SOME MATERIAL HANDLING PROBLEMS IN A LEATHER TANNERY, WITH PRACTICAL SOLUTIONS THESIS POR PHE DEGREB OP M. Z.
W. P. Robinson

1930

Conveying machewery
SUPPLEMENTAP"
MATERIAL
IN BACK OF ROOK

Nechameal enyusimy

A mozis únaituon to two
Facul: of
Tichijon Stato Collogo
Of
Agricultar ann aplion Bcionco
3
I. P. Robinson
Canduato for tio Noureo of
Tochanical Bocinoer

Jinno, 1.50

wiccimernay MATERIAL

 If RACK nemnn!

 If RACK nemnn!}
Page
1
b - SPECIAL IABOR RU?UIRGETTS 3
c - THE ECOMOMIC SMUATIOM AS IT APPDOE BUTLDINGS AID 4
L2UIPITEMTT
d - mbedssty ron mmprovad mitirlat mamolig memod 5
 0
f - DESCRIPIION O NOMORAM SYSTEM AND ITS APPLICAMION 0
g - DESCRIPMION OF SPECIAL E.O.T. CRAME AMD TRANSFR 10
SYST:M AHD ITS APPLICATION
 14
transper sygmin
000

- Desicir Draidigas -
SK 2-4-20^ - Plan of ionorail System
SK 2-4-20B - Plan of Monorail System
SK 1-10-20B - Double IVook and Bail
SK 6-8-29B - General Drawinc of 6-ton Crane
SK 5-11-29A - Speed Reducer
SK 6-13-29A - General Draving of 6-ton Transfer
SK 5-9-29A - Headbean Hook for Racks
SK 5-13-203 - Bearing

$$
000
$$

- PIIOTOGRAPI -
Ph A - Crane and Transfer - Case 1.

The formard march of the world makes inexorable denands on our industrial life wich more often than not take the form of problems for the proper solution of which encineering assistarce in some form is necessary. A few outstanding branches of our great industrial body set this forward pace. Perhaps one is pushing forward some new discovery or invention; another may be interostod in the intensive developments in some such field as the ceneration of power. In such cases an appeal is made to the imafination and love of accomplishmont of the modern business man and it anpears that all the incentives are present for rapid develoment. It is quite evident that with some steppinç out in front the others soon catch the snirit, and the race is on. Soon we seo the de.and for greater and still eroater efficioncy takinc form in one way or another; croater production is wanted, or better material. \#̈c sje a brand now industry arise over night with material roquirements that wore not dreaned of before; inmediatoly certain suppliors of the required matorials becin to porfom the imossible and the dewands are mot satisfactorily. Desides this form of stimulus to our tochnical advance, and of an equally insistont rature, there is the ever present force of competition at work operating to wake the mooressivo manufacturer more progressive and to eliminate the too consorvative monufacturer. finis is probably the most monerally felt and rost
easily recocnizod cause of technical advance and the terms in which it is exprossed are faniliar to all - how can the cost of manfacturinf be still furticr reduced? ilow can the cost of power be reduced, etc.? Still another incentive to the development of new ide:s, new methods, etc., is the possibility existing in so many industries of suddenly havine to ciange from an old well-lmown product to anothor entirely ne:\% one. iitness tile numor of automobile manuracturors tant were oricinally carriace builders. And so $\because c$ see goinc on around us continually the buildins of now plant, installing of new machinery, the trying of new netwols, and it is sare to say twat there is not a major industry unaffected. Let us now recornize that the driving force bohind all tinis industrial life is the makine of a satis?nctory living or profit.

Assume, howover, that a major incustry, such as will be discussed in this papor, has found it dirficult, if not inpossible, to sccure a satisfactory profit from operations. It is not the purpose of this paper to show why there should re, or should not be such, but to merely state that thero were thinco in los0 - loathor, suar and wool - in a total of 57 industries, and of these threo the loathor industry has shown a deficit consistontly for sevoral roans. This is tho industry that this paper is concerned with and it is our purpose to show how this condition hay cive riso to problems wich can be solved
only by the application of exactly the same dovoted and concentrated encinsering attention that is causins the world to march at its presont pace, - with, however, this difference:- that the cost of improvements mast be the absolute minimun, and these costs will be incurred only when the results aro certain berrond question to produce lomer process costs. Lot it bo statod here that the unfavorable situation in wich the tannine industry has found itself for several years past is in no measure due to lack of ability on the part of the tanners. On the contrary quality has been improved and manufacturins costs cut without tho encourajoment of visible profits, which is a condition requiring both ability and courace of high order.

