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ABSTRACT

MEAN CURVATURE FLOW IN HIGHER CODIMENSION

By

Andrew Allen Cooper

In this work, we consider the mean curvature flow of compact submanifolds of Riemannian

manifolds. If the flow becomes singular in finite time, we show how to produce a smooth

singularity model, the “smooth blow-up” of the singularity. This construction relies upon a

compactness theorem for families of submanifolds with bounded second fundamental form

which we establish.

Using the smooth blow-up, we establish that if the contraction of the mean curvature

with the second fundamental form is bounded, the flow may be continued. We also show

that in case the singularity is of type I, the mean curvature must blow up and that in the

type II case, the mean curvature must blow up, if at all, at a strictly slower rate than the

full second fundamental form.

We also use the smooth blow-up to investigate Lagrangian mean curvature flow in Calabi-

Yau manifolds. In particular we show that the singularities of the Lagrangian mean curvature

flow are modelled either by zero Maslov class or monotone Lagrangian flows in Euclidean

space.
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Chapter 1

Introduction

1.1 The Mean Curvature Flow

Given an immersion of a manifold into a Riemannian manifold, F : Mm → (Nm+n, h),

we may consider its second fundamental form II = (hijα), which is the projection of the

Hessian D2F to the normal bundle of F (M):

hijα = D2
ijFα (1.1)

Here and in the sequel we use Latin indices for coordinates on M , and equivalently for tan-

gential directions of F (M), and Greek indices for directions normal to F (M). The immersion

induces a metric g = F∗h. We will use gij for this metric and gij for its inverse.

The mean curvature of the immersion is normal vector given by tracing the second fun-

damental form in the tangential direction:

Hα = gijhijα (1.2)
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A mean curvature flow (MCF) from the initial immersion F0 is a one-parameter family

of immersions F (t) which satisfies:

∂

∂t
F (t) = H(F (t))

F (0) = F0

(1.3)

One can see easily that equation (1.3) is parabolic (up to choice of tangential reparametriza-

tion), with principal symbol given by the ordinary Laplacian. The corresponding elliptic

problem, H ≡ 0, is the classical minimal-surface problem. Indeed, area-minimisation is the

motivation for studying MCF. Computing the first variation at a vector field V of the area

functional
∫
F (M) dH

m, we have:

δV

∫
F (M)∩D

dHm = −
∫
F (M)∩D

H · V dHm (1.4)

In particular, equation (1.3) is the downward gradient of the area functional.

1.2 Overview of the Literature

The mean curvature flow has been most successfully studied in the case of hypersurfaces,

beginning with Huisken’s theorem that convex hypersurfaces shrink to round points [32] and

Grayson’s theorem that embedded plane curves shrink to round points [19], and culminating

in Huisken-Sinestrari’s topological classification of 2-convex hypersurfaces [31].

In the hypersurface setting, there is only one normal direction, so the second fundamental

form is a symmetric real-valued two-tensor, and the mean curvature is a real-valued function.

This greatly simplifies the analysis of the flow. In particular, Hamilton’s maximum principle
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for tensors [24] has been used to show that various positivity conditions on the second

fundamental form are preserved by the flow [30] [29].

In the Lagrangian setting, Neves and Groh-Schwarz-Smoczyk-Zehmisch have investigated

singularity formation [41] [42] [20]. Much of the Lagrangian mean curvature flow literature

involves finding conditions which guarantee infinite-time existence of the flow, with conver-

gence at infinite time to a known minimal submanifold. In particular, the flow of Lagrangian

graphs has been studied extensively by Smoczyk and Wang, among others [52] [56] [55] [57].

In general codimension, Andrews-Baker have shown that submanifolds sufficiently close

to the round sphere collapse to round points [3].

In this thesis, we will establish the groundwork for a theory of finite-time singularities

of the mean curvature flow in general codimension. As an application, we will establish

some results about the singularities of compact Lagrangian mean curvature flows. In future

work, we hope to use our smooth singularity models to prove a surgery theorem like those

of Huisken-Sinestrari and Hamilton-Perelman.

1.3 Summary of Known and New Results

1.3.1 Singularity Models for the Mean Curvature Flow

To understand the structure of the singularities of the mean curvature flow, we need a theory

of singularity models.

The standard technique in the study of singularities of the mean curvature has been the

tangent flow construction, which shares many similarities with the tangent cone construction

in the theory of minimal submanifolds. In particular, tangent flows are not expected to be
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smooth objects. The tangent flow is smooth when the singularity is mild [27]. The success of

Huisken-Sinestrari in remaining in the smooth category for their surgery theorem [31] relies

upon the fact that their assumption on the initial data (“2-convex”) forces the singularity

to be mild, so that they may use the tangent flow to obtain a smooth singularity model.

In the study of Ricci flow, no extrinsic technique such as the tangent flow is available, and

the theory of Riemannian manifolds with singularities is somewhat less tractable than the

theory of submanifolds with singularities [9]. Thus to model singularities of the Ricci flow,

Hamilton, aided by Perelman’s celebrated non-collapsing theorem [44], constructs smooth

limit objects [25]. The success of the Hamilton-Perelman program for Ricci flow relies upon

deducing the properties of Ricci flows which arise as singularity models [12]. In particular,

in dimension 3 such limit flows are highly restricted.

We adapt Hamilton’s ideas to build smooth singularity models for the mean curvature

flow. In particular, we establish the following theorem:

Theorem 1.3.1. Let F : Mm × [0, T )→ (Nm+n, h) be a compact mean curvature flow in

a Riemannian manifold with bounded geometry, with singularity at time T <∞. Then there

exists a mean curvature flow F∞ : M∞ × (−∞, C)→ Rm+n which models the singularity

of the flow F , where C = supM×[0,t] | II(p, t)|
2(T − t). F∞ has the following properties:

• If C <∞ then F∞ has second fundamental form bounded by 1 up to time 0.

• If C =∞ then F∞ has a second fundamental form bounded by 1 for all time.

• F∞ has at least one point p∞ with |II(p∞, 0)| = 1.

We call F∞ a smooth blow-up of the flow F : M × [0, T )→ (N, h).
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By “models” here, we mean that, after rescaling so that the second fundamental form has

maximum norm 1, F∞ is a C∞ approximation to the developing singularity, in the sense

described in Chapter 2.

We will also show that, if the ambient manifold is Rm+n and C <∞, a smooth blow-up

is essentially equivalent to a tangent flow.

The work in establishing the above theorem is to prove a compactness theorem for smooth

mean curvature flows. To this end we establish a Cheeger-Gromov-type theorem for immer-

sions, in particular showing that a pointwise bound on the second fundamental form is all

that is needed to ensure convergence in the smooth category.

Chen-He have also considered the project of a compactness theorem for mean curvature

flows and constructing smooth singularity models for their singularities [10]. In particular

they provide sufficient conditions on (N, h) to be able to generalize some aspects of the

tangent flow construction.

1.3.2 Singular Time of the Mean Curvature Flow

In general one expects, because MCF is the downward gradient of the area functional, that

if the initial submanifold is close to minimal, the flow is expected to converge to a minimal

submanifold in infinite time.

If the ambient manifold N is the euclidean space Rm+n, all minimal submanifolds have

infinite area. Thus starting from closed initial data, it is impossible to converge to a minimal

submanifold. In fact all MCFs in euclidean space starting from closed initial data will become

singular at some time T <∞.

We have the following characterization of such singular times:
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Theorem 1.3.2 (Huisken [32]). Let Ft : M → (N, h) be a compact mean curvature flow on

the maximal interval [0, T ), T <∞. Then

lim
t→T

sup
M
|II(·, t)|2 =∞ (1.5)

where II(t) is the second fundamental form of Ft(M).

Theorem 1.3.2 is similar in content and proof to those of the following theorems from

other parabolic geometric flows:

Theorem 1.3.3 (Hamilton [23]). Let (M, g(t)) be a compact Ricci flow on the maximal

interval [0, T ), T <∞. Then

lim
t→T

sup
M
|Rm(·, t)|2 =∞ (1.6)

a where Rm(t) is the Riemann curvature tensor of g(t).

Theorem 1.3.4 (Streets-Tian [53]). Let (M,J, g(t)) be a compact pluriclosed flow on the

maximal interval [0, T ), T <∞. Then

lim
t→T

max{sup
M
|Ω(·, t)|2 , sup

M
|T (·, t)|2, sup

M
|∇T (·, t)|2} =∞ (1.7)

where Ω(t) and T (t) are the curvature and torsion, respectively, of the Chern connection of

the pair (g(t), J).

Remark 1. Streets-Tian have recently refined this result to show that in fact either the

torsion T or a potential function they call φ must blow up at a singular time [54].
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It is natural to ask whether finite-time singularities can be characterized more weakly.

For the Ricci flow, finite-time singularities are characterized by the blow-up of the Ricci

tensor:

Theorem 1.3.5 (Sesum [49]). Let (M, g(t)) be a compact mean Ricci flow on the maximal

interval [0, T ), T <∞. Then

lim
t→T

sup
M
|Ric|2 =∞ (1.8)

In the case of the mean curvature flow, we will establish that the tensor

Aij = Hαhijα (1.9)

which is a trace of the square of the second fundamental form, must blow up at the singular

time. The tensor A is important because it is the evolution of the induced metric g:

∂

∂t
gij = −2Aij (1.10)

That is, we will establish in Chapter 3 the following theorem:

Theorem 1.3.6. Let Ft : Mm → (N, h) be a compact mean curvature flow on the maximal

interval [0, T ). Then

lim
t→T

sup
M
|A|2 =∞ (1.11)

In case the singularity is mild, we can get even better characterizations of finite singular

times:
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Theorem 1.3.7 (Enders-Müller-Topping [16], Le-Sesum [38]). Let (M, g(t)) be a compact

Ricci flow on the maximal interval [0, T ), T <∞. Suppose the singularity is of type I. Then

lim
t→T

sup
M
|R(t)|2 =∞ (1.12)

where R(t) is the scalar curvature of g(t).

Note that R = tr Ric. The analogous quantity in mean curvature flow is trA = |H|2.

We will show in Chapter 3 that Theorem 1.3.7 also analogizes to the mean curvature flow:

Theorem 1.3.8. Let Ft : Mm → (N, h) be a compact mean curvature flow on the maximal

interval [0, T ). Suppose the singularity is of type I. Then

lim
t→T

sup
M
|H|2 =∞ (1.13)

Remark 2. Theorems 1.3.6 and 1.3.8, as well as Corollary 2.1.11, appear in [14]. Theorem

1.3.8 was independently established by Le-Sesum in [39].

1.3.3 Lagrangian Mean Curvature Flow

If the initial submanifold is a Lagrangian L : Σm → Cm, or more generally in a Calabi-Yau

manifold, then the mean curvature flow preserves the Lagrangian condition. Thus we may

consider how the Lagrangian geometry evolves under the flow. We are motivated to study

Lagrangian mean curvature flow as a method of obtaining and understanding obstructions

to minimal Lagrangians (called special Lagrangian submanifolds) which have a long history,

see e.g. [26] [47] [48] [58].
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Two natural classes of Lagrangians are zero Maslov class and monotone Lagrangians.

For embedded Lagrangians, these conditions relate to holomorphic discs whose boundary

lies in the Lagrangian submanifold. The relationship between mean curvature flow and

holomorphic discs has been explored by Groh-Schwarz-Smoczyk-Zehmisch [20].

Chen-Li established some basic properties of the tangent flows of Lagrangian mean cur-

vature flows [11]. Using this, Neves and Groh-Schwarz-Smoczyk-Zehmisch established the

following theorems:

Theorem 1.3.9 (Neves [42], Groh-Schwarz-Smoczyk-Zehmisch [20]). Suppose L : Σ ×

[0, T ) → Cm is a compact Lagrangian mean curvature flow which is initially monotone,

that is, [λ0] = C0[h0] where λ0 and h0 are the Liouville and Maslov forms of L(0).

