A DESIGN OF A PHOTQ.ELASTIC STRESS ANALYSIS WACHINE

MaESE MOR MHE DERR䍝 OR B. S. C. W. Nicholas
 1933

$$
\sqrt{\text { Cramis }}+\text { stresses }
$$

Cinl engmerrug Bridges troffs
A Desirn of a Photo-ilsstic Stress Anslysis liachine
A Thesis Submittec to
The faculty of
$0 f$

By
C. W. Nicholas
Candidate for the Degree of
Bachelor of ScienceJune 1933

00 p. 1

Freat prosress has been made in the science of design in suite of the severe hendicaps under majch the desi=ner works. Heretofore, the dosioner has had access to several methods of desion but the inherent weaknosses of most of the methous are readily spparent. For instance, in judginer the safe loads to be applied to a structure the desicner has access to service records or destraction tests. The lack of service records of new structures with incrassed loads is a severe hadicap. Destruction tests are inadedate in that they seldom indicete methods of improvement. Improvenent co.ld be mede only by constructing nunerous types of details and destroving them under load. During the constraction of the lifid-Hadson Bridpe, there wis some doubt as to the strenath of s certain dutail. To prove its atrenrth, an exsct replics of the detail had to be constructed end destroyed undor losd.

The dosimer also uses, in conjunction with the forepoinir methods, current information rerarding the stress fields of the stracture, physical data of the saterials used, and the theories of strenoth best suited to the problem. The use of these items involves the conpatation of stresces by analytical nethods. In problems involving any bat the most simple strese distriblion systams encounters insarmontable mathematical difaculties. It is orily in a

1031\%

very limitec number of ceses that strict matnenatical formulae may be apried. These are besed on theories of elasticity, temperature stress, etc., and are efficacious only when the assumptions of loud conditions are reproduced in the field.

In tine finsl analysis, the failure of the methods of the desirner is borne out by the fact thet the desimer doubts the sccuracy of his work and must apply a sufety factor to insare the stability and sofe functioning of the structure.

The study of the effects of loads on structuras by pioto-elastic methods provides a practical, complete and accurate analysis of stress distribution. The following discuseion presents a desien and method of use of an apparatus for stress analysis by photo-elissticity.

COMOMJCMION

In the desien of this Photo-ilastic apparatus two major considerations were kept constantly in mind. namely, simplicity and economy. Several essumptions corcerrine the oytical arieretus were recsseany in urder to fermit omitting ofticel experstus es used in more cormete erd

 theory.

It was assumed that the effect of temperature wes neglifitle in compricison with the range of visible rays. No attempt hes been mede in this design to eliminate heat radiations by mesns of a water-cooler. The ef"ect of heat on the nolerizing unit is elso neglected due to the type of pism used. Ne, plact of temperature consideration is immeteriel as torre out by the experiment. See Ref. 1.

Another presumption was necessary in view of the economical design. This ws concerning the opticel accuracy und frade of plase used in the lonses. The conclusion reachec wes thet ofase of the grade of good vatch elass was sufficiently accurate for the purvose of this epparatus. All results obtained from the apparatus are purely relative. . Aach ray of light paseing through the optical parts is acted uon within the limits of accuracy noticeable to the eye. The mimary considera-
tion in the construction of the epparatus is to keep the ortical exes of the various purts on the samo line ss slight variations would cause s leakase which would be detrimental to the production of a clear imase.

The Lamp House - Vate II

The lamp house snd source of light meg need an explanation. In order to secure an acourately coritrollead Ijsrat scurce of sufsicjent interaity, \& ECC watt bulb and porsbolic riroor erratustion wes utilizea. The lisht source is fixes, cree beiner taken to have the source on the crtical sxis of the apparsitus. The parabolic mirror is sajustable only on the horizontal plane. This permits focusing the lioht on the first condenser. See Fig. 1. The lamp house is just large erough to admit the mirror. This eliminates all sifie or verticel displecement. The bulb should $k e$ silvered or the side oprosite the mirror, the silvered area teire jero erowh to rrobibit airect lifht from the source from Extering the cordersires lerse The addition of the silvered ared aleo framezses the anowit of lisht by appoximately 50 legcent. The interior of the lamp house is finished in θ dull bleck to eliminate reflection interterence.