The condition we have to bear in mind than is that there is a groat basic industry like the sole loather tannins business, with an intense desire to surwount the econonic handicaps that exist internally, and little money with wich to do it.

The tannins industrus is an old one, in many cones havine descended fron ceneration to generation in the sane fanily, eacir cenoration having beon born in and brod to the business. A natural result has hoen self-reliance and groat consorvatisu on the part of executivos who have beon entirely solf-sufficiont, and, ureod by necessity have
devoloped considerable strencth in hancline tho heavy wet nidos, with the rosult that a auvy lavon tomover has been undesiratle. Inother consequence has been that laborsavine anchinory or mothods wore bound to roceive more than ordinamy attontion. me tanjing process is continuous and considerable ingenuity mat bo oxercised in order to have most of the handine in anl out of vats, as woll as tio processos in mich direct labor is involvod such as dehairine, done in tho darlicut homs. Mre labor situation will continue to be a dinficult one in so far as such phases conlinue as the difficulty of brouning in no:d ion ard tion neod of proat physical exertion. Relief can be mad only by mating free uso of maninomy for doins the nard jobs, and sinco labor is one of the lare itoms in tile cost of the product, as mach labor sioula be saved as nossiblo.

The noed of more and nore la'or savins mothods roind cranted, it is intorostine to note the conditions mich keep the problen fron beine so simple as one would wish. The plants ore usually old ant low-roofod and aro sproad over considorable ground area, due to tho nocessity for using vats fillod with various solutions in wich the fides are troated; further, the uildings often woro constructed pioconoal ant whont too men rocourse to survoring insiruments or stross fioures. If lanor saving
methods proven in othor inductries can to made uso of without too creat altoration to castine plant, rell ard
 surplus in the troanory availablo for new plant, and the financial roports of the leatior inkastry for years past would not tend to inhuce no: cupital to supply the noed.

It has lone boon rocounizod that matorial handlinc is a ficld which offers very uroat possibilities to those wo would lower proluction costa, and tho leation tamong looks like onc place werc the matarial landlinc expert can offoct worth-wile saincs. fre hiles must pass throug vat after vat, each time beire liftod with the nhsorbed load of liquor through a height of fron thro to six foct, and each time boing transportod somo distance by some nears. The primitive nethod of lifting, tranoporting and puttinc in the vat has roon to hando ewohise indivianalyr in and oxt and tronsport in pilos on cars travolling alons narrow coucz traces over tise vats. It is evidont tant sow floor space mut bo devotel to those tracts wich would hettor be usod for vat space. These old methods are still practiced to a vory lareo extont becauso of the Croat difficulty cxporionced when one tries to nake use of any equipent obtainablo on tionamot. Nore is no question about tho rood for sons bustom able to roliove the lavor recuiremonts as they havo existed and havinc the
possibility oi either expediting or improving the processing of the hides.

We situation confronting us then when called upon to recomend propor hardine metiods was, first, to search for suitablc and stamhard oquipmont evon tio it aight be something of a compomiso; and second, to dosion if necessary maninomy for doinc the worl. .itin this in mind, it is woll to consider the design of vats and buildines in plants of ano rocont oricin in wich siandard banding equipment las beon instaled. mio vats havo been enlargod in area and the buildings desiond without posts for tho use of travelline cranes. Racks can then be usel for holdiner a certain numer of hides, the bost method boing to fold exch inde across a stick mich has its ends carricd by the top frame work of the rack. This rack fits into the vat and the hides hard freely in the liquor. The total weight may be frou one to six tons and oven more. In the case we have to consider however, there are posts throughtout the tamory spaced from 161 to 201 and in sone cases tine posts are not oven in line. The coilings are low, averaging from 0^{\prime} to 101.

