous work, we designed puncturing patterns based on online Density

Evolution tools. We would like to further investigate other techniques to design

puncturing patterns that can provide a suitable alternative for both, regular and

irregular LDPC ensembles, and can improve end-to—end system performance.
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