Due to the variety of shapes and sizes of bulbs, it was decided to allow sufficient room for the bulb but not
to hold the builder to a specific dosign. It would be a simple metter to insert erocket in the ruse of the lami honce of surficiert letigt to lyire the source of ifent up to the orticel exis of the instrumer.t.

The Polarizine Unit - Plate III

The Condenser Minnt I and the polarizing init were made risid with rexject to exch other for a specific reason. It was felt that elimination of minor adjustments would facilitate the operation of the machine as ε whole. The spacer tube should be constructed of just sufficient leneth to bring the condenser and nicol prism in exect focus when the polarizing element is in place. The condensor lens is held in plece by a retaininer ring and the spacer tuve. The rolsriaing nount of this unit should be roteterile throurh mirety desrees in either directicr. This rectsoitetose smu: fit of the ricol reism moutiry in the corderacer ture. wor tixferimertel furgoses it vowd lie orsinge to ceijtrate the ture ir defreus of gotetion. Due to the small dimensions of the nicol aidand difficulty of machining a part to fit the prism the following arranement was deemed necessary. The prism holder is a brass casting mschined to the specified dimensions. A hole five eirhths of an inch in diameter should be drilled through the casting with the center of the hole exactly on
the opticsl axis. The condensixg lens whould be mounted in position and lisht projected throum it from the lamp house. The nicol prism should then be cemented into position with plaster of paris. Theoretically, the center of the prism should be six and one half inches from the face of the lens. Accurate setting of the nicol prism is essential and care shodid be exercised in this phase of construction.

The quarter wave plate attachment neads no adjustment. It should be constructed to fit snufly enourh to allow no excessive play yet should be capable of removal without disturbine the sdjustment of the various other units.

Condenser and inalyser

The analyser unit is essentially the same os the polarizing unit. The respective wave plate and the nicol prism beine reversed. This necessitated placing the knurled shoulder on the opposite side of the casting from the quarter-wsve plate. In this unit, also, the quartor-wave plate is removable and the nicol prism mount is rotatable. Provision has been made, in the condenser tubs, for the removal of the quarter-wave plate.

Condenser Mount III

Condenser mount III wss desisned $8: ~ a ~ s i n c l e ~ u n i t ~$ for compactneso. The lenses sre fired in their respective tubes yet are ajasteble relative to eqch other. The reteiniar rines of sll lenses are iüertionl.

The Tension Frame

The oparetion of this Pnoto-slestic apperatus necessitstes using sheet as the model as a standard. Tinis operrtion will de discussed in detail later. Tne stardard mast h:se known losds áplied, tho lords beine equivalent tensile loads. The Tension \mathfrak{F} rame used in tuis desisn has veen sinolified greatly. To eliminate bulky arpratus and complicated construction the foljowine method was devised. Tine losd is applied by a hand wheel and screw arrangement through a movable chack to the standard. The lower chuck has no vertical movement bat it can be rotated. The loads are me:sured by a strain faure appliance fistened to the two chucks, messurine the amount by which the standard elonsstes under the logd. A statement to the effect that, "Most isotrapic materials, such as celluloid, elonécto in a straiqht line ratio naarly to the ooint of failure",只ef. II, was the bssis of the device. It will be necessary to calibrste the device sind if larse differences are
found in the Moduli of slasticity of the different standerds, e coefficient must be applied to each strnasa. The calibration of the device is a simple matter. The method of procedare would be us follows, the aparatus could be u-ended, known weirint aplied to the movable chuck and the position of the raure noted for each load. Thus every division passed over by the indicator would represent a load of so many pounds, etc. The calibration anit is placed in a heavy ring to obviste any displacenont due to the bending of the frame. The entire unit is rotatable about 2 axes -- one vertical and one horizontal. Tinis permits placing of the standard to correspond with any direction of lines of stress in the model.

Theory

The results obtained fron the apparatus will be more clearly understood by the operator if he has a knowledre of the theory underlying this method of analysis.

