0 ~; — r ‘1; ‘- 4‘». $1623th w I. l I l W l ‘ ' \ \ y W WI? H] M II I —l _‘ ‘4 18“» ill m—xoo 1 THE. DESEGN OF A TWO-STORY BU¥LDING Tincsls hr the Degree of B. S. MICHIGAN STATE COLLEGE Robert N‘ Rossc, 312 1944 Ill! .1. I’.E.11'.~ 1 f 3" I w , I in The Design of a Two-Story Building A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE b 1‘r Robert N. Rcsso, Jr. W Candidate for the Degree of Bachelor of Science September 1944 Acknowledgments I wish to thank all the members of the Civil Engineering Staff for the aid they have given me in the completion of this design problem. I also wish to thank R. M. Caldwell, Lansing Building Inspector, and O. J. Munson, Lansing Architect, for their assistance on this problem. ' I have used several text books to obtain standards, actual construction hints, and design methods. They are as follows: Structural Theory by male Sutherland and .. m. L. Bowman; Structural Design by Carlton T. Bishop; Steel Construction ( A. I. S. C. ); Wood Trusses, a National Lumber Ranufacturer's Association Publication; Construction.Estimate§ and Costs by H. R. Pulver; Reinforced Concrete Design by Hale Sutherland and Raymond C. Reese; and The ACI_BuildingCode. r '3' a? x *4 C_ Q! C: «E Contents Purpose of the Thesis Roof Design Floor Design Store-front Design Foundation Design Lintel and Bearing Plate Designs Specifications Computations Drawings Purpose of the Thesis: The purpose of this thesis is to design a two-story building, with a sixty foot frontage and fifty-five foot depth. The design is one that involves both an engineering and economic viewpoint and may be regarded as an actual problem that might face an individual with college training. 3 The building is b (D ing designed so that it may be used for many purposes in a town of approximately five to ten thousand population. The first floor of this building may be used for such purposes as: automobile sales and service, super food market, farm equipment sales and service, or frozen food lockers. It may also be grouped into two or three stores such as: bakery, electrical appliances sales and repairs, auto parts store, and real estate office. The second floor may be rented or leased as one unit to a lodge or similar organization; or it may be divided into business offices and apartments. With the above combinations in mind, some of the possible floor plans are: ( Scale 1" equals 40' ) Auto Sales and Service Seryjce Real Estate Office ( R. B. O. ) I I First Floor REC? (n .o r? (a V' A. .A V v £fl2K8fiy Ftrfir Au fa 35.0- Bulky-J“ FVOfen ° Lac/(er: 4 qurfmehf A A £19.”. '4 (Wflce Oflke (”Wee Lode hh/l e Electrical Appliances Auto Parts Bakery First Floor Frozen Food Lockers Real Estate Office ( R. E. Bakery First Floor Apartment Business Offices Second Floor Lodge Hall Second Floor 0.) The preceding sketches illustrate the type of building to be constructed and also aids in the possible architectural design of the building. Following the sketch of the proposed building, the thesis will continue with the discussion of the individual design steos taken. Proposed Building ( Scale 1" equals 12' ) Roof Design: In the roof design, two assumrtions were made that will have to be verified before actual construction of the build- ing. One assumption was that the second floor was to be rented as one unit not for living purposes. With this in mind, the window specifications of the lOCality concerned must be consulted if the second floor is going to be used for apartnents. This night necessitate the building of a skylight but it would not effect the truss design due to the fact that the material of the skylight will weigh arrroximately the same as the roofboards, rafters, and the surfacing of the original design. The second assumption was that the camber of the span would be negligible. This does not mean that it is negligible but, due to the time allotted to the senior nroblem,it will be inrossible to check the truss for camber. Another assumption was made before the actual comruta- tions were started, this being the assumed weight of the roof and truss. The estinated value was fifty pounds per square foot of roof area which was divided up as follows: L. L. EO#/sq.' Snow load D. L. 8#/sq.' Roofboards, rafters, surfacing D. L. 7#/sq.' steel D. L. 5#/sq. ' Plaster Three different truss systems were designed: the first consisted of two trusses placed at the third points of the building front and running rernendicular to the front; the second is composed of three trusses sixty feet long, but with varying heights of three, four, and five feet wnich are running parallel to the front of the building; the third consists of three identical trusses running parallel to the store fronts. Sketches of the designs are as follows: ( Scale 1" Equals 10! ) / ROOF [me -*1 T 4! ._L r( (bl/my line ”\From‘ wall Back wal/ e@6’=54-0' L...— II V 4 rl First Design ‘ [Roof line 51/ Trws 41 3"; Truss: Caz/my llne \ Fronf wall I Back “all” 4 M0 1‘ I I i I l | 5@ 6 ”30 I I Second Desiqn {pqu of roof [Leff edge of roof / _A/-7}M&S-”)_ 7ru334v \k‘CEVhey fine' ‘\Fron7‘ wal/ Back wa///’“ ¢s¢c> I < ’ +1 ’I —>4Qire- a1 A After the three truss systems were completely designed, it was decided that the third design was the one to be used in the construction of the structure. Each design was given due consideration and was analyzed as follows: Truss design number one was running perpen- dicular to the building front and, for the proper design of the structure, it is ne essary to have the russes rest on pilasters which would have to be built at the front aid back of the building. This would not permit a poSSible large door opening in the front of the building which mi ht he necessary if floor . ,. .1- .0 ,. .1. fl ,_._- . .' .