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ABSTRACT

IDENTIFICATION OF GENES AND THEIR REGULATION THAT
DETERMINE A PHENOTYPE: A SYSTEMATIC APPROACH

By

Ming Wu

Research in computational systems biology focuses on establishing the complex relation-

ship and interactions between genes and how they work together to render a particular phe-

notype. This involves the development and application of systematic approaches to study

the biological regulation in the context of a network in which genes are regulating each

other. Our research aim to develop novel approaches to identify genes and their regulation

that determine a phenotype, which involves the reverse engineering of regulatory mechanisms

through identification of condition specific genes and interactions, as well as the systematical

modeling and simulation to reconstruct context-dependent regulatory networks.

Chapter 1 introduces the fundamental approaches in systems biology. Data mining tech-

niques have been developed to identify genes and interactions from gene expression data,

while systems modeling integrate current knowledge to develop a functional context to ad-

dress the complexity that arises in biological systems. We provide examples to demonstrate

the practical aspects and biological relevance of the methodologies. Chapter 2 introduces

and discusses the multi-layer approach that is able to reconstruct condition-specific genes

and their regulation through an integrative analysis of large scale information of gene expres-

sion, protein interaction and transcriptional regulation. In Chapter 3 we explore a dynamic

feature of gene network— the switch-like behavior, wherein we show that gene switches have

specific pattern of gene expression which can be uncover by mining microarray data. This

study demonstrates that one can capitalize on genome-wide expression profiling to capture



dynamic properties of a complex network, thereby predicting gene switches that could be

important for a phenotype and can participate in cell fate decision. In Chapter 4 the cancer

phenotype is studied using systems modeling of the human metabolic network. We develop

a novel approach to simulate context dependent metabolic states that upon perturbation of

the gene(s) that modulate metabolic functions, can determine whether the gene is involved in

confering a phenotype. The approach is then applied to predict therapeutic microRNAs for

human hepatocellular cancer. Chapter 5 provides a brief summary of the implications of the

research towards a systematic understanding of gene network as well as a future perspective

of the field.
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Chapter 1

Introduction

A central question in biological science is the gene(genotype)-phenotype relationship, i.e.

how do the genes and their regulation determine a phenotype.

The genotype used to define by a single genetic trait in Mendel’s experiments. This con-

cept has been extended to a large variety of genetic endowment of living organisms at the

molecular level, involving gene and gene network upon genetic and epi-genetic regulations.

In genetics, the genotype could be mutants (e.g. SNPs), insertion/deletions, or duplications

in a genomic region, or some modifications on the chromatin. In cell biology, as we focus

on throughout this dissertation, a particular genotype could be a signaling molecule, a tran-

scription factor, a pathway, or a gene network involving molecules that can affect a cellular

process.

The phenotype represents the biological observations to be investigated. Depending on

the research question and the experimental design, a phenotype could be a particular cell

type, a decision of cell fate, a biological process, or some physiological or disease states.

Research in molecular biology focuses on establishing the relationships between genes,

interactions of genes and their functions in regulating the processes by which cells respond
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to external or internal signals to determine a phenotype, i.e. to answer the question: what is

the underlying molecular mechanism that governs a particular state of a biological system?

The question has been studied previously by the identifying and analyzing the function

of individual genes and proteins. However, the recent development of high-throughput tech-

niques has driven the need to find global changes at the “omics” level, in order to elucidate

how the genes interact to regulate biological processes. The ability to routinely study thou-

sands of genes’ expression has shifted the paradigm in the biological research community,

suggesting that genes and their interactions should be evaluated in the context of the whole

network. To gain a better understanding of the complexity of biological regulation has raised

new challenges in analyzing the data, designing the experiments to validate these analysis

and the processing of the information. Thus, computational and systems biology approaches

are rapidly being developed to analyze and integrate omics data to obtain a coherent and

mechanistic snapshot of cellular regulation.

1.1 The paradigm shift and computational systems bi-

ology

Since the advent of molecular cell biology, researchers have studied biological phenomenon

mainly by analyzing the function(s) of individual genes and proteins, and the change(s) they

exhibit in diseased states. This reductionist approach helped discover many of the underly-

ing biological principles [1]. However, researchers subsequently found that the relationship

between genotype and phenotype is more complicated then can be ascribed to a change

in a single gene [2], and the behavior of the different components in the biological system
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cannot be captured in isolation. These observations, together with the recent availability

of ’omics’ data, have revolutionized the previous view of single gene-phenotype correlation

by demonstrating the importance of the inter-relationships between genes, as Linus Pauling

said “Life is a relationship among molecules and not a property of any molecule”. This has

intensified the investigation of protein function in the context of complex biological systems,

and initiated a more systematic perspective of biological processes [3].

In the last decades biologists have become increasingly aware of the importance of func-

tional context, the community has been enthusiastic about the paradigm shift from cata-

loguing molecular characterizations to understanding the functional activities of genes and

proteins specific to a phenotype. More and more experiments are guided by models that

serve as a basis for generating hypothesis and interpreting results (e.g. regulatory schemes

or pathway diagrams). Nevertheless, biological processes consist of many interacting com-

ponents, exceeding the human capacity to systematically analyze them, thus requiring com-

putational methods to reduce the complexity and thereby enhance their accessibility [4].

Thus, a central idea in computational systems biology is to construct mathematical formula-

tion of data-driven or hypothesis-generating models to help reveal the function of biological

systems [2].

Computational systems biology gathers gene expression, interaction, or perturbation data

to build a specific network that regulates a biological process, and studies how the design

features of the network specify biological decisions. One of the main focuses has been pre-

dominantly on analyzing expression data to understand the regulation of gene expression

and its functional activity for a phenotype, wherein a “systems modeling” or “systematic

approach” is to address the following two questions:
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• How does one identify the genes and interactions that are specific for a phenotype/condition,

given the large amount of gene expression changes that can be measured in high-

throughput techniques?

• How do genes interact with each other to determine a phenotype?

The two questions are attempting to systematically establish the relationship between

gene expression and phenotype from two different aspects, i.e., learning from data to identify

important genes, and modeling based on mechanism to understand a phenotype. Therefore,

there are two distinct fields of computational modeling in systems biology that are being

developed to address these two questions: data mining and in-silico simulations. Data

mining, or “top-down” modeling, aims at discovering patterns from large amount of high-

throughput biological data to help generate hypotheses and make predictions, by learning

data driven models to establish a statistical relationships between genotype and phenotype.

Alternatively, simulation-based analysis, or “bottom-up” systems modeling tests hypotheses

with in-silico experiments and predict network behavior by integrating current knowledge

of molecular mechanisms.

In this chapter I introduce these two different computational modeling approaches in

systems biology and explain the importance of identifying the genes and interactions that

are specific to a phenotype.

1.2 Learning from data

Data mining, or “top-down” modeling, learns data driven models to establish statistical

relationships between genotype and phenotype. Data mining techniques have been widely
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applied on gene expression data to identify genes and interactions that are important to a

phenotype.

1.2.1 Current approaches to identify genes/biomarkers based on

expression data

Identification of important genes based on gene expression microarray data, also known as

“biomarker discovery”, “analysis of differentially expressed genes”, is essentially a feature se-

lection problem in data mining. The gene expression data is collected from samples of differ-

ent phenotypes, or, different “annotations”. The expression levels across all samples of each

gene are investigated to discover genes that are relevant to particular phenotype/conditions,

or other target annotations. These genes can be used as biomarkers that could be valuable

in disease prediction, drug target discovery, or further analysis to reconstruct the regulatory

network that underlies the manifestation of the phenotype.

Problem statement: Given a gene expression matrix M obtained from a series of pre-

processing steps involving transformation and normalization of the raw data, in which there

are m genes (features) across n samples, m >> n in most cases, and xij is the expression

level of gene i and sample j. The problem becomes how to identify the genes (features) that

govern any one of the phenotypes in the samples.

In the field of data mining and machine learning, feature selection usually aims to find

the features that provide better classification, thus the conventional categorization of feature

selection techniques is based on the relationships between the selection approach and the

classification model: [5, 6]

• Filter methods assess the relevance of features by analyzing the data matrix, which is
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a preprocessing step, independent of the classifier, that will be used in the subsequent

learning problem.

• Wrapper methods assess the features with classifiers, thereby the features are evaluated

based on a particular classifier, e.g. SVM. The methods attempt to select the most

discriminant subset of features by minimizing the prediction error of the classifier

chosen.

• Embedded methods search in the combined space of feature subsets and the model

hypothesis set in the classifiers.

However, in the application of feature selection to biology to identify specific genes, the

biological question asked may not be necessarily based on the classification accuracy of the

phenotypes, but in most cases it is to understand the phenotypes, e.g.:

• What is the most important difference between two phenotypes in terms of gene ex-

pression?

• What are the characteristic genes for cancer?

Thus filter approaches are the most widely applied in the literature to identify differ-

entially expressed genes [7]. Univariate approaches dominate the field since the output is

a ranking of the genes that are intuitive and easy to interpret and validate. Multivariate

approaches have been developed to account for potential interactions between genes’ expres-

sion. Filter approaches in feature selection can be separate into two classes [7]:

• Ranking approaches: define a certain scoring function to estimate the relevance indices

(scores) for each gene and select genes that are ranked at the top.
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• Space searching approaches: features are selected by optimization of a predefined cost

function.

Ranking approaches Ranking approach first define a scoring function S(x) to quantify

the difference in gene expression between different groups, score the genes and rank them

based on the scores estimated. Usually a higher score indicates an important gene that is

expressed differentially. The choices for the scoring functions include parametric and non-

parametric models.

The approaches that are mostly widely used are parametric models which assumes

a Gaussian distribution. One could use t-statistics, fold change or ANOVA to quantify

the divergence or distance between the sample distributions from different groups (pheno-

types/conditions) for a given gene. For example, the commonly used scoring function for

gene expression [8] that applies Welch t-statistics is:

S =
x̄1 − x̄2√

σ2
x1
/n1 + σ2

x2
/n2

(1.1)

in which x1, x2 are the gene expression in the samples from two groups/phenotypes, and

n1,n2 are the number of samples in these two groups. There are modifications of the standard

t-test to address the potential problem of the small sample size and noise in the array data,

either by adjusting the estimation of variances or applying prior degrees of freedom and

variances in a Bayesian framework [9, 10].

Non-parametric approaches do not assume a target distribution but compares and com-

bines the ranking of the gene expression level across different samples. In these approaches,

a “ranking” is assigned to samples in different groups based on one gene’s expression level.
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For each gene, the score is computed by taking the sum or average of the ranking of those

samples in a particular group. The scoring functions for the Wilcoxon rank sum [11] and

Rank product [12] are shown as follows:

S =
k∑
j=1

Rj, k = min (n1, n2) (1.2)

S = (

j=1∏
n

Rj
1/n) (1.3)

in which Rj is the ranking of sample j based on the expression level of the gene being

investigated.

There are other types of scoring functions based on information theory to account for

more complex relationships (e.g. non-linear, non-monotonous) between gene expression and

phenotypes , e.g.:

S =
∑
xi

∑
c
P (xi, c) log

P (xi, c)

P (xi)P (c)
(1.4)

in which P (xi, c) is the joint probability gene xi and group/phenotype c.

After scoring and ranking the genes, in many applications researchers might set a thresh-

old to select genes. A threshold could be a pre-defined fold-change difference between gene

expression in the different groups (2-fold change is usually used as a threshold in earlier stud-

ies), or based on the selection of genes that minimize the training sample mis-classification

rate if the goal is to classify the phenotypes, or the statistical significance of the score. The

statistical significance tests estimate the possibility that a particular score would have been

obtained by chance. P-value is commonly used, which represents the probability of achieving

a test statistics that is at least as extreme as the one observed in the data. Although there
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are standard asymptotic methods based on a pre-defined distribution of the test statistics,

gene expression data might not follow the distribution and the sample size of the data is

usually not sufficiently large for such analysis. Therefore p-values are estimated empirically

by applying permutation test on the data, i.e. running tests (computing scores) which are

identical to the original scoring approaches but the target feature (e.g. the grouping of

samples) is permuted differently for each test, whereby a null distribution of the scores can

be generated to estimate p-values. Another issue of concerned in these tests is the multi-

ple hypothesis testing problem [13] due to the large number of genes that are simultaneously

tested. The threshold should be adjusted to control the error rate (e.g. type I error: the false

positive rate). P-value with Bonferroni correlation or False Discovery Rate are commonly

applied to address the problem [14].

Space search approaches Instead of scoring and ranking individual genes, space search

approaches aim to find the subgroup of features (genes) which optimize a pre-defined cost

function. Cost functions in data mining are usually defined to maximize the information

content of the features while minimizing the redundancy, e.g.:

MIQ = max
i∈Ωm

I(xi, c)

(1/|Ωs|)
∑
jI(xi, xj)

(1.5)

The function computes the Mutual information quotient [15], in which the I(xi, c) is the

mutual information between gene xi and class label/phenotype c, and I(xi, xj) is the mutual

information between the gene candidate xi ∈ Ωm to be added into the feature subset and

the genes xj ∈ Ωs that have been included in the subset. Ωm is the entire gene set and Ωs

is the current selection of a subset of features/genes.
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Although these feature selection approaches are widely applied in the identification of

genes that are specific for a phenotype, there are issues in the assumptions implicit in these

approaches that are inconsistent with the biological processes. Many ranking approaches

assume features are independent, but the genes that regulate each other and their expression

should not all be independent. Space search approaches account for potential relationships

between features but biologically the “redundant” genes should not be removed if they are

also specific or relevant to a phenotype. We therefore suggest applying the Relief method

that optimizes a distance function to seperate samples from different groups and results in

a ranking of genes, which can address some of these problems. The details of our approach

are discussed in Chapter 2.

1.2.2 Current approaches to identify condition-dependent gene in-

teractions

To uncover the complex gene regulatory network that renders a phenotype or disease state

of a biological system, not only does one need to identify specific genes but also identify the

interactions that are specifically functioning to render the phenotype. These interactions can

be discovered based on gene expression data to suggest some specific association, regulatory

relationship or functional relationship between genes. This step could be consider another

feature selection problem, i.e. given all possible interactions, e.g. the complete graph con-

necting all gene pairs, or based on some known biological network, how does one select the

interactions that are specific to a phenotype?

Similar to the filter approaches introduced in the last section to identify specific genes,

the methods to identify specific interactions can either define a scoring function to rank
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interactions, or search the space of possible network structures that can best explain the

(in)dependencies within the expression profiles.

A scoring function that could be used to quantify the potential association between two

gene expression profiles is Pearson correlation:

R(X, Y ) =
cov(X, Y )√
var(X)var(Y )

(1.6)

for gene X and gene Y : Nevertheless the dependencies between two genes’ expression could

be more complex than a linear relationship, thus researchers have used mutual information

to account for all different types of dependencies:

I(X, Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(1.7)

The probabilities in the equation are meant to be estimated from frequency counts of discrete

variables, however gene expression measurements are usually continuous variables. One

may discretize the variables or approximate the probabilistic densities with non-parametric

approaches such as Parzen windows [16].

After calculating all the pair-wise scores one needs to select the features/interactions that

are “important”. Algorithms have been developed to reduce the number of candidates and

thereby identify important gene interactions, including:

• MRNET (maximum relevance/minimum redundancy, MRMR) [17] removes redundant

genes connecting to a target gene. For example, geneX1 andX2 both have high mutual

information with gene Y , thus one could connect X1−Y and X2−Y . Nevertheless, if

X1 and X2 are correlated, then they are “redundant” with respect to their connections
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to Y , thus the algorithm will delete one of the connections to Y . When there are many

other genes that can be connected to Y , the algorithm selects from the least redundant

set of genes the ones that have the largest mutual information with gene Y .

• CLR(Context Likelihood of Relatedness) [18] suggests that the connections between

different genes should apply different thresholds. CLR computes mutual information

MI(X, Y ) between genes X and Y , and generates a distribution of mutual informa-

tion to compute z-scores to evaluate the MI(X, Y ), i.e. to estimate the MI(X, Y )

relative to all possible MIs involving gene X or Y . In other words, is MI(X, Y ) much

higher than most of the other potential “background interactions” to gene X and gene

Y (MI(X, ∗) and MI(Y, ∗) in which ∗ represents any other gene that could interact

with X or Y. Finally, whether or not gene X and gene Y should be connected is deter-

mined by a hypothesis test of ZXY which determines whether the mutual information

between X and Y is significantly higher than the background.

• ARACNE(Algorithm for the Reconstruction of Accurate Cellular Networks) [19] at-

tempts to mathematically define and separate the direct from the indirect effects. If

one knows the expression of genes X and Y are correlated, genes Y and Z are cor-

related as well, one would expect that X and Z could be correlated. ARACNE thus

compares the triplets: MI(X, Y ), MI(Y, Z), MI(X,Z) in order to remove indirect

effects. Based on intuition that an indirect effect could be smaller than the direct

effects, ARACNE defines a “Data Processing Inequality” to test all gene triplets such

that for each triplet (X, Y, Z), the connection corresponding to the lowest mutual in-

formation MI = min{MI(X, Y ),MI(Y, Z),MI(X,Z)} is elimiated if it is lower than
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a threshold:

MI ≤MI2(1− ε) (1.8)

where MI2 is the second lowest mutual information for the triplet and the ε is a

pre-defined parameter.

Although any of these methods can effectively reduce the number of candidates, the

assumption of MRNET is questionable with respect to biology, since there could be “re-

dundant” interactions that are effectively functional under a condition to provide a robust

design of a biological function (e.g. different isozymes). CLR removes “false correlations” in

the network by eliminating promiscuous cases wherein a gene weakly co-varies with a large

number of other genes. This is more reasonable since such promiscuity can arise when the

assayed conditions are inadequately or unevenly sampled, which could be real in biological

experiments [18]. From another perspective, the many “indirect effects” is a major problem

in biological studies of regulation of gene expression. ARACNE provides a heuristic defini-

tion help focus on the direct interactions, thus has raised more interest and had some success

in the community.

1.2.3 The reconstruction of transcription regulatory network

Overall, the basic idea of “reconstruction of gene regulatory network” is the same as in-

ferring gene interactions — to identify pair-wise relationship between the genes, or more

specifically, to determine whether a gene (or its product) directly controls the expression of

another. By learning the dependencies contained within the expression profiles, researchers

are attempting to reconstruct a network that depicts the global regulatory network of genes.

The development and application of the theory and tools for network inference, or so-called
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“reverse engineering” tasks, have been predominantly based on data mining/learning tech-

niques. Many approaches mentioned above have been used in network reconstruction. There

are other approaches that are not built upon the scoring of every single interactions but

searching in the space of possible network structures to identify the best structure to explain

the data. One example is the Bayesian Network (BN) [20], which aims to determine a di-

rected acyclic graph that can represent and simplify the joint probability of the expression

of all the genes investigated, in which descendants are independent to each other given their

parent nodes so that the joint probability are separable based on such independencies learned

from data.

There are several in-depth reviews in the literature that introduce and compare these

different modeling schemes and more recent developments for learning [21–23], including a

primer on regression methods [24]. In the review by Margolin et al. [25] they examine the

theoretical underpinnings behind current reverse-engineering algorithms that are based on

systems control theory (e.g. linear or non-linear regression model), probabilistic graphic

learning, and information theory.

However, these reviews and literature in this area have generally been concerned about

the practical aspect of data mining, and few have paid attention to the relevance of the

methodology to the biological problem. The focus on the difficulties in network reconstruc-

tion has been from the computational perspective. A major discussion point has been the

limited sample size available (in most cases less than a hundred samples) for identifying

pair-wise relationships between the genes (which could be hundreds of thousands pairs).

This results in an under-determined system requiring methods for dimensionality reduction,

i.e. clustering or module/pathway analysis [21,26,27]. Another challenge is the large search
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space of possible regulatory schemes, which requires either advanced optimization strategies

or a priori information to reduce the computation time [22,28,29]. Nevertheless, in addition

to previous improvements to the “predictive power”or “computational efficiency”, it is im-

portant to understand how much biological information can be appropriately extracted from

expression data to deduce the rules of gene expression/transcriptional control.

From a biological perspective, instead of studying the physical network, many of these

reverse engineering methods are actually learning the influence network and trying to inter-

pret the influence with gene expression control (the transcriptional regulation in most cases),

which results a transcriptional regulatory network but with a interwoven mixture of true and

promiscuous, direct or indirect effects [25], thereby creating a considerable divide between

the influence network that is constructed and the real biological regulatory mechanisms. This

is due largely to the limitations of the dataset itself, and the presence of multiple, unobserved

levels of regulation leading to difficulties in the biological interpretations and undermining

the biological significance of these influence networks and their further applications.