The fandamental principles upon which the theory of Whoto-3losticity is based are steted by Prof. Coker as follows;

1. "The distribation of stress throurh any loaded isotropic elastic structure is independent of the material of winch the structure is made and depends solely on the form of the structurg and the way in which it is made."
2. "i transparent isotropic materisil, such as riase or colldoia, acquires doubly refrecting properties wien stressed difierently in different directions, and the derree to which these properties are produced depends on the difierences betweon the principle stresses in the material."

By "Isotropic", in the first principle, it is meant that the material has the same whsical properties in every direction. This class includes most materials used in construction, including, concrete snd steel. This property is also the basis for assuming that the msterials used in the construction of the model is stressed in evactly the same manner as if the structire were built of steul or concrete. The doubly refractine properties, principle 2., of isotropic materisls when streseed have been thorourily investigytgd. Pef. II. The amount of refraction depends solely
on the differences in the principsl stresses. iny element in a stressed material may be thouent of as beine ected uoon by tiree principal stresses which ere mutually perpendicular. They sre referren to as \bar{Z}, Q, and P stresses. The P and Q stresses alone are considered in this work. The elimination of te P stress is nede possible by asing plote stractures and consiueriny only the stresses acting in tine plane of the stracture.

A discussion of the phenomenon of polarization of light is deemed unnecessary except in resard to the action of a stressed specimen on the lisht.

The effect of a quarter-wave plate on plane polarized licht is to retard one vibration a flarter of a wave lensth with respect to the next vibration. This is known as circidarly polarized lisint and may be thournt of as havino a horizontal and a vertical component vibrating a quarter of a wave lensth apart in time and phase.

Wnen tais circularly polarized lirnt is projected throurh a stressed specimen, the same effect is prounced as with the retardstion glate evcent that the directions of vibrations aro the same as the lines of principal stress or \bar{Z} and 2 for any point in the specimen. If the principal stressys ? gnd 2 differ in intensity, the relative retardation of the vibrations is proportional to the difference $(P-Q)$.

Thas it can be seen that if a mono chromatic lisht is used, the color wo ild be produced when the difference between P end Q is mrest enown. The color mould be totally extinguishod where P and Q are equal. This is a condition of zero stress. If the differencs betwoen P and Q is sufficient to produce a retardation of one wave lenrth of the lirht, black will again result.

To apply this orinciple to ordinary light, it is first necessary to stete thet difierent colors are reterded differert amounts by the seme stress. Passing ordinary lient through a stressed specimen will give rise to the typical "interference colors of the croseed Nicol arransement". It will be noticed thet with celluloid used as the specimen a definite series of colors will be obtained.

With the production of the series of colors :\% have also obtsined a messure of the intensity of the difference (P - Q). A discussion of the methoz used to obtain ($P+Q$) will appoar later.

When the quarter wave plates are re:aved the colors no lonerer five a messure of (D - Q) except where the direction of the principal stresses is at 45 degrees to the plane of the crossed Hicols. When the directions of stress coincide with this olane of polarization, the lisht is all cut out and dard bands are super-imoosed on the imece. These dark bands correspond to the locus of points of the same principal stress direction. Therefore, by rotatin; the orisms, kejunt thea slwis in the croseed position, a an
of the directions of the principal stresses may be procured. For example, with the Ficols in a normal position a set of isoclinics marked 0 derees may be drawn connecting the darkest points on the imase. If the prisms are rotated 5 deprees, a new set of lines marked 5 desrees gre drawn. In this connection it may be necessary to enumerste several fundanental rales roverning the charting.

1. The curvature of a stress line varies continaously if at all.
2. Parallel strese lines corresona to anifora stmess; conver "at lines to inceasing stress and divorring lines to diminishins stress.
3. No two strese lines of any one system can intersect or merpe into each other.
4. Along any free boundury of a structure, one system of stress lines is tancential and the other is at right antles to the boundary. Ref. III.

A furtier discussion of the charting of stress lines will be made under the tnnic $2=$ use of the instrument.