If the singular time T < 1
2C0, then any tangent flow to L is a collection of minimal

Lagrangian cones.

Theorem 1.3.10 (Neves [41]). Suppose L : Σ × [0, T ) → Cm is a zero Maslov class La-

grangian mean curvature flow, T <∞. Then any tangent flow to L is a collection of minimal

Lagrangian cones.

Using the smooth blow-up, we are able to show that monotone and zero Maslov flows are

the only possibilities for singularities of the Lagrangian mean curvature flow:

Theorem 1.3.11. Suppose L : Σm × [0, T ) → (X2m,ω, J) is a compact Lagrangian mean

curvature flow in a Calabi-Yau manifold. If the singularity is of type I, then any smooth

blow-up is a monotone Lagrangian mean curvature flow. If the singularity is of type II, then

any smooth blow-up is a zero Maslov class Lagrangian mean curvature flow.
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Chapter 2

Singularity Models for the Mean

Curvature Flow

To understand singularities of the flow, we employ a rescaling technique. Given a mean

curvature flow F : M × [a, b] → Rm+n, a time t0 ∈ [a, b), and a point x0 ∈ Rm+n, and a

positive real number α, we can parabolically rescale F about (x0, t0) by α:

F̃ (p, s) = α

[
F

(
p, t0 +

s

α2

)
− x0

]
(2.1)

The map F̃ is a mean curvature flow from M into Rm+n, defined on the interval[
−α2(t0 − a), α2(b− t0)

)
.

We will consider sequences (αj, xj, tj), such that αj →∞, and try to take a limit of the

corresponding rescales F̃j . Hence we must establish compactness properties for immersions.

In particular, prove the following theorem:
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Theorem 2.0.12. Let Mm
k be smooth closed m-manifolds and (Nk, hk) smooth Riemannian

m+ n-manifolds such that
∣∣∣∇`Rm(Nk, hk)

∣∣∣ ≤ C`, 0 ≤ ` ≤ `0, and inj(Nk, hk) ≥ η > 0.

Suppose Fk : (Mk, pk) → (Nk, hk, xk) are a sequence of pointed immersions of Mk into

(Nk, hk) such that the second fundamental forms and their covariant derivatives are bounded

pointwise, i.e.
∣∣∣∇` IIk

∣∣∣ ≤ C`, 0 ≤ ` ≤ `0. Then there exist a C`0+1 m-manifold (M∞, p∞)

and a complete Reimannian manifold (N∞, h∞, x∞) such that:

1. M∞ admits an exhausting sequence W1 ⊂ W2 ⊂ · · · of relatively compact open sets

and embeddings φk : (Wk, p∞) ↪→ (Mk, pk), such that for any R > 0, the F∗k hk-metric

ball B(pk,R) is contained in φk(Wk) for all k ≥ k0(R)

2. N∞ admits an exhausting sequence V1 ⊂ V2 ⊂ · · · of relatively compact open sets and

embeddings ψk : (Vk, x∞) ↪→ (Nk, xk), such that for any R > 0, the hk-metric ball

B(xk,R) is contained in ψk(Vk) for all k ≥ k0(R)

3. ψ∗khk → h∞ on compact sets in the C`0+1,γ topology for any 0 ≤ γ < 1

4. φk(Wk) ⊂ ψk(Vk).

5. ψ−1
k
◦ Fk ◦ φk → F∞ on compact sets in the C`0+1,γ topology for any 0 ≤ γ < 1

6. (M∞, F∗∞h∞) is a complete Riemannian manifold

Here the C`0+1,γ topology is that given by isometrically embedding N∞ into some

Euclidean space RK and equipping M∞ with a background metric.

We will then use this theorem to establish a compactness theorem for mean curvature

flows and take limits of rescales (2.1).
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2.1 Compactness and the Second Fundamental Form

A celebrated theorem of Cheeger and Gromov states that families of Riemannian manifolds

with uniform C` bounds on the curvature tensor and a uniform lower bound on the injectivity

radius are precompact in a certain sense:

Theorem 2.1.1 (Cheeger-Gromov [21]). Let (Nk, hk, xk) be a sequence of complete pointed

Riemannian manifolds such that
∣∣∣∇`Rm(Nk, hk)

∣∣∣ ≤ C for each 1 ≤ ` ≤ `0 and inj(hk) ≥

η > 0. Then there is complete C`0+1 Riemannian manifold (N∞, h∞, x∞) such that

1. N∞ admits a sequence of relatively compact open sets V1 ⊂ V2 ⊂ · · · ⊂ N∞ which

exhausts N∞ and embeddings ψk : (Vk, x∞) ↪→ (Nk, xk), such that for each R > 0

the hk-metric ball B(xk,R) is contained in ψk(Vk) for all k ≥ k0(R)

2. ψ∗khk → h∞ in the C`0+1,γ topology on compact subsets of N∞, for any 0 ≤ γ < 1

This theorem has been used extensively in the theory of singularities of the Ricci flow [25].

Our goal in this section is to establish an analogous compactness theorem for Riemannian

immersions.

Given an immersion F : M → (N, h) of a compact m-manifold M , we may equip M

with a background Riemannian metric and isometrically embed (N, h) into some Euclidean

space RK . This allows us to consider the space C`(M,N) of C` maps from M to N . The

curvature of the image submanifold F (M) is invariant under reparametrization of M ; thus

bounds on the curvature of F (M) do not allow us to appeal directly to the Arzela-Ascoli

theorem for compactness of families of immersions F : M → N . In fact by composing with

a diffeomorphism of M , we may make any derivative of F arbitrarily large without changing

the extrinsic curvature. The content of the Theorem 2.0.12 is that this diffeomorphism-
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invariance can be corrected for in a way that allows us to use Arezela-Ascoli, albeit at the

cost of possible topological change.

We refer to convergence as in the conclusion of Theorem 2.0.12 as convergence in C`0+1,γ

in the geometric sense. We note that in case m = 0, Mk = {pk}, our theorem recovers the

Cheeger-Gromov theorem.

2.1.1 Langer Charts

The idea of the proof of the Theorem 2.0.12 is due essentially to Langer [35]. We will go over

the construction in detail for the case when the ambient manifold is Euclidean, and then

indicate how the construction can be extended to an arbitrary Riemannian manifold with

bounded geometry.

2.1.1.1 Euclidean Case

We begin by considering the case of the graph of a map f : Rm → Rn, as in [46]. We need to

compare the standard square-norm of certain objects, e.g.
∣∣∣D2f

∣∣∣2 =
∑

1≤α≤n
1≤i,j≤m

(
∂2fα
∂xi∂xj

)2
,

with the norms of the tensors II and ∇ II in the metric g induced by the immersion. To keep

the norms straight, in this section we use | · | for the standard square-norm and | · |g for the

norm in g:

|II|2g =hijαhklβg
αβgikgjl

|∇ II|2g =∇ihjkα∇phqrβg
ipgjqgkrgαβ

(2.2)

Lemma 2.1.2. Let f : Dmr → Rn be a C2 function on the disc of radius r. Then

∣∣∣D2f
∣∣∣2 ≤ (1 + |Df |2)3 |II|2g

13



where II is the second fundamental form of the graph of f .

Proof. The graph of f has immersion map F (x1, . . . , xm) = (x1, . . . , xm, f1, . . . , fn). We

use the following tangent and normal frames, where 1 ≤ i ≤ m and 1 ≤ α ≤ n:

ei =(0, . . . , 0, 1, 0, . . . , 0,
∂f1
∂xi

, . . . ,
∂fn
∂xi

) = (0, . . . , 0, 1, 0, . . . , 0, Dif)

να =(−∂fα
∂x1

, . . . ,− ∂fα
∂xm

, 0, . . . , 0, 1, 0, . . . , 0) = (−Dfα, 0, . . . , 0, 1, 0, . . . , 0)

(2.3)

These choices induce the metric on the tangent bundle of the graph, which we denote by

g with Latin indices:

gij = ei · ej = δij +Dif ·Djf (2.4)

We also get a metric on the normal bundle, which we denote by g with Greek indices:

gαβ = να · νβ = δαβ +Dfα ·Dfβ (2.5)

We will use gij to denote the inverse matrix to gij and gαβ to denote the inverse to gαβ .

We compute the second fundamental form. Note that D2F = (0, D2f). So we have

II(ei, ej) = proj⊥(D2F (ei, ej))

=(D2
ijF · νβ)gαβνα

=
∂2fβ

∂xi∂xj
gαβνβ

(2.6)

In components, hijα =
∂2fα
∂xi∂xj

.
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Then the norm-squared of the second fundamental form is

|II|2g =
∂2fα
∂xi∂xj

∂2fβ

∂xk∂xl
gαβgikgjl . (2.7)

We can think of |II|2g as the norm-squared of D2f in the metric g as opposed to the standard

metric. We will compare gαβ and gij to the standard metric by giving estimates for the

eigenvalues of gαβ and gij . To do this we estimate the eigenvalues of gij and gαβ .

Since gαβ = δαβ +Dfα ·Dfβ , we have that each eigenvalue λ of gαβ has

1 ≤ λ ≤ 1 + |Df |2 (2.8)

and similiarly the eigenvalues µ of gij are bounded by

1 ≤ µ ≤ 1 + |Df |2. (2.9)

Thus the eigenvalues of the inverse matrices gαβ and gij are bounded away from zero

and infinity:

1 ≥ λ−1 ≥ 1

1 + |Df |2

1 ≥ µ−1 ≥ 1

1 + |Df |2

(2.10)
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So we can estimate

|II|2g =
∂2fα
∂xi∂xj

∂2fβ

∂xk∂xl
gαβgikgjl

≥
∑

1≤α≤n
1≤i,j≤m

(
∂2fα
∂xi∂xj

)2
1

(1 + |Df |2)(1 + |Df |2)2

=
∣∣∣D2f

∣∣∣2 1

(1 + |Df |2)3

(2.11)

which establishes our lemma.

We may similarly bound the higher derivatives of f in terms of Df and the covariant

derivatives of II:

Lemma 2.1.3. For any ` ≥ 2, we can bound
∣∣∣D`f ∣∣∣ in terms of |Df |,

∣∣∣D2f
∣∣∣, . . ., |D`−1f |,∣∣∣∇`−2 II

∣∣∣
g

, and absolute constants depending on m, n, and `. In particular, the ` = 3 case

is ∣∣∣D3f
∣∣∣ ≤ (1 + |Df |2)2 |∇ II|g +

(
2

√
2m+ 4

√
mn+ n

) ∣∣∣D2f
∣∣∣2 |Df |

Proof. We will do the ` = 3 computation explicitly; the others are similar but more tedious.