‘ Spa e be rented ior an auto or iaim equipment sales- I'OOD’lo The second truss system was not used be- cause it involved the construction of three dif- ferent size trusses which would increase the truss cost. The third and final design was chosen be- cause it ran parallel to the building front which eliminates the pilasters from the front of the building. This truss system also has three iden- tical trusses which will give the cheapest material cost. The calculation sheet for this truss system will now be discussed. hany of the numerical answers will not be re- peated in this section of the thesis but complete details appear in the computation section under Roof Design. The length of the truss is sixty feet and it is divided into ten panels of six feet each. With the assumed load and the known panel lengths, a total load of 4050 pounds was ob- tained for each panel. With the panel load known, the truss was then analyzed for the stress values of its members. The majority of the stress values were obtained by the three main methods used in design work-~the summation of moments about a point equals zero, the summation of the horizontal forces equals zero, and the summation of the vertical forces equals zero. The other method used in the analysis was that of the free-body. After obtaining the stresses in the members, he struct- ural shapes were selected. Two angles were used for every member, with the anmles placed back to back. The anales vere selected for members in both tension and compression as specified in "Steel Construction" with three-quarter-inch rivets being assumed. Next the gusset plates were sketched out. Half-inch material was used for the plates and the details appear on the drawing showing the complete roof design. The roofboards and roof-rafters were then designed, the rafters beind fourteen feet long due to the fact that the trusses are spaced thirteen and one-half feet apart. No length specification for the roofboards was given because they are placed end to end- The assumed weight was checked next. A one foot section of the truss was taken directly through the center of the truss to determine the weiqht of the steel to aid in checking the assumed lord. As is shown in the computations, the actual load is slightly larder than the assumed load. This is not considered alarming, however, due to the high snow load con- sidered for localities around the central and southern part of the state. Floor Design: The second main design step in the designing of this building was that of computing the second floor slab, its supporting members, columns, its column footings, the first floor slab, and the basement. The first stens in the design of the second—floor were that of arranaing a possible floor-beam and girder plan then assuming a likely live and dead load for the floor. The next step was that of making a floor entry for the stairs that would prove serviceable for a number of occasions such as that of accomodsting large crowds and clearance for the moving of office furniture and supplies. (The stairs were resigned with the standard seven-and-one-half inch riser with a nine inch tread.) After that was comhleted, a four inch floor slab design was computed. The reinforcement steel running from the front to the back of the building was then computed. (This included both nositive and negative steel.) Since this steel was running in one direction, it was necessary to use temperature steel. Its calculations are also shown.in the computation section. With the second-floor Slab designed, the next step was that of determining the structural sizes of the floor beams and girders. The 12 WP was used throughout to give a uniform thickness to the floor design of the second floor and a uni- form first floor ceiling line. team connectors were also designed to fasten floor beams and girders. 10 The columns supporting the second floor were then des- igned. Their design coming almost directly from the A. I. S. C. tables. The design of the column footings followed, and their design was taken from the method described by Sutherland and Reese. It involves the use of formulas which they developed in their text; for future reference their text should be consulted. The first-floor slab was then designed by using a con- centrated load spread over a six inch square. The proportion of the floor over the basement was computed on a live and dead load basis, however. Reinforced steel was placed in just one direction except over the basement where temperature and negative steel were used. The girder system supporting the slab over the basement was designed similar to that sup- porting the second-floor slab. The basement slab was not designed due to the fact that it will act as a wearing surface mainly. The five inch slab will prove sufficient for the basement. Store-front Design: This design was submitted to enable a possible large door Opening in the front of the building, if needed. Foundation Design: The foundation was designed with the walls considered as being composed entirely of blocks. The second floor also gives an additional weight to the wall; this was consid- ered by assuming that half the floor beam span was reacting down the wall, with the total floor weight being used. The proportion of the building over the basement gives a three-story arrangement; therefore, a