In the foreroing discussion it was etated that a measure of the intensity of ($P-\hat{a}$) was obtained. It now becomes necesuary to obtain a quantitative messure of the difference between these principal stresses. An accurate measure, in pounds, can oe obtained by the following method: Place a stradard, cut from the same material as the model, in a calibration member or tension frame. saiust
the standerd to coincide $\because i$ th the imsse of the model. From the nature of the logine of the model it will be simple to decide wich of the principal strescer is tenaion. The bar of celluloia is set st risht ancles to this direction of maximurn texsion. A load is apolied to the standurd until the super-imposed imares of the two pieces gre dirk. Note the amount of tension gaplied to the standard. The tension apelied may be called "r". This tension T is the force necessary to cancol the effect of the stressodmodel cr the rolerjzea ljunt, or, in other words, is the difference bet: een the principel stresces ($P-Q)$; or,

$$
P-Q=T \cdot \quad(1)
$$

Prom the definition of two-uinension strese it cen be seen thet the stress perveridiculer to gn urlosdec boundary of a nodel is necesserily zero. From this it cen be seen that a princip̣al stress msy be obtained directly from the above zauation. Iowever, tilis is a special case and not applicable to internal areas. It now becomes necessary to evolve a new equation to be usei in conjunction with the sbove.

Then a losd is applied to a moterisi, there is a chanme of thickness of the msterial proporticnal to the sum of the principsl stresces. By the use of poisson's Retio
for the material nü calibretion fine chenere in thickness, the sum of the rrincinsl stresees ur $(P+Q)$ coxld be corrputed. Tre exsct velue of Ioisson's Eatio mirat be difficult to obtein so an alternative metiod is sumested.

A simple tension member, the standsrd previously mentioned, is losded until its cherre of thickness is equel to the chane of thickness of tae model. Therefore $(P+\hat{q})$ of the standard equils ($P \quad Q$) of the ásired ourt of the model equals T', the tension coniled to the standird,
or .

$$
P+Q=T^{\prime} \cdot \quad(E)
$$

The P \& terms of these equations are iuentics 1 allowiner s simultaneous solution of the equations, from which,

$$
\begin{aligned}
& P=\frac{1}{2}\left(T^{\prime} * T\right) \\
& Q=\frac{1}{2}\left(T^{\prime}-T\right)
\end{aligned}
$$

The aluztitative values of P a torether with the charts showing crincipel stress airections arid concentrations complete the results for ordiary problems and form the basis for further experimental studies.

$$
\begin{aligned}
& \text { The above sketch is an exarale of the types } \\
& \text { of ingres obtained mith tho Photo-ilastic sitress } \\
& \text { Lnal:wis 沱chino. the colors ere the interference } \\
& \text { colors of the crossed ricol rxesnement. }
\end{aligned}
$$

The following procedure, or use of the apparatus, is ganerglly used only when the fullest inform tion concerning the stresies in the structure is desired. In many instences. modificetions of these surestions will wuffice for the problem st hand. For instance, if a model is to be examined for the parpose of findins the weak points in the desirn, oll that is necessary is to examine the model with circalerly polerized liant. The hirhly stresced areas are clearly reconimede ty the colors of the imare. The weak portions of the design will be immecigtely apparent.

To obtain complete information it is nacessary first to determine the directions of the Principal Stresses P Q. A model, cat from a sheet of celluloia or Eyralin $\underset{i}{ }{ }^{\prime}$ thick, to the exact reaucen scile dimersions of the structure to be eramined, is mounted in tre beam of lame wrized li乡ttes shown on Flate I. This mouns thet the querter wave plates are removed from the aporstas. The jolarizine axes of the polarizing and analyzing units are mutually perpendiculsr, preferably, one horizortsil and one vertical.