As in the proof of Lemma 2.1.2, we start by estimating |∇ II|g below. To do this, we need

to compute the Christoffel symbols for the tangent and normal bundles. First we compute
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the tangential Christoffel symbols. We compute ∇eiej , the projection to the tangent space

of Deiej :

∇eiej = projT (Deiej)

= projT (
∂

∂xi
(0, . . . , 0, 1, 0, . . . , 0, Djf))

= projT ((0, D2
ijf))

=gkl((0, D2
ijf) · el)ek

=gkl(D2
ijf ·Dlf)ek

(2.12)

so Γkij = gkl(D2
ijf ·Dlf). Similarly to compute Γ

β
iα:

∇eiνα = proj⊥(Deiνα)

= proj⊥(
∂

∂xi
(−Dfα, 0, . . . , 0, 1, 0, . . . , 0))

= proj⊥(− ∂2fα
∂xi∂x1

, . . . ,− ∂2fα
∂xi∂xm

, 0)

=gβγ((− ∂2fα
∂xi∂x1

, . . . ,− ∂2fα
∂xi∂xm

, 0) · νγ)νβ

=gβγ(
∑
r

∂2fα
∂xi∂xr

∂fγ

∂xr
)

=gβγ(D2
i·fα ·Dfγ)νβ

(2.13)

so Γ
β
iα = gβγ(D2

i·fα ·Dfγ).
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Then |∇ II|2g is given by

|∇ II|2g =(
∂hjkα

∂xi
+ hlkαΓlij + hjlαΓlik + hjkβΓ

β
iα)

· (
∂hqrγ

∂xp
+ hlrγΓlpq + hqlγΓlpr + hqrδΓδpγ)gipgjqgkrgαγ

≥ 1

(1 + |Df |2)4
(
∂

∂xi
hjkα + hlkαΓlij + hjlαΓlik + hjkβΓ

β
iα)2

(2.14)

By (2.14) and Cauchy-Schwarz, we have

(1 + |Df |2)4 |∇ II|2g + 2
∣∣∣D3f

∣∣∣ |B| ≥ ∣∣∣D3f
∣∣∣2 (2.15)

where Bijkα = hlkαΓlij + hjlαΓlik + hjkβΓ
β
iα. It will suffice to bound |B| above. Our

estimates (2.10) for the eigenvalues of gij and gαβ imply
∣∣∣gij∣∣∣2 ≤ m and

∣∣∣gαβ∣∣∣2 ≤ n.

|B|2 =
∑

1≤α≤n
1≤i,j,k≤m

(hlkαΓlij + hjlαΓlik + hjkβΓ
β
iα)2

=
∑

1≤α≤n
1≤i,j,k≤m

(
∂fα

∂xl∂xk
gls(D2

ijf ·Dsf) +
∂fα

∂xj∂xl
gls(D2

ikf ·Dsf)

+
∂fβ

∂xj∂xk
gβγ(D2

i·fα ·Dfγ))2

≤ 2
∣∣∣D2f

∣∣∣2 ∣∣∣gij∣∣∣2 ∣∣∣D2f
∣∣∣2 |Df |2

+ 4
∣∣∣D2f

∣∣∣2 ∣∣∣gij∣∣∣ ∣∣∣gαβ∣∣∣2 |Df |2 +
∣∣∣D2f

∣∣∣2 ∣∣∣gαβ∣∣∣2 ∣∣∣D2f
∣∣∣2 |Df |2

≤
∣∣∣D2f

∣∣∣4 |Df |2(2m+ 4
√
mn+ n)

(2.16)
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Thus we have

∣∣∣D3f
∣∣∣2 ≤ (1 + |Df |2)4 |∇ II|2g +

(
2

√
2m+ 4

√
mn+ n

) ∣∣∣D3f
∣∣∣ ∣∣∣D2f

∣∣∣2 |Df | (2.17)

The claimed estimate for
∣∣∣D3f

∣∣∣ follows from this and the quadratic formula.

Next we want to realize any immmersion F : M → Rm+n as a collection of graphs over

discs.

We introduce the following notation and notions, following [35]. Given q ∈ M , denote

by Aq any Euclidean isometry which takes F (q) to the origin and TF (q)F (M) to the plane

{(x1, . . . , xm, 0)}. Let π be the projection of Rn+m to the plane {(x1, . . . , xm, 0)}. Define

the Langer chart at q Ur,q ⊂M to be the component of (π ◦Aq ◦F )−1(Dr) which contains

q.

We call F : M → Rn+m a (r, α)-immersion if for each q ∈ M there is some fq : Dmr →

Rn with Dfq(0) = 0 and |Dfq| ≤ α so that Aq ◦ F (Ur,q) = graph(fq).

Lemma 2.1.4. Let α > 0. Then for any C2-immersed submanifold F : Mm → Rn+m and

any r satisfying

r ≤ α(
1 + α2

)3/2

1

supM |II|g

F is a (r, α)-immersion.

Proof. Let q ∈ M be arbitrary. Every submanifold is locally a graph over its tangent

plane; thus Aq(F (Ur,q)) can be written as a graph over Dr for small enough r. So we
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set Sq = sup{r|F (Ur,q) = graph(fr,q)}. For any large K, if F (Ur,q) = graph(fr,q) and

|Dfr,q| ≤ K
2 , we can extend fr,q to have a larger domain and still |Df | ≤ K. Thus we have

lim
r→Sq

inf
f

sup
Dr
|Df | =∞ (2.18)

where the infimum is taken over all f with Df(0) = 0 of which AqF (Ur,q) is a graph. Thus

for our given α there exists some rq, fq : Drq → Rn with supDrq
|Dfq| = α. Now we use

the fundamental theorem of calculus and Lemma 2.1.2 to get

α = sup
Drq

|Dfq| ≤ r sup
Drq

∣∣∣D2fq

∣∣∣ ≤ rq

(
1 + α2

)3/2
sup
Drq

∣∣∣IIfq ∣∣∣g (2.19)

which implies that

rq ≥
α(

1 + α2
)3/2

1

supDrq

∣∣∣IIfq ∣∣∣g ≥
α(

1 + α2
)3/2

1

supM |II|g
. (2.20)

So for r less than the right-hand side of (2.20), there is some f : Dr → Rm+n of which

AqF (Ur,q) is the graph, with Df(0) = 0 and |Df | ≤ α.

We will also make use of the following lemma, which relates the Langer atlas to the

metric structure of (M,F∗dx2).

Lemma 2.1.5. Let α ≤
√

3. In a (r, α)-immersion F : Mm → Rm+n, for any 0 < ρ ≤ r
2 ,

` ∈ N, q0 ∈M , we have that any metric ball B(q0, `
ρ
2) ⊂M can be covered using at most K`

Langer charts U
p,
ρ
4

of radius
ρ
4 , such that p ∈ B(q0, `ρ), where K = K(m,α) is a constant

depending only on the dimension m and the constant α. Moreover, we can assume that if

20



`1 ≤ `2, the covering of B(q0, `2
ρ
2) in K`2 Langer charts of radius

ρ
4 contains the K`1

Langer charts used to cover B(q0, `1
ρ
2).

Proof. We proceed by induction. If ` = 2, we have B(q0, ρ) ⊂⊂ Uq0,ρ ⊂ Uq0,2ρ
. Since

ρ ≤ r
2, the projection of F (Uq0,2ρ

) to TF (q0)F (M) is the m-ball of radius 2ρ. Let K be the

number of m-balls of radius
ρ

4
√

1+α2
which can cover Dm2ρ. Each ball of radius

ρ

4
√

1+α2

is contained in the projection of some U
p,
ρ
4

, p ∈ Uq0,2ρ. Thus we have that B(q0, ρ) can be

covered by K Langer charts of radius
ρ
4. It is clear that the centers of these Langer charts

can be taken to lie in B(q0, ρ).

Now suppose B(q0, `
ρ
2) ⊂

⋃K`
i=1 Upi,

ρ
4

. Then B(q0, (`+ 1)
ρ
2) is contained in a

ρ
2 neigh-

borhood of
⋃K`
i=1 Upi,

ρ
4

. On the other hand, the
ρ
2 neighborhood of each U

pi,
ρ
4

is contained

in B(pi,
√

1 + α2ρ
4 +

ρ
2). Since α ≤

√
3, we have

B(q0, (`+ 1)
ρ

2
) ⊂

K`⋃
i=1

B(pi, ρ) (2.21)

Each term in the union on the right-hand side can, by the definition of K, be covered by K

Langer charts of radius
ρ
4, centered within distance ρ of one of the pi. This completes the

inductive step.

2.1.1.2 General Case

The general case of Lemma 2.1.2 is:
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Lemma 2.1.6. Let (Nm+n, h) a Riemannian manifold, x a point in N , y : Rm+n → (U, x)

a coordinate chart of N . If f : Dmr → Rn is a C2 function, then there exists C depending

on |Dy| and |D(y−1)| so that

∣∣∣D2f
∣∣∣2 ≤ C(1 + |Df |2)3 |II|2

where II is the second fundamental form of y(graph f).

Proof. Let II be the second fundamental form of graph f considered as a submanifold of

(Rm+n, y∗h). Then |II| =
∣∣II∣∣, so we will compute

∣∣II∣∣2 as in the proof of Lemma 2.1.2. We

will abuse notation and write h for y∗h. We will write gij for the metric induced on graph f

by h, and gαβ for the metric on the normal bundle of graph f with respect to h. We let θ

be the least eigenvalue of h and Θ the greatest eigenvalue of h.

The tangent bundle of graph f is spanned, as before, by

ei = (0, . . . , 0, 1, 0, . . . , 0, Dif)

So the induced metric is

gij =h(ei, ej)

=hij + h(Dif,Djf) + hpj
∂fp

∂xi
+ hiq

∂fq

∂xj

(2.22)
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and the eigenvalues µ = g(X,X) of gij are therefore bounded by

θ ≤ h(X,X) ≤ µ ≤ h(X,X)
(

1 + |Df |h + |Df |2h
)

≤ Θ

(
1 + Θ

1
2 |Df |+ Θ|Df |2

) (2.23)

where | · |h denotes the norm induced by h.

The normal bundle Nh is characterised by Nh = {X|h(X, ei)} = 0. Equivalently Nh =

h−1N
dx2, where N

dx2 is the normal bundle of the graph with respect to the standard

metric dx2 and we consider h as a bundle map over the identity h : TRm+n → TRm+n.

We may thus take a normal frame να = h−1(να). Then to compute the eigenvalues of the

normal metric gαβ , we consider X ∈ Rn with |X|2 = 1:

g(X,X) = gαβX
αXβ =h(να, νβ)XαXβ

=h(h−1(να), h−1(νβ))XαXβ

=να · h−1(νβ)XαXβ

=(−D(X · f), X) · y−1(−D(X · f), X)

=h−1((−D(X · f), X), (−D(X · f), X))

(2.24)

Thus we have

1

Θ
≤ g(X,X) ≤ 1

θ
(1 + |Df |2) (2.25)

Now just as in the proof of Lemma 2.1.2, we use (2.23) and (2.24) to bound the Hessian

of f in terms of
∣∣II∣∣, |Df |, and θ,Θ. The eigenvalues of h−1 are clearly controlled by |Dy|

and |Dy−1|.
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Similarly one can extend Lemma 2.1.3 to a general ambient manifold:

Lemma 2.1.7. Let (N, h), x, and y be as above. If f : Dmr → Rn is a C` function,

then we can bound
∣∣∣D`f ∣∣∣ in terms of |Df |, . . . ,

∣∣∣D`−1f
∣∣∣, ∣∣∣∇`−2 II

∣∣∣, |Dy|, . . . , ∣∣∣D`−1y
∣∣∣,

and
∣∣∣D(y−1)

∣∣∣ , . . . , ∣∣∣D`−1(y−1)
∣∣∣, where II and ∇ are the second fundamental form and

covariant derivative on y(graph f).

The proof of Cheeger-Gromov’s theorem involves the following proposition, which is

analogous to our Lemma 2.1.4. An exposition can be found in chapter 10, section 3 of [45].

Proposition 2.1.8. Suppose (Nm+n, h) is a Riemannian manifold with inj(N, h) ≥ η > 0

and
∣∣∣∇`Rm(N, h)

∣∣∣ ≤ C for 1 ≤ ` ≤ `0. Then there exist r0 and Q depending on

C, η, `0,m, n such that for any 0 < r ≤ r0, each x ∈ N admits a chart yx : (Ux, x) →

(Rm+n, 0) such that yx(Ux) contains Dm+n
r ⊂ Rm+n and such that |Dyx| , . . . ,

∣∣∣D`0+2yx

∣∣∣
and

∣∣∣D(y−1
x )

∣∣∣ , . . . , ∣∣∣D`0+2(y−1
x )

∣∣∣, and the derivatives of the transition maps are all bounded

by Q

Moreover we may take a subatlas with the property that the centers of the charts are some

definite 0 < δ ≤ r0
4 apart.