The reconstruction of gene network (inferring gene interactions) is widely applied to iden-

tify transcriptional regulatory network and transcriptional regulatory relationship between

transcription factor and genes, thus we attempt to dissect the information content in the

expression data from a biological perspective, and scrutinize the biological foundations of

the computational models, and critically analyze the underlying assumptions of most in sil-

ico learning approaches applied to expression data that confounds the interpretation of the

results [25], which are:

1. Statistical dependencies exist between the transcription factors and their target genes

with respect to both their expression levels.
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2. Measurements of the relative amount of mRNA level in the microarray data are pre-

dictive of the activity of the regulatory molecules. This assumption can be further

sub-divided into three sub-types, as follows:

• Type 1 model assumes the expression level of a transcription factor correlates

with the activity of the transcription factor. (e.g. [30,31])

• Type 2 model estimates the activity of a transcription factor based on the behavior

of its target genes. (e.g. [27, 32,33])

• Type 3 model assumes co-expression implies co-regulation by the same transcrip-

tion factor, and estimates the existence or activity of an uncharacterized cis-motif

by clustering analysis. (e.g. [34])

Using the yeast microarray data as an example, we combine information on the yeast tran-

scriptional regulatory network and different data-sets and -types to examine each of these

assumptions.

The association between transcription factor and their targets To illustrate the

first assumption, we used yeast data to characterize the information in the expression data

that is used to infer interactions at the transcriptional level. The yeast dataset contains 255

conditions from environmental stress [35] and cell cycle [36] microarray experiments. These

datasets have been widely applied in previous studies to develop novel reverse-engineering

methods [34]. Actually the yeast environmental stress response dataset has been cited 2,260

times so far, and among the 1,000 of these citations that are related to computational studies,

there are 256 papers discussion about network reconstruction (citation data is provide by

googleScholar, http://scholar.google.com), which suggests the popularity of the dataset.
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Many of the yeast transcription factors have been studied and their cis-regulatory modules

on gene promoters across the genome have been identified and are now available in public

databases such as YEASTRACT [37, 38], thus enabling the attainment of a putative tran-

scriptional regulatory network based on known motifs on the gene promoters collated in

YEASTRACT.

Since the fundamental assumption is that the expression level of a gene depends on its

regulators, we calculate the correlation between the expression level of the transcription

factors and that of their target genes, where the target genes of a transcription factor in the

regulatory network are identified by corresponding cis-motifs on their promoters. As shown

in Table 1.1 on page 18, the average absolute correlation coefficient of the expression data,

taking the absolute value since both positive and negative correlation represents perceptible

dependencies, is about 0.08 between the transcription factors and their target genes. This

appears to be negligible, even smaller than the background with a correlation of 0.19 between

any gene pair, suggesting that it is difficult to directly identify TF-gene (a transcription factor

and its target gene) pairs based on the dependencies of their expression.
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Table 1.1: The average Spearman correlation between the expression level of the transcription factors and the expression level
of their target genes, considering the conditions when the transcriptions factors are highly expressed (higher than their own
mean level for all available conditions). “1-to-1” considers genes with only one known TF that can bind to their promoters.



Next, we place a “1-to-1” constraint that considers only the TF-gene pairs in which the

target gene has no other type of known effectors besides the transcription factor paired to it.

That is in contrast to an “n-to-1” relationship in which many transcription factors regulate

the expression of one gene. We identify 596 “1-to-1” TF-gene pairs in the yeast network.

This constraint assumes that the target genes of these 596 pairs are not regulated by multiple

transcription factors. We found that the average correlation of the expression data of these

pairs (0.16), albeit still lower than background noise (0.19), is about two times higher than

the overall TF-gene pairs (TABLE 1),. This suggests that the combinatorial regulation of

multiple transcription factors on a target gene plays an important role in the transcriptional

regulation, thereby complicating the TF-gene relationship and the use of correlation of their

expression profiles for inferring regulatory networks. Moreover, the correlation between

a TF-gene pair could be increased slightly when the samples containing lowly expressing

transcription factors are removed. A rationale for doing this is that low expression level may

suggest reduced control by the regulator [39].

Overall our results demonstrate a weak correlation in the expression exists between the

transcription factors and their target genes, thus making it difficult to uncover transcriptional

regulation due to the high background. The high background could possibly be due to both

direct and indirect associations between the genes in the network. The result is consistent

with previous observations [40] that only a very small proportion of transcription factors’

mRNAs are significantly correlated with the expression level of its target genes. Our results

also indicate that combinatorial regulation contributes to the reduced correlation between

the TFs and their target genes.

Besides the combinatorial effect, there are many complex features on the binding sites
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or DNA-TF interactions that could impair the association between transcription factors and

their target genes [41]. A transcription factor may not bind to all its targets with the same

binding affinity, indeed many specifically interact with only a few targets depending on other

genomic features, i.e. DNA modifications, or due to stochasticity of the binding events [42].

Differences in the sequence of and around the binding site will also affect the binding affinity

[43]. Thus, to determine bindings that are functional remains a challenge [44–46]. Moreover,

there are other levels of regulation that cannot be obtained from the expression data and

transcriptional regulatory network. For example, the protein-DNA interactions may depend

on other protein co-factors in order to become functional, and sometimes the binding itself

requires adaptors [41,47]. The mRNA level of the target genes may also be regulated at the

post-transcriptional level, through the coordination of different rates of mRNA decay [48].

Incorporation of information from multiple sources It is increasingly evident that

the network reconstruction by microarray data alone is imperfect, in part due to the limited

sample size use to infer a very complex network, but more importantly because of the limi-

tation of the information content of microarray, in which only the mRNA expression level is

measured. Incorporating biological knowledge on different levels of regulation (e.g. protein

interactions) could improve the results. Many recent studies on reverse engineering have

attempted to integrate these information but focus on the technical utility of multi-source

information in providing priors to limit the search space, and enable further validation or

promote more intrinsic learning models [30,49–51]. Here we show from a biological perspec-

tive, in an intuitive but quantitative manner, an enhancement in the TF-gene correlation by

incorporating other sources of information with the yeast expression data.

We consider the regulation of possible protein co-factors on the transcription factors,
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which have been suggested to impact the binding and activation of transcription factors.

We impose an experimentally confirmed yeast protein-protein interaction (PPI) network on

our transcription regulatory network. The physical interaction data is downloaded from

SGD http://www.yeastgenome.org/, and we compute for each transcription factor the

number of its potential interacting proteins—- given that the PPI is static and context

independent. We found that among all our 1-to-1 TF-target gene pairs (correlation of 0.16),

those transcription factors with a low number of possible co-factors exhibits significantly

better TF-gene correlation (p < 0.05, average correlation coefficient as high as 0.25), as

shown in Figure 1.1 on page 22.

In Figure 1.1 on page 22, part A, 596 1-to-1 TF-target gene pairs are considered. The

data is categorized into three groups according to the number of interaction partners of

each transcription factor in the yeast protein-protein interaction network. The group “Top

10%” consists of TF-target pairs in which the transcription factor has many interactions

(more than 97 possible cofactors). The group “Bottom 10%” consists of pairs where the

transcription factor has few protein interactions (no more than 2 cofactors). The others

(80%) are in the “Middle” group. The group “Bottom 10%” exhibits significantly better

average TF-gene correlation (p < 0.05).

Since the regulatory mechanisms depend on the dynamics of TF-gene binding, incorporat-

ing more binding information as a constraint should better reveal the TF-gene relationship.

We searched the ChIP-Chip data and found a conditional ChIP-chip dataset [52] containing

23 transcription factors under H2O2 (0.4nM) treatment of yeast for which we also have

microarray expression profiles. We therefore can define conditional TF-gene pairs using ac-

tual binding profiles (i.e. in the CHIP-chip data a significant p value indicates TF binding
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Figure 1.1: Incorporation of information from multiple sources. A: Box plots of the average
correlation between the expression level of transcription factors and the expression of their
target genes. B: Box plots of the average correlation between the expression level of tran-
scription factors and the expression of the target genes. For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
dissertation.
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on the gene promoters), rather than the sequence-level motif analysis which indicates only

the capability of TF binding instead of actual binding events. We compare the correlation

coefficient of TF-gene pairs defined by cis-motifs, or by non-conditional CHIP-chip (under

normal growth condition in YPD media), with that of gene pairs defined by conditional bind-

ing information, the result is shown in part B of the Figure 1.1 on page 22. since CHIP-chip

data is not available for every transcription factor, only 99 pairs have binding information

and 20 of them are (condition-specific) conditional binding. The overall gene-TF (box on the

left) describe the average correlation of all 596 pairs under all conditions. Under the H2O2

condition, the box in the middle (YDP-CHIP) use the non-conditional binding (CHIP-chip

results under normal condition, 99 pairs) to determine the average correlation of the Gene-

TF pairs that actually bind, and the box on the right use conditional binding CHIP-chip

data (20 pairs). The average TF-gene correlation increased significantly when conditional

binding data is available (box on the right, p < 0.01 compared with the box on the left).

The average correlation increased significantly (coefficient > 0.3) when conditional binding

data is available, confirming the importance of context-specific information.

Estimation of the transcription factors’ activity Besides the TF-target gene associa-

tion, learning transcriptional regulation from expression data relies on a second assumption,

that is, the mRNA measurements in the microarray data are predictive of the activity of

the actual regulatory molecules. As in the aforementioned correlation analysis, one simply

uses the expression level of a transcription factor as the identifier for its activity, which we

defined as Type 1 estimation. Since many transcription factors are largely reported as being

regulated by post-transcriptional modifications, simply equating mRNA level and protein

activity has been criticized [39]. Therefore, a different type of estimation has been suggested
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to represent the activity of a transcription factor, which is based on the behavior of its target

genes, which we call “Type 2” estimation. Instead of the mRNA level, Type 2 model uses the

expression level of the target genes to represent the transcription factor activity. Figure 1.2

on page 25 demonstrates the basic ideas in these different type of models: Type 1 models

rely on the expression level of the transcription factors. Type 2 models compare the genes

with the transcription factor binding site (target genes) and genes without the binding site

(background) and use the differences between expression of the target genes and the back-

ground genes to represent the activity of the transcription factor. Type 3 models assume

that target genes expression are better correlated if the transcription factor is activated, and

use the target gene correlation to represent the activation of the transcription factor.

We apply the Type 2 estimation on the yeast expression data. We use the difference in

expression between a TF’s target genes and non-target genes as its activity level for a given

condition. We then compare the 1-to-1 TF-gene correlations with the results obtained using

the Type 1 estimation. As shown in Figure 1.3 on page 27, there is a significant increase in

the average correlation coefficient when using the Type 2 estimation. Genes with fewer TF

binding sites on their promoters has less uncertainty of their regulatory mechanism, thereby

these genes may contribute more to approximating the activity of its regulators. The TF

activity inferred from target genes can then be weighted by “1/n” where n is the total

number of TFs that are able to control a particular gene. Such weighted summation version

of Type-2 model provides better correlation (as high as 0.28, see Figure 1.3 on page 27).

The weighting reduces the contribution of genes with many different cis-modules on their

promoters; presumably they are subjected to combinatorial regulatory effects. Figure 1.4 on

page 28 shows that by applying the Type 2 estimation and incorporating context-specific
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Figure 1.2: Schematic representations of different models to estimate activity of transcription
factors.
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information one could reach an average TF-gene correlation coefficient of 0.5.

The Type-2 method provides better estimation of TF activity without assuming mRNA

level represents TF activity, however such a good character of Type-2, does not benefit

much to the network reconstruction. To demonstrate this we simulate a kinetic model

d[Gene]/dt = (1 + [TFactivity]/K) − 1 (with arbitrarily defined effective kinetic constant

K) for the transcription regulation of a single TF on its target gene, shown in the first case

of Figure 1.5 on page 30. If the mRNA level would represent TF activity, which may not

be the case in many real biological systems, the mechanism by which a gene is regulated

by a single TF would be uncovered using Type-1 model (in the single inhibition case, as

shown in the responsive curve of the middle plot in Figure 1.5 on page 30). Type-2 model

may have better estimation of TF activity but could be difficult to identify the regulatory

mechanisms, because the information used to estimate TF activity, in Type 2 model that is

the TF-target hypothetical relationship and the target gene expression, and the information

required to predict TF-target gene relationship, are overlapped in some way, although the

two pieces of information are not all the same—the TF activity is estimated from the overall

effect of its potential targets, but a TF-gene relationship is established by testing whether or

not the change of the TF activity can explain the change of the expression of the particular

gene. In addition, the Type 2 estimation assumes the influence of a transcription factor

on all its targets is equal, which does not account for the variability in binding and the

function of a transcription factor on its various targets due to adapters and co-factors [53].

Another limitation is that the Type 2 and Type 1 estimations need a priori knowledge

about the transcriptional regulatory network, and such information is less often available in

other model organisms. Thus, the Type 3 estimation, which assumes co-expression genes
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Figure 1.3: Distributions of the correlation achieved by three different TF activity measures.
only “1-to-1” cases are considered. Although the average correlation does not improve much
in the Type 2 model, there are more genes whose expression level is better correlated with
their TFs. Type 1: The TF activity is represented by its expression level; Type 2-TFA: The
TF activity is represented by the difference between the mean expression value of its target
genes and the mean expression value of the (other) unrelated genes; Type 2-weighted TFA:
Genes with fewer TF binding sites on their promoters contribute more to approximating
the TF activity, TFA is then weighted by “1/n” where n is the total number of TFs that
are able to control a particular gene. The probability density is calculated using the kernel
smoothing density estimate function (ksdensity) in Matlab, with a Guassian kernel. A
histogram describing the frequencies of gene expression in different categorical bins should
show a less continuous but similar distribution.
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Figure 1.4: Box plots of the average correlation between activity of the transcription factors
and the expression of the target genes.596 1-to-1 TF-target gene pairs are considered. The
activity of transcription factors are estimated by Type 2 model. CHIP-chip data is not avail-
able for every transcription factor, so only 99 pairs have binding information and 20 of them
are conditional-specific binding. The overall gene-TF (box on the left) describes the average
correlation of all 596 pairs under all conditions. To estimate the activity of the transcription
factors, target genes of each transcription factor are determined by yeast transcriptional reg-
ulatory network, where the TF-gene interactions are based on motif/binding site. Under the
H2O2 condition, the box in the middle (YDP-CHIP) uses the unconditional binding (CHIP-
chip results under normal condition) to determine both the activity of transcription factors
and the average correlation of the Gene-TF pairs that actually bind, and the box on the
right uses conditional binding CHIP-chip data. The average TF-gene correlation increased
significantly when conditional binding data is available (box on the right, p < 0.05 compared
with the box on the left).
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are co-regulated by the same transcription factor, has been widely implemented to predict

cis-motifs or to estimate the activity of cis-motifs by co-expression analysis.

With the Type 3 model, one could use clustering analysis first to identify the co-expressed

genes, followed by enrichment analysis on the promoters of genes within a same cluster, to

identify functional cis elements. However, the assumption that co-expression indicates co-

regulation is imperfect. Since co-expression may occur in situations other than TF-gene

associations [25], such as in a signaling cascade. Thus, one should be cognizant of the

assumptions that lead to the results, and further experiments are required to validate the

cis-elements uncovered in this manner.

Combinatorial regulation of transcription factors Most of aforementioned analysis

focus on the “1-to-1” pairs whereby the genes are likely regulated by only one transcription

factor, nevertheless there are many more genes (> 80%) with multiple promoter regions

that bind different transcription factors, thereby complicating the regulatory mechanism

through TF cooperation. Models of TF binding and gene transcription have been exten-

sively studied experimentally on prokaryotes with small-scale quantitative measurements of

numerous perturbations on a subset of the regulatory circuits [54]. A detailed thermody-

namic binding and control model has been established [55] and successfully applied to many,

highly specific regulatory models in E.coli and Drosophila [31, 56], providing a quantitative

framework for studying the combinatorial regulation of transcription factors. Researchers

are now attempting to generalize the dynamic model to automate the procedure of learn-

ing the detailed mechanisms from high-throughput data. Questions have arisen on whether

or not the information in large-scale expression data is adequate to support these detailed

mechanistic models. Since current knowledge of combinatorial regulation in real eukaryotic
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Figure 1.5: Simulations of the combinatorial transcription regulation. The interactions be-
tween transcription factors and between transcription factor and the initiation of the target
gene transcription are modeled with kinetic equations. Response curves are simulated and
plotted. For the regulation by single transcription factor, the x-axis is the activity of the
transcription factor and the y-axis is the expression level of the target gene. Both 3-D plots
and 2-D color maps are provided for the combinatorial regulation of two transcription fac-
tors, where the x- and y-axis represent the activity of the two transcription factors and the
z-axis/color represents the expression level of the target gene. Microarray data does not
directly provide activities of transcription factors, so the rightmost plots for each regulatory
scenario instead uses estimated activity (Type-2 model) of the transcription factors, show-
ing what profiles that could be obtained from microarray analysis. Numerical simulation
of kinetic model is performed using the Runge Kutta method in Matlab and the plots are
generated with customized code in Matlab.
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cell systems is still very limited, it is hard to assess predictions of combinatorial regulation.

We try to use simulation study to show some cases of combinatorial control as well as to

what extent different mechanisms can be revealed by analyzing expression data. To address

the combinatorial control of two transcription factors we explore the mechanistic cooper-

ation schemes and acquire kinetic equations from previous studies of theoretical modeling

(thermodynamic binding model) [55], then generate putative gene expression profiles. The

simulations show different expression profiles depending on the cooperation mechanisms

(Figure 1.5 on page 30). These profiles demonstrate that the differences in the different

cooperation schemes are so subtle that only a few specific perturbations/conditions would

capture the distinctive features, as depicted by the narrow transition (regions with significant

changes of colors representing target gene expression in the 2-D response surface color-maps)

in the response surface curves in Figure 1.5 on page 30.

In Figure 1.6 on page 33 we show the clearest pattern that we have seen in the yeast

data with interpolation on the combinatorial regulation of two TFs on one gene. Compared

with Figure 1.5 on page 30, we show that without independent measurements of the actual

activity of the transcription factors, as well as enough number of perturbations to cover

all possible combinations of the two TF’s activity level, the subtle features in the different

cooperation schemes are not sufficiently distinctive, and will be further exacerbated by the

noise and limited array data measurements. Therefore, the “top-down” approaches have

serious limitations in their ability to learn these detailed mechanisms. Unlike the “bottom-

up” quantitative experiments performed for small systems, the high-throughput data involves

many layers of interconnected regulations making it difficult to segregate the contributions

of each TF on the expression of its target genes. As observed by Gitter et al. [57] in the
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systematic knock-out experiments [58], the overwhelming majority of its target genes would

not be affected even if a transcription factor is knocked out.

In this section, we introduce briefly the current approaches to identify genes and in-

teractions that are specific to a phenotype. To identify genes, a problem is the selection of

genes that can distinguish a phenotype, thus many filter methods in feature selection can

be applied to address the problem. To identify interactions, or “reconstruct a network”, the

general idea is to determine whether or not a gene controls the expression of another. From

a biological perspective, we used a set of yeast microarray data as a working example to eval-

uate the fundamental assumptions implicit in learning the transcriptional regulation from

gene expression data. We show that the detailed transcriptional mechanism is overly com-

plex for expression data in the conventional setting (samples of phenotypes and controls)

alone to reveal. A proper incorporation of multi-source biological knowledge, especially

context-specific information, is beneficial for network reconstruction. The idea has been

implemented by integrating PPI (e.g. MATISSE [59]) or P-DNA data (e.g. MINDy, MA-

RINA [19]) to provide a “reference” biological network to identify the interactions wherein

are specifically functioning in a phenotype. Furthermore, researchers have attempted to

combine the systematic design of high-throughput experiments with these computational

approaches to achieve better reconstruction of regulatory networks. A theoretic simulation

study by Yu et al. [20] shows that Dynamic Bayesian Network is both accurate and efficient

in recovering the simulated molecular network when there is a large time-series dataset with

many (25-100) time points (although it is still difficult to recover regulatory relationships

when a gene have multiple regulators, as shown by our yeast analysis). Sachs et al. [60]per-

formed systematic perturbation experiments on a small network of protein signaling, with
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Figure 1.6: Examples of combinatorial transcription regulation in gene expression data. In
these two examples, the genes have only two potential TF regulators based on TRN. The
space is interpolated based on the 255 datapoints.
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flow cytometry measurements of stimulatory/inhibitory interventional conditions on most of

the proteins in the network. Based on these perturbation data, they applied Bayesian Net-

work and successfully reconstruct a detailed regulatory model for the RAS/MAPK signaling

in human primary immune cells. Therefore, combining systematic design of high-throughput

experiments with machine learning approaches can identify the causal/regulatory network

underlying a particular biological process.