Two goneral hanuling schenos woro wornod out to suit two difforent sois of conditions. re schonc mich will be designated as the ironorail. Schone is suitable whore tho procuross of the anterial is in coneral along one row of vats and not across vats, - anothor requirowent of tris
systen boinc that tio load should not bo moro than 2000 lios. It will imediatoly be seon that the monorail systen is a comromise. Tre only reason for its adoption is its cheapnoss. It is cescntially a manally travelled systen because tiere is not sufficiont head room for motor travelled telfors or nonorail trollays. Due to the sane restricion it is inossimlo to use heavy and rucced equipwent wich will civo minima maintenance cost. Its linitations are then: Siall capacity; $\begin{aligned} & \text { and travol by }\end{aligned}$ pushine; slo: hoistinc spoed; difficulity of feodime current to the hoist; line coverage instoal of arca coveraje; necessity for carefully balancinc the loaded rack; the nocessity for foot paths alonc each row of vats; the interforence of the hancinis racks with each other on the monorail tracks unless the routing an be worked out to avoid tiris.

The schene designated as the Crine fivaton has no such limitations as tho morail berson, but in a ruilding havine a croat many rows of posts the cost of installing runways ent cranos over cach ro:r would be prohibitive and even if standard cranes could be found which would ço into the low headroon thero would still be the impossimility of easily carlyine the racks fron one row of vais across to another parallel rov. levertheless weans wore found to adapt the truvelline crane to tho peculiar neas of the situation and sevoral years of successful service lave proven tise alaptability of the Crane Systom and its
efficiency and low maintenance.

Sketchos 2-1-29A and 2-4-208 shor the monorail syston adapted for one particular dopartment where the hides can be loadod on the raciss directly from the dehairincs stands and processcd in a frirly straicht line. The arranconent of tracks and juctions is such tirat the racks prozess in an ordorly : ancor without intorforence,
 lator on track COO, the emptins beine returned on tho cutside track 673 to C3. The tracks arc continuous, with no Gaps, and hang froa the steel ceiling I-beans by means of ordinary bolts with spacor wachers to porinit of leveling the completo system. Duc to the possibility of slippace and consequent misalionment of junctions clams are not used but bolt holes are drilled in the lowor flances of ceiling beans and the upper flances of the monorail bean. The bolt heads are placed under the monorail bean flance with wedce shaped washors and as little room as possible taken up in ordor not to intorfere with the trolloy whesls. The junctions aro a standard desion having a continuous upper nomber bolted socurcly to the top flances of the abuting monorail beans with openings in the lower flances and webs through wich the trolleys my pass. On the bottom flance at the enterine end is a shallow lug which encaces a movable pin on the trolley at the will of
the operator. When the trolley approachos the junction without encagenent of the pin and lug the trolley keeps on straicht throu;h the junction, but when the operator pulls a handle onçacino the pin with tho lue the trolley is deflected to the right or left as tios case may be on to the curved track. These junctions aro nate of malleable iron rcinforced with stecl plate top and when once adjustod properly will remain so permanently the track supports are spaced so that very little bendine is resisted by the junctions. The trolleys are of standard four wheel articulated desicn with larce, ball bearing wheels, altered as to lençth so that the center distance of two trolleps when as closs tocether as possible will not exceed 14 ". A small number of trolleys carry snall electric hoists which were found aftor much search. Theso hoists have a capacity of 2000 lbs., weich only 125 Ibs., and take up very little head room. The balance of the trolleys used carry only a special double hook as shown on Sketch l-1029B. The hide rack has at its center a special double eye stoel bail which is also shown on Skotch l-10-293, and when being lifted by the electric hoist the upper loop of the bail is used; when the rack has reached the upper limit of its travel one hook of the doublc hook is encreed in the lower loop and the electric hoist lowered away until the rack is swunc over the distanco of 14 " until it centers under the adjacent trolley. The trolley and electric hoist are thon fres to handio anotwer rack and
the rack just lifted is pushed away to its destination. Each hoist carries a length of rubler covered triple conductor cable with a pluc on its end for pluccing into sockets located on each post. Onc van can handle the racks, and the operation of loadins and unloains the racks is much easier than the old net od of throwins the hides on cars. Two manual handings now instead of at least six before effects considerable labor savinc and the mechanical handiness almost antirely remove the disagreeable phase of this mork. One export is sufficient and the rest may be comon laborers of usual strongth and ability. The cost of maintenance is confined to an occasional overhaul for the hoisis and the regular lubrication of the trolleys. Speed is not a requisite in this department and the number of vats is sufficient to keep busy the minimum number of men which would in any case be required to man the systom, thus giving a very efficient installation.