We refer to such an atlas as the Cheeger-Gromov atlas.

We are now ready to prove the version of Lemma 2.1.4 for a general ambient manifold.

Toward this end, given q ∈ M , r > 0, let the Langer chart Ur,q be the component of

F−1(yF (q)(π−1(Dmr ))) which contains q, where π : Rm+n → Rm is projection to the first

m coordinates.

Lemma 2.1.9. Let F : Mm → (Nm+n, h) be an immersion such that |II| ≤ C1, inj(N, h) ≥

η > 0, and |Rm(N, h)| ≤ C2. For any α > 0, there is r1 > 0 depending on C1, C2,m, n, α, η
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such that for any 0 < r ≤ r1, q ∈ M , y−1
F (q)

(F (Ur,q)) = graph f for some f : Dmr → Rn

with |Df | ≤ α.

Proof. Let α > 0, q ∈M be arbitrary. For small r, y−1
F (q)

(F (Ur,q)) is a graph over Dmr . So

let Sq be the supremum of such r. If Sq < r0, then the argument in the proof of Lemma

2.1.4 gives a lower bound on Sq depending only on α,C1, C2, and in particular independent

of q.

If Sq = r0, we can write y−1
F (q)

(F (Ur0,q)) as a graph of some f : Dmr0
→ Rn. If |Df | ≤ α,

we are done. If supDmr0
|Df | > α, there is some smaller disc Dmr with supDmr

|Df | = α;

then the argument in the proof of Lemma 2.1.4 gives a lower bound on Sq depending only

on α,C1, C2.

2.1.2 Proof of Theorem 2.0.12

2.1.2.1 Euclidean Case

We now prove the following theorem, which is the special case of Theorem 2.0.12 when

(Nk, hk) ≡ (Rm+n, dx2).

Theorem 2.1.10. Let Mm
k be a sequence of smooth m-manifolds. Suppose Fk : (Mk, pk)→

(Rm+n, 0) is an immersion of Mk into Rm+n such that the second fundamental forms IIk

and their covariant derivatives ∇` IIk are bounded pointwise, 1 ≤ ` ≤ `0. Then there exists

a smooth m-manifold (M∞, p∞) which admits a sequence of relatively compact open subsets

W1 ⊂ W2 ⊂ · · · which exhausts M∞ and embeddings φk : (Wk, p∞) ↪→ (Mk, pk) such that:

1. Fk ◦ φk subconverge in the C`0+1,γ topology for any 0 ≤ γ < 1 on compact subsets of

M∞ to some F∞ : (M∞, p∞)→ (Rm+n, 0).

25



2. For each R > 0, the metric ball Bk(pk,R) ⊂ (Mk,F
∗
k dx

2) is contained in φk(Wk) for

all k ≥ k0(R).

3. (M∞, F∗∞dx2) is a complete Riemannian manifold.

In case M∞ is compact we may take one of the Wk to be M∞ itself.

Before proving this theorem, we note that given Lemmas 2.1.4 and 2.1.5, the proof is

essentially finished already. This is because we have shown we can choose a parametrization,

at least on Langer charts of a definite positive size, in which each immersion is the graph a

function which has small first derivative and bounded higher derivatives; thus Arzela-Ascoli

guarantees convergence on each Langer chart. By passing to a subsequence we can add

Langer charts so that the convergence agrees on overlaps. The following merely formalizes

this argument.

Proof. Let α < 1
10, r given by the lemmas, and δ = r

10.

For each ` ∈ N, define

W`,k =
K`⋃
i=1

U
qi
k
,3δ4

(2.26)

where the qik are those points, given by Lemma 2.1.5, for which B(pk, `
δ
2) ⊂

⋃
U
qi
k
,δ4

. Let

Uik = U
qi
k
,δ

and Ũ ik = U
qi
k
,3δ4

.

Fix `. For each 1 ≤ i ≤ K`, |Fk(qik)| ≤ dk(qik, pk) ≤ `δ. Lemma 2.1.4 gives Euclidean

isometries Aik which take Fk(qik) to the origin and T
Fk(qi

k
)
Fk(Mk) to Rm × {0}. Since

these Euclidean isometries are bounded, a subsequence of them must converge, for each i,

to some Ai∞, which is a Euclidean isometry; moreover since there are finitely many i for a

fixed `, this convergence may be taken to be uniform in i. In particular the Aik are a Cauchy

sequence.
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Lemma 2.1.4 also produces fik : Dmδ → Rn so that graph fik = Aik ◦ Fk(Uik), so that∣∣∣Dfik∣∣∣ ≤ α and
∣∣∣D2fik

∣∣∣ ≤ (1 + α2
)3

2 C. Since the {Aik} are a Cauchy sequence, for k, k′

large enough depending on ε, Aik ◦ (Aik)−1 is ε-close to the identity on Rm+n. Thus we

may take k, k′ large enough that Ai
k′ ◦ (Aik)−1(graph fik|D3δ

4

) is a graph over D3δ
4

. For

any two indices i, j ≤ K` with Uik ∩ U
j
k

nonempty, we have that

A
j
k
◦ (Aik)−1(graph fik|π◦Ai

k
(Fk(Ui

k
∩Uj

k
))

) = graph f
j
k
|
π◦Aj

k
(Fk(Ui

k
∩Uj

k
))
. (2.27)

We can therefore take k, k′ large enough so that

Ai
k′ ◦ (A

j
k

)−1(graph f
j
k
|
π◦Aj

k
(Fk(Ũ i

k
∩Ũj

k
))

) (2.28)

is a graph over D3δ
4
∩ (π ◦ Aj

k′(Fk′(Ũ
i
k′ ∩ Ũ

j
k′))).

The previous paragraph allows us to choose k0(`) so that for any k, k′ ≥ k0, Fk(W`,k)

is a graph over F
k′(W`,k′). In particular, W`,k and W

`,k′ are diffeomorphic and we can

write W` unambiguously. We write φ`,k for the identification of W` with W`,k ⊂ Mk. By

construction, W` ⊂ W`+1. In fact, since the Mk are without boundary, for each W` we have

W` ⊂ W
`′ for some `′ > `. We therefore can pass to a subsequence so that W` ⊂ W`+1.

By construction it is clear that φ`+1,k|W`
= φ`,k, so we can pass to a diagonal sub-

sequence φk = φk,k : Wk ↪→ Mk. Setting M∞ =
⋃∞
k=1Wk, we have the claimed M∞

exhausted by the sequence {Wk}.

We now prove the convergence of Fk ◦ φk on compact sets in C`0+1,γ(M∞,Rm+n)

for any 0 ≤ γ < 1. Given a compact set C ⊂ M∞, C is contained in some WK .

Fk(φk(Wk)) = Fk(Wk,k) is a graph over Fk0
(Wk0,k0

) for k ≥ k0(`); moreover by con-
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struction the function of which it is a graph has first derivative bounded by 2α and higher

derivatives up to order `0 + 2 bounded by Lemma 2.1.3. Thus by Arzela-Ascoli, the Fk ◦φk

converge in C`0+1,γ(W`,R
m+n) for any 0 ≤ γ < 1. The limit maps F∞ : W` → Rm+n,

by construction, agree. So we have the claimed F∞ : M∞ → Rm+n. This completes the

proof of Theorem 2.1.10.

Remark 3. The Cheeger-Gromov charts given by Proposition 2.1.8 are exactly analogous

to the Langer charts Ur,q. The injectivity bound is used by Cheeger-Gromov to ensure these

charts can be taken to be of a definite size; here we are able to exploit, via Lemma 2.1.2, the

bound on II to achieve this purpose.

In fact we have

Corollary 2.1.11 (to the proof of Theorem 2.1.10). The injectivity radius of the induced

metric F∗h of an immersed submanifold F : M → (N, h) is bounded below:

inj(M,F∗h) ≥ C

supM |II|

where C depends on the injectivity radius of (N, h). In case (N, h) = (Rm+n, dx2), C =

1
2
√

2
.

Proof. We prove the Euclidean case; the general case is similar. Taking α = 1 and r given

by Lemma 2.1.4, we have for any q ∈ M that B(q, r) ⊂ Ur,q is a graph over the tangent

plane at F (q). Thus inj(q) ≥ r.
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2.1.2.2 General Case

The proof of Theorem 2.0.12 proceeds along the same lines as in Theorem 2.1.10, using the

lemmas in section 2.1.1.2 in place of those in section 2.1.1.1. M∞ is constructed as the union

of limits of Langer charts and N∞ is constructed as the union of limits of Cheeger-Gromov

charts.

Remark 4. We could prove convergence as above given good-enough integral bounds (Lp, p >

m) on the second fundamental form, as in [35]. In the first inequality of (2.19), we would

need to use the Sobolev inequality instead of the fundamental theorem.

2.2 Topological Finiteness Theorems

Before considering applications of Theorem 2.0.12 to the mean curvature flow, which is our

main purpose for it, we discuss in this section some topological finiteness theorems which

may be of independent interest.

We begin by relating C`,α geometric convergence in the sense of Theorem 2.0.12 to

convergence in the function space C`,α(M,N).

Proposition 2.2.1. Let {Mk} be a family of smooth m manifolds and {Nk} a family of

smooth m + n manifolds. If the Riemannian immersions Fk : (Mk, pk) → (Nk, hk, xk)

converge in C`,α in the geometric sense to F∞ : (M∞, p∞) → (N∞, h∞, x∞), with M∞

and N∞ compact, then ψ−1
k
◦ Fk ◦ φk converge to F∞ in C`,α(M∞, N∞).

Proof. Since M∞ and N∞ are compact, M∞ = Wk and N∞ = Vk in the tail of the

sequence; thus it makes sense to consider ψ−1
k
◦Fk ◦φk in C`,α(M∞, N∞). Then Theorem

2.0.12 gives the result.
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The implicit function theorem gives the following, which says that the set of immersions

which are regularly homotopic to a given immersion is open in C1,α.

Proposition 2.2.2. Let Mm,Nm+n be smooth compact manifolds, F ∈ C1,α(M,N) an

immersion. Then there is ε(F ) > 0 such that ||G − F ||
C1,α ≤ ε implies that G is an

immersion, which is regular-homotopic to F through C1,α immersions.

In particular, the intersection of C1,γ(M,N) with each regular-homotopy class is open

in C1,γ(M,N).

We now apply Theorem 2.0.12 and Propositions 2.2.1 and 2.2.2 to obtain a topological

finiteness theorem, somewhat analogous to the results in Cheeger’s thesis [8]. We make the

following definitions to allow us to state the finiteness theorem.

Definition 2.2.1. Two immersions F,G : M → N are conjugate regular homotopic if there

exist diffeomorphisms φ : M →M and ψ : N → N so that ψ−1◦F ◦φ is regular isotopic to G.

Two embeddings F,G : M ↪→ N are conjugate ambient isotopic if there exist diffeomorphisms

φ, ψ so that ψ−1 ◦ F ◦ φ is ambient isotopic to G.

Theorem 2.2.3. Consider the class F of immersions F : M → (N, h) which satisfy, for

some C1, C2, C3, C4, η,

• vol(N, h) ≤ C1, inj(N, h) ≥ η, |Rm(N, h)| ≤ C2

• vol(M,F∗h) ≤ C3, |II(F (M), h)| ≤ C4

Then there are finitely many diffeomorphism types of M , finitely many diffeomorphism types

of N , and finitely many conjugate regular homotopy classes of F represented in F .
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Proof. For any immersion satisfying the hypothesized bounds, (M,F∗h) is a Riemannian

manifold with bounded curvature, volume, and by Corollary 2.1.11, injectivity radius. It fol-

lows from a standard Riemannian argument that each such (M,F∗h) has bounded diameter.