Overall we suggest a conscientious inspection of both the biological assumptions under-

lying the mathematical formulations of the models, and the information contents in the

data in support of the statistical learning processes, which we believe is required in order to

achieve learning results with lasting biological significance. This would help accelerate fruit-

ful capitalization and continuation of computation in promoting our understanding of the

biological regulatory system. Unless coupled with interaction data, systematic perturbations

or time-series experiments, the “top-down” approaches have limitations in their ability to

learn detailed mechanisms and causal relationships. Thus in the next section I will introduce

the “bottom up” approach in systems biology that builds models based on the knowledge of

the regulatory mechanism of a gene network to provide specific hypothesis on why and how

a gene is involved in determining a phenotype.

1.3 Modeling based on mechanism

Systems biology integrates experimental and modeling approaches to develop a detailed

dynamic understanding of the functions and behaviors that are specific to a biological system.

The approach of systems modeling is different from mining approaches that are attempting

to identify and characterize genes and interactions to distinguish phenotypes based on omics
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data. The modeling approaches combines systems theory and biological information to

achieve a functional understanding of the system as dynamic processes [61].

The modeling study in systems biology integrates experimental results to develop a func-

tional context to address the following complexity that arises in biological systems as dynamic

interacting networks:

• The large number of different molecular components in cells.

• The enormous, heterogenous, direct or indirect interactions between the molecules.

• The complex functionality of molecular components. For example, the same component

could have very different function in different biological processes (multi-functional) or

organisms. A particular function can be accomplished by different sets of components

(redundant).

• The dynamic behavior of biological systems. In many cases the dynamics are seldom

linear, and contain feedback circuits that are very complex. The diversity of biological

systems.

1.3.1 Modeling of gene network: An overview of systems theory

Modeling is a process which associates mathematical concepts with natural system(Wolkenhauer,

2001). Particularly, in gene regulation or cell signaling, one aims to connect the interaction

of the molecular components and the observable biological phenomenon with mathematical

variables and relationships so as to generate predictions and hypothesis. The basic modeling

approach can be categorized broadly into deterministic kinetic modeling, stochastic modeling

and qualitative discrete dynamic modeling. These are mathematical tools that can integrate
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network information and formalize the causal structure of the signaling system with variables

and functions [62].

Simulation is a modeling experiment that can provide a temporal profile representing the

dynamics of the system. For example, in a kinetic model, a simulation may apply numerical

integration to find a solution of the differential equations. In a stochastic model, a simulation

is a single realization of the stochastic process in which the probability of the resultant state

of each variable corresponds to the distribution constrained by the stochastic equations.

The basic framework of modeling, which could be used to generalize many different

models in systems biology, can be established with systems theory. The following derivations

in systems theory can be found in the review [63] . In systems theory, a system is defined

by a set of objects and their relationships:

S ⊂ O1 ×O2× . . . (1.9)

where the Oi are objects and × denotes the Cartesian product (a combination of objects in

the object set) that represents the relationship between objects. In a signaling system where

one observes that some stimulations cause some responses could be described as

S ⊆ Ω× Γ (1.10)

where the Ω and Γ represents the stimulus and response, respectively. For example, the

stimulus could be a set of different ligands and the responses are the expression of specific

genes. There should be causal relationships between stimuli and responses, which can be
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mapped:

σ :Ω→ Γ

ω → γ

(1.11)

where Ω = {ω : I → U} and Γ = {γ : I → Y } defines each stimulus/response a temporal

sequence of events, that is, at any time t ∈ I, a stimulus u(t) of the system S results a y(t)

at time t. In practice, a time-course plot of the stimulation and response can visualize one

ω → γ mapping.

Thus we now have a “phenomenological” model from the stimulation to the response,

in the sense that we treat the internal system as a black-box and only consider the input

and output. There are many phenomenological models that have been applied to describe

physiological changes, such as different bacterial growth curve under different conditions

involving temperature, pH, nutrition and other factors in the medium. Unsatisfied with a

phenomenological description, systems biology usually looks for deeper mechanistic models,

which consider the transduction process within the cell at the molecular scale to reveal the

mechanistic design of the cell system. Thus the model should be extended with a state-space

X: Ω → X,X → Γ. The behavior of the system is encoded by the states x ∈ X and the

temporal evolution of x(t) = ϕ(t; t0, x, ω) depends on the state-transition mapping:

ϕ : I × I ×X × Ω→ X (1.12)

where the state of the system at a particular time depends on the initial state x(t0), the

stimulation Ω , and probably the states at some other time.

A dynamic system S is ‘continuous-time’ if I is a set of real numbers: I = R+. If I are
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integers: I = Z+, the system is a ‘discrete-time’ system. A dynamic model that determines

precise values x(t) are ‘deterministic’ and if the x(t) are random variables the model is

‘stochastic’. S is finite dimensional if X is a finite-dimentisional space (which means x(t)

are discrete variables with finite states). The X → Γ mapping could be used to model the

noise in the measurement of the system.

Therefore:

• The kinetic modeling approach which applies a set of differential equations to describe

the concentration changes of molecules essentially defines a deterministic continuous-

time system S, where the mapping ϕ is represented as equations:

dx/dt = f(x(t), u(t)) (1.13)

• The Boolean Network modeling, is a method of discrete-dynamic modeling, defines a

discrete-time finite-dimensional system where the variables x(t) has finite states (e.g.

two states on/off only) and the mapping ϕ includes some state-transition rules. The

state of the system in the next time point is determined by the previous ones through

logic relationships between the variables.

x(t+ 1) = F (x(t)) +G(u(t)) (1.14)

in which F represents the state-transition rules and the G defines the possible effect of

the stimulation.

• The stochastic modeling approach defines a stochastic discrete-time finite-dimensional

system where the state change is discrete-time (similar to equation.6) but variables
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represent random processes.

The mathematical concepts and techniques of modeling and simulation in systems dy-

namic theory are generic [64]. The systems approaches to manage complexity arising from

dynamic interactions are well developed, the general framework of modeling, different type

of models and the simulation methods are not novel and have already been successfully ap-

plied to a wide range of processes in other areas, such as engineering, physics and chemistry.

For the systems modeling of gene networks, the major challenge is to build a model that is

consistent with our understandings of the biological mechanisms. In the next section I will

use one of my studies as an example to show how a gene network model can be developed

based on biological assumptions.

1.3.2 Example: discrete dynamic modeling of insulin signaling in

liver cells

The approach to build a systems model involving genes and interactions that determines a

phenotype can be decomposed to address the following two questions:

• How to model a phenotype?

• How to define the perturbations that determines or changes a phenotype?

To model a phenotype , we need to collect information how the phenotype is regulated.

As an example, the insulin signaling is a well-studied and complicated signaling network

in mammalian cells. It is composed of branched downstream signaling pathways and var-

ious feedback mechanisms, which could benefit from modeling. In a separate study, our

group identified the involvement of a novel player, PKR, in the insulin signaling network of
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HepG2 cells [65]. Research in our group has shown that as one of the downstream target

of insulin signaling, PKR is intricately involved in regulating the insulin signaling process

through a feedback mechanism [65]. Therefore, we model the phenotype of insulin signaling

in liver cells as a dynamic signaling process involving PKR, in which potential interactions

and components are collated from literature and the patterns of their dynamic activation

under insulin treatment defines a “phenotype”. Since the literature information and our

experimental approaches provides mostly qualitative information, we choose to use discrete

variables to represent the activation of components (the signaling molecules involved) and

specify the state transition rules to describe interactions between the components that de-

termine a phenotype.

The signaling network can be formalized in terms of an oriented graph, where the ver-

tices represent the elementary components involved in the process and the arcs describe the

regulatory interactions between those components. In the signaling network, each directed

arc reflects the direction of information flow from the source vertex to its target in the sig-

nal transduction, and is labeled with a positive or negative sign which defines activation or

inhibition, respectively.

We associate each vertex in the signaling network with a discrete variable, which has

three states representing the activity of the protein —- 0: lower than control, 1: the control

state, 2: higher than control. Thus by definition every component starts at the “control”

state in the absence of insulin stimulation.

We define transition rules based on the activation/inhibition attributes on the arcs in

the signaling network. Two operations: shift up (+1) and shift down (−1) adapted from the

triple logic are applied in the model. If an activator is in a state “higher than control”, (e.g.
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the kinase phosphorylation is increased), the state of its target will be shifted upwards. In

contrast, if the state of an inhibitor is higher than control, its target will be shifted downwards

in the next updating event. For some components, there may be multiple regulators that

are active in one updating event and the combinatory effect is determined by comparing

the number of activating to inhibitory factors. The target is shift-up if there are more

activating factors, and vice versa [66,67]. If the number of activating and inhibiting factors

equal, we assume the target remains at the control or current state. Finally, the state of a

component will decay if its regulators can no longer maintained their active state. This way

we construct a systems model for the insulin signaling in liver cells, whereby we can simulate

the evolving of the activity of the signaling proteins along with time to define a phenotype

to be investigated.

To define the perturbations that determine or change a phenotype , which is,

in this case the dynamics of the insulin signaling in liver cells, constraints are assigned to

components to mimic the perturbations on the network. If a protein is constantly inhibited

(in an experiment), we restrain the state of its corresponding variable in the model to be

always in either 0 (lower than control) or 1 (control state).

In the simulation each run starts with its own set of randomly generated initial states

and a simulation result represents the dynamic profile of a single cell in the population. By

assuming that cells response independently to a signal, we can simulate a large number of

independent runs to mimic a population effect and measure the average evolving profile for

the population.

Time is modeled by regular intervals called time-steps. Since most components in our

network are kinases or phosphotases, and most reactions are protein phosphorylation and
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dephosphorylation, we assume that the duration of the activation/inhibitions and the decay

processes in the signaling transduction are comparable and approximated by one time-step.

Since the reaction rates may be different from cell to cell even for the same interaction, we

apply asynchronous updating of the state: Sni = fi(S(j1)(m1), S(j2)(m2), . . . , S(jk)(ml)),

ml ∈ n− 1, n where Sni is the state of component i at time-step n, and fi is the transition

function associated with i and its regulators j1 to jk, and the time-point corresponding to

the last change of the regulators can be either the last or current round of updates.

This is an example of how biological assumptions are applied to build a systems model of

gene network, more details of how this particular signaling network is analyzed by modeling

and experimentation can be found in our paper [68].Overall, this discrete dynamic model

provides an in silico model framework that integrates potential interactions and assesses the

contributions of the various interactions on the dynamic behavior of the signaling network.

Simulations with the model generated testable hypothesis on the response of the network

upon perturbation, which were experimentally evaluated to identify the pathways that func-

tion in our particular liver cell system. The modeling in combination with the experimental

results enhanced our understanding of the insulin signaling dynamics and aided in generating

a context-specific signaling network.

More importantly, by comparing model simulation with experiments, we found that even

in this well-studied signaling system, there are many components and interactions that are

not actually functioning, or not functioning in the way we thought they would be in our

system, since our current understandings of regulatory network are based on experiments

from different research groups, on different systems, under different conditions. For example,

we found the AKT-PP2A feedback in the insulin signaling, in which PP2A can induce the
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dephosphorylation of Akt, and thereby suppress the activity of Akt, is not functioning in

the HepG2 liver cells, although it has been suggested as one important regulatory module

in insulin signaling. These observations emphasize the importance and necessity in the

identification of specific genes and their regulation to understand a phenotype.

In summary, systems modeling studies biological processes by systematically model

the gene network and its response to different perturbations. The modeling studies pro-

vide a framework that can integrate experimental results to develop a functional context to

address the complexity that arises in biological systems as dynamic interacting networks.

The methods for modeling and simulation are generic but their biological applications have

many challenges, since many biological assumptions need to be considered to describe an

appropriate mathematical representation for the system of interest.
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Chapter 2

Identification of condition specific genes
and interactions — a multi-layer ap-
proach

An important topic in systems biology is the reverse engineering of regulatory mechanisms

through reconstruction of context-dependent gene networks. A major challenge is to identify

the genes and the regulations specific to a condition or phenotype of interest, given that reg-

ulatory processes are highly connected such that a specific response is typically accompanied

numerous collateral effects.

In this chapter I will introduce and discuss the multi-layer approach that is able to

reconstruct condition-specific genes and their regulation through an integrative analysis of

large scale information of gene expression, protein interaction and transcriptional regulation.

Application on the yeast dataset correctly identified a context-specific network and the major

transcription factors that regulated at either the transcriptional or post-transcriptional level.

Current approaches have difficulty specifying these regulators. Further application on human

breast cancer identified Trop2 (TACSTD2) as a target gene, and discovered its regulation by

transcription factors CREB as well as NFkB, the latter regulated at the post-transcriptional
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level. The predictions were further confirmed through experimental studies.

2.1 The problem in current approaches to identify spe-

cific genes and interactions

The accumulation of high-throughput transcriptome data has driven the development and

application of computational approaches to infer networks, to elucidate gene regulation and

to identify targets. As introduced in chapter 1, there are many approaches developed and

applied to identify genes and interactions. Initial network inference methods based on gene

expression data were successful with prokaryotes [18]. However higher eukaryotes systems,

with their higher number of genes, provided many more candidate genes (several hundred)

and interactions (more than a thousand) (e.g. [69,70]. This generated numerous hypotheses,

and with this sheer number most of the candidates cannot be investigated or validated

through experiments, making it difficult to assess the utility of the proposed approach on

these systems.

Further, a majority of the candidates are often related to general processes that are not

specifically responsive to the condition being investigated. With this large number of possible

candidates literature search to “manually“ characterize many of these predicted candidates

are typically performed to identify potential targets for further experimental investigation

based on one’s expertise. Alternatively, GSEA [71] and GO (http://www.geneontology.

org/) annotations have been applied in many reverse engineering studies to interpret the

results, which provide an understanding of the “general” processes involved rather than the

direct molecular mechanisms.
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To address the problem of large number of candidates that are hard to validate and

characterize to answer biological questions, several studies integrated gene expression data

with interaction networks constructed from protein-protein interaction (PPI) and protein-

DNA (P-DNA) interaction information [59, 72]. In these studies statistical methods were

applied on the gene expression data of the pair-wise interactions to identify active sub-

networks or modules. In contrast, ARANCE based on gene expression data alone was able

to successfully identify a transcriptional molecular interaction network by removing indirect

interactions [19]. These approaches are based on structure learning methods that aim to in-

fer “functional interactions” in accordance with certain presumed mathematical definitions,

i.e. differential expression, correlation or mutual information between the gene expression.

A correlation between two genes could suggest “regulating”, “being regulated” or indirect

relationship. However an absence of a correlation does not preclude a possible regulatory

relationship, e.g. post-transcriptionally regulated interactions. Thus subsequent methods

were developed to uncover these potential post-transcriptional interactions, given either a

transcription factor and target gene pair along with a list of potential regulators or a tran-

scription factor and its target genes [73,74].

We note that the problem of generating too many hypotheses is because the predictions

are not specific enough. For example, in biological systems a specific and direct response

to a perturbation usually is accompanied by a cascade of collateral effects on many genes

and dozens of regulatory modules in the network. For example, Stephanopoulos et al. [69]

showed that in an experiment that knocked-out the GAL80 gene in yeast, and compar-

ing the transcriptomes before and after the treatment showed that such modulation of a

single pathway eventually caused a global effect throughout the whole bio-molecular inter-
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action network. The specific response of the knock-out experiment is the activation of the

galactose-processing pathways by eliminating GAL80’s repression on the GAL4 transcription

factor, nevertheless the repression of this one pathway resulted in hundreds of differentially

expressed genes and dozens of activated modules, making it difficult to identify the essential

“trigger”, i.e. the specific pathway in response to the perturbation. Therefore, in a typical

network inference or module analysis, many of the genes and modules identified would likely

be such “side-effects” or collateral response rather than direct and specific effects. For exam-

ple (Xia Yang et al., 2010) in identifying the activity of the p450 gene in human liver, network

analysis (clustering and network reconstruction based on correlation) identified more than

5000 differentially expressed traits spanning many general functional modules including im-

mune response, cell cycle, lipid metabolism, macromolecule biosynthesis, etc. This provides

a “rough measurement” of the overall influence but is ineffective in identifying the specific

pathway that regulates these effects and in guiding the experimental design for further in-

depth functional studies. Therefore, the specific responses are usually concealed by many

less specific effects, which are difficult to distinguished based on current network analysis

methods.

2.2 Basic ideas to improve the specificity of prediction

In our network reconstruction framework, we propose to integrate microarray data from a

diverse set of conditions to provide a common context (more and better controls) for the

expression behaviors of genes, and apply advanced feature selection technique, to identify

the target genes (in layer I) that are most specific to the condition being investigated. From

the target genes, conditional gene regulations (in layer II), and conditional transcription
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factor activity (in layer III) are then determined. Incorporating these diverse conditions for

comparison in the feature selection of genes and interactions reduces the false positive rate

and enhances the specificity.

2.2.1 Incorporating diverse conditions for the identification of genes

Identification of conditional specific genes or ranking of the changes in TF activity can be

modeled as a process of “feature selection”, as introduced in Chapter 1, which is to select the

best features (genes, TFs) that can determine a class (phenotype/condition). Traditional

methods to identify candidate genes typically compare two set of samples, e.g. treated and

untreated condition.

In contrast to traditional methods, we propose to integrating multiple conditions of gene

expression data and applying a context sensitive algorithm to identify the genes that specif-

ically respond to the condition being investigated. Therefore, the computational approach

that we are looking for, which is to identify features (genes and TFs) that can distinguish

one phenotype from all the other phenotypes, should fulfill the following requirements from

the biological aspect:

1. The approach aims to weight and rank genes according to their “importance”.

2. The approach should account for the fact that features (genes) are not all independent.

Gene expression is controlled by a complex regulatory network, thus there are intrinsic

relationships between genes.

3. There are intriguing relationships between phenotypes. There are some phenotypes

that may have transcriptomes similar to our phenotype of interest, these phenotypes
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could be more important to compare with to understand the unique changes in our

conditions.

Therefore, the approach should adopt a learning model that fulfills these requirements:

1. It should be a feature selection process to weight genes/features: i.e. it is a mapping

from original feature space X to a new feature space X′, by scaling each dimension

with weight w. There should be some constraints on ws so as to ensure a unique

solution.

f : x→ wx, ‖w‖22 = c, w ≤ 0 (2.1)

2. To account for the fact that features (genes) are not all independent, we should evaluate

each feature in the context of other features and samples, which suggests a local learning

model.

3. There are some phenotypes that may have transcriptomes similar to our phenotype of

interest. Thus we try to find “nearest neighbors” for the samples by comparing tran-

scriptomes. For a sample xn, its nearest neighbor of the same phenotype is Hxn , while

its nearest neighbor from a different phenotype is Mxn . We can define a “margin”:

ρn = d(xn,Mxn)− d(xn,Hxn) (2.2)

We try to find a mapping so that the distance between different phenotypes d(xn,Mxn)

are as large as possible, while samples from our phenotype d(xn,Hxn)should be as close
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as possible. So the problem can be formularized as maximize the margin:

max
∑
n
ρn(w), with respect tow, s.t. ‖w‖22 = c, w ≤ 0 (2.3)

Based on our modeling of this learning problem, there is an algorithm family called

“Relief” that can solve this optimization problem, which we applied in the identification of

genes and transcription factors for a phenotype.