The monail system has the inherent advantage of easy expansion as evidenced by the fact that the tracks show on Sketch 2-4-29B had not been in use more than a few months when it appeared that a mall extension enabled another operation to be freatly simplified.

E - DESCRIPTION OM SPECIAL RIZGTRIC OVERIWAD TRAVBLING CRASE AYD TOASBGR SYST AID ITSAPPLICAION:
hany departments could not be equipped with the honorail system for several reasons, somo of which have
been mentioned. For instance, in most cases the ceiling beans were alroajy loaded to their limit as floor bearas of the second floor. In most casos the capacity of a lonorail System would not bo large enough. To meet the situation in a complote manner required the use of electric travelinc cranes and the idca was conceived of equipping every loncitudinal bay with crane runvay rails; installing a transier bridge on rumay rails in a transverse bay, and use only one crane. A complete installation of this nature was made in the one and only department where the headroom was sufficient to permit the use of standard crane equipment obtainabla on the market. It was necessary, however, to alter the crane trolley design somewhat to obtain a four suspension head beam lifting rig for carrying the large six ton rack by its four corners. It was also necessary to carefully desion the crane bridge for an absolutely minimum headroom dimension. This installation is shown on $\mathrm{Ph} A$ whore the crane is in the background and the transfer is in the foreground. The transferring of the crane from one bay to another was new because so far as is know this is the first installation of its kind. The transferring of monorail cranes on which the trolley travels on an undersluac bean is very comon practice and it seenod entirely feasible to adapt the same principles to the desicn of a transfer which would carry a standard double girder crane having its trolley traveling on the top of the bridge girders.

It vill be evident that the transfer must have tracks of some sort to run on and that as the electric traveling crane passes on or off the transfor beams it must clear these tracks. It is equally obvious that the tronsfer tracks must be as close to the ceiling as possible with the electric traveling cranc passing under then in order to minimize the head roon required. Two heavy I-bens were used fastened directly to the ceiling and on the lower flanges 20 lb . tee rails wore boltod, on which the transfer bridge wheels travelled. This :rould be desicnated therefore as an underslung birdge. Half of the wheels are driven by a $7 \frac{1}{2} \mathrm{HP}$ motor. The structure is designed with two lonejtudinal beams carryine rails and matching exactly with the run:ay beas in the several bays. Clearance is provided for the electric traveling crane to travol cloar across the transfer. In other words when the transfer is locked in place opposite any crane runway it forms an integral part of the runway. Two sots of current collectors are provided on the electric traveling crane bridee to avoid intorruption of the travel motor circuit when crossing the gaps. The safety features consist of two things; the transfer travel controllor is so placed that it can be reachel by the operator, who rides in a cab on the electric traveling crane, only when the electric traveling cranc is in proper position on the transfer; an interlocked locking arrancoment on the transfor locks the crane to the transfer and unlocks the transfer from the
building, or vice versa. Only one lever performs these operations and it can bo reached only wen the electric travelins crane is in proper position. It is therefore impossible for the crane to run off an onon runway or for the transfor to be moved without carming tine crano. Actual operation has checrod the oricinal cesicn of these seatures thorourlit.

A second installation of the crane surton was then made in a departmort with sonewnent loss head-room and several chances wore necessary or advisable on account of the different conditions. In this case tiere was a transverse ridee in the roof providine ample clearance in one transvorse bay for the transier, but at othor places the clearancos were vent restricted. It was decided therefore that the transfor should run on two ordinary runway beans instoad of beine undorslune, and that the hoist would be built into the bride of the electric traveling crane betweon the girders, thus saving about a root of room and peraittinç tio crane to rum wion the low eavos of tho building. minis installation likowise proved oxceptionally satisfactory in service.