Cheeger’s theorem states that there are finitely many diffeomorphism types of such M .

So we restrict our attention conjugate regular homotopy classes of immersions from some

M0 into some N0. Then the proof of Theorem 2.0.12 allows us to reparametrize F as a (r, α)

immersion; in particular, the reparametrized F is bounded in C0 by the diameter bound,

bounded in C1 since it is a (r, α)-immersion, and bounded in C2 by the assumed bound on

the second fundamental form.

That is, up to reparametrization the class F is bounded in C2(M0, N0). Hence it is

compact in C1,γ(M0, N0) for any 0 ≤ γ < 1. On the other hand, each regular homotopy

class is open in C1,γ(M0, N0). The theorem follows.

By fixing a target manifold, we get a finiteness theorem for regular homotopy classes up

to parametrization of the domain:

Theorem 2.2.4. For any compact Riemannian manifold (N, h), let F(N,h) be the class of

immersions F : M → (N, h) which satisfy vol(F (M)) ≤ C1, |II(F (M))| ≤ C2. There are

finitely many regular homotopy classes, up to parametrization of the domain, represented in

F(N,h).

To state Theorem 2.2.3 in a manner more topologically useful, we fix the diffeomorphism

type of M and state the contrapositive to obtain:

Theorem 2.2.5. Let C = {ci} be a collection of regular homotopy classes of maps F : M →

(N, h), up to diffeomorphism of M . If C is infinite, then there is no choice of immersed

representatives Fi ∈ ci which satisfies vol(Fi(M)) ≤ C1,
∣∣II(Fi(M))

∣∣ ≤ C2.
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Similarly, we may prove finiteness theorems for ambient isotopy classes of embeddings

F : M ↪→ (N, h). Since embeddedness is fragile, we require uniformity in the following sense:

Definition 2.2.2. The embedding constant of an immersion F : M → (N, h) is

κ(F ) = sup
p,q∈M

dg(p, q)

dh(F (p), F (q))
(2.29)

where dg is the distance function on M induced by g = F∗h and dh is the distance function

on N induced by h.

F is an embedding if and only if κ(F ) is finite. F is totally geodesic if and only if

κ(F ) = 1.

Proposition 2.2.6. Let Mm be a smooth compact manifold, F ∈ C1,α(M,N) an embed-

ding. Then there is ε(F ) > 0 such that ||G − F ||
C1,α ≤ ε implies that G is an embedding

which is ambient-isotopic to F .

In particular, the intersection of C1,α(M,N) with each ambient isotopy class is open in

C1,α(M,N).

Proof. The proof is the same as that of Proposition 2.2.2, since an immersion which is locally

ambient isotopic to an embedding must be an embedding which is ambient isotopic.

Theorem 2.2.7. Consider the class Femb of embeddings F : M → (N, h) which satisfy, for

some C1, C2, C3, C4, C5, η

• vol(N, h) ≤ C1, inj(N, h) ≥ η, |Rm(N, h)| ≤ C2

• vol(M,F∗h) ≤ C3, |II(F (M), h)| ≤ C4, κ(F ) < C5
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Then there are finitely many diffeomorphism types of M , finitely many diffeomorphism types

of N , and finitely many conjugate ambient isotopy classes of F represented in Femb.

Proof. The only difference between the proof of this theorem and Theorem 2.2.3 is we must

assume the embeddings are uniform so that the class Femb will be closed.

Similarly, there are ambient-isotopy versions of Theorems 2.2.4 and 2.2.5.

To conclude this section, we give examples of infinite collections of homotopy classes

which have immersive representatives. First consider M = T2, N = T5. By Whitney’s

theorem, every map F : M → N is homotopic to an immersion. Moreover, since T2 and T5

are Eilenberg-Maclane spaces, we have [M,N ] = Hom(Z2,Z5).

Similarly, we may consider two hyperbolic manifolds Mm = Hm/Γ, Nn = Hm+n/Λ,

where Γ is a lattice in SO(m, 1) and Λ is a lattice in SO(m + n, 1). If n ≥ m, Whitney’s

theorem says that every map from M to N is homotopic to an immersion. The homotopy

classes of maps from M to N are given by Hom(Γ,Λ). Γ and Λ can be chosen so that

Hom(Γ,Λ) is infinite.

Or consider the case of a simply-connected four-manifold X with non-torsion H2(X). By

the theorem of Hurewicz, |π2(X)| =∞; Theorem 2.2.5 says that in order to realize each one

of these classes, the immersion must be allowed to have either arbitrarily large volume or

arbitrarily large curvature.

We also note that in the case M = S1 and N is closed, every homotopy class admits a

geodesic representative, so our finiteness theorems imply that for each L > 0 there are at

most finitely many distinct homotopy classes whose (shortest) geodesic representatives have

length less than L.

33



2.3 Singularity Models

We now use Theorem 2.0.12 to construct singularity models for compact mean curvature

flows F : M × [0, T )→ (N, h).

First we state a compactness theorem for mean curvature flows, which follows directly

from Theorem 2.0.12:

Theorem 2.3.1. Suppose that Fj : Mj × [α, ω] → (Nj, hj) are compact mean curvature

flows such that
∣∣∣IIj(t)

∣∣∣ ≤ C for all j and all t ∈ [α, ω] and
∣∣∣∇` IIj(0)

∣∣∣ ≤ C` for each `, and

such that (Nj, hj) have uniformly bounded geometry. Then there is a mean curvature flow

F∞ : M∞ × [α, ω]→ (N∞, h∞) such that for each t ∈ [α, ω], Fj(t) subconverges in C` in

the geometric sense to F∞(t), for any `; moreover this convergence is uniform in t.

Proof. By the smoothness estimate for the mean curvature flow, the uniform bound on the

second fundamental form gives uniform bounds on all its derivatives as well. Thus at each t ∈

[α, ω], we may apply Theorem 2.0.12 to get M∞(t), F∞(t), and (N∞(t), h∞(t)). The time-

derivatives ∂`

∂t`
Fj are, by the flow equation, uniformly bounded; thus F∞(t) : M∞(t) →

(N∞(t), h∞(t)) are a smooth one-parameter family. Moreover, the construction of M∞(t)

and (N∞(t), h∞(t)) and the maps φj and ψj relies only on the curvature and injectivity

bounds, which are uniform, so we may take M∞, (N∞, h∞), and φj, ψj independent of

time.

It is clear that F∞ : M∞× [α, ω]→ (N∞, h∞) is a mean curvature flow.
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2.3.1 The Smooth Blow-up

Now suppose that F : M × [0, T )→ (N, h) is a compact mean curvature flow, (pj, tj) are a

sequence of points and times (the central sequence), and αj ↗∞ are a sequence of positive

numbers such that lim supj

supM×[0,tj ]|II|
αj

<∞. Then the rescales

F̃j(s) : F (tj +
s

Q2
j

)→ (N,α2
jh, F (pj, tj)) (2.30)

form a sequence as in Theorem 2.3.1 for any [α, ω] ⊂ (−α2
j tj, 0]. Note that if the geometry

of (N, h) is bounded, then the Cheeger-Gromov limit of (N,α2
jh, F (pj, tj)) is (Rm+n, dx2).

To construct models for the singularities of the mean curvature flow, we must correctly

pick the central sequence (pj, tj) and the scale factors αj . The choices we make are inspired

by those used by Hamilton for the Ricci flow [12] [25].

The construction depends on how severe the singularity is.

Proposition 2.3.2. For any compact mean curvature flow F : M × [0, T ) → (N, h) with

singular time T <∞ we have

max
M
|II(·, t)| ≥ C√

T − t
(2.31)

where the constant C depends on the initial submanifold M0.

The blow-up rate (2.31) is that of a shrinking sphere or cylinder; it represents the mildest

sort of singularity that the MCF can encounter. We define

Definition 2.3.1. The mean curvature flow F : M × [0, T ) → (N, h) achieves a type I

singularity at T if

sup
M×[0,T )

|II|2 (T − t) <∞
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Otherwise we say the singularity is of type II.

First consider the case of a type II singularity. For any sequence t̃j ↗ T , let pj ∈M be

such that

(t̃j − tj)
∣∣∣II(pj, tj)

∣∣∣2 = max
M×[0,t̃j ]

(t̃j − t) |II(p, t)|
2 (2.32)

Set Qj =
∣∣∣II(pj, tj)

∣∣∣. By the type II assumption, (t̃j − tj)Q2
j → ∞, so for any t there is j

large enough that t ∈ (−Q2
j tj, (t̃j − tj)Q2

j ). For such j, we compute

∣∣∣IIj(p, t)
∣∣∣2 = Q−2

j

∣∣∣∣∣∣II(p, tj +
t

Q2
j

)

∣∣∣∣∣∣
2

≤ Q2
j

(t̃j − tj)
∣∣∣II(pj, tj)

∣∣∣2
t̃j − (tj + t

Q2
j

)

=
(t̃j − tj)Q2

j

(t̃j − tj)Q2
j − t

(2.33)

The right-hand side of this inequality approaches 1 as j → ∞, hence is bounded by a

continuous function of t. Therefore we may apply Theorem 2.3.1 to the Fj to extract a limit

mean curvature flow F∞.

If the singularity is of type I, we pick tj = t̃j and pj so that Qj =
∣∣∣II(pj, tj)

∣∣∣ =

maxM×[0,tj ] |II|. Then Qj →∞.

Since M is compact, in either case we have that, after passing to a subsequence, pj → p.

We choose the rescales F̃j about the central sequence (p, tj).

F̃j(s) = F (tj +
s

Q2
j

)→ (N,Q2
jh, F (p, tj)) (2.34)
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In the type I case, each F̃j has second fundamental form bounded by 1 on the interval

[−Q2
j tj, 0]. In the type II case, F̃j has second fundamental form bounded by 1 on the interval

[−Q2
j tj, Q

2
j (t̃j − tj)]

Theorem 2.3.3. The geometric limit of the rescaled sequence (2.34) is mean curvature flow

F∞ : M∞ × (−∞, C) → Rm+n. Here C = 0 if the singularity is of type I and C = ∞ if

the singularity is of type II.

Moreover, we have |II∞(p∞, 0)| = 1.

Proof. Note that since (N, h) has bounded geometry, the Cheeger-Gromov limit of (N,Q2
jh)

is (Rm+n, dx2).

The only thing left to prove is that |II∞(p∞, 0)| = 1. For a fixed k, notice that the

rescaled metric gk(0) = F∗tk
(Q2
kh) is a metric on M . Let Bk denote the metric ball in

the metric gk(0). Since pj → p, we have that for any R > 0, pj ∈ Bk(p,R) for all

j ≥ j0(k,R). By geometric convergence the metrics {gj(0)} have the Cauchy property that

Bk(p,R) ⊂ Bj(p, 2R).

On the other hand, pj is a point where
∣∣∣IIj(pj, 0)

∣∣∣ = 1. Thus in the tail of the sequence

there is a point of curvature 1 within 2R of p. This condition clearly persists to the limit,

so there is a point of curvature 1 within 2R of p∞. But R was arbitrary, so letting R → 0

we see that |II∞(p∞, 0)| = 1.

We refer to the MCF F∞ : M∞×(−∞, C)→ Rm+n as a smooth blow-up of the original

flow F : M × [0, T )→ (N, h).

Though we have stated the construction of the smooth blow-up for compact mean cur-

vature flows, note that the construction will also work provided the singularity is of compact

type:
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Definition 2.3.2. We say that a mean curvature flow F : M × [0, T ) → (N, h) has a

compact-type singularity at T <∞ if:

• limt→T supM |II(t)| =∞

• For any tj ↗ T , there exist pj with
∣∣∣II(pj, tj)

∣∣∣ = supM×[0,tj) |II| and pj → p

Remark 5. In general smooth blow-ups are nonunique, since Theorem 2.3.1 only gives

subsequential convergence.