The ReliefF algorithm The basic procedure of Relief algorithm (Kira and Rendell, 1992)

is shown as follows:

Algorithm: Relief (theoretical computing time complexity O(m ∗ n ∗ f))
Input: n learning samples X, with f features, sampling parameter m
Output: for each feature Fi a quality weight Wi
Initiate: For i = 1 to N : Wi = 0
For l = 1 to m:
Randomly pick a sample xk;
find its nearest hit H and nearest miss M ;
For i = 1 to f : Wi = Wi − dif(i, xk,H)/m+ dif(i, xk,M)/m
Return W

Relief estimates the quality of features through a nearest neighbor comparison to account

for the “local” context of features (gene expressions in our case). The algorithm selects

neighbors from the same condition (hit) and different condition (miss) based on feature

vectors (the transcriptome of a sample). The function dif(i, S1, S2) calculates the difference

between the values of feature i in two samples I1 and I2. m is the number of samples

randomly sampled from a dataset of n total samples and f features. For each iteration, the

weight of features are updated with respect to whether the feature differentiates two samples

from the same condition (undesired property), and whether it differentiates samples from

different condition (desired property).
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When Relief is used to identify condition specific genes, the data matrix E (n genes ×m

samples) contains n feature vectors, and the feature vector for each gene is the expression of

the gene in different samples. When Relief is used to identify condition specific TF activity

change, the data matrix A (k TFs ×m samples) contains k feature vectors, the feature vector

for each TF is the summation of the expression of its target genes in different samples, i.e.

A = B×E, in which B (k TFs ×n genes) is the TF-Gene binding matrix based on protein-

DNA binding information.

2.2.2 Integrating multiple conditions to identify regulatory rela-

tionships

Traditional approaches to determine gene regulatory relationship are commonly based on

mutual information (or correlation) between pairs of genes [19, 72], with comparison be-

tween a condition of interest and a reference condition. Instead of using a single “untreated”

reference condition, we suggest incorporating multiple conditions to provide a better refer-

ence pool, and compute the difference between the conditional and unconditional mutual

information (MI):

MI(gene pair|condition)−MI(gene pair in all conditions) (2.4)

This idea is essentially an extension of the two-way relationship (gene x and gene y) to

a three way dependencies (gene-pair x1, x2 and y) in calculating the mutual information

from gene expression, such that the regulators of y, genes x1 and x2, could be readily distin-

guished. This approach, also called causal-filtering, was initially suggested by Bontempi et
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al. [75], in which they compute the conditional mutual information between x1 and x2 given

y, MI(x1, x2|y), and the unconditional one MI(x1, x2). When x1 and x2 are the regulators

of y, one have MI(x1, x2|y)−MI(x1, x2) > 0. In our case, since the effectors/target genes

y for the condition of interest is identified by Relief and actually determines the phenotype,

thereby the three way dependencies (gene xs and y) are similar to conditional dependencies

(gene xs and the condition of interest), thus we compute the differences between conditional

mutual information and unconditional mutual information for genes on paths to the target

genes in the reference network (PPI and P-DNA network), and each gene pair consists a

potential “regulator” and a “target gene” in the network. Positive scores suggest a potential

causal relationship while zero scores suggest an indirect or downstream effect and thus are

removed from the network. Any node with zero score is filtered out unless it is a potential

transcription factor of the targets or it serves as an intermediate step on the path of a causal

(positive-scored) node to the targets.

2.3 The multi-layer approach and the proof-of-concept

applications

We take an alternative approach to identifying targets that are specifically responsible for the

condition of interest, and which may not necessary be hubs in a network [76]. Our approach

separates the network reconstruction into multiple levels, each addressing a specific biological

question wherein a particular scenario of biological regulation is modeled. The overall aim

is to provide more specific regulatory hypotheses by incorporating interaction data, however

in a very different fashion from prior approaches. In contrast to prior approaches [59,72,77]
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wherein an interaction network is first constructed and the gene expression is then super-

imposed onto the network, we first identify the most specific genes involved and then build

the interactions from there up, with the interactions obtained from PPI and P-DNA infor-

mation. We separate the reconstruction of condition specific gene network into three layers

(layer I, II and III). Layer I aims to identify the genes that have distinct expression pattern

under the condition of interest, from which the conditional network is built. Once these

“specific” genes are identified, the network is expanded in layer II based upon known and

predicted interactions with these genes, obtained from the PPI and protein-DNA networks.

A filtering approach based on mutual information is applied to the physical interaction net-

work to reconstruct the regulatory pathway from the candidate genes. In layer III we infer

the transcription factor (TF) activity to identify the major regulators in the gene network,

accounting for post-transcriptional regulation. The multiple layers of learning with their dis-

tinct biological assumptions capture different biological features in the regulation to achieve

reconstruction of condition-specific gene networks that accounts for both transcriptional and

post-translational molecular interactions. We establish the accuracy of our methodology

against synthetic datasets as well as a yeast dataset.

2.3.1 Layer I. Identification of candidate genes

We propose that integrating multiple conditions of gene expression data and applying a con-

text sensitive algorithm Relief identifies the genes that specifically respond to the condition

being investigated. Unlike previous applications of pair-wise comparison with Releif [78], we

apply Relief to a diverse set of conditions. To model this, we generate a simulated dataset of

100 genes with 5 different conditions (conditions A−E) plus a reference condition (condition
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ref), each condition has 10 samples. In each of these 5 conditions there are 10% genes that

are uniquely changed (specific responses) and another 20% are shared changes (overlapping

responses to represent collateral responses). The changes are simulated with a normal dis-

tribution of the mean and variance, different from the unchanged (control) condition. The

goal of the gene selection/feature selection is to identify the 10 genes that change uniquely

for a given condition (condition A). Different methods are applied to identify the 10% of the

genes that change uniquely for a given condition. Traditional approach to identify differen-

tially expressed genes compares condition A with the reference condition, while we suggest

applying ReliefF on condition A against all the other conditions that are available. We

compare two different approaches: traditional approach to identify differentially expressed

genes based on t-test, and the ReliefF algorithm; under two different scenarios: with only

condition A and reference control, and integrating all the conditions that are available and

comparing against condition A. The ROC curves in Figure 2.1 on page 55 shows that Relief

applied on multiple conditions performs the best.

The “MEGA” yeast microarray dataset from the Audrey Gasch lab (http://gasch.

genetics.wisc.edu/datasets.html), which combines 500 yeast experiments from a vari-

ety of conditions, provides an integrated gene expression “reference pool” for analyzing yeast

data. We evaluate our approach by reconstructing a gene network for the “AltCarb” condi-

tion, i.e. adding extra alternative carbon source, in which the essential regulatory pathway is

known a priori- namely the GAL pathway. When adding extra carbon sources into the yeast

media, if the carbon source is galactose, the GAL pathway, also known as the “Leloir path-

way” will turn ON, if it is other types of carbon source, such as glucose, the Leloir pathway

is turned OFF leading to “glucose repression” [79]. A successful gene selection procedure
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Figure 2.1: Proof-of-concept example of applying Relief on multiple conditions A: We suggest
applying ReliefF on condition A against all the other conditions. B: The ROC curves for
identification of specific genes for the condition of interest (condition A). The AUC (area
under curve): ReliefF with multiple conditions > ReliefF with 2 conditions > t-test with 2
conditions > t-test with multiple conditions.
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is expected to identify the entire GAL pathway-the four GAL genes (GAL1, GAL2, GAL7,

GAL10), which are the essential transporters and enzymes for this condition.

In contrast to traditional analysis where conditions are compared with a same, untreated

reference (Figure 2.2 on page 57), our algorithm analyzes an integrated reference pool as a

representation of the diversity of gene expression behaviors to identify the most specific genes

for a target condition (Figure 2.3 on page 58). The scoring of the genes for the “AltCarb”

condition by Relief is shown in the figure. The four GAL genes are ranked as the top 4 genes

by Relief, and their scores (0.3-0.4) are much higher than the rest of the other genes (majority

of which scored less than 0.2). Therefore, our approach is able to re-discover all four specific

genes in the yeast Leloir pathway, which constitutes the core metabolic processing by yeast

in response to changes in the carbon sources.

To compare with a traditional approach, we also performed a per-gene permutation-based

t-test between the galactose treated and the control (untreated) yeast samples, which is a

standard method often applied to microarray analysis to uncover differential expression. This

analysis identified 236 genes (p < 0.01) with GAL7, GAL2, GAL1, GAL10 ranked at 17th,

53th, 87th and 124th, respectively, based upon their p-value. Many of the genes identified are

related to more general processes of stress or environmental changes, e.g. MSN2/4 for general

stress responses, which are not directly associated with the condition under investigation.

Therefore, our approach identified the most likely effectors, and the integration of multiple

seemingly unrelated conditions, in fact, effectively reduced the number of non-specific gene

candidates.

56



Figure 2.2: Comparing multiple conditions in yeast data. The samples “MEGA” yeast
microarray dataset from are plotted in 2-D with their first two Principle Components. The
condition “AltCarb” is used as an example. A: A traditional treated/untreated analysis
compares the condition of interest with untreated yeast samples. The boundary is shown with
a black line, and the genes that contribute to such boundary can be identified with feature
selection approaches, e.g. t-test, ReliefF. B: We plot other conditions such as hyperoxide
stimulation, heat stress, etc. The samples of these conditions are similar to samples in the
“AltCarb” condition as compared with the same “untreated” reference samples, thus the
gene lists that are identified for these different conditions based on such comparison could
be similar.
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Figure 2.3: Application of Relief on the integrated dataset with multiple conditions A: The
integrated dataset provides better coverage of the sample space, and ReliefF compares “Alt-
Carb” samples with all other samples in different conditions to achieve better specificity.
Nearest Neighbors of AltCarb condition used in the ReliefF procedure are shown in green.
The closer a sample is to the “AltCarb”, the more important it is in the ReliefF compar-
isons. B: The score of the yeast genes provided by the ReliefF analysis correlates with the
importance or relevance of the gene to the specific condition. The genes behave distinctively
in the conditions being investigated and are scored the highest to illustrate their importance.

58



2.3.2 Layer II. Identification of the potential gene regulatory re-

lationships

To explore the regulatory mechanisms of the candidate gene “effectors” identified in layer I for

a given condition, we integrate PPI and P-DNA or transcription regulatory network (TRN)

(from motif search, ChIP-chip data, or literature information if available) data of the same

system (denoted as the reference network), and apply mutual information on the expression

data to identify potential regulators of these target genes. We incorporate expression data of

multiple conditions to provide a better reference pool, and compute the difference between

the conditional and unconditional mutual information in Layer II to identify the factors (i.e.

genes or proteins) that directly (physically) interact with and causally regulate the target

genes. The information on the physical interactions is derived from PPI and protein-DNA

interaction data, and the potential causal factors are inferred based on the conditional mutual

information computed from the gene expression data of these interactions.

We establish the accuracy of our methodology against a yeast dataset of conditional TF

binding. There are 34 ChIP-chip datasets for yeast samples treated with H2O2 [52]. We

used the TF-gene binding indicated in these conditional ChIP-chips experiments as the true

TF-gene regulatory relationships, and applied our method in layer II to infer conditional

regulatory information for these 34 TFs. Figure 2.4 on page 61 shows the ROC curves

for inferring the TF-gene regulatory relationships. Incorporating information of potential

transcriptional regulatory network (TRN) based on binding motifs on the gene promoters

and literature information (solid lines in different colors) significantly reduce the false positive

rate as compared with approaches that do not take advantage of such information, shown in
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dotted lines (e.g. mutual information only based approaches). Our approach of incorporating

multiple conditions enhances the specificity, which is shown by the red solid and dotted lines

(corresponding to with and without TRN) as compared with the traditional setting denoted

by the green solid and dotted lines.

We applied Layer II on the yeast “AltCarb” condition to reconstruct a condition specific

network, which resulted in 27 nodes and 88 interactions. The GAL switch genes identified

in Layer I are used as the targets in this layer to retrieve their potential regulators. Many

known regulators of the GAL pathway, such as GAL4 and GAL80 are identified in the

network because their expression level (e.g. GAL80) or their interacting partners’ (e.g.

GAL80 as the interacting partner of GAL4) expression level are correlated with the target

genes under this condition, leading to a potential regulatory pathway to the target genes.

For comparison, we applied ARACNE, another network reconstruction methods currently

available based on mutual information, on the same yeast data for the same condition. The

top ranked network module that is identified in ARACNE is the interaction “INH1-APA2”

and consists of 2 nodes, in which the INH1gene is an inhibitor of ATPase and APA2 is

involved in catabolism of bis(5’-nucleosidyl) tetraphosphates (based on annotation in SGD,

http://www.yeastgenome.org/). There is no evidence in the current literature to suggest

their involvement in response to the AltCarb condition, and further these two genes do not

physically or directly interact with the GAL genes. To find the 4 GAL genes in the network

required the threshold in ARACNE to be relaxed to allow 2050 nodes and 11,530 edges

in the resultant network. In this large network the known, major regulator of the GAL

switch, GAL4 and GAL80, were not connected to the four GAL genes. This suggests that

many “collateral responses” may be stronger than the initial GAL response. Therefore, by
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Figure 2.4: The ROC curves for inferring TF-gene regulatory relationships. The true
TF-gene regulatory relationships were extracted from conditional ChIP-chip data on yeast
(with binding p-value¡0.001) for the samples treated with H2O2. The prediction of TF-
gene regulatory relationships are based on mutual information (MI) between TFs and their
target genes. The traditional setting is MI(condition of interest) −MI(a ref condition),
shown in green dotted lines; while we propose to use a variety of conditions as reference:
MI(condition of interest) − MI(multiple conditions as refs), shown in red dotted lines.
We apply the same approaches but incorporate the information of Protein-DNA interaction,
shown in solid lines, green: traditional setting compared with reference condition, red: com-
pared with a variety of conditions as reference. Further, we use the sum of the target gene
expression as a feature of TF activity for a given condition, and apply Relief to identify the
TFs and genes that have distinct activity and expression profile for the condition of interest
(H2O2). Those TF-gene pairs with significant changes (top 30) on both TF activity and
gene expression are elevated to the top of the list of potential TF-gene regulatory relation-
ship based on MI measurement of the multiple condition setting. The result is shown in blue
solid lines.
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integrating the PPI and P-DNA interactions, and combining layers I and II, our approach

effectively reduced the number of hypothesis, focused on the most specific candidates, and

identified potential “causal” and “direct” regulators.

Nevertheless, similar to many previous network reconstruction approaches, layer II is

based on statistical dependencies between gene expression, assuming a correlation between

the expression of the regulator and its targets, which may not necessarily hold in all cases,

especially when the transcriptional regulation involves a transcription factor that requires

post-transcriptional modifications or co-factors to be activated [80]. Thus we add another

layer in our framework, layer III, to address this challenge by accounting for the TF activity.

2.3.3 Layer III. Inference of TF activity and transcriptional reg-

ulation

In eukaryotes, post-transcriptional modifications or cofactors are required for many TFs to be

activated to regulate their target gene expressions. Although such protein-level information

cannot be directly measured in microarrays, the target genes’ expression can reflect such

regulatory events. Therefore, given potential target genes predicted from motif search, ChIP-

chip data or literature information, we can infer the changes of TF activity.

We obtained target genes for each TF from the yeast P-DNA (or so-called TRN) network,

and use the summation of its target gene expression level as the feature of a TF in the sample.

With these features we can apply ReliefF to identify TFs that show distinct activity (i.e.

features) in the condition of interest as compared with all the other conditions. Those TF-

gene pairs for which both TF activity and gene expression changed significantly (e.g. within

the top 30 of genes and within top 30 of the TFs scored in ReliefF) are raised to the top of
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the list of potential regulatory interactions identified in layer II.

Layer III is applied to the yeast H2O2 condition, and the results are shown by the blue

lines in Figure 2.4 on page 61. With the inference of the TF activity, the ROC shows a further

increase in the specificity (achieve a false positive rate of less than 0.01) of the predicted

relationships that are ranked at the top 10%.

We also applied layer III to identify the TFs that regulate the expression of the GAL genes

under the AltCarb (adding extra carbon source) condition. We use the top 3 predicted TFs

to reconstruct an essential regulatory network for the GAL system, based on known PPI and

P-DNA binding information. The results shown in Figure 2.5 on page 64 demonstrate that

our approach can re-discover the true network that includes the regulators GAL4, GAL80

and IMP2, the three specific TFs which regulates the GAL pathway for galactose utilization

and glucose repression [79]. In contrast, previous approaches based on TF expression level

(TYPE 1, approaches based on mutual information or correlation, e.g. Bayesian Network),

differences in target and non-target gene expressions (TYPE 2), or correlations within target

genes (TYPE 3) (as defined in Chapter 1) did not correctly identify the essential regulatory

network (Figure 2.5 on page 64). In particular, GAL4 is post-transcriptionally regulated

by its protein interaction with GAL80 [79], whose activity changes can be captured by our

approach but not the other approaches compared. A GSEA based approach (e.g. MARINA)

may be able to find the enrichment of the target gene groups for these TFs, however, it gives

a lower specificity since many other TFs are identified to be more enriched for the AltCarb

condition than the 3 GAL regulators.
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Figure 2.5: Network reconstruction of the GAL pathway. We estimate the activity of the 25
transcription factors that can bind to GAL genes in the transcriptional regulatory network
(TRN) based on motif search and literature evidences, and use the top 3 TFs predicted to
reconstruct the essential regulatory networks, with the interactions extracted from the TRN
(green lines) and the PPI (blue lines). We compare different approaches in estimating the
TF activity A: TYPE 1: TF activity is determined by its expression level, e.g. correlation
or mutual information based approaches; B: TYPE 2: TF activity is determined by the
expression level of their potential target genes in the TRN; C: TYPE 3: TF activity is
implicated by the co-expression of their target genes; D: Our new approach: use the target
gene expression information, i.e. sum of the target expressions and integrate a wide range of
conditions to determine the TF activity. The true network includes regulators GAL4, GAL80
and IMP2, shown by the nodes colored in magenta in the figures, which are specific TFs
regulating the GAL pathway for galactose utilization and glucose repression in the AltCarb
condition. Nodes colored in grey are non-specific TFs for the AltCarb condition.
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2.4 Applications on human breast cancer

2.4.1 Layer I: Genes identified for breast cancer

We apply our multi-layer inference approach on an integrated human gene expression dataset

(ArrayExpress E-TABM-185) to identify potential biomarkers or targets and their regulators

for ER (estrogen receptor)+ and ER- breast cancer subtypes. The dataset integrates 5897

microarray experiments on different human disease, which contains more than 1000 breast

cancer samples. Applying differential expression analysis is problematic with such an inte-

grated dataset. A per-gene permutation-based t-test results in thousands of differentially

expressed genes for ER+ breast cancer. This high number of genes is hard to validate,

while very few genes are identified for ER- breast cancer due to the heterogeneity among the

samples in this subtype.

Layer I of our novel approach identified candidate biomarkers for both ER+ and ER-

breast cancer, some of which are well-known targets for these subtypes. Expression profile of

the predicted genes shows distinctive patterns in the breast cancer samples. The well-known

target ESR1 (estrogen receptor alpha) is correctly identified as the top feature for ER+

breast cancer, while the TACSTD2 (tumor-associated calcium signal transducer 2) gene is

identified for both ER+ and ER- breast cancer, which we recently discovered could be a

potential target for both ER+ and ER- breast cancer subtypes [80].

2.4.2 Layer II: network for ER positive breast cancer

We then reconstruct a regulatory network for ESR1 to assess whether our approach can

recapitulate the transcriptional regulators of the estrogen receptor. Human PPI and P-
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DNA information is incorporated and layer II and layer III are applied. Finally we infer

a regulatory network for TACSTD2 to identify potential regulators for this novel target.

Figure 2.6 on page 67 shows the regulatory network inferred for ESR1, the nodes are sized

by scores computed in layer II based on the differences between conditional and unconditional

mutual information, genes with zero or negative scores (predicted not to regulate the target

gene in the condition) without any positively scored interacting partners were filtered out.

Based on the binding sites predicted by DECODE in the GeneCards data collection, 7

transcription factors (TP53, JUN, AHR, TFAP2C, GATA3, FOXO3, REST) are selected as

potential regulators of ESR1. From BioGrid we extract a list of proteins that may physically

interacts with ESR1 or any of these transcription factors, which results in a large interaction

network. Our inference approach is then applied to determine which of these components may

be the effective “causal factor” of ESR1’s specific expression pattern in breast cancer, results

in a conditional gene network with 143 proteins in this figure. Of all the 7 transcription

factors, 3 (TP53, JUN, GATA3) have positive “scores” in the causal filtering approach,

suggesting they can regulate ESR1 expression in cancer cells, and such regulation may also

be affected by (but may not depend on) their interacting partners, especially for those of

which have higher scores. The 4 other transcription factors are predicted to possibility affect

ESR1 but not through direct transcriptional regulation, i.e. the regulation/activity of the TF

depends on a co-factor, which are interacting partners to the TFs as shown in the network

(Figure 2.6 on page 67).