In both Case 1 and Case 2 , clescribod above, of the Crane system, it was necessamy to robull the vats to suit the cranes and when it came to studyine tho other departnents of the plant it was found that such rebuildine would be prohibitive. Murthermore in roth of these cascs the available hoad roon was groator than elsowiore in the
plant where cranes michlt be installod, and a decision was made to try and desion a crane transfer systien which would ço into about 3 fcet lead roon and which would not require any vat chances except as certain ones micht have to be altered to suit a standard size of rack. It must not require too much spocial construction for the installinc of crane and transfor runays. Absolutoly nothine in the way of complete standard equipmont could he found, so dosien dranincs were ade which will no: be explained. Onc very important consideration which had to be faced was the difficulty that micht be encountered in having very special crane equipmont built by the usual makers, especially in busy tios. It is çarrally found that the work is either refused entirely or clse a very fancy price charcel. To overcone this tho dosion must be such that parts could be obtained fron standald sources and the equipment assembled in a jobing shop or in the tannery's own shop, if necessary.

Teferring to SH-0-0-20A, showinc the desien of Crane adoptei, the following assumptions wore made, based on previous exporience with Case 1 and Case 2 installations: Capacity on four ropes - 6 tons Span - Variable but usually about 20'

Hoisting Speed	$\pm 23 \frac{3}{\mathrm{~T}} \mathrm{FPM}$
Crane Travel Specd	$\pm 250 \mathrm{FPii}$

Rack size - Variable but approximatoly 71 x $10{ }^{\prime}$ Currert - 110 volts, direct.

The frame of the crane consists of simple shapes riveted or welded toc̈cther and creat ricidity laterally is provided by the $\frac{1}{4}$ " platine on undersids of main channels. The standard nechanical parts are simple and may be asse bled to suit the crone dinensions required. Considering the hoist mechanism first, the component parts consist of the notor wich rootor-mounted solenoid brake, direct connocted to a spoed reducor; two rope drums on the slow speed shaft of the reducer; idler sheaves for two of the suspension ropes; and tie controller having dynamic braking lowering comoctions. after considerable search for a sped rodicer that would have a maximen reduction of 80 to 1 ; that is compotely ball or roller bearinc; and that would not bs more then 18 " in hoight; with input and output shafts in the sano horizontal plano: it was fourd that the specifications could not be met ly any of the humdrod on more reducors on the mariot. mat the specifications aro not too difficult to accomplish is indicatod by tho very simple desiun that was developed and which is show on Sir-5-11-20A. Its depth overall is $16-1 / 8^{\prime \prime}$ and the nacimu? goar ration is $80-1$. It will transait 10 IT With a Pactor of Safety of at least five and its efficiency may be assumed to be ovor 05,5 . It may be described as a straight spur gar reducer with four
pairs of hoat treated stoel foars rountod on thre shafts, two of which carry quills; cach cear with its noighborine pinion is carriod betweon two roller or ball bearincs; twe t:a halvos of the cast iron caso are exactly duplicate; all joints aro protected by caskets arginst oil leakace, so that lubrication is oil bati and need be attendod to only once or twice a roar. One respect in which this hoist mechanisn differs fron tho usual desicns is trot the drum shofts and goars aro proportionod to carry full load diroctly from the drun insteal of reducing the load by multiplying the nuabor of stranis of rope supportirg the load. This savos hoad rooir but requires that all the spoed ratio bo secured in tho corring, and it increases all stresses in tho parts.