Remark 6. The diffeomorphisms φk in the construction of the smooth blow-up amount

to choosing the “correct” parametrization of regions of the domain submanifold M which

are becoming singular. Huisken-Sinestrari, in order to carry out their surgery theorem,

explicitly construct such a parametrization of the singular region by means of a nearby

shrinking cylinder [31]. The import of Theorem 2.3.1 is that such a parametrization can

always be found.

2.3.2 Comparison to the Tangent Flow

The smooth blow-up is inspired Hamilton’s idea for singularity models for the Ricci flow

[12]. In previous literature on the mean curvature flow, singularities have been understood

using a rescaling procedured called the tangent flow, which we now describe.

To produce a tangent flow, we work in the category of Brakke flows, i.e. one-parameter

families of integral currents which are locally maximally area-decreasing [5] [33]. A mean

curvature flow is, a fortiori, a Brakke flow. We have the following theorem due to Brakke,

which follows from the compactness theorem for integral currents of Federer-Fleming.
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Theorem 2.3.4 (Brakke, [5]). Let Tk(t) be a sequence of Brakke flows on [α, ω]. Then Tk(t)

subconverge as integral currents to a Brakke flow T∞(t) on [α, ω].

Given a compact mean curvature flow Ft : M × [0, T ) → Rm+n, there is some point

x0 ∈ Rm+n such that limt→T F (p, t) = x0 for some p ∈ M with limt→T |II(p, t)| = ∞.

We say that the singularity of the flow occurs at x0. If tj ↗ T and Qj = supM×[0,tj ] |II|,

we define

Fj(p, s) = Q2
j

F
p, T +

s

Q2
j

− x0

 (2.35)

and call a subsequential Brakke flow limit of Fj a tangent flow with center (x0, T ) of the

original flow Ft.

The primary advantage of using the tangent flow construction is that all Brakke flows

that arise as tangent flows satisfy an elliptic equation called the self-shrinker equation.

Definition 2.3.3. Given a mean curvature flow M(t) and any (x0, t0) ∈ Rm+n × R, we

define Huisken’s monotonic quantity

ΘM,x0,t0
(t) =

∫
M(t)

(4π(t0 − t))
−m2 e

−|x−x0|2
4(t0−t) dHm (2.36)

Theorem 2.3.5 (Huisken [27]). Huisken’s monotonic quantity is monotone along a smooth

mean curvature flow. In particular it satisfies:

d

dt
ΘM,x0,t0

(t) = −
∫
M(t)

∣∣∣∣H +
1

2(t0 − t)
(x− x0)⊥

∣∣∣∣2 (4π(t0 − t))
−m2 e

−|x−x0|2
4(t0−t) dHm

here (x− x0)⊥ is the projection of the vector x− x0 to the normal bundle of M .
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Flows for which Θ is constant are called self-shrinking. In fact the mean curvature flow

with intial data satisfying the elliptic equation

H = αx⊥ (2.37)

for some α < 0 are necessarily self-shrinking; we call a submanifold, or more generally an

integral current, satisfying (2.37) a self-shrinker. We have the following theorem:

Theorem 2.3.6 (Huisken [27]). Any tangent flow to a mean curvature flow is a self-shrinking

flow.

The self-shrinking condition imposes fairly strong restrictions, as in the following theorem:

Theorem 2.3.7 (Huisken [28]). A smooth mean-convex self-shrinking hypersurface must be

one of the following:

• a round sphere

• a round cylinder

• Γ× Rm−1, where Γ is one of the Abresch-Langer curves [1]

Huisken [27] showed that in the type I case, the tangent flow construction in fact yields

a smooth limit. We now show that this construction is the same as the smooth blow-up.

Proposition 2.3.8. Suppose that Ft : M × [0, T ) → Rm+n is a compact mean curvature

flow with type I singularity at T . Then the smooth blow-up of Ft is a self-shrinking flow.

Proof. The proof is the same as the proof of Theorem 2.3.6, with the necessary changes

enabled by the type I assumption.
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Given the central sequence {(p, tj)}, set xj = F (p, tj). Then there is a subsequential

limit x0 = limj xj . We compute:

|xj − x0| =

∣∣∣∣∣∣
∫ T

tj
H(p, s)ds

∣∣∣∣∣∣
≤
∫ T

tj
|H(p, s)|ds

≤
∫ T

tj
C(T − s)−

1
2ds

=C(T − tj)
1
2 ≤ C′

Qj

(2.38)

Thus {Qj(x0−xj)} is a bounded sequence, so that again passing to a subsequence, we have

some x = limj Qj(x0 − xj).

Set αj = Q2
j (T − tj). Then each Mj exists on (−Q2

j tj, αj). By the type I assumption,

we can pass to a subsequence so that the limit limj αj = C exists. We consider Huisken’s

monotonic quantity centered at (x,C):

ΘM∞,x,C(s) =

∫
M∞(s)

(4π(C − s))−
m
2 e
− |x−x|

2

4(C−s)dHm (2.39)
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Given any −Q2
j tj < a < b < αj and a compact set K ⊂ Rm+n, we have by the scaling

properties of Huisken’s quantity:

∫ b

a

∫
Mj(s)∩K

∣∣∣∣∣∣H +
(x−Qjx0)⊥

2(αj − s)

∣∣∣∣∣∣
2

(4π(αj − s))
−m2 e

−
|x−Qjx0|2

4(αj−s) dHmds

=

∫ tj+ b
Q2
j

tj+ a
Q2
j

∫
M(t)∩(Q−1

j K+xj)

∣∣∣∣∣H +
(x− x0)⊥

2(T − t)

∣∣∣∣∣
2

(4π(T − t))−
m
2 e
−|x−x0|2

4(T−t) dHmdt

(2.40)

We can estimate the right-hand side of (2.40) by integrating over all of M(t) and applying

Theorem 2.3.5:

∫ tj+ b
Q2
j

tj+ a
Q2
j

∫
M(t)∩(Q−1

j K+xj)

∣∣∣∣∣H +
(x− x0)⊥

2(T − t)

∣∣∣∣∣
2

(4π(T − t))−
m
2 e
−|x−x0|2

4(T−t) dHmdt

≤
∫ tj+ b

Q2
j

tj+ a
Q2
j

∫
M(t)

∣∣∣∣∣H +
(x− x0)⊥

2(T − t)

∣∣∣∣∣
2

(4π(T − t))−
m
2 e
−|x−x0|2

4(T−t) dHmdt

= ΘM,x0,T
(tj +

a

Q2
j

)−ΘM,x0,T
(tj +

b

Q2
j

)

(2.41)

Since tj + a
Q2
j

and tj + b
Q2
j

both approach T as j →∞, we have by Theorem 2.3.5 that the

right-hand side of (2.41) goes to 0 as j →∞.

On the other hand, the left-hand side of (2.40) approaches

∫ b

a

∫
M∞(s)∩K

∣∣∣∣∣H +
(x− x)⊥

2(C − s)

∣∣∣∣∣
2

(4π(C − s))−
m
2 e
− |x−x|

2

4(C−s)dHmds (2.42)
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Since K, a, and b were arbitrary we have that for almost every s and almost every

x ∈ M∞(s) that

∣∣∣∣∣H +
(x−x)⊥
2(C−s)

∣∣∣∣∣
2

= 0. Thus M∞ is a self-shrinking flow with center

(x,C).

We therefore have the following characterization of singularity types in case (N, h) =

(Rm+n, dx2).

Corollary 2.3.9. The singularity of a compact mean curvature flow Ft : M → Rm+n is of

type I if and only if it admits a smooth blow-up which becomes extinct in finite time.

If the singularity of the flow F : M × [0, T ) → Rm+n is of type II, its tangent flow

is expected to have singularities. In particular, as shown by examples of Neves [42], it is

possible that a tangent flow can consist of a union of (non smooth) minimal Lagrangian

cones. In this case, it is unclear in what sense the tangent flow approximates the developing

singularity of the flow F . However, such an approximation is essential for a surgery theorem

as in Hamilton’s program for the Ricci flow. Note, by contrast, that the smooth blow-

up approximates the developing singularity in the C∞ sense. This is precisely the sort

of approximation that Huisken-Sinestrari use to prove their surgery theorem for 2-convex

hypersurfaces.

Colding-Minicozzi have a program to understand mean curvature flows of surfaces im-

mersed in R3 using the tangent flow [13]. Instead of surgering near singular times, they flow

to the singular time and jump to a “nearby” Brakke flow constructed using the tangent flow.

Their aim is to establish that, for generic initial data, this nearby Brakke flow is in fact a

smooth mean curvature flow, and moreover that Huisken’s quantity does not increase in the

jump. This project is ongoing.
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Remark 7. Baker’s thesis [4] contains many of the same ideas as this chapter, including a

construction essentially equivalent to the smooth blow-up. We first became aware of these

results in May 2011.

A compactness theorem for immersions, quite similar to our Theorem 2.1.10, is attributed

by Baker in his thesis [4] to Breuning. Breuning’s result requires an additional hypothesis,

called the local volume bound, which allows a more direct application of Langer’s approach

in [35]. Our Lemma 2.1.5 allows us to avoid this consideration.
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Chapter 3

Characterizing the Singular Time

In this chapter we prove Theorems 1.3.6 and 1.3.8. The proof is based on Sesum’s proof of

Theorem 1.3.5.

We will use the singularity models constructed in the last chapter and the following

lemmas concerning one-parameter families of Riemannian metrics:

Lemma 3.0.10 (Glickenstein [18]). Suppose a one-parameter family of complete Riemannian

manifolds (M, g(t)) is uniformly continuous in t, that is, for any ε > 0 there is δ > 0 so that

for any t0, (1− ε)g(t0) ≤ g(t) ≤ (1 + ε)g(t0) for t ∈ [t0, t0 + δ]. Then for any p ∈M , r > 0,

the metric balls centered at p satisfy:

Bg(t0)

(
p,

r√
1 + ε

)
⊆ Bg(t)(p, r) ⊆ Bg(t0)

(
p,

r√
1− ε

)
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Proof. Let p, q ∈M . Let γ : [0, S]→M be a minimising geodesic from p to q for the metric

g(t0). Then the distance dg(t0)(p, q) in the metric g(t0) satisfies

dg(t0)(p, q) =

∫ S

0
|γ̇|g(t0)(s)ds

≥ 1√
1 + ε

∫ S

0
|γ̇|g(t)(s)ds

≥ 1√
1 + ε

dg(t)(p, q)

(3.1)

This immediately implies

Bg(t0)

(
p,

r√
1 + ε

)
⊂ Bg(t)(p, r). (3.2)

The other inclusion is analogous.

Lemma 3.0.11 (Hamilton [23]). Let (M, g(t)) be a one-parameter family of compact Rie-

mannian manifolds defined for t ∈ [0, T ). Suppose that

∫ T

0
max
Mt

∣∣∣∣∂g∂t
∣∣∣∣
g(t)

dt <∞

Then the metrics g(t) are uniformly equivalent and converge pointwise as t → T to a con-

tinuous positive-definite metric g(T ).

We will be considering volumes of metric balls, so we state the following evolution equa-

tion:

Lemma 3.0.12. The evolution of the volume form dvolt of the induced metric g(t) of a

mean curvature flow is

∂

∂t
dvolt = −|H|2 dvolt
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3.1 Proof of Theorem 1.3.6

Proof of Theorem 1.3.6. Suppose, for the purpose of contradiction, that Ft : Mm → (N, h)

is a mean curvature flow of compact submanifolds on the maximal interval [0, T ), and |A| ≤ C

all along the flow.