ESR1 has been extensively studied in breast cancer and a literature search confirmed that

many of the predicted regulators are correct. For example, the transcription factors TP53,

JUN, GATA3 that are predicted by our approach to directly regulate ESR1 expression,
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Figure 2.6: The regulatory network for ESR1. Potential transcription factors that can bind
on ESR1 gene are colored in yellow. The causal impact (score) is represented by the size of
the nodes in the network.
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has been experimentally studied and shown to be major transcriptional regulators of the

estrogen receptors. GATA3 binds to two cis-regulatory elements on the ESR1 gene and is

required for RNA polymerase II to be recruited to the ESR1 promoter [81]. This is consistent

with the conditional network constructed by our approach in which GATA3 has the highest

score (causal impact) among the transcription factors. TP53 has been shown to bind to

the promoter of ESR1 and regulate ESR1 expression in both ER+ (MCF-7) [82] and ER-

(MDA-MB-468) breast cancer cells [83]. Finally, it has been previously confirmed that the

transcriptional activation complex that was recruited to the ER promoter involves JUN [82],

and JUN regulates ER transcription [84] [85].

The transcription factor TFAP2C has been shown to bind to the ESR1 promoter and

regulate its expression [86] [87] [88], and silencing TFAP2C reduces significantly ESR1

expression and the estrogen response [89]. However, the activation of TFAP2C requires

multiple co-activators, p300 or CBP, whose recruitment depends on the adaptor protein

CITED2 [90]. Although the involvement of CITED2 in the activation of TFAP2 has not

been shown in breast cancer cells, the knockout or mutation of CITED2 significantly dimin-

ished the TFAP2C transcriptional activity in liver cells [90, 91]. and in patients with heart

defects [92]. These results support the possibility that CITED2, predicted by our condi-

tional network to affect ESR1 expression through TFAP2C, may be an important regulator

of ESR1 expression. Note that TFAP2C by itself has less of a direct “causal” impact based

on the differences in its conditional and unconditional mutual information with ESR1, and

thus suggestive of post-transcriptional activation.

Similarly, in our network FOXO3 has no direct “causal” impact on ESR1 (i.e., no dif-

ferences in conditional and unconditional mutual information), but its interacting partners,
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SIRT3, shows a difference, based on the scores computed in layer II. However, based on the

literature FOXO3 was shown to bind the ESR1 promoter to regulate ESR1 expression [93].

Interestingly, SIRT3, one of the partners of FOXO3 that we predicted to directly impact

ESR1, was previously suggested to be a co-activator that increases FOXO3a dependent gene

expression [94].

In the network, the transcription factors, REST and AHR, are shown to have no impact

on ESR1 expression although based on the binding sites on the ESR1 promoter these TFs

could potentially regulate ESR1. To the best of our understanding from the literature, there

is no experimental evidence to date that indicate either of the two TFs directly binds the

promoter of ESR1 or regulates its expression. However, there is evidence showing that REST

may be involved in activating estradiol (E2) stimulation [95] but its expression is higher in

ER- than in ER+ patients [95]. Thus its role in E2 stimulation may require potential

cofactors, interaction partners or modifications, which is consistent with a zero score in layer

II.

There are many proteins that could directly interact with ESR1 and several were pre-

dicted to regulate its expression in our breast cancer conditional network for ESR1. From

the literature we found experimental evidence to support many as transcriptional regulators

of ER. For example, the 2 highest scored proteins are DDX17 and FLII. These factors are

transcriptional co-activator of the ESR TF, and can bind to the ESR protein to enhance ESR

activation of its own expression. DDX17 has been confirmed as an estrogen receptor alpha

coactivator [96], while FLII is required for the recruitment of the SWI/SNF chromatin re-

modeling complex to enhance ER-mediated transcription of its target genes [97]. The largest

family (MED21, MED12, MED7, MED6, MED16) among these proteins that interact with
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ESR1 are the components of the mediator complex, which is a co-activator that serves as

a scaffold for the assembly of a functional pre-initiation complex of RNA polymerase II, to

enhance ER transcription and function [98]. Given that ESR1 can regulate its own mRNA

expression [99], these co-factors of ER protein function may play a role in the regulation

of ESR1 expression. The known targets for the pathogenesis of breast cancer—- BRCA1 is

correctly identified in our network to interact directly and functionally with ESR1 to inhibit

estradiol (E2)-stimulated ESR1 transcriptional activity [100].

2.4.3 Layer II and III: the Trop2 network

Given that our approach successfully identified many transcriptional regulators of ESR1.

Inspired by the positive results obtained for ESR1, we applied this approach to identify the

potential transcriptional regulators of Trop2. We previously identified Trop2 as an impor-

tant biomarker for breast cancer [80], however, there is no information currently available on

the regulation of TROP2. The “causal” network inferred for Trop2 is shown in Figure 2.8

on page 72. Based on this network we predicted CREB1 is a likely transcription factor that

regulates TROP2 expression. Our experiment (Figure 2.7 on page 71) shows that the acti-

vation of CREB1 by FI (Forskolin-IBMX) induces an up-regulation of Trop2 expression level

in the breast cancer cells, which supports our model prediction that CREB1 is a regulator

of Trop2.

Although the human protein-DNA binding information is far from completed as compared

with yeast, we obtained potential target genes of TFs for which binding motif is known,

including TP53, JUN, REST for ESR network and NFkB1, CREB, Evi1 for Trop2 network.

The protein-DNA interaction is obtained from TargetMine database [101] based on both
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Figure 2.7: The mRNA-fold change of Trop2 in human mammary epithelial cell line and
the different breast cancer cell lines upon FI treatment. Quantitative real-time PCR was
performed to measure Trop2 mRNA expression levels in MCF10A, MCF7, and MDA-MB-
231. The untreated cells (controls) and cells treated with 10µM forskolin and 100µM IBMX
(FI) for 1 day (n = 3) are shown. **: p < 0.01, ***: p < 0.001.
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Figure 2.8: The regulatory network for TACSTD2. Seven transcription factors are predicted
to bind to TACSTD2 based on motif search, including NFKB1, EVI1, CREB1, ATF6,
NKX2-2, PAX4, and SOX5 (colored in yellow). Their interacting proteins are colored in
blue. The causal impact (score) is represented with the size of the nodes in the network. Of
the transcription factors that could regulate TACSTD2 only CREB1 shows a causal impact
(a positive score), and has the highest score among all the proteins in the network that is
connected to TACSTD2.
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binding motif search on the gene promoter and literature curation. Application of Layer III

on these TFs identified that in the ESR network, TP53 activity changes the most, and in

the Trop2 network. NFkB1 activity changes more than CREB1 and Evi1. This predicts a

potential regulatory role of TP53 on ESR, and NFkB1 on Trop2, and their activity could be

controlled at the post-transcriptional level. It has been shown that TP53 transcriptionally

regulates ESR1 expression and the regulation relies on many protein cofactors [82], which

supports this prediction. For Trop2, our approach predicted another potential transcriptional

regulator: NFkB1, which is likely regulated at the post-transcriptional level, given that

the activity of NFkB1 is primarily controlled by its cytosol-to-nucleic translocation [102].

Experiment in human breast cancer cell lines (MCF10A and MDA-MB-231) shows that

Trop2 gene expression is down-regulated within 2 hours upon either the inhibition of NFkB’s

protein activity, or reducing its translocation by inhibiting IKK (Figure 2.9 on page 74),

which confirms a regulatory role of NFkB on the transcription of Trop2 gene. This would

be difficult to identify with current approaches, for example, applying GSEA on the known

TFs shows similar enrichment scores for almost all of the TFs, suggesting its lower specificity

when applied on large datasets with diverse conditions. These results are similar to what is

observed when GSEA is applied to the yeast dataset, where many of the enriched TFs show

a zero p-value while GAL4 was not detected. These results support that our approach can

identify TFs whose activity is regulated at the post-transcriptional level.
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Figure 2.9: The TROP2 mRNA expression levels in different cell types. MCF10A and
MDA-MB-231 were treated with IKK inhibitor VII and NF B activation inhibitor IV for 2
hrs, respectively. The TROP2 mRNA levels were measured by quantitative real-time PCR
(n=3). * indicates p < 0.05, **: p < 0.01, ***: p < 0.001. P value was compared to control.
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2.5 Comparison of computational approaches to recon-

struct gene network

There have been numerous computational approaches developed to reconstruct context de-

pendent gene network based on gene expression profiles. The field has been studied and

reviewed (e.g. [80]) extensively but predominantly from the perspective of computational

assumptions and methodologies. We attempt to clarify the biological problems and hypoth-

esis that can be solved or predicted by these different approaches. In Table 2.1 on page 77

we summarize and compare our approach with different computational approaches that are

currently applied on gene network reconstruction. Approaches based on Bayesian network

or correlation network (e.g. in module analysis) infers a “functional network” where the

connections predict statistical influences (i.e. correlation) between gene expression, which

does not necessary provide clear information on the regulatory relationships and mecha-

nisms. ARACNe [19] and MINDy [73] aim to study transcriptional regulation, which is built

on the correlation between the mRNA level of the TF and its target genes. MARINA [74]

and NCA [103, 104] can account for post-transcriptional regulation and infers TF activity

by incorporating known protein-DNA interactions. MARINA applies GSEA to select the

active TFs, where the gene sets contain the targets genes of the TFs, while NCA requires

many samples, to solve its complex parametric model. In contrast, the layer approach ac-

counts for different levels of transcriptional regulation to identify condition specific targets

and regulations. The applications of the layer approach on yeast and human breast cancer

data demonstrate that by integrating multiple conditions, better specificity in target iden-

tification and network reconstruction can be achieved, which helps generate more specific
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biological hypotheses on the target genes and their regulations.
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Table 2.1: Computational approaches for gene network reconstruction.



Chapter 3

Identification of novel targets by ex-
ploring gene switches

The learning approaches to identify genes and their regulation based on gene expression, e.g.

network reconstruction introduced in Chapter 1 and the multi-layer approach discussed in

Chapter 2, are able to find important genes and interactions for a phenotype, such as the

Trop2 gene and its transcriptional regulators for human breast cancer. It is straightforward

to confirm if an interaction exists in the condition, but one has to design more experiments

to understand the functional role of a gene and the regulation in a phenotype. Although

these computational approaches can predict candidate genes/biomarkers, they are not able

to predict how and why these genes are important for the phenotype in a biological sense.

To answer how and why a gene is important for a phenotype, one has to understand

how genes are regulating each other to determine a phenotype, which requires information

on the regulatory mechanisms. Therefore, in this chapter, we explore a functional module

of gene network—-the gene switches, with systems modeling, wherein we show that gene

switches can generate specific pattern of gene expression which can be identified by mining

microarray data. Our mining approach demonstrates that one can capitalize on genome-wide

78



expression profiling to capture dynamic properties of a complex network, thereby to predict

gene switches that could be important for a phenotype because they can participate in cell

fate decision.

3.1 Gene switches play essential role in cell fate deci-

sion, and could be good biomarkers and targets for

cancer

Given the complexity of gene regulatory networks, knowledge of the properties of individual

components in the network are not sufficient to elucidate the cell physiology. Thus systems

biology has evolved to uncover “emergent properties” that arise from the intricate interac-

tions of gene networks. One such emergent property, “switch-like behavior” or “bistability”,

describes a dynamic feature of a particular gene [105] to preferentially toggle between two

steady-states. Multiple steady states are often observed in chemical and biochemical reac-

tions (reviewed by [106]) and are characterized by a non-linear response. Bistability happens

to be a special case involving two steady-states, giving rise to a “switch-like behavior”. In

biochemical reactions, such “bistable” behavior shows a sharp sigmoid function or a hystere-

sis structure (see examples in Figure 3.1 on page 80), whereby the state of the variable flips

between high and low levels. Such an “all-or-none” state transition usually depends on a

threshold, i.e., the concentration of the stimulator or regulator. Hysteresis depends further

on the previous state of the system.
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Figure 3.1: Dynamics of gene switches and bimodality in their expression profiles A: A synthetic genetic switch that contains
a repressed positive feedback is stimulated by an inhibitor of the repressor. B: The stimulation-response curve of the genetic
circuit. C: The histogram of the steady-state gene expression level of 100 random sample simulations of the genetic switch
shown in A. D: A synthetic genetic toggle switch that contains double negative feedbacks. E: The state space of the gene
expression. Each trajectory (blue lines) is the response curve with respect to a particular initial condition. The red arrows
are the two attractor-states. F: The histogram of the steady state gene expression level.



The expression level of a gene switch does not change gradually but rather has two distinct

steady-states: HIGH or LOW, ON or OFF, ALL or NONE. The ability of switches to convert

a graded signal into a binary response ensures that a cell responds in a decisive manner or

unambiguously commit to a specific program [107]. Furthermore switches have been noted

for their noise-filtering capacity. Endogenous noise are typically lower for fully repressed or

induced expression states than in a gene where the state changes continuously [108] [109].

Bistable behavior of gene switches have been reported to play pivotal roles in many

important aspects of cell physiology, including cell fate decisions, cell cycle control, and

cellular responses to environmental stimulation [110] [106]. E.coli lac operon is a famous gene

switch that uses a hysteretic feedback to decide between glucose and lactose utilization [111].

Many bistable systems have been discovered in bacteria, including the genetic transformation

in Bacilius subtillis and sporulation in many bacterial species [112]. In mammalian systems,

gene switches and bistability have been postulated as the underlying mechanism for cellular

differentiation, but rarely has this been confirmed experimentally, until recently with the

work on neutrophil differentiation [113]. Another interesting observation is that cells have

“memory”, and hysteresis has been shown to govern short-term memory in lymphoid cells,

preserving information of past encounters with antigen [24]. Thus, the discovery of gene

switches in cellular responses has become a milestone in molecular biology and prompt

strong interest in understanding the function and design of gene networks [111].

Switches play a central role in cell decision, and the ability to predict whether switches

can occur without a priori detail information of the network would be significant. For

instance, the ability to identify which genes are turned on or off in cancer versus normal cells

would have a tremendous impact on identifying the most pertinent molecular signatures
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or targets for drug therapy. Therefore a major challenge confronting the field, which we

address in this study, is how to effectively identify gene switches or bistable states by mining

high-throughput data. An approach that could predict switches based on high-throughput

data not only provides candidates of biomarkers but also associates the candidates with a

potential biological function/mechanism for the phenotype.

3.2 How to identify gene switches

Despite the importance of gene switches, identifying multiple steady-states, and in particular

switches, has been difficult. Our understanding of gene switches has been mostly based on

simulations of generic feedback circuits and well-characterized biological modules [114–117].

Theoretical studies of feedback circuits have elucidated general principles of network dynam-

ics, but they usually lack solid evidence to associate these principles with real physiological

processes in cells. Few studies have succeeded in demonstrating functional roles of actual

switches in biological systems by coupling detailed kinetic modeling with rigorous experi-

mentation [118] [24]. This is because well-characterized models with equations and kinetic

parameters are difficult to obtain for real, complex biological systems, in part because current

techniques are not able to quantitatively measure reaction constants at the single-cell reso-

lution for all the network components. Alternatively, researchers in synthetic biology have

designed artificial gene networks with specific functions and implemented the interactions

by manipulating or bringing together exogenous genetic components [119] [120] [121]. Thus

current methods of experimentally studying switches have been limited to well-characterized

or synthetic small modules.

Previous computational approaches addressed this question by analyzing the network
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topology. These studies assume that bistability requires particular feedback structures

[107, 122], and discovered dynamic features by searching for these structures (e.g. posi-

tive feedbacks) in protein-protein interaction and protein-DNA interaction networks [123].

However, these feedback structures do not ensure switch-like behavior. From modeling and

simulations of genetic circuits, positive feedback (or even feedback itself) has been shown to

be neither necessary [124] [110] nor sufficient [125] to ensure switch-like behavior. Further-

more, it is less likely that one can uncover a dynamic property from static networks.

Alternatively, we theorize that the dynamic “behavior” of a switch could be identified

by analyzing the gene expression profiles from a wide range of conditions. We propose a

top-down mining approach to identify gene switches from microarray gene expression data.

Taking advantage of the tremendous amount of expression data, our approach aims to iden-

tify bimodality, which we hypothesize is an essential characteristic of a gene switch.

3.2.1 Simulation of kinetic models of gene switch

A gene switch has two steady states, which will produce a bimodal distribution in its ex-

pression profile when sampled across different conditions. Figure 3.1 on page 80 show the

gene network topology of two typical regulatory circuits that exhibit bistable behavior. The

ordinary differential equations (ODEs) for the synthetic systems are as follows:

• Positive self-feedback:

dA

dt
= p[

A2

1 + A2
][

1

1 +R2
][1− A

2.5
]− deg(A) (3.1)

R(i) = 10[1−
Ki

1 +Ki
] (3.2)
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A represents the expression level of Gene A, pA2/[1 + A2] describes the self-binding

and activation of the transcription, and 1/1+R2 is the effect of the repressor, in which

R depends on the stimulation —the concentration of the inhibitor i. deg(A) is a linear

function for the degradation of A. The model is constructed by [126] for a mammalian

cell system.

• Double-negative feedback:

dA

dt
=

a

1 +B2
− deg(A) (3.3)

dB

dt
=

a

1 + A2
− deg(B) (3.4)

A,B represents the expression level of Gene A and B, respectively. a is a parameter

about the strength of the cross-repression of the two genes. deg is a linear function for

degradation. The model is constructed by [119] in E.Coli

Figure 3.1 on page 80 part A shows the positive self-feedback transcriptional system under

the control of a transcriptional repressor. Part D in the figure shows the double-negative

feedback system, also known as a toggle switch, which produces mutually exclusive activation

of two genes. Both circuits have been synthesized and implemented in cell systems [126] [119]

to confirm their switching behavior. Simulations based on the kinetic models of these systems

[126] [119] confirm the on/off and toggle-like switching behavior in their response curve and

state space. By simulating random samples from a wide range of conditions with different

initial states, this unique feature of two distinct steady-states of gene switches results in

a gene expression histogram profile containing two modes Figure 3.1 on page 80. This

bimodality is observed despite the noise (20% Gaussian noise) imposed on the parameters.
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3.2.2 Data mining to identify gene switches

A challenge in experimentally identifying gene switches is their population effect. In single

cell experiments, if obtainable, the response curves would represent individual cell mea-

surements, and a gene that switches will exhibit a steep jump between the steady states.

However many biological measurements (RT-PCR, Western Blotting), including microarray

analysis, provide the population-average. In fact, even with single cell measurements, in-

dividual clones can contribute cell-cell variances, with differences in the protein expression

levels across different cells. In Figure 3.2 on page 86 the cell-cell variance is modeled by

a Gaussian distribution in the protein expression and different cells in a clone would then

respond differently to stimulation, leading to a continuous change in the averaged response

curve. This explains, in part, the difficulty in identifying switches through standard experi-

ments.
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Figure 3.2: Schematic representation of a phase plane of a gene switch. A: Single cell dose response experiments should be able
to measure the response curve and uncover the switch-like behavior. B: Experimental measurements of the average expression
level of a cell population will mask the switching behavior. A Gaussian distribution is plotted to represent the cell-cell variances
in the population. Different cells, according to their initial gene expression level, could have different response curve (blue
trajectories). The averaging of the variation in the responses results in a seemingly graded response. C: Experiments across
a range of different conditions allowing for the sampling of a large state space recover the switch-like behavior. Each sample
could fall in the neighborhood of a possible steady state (points on the blue trajectory). The steady states (on/off states of
the gene switch) are the dense regions of the possible response curves in the state space, i.e. the samples occurs at higher
frequencies in these states, which results in a bimodal distribution in the observed profiles.



We proposed that an unbiased sampling across a range of different conditions could

address this issue and help reveal the dynamic feature of gene switches. In Figure 3.2 on

page 86 we show analytically, potential response-curves (the blue trajectories) in the whole

state space of a gene switch. Each sample within the system would asymptotically approach

one of the two possible steady states (dark blue region). Since the on/off states are the

steady states which most cells will concentrated in upon stimulation, the samples will have

higher probability of staying in these states, leading to a bimodal distribution in the observed

expression profiles.

To identify bimodality researchers have used the DIP statistics [127] or Gaussian mix-

turemodel to [128](http://www.astro.lsa.umich.edu/~ognedin/gmm/) identify bimodal

distributions. Since what we need is not only a quantity for bimodality, but also an explicit

separation of the conditions into two categories corresponding to two expression levels, we

choose the Gaussian mixture model. The Expectation Maximization algorithm is imple-

mented to separate the data distribution into two Gaussian models. The criterion used to

assess the fitting is the Akaike information criterion from information theory.