The load of 6 tons is to bo carried on 4 strands of rope but mono than half load may be carried on 2 strands so the size seloctad is $9 / 16^{\prime \prime}$ diametor, 6 x 9 best plo: steel, wich is cood for $2 \boldsymbol{z}$ tons at a ractor of safety of $\frac{12^{2}}{2}=5$. The drun diamoter should be about 24 times the rope diameter or $1 J^{\prime \prime}$ ", but $12^{\prime \prime}$ was chosen as the pitch dianeter because of the rostricted room. The goar ratio is therefore

$$
\frac{600\left(T . L \cdot \text { Iotor.Speed) } \times 3.1410^{\prime}(\text { drum circua })\right.}{23 \frac{1}{2} \text { (T.L. Iroisting Specd) }}= \pm 30
$$

The gears in the speed reducer will be

$$
\frac{12-2 / 3}{5-1 / 3} \times \frac{12 \frac{3}{4}}{4 \frac{1}{4}} \times \frac{1-\frac{3}{4}}{4 \frac{1}{4}} \times \frac{13 \frac{3}{4}}{4 \frac{1}{4}}=80 \text { reduction }
$$

Although it is spocificd that two strands of rope shall be able to carry full load, the usual method of suspension will be one rope to each corner or near the copner, of the hide rack. If thore are two rows of vats in a bay a head bean may be used with the 4 hoistine ropes attached to it at convenient points, and with the rack carried from the headoean by means of hooks as siom on SK 5-0-20n and SK 6-8-20n. The hooks are adjustable on the beans and will hook into the bails on racks by movinc the crane bridec forward. When lieadbeans are not used simple angle spacers are used betweon the four hooks to hold them in alignment because in no case is it necessary to use a ground man for hooking the load. In some cases automatic self-locking hooks are used wich enter the bail and lock securely by simply moving the bridge forward, and vice versa. Racks of any size within the span and capacity of the crane may be handled by this arrance ont and racks may be moved transversely within the crane bays by making use of the transfer to be described later. The hoist motor horsepower equals

$$
\frac{12000 \times 23.5}{33000 \times \cdot 875}=10
$$

For the sake of standardization of parts all bearincs on the crane outside of the speed reducers are exactly the same; the bridge axles and the drum shaft are the same dianeter; and the speed reducers are the same except that the bridge reducer has only two pairs of cears with a
reduction of 7^{3}, arrived at by the use of gears as follows: $\frac{12-2 / 3}{5-1 / 3} \times \frac{13 \frac{3}{4}}{4 \cdot}=7 \frac{3}{4}$. By using a 230 volt motor on the 110 volt crane circuit the fear ratio can be obtained more easily; and with $12^{\prime \prime}$ Gianeter wheels this ratio will be: 638 (H. L. motor speed) x 3.1416 (circun. of mools) $=8$ 250 (F.L. travel speed)

A full torque solenoid brake is mounted on the hoist motor to hold the load when stationary and suspended, and a half torque brake is mountel on the bridge travel motor to decelerate the crane and hold it when stationary.

The simple dosicn of a standardized bearinc is shown on SK 5-13-29A. The very much greater cost of roller bearincss on the $2-15 / 16^{\prime \prime}$ shafts resulted in a decision to use babbitted bearinçs outside of the speed reducers with low bearing prossure and hlewite pressure lubrication. It is to be noted that the woicht of crane and load is hunc on the bearings, calling for extra lare bearing bolts.

The idler sheave pins and the idler wheel pins are of the same size and the method of mounting both is very flexible as to locaion. The wheel assembly construction used is such that the driving wheels are overkung while the idler wheels are of standard pin t pe, and the greatest dimension from centor of runmay rails to face of posts is $2 \frac{1}{4}$, which with $\frac{3}{4}$ " minimum clearance fives $3^{\prime \prime}$ from centre of rails to face of posts. The total height of the crano above the runvay rails is $15^{\prime \prime}$. Both of these dimensions are exceptionally small for a 6 ton crane,
especially so in vie:i of the very rusced and rigid design. A narrow stand-up trpe of suspended operator's cab close to the floor parmits the onerator to step in and out easily. The t:ro controllers for hoist and bridge travel are mounted in the cab over the operator's hoad with handles hancine downard.

The assenblinc of the various units in this desion in the tannery's own shop is a comparatively easy matter, assisted by the use of flexinle couplincis between the motors and the speed reducers. All material outside of the specd reducers, dru:is and boorincos, which are special, is easily procured from known sources and a fo: of the special parts are carried in stoch, which means that cranos can be built at any time without special draminess and in record time.