The inase of the model will fpparr on the sorean with black lines and srees. These lines find arees repeesent fortions of the mociel in which the condition of stress is such that no effect is made on the polarized lirht. The princical
stresses may be perallel end perpondicular to the polarizing axis or they may bo equal to each other or zero. Wita the axes of the polariaer and anelyaer in this fosition, the darkest areas are outlined and the central part of the dark bands are marked. The polarizer and analyser are then rotated to a new position erad a new set of lines drawn on the above chart. \dot{a} ch line is arkeu vith its derree of rotation, such us 0 站g., 5 der., 10 deg., etc. These lines are the so-culled isoclinics reviously mentioned. In interpretirf the inforagtion of the charts, the keneral case is sscumed in which one of the princjorl stresese js erpenuicuIsr to the axis of the polarizer. If at siny point on a line markeu \bar{j} der., \¬ner line is dravn inclined at 5 der. to the horizontal, this secord line will represent tie airection of one of the principel stresses for the corresporidng point on the modgl. These secund lines may be placed so ss to form cmooth curves. It is necessary to adnore strictly to the rales stcited in the discussion of the theory of the apparatus. The strese line diarran now obtained is a remoduction of the directions of only one principel strece. The strese discsuam of the other rincipal stresa is outained by drewiner another system of lines wich intersect the first system perperdicularly. This completə diasram is the stress system of the structure. Knowing tha stress directions, it is now necessary to

is set upas beforo with the polarizer and analyser in their orifrinal positions. The quarter wave plstes ere tnen set in vith their optic exes matually perpendiculer erd inclineáa at forty-five dore to the rorizontal. in estinate as to the inteasity of stress may be obtained by a study of tne ima;e. The color of the frines depends on the difference (F-q). To find the quantitative vilue of (P - \hat{i}, inount the standard in the calibration urit, adjust to the uosired rosition, apply tre losd of the imase of the portion of the model unaer obecrvation is dark, sind note the deflection of the scale. From this deflection conpute the tensile losa applied. This is the value of "T."

To compute the value of $(P+Q)$, mersure the thickness - of the portion $O=$ the nodel uncer corsideration, without load. Apply the desired load end mein resuare the sere yortion of tie model. Araly a load on the relibretion unit such that the standara changes in thicknese to corressond ancutly with the chsince in the model. The tensile logd apolieu is T'. From the equations (i) and ($厶_{1}$),

```
P=\frac{1}{2}(T'+T)
    Q = 意 (T'-T)
```

With the values of P , and \because s.nd the directions in which they ect the stresses of the structure aue to the krovin losd heve ben completely enciqued.

$$
\therefore \text { remanont record of the imeses may oe otetanod ou }
$$

 for the colored imares, and orainary photoraphic nesetives for the dark bana imgres.

Pef.

I Berne and oneriduer - Ir Etars tonois Whirersity cf Montints.

II Prof. Coker - Genersl ilectric Review.

III Prof. Coker - Photo-Alastic Apparatus Aáam Hilrer, Limited - Lordon.

General.
D. V. Baud - Westinshouse, Dectric i Mej. Co.

Bastman Kodak Co., Eochester, I. Y.
Baush \& Iomb Opticsl Co., Rochester, N. Y. Du 三ont Viscoloid Co., Wilmirseton, Del.

LAMP-HOUSE DETAILS.

Lamp-house casing

Rear - End piece

Front End piece


```
POLAAIZING UNIT DETAILS
```


$$
\begin{gathered}
\text { PHOTO-ELASTIC APPARATUS } \\
\text { THESIS }
\end{gathered}
$$

DESIGNED

```
                    CONDENSER MOUNT III
```


Inner Tube

Note:

$$
\begin{aligned}
& \text { All optical casings and } \\
& \text { castings are of brass or } \\
& \text { bronze. }
\end{aligned}
$$

> Analyzer Niount

$$
\begin{array}{r}
\text { PHOTO-ELASTIC APPARTUS } \\
\text { THESIS } \\
\text { DESIGNED PLATEII C.W.NICHOLAS } \\
\hline
\end{array}
$$

DETAILS OF SUPPORTS

Lamp-house Holder

$$
\begin{aligned}
\text { PHOTO-ELLASTIC APPARATUS } \\
\text { THESIS } \\
\text { DESIGNED PLATE NICHOLAS }
\end{aligned}
$$

```
                                    DETAILS OF SUPPORTS
```


${ }^{\frac{5}{8}}$ round
polished
Weld to end
of bench

Lamp-house Holder

Bench
;

RODM USE ONLY

Fob 640 ROOM USE ONLY