AIC = 2k − 2 log(L) (3.5)

Where k represents the number of parameters, and L is the goodness of fit, defined by the

likelihood of observing the data given the model (one or two Gaussian in this case). We

use the differences between AICs of the two models, the “∆AIC”, to compares the fit with

a unimodal vs. a bimodal distribution. ∆AIC provides a measure for an “unconditional”

bimodality in which the profiles show bimodal but the condition for the “switch” is yet to

be investigated. When a particular condition is specified (e.g. the breast cancer phenotype),
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the separation D can be used to identify if there is a distinct state for the condition, or, a

“conditional specific” bimodality:

D =
µ1 − µ2√

(σ2
1 + σ2

1)/2
(3.6)

Where (µ1, σ1) are the mean and deviation of samples in the specified condition, while

(µ2, σ2) are the mean and deviation for all other samples. We perform theoretical analysis

and provide proof-of-concept applications on both synthetic and yeast microarray datasets.

3.2.3 A Proof-of-Concept application of the E2F-Rb network

The E2F-Rb network is a well-characterized system in mammalian cell fate determination,

whereby the Retinoblastoma (Rb) protein regulates the transcriptional factor, E2F, to con-

trol the restriction point for the G1-S transition in cell cycle [129]. A simplified kinetic model

was constructed for the E2F-Rb system [118], in which two genes Myc and CycD (Cyclin D:

Cdk4,6) are activated by sufficient growth signal (serum) to induce E2F activation, which

then directs the synthesis of downstream factors, such as CycE for DNA replication. The

E2F self-activation and CycE-mediated E2F activation constitute two positive feedbacks in

the system. It then was experimentally [118] confirmed that the level of E2F switches ON or

OFF for cell-proliferation and cell-cycle arrest, respectively, suggesting E2F acts as a gene

switch, while CycD and Myc do not show such switch-like behaviors.

We perform simulations based on the kinetic model [118] to generate a synthetic gene-

expression dataset. The stimulation-response curve of a single-cell is shown in Figure 3.3

on page 90, and confirms a graded response for Myc/CycD and bistable dynamics for E2F.

The downstream factor CycE, controlled by E2F, also shows a switch-like response. Intro-
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ducing a distribution in the expression level to represent cell-cell variation within a clone,

and averaging multiple simulations shows that population averaging for any one condition

disguises the switch-like behavior and is indistinguishable from a graded responses, which is

consistent with previous RT-PCR experiments [118].
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Figure 3.3: Proof-of-concept example: simulation of the E2F-RB network. A: Simulation of the kinetic model based on
a fixed initial condition represents measurement at the single cell-resolution of the system. The response curves of serum
stimulation on the different genes in the model are plotted. B: Assign a Gaussian distribution with small variances on the
initial gene expression level of the untreated cells to represent the cell-cell variation in a clone. Simulation-results are computed
by averaging the responses of 100 cells in a clone.



We then simulate 100 cell clones, each clone with a random initial condition, and measure

the steady state expression level of the network components for each clone. In this way we

synthetically generate 100 “microarrays” for 100 different conditions. It is clear genes that

have two steady states, i.e. E2F and CycE (effector of the gene switch), exhibit two distinct

modes in their expression profiles (Figure 3.4 on page 92). Each gene’s ∆AIC value is

calculated from the synthetic expression data and the switches exhibit higher ∆AIC values

than the non-switches. Thus ∆AIC can be used to rank and help uncover genes that are

bistable.

3.2.4 A Proof-of-Concept application to Yeast microarray data

We apply our mining approach to an integrated yeast microarray dataset containing 500

yeast experiments and calculate the ∆AIC value for each gene in the dataset. With such

a large set of conditions, the ∆AIC value is fairly robus. A histogram of the ∆AIC value

among the yeast genes is shown in Figure 3.5 on page 93. Most genes have low ∆AIC, and

their expression appear unimodal. However, a few genes have high ∆AIC values and clearly

show bimodality.

The genes with high ∆AIC values have distinct states under different conditions. By

collating and comparing those conditions under the two distinct expression states, one can

potentially identify the phenotypes in which the genes are functioning. Given that a phe-

notypic ontology is not available, it is difficult to compare conditions. Nevertheless, one

approach is to categorize conditions by the type of perturbations, e.g. heat shock (with

different temperature and length of time), hypo-osmotic shock (different time points), and

extra carbon sources (different carbon source), etc., and check if one of the two states of a
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Figure 3.4: Mining approach to identify switches in the E2F-RB network. Sampling of 100
clones under different, randomly generated initial conditions. The simulation results are
shown as histograms of the expression level of the different genes, together with their ∆AIC
values.
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Figure 3.5: A proof-of-concept application on the yeast dataset. A: A histogram representing
the distribution of AIC value among the yeast genes. Most genes have small ∆AIC and
exhibit an uni-modal expression profile. A relatively small number of genes have high ∆AIC
and show bimodality in their expression. B: A negative correlation between bimodality
(described by ∆AIC ) and expression noise (as described by the coefficient of expression
variation) in the yeast genes. C: The four GAL genes show bimodality and one of their
modes are enriched within the same condition/category.
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putative switch is enriched within a category of conditions. Using this approach, we correctly

uncovered genes that have switch-like behavior, namely GAL1, GAL2, GAL7 and GAL10

(Figure 3.5 on page 93). These genes all have ∆AIC values that rank among the top 5% and

show bimodality, with one of their two modes containing conditions from the same category,

i.e. “adding extra carbon sources”. The bimodal profiles show that by adding 2% (weight

to volume) extra carbon sources into the media, with the exception of galactose as the ex-

tra carbon source, the expression of these four genes shut down. It has been reported that

these four genes function in the same pathway for galactose utilization, i.e., the well-known

“GAL genetic switch” (review: [79]). The addition of alternative carbon sources results in

“glucose-repression” of the GAL pathway. During this process, the high level of glucose or

other carbon sources (other than galactose) induces the formation of the repressor complex

(protein Mig1p and Cyc8-Tup1) and upon its binding to specific upstream repressing se-

quences (URSG) on the GAL promoters, it prevents the activation of these four GAL genes

by the transcription factor GAL4, thereby turning off the galatose utilization pathway.

Current knowledge on the existence and functional machinery of other gene switches is

limited. However we show next that by integrating information of the regulatory network

and proteomic data, the genes with high ∆AIC obtained from our analysis could be possible

switches or at least important genes with respect to the phenotypes. We calculate the ∆AIC

values of transcription factors in the yeast transcriptional regulatory network (based on

binding motif data), and observe that the leaf-nodes — genes that are only regulated by one

factor and are not regulating any other transcription factors —- tend to have significantly

lower ∆AIC value (average ∆AIC = 135 ± 9 compared with overall average ∆AIC =

223 ± 58 for transcription factors, p < 0.01). These genes which have few regulators and
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do not transcriptionally control transcription factors are less likely to have feedbacks at the

transcriptional level, and therefore switching dynamics. Thus the dynamic property we infer

of the molecular components within a network is contingent on the network organization.

Next, we analyze single-cell proteomic data that includes noise in the protein expression

measurements. We find a weak but significant negative correlation between the ∆AIC value

of a gene and its coefficient of variation, which captures the noise of its protein expression

(Figure 3.5 on page 93). This suggests that genes with higher ∆AIC value, showing bi-

modality, tend to express relatively lower levels of noise. This observation that genes with

lower expression noise under normal conditions are more tightly controlled highlights their

importance in the network, and is consistent with previous suggestions that gene switches

have noise-filtering capacity [108] [109].

3.3 Identify characteristic signatures of human breast

cancer

Since the state of gene switches in the genetic network governs the phenotype [130], we

postulate that recognizing specific gene switches will enable one to identify biomarkers or

molecular signatures that would be better drug targets for treating a disease. We demon-

strate the utility of our mining approach in human breast cancer by analyzing a paired

breast cancer/normal tissue expression dataset against the integrated human gene expres-

sion dataset.

We analyze the paired breast cancer/normal tissue expression dataset (GSE15852) (Pau

Ni et al, 2010) against the integrated human gene expression dataset [131] to identify char-
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acteristic signatures of human breast cancer. First, we calculate the separation value D [132]

for the top 10% ranked genes by ∆AIC to examine whether the expressions of these genes

are bimodal when comparing the breast cancer (1119) samples against all other phenotypes

(4,777 samples for 300 conditions). Biologically this indicates whether a gene potentially

shows bistability and could be involved in the “switching” or transition to a breast cancer

phenotype. D > 2 has been suggested to indicate whether the separation into two Gaussian

distributions or modes is distinctive [132]. Considering the large amount of noise in the

microarray data, we accept separation values of greater than or close to 2 (¿1.8) to indicate

bimodality, which results in 17 genes showing distinct bimodality in breast cancer.

Next, an independent microarray dataset (GSE15852) with 43 paired breast cancer sam-

ples of diverse histopathological characteristics is analyzed to test if the 17 genes are expressed

differently and show distinct bimodality in breast tumor as compared to normal breast tis-

sues. Comparing such “local” expression profile (paired normal and cancer conditions) with

the “global” expression profile (across various conditions) identified that of these 17 genes,

12 genes (ESR1, SPDEF, IRX5, ERBB3, ERBB2,CRABP2,RAB25, FXYD3, TACSTD2,

DSP, AGR2, CDH1) show bimodality in both datasets (Figure 3.6 on page 97 shows the

flow chart of the procedure). One type of genes is bimodal within the breast cancer samples,

herein denoted Type 1, with estrogen receptor-alpha (ESR1) having the highest separation.

The other type of gene switch shows predominantly one modality within the breast cancer

samples, herein denoted as Type 2, and is where we find the TACSTD2 (a.k.a. Trop2) gene

having the highest separation value within this group.

Many of the genes that show Type 1 bimodal behavior also exhibit the biomdality within

the breast cancer samples (Figure 3.6 on page 97). Known therapeutic targets for breast can-
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Figure 3.6: Identification of potential gene switches for breast cancer. We analyzed the
integrated dataset to search for bimodality in the gene expression profiles. Genes are ranked
based on their ∆AIC calculations. The top 10% are selected to compute the separation
D with respect to breast cancer. An independent dataset is then used to further examine
candidate genes.
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cer, such as ESR1, ERBB2 (HER2) and ERBB3 (HER3), are identified as showing bimodality

in their gene expression level in breast cancer. Their bimodality in the cancer samples rep-

resents well-known subtypes in breast cancer, i.e. ER+/ER- and HER2+/HER2- subtypes.

ESR1 (estrogen receptor alpha) is a well-known transcription factor involved in the devel-

opment and progression of breast cancer. Previous immunohistochemical analysis showed a

bimodal distribution in estrogen receptors (ER) expression —- the majority of breast cancer

patients express either ER-negative (low expression) or unambiguously ER-positive (high

expression), of which (≈ 80%) are ER+, while moderate ER immunostaining is rarely ob-

served [133]. This supports our discovery of bimodality of the ESR1 gene expression within

the breast cancer samples. It has been a decade since researchers attempted to explore the

mechanism underlying such an all-or-none expression pattern of estrogen receptors. It was

previously reported that the ESR promoter activity is increased by co-transfection of the

wild-type ESR expression vector, suggesting a positive contribution of ESR to its own ex-

pression [99]. A recent study uncovered that miR-375 is involved in a forward feedback loop

that regulates ESR1 expression, whereby ESR1 enhances miR-375 expression and miR-375

targets and reduces the expression level of RASD1 (ras dexamethasone-induced 1) gene,

which is a transcriptional inhibitor of ESR1 [134]. These studies provide evidence of a po-

tential positive-feedback (with a double-negative circuit) induced bistability of the ESR1

expression, where the topology is similar to a toggle-switch design. ERBB2 and ERBB3

interact with each other and are known to be transcriptionally regulated by ESR1 [135]. A

recent study [136] identified a positive feedback of ERBB2 through the transcription factor

c-Jun, which could provide a potential explanation for the bimodality observed for ERBB2.

The molecular characterization of the Type 1 genes (e.g. ESR, HER2) suggests the
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development of therapies for ER+/PR+ and HER2+ would be effective for these breast

cancer subtypes, however ≈ 15 − 20% of the breast cancer tissues expressing low levels

of these biomarkers (i.e. triple negative subtype) have poor prognosis and few treatment

options. Moreover, patients that are responsive to commonly used drugs, such as tamoxifen

(estrogen antagonist) and trastuzumab (anti-HER2 agent), eventually acquire resistance

to the drugs. ≈ 30% of tamoxifen-responsive tumors become resistant [137] [138], and the

resistance invariably ensues at some point with trastuzumab. Given the increase in resistance

to drugs that target the ESR receptor alternative therapeutic targets are needed.

The second type of potential gene switch, herein denoted as Type 2, shows unimodal

behavior in the breast cancer tissue (Figure 3.6 on page 97) and is differentially expressed

in almost all the paired breast tumor/normal tissues as compared with non-breast cancer

samples. The top gene showing this type of switching behavior is Trop2. Type 2 gene

switches uncovered by our analysis show a distinct state in the breast cancer samples, and

could be a potential biomarker or drug target that does not rely on the ESR receptor. We

characterized the Trop2 gene, and found it to be distinctively expressed at higher levels

in almost all of the breast cancer samples, ER+/-, HER2+/- subtypes. We confirm that

the expression of Trop2 gene is high in breast cancer cell lines MCF7 and MDA-MB-231 as

compared with non-cancer cells (Figure 3.7 on page 100).

Our network reconstruction in Chapter 2 identified CREB and NFkB as potential tran-

scription factors that regulate the expression of Trop2. We also observe a significant increase

in the correlation between the expression level of CREB and Trop2 in the paired breast can-

cer dataset. The correlation coefficients in the normal breast tissue are 0.15, 0.06, 0.03 for

the three CREB probes in the Affymetrix array, and the correlation coefficients in the breast
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Figure 3.7: The expression profiles of Trop2 in breast cancer. A: The scatter plot shows the
gene expression level of Trop2. x-axis indicating the expression level, the values in y-axis
are randomly generated to reduce the overlap between samples. Subtypes of breast cancers
are determined by their expression levels of ESR1, PR, and Her2. B: The Trop2 mRNA
levels in human mammary epithelial cell line, MCF10A, in breast cancer cell lines, MCF7
and MDA-MB-231, and in primary rat astrocytes were measured by quantitative real-time
PCR (n = 3). **: p < 0.01, ***: p < 0.001.

100



tumor tissues are 0.46, 0.21, 0.31, respectively.

To assess the possible switching behavior of Trop2, we performed flow cytometry to probe

the Trop2 protein level at single-cell resolution. For both MCF10A and MCF7 breast cell

lines the Trop2 protein level shows a bimodal distribution in their cell population (Fig-

ure 3.8 on page 102), which is a property of a bistable system. We stimulated the cells

with FI (Forskolin and IBMX) to induce cAMP, which is an activator of CREB [139], and

measured the Trop2 levels. Both Trop2 mRNA and protein levels increased significantly

upon stimulation, thereby supporting a possible transcriptional regulation by CREB. Upon

activation of Trop2 by FI, a decrease in one of the modes with a concomitant increase in the

other mode, instead of a gradual increase in the protein level, (Figure 3.8 on page 102) is

indicative of a switching behavior. The activation essentially increases the number of cells

with Trop2 levels at the ON state and decreases the cells with Trop2 at the OFF level. In

contrast, the expression of the Trop2 protein in primary rat astrocytes shows a unimodal

expression under the same test conditions. Furthermore stimulation of astrocytes by FI leads

to a non-significant change in the protein level and with the cells predominantly remaining

in the OFF steady-states.
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Figure 3.8: A switch-like behavior in Trop2 expression. Flow cytometry analysis of Trop2 expression in MCF10A, MCF7 and
primary rat astrocytes (Black lines). The cells were treated with 10µM forskolin and 100µM IBMX (FI) for 1 day (Red lines)
and the two modes of Trop2 in MCF10A, MCF7, and primary astrocyte cell population are pointed out by the blue arrows.
Note the primary astrocytes have only one mode.



Our mining approach uncovered a unique expression pattern of Trop2 in breast cancer,

and experiments confirmed Trop2 show bimodal behavior in breast cancer cell lines. Trop2

(Trop2) is a cell surface glycoprotein, first discovered to be highly expressed in trophoblast

cells that become invasive and metastasized to form the outer layer of blastocyst in embryo

development [140]. Recent studies, along with our analysis of breast cancer samples, found

Trop2 to be highly expressed in a variety of epithelial cancers and show low to no expression in

normal somatic cells. High expression of Trop2 in squamous-cell carcinoma [141], pancreatic

[142], colorectal [143] and gastric [144] cancers have been associated with poor prognosis and

higher incidence of metastasis and death. Trop2 was identified as an oncogene in colorectal

cancer cells [145]. Although not essential for cell proliferation under normal condition, ectopic

expression of Trop2 enhances anchorage-independent cell growth, promotes tumorigenesis

and metastasis in colon cancer cells. Knock-down or inhibition of the protein reduces the

invasiveness of aggressive colon cancer cells [145]. In our analysis we also found Trop2 to be

highly expressed in many colon cancer samples and shows bimodality, however the percentage

of colon cancer samples with Trop2 at the ON state (∼ 60%) are less than in breast cancer

(∼ 99%), suggesting Trop2 could be a better target for breast cancer.

In previous microarray analysis of breast tumors, [146] Huang et al. studied “aggregate

patterns of gene expression” with respect to lymph node status and recurrence, and iden-

tified “metagenes” that could predict the outcomes of the patients. Trop2 is found among

the “metagenes” in their list; however the list consists of more than a hundred genes with

potential predictive value. In contrast, we find the Trop2 gene to be the top gene in the

list that shows the Type 2 behavior. Interestingly, the distinctive HIGH/LOW expression

level of the Trop2 gene has been implicated as a marker for stem cell characteristics in
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prostate basal cells [147] and hepatic oval cells [148]. The prostate basal cells and hepatic

oval cells, considered progenitor cells, show HIGH expression of the Trop2 gene and main-

tain self-renewal capability [147] [148], and thereby implicating a potential role of Trop2 in

cancer initiating stem cells. Although Trop2 has been reported to be associated with cancer,

the regulatory mechanism of Trop2 remains unclear. Combining computational prediction

(network reconstruction in Chapter 2) and experimental analysis, we found that CREB and

NFkB could regulate Trop2 in breast cancer cells.

Since the completion of our study of network reconstruction and gene switches in breast

cancer, two research papers have been published in ONCOGENE [149, 150] that provide

experimental evidence in human cancer tissues to support Trop2 as an oncogene. These

independent experimental studies confirm the effectiveness of our approach in predicting

specific genes for a phenotype and potential targets for disease. Our discovery of the tran-

scriptional regulators of Trop2 complements the network biology study of Trop2 in [150].

We identified novel regulators of Trop2 that have not been discovered as yet based on previ-

ous approaches of network reconstruction. Our discovery of NFkB as a regulator of Trop2,

together with the evidences provided in [150] that Trop2 regulates NFkB expression, sug-

gest a potential positive feedback structure that supports the “switching” behavior of Trop2

expression.

In this chapter we apply systems modeling to define a specific pattern that is emerged

from the complex interactions in gene network—-the gene switches, and explore the pattern

by mining gene expression data, to be able to provide more specific predictions on gene

function. Our mining approach demonstrates that in the absence of a priori knowledge of

the specific network architecture, one can capitalize on genome-wide expression profiling to
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capture dynamic properties of a complex network. To the best of our knowledge, this is

the first attempt in applying mining approaches to explore gene switches on a genome-scale

and this is a first case a single cell level bimodality and bistability can be predicted from

microarray data.

Researchers recognized that “genetic switches” behave in a discrete manner, but this

feature is usually lost in biochemical analysis of large cell populations due to the difficulty in

distinguishing between changes in the proportion of cells and their expression level in the two

states [113]. For example, it is hard to determine from population measurements whether

the expression level of a gene increases gradually by 70%, or whether 70% of the cells are

“switched” ON. In this study, we provide an alternative approach to identifying possible

gene switches by capitalizing upon the large amount of available microarray data. The large

sample set enables the characterization of the state space by uncovering the presence of the

two attractor-states where the majority of the samples should fall. Thus, if an ON/OFF

switch behavior exists in a system the state space will show bimodality or bistability, which

are relatively stable with respect to perturbations [151]. It has been suggested that bistability

or multiple steady states [130] exists in large gene networks [152] [153], and these attractor-

states represent different phenotypes [130]. Thus, by sampling across different conditions,

which are less affected by population averaging, one can reveal this dynamic feature of

regulatory networks. In this sense, our study provides a different perspective that takes

advantage of the large integrated set of expression data, and suggests a mechanism-based

framework to perform the meta-analysis. This approach of integrating microarray data from

a diverse set of conditions provides a common “context” of gene behaviors, whereby one can

obtain a better understanding of the specific function of a gene for a particular condition
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under investigation.