Reforrire to SK 6-13-20A this desien drawing shows the trpe of transfer adonted for installations where the dimension from floor to ceiline is only 9 fect, embodyins the same princlpal of carrving the crane bodily as described for Cases 1 and 2 , but differing in design and clearances.

The clearance over the crane just described when traveling alone the longitudinal crane bays is $3^{\prime \prime}$, i.e., there is a distance of $3^{\prime \prime}$ from the hichest point of crane to the lowest point of the ceiling. The transfor operates in a transverse bay where the ceiling is $4^{\prime \prime}$ higher than in the longitudinal bays, and tie problerl was to put the
rails for carrying the transfor into this dimension of $4^{\prime \prime}$ plus $3^{\prime \prime}$, or $7^{\prime \prime}$. ...ith any standard construction at least a $15^{\prime \prime}$ bean would be required and some clearance in addition, probably 18" in all. Mhis proble.. was solved by doins two thinçs: making an open ended transfor, and usire a swinging transfer runway boa: adjacent to the crane tracks. Por such a schone the transfer must be installed in an end bay because tine crane cannot run onto both sidas of it. fine transfer rumay track naxt to tio end of tho builung is of usual I-bean construction surmounted by Too ruil, while tio track at the entrance side of the transfer consists of lenctis of 18 " heavy ship ciannels with a Tea rail fastened to the inside of the lower flance. Opposite oach crane bay is a swincing section of this track suspended by neans of specially desioned strap hingos frou the wood ceiling beras; botwoen the swincing sections are short fixed sections. The transfor end track on tho wall side is of usual construction and the saio as the crane end trucks, but at the entrance or open ${ }^{\text {axp }}$ side there ars two trucks, ench with a doublo flanged wheel runing on the channel track Tee rail and with a plain tread wheel ruming on the under side of the ship channol; the section of bean corresponding to the crane munay tracks, wich is carried by tho transfor, is thus cuntilevered on these two truclis, permittine the crane to pass on to the transfer by swinging tre section of transfor track out of its way. This is done by two
deflector bars on the crane, ono on cach ond. Only the one section opposite the crane bay in wich the crane is traveline suings and the trangfor cantilever truclrs are carriod by the adjoininc sections. Iorizontal alicnuent is proserved by the fixed transfer track on the wall side and the trensfer is locked on this side. The transPer travel controllen and the lockine wechanisi are both locatod exactly as descrined for Casos 1 and 2 transfers. The travol motor, spoot reducor, axles and whools ars the same as on the crane. me inlor mecls, howevor, are overhung and carriod on lony squarine axles the same as the driving meols in ordor to assist in keoping the transfer structure from gottine out of line.

The crane opmators become very expert in spotting the transfor, and the transferrinf of racks of hide from bay to bay is done very quickly and soothly. Fere are no complications in tho machinory; the montenance required is confined to daily crossing of a fow bearines and an occasional inspection; and one crane with its transior Will covor evory square foot of vat space in the building. Furthomomo, tio injtial cost is less then that of stanamd crune equip:ient, instoad of greator as :ould usuolly be the case "ith spocially built equipment.

CORTCLUCIOM:

It has been the intention in this paper, not to sot forth the compratively simple calculations necossary for
the desion or proper proportionin? of pirts of the equipment, but to indicato by exaplos of wiat has actually been cone, how important it is for an enginoor when faced with problews, astior usual or unusual, to avpoach his problew witin an opon mind and with tio exomeise of as mach inagination and inconuity as ho is capable of. It is wise to assum that it is usually quite possible to perfora tho impossiblo whon tho imposeivle is simply sonetrine tuat has not buen done before. Üse has joon mado or the ciosign drantigs and not mombing irowings for illustration.

$$
\begin{aligned}
& 5 / 6=8 \\
& \text { ros }=6
\end{aligned}
$$

TRANSFER CRANE - CASE 1.

PH. A.

Double hook eyes on hide racks.

Note! If hook eyes are made large enough the hangers will engage automatically. Electric hoist hook is disengaged by lowering. hoad must be transferred from hanger to hoist by hooking hoist hook in hook upper eye by hand.