First note that since |A| is bounded, and |A| has scaling degree -2, any smooth blow-up

F∞ : M∞ → Rm+n for the flow will necessarily have A ≡ 0, hence |H|2 = trA = 0. That

is, the smooth blow-up is a minimal submanifold, and in particular is stationary in time.

Thus we work at time s = 0. Denote the pullback metric F∗∞ dx2 by g∞

We will consider the volume growth of metric balls in (M∞, g∞) to obtain a contradic-

tion. Let us use the following conventions for balls and volumes. B∞(ρ) will denote the

metric ball in g∞ centered at p∞; Bj(ρ) will denote the metric ball in Fj(0)∗(dx2) centered

at pj ; Btj
(ρ) will denote the metric ball in F∗tj

(dx2) centered at pj . vol∞ will denote the

volume form of g∞; volj will denote the volume form of Fj(0)∗(dx2); voltj
will denote the

volume form of F∗tj
(dx2). Note that

Bj(ρ) = Btj

(
ρ

Qj

)

volj = Qmj voltj

(3.3)
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We have, for any r > 0

vol∞ (B∞(r))

rm
= lim

j

volj

(
Bj(r)

)
rm

= lim
j

voltj

(
Btj

(
r
Qj

))
(
r
Qj

)m
(3.4)

The evolution of g is

∂tgij = −2Aij
(3.5)

so we have |∂tg| ≤ C, and in particular g is uniformly continuous in time in the sense of

Lemma 3.0.10.

Thus we may apply Lemma 3.0.10 to estimate the metric balls at any time tj by the

metric ball at time tj0
, so long as tj − tj0 ≤ δ. Since tj → T , we can pick a j0 so that this

condition holds for all j ≥ j0. So we can estimate (3.4) by:

lim
j

voltj

(
Btj

(
r
Qj

))
(
r
Qj

)m ≤ lim
j

voltj

(
Btj0

(
r√

1−εQj

))
(
r
Qj

)m (3.6)

The evolution of the volume form shows that the flow is pointwise volume-reducing. So

voltj
≤ voltj0

for j ≥ j0. Thus we can estimate (3.6) by
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lim
j

voltj

(
Btj0

(
r√

1−εQj

))
(
r
Qj

)m ≤ lim
j

voltj0

(
Btj0

(
r√

1−εQj

))
(
r
Qj

)m

= (1− ε)−
m
2 lim

j

voltj0

(
Btj0

(
r√

1−εQj

))
(

r√
1−εQj

)m
. (3.7)

The only dependence of the right hand side on j is in the Qj .

The limit on the right hand side of (3.7) is the local volume comparison at pj0
for the

Riemannian manifold

(
M,F∗tj0

(dx2)

)
. It is well-known that this limit is ωm, the volume

of the Euclidean unit m-ball. Therefore we have

vol∞(B∞(r))

rm
≤ (1− ε)−

m
2 ωm (3.8)

Since ε was arbitrary, we have shown vol∞(B∞(r)) ≤ ωmr
m.

To show the reverse inequality, we make a similar argument starting from (3.4), this time

using the first inclusion of Lemma 3.0.10. We now seek to estimate voltj
below by voltj0

.

Since we have assumed |H| ≤ C, the evolution of vol implies that

voltj
≥ e
−C2(tj−tj0)

voltj0
(3.9)
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and taking j0 large enough we may ensure that e
−C2(tj−tj0)

≥ 1−ε. Then we can estimate

(3.4) by

lim
j

voltj

(
Btj

(
r
Qj

))
(
r
Qj

)m ≥ lim
j

(1− ε) (1 + ε)
−m2

voltj0

(
Btj0

(
r√

1+εQj

))
(

r√
1+εQj

)m (3.10)

Again we can take the limit in j to get

vol∞(B∞(r))

rm
≥ (1− ε)(1 + ε)

−m2 ωm (3.11)

Since ε was arbitrary we have shown

vol∞(B∞(r)) ≥ ωmr
m (3.12)

Now we are ready to obtain the contradiction. Since F∞ is a minimal immersion with

|II(p∞)|2 = 1, we have by Gauss’s equation that the scalar curvature R(p∞) is given by

R(p∞) = |H(p∞)|2 − |II(p∞)|2 = −1 (3.13)

On the other hand, the scalar curvature at p∞ is related to the volume growth of balls

centered at p∞ [17]:

vol∞(B∞(r)) = ωmr
m
(

1− R∞(p∞)

6(m+ 2)
r2 +O(r3)

)
(3.14)
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Equation (3.14), together with (3.12), implies that R∞(p∞) = 0, which is our desired

contradiction.

3.2 Proof of Theorem 1.3.8

We now prove Theorem 1.3.8. In fact we can prove that H must blow up under a slightly

more-general condition than type I, namely that

|II(t)|p (T − t) ≤ C for some p > 1 (3.15)

It is unknown, however, whether there are examples of mean curvature flows which satisfy

estimate (3.15) but which are not of type I.

Theorem 3.2.1. Let Ft : Mm → (N, h) be a compact mean curvature flow on the maximal

interval [0, T ) satisfying (3.15). Then

lim
t→T

sup
M
|H|2 =∞

Proof. We want to emulate the proof of Theorem 1.3.6. Suppose |H| ≤ C all along the flow.

Then as before, the smooth blow-up F∞ is a minimal immersion.

Condition (3.15), together with the bound on |H|, implies that

∫ T

0
max

∣∣∣∣ ∂∂tg
∣∣∣∣ ds =2

∫ T

0
max |A|ds

≤ C

∫ T

0
max |II| ds

≤ C′
∫ T

0
(T − s)−

1
pds <∞

(3.16)
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Thus we may apply Lemma 3.0.11 to see that the metrics g(t) approach a limit C0 metric

g(T ). In particular, the balls of the metrics g(t) are equivalent in the sense of Lemma 3.0.10

and we may proceed just as in the proof of Theorem 1.3.6.

We also have the following corollary of Propositon 2.3.8 which relates to the rate at which

|H| blows up in the type I case. Le-Sesum have an independent proof of this result [37].

Corollary 3.2.2. Let Ft : Mm → Rm+n be a compact mean curvature flow on the maximal

interval [0, T ) with a type I singularity at T . Then |H| and |II| blow up at the same rate,

that is, lim supt→T
supM |H|
supM |II|

> 0 .

Proof. Suppose for a contradiction that |H| blows up more slowly than |II|. Then the smooth

blow-up F∞ will be minimal. Since the singularity is type I, F∞ will also be a self-shrinking

flow. Thus

x⊥ = 2(C − s)H = 0 (3.17)

everywhere on F∞. In particular F∞ is a cone. The only smooth minimal cones in a

Euclidean space are planes, so in fact F∞ is flat. On the other hand, F∞ admits at least

one non-flat point. This contradiction establishes the corollary.

We end this chapter with the following question:

Question 1. Is it possible that a compact mean curvature flow with a finite time singularity

has |H| bounded along the flow?

Le-Sesum have shown that ||H||Lα(M×[0,T )) must blow up at a finite-time singularity,

for any α ≥ n + 2 [36]. The corresponding question for Ricci flow, namely understanding

when pointwise and integral bounds on the scalar curvature R are enough to guarantee the
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extension of the Ricci flow, has been investigated by X. Cao, Sesum-Tian, and Z. Zhang,

among others [6] [50] [59].
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Chapter 4

Lagrangian Mean Curvature Flow

Throughout this chapter, Σm will be a compact smooth manifold, Lt : Σ → (X2m,ω, J)

will be a mean curvature flow in a Calabi-Yau manifold with maximal existence interval

[0, T ), with L0 Lagrangian. We will use 〈·, ·〉 to denote the Riemannian metric induced by

(ω, J) and g = L∗〈·, ·〉 will be the pullback of this metric.

4.1 Preliminaries

We begin by recalling some facts about the geometry of Lagrangian submanifolds L : Σm →

Cm.
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If {x1, . . . , xm} are coordinates on Σ, then {∂i = ∂L
∂xi
} span TL. Since L is Lagrangian,

{νi = J∂i} span NL. We always compute in terms of such a frame, and use Latin indices

throughout. In particular, we set

hijk = 〈D∂i∂j, νk〉 = −ω(D∂i
∂j, ∂k) (4.1)

Hk = gijhijk (4.2)

Lemma 4.1.1. The tensor II = hijk is totally symmetric.

Proof. Symmetry in the first two indices holds in general by the definition of the second

fundamental form. Since dω = 0 and ω is compatible with the metric, we have

0 = dω(∂i, ∂j, ∂k)

= ω(D∂k
∂i, ∂j) + ω(∂i,D∂k∂j

)

= −hkij + hkji

(4.3)

which establishes symmetry in the second and third indices.

Definition 4.1.1. A Liouville form for the Kähler manifold (X,ω, J) is any one-form η on

X with dη = 2ω. We call λ = L∗η the Liouville form of L. In case (X,ω, J) is the standard

Kähler structure on Cm, we may take η = pidq
i−qidpi, where {pi+

√
−1qi} are coordinates

for Cm.

Note that if L : Σ → X is a Lagrangian submanifold, then λ = L∗η is closed, since

L∗ω = 0.

Definition 4.1.2. The Maslov form h is the one-form dual, with respect to ω, to the mean

curvature vector H = Hiνi, that is, h = L∗(Hyω). That is, h = Hi dxi.
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In case (X,ω, J) is the standard Cm, then the choice of η above shows that λ is the

one-form dual to the vector L∗(−Jx⊥), where x⊥ is the projection of the position vector x

to the normal bundle of L.

When (X,ω, J) is Kähler-Einstein, by Codazzi’s equation and the contracted Bianchi

identity, we have that ∇iHj = ∇jHi, hence h is closed.

The following lemma allows us to consider Lagrangian mean curvature flow.

Lemma 4.1.2. Mean curvature flow preserves the Lagrangian condition in a Kähler-Einstein

manifold, i.e. if the initial submanifold L0 is Lagrangian, so is each time slice Lt.

Proof. The Lagrangian condition is L∗ω = 0. We compute

∂

∂t
L∗ω = L∗(LHω)

= L∗d(Hyω) + L∗(Hydω)

= dh+ L∗(Hydω)

(4.4)

Both terms are zero, since dh = 0 and dω = 0.

Lemma 4.1.3 ([15], [40]). If L : Σ→ (X,ω, J) is a Lagrangian submanifold of a Calabi-Yau

manifold, then there is a smooth function β : Σ → S1, called the Lagrangian angle, with

h = dβ.

Remark 8. The Lagrangian angle can be defined by the relation

L∗<(Ω) = eiβ dvol (4.5)

where Ω is the unit holomorphic (m, 0) form of the Calabi-Yau manifold (X,ω, J) and dvol

is the volume element of (Σ, g).
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Definition 4.1.3. The class [λ] ∈ H1(Σ) is called the period or Liouville class of the im-

mersion L. [h] ∈ H1(Σ) is the Maslov class of the immersion L.

If [h] = 0, or equivalently if β is a real-valued function, we say L has zero Maslov class.

If [λ] = 0, or equivalently if λ = dφ for some smooth real-valued φ, we say L is exact.

Remark 9. Suppose H1(X) = 0. If η1 and η2 are two different Liouville forms on (X,ω, J)

inducing λ1 and λ2 on Σ, then d(η1− η2) = ω−ω = 0, so η1− η2 = df for some function f .

∫
γ
λ1 − λ2 =

∫
L◦γ

η1 − η2 =

∫
L◦γ

df = 0 (4.6)

Therefore [λ] ∈ H1(Σ) is independent of the choice of η. In particular, this is true when

(X,ω, J) is the standard Cm.