By applying the computational analysis on human microarray data, we uncovered a

unique expression pattern of Trop2 in breast cancer, and experiments confirmed Trop2 show

bimodal behavior in breast cancer cell lines, further, our perturbation study suggest a po-

tential bistable mechanism is involved. Therefore, not only does our computational ap-

proach predict biomarkers/targets, but also it can suggest the mechanism how and why the

biomarker/target could be functionally important.
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Chapter 4

Identification of genes (microRNAs) that
determine a phenotype

Network reconstruction based on gene expression and interaction data in chapter 2 identifies

genes and regulation that are specifically functioning in a phenotype and the mining ap-

proach in chapter 3 identifies potential gene switches. These learning approaches treat the

genes as “features” and the phenotype as “labels” (a particular annotation on samples) to

find features that are able to differentiate between different labels/annotations, by comparing

the transcriptomes that represent different phenotypes/labels. Therefore, these approaches

essentially identify genes and interactions that distinguish a phenotype. However, one of

the key goals in systems biology is to understand how complex molecular and cellular out-

comes arise from the dynamic interactions at the detailed mechanistic level, wherein the

“phenotypes” are not independent labels/annotations for samples but involve many differ-

ent aspects to define a biological state, which is reflected by the complex molecular and

cellular outcomes. For example, a “cancer” phenotype represents very special genetic states,

gene regulatory mechanisms, cellular behaviors, as well as specific metabolic states. In this

sense, the learning approaches are limited by treating phenotypes as “labels”/annotations.
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To predict genes that determine a phenotype, it is necessary to model the phenotype as

a complex biological state and perform simulation studies to perturb the state, that is, as

introduced in Chapter 1, to address the following two questions:

• How does one model a phenotype?

• How does one define the perturbations that determine or change a phenotype?

In this chapter, we study the cancer phenotype by modeling the human metabolic net-

work, thereby “cancer” is no longer merely a label/annotation but modeled as an entire

metabolic state. We developed a novel approach to simulate context dependent metabolic

states upon perturbation of gene expression, which is then applied to predict microRNAs

that can inhibit cancer growth.

We model the phenotype in terms of metabolic states because:

1. Metabolism is crucial to cell growth and proliferation. Deficiencies or alterations

in metabolic functions are known to be involved in many human diseases. For ex-

ample, the pathogenesis of diabetes results from malfunction in the regulation of

metabolic pathways, leading to alterations in insulin signaling, oxidative metabolism,

and lipid/fatty acid metabolism [154]. Dysregulation of the metabolic system is also

implicated in carcinogenesis [155]. Most cancer cells have higher glycolytic rates, the

so-called “Warburg effect” [156, 157] [158]. A recent study of breast cancer further

uncovered alterations in glucose metabolism mediated by phosphoglycerate dehydro-

genase (PHGDH) enzyme [159], whose expression was found to be associated with poor

prognosis [160]. Since metabolism plays an essential role in cell growth and prolifera-

tion, genes regulating metabolism have been used as drug targets in the treatment of
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cancer [161] [162] and other diseases involving metabolic disorders [163] [164], includ-

ing diabetes, atherosclerosis and fatty liver disease. Thus, understanding the human

metabolic system is important and provides a complementary approach to study and

identify potential treatments for complex human diseases.

2. It is a complex system that is well-studied in characterizing many of its compo-

nents/interactions and much of the detailed mechanistic information is available for

systems modeling. A (steady) state of the system can be defined by metabolic fluxes

distributed in the network and reliable techniques are available (experimental and com-

putational metabolic flux analysis) to measure the state. Current reconstructions of

the global human metabolic network provide a computational platform to integrate

knowledge gained over the past 50 years of research on human metabolism [165], thus

enable a systems modeling approach to study in silico the global effect of perturbations

on the network to generate hypotheses and help understand the mechanisms underlying

the genotype-phenotype relationship.

4.1 Systems modeling of a metabolic state

To model a phenotype as a metabolic state, we need to characterize the components and

interactions in the system by the reconstruction of global human metabolic network, and we

need a simulation approach that can be used to define a metabolic state.
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4.1.1 Reconstruction of global human metabolic network

The global human metabolic network has been manually curated based on an extensive

collection and evaluation of the genomic and bibliomic data. The first two installation of

the network were released in 2007: the Edinburgh Human Metabolic Network [166] and the

human Recon 1 [165], each contains a list of human reactions, metabolites and gene-protein-

reaction relationships. The Gene-Protein-reaction (GPR) represents functional relationships

between genes/proteins (e.g. enzymes) and the corresponding reactions they catalyze or

control. For example, in human Recon 1, the genes are first mapped to their transcripts,

accounting for alternative splicing. Then, based on Boolean rules of OR and AND, the

transcripts are mapped to proteins. The proteins are then mapped to reactions by Boolean

rules based on current knowledge of their effects on the reactions.

The two networks (Edinburgh Human Metabolic Network and the human Recon 1), de-

veloped independently by different research groups, consist of many different genes and reac-

tions. The Edinburgh Human Metabolic Network contains more genes and metabolites, but

was not compartmented in its initial release. Compartmentalization requires assignments

of metabolic reactions into different cellular organelles (cytoplasm, nucleus, endoplasmic

reticulum, mitochondria, lysosome, peroxisome, and Golgi apparatus) and accounts for the

transportation and exchange of metabolites between organelles. Human Recon 1 is a com-

partmented network which could be used in reconstructing predictive models for systems

biology studies, therefore, most of the recent applications have been based on Recon 1. An

overview of the publications thus far that used Recon 1 is reviewed by Bordbar and Pals-

son [167]. Notably, in 2010, the compartmentalization of the Edinburgh Human Metabolic

Network was completed and its current release is a compartmented, and more complete
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human metabolic network [168].

The reconstruction of the global human metabolic network uses a bottom-up approach.

Researchers begin by compiling reactions of cellular metabolism to build a network through

the collection of gene annotations, enzymes and pathway information from genome (e.g.

NCBI, Ensembl) and pathway (e.g. KEGG, ExPASy) databases. Researchers then refine

the network by manually collating literature evidences, including journal articles, reviews

and textbooks on metabolic functions, biomass composition, growth conditions and gene-

reaction associations. The constructed draft network is converted to biochemical models

to evaluate the basic functionality, and simulations are performed to check for consistency

with the current knowledge. The whole process runs iteratively to incorporate as much

information and minimize gaps and inconsistencies. The protocol for the reconstruction

process is available in [169].

The major difference in a metabolic network as compared with other biological network,

e.g. Protein-Protein Interaction, Protein-DNA network, is that the metabolic network repre-

sents a biochemical system that is charge-balanced, mass-balanced and compartmentalized,

which not only provides information about whether there is an interaction, but also how it

happens and what it is produced as a biochemical reaction, thus can be directly converted

into mathematical equations based on the biochemical reactions for model predictions.

4.1.2 Modeling and simulation based on human metabolic net-

work

A reconstructed human metabolic network can be represented by a system of stoichiomet-

ric reactions. This system of reactions can be modeled as ordinary differential equations,
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however the reaction rate constants and metabolite concentrations are typically difficult to

obtain, thereby limiting their applicability to small well-studied networks. However, since

the stoichiometry of metabolic reactions are not organism or context-dependent but is fixed

by mass balance, one could apply Constraint Based Modeling (e.g. Flux Balance Analy-

sis, FBA [170]) to simulate the state of the system without detailed kinetic data, assuming

that the flux distributions based on the stoichiometric mass balance are at steady state or

pseudo-steady state.

Mathematical representation of reaction network and Constraint Based Modeling:

• Reactions: S (Stoichiometric Matrix), with m compounds (rows) and n reactions

(columns). The stoichiometric coefficients are negative for the substrates of each reac-

tion, and positive for the products.

• Flows: v (n by 1 vector) on all reactions

• Concentrations: X (m by 1 vector) of all compounds

Thus we have

dX/dt = Sv (4.1)

Assuming pseudo-steady state, the time derivative is zero, therefore: Sv = 0. So the flux

distribution v that satisfies this equation is in the null space of S.

In the human metabolic network, n > m results in an under-determined system that does

not have a unique solution. Adding constraints permit a “feasible” solution to the system of

equations, for example, a “flux capacity” constraint determines the upper and lower bounds

of the flux through a reaction. Imposing mass balance and capacity constraints will define

the space of feasible steady-state flux distributions of the network. Geometrically the space
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looks like a “flux cone” in the null space of S. A visualization of the “flux cone” is shown

in [171] to demonstrate the way a solution space could be narrowed by the steady-state and

capacity constraints. Further, in FBA we define an objective function Z, which is a linear

function of fluxes. An objective function could be

Z = cT V (4.2)

in which c is a column vector to assign weights to each reaction, cT is the transpose of

the vector c, and V is the flux vector through all reactions. Optimization of the objective

function Z identifies a unique (or multiple) set of flux configurations within the flux cone.

The constrained linear optimization problem can be solved by linear programming [172] [171].

The form of the objective functions, constraints and the optimization problems can vary

depending on the biological applications, which are different variants of the Constraint Based

Modeling. For example, the Flux Sensitivity Analysis (FSA) estimates the objective flux

change in response to perturbations in some reactions of interest [173]. The Flux Variability

Analysis (FVA) explores the solution space to exam the maximum/minimum fluxes for each

reaction. Further, current approaches to reconstruct context dependent metabolic networks

are essentially different variants of the Constraint Based Modeling. A detailed review of the

algorithms in the Constraint Based Modeling is provided in [174].
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4.2 Prediction of the metabolic state-change upon per-

turbations

Metabolic genes could be differentially expressed under different conditions in different cell

types, resulting in different metabolic states of the cell. Changes in gene expression drive

changes in metabolic fluxes which manifest cellular phenotypes. This is the central idea to

associate gene expression with metabolic network to determine a metabolic state for a phe-

notype (i.e. reconstruct context-dependent metabolic network) and study how perturbations

in gene expression can change the phenotype.

A summary of the pipeline for the systems modeling and its applications based on human

metabolic network is shown in Figure 4.1 on page 115. Since the global human metabolic net-

works (the human Recon 1 and Edinburgh Human Metabolic Network) are generic metabolic

networks that collate information from all types of human cells, the reconstruction of a

context-dependent (i.e. condition/cell-type/tissue/organ specific) network is required prior

to in silico analysis of the particular system under investigation. Once the context-dependent

reconstruction is obtained, one can simulate the metabolic phenotypes under different per-

turbations to identify essential gene targets or pathways, or predict cellular responses to

different treatments.

4.2.1 Reconstructing context-dependent metabolic network

Similar to the reconstruction of the global human metabolic networks, one could follow the

protocol (Thiele and Palsson, 2010a) to collate literature evidences and gene annotations,

and manually identify the context-dependent reactions to reconstruct a condition-specific
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Figure 4.1: A pipeline for systems biology applications of human metabolic network.
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metabolic network. This has been applied in [175] [176] to achieve comprehensive recon-

structions of hepatic and neuronal cells. However, the process requires manual evaluation of

thousands of papers, and curates thousands of genes and metabolites, which is lengthy, and

requires tremendous effort and labor. Therefore, many studies have focused on automat-

ing the reconstruction of a cell-type or tissue-specific metabolic network, by incorporating

high throughput gene expression data rather than manual curation of the cell/tissue-specific

network.

Assuming changes in gene expression drives changes in the metabolic states; the basic

idea in automated reconstruction is to identify active reactions by incorporating condition-

specific gene expression profiles. Most reconstruction approaches start by analyzing the

gene expression data to determine if a gene is “present” (highly expressed) or “absent”

(low expression level) for the condition being investigated, then selects the active reactions

according to their corresponding gene/enzymes’ expression level. For example, the Gene

Inactivity Moderated by Metabolism and Expression (GIMME) algorithm, developed by

Becker et al. [177], uses gene expression data to determine active and suppressed genes

with an expression threshold, and determines active reactions based on the state (active or

suppressed) of the corresponding enzymes. “Inactive reactions” are removed unless they are

required for a desired functionality (according to a predefined objective function). Another

approach to study human tissue-specific metabolic states was developed by Shlomi et al.

[178]. The approach does not require an objective function but matches active reactions

with expression data by solving a network flux to maximize the number of enzymes that are

highly expressed and catalyze flux-carrying reactions. For a better quality reconstruction,

Jerby et al. [179] developed a Model Building Algorithm (MBA), which determines the active
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“core reactions” with multiple sources of information including literature, transcriptome and

proteomic data. The MBA then reconstructs a consistent network (no gaps or zero-flux

reactions) with all the pre-defined core reactions (evidences obtained from both literature

and data), adding as many of the likely active reactions (evidences obtained only from

high throughput data), and as few of the other reactions. Nevertheless, manual curation is

necessary with this approach to collate and analyze the literature and high-throughput data.

4.2.2 Simulating phenotypes based on metabolic network model

Constraint based modeling and simulation based on a condition-specific human metabolic

network can be used to predict the flux distribution in the network for that specific metabolic

phenotype. Such in silico analysis have been used to generate hypotheses on the cell growth,

ATP production, or the states of specific metabolic functions upon perturbation [180]. For

example, modeling and simulations of a metabolic model of human kidney reconstructed

with the GIMME algorithm were used to evaluate the metabolic phenotypes associated with

the side-effects of a drug treatment [181]. The side effect of a particular drug is determined

by its off-targets, which are the enzymes/genes that are not the therapeutic targets but

nevertheless are predicted to bind and be inhibited by the drug. FBA was performed on the

perturbed network where the reactions catalyzed by the off-target enzymes were inhibited

by the drug, to evaluate the systematic consequences of the drug and determine if the

treatment leads to deficiency in metabolic functions [181]. This systematic approach has

also been applied to metabolic disorders of the liver [179] and cancer cells [182] [183], and

was able to correctly identify many of the genes essential for the metabolic disorders [179],

interpret metabolic state-changes (e.g. Warburg effects [183]), and predict drug targets for
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the metabolic system [182]. In the cancer study [182], gene expression in cancer cell lines is

analyzed to identify highly expressed metabolic enzyme-encoding genes in cancer, which are

used in MBA algorithm to reconstruct a “cancer metabolic network model”. FBA is then

applied to predict metabolic states (cell proliferation) across different gene knock-downs.

Specifically, in each prediction one could turn off the reaction associated with the gene that

is knock-down and apply a FBA on the constrained model to see if the cell proliferation

(represented by an objective function) is reduced. The genes predicted to be important for

cancer metabolism are confirmed to be highly essential in a shRNA gene knockdown dataset

which lists experimental identified cancer growth-supporting genes. FBA is also applied on

non-cancer cells (reconstructed metabolic network with expression data of normal cells) to

determine genes important for normal cells’ metabolism. Genes that only affect cancer cells

are predicted to be drug targets. Many known targets of FDA-approved metabolic anticancer

drugs are re-discovered in this approach. Folger et al. [182] further simulated double gene

knockdowns to explore combinations of synthetic lethal drug targets.

4.3 A novel approach to reconstructing context-dependent

networks

Applications of the metabolic model (i.e. to predict a metabolic state upon perturbation on

gene expression) require reconstruction of context-dependent networks, thus computational

approaches to automate the generation of condition-specific models are of great interest.

Current approaches assume the reactions are either absent or present according to the ONs

and OFFs state of the genes, which could be problematic since a small change in the ex-
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pression analysis could result in very different lists of present and absent genes/reactions,

which thereby affects the reconstruction. For example, a gene expressed a little bit lower

than the median expression level in the transcriptome of a phenotype may be classified as

absent/OFF, which would eliminate the reaction it associates with. However a gene is not

necessarily entirely OFF when expressed in low levels, and a reaction may not necessarily

be completely abandoned just because an enzyme catalyzing the reaction is expressed at

a low level. The assumption to associate genes and reactions is questionable, thus current

approaches have relied on the stoichiometric constraints to mitigate the potential inconsis-

tencies. A recent study by Colijn et al. [184] associated gene expression levels with the

constraints on the reactions, i.e. the lower a gene is expressed, the lower the flux that could

be conducted through its corresponding reactions:

max
V

Z = cT V , subject toSV = 0, xj ≤ Vj ≤ yj (4.3)

In which xj and yj are determined by gene expression level. Although it could be more

sensitive to changes (noises) in gene expression by directly associating gene expression level

with flux bounds, the approach is less dependent on the discretization of gene expression and

the present/absent call of the reactions. It has been applied to bacteria to predict metabolic

modulators and responses to different drugs [184].

Inspired by this study [184], we develop a novel approach to reconstruct human context-

dependent metabolic network to associate gene expression changes with constraints on the

reactions. The model is based on two assumptions that differ from previous approaches:

1. The information on the context-dependent gene expression, e.g. microarray data, tissue

specific gene database, studies of gene expression in the literature, provide information
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on the relative gene expression state change between phenotypes, rather than

the “expression level/state” of a gene. A single “expression value” cannot indicate a

gene’s expression level (or ON/OFF state) without a comparison involving different

phenotypes, because for different genes, the amount of expression that is required

to turn them ON should be very different. For example, signaling molecules could

have large impact when they are expressed in a small amount, while housekeeping

genes may require a constitutively large amount of expression to support cell survival,

thus the expression level of these two types of genes (i.e. signaling molecules: LOW,

housekeeping: HIGH) within the samples for a given phenotype do not correlate with

their ON/OFF states.

2. The state-change of the genes/enzymes, as indicated by the context information, deter-

mines the state-change of reactions, by modulating the maximum capacity of a reaction

tunnel. This is different from previous approaches that associate gene expression with

reaction states by either removing a reaction when the corresponding gene expression

is low, or correlating the flux through the reaction with gene expression level. Our

assumption is based on the enzyme kinetics (Michaelis-Menten equation) which shows

that the maximum reaction rate (i.e., the maximum capacity of flux through a reac-

tion tunnel) is positively correlated with the concentration/activity of the gene/enzyme

that catalyzes the reaction:

Vmax = Kcat[E] (4.4)

In which the Kcat is a reaction constant and [E] is the concentration of the enzyme.

Although the constant Kcat is less available and could be different in different en-

zymes, our first assumption compares the maximum capacity of fluxes in two conditions
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Vnew/Vref , thus we have:

Vnew
Vref

=
[Enew]

[Eref ]
(4.5)

Where Kcat cancels (assuming the enzyme function does not change, i.e. no significant

mutations occurred, which holds in perturbation applications of a given cell type or a

given patient in a relatively short time-scale). Thus, the upper bounds of the reactions

in the context dependent network can be computed by Vref based on a reference

network, and the [Enew]/[Eref ] represents the state-change (fold change) in gene

expression.

Our approach is designed to reconstruct metabolic network that is specific for a pheno-

type/condition, by incorporating context information of the gene expression on the particular

phenotype of interest. The process is shown in Figure 4.2 on page 123. Based upon a refer-

ence metabolic network that have been defined (e.g. the generic human metabolic network)

and the context information, we estimate the activity change of each reaction to adjust

the upper bounds (i.e. the maximum capacity) on the reaction tunnel, which results in a

new metabolic network model that is specific to the condition. There are two steps in the

algorithm:

1. Compute the states of the genes under the condition of interest: the context

information is used to determine the change of gene expression between the reference

condition and the condition of interest. For example, based on microarray data, the

state of a gene changes when it is differentially expressed, and the amount of changes

δ(Sg) can be computed based on the “log fold-change” obtained from microarray anal-

ysis. Qualitative information from the literature or tissue specific dataset directly

determines the state of a gene under a condition, but the amount of state-change is
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computed by subtracting the reference state from the state under the condition, in

order to determine the state of the reactions in the next step. In these cases the state

of the genes is represented by discrete variables Sg = {−1, 0, 1} (i.e. low, median,

high), and the state-changes (plus 1: unregulated; minus 1: downregulated) depend on

the context information. When we start from the generic human metabolic network,

the reference condition is defined by having all the genes initially in state 1 and the

initial bounds are computed with Flux Variance Analysis.