We will use the Maslov class and period to study the singularities of the flow. We begin

by recalling the following computations of Smoczyk [51]:

Lemma 4.1.4 ([51]). The Maslov form and Liouville form evolve according to

∂

∂t
h = dd∗h (4.7)

∂

∂t
λ = dd∗λ− 2h (4.8)

where d∗ is the negative adjoint to d. In particular,

∂

∂t
[h] = 0 (4.9)

∂

∂t
[λ] = −2[h] (4.10)

We will also use the scaling properties of λ and h:
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Lemma 4.1.5. Let L : Σ→ (X,ω, J) be a Lagrangian submanifold and L̃ : Σ→ (X,α2ω, J)

be its α-rescale. Then λ̃ = α2λ and h̃ = h, where λ̃ and h̃ are the Liouville and Maslov

forms of L̃.

Proof. If η is a Liouville form for (X,ω, J), then α2η is a Liouville form for (X,α2ω, J). So

λ̃ = L∗(α2η) = α2L∗η = α2λ (4.11)

To see how h scales, note h̃ijk = −α2ω(D∂i
∂j, ∂k) = α2hijk. Then

h̃ = H̃idx
i = g̃jkh̃ijkdx

i

= α−2gjkα2hijkdx
i = gjkhijkdx

i = Hidx
i = h

(4.12)

Note that from Lemma 4.1.5 it follows that the Lagrangian angle β is scale-invariant

and the primitive φ of the Liouville form has scaling degree 2, since the d operator is scale-

invariant.

4.2 Lagrangian Singularities

In this section we use symplectic-topology invariants to investigate the structure of singular-

ities of compact Lagrangian submanifolds of Cm. In particular, we will prove the following

theorem:

Theorem 4.2.1. Let L∞ : Σ∞ → Cm be the smooth blow-up of a Lagrangian mean curva-

ture flow.
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If the singularity is of type I, then any smooth blow-up is monotone, i.e. [λ∞] is a positive

multiple of [h∞].

If the singularity is of type II, then any smooth blow-up has [h∞] = 0 and [λ∞] = 0.

Proof. First we compute how the Liouville form of the smooth blow-up relates to the Liouville

form of the original flow. Given a loop γ in Σ∞, γ embeds in Σj = Σ as φjγ for all j large

enough. In fact, by geometric convergence the φjγ will be homotopic in the tail of the

sequence. We call its homology class [γ0]. h and λ will denote the Maslov and Liouville

forms of the original flow, hj and λj will denote the Maslov and Liouville forms of the jth

rescale, and h∞ and λ∞ will denote the Maslov and Liouville forms of Σ∞. If η ∈ H1(Σ),

we write η.[γ] for the evaluation of η on [γ].

We have by Lemma 4.1.4 that, if [h].[γ] 6= 0,

[λ].[γ]

[h].[γ]
(t) =

[λ].[γ]

[h].[γ]
(0)− 2t (4.13)

Therefore, we can compute
[λ∞].[γ]
[h∞].[γ]

as follows, using Lemma 4.1.5:

[λ∞].[γ]

[h∞].[γ]
(s) = lim

j

[λj ].[φjγ]

[hj ].[φjγ]
(s)

= lim
j
Q2
j

[λ].[γ0]

[h].[γ0]

tj +
s

Q2
j


= lim

j
Q2
j

 [λ].[γ0]

[h].[γ0]
(0)− 2tj − 2

s

Q2
j


= lim

j
Q2
j

(
[λ].[γ0]

[h].[γ0]
(0)− 2tj

)
− 2s

(4.14)
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The assumption that γ is a loop which survives to Σ∞ means that the limit on the

right hand side of (4.14) must exist. This is only possible if the singularity is of type I,

and
[λ].[γ0]
[h].[γ0]

(0) = 2T . Thus the loops which survive to Σ∞ all have the same initial value

of
[λ].[γ]
[h].[γ]

. Using s = 0 in (4.14), we have that
[λ∞].[γ]
[h∞].[γ]

(0) = limj 2Q2
j (T − tj) = 2C,

where C is the best type I constant. In particular
[λ∞].[γ]
[h∞].[γ]

is independent of the choice of

[γ] ∈ H1(Σ∞), hence L∞ is a monotone flow.

In the type II case, the above necessarily requires [h∞] = 0. Since [h] is scale-invariant

and also constant along the flow, we have

0 = [h∞].[γ](s) = lim
j

[hj ].[φjγ](s)

= lim
j

[h].[γ0]

tj +
s

Q2
j


= lim

j
[h].[γ0](0) = [h].[γ0](0)

(4.15)

so that we must have [h].[γ0] = 0. In particular, [λ].[γ0] must be constant in time. On the

other hand, we compute [λ∞].[γ]:

[λ∞].[γ](s) = lim
j

[λj ].[φjγ](s)

= lim
j
Q2
j [λ].[γ0]

tj +
s

Q2
j


= lim

j
Q2
j [λ].[γ0](0)

(4.16)

In order for the left-hand side to be finite, we must therefore have [λ].[γ0] = 0. Then

(4.16) gives that [λ∞].[γ] = 0. This completes the proof of the theorem.
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Remark 10. In case (X,ω, J) is the standard Cm, note that the type I case of Theorem 4.2.1

is redundant. This is because self-shrinking flows are a fortiori monotone, and Proposition

2.3.8 guarantees smooth blow-ups of type I singularities are self-shrinking.

Corollary 4.2.2. If Σ∞ is a smooth blow-up of a type II singularity, there exist smooth

functions φ, β : Σ∞× (−∞,∞)→ R such that:

∇β =JH (4.17)

∇φ =− Jx⊥ (4.18)(
∂

∂t
−∆

)
β =0 (4.19)(

∂

∂t
−∆

)
φ =− 2β (4.20)

We refer to β as the Lagrangian angle and φ as the normal potential of Σ∞.

Proof. The first two claims are immediate from Theorem 4.2.1, since h is the dual one-form

to JH and λ is the dual one-form to −Jx⊥. The latter two follow in the same way from the

evolution equations for h and λ:

∂

∂t
dβ =dd∗dβ = d∆β (4.21)

∂

∂t
dφ =dd∗dφ− 2dβ = d∆φ− 2dβ (4.22)

d and ∂
∂t

commute, so after adding a time-dependent constant to β and φ we have the

claimed equations for β and φ (this argument is standard and appears in [42].)

In fact β grows at worst linearly in space and time and φ grows at worst quadratically

in space and time:
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Lemma 4.2.3. For any p0, t0 ∈M∞× (−∞,∞) we have:

• |β(p, t)− β(p0, t0)| ≤ C|t− t0|+ dt0
(p, p0)

• |φ(p, t) − φ(p0, t)| ≤ C|t − t0|2 + C|t − t0|dt0(p, p0) + 1
2dt0

(p, p0)2 + m|t − t0| +

dt0
(p, p0)|L(p0, t)|

Proof. The smooth blow-up has |∇β| = |H| ≤ 1, so β is at worst linear in space. Also,

| ∂
∂t
β| = |∆β| ≤

√
m|∇2β|

=
√
m|∇H| ≤ C

(4.23)

The claimed bound on β follows by integrating first in time and then in space.

Similarly, we have for any q ∈ Σ∞ that

|∇φ(q)| = |L∞(q, t)⊥| ≤ |L∞(q, t)|

≤ |L∞(q, t)− L∞(p0, t)|+ |L∞(p0, t)|

≤ dt(q) + |L∞(p0, t)|

(4.24)

and

| ∂
∂t
φ| = |∆φ− 2β| ≤

√
m|∇2φ|+ 2|β|

=
√
m|∇xT |+ 2|β|

= m+ 2|β|

(4.25)

The claimed bound for φ follows by using the bound for β and integrating first in time

and then in space.
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4.2.1 A Conjecture

The self-shrinker equation is a soliton equation for the mean curvature flow, that is, self-

shrinking flows evolve by scaling. There are also examples of self-expanding flows and self-

translating flows even in the Lagrangian category [2] [34] [43]. The minimal submanifold

equation is also clearly a soliton equation for the flow. In the case of the Ricci flow, it

is known that in dimension 3, all singularity models must satisfy the gradient shrinking

soliton equation. In general we expect that rescaling procedures such as the smooth blow-up

construction ought to result in solitons under the flow. Thus we confront the question of

which solitons can arise as singularity models.

Notice that Theorem 4.2.1 gives the Lagrangian case of the following conjecture, up to

cohomology:

Conjecture 1. Every singularity of a compact mean curvature flow is modeled either by a

self-shrinker or a minimal submanifold, depending on the type of the singularity.

In fact we expect to be able to prove Conjecture 1 in the Lagrangian case, using the

fact that β is a well-controlled eternal solution of the heat equation and a backward limit

technique. More explicitly, since β satisfies the heat equation, we have

d

dt

∫
Σ
β2(q, t)up0,t0

(q, t) dvolt(q) = −2

∫
Σ
|∇β(q, t)|2 up0,t0(q, t) dvolt(q) (4.26)

where up0,t0
is the fundamental solution of the conjugate heat equation centered at (p0, t0)

[7] [22]. The monotone quantity
∫
Σ β2(q, t)up0,t0

(q, t) dvolt(q) is invariant under parabolic

rescaling. It is a standard approach, given such a quantity, to construct rescaling limits for

which the quantity is constant. In our setting, this would mean ∇β = H ≡ 0.
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In non-Lagrangian settings, however, there is not a clear path to a proof of this conjecture.

In case the ambient manifold (N, h) is Euclidean, Proposition 2.3.8 is the type I case of

Conjecture 1. The question of which manifolds admit a Huisken’s monotonic quantity will

be the subject of future research; it is expected that Proposition 2.3.8 can be extended to

other ambient manifolds.

64



BIBLIOGRAPHY

65



BIBLIOGRAPHY

[1] Uwe Abresch and Joel Langer. The normalized curve shortening flow and homothetic
solutions. Journal of Differential Geometry, 23(2):175–196, 1986.

[2] Henri Anciaux. Construction of Lagrangian self-similar solutions to the mean curvature
flow in Cn. Geometriae Dedicata, 120(1):37–48, 2006.

[3] Ben Andrews and Charles Baker. Mean curvature flow of pinched submanifolds to
spheres. Journal of Differential Geometry, 85:357–395, 2010.

[4] Charles Baker. The mean curvature flow of submanifolds of high codimension. PhD
thesis, Australian National University, 2010.

[5] Kenneth Brakke. The Motion of a Surface by its Mean Curvature. Number 20 in
Mathematical Notes. Princeton University Press, 1978.

[6] Xiaodong Cao. Curvature pinching estimate and singularities of the Ricci flow.
arxiv:math.DG/1010.6064, 2010.

[7] Albert Chau, Luen-Fai Tam, and Chengjie Yu. Psuedolocality for the Ricci flow and
applications. Canadian Journal of Mathematics, 63(1):55–85, 2011.

[8] Jeff Cheeger. Comparison and Finiteness Theorems for Riemannian Manifolds. PhD
thesis, Princeton University, 1967.

[9] Jeff Cheeger and Mikhael Gromov. Collapsing Riemannian manifolds while keeping
their curvature bounded. Journal of Differential Geometry, 23:309–346, 1985.

[10] Jingyi Chen and Weiyong He. A note on the singular time of mean curvature flow.
Mathematische Zeitschrift, 266(4):921–931, 2010.

[11] Jingyi Chen and Jiayu Li. Singularity of mean curvature flow of Lagrangian submani-
folds. Inventiones Mathematicae, 156:25–51, 2004.

[12] Bennett Chow, Peng Lu, and Lei Ni. Hamilton’s Ricci Flow. Number 77 in Graduate
Studies in Mathematics. AMS, 2006.

[13] Tobias Colding and William Minicozzi. Generic mean curvature flow I: generic singu-
larities. arxiv:math.DG/0908.3788, 2009.

66



[14] Andrew A. Cooper. A characterization of the singular time of the mean curvature flow.
Proceedings of the AMS, to appear.
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