2. Compute the states of reactions: based on the GPR (Gene-Protein-Reaction)

information in the network, genes that are components of an enzyme complex have

the “AND” relationship, thus the change of the activity of these complexes are de-

fined by δ(Sc) = min{δ(Sg1), δ(Sg2), . . . , δ(Sgj)} in which δ(Sgj) are the state-

change of gene component j in the complex c. Complexes/genes that are differ-

ent isozymes for the same reaction have the “OR” relationship, thus the amount

of state-change on a reaction is then defined by the state-changes of the isozymes:

δ(Sr) = max{δ(Sc1), δ(Sg2), . . . }. Finally, the upper bound of a reaction is changed:

Vnew = Vold ∗ 2δ(Sr) since the state-changes are defined as the “log fold change”.
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Figure 4.2: Reconstructing context specific metabolic network. A gene expression phenotype is associated with a metabolic
state. The context information provides the state-change of the gene expression between two phenotypes. The state-change
of each reaction is then determined by the state-change of the genes that regulate the reaction.



We apply this novel approach to model metabolic network of human liver cancer and

predict microRNAs that can inhibit cancer growth.

4.4 Prediction of therapeutic microRNA based on con-

dition specific metabolic network

MicroRNA expression has been found to be deregulated in human cancer [185]. For ex-

ample, Calin et al. [186] observed down-regulation of miRNAs mir-15 and mir-16 in most

lymphocytic leukemia patients, which suggests that miRNAcould be involved in cancer. He

et al. [187] were the first to identify a potential non-coding oncogene, miR-17-92, which

promotes c-Myc-induced tumorigenesis in mice. In another study, Johnson et al. [188] dis-

covered a tumor suppressor miRNA let-7 which inhibits expression of the oncogene RAS in

lung cancer cell lines.

A global decrease in miRNA levels has been observed in human cancers [189,190]. Knock-

out of the miRNA processing enzymes Drosha and Dicer enhances cancer cell growth in vitro

and their invasiveness in mice [191], which confirms that the widespread reduction in miRNA

expression could promote tumorigenesis. Therefore, miRNAs may have an intrinsic function

in tumor suppression, and could be alternative therapeutic targets. Synthetic miRNA can

be introduced into mammalian systems [192], and a pioneer study of therapeutic miRNA

delivery of miR-26s in HCC (hepatocellular cancer) mice model successfully inhibited tumor

cell proliferation and induced cancer-specific apoptosis [193].

Although miRNAs may be good alternative targets for cancer treatment, it has been

difficult to identify which miRNAs to target for a particular type of cancer, since the un-
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derlying mechanisms of why and how miRNAs are involved in cancer are largely unknown.

Experimental evidences of how miRNAs regulate their targets in cancer cells have been lim-

ited. The expression of single targets, such as RAS [188], or E2F1 [194], has been shown

to be regulated by miRNAs in explaining their association with cancer. However, each

miRNA may regulate various target genes, and the same miRNA may have oncogenic or

anti-tumorgenic activity depending on the context or cell type in which the targets are ex-

pressed. Current computational studies focus primarily on analyzing miRNA expression

profiles to identify signatures that can separate particular cancer from normal samples [195],

or combining miRNA and gene expression data to identify a “context-specific” target in the

cancer samples [196] Nevertheless it remains unclear whether the altered miRNA expressions

are the cause or consequence of the carcinogenesis processes, and which miRNAs could be

good targets for treatment.

We propose a different approach to tackling this problem, by integrating miRNA target

prediction, metabolic modeling and the context-specific gene expression data. We apply

our novel approach of metabolic network reconstruction to reconstruct a context-specific

metabolic system for human liver, and flux analysis based on the system is used to predict

the miRNAs whose overexpression or delivery could inhibit cancer cell growth by inhibiting

its target metabolic genes.

4.4.1 Prediction of the metabolic state in liver cancer cells upon

perturbation of gene expression induced by miRNAs

Information of human liver specific gene expression is obtained from a curated dataset in

the literature [178]. Our approach is then applied to reconstruct a liver cancer specific
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metabolic system from the human generic metabolic network, and use the system to predict

the growth and proliferation rate of cancer cells. Cancer cells are assumed to modulate

their metabolic functions to be able to support their rapid growth and proliferation, thus a

biomass production function was defined as their objective function based on experimentally

measured DNA/RNA/Amino acids/Lipid composition in cancer cells [183]. We use FBA

to optimize this biomass function in the liver specific metabolic network, and the biomass

production rate reflects the maximum rate of cell growth and proliferation that can be

achieved.

Metabolic gene targets of each microRNA are obtained from TargetScan, which is based

on sequence complementarity and conservation of the targeting sites within vertebrates [197],

and only those 153 conserved miRNA family with conserved binding sites (across mam-

malians) are included in our analysis. The gene targets are assumed to be inhibited (50%

knock down) upon overexpression or therapeutic delivery of their miRNA regulator, since

miRNA would bind to these target mRNAs by base pairing and forms RNA-induced silenc-

ing complex which then causes inhibition of protein translation and/or degradation of the

mRNAs [198]. A conditional specific metabolic system is constructed upon overexpression of

each miRNA with their targets turned off and simulated to obtain their maximum achievable

biomass production rate F , which is compared with the rate F0 in “wild-type” liver cancer

without the miRNA up-regulation. A score F0−F is computed for each miRNA to indicate

their ability to reduce cancer growth. The miRNAs are ranked by this score. The procedure

is shown in Figure 4.3 on page 127.
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Figure 4.3: A pipeline for predicting therapeutic miRNAs for human liver cancer.



To assess the accuracy of the prediction, we search in the literature for the 153 miRNA

families and collate a test set including 41 miRNAs that have been experimentally studied

in liver cancer, in which there are in vivo or in vitro evidences showing 23 of these inhibits

liver cancer growth/metastasis if over-expressed while 18 do not. Based on our scoring and

ranking of miRNAs, we plot the ROC curve for the predictions of these 41 miRNAs in the

test set (the black line in Figure 4.4 on page 129), and the result shows above 82% accuracy

(Area Under Curve). To compare, we build a similar prediction system but using the GIMME

approach for network reconstruction that was previously applied to human metabolism (the

green line in Figure 4.4 on page 129). The accuracy of GIMME is 64%, only slightly better

than random (23/41 ≈ 56%), and is much lower than the predictions based on our novel

approach, for example, with the same cut-off with a false positive rate of 0.33, our approach

achieves 0.91 precision (true positive rate) which is much higher than GIMME (0.57).

Current studies in the role of microRNAs in liver cancer (reviewed in [199]) have been

focused on their targets in the signaling process, involving the apoptosis pathway (e.g. Bcl-

w, Ras), cell cycle progression and migration/invasion signaling (e.g. CDK, cyclins, PI3K

signaling PTEN, c-Met, FOS). From an alternative perspective, our predictions are based

on metabolic system thus the results suggest that miRNAs could regulate cancer growth by

modulating metabolic functions directly. Thus we further use the reconstructed metabolic

system for liver cancer to explore the potential mechanisms by which miRNAs inhibit cancer

growth.

Metabolic functions modulated by miRNAs to inhibit cancer growth To study

the metabolic functions that miRNAs modulate to inhibit cancer growth, we average the flux

change induced by the top 50 miRNAs (predicted to inhibit cancer growth) and by the bot-

128



Figure 4.4: The ROC curve of the prediction based on a test-set. Black line shows the
prediction result from our approach of network reconstruction, and the gree line shows the
result when we apply GIMME.

129



tom 50 (predicted not to inhibit cancer growth) ranked based on their scores, and compared

them to identify the subsystems that change the most. We found that the largest flux changes

occured for the production of nucleotides and amino acids, the glycolysis/gluconeogenesis

system, Citric Acid Cycle and pyruvate metabolism, as well as the transport processes across

the cell membrane, mitochondrial and peroxisomal membranes. These are essential metabolic

functions that support the biosynthetic processes and energy requirements of cells. Tumors

specific metabolic machinery regulates these processes to facilitate cell growth and prolif-

eration [157], and we show that these miRNAs could alter processes that inhibit cancer

growth.

One of the most profound cancer biochemical phenotype is the Warburg effect [156].

Cancer cells metabolize glucose at high rates, and shift the flux downstream of glucose from

mitochondrial tricarboxylic acid cycle to rapid anerobic glycolysis, thereby producing vast

amounts of lactate that is secreted from the cancer cells [157]. The Warburg effect is known

as a metabolic adaptive response in cancer cells to satisfy the high demand of the molecular

building blocks of the cell, i.e. nucleotides, fatty acids, lipids and amino acids as well as ATP

for facilitating proliferation [157, 183]. An indicator of the Warburg effect is the excessive

lactate production, thus we tested the flux change in response to miRNA perturbations on

the reaction catalyzed by lactate dehydrogenase which concerts pyruvate into lactate. The

result (Figure 4.5 on page 132) shows that the flux is decreased significantly (on average by

50%) by the overexpression of the miRNAs that scored higher (top 50), while the bottom 50

miRNA have less impact on this flux, which suggests that miRNAs could inhibit liver cancer

growth by mitigating the Warburg effect to alter the cancer metabolic phenotype.
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miRNA target metabolic enzymes that are essential for cancer growth Each

miRNA could have multiple targets, but there is no significant correlation between the

number of targets in metabolism and their ability to inhibit cancer growth, nor is there

significant difference in the number of targets between miRNAs predicted to inhibit cancer

growth and those that are not tumor suppressors. We hypothesize that there are some

important enzymes, upon targeting, whereby the cell growth/proliferation is reduced. We

apply our reconstruction and simulation approach to estimate the biomass production change

upon knocking down each metabolic gene individually, and identified 48 genes (among more

than 1900 metabolic genes) that are predicted to be essential for the growth and proliferation

of liver cancer cells, in which 24 of them can be targeted by miRNAs. We show these genes

in Table 4.1 on page 133. We search for genome-wide pooled shRNA screen data [200] that

is available in breast cancer, pancreatic and ovarian cancer cell lines and found that many

genes in our list, including PYGB, GBE1, SCD, Enolase, pyruvate kinase and solute carrier

family proteins have been identified as essential genes in more than 2 cancer cell lines wherein

their knockdown by shRNA significantly reduced the survival and proliferation rate of the

cells. Since there are no liver cell lines in these studies, we further looked into a collection of

liver cancer gene signatures in the Liverome database [201] to determine if these genes are

differentially expressed in liver cancer tissues and/or in highly invasive liver cancer cell lines.

We found most of these genes have been identified as gene signatures for liver cancer and/or

for the invasiveness/metastasis of liver cancer, based on previous gene expression analysis

(Table 4.1 on page 133).
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Figure 4.5: The flux change in response to miRNA perturbations on the reaction catalyzed
by lactate dehydrogenase.
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Table 4.1: The essential metabolic enzymes for human liver cancer that can be targeted by miRNAs



Although the evidences we found suggest these genes could be important for liver cancer,

they have not been fully explored — according to text mining studies in the abstracts of

pubmed literatures [201], there are only one enzyme (enolase) that have been experimentally

studied and associated with liver cancer. However, some of them have been studied in other

types of cancers to demonstrate their functional role in tumor growth. The glycolytic path-

way is directly responsive to the Warburg effect in cancer, thus the key glycolytic enzymes,

Enolases and pyruvate kinases in our list, have been shown to promote cancer invasion and

proliferation [202–204]. Knockdown of pyruvate kinase PKM2 reverses the Warburg effect

and suppresses tumorigenesis in mice model [202]. The high expression of Enolase correlates

with poor prognosis in breast cancer and a decrease in its expression in tamoxifen-resistant

breast cancer cells significantly augments the effectiveness of tamoxifen treatment [203]. The

Pentose Phosphate Pathway uses glucose to generate ribose rings which are essential for the

synthesis of DNA and RNA. Both of the two key enzymes which can catalyze the production

of ribose-5-phosphate are on our list of essential genes: RPE and RPIA. Our simulation

predicts the down regulation of either of them reduces DNA/RNA synthesis, which is con-

sistent with a recent study in pancreatic cancer [205] that showed knockdown of either of

the two enzymes (or both) reduced glucose flux into nucleotide production and suppressed

tumor growth. The fatty acid metabolism and lipid synthesis are also very important in cell

proliferation as they are primary components of cellular membrane. Enzyme SCD activity

is involved in the synthesis of unsaturated fatty acids, and is shown as a major factor that

could promote the oncogenic process and suggested to be a therapeutic target for prostate

cancer [206–209]. The other enzymes HADH and PLA2G4A have been less studied in cancer

metabolism. In addition to these three pathways, there are five genes involved in glycogenol-
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ysis/glycogenesis predicted to be essential genes for liver cancer, as well as multifunctional

genes DLD and solute carrier family proteins. These processes have not been explored in liver

cancer thus far in the literature, and could be interesting targets to study experimentally.

Figure 4.6 on page 136 summarizes the metabolic pathways and processes that could be

affected by the essential enzymes we identified which are targeted by the miRNAs identified

in our analysis.

We check the miRNAs that target these enzymes that could be essential for liver cancer.

There is a strong association between targeting these enzymes and the miRNA’s ability to

inhibit liver cancer growth. 90% of the miRNAs ranked at the top 50 based on their score

target at least one of these essential enzymes, while none of the miRNAs at the bottom 50

target any of these enzymes. Among the 90% of the miRNAs ranked at the top 50, most of

them (80%) inhibit cancer growth more than by knocking-down any of the single essential

enzymes that they potentially target. These observations suggest that miRNAs modulate

metabolic function by simultaneously targeting metabolic enzymes that are essential for cell

growth and proliferation. Table 4.2 on page 138 shows the 5 miRNAs that have the highest

score and their essential metabolic gene targets predicted in our analysis, as well as previous

studies showing their signaling targets and involvement in liver cancer. There are a few

studies that explore the regulation of cancer metabolic functions by miRNAs (see review

[210]) but currently they focus only on glycolysis, in which essential enzymes PGM1, ENO1

are shown to be regulated by miRNA-29a, miR-17-92, nevertheless it is unclear whether the

miRNAs directly target these enzymes. The possible interactions between miRNA, signaling

process, transcription factors and the expression of metabolic genes complicated the study in

exploring function roles of miRNA in cancer. We provide an alternative modeling approach
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Figure 4.6: The metabolic pathways and processes that could be affected by the essential
enzymes.
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that focus on direct metabolic targets of miRNAs, but the limitation is that there could be

indirect effects potentially responsive to signaling and transcription regulations mediated by

miRNAs. Future studies in miRNAs will be aiming to incorporate more complicated gene

networks in regulating the expression of metabolic genes, as well as account for the potential

interactions between miRNA, signaling, transcription and metabolic systems to achieve a

systematic understanding of cancer metabolism.
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Table 4.2: The 5 miRNAs ranked at the top in our analysis and their potential target genes



In summary, we developed a novel approach to simulate context dependent metabolic

states upon perturbation of gene expression, which is able to incorporate the metabolic

network, gene expression states to predict the steady state flux distributions in the cancer

metabolic system. A condition specific metabolic system was constructed for human liver

cancer (HCC) and overexpression of each miRNA was simulated to predict their effect on

reducing cancer cell growth. Compared with experimental evidences that we collected from

the literature, our approach achieved 80 percent accuracy in predicting miRNAs that can

suppress metastasis and progression of liver cancer. Our approach can be used as a framework

to explore the mechanism by which miRNAs modulate metabolic functions to affect cancer

growth. We analyze the metabolic functions altered by miRNAs and identify the essential

metabolic genes that are targeted by the miRNAs. We suggest that miRNAs modulate

metabolic function by directly targeting metabolic enzymes that are essential for cell growth

and proliferation.
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Chapter 5

Conclusion

The recent advent of high-throughput technology has enabled the global analysis of genes,

proteins, and their interactions, driving the development and application of computational

approaches to study gene regulation on the genome scale, by reconstructing in silico the

regulatory interactions of gene networkS. The challenge is to determine:

• What are the essential entities (genes, proteins) in a network that confer a phenotype?

• How do these entities work together to regulate biological processes?

We focus on the analysis of gene expression. Our research aim to develop novel ap-

proaches to identify genes and their regulation that are involved in conferring a phenotype.

Given the complexity of gene regulatory networks, knowledge of the properties of individual

components in the network are not sufficient to elucidate the cell physiology. As reported in

Chapters 2-4, the research has focused on 2 aspects of this problem:

Regulatory processes are highly connected such that a specific response is typ-

ically accompanied numerous collateral effects. As also pointed out by Kholodenko

et al. in [211]
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“A ‘local’ perturbation that is initially confined to a particular network node
can propagate and cause widespread “global” changes in the network and thereby
mask immediate connections and routes. This issue is particularly pertinent to
large omics data sets, because even in response to a single local perturbation,
the omics snapshots of the cellular state arise from a plethora of interactions
spreading through cell networks.”

To identify genes and interactions that are specific to a phenotype/condition, not only

should we filter out the “false positives”, which is the key goal of many previous studies

in statistical analysis and data mining of biological data, but also, more importantly, to

identify the specific responses rather than the many general/collateral effects. Therefore,

in our network reconstruction framework, we design a multi-layer approach that is able to

reconstruct condition-specific genes and their regulation through an integrative analysis of

large scale information of gene expression, protein interaction and transcriptional regulation.

We propose to integrate microarray data from a diverse set of conditions to provide a common

context (more and better controls) for the expression behaviors of genes, and apply advanced

feature selection technique, to identify the target genes that are most specific to the condition

being investigated. From the target genes, conditional gene regulations, and conditional

transcription factor activity are then determined. We show that incorporating these diverse

conditions for comparison in the feature selection of genes and interactions enhances the

specificity of the predictions.

Systematic understanding of a biological network. As a complex system, there are

“emergent properties” that arise from the intricate interactions of gene networks, by which

cells process external and internal signals to determine a phenotype, i.e. a state of the system.

It is the interactions of the genes and proteins that determine a phenotype, thus the challenge

is to understand how complex molecular and cellular functions and responses arise from these
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dynamic interactions. We have been studying an important dynamic feature in the gene

regulatory network—the “switch-like behavior”, and propose a top-down mining approach

to exploring gene switches on a genome-scale level. Our mining approach demonstrates that

one can capitalize on genome-wide expression profiling to capture dynamic properties of a

complex network. In another study, we aim to understand systematically the regulation

of human metabolic functions. A novel approach is proposed to tackle this challenge by

integrating metabolic modeling and context-specific gene expression data to simulate context

dependent metabolic states upon perturbation of gene expression (e.g. induced by miRNA).

Overall these explorations in the field of computational systems biology aim to identify

genes and their regulation that determines a phenotype. Applications on human breast can-

cer identified Trop2 as a target gene, a potential gene switch, and regulation of this gene by

transcription factors, CREB as well as NFkB. Studies on the network reconstruction of hu-

man metabolic system predicted therapeutic miRNAs for human liver cancer, and suggested

miRNAs could be implicated in the metabolic regulation of cancer. Future studies in systems

biology could combine reverse engineering approaches based on the omics data and systems

modeling of gene network to achieve a coherent mechanistic picture of biological regula-

tion. For example, we have thus considered only the direct targets of miRNAs in metabolic

system as discussed in Chapter 4, but there could be indirect targets whose expression is

altered by TFs that are regulated by miRNAs. Therefore one could further incorporate the

transcriptional regulatory network to describe regulations at this level. miRNA expression

profiles and gene expression profiles upon perturbation of miRNAs, if available, could be

integrated to identify the lowly expressed miRNAs for a given cancer type as well as infer

the miRNA-target relationships. Through the reverse-engineering of a miRNA-target net-
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work representing an integrated picture of transcriptional regulation, gene expression and

miRNA expression, one would be able to determine which genes are likely the true (direct

or indirect) targets of a miRNA under the condition of interest, and how the target genes

could respond to the over-expression or delivery of the miRNA. This way, one could have

a more realistic model of target genes’ expression that respond to the over-expression of

a particular miRNA, instead of assuming all predicted gene targets to be inhibited upon

over-expression or therapeutic delivery of their miRNA regulators. The reverse engineering

approach can be integrated into the systems modeling of metabolic network to account for

the layer of transcriptional regulation, thus to achieve a better model in predicting the con-

dition specific metabolic states upon perturbation of miRNAs. Furthermore, there are other

layers of regulation of gene expression and enzyme activity, including post-transcriptional

and post-translational processes. Many genes involved in post-transcriptional regulation of

the metabolic genes or enzymes could also affect the metabolic states, which are excluded

from current applications, and there are genetic changes that could be important in can-

cer phenotypes. Although it is difficult to have a comprehensive model due to limitations

of our current knowledge of biological processes, nonetheless we could incorporate more

information to provide a more comprehensive model of the regulatory network given the

increasing amount of transcriptome data, protein interaction data, genomic data and other

high-throughput data available.
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