sixteen—inch Wide outer wall must be used for the basement. The rest of the building was considered as a two-story building and only a twelve-inch wall was used. This arrangement conforms with the building specifications of Lansing, Michigan. No steel was used in the foundation because of the light wall loads. The basement wall is composed of blocks, and the foun- dation is of concrete as shown in the computation sketch. The eight-inch block wall, used for the interior wall of the basement, requires no foundation because there is no wall load. However, the foundation design given for this wall should be used to give security. The five-inch basement-floor slab should be poured with the foundation around the basement. Lintel and Bearing Plate Design: The problem of designing the lintels was a simple one, and the designs are given in the computation section. The lintels were made of either a channel or angle welded to a plate one-quarter-inches thick and nine-inches wide. The bearing plate design method used throughout is that prescribed by the A. I. S. C.. The three-quarter- inch plate was used in all cases, because this was the thin- nest plate advisable to use from a practical standpoint. The plates are to be set in poured concrete with anchor bolts. The holes in the blocks supporting these plates should be filled with concrete from the foundation on up. The proportion of the structure resting on these plates will be tack-welded in place. Specifications: The building is one of two-stories and was described in the "Purpose of the Thesis". It was the purpose of the thesis to design the building; such matters as detailing and forming the bill of material were not undertaken, but may be easily obtained by careful analysis of the computations. The foundation is to be of poured concrete throughout. The front wall is to be made with a brick face and an eight- by-eight back-up block. The other three walls are to be made of eight-by-twelve-by—sixteen standard block. The outer basement wall is to be made sixteen-inches thick, with the inner basement wall eight-inches thick. All concrete is to have at least three thousand pounds per square inch compressive unit stress in the extreme fiber of concrete in flexure. Three-quarter-inch aggregate will be the maximum allowed in the mix. All the lumber used in the construction of this building should have at least a twelve thousand pound per square inch bending stress in the extreme fiber. Steel used should be of the twenty thousand pound per square inch category, except the reinforcement steel, which is to be deformed bars with at least an eighteen thousand pound per square inch value for tension. The roof is to be made of roofboards, heavy felt--not less than thirty pound felt--, two-ply felt is then to be lain and mopped with asphalt pitch. Iext, special mesh is to be laid with asphalt pitch and a cover of crushed slag or one-quarter to five-Gishth-inCh well screened gravel. The roof is to be flashed with sixteen ounce copper at the wall J bounda ies and the peak. (‘ The stairs are to be of concrete with permanent steel forms being used if possible. Plastering is to be done on metal lath, tack-welded to the steel. ( It is more than likely that small angles till have to be added to give the proper support, but this will be eft for the detailer to decide, however. ) Building tile is to be used in partitioning the walls for the separate divisions--four-inch tile will be suit- able, but this may vary. All windows should be of three-foot sash width and may be of wood or steel, but this should be decided upon by the future owner before the building is detailed. Four-foot doors are to be used in the building front, but three—foot doors may be used in the interior. Heatine plumbing, electrical wiring, basement drainage and any other item that has not been discussed will be left (D up to the discr tion of the owner or contractor, which ever the case may be. The building specifications for the locality where the building might be erected should be consulted before the com- plete building arrangements are made. Computations ROOF DES/0N : Three roof frusses FUND”)? parallel +0 fhe Gal-ore front? , A__ IPqu of ~=rooF [1.ch edge O‘f‘ “roof“ l 1 l l 4 4Fronf'm Truss: « \g'é‘s N Cellmalme 13.5 _¢ 13.6" fir“: ‘13:" Back wall 64.0 Cone/den)“: or fofo/ Lm: Dead /00d of 50"/a’ OF“ roof area, and a- rr-uss W11") 6 ’ pane/31;. We obfam a row! bad of .4050“ on Each Panel. I I3. * I \ Truss so (were) - 4050 cl _. a WA, 4/ A? .V Mt 4,!»4Wru h leA/Aflllillu; . w .2 . . at} _ a .. x H .4 . . .... a ~ \.I . \. . . _ . . 1 4 “ I p . _ . . \ .4 .x M h \ _ . H a h ,. r h h p . .. i . \\ . . .\.. \n u . . . v \ .. n .. t . w 7 _ I'l- ‘ w . . \I\ r . \ .‘s I .l‘. . \s s- . c .. I I. . . a i , - . , ~ m _ i s C C - 3‘. -. r \ x A a i ... a J . . sq \ . a a — . . .w . \ __ _ . - . u: __ - -_.__.__- . I I --._- -_. / ‘A 2.025 K 4. 05K 4.05A’ 405K 4.05k 3025k 9 F 1‘; 3 a b b c c 1d d 18 V W I... a /0 a 4 6 / a 5 7 8 1/, 20.25 If a Verf/ca/ The 50 ‘70 ’ on each panel. .5" rise In each panel git/cs an A of OpprOXIm a 7‘6 l, 4.8 ', (”—105 I I 6 Chang Me Me Due fo Me - e ~wr/l be vary small Sider‘cd flu-00960:“? m fry“; 0/80 Tap member-s harm fhe mm: IS Cons Idercd d Irec Won *0 fhere by F r- oa’ucwy a yer-flea l fan a .— Small as no Tm m 7%: roof Surface, .6’ 6 4 fhe rch/col 9.48“ load fire acfual Sires: va/ue of Will the b 9 can SIC/Gr ed 08 as five hart yon‘fb/ load 0)“ «4050"t -bu7" wz/l be Con- rhc stress emu/yea;~ of compononf’, because of‘ Me naf'L/I'a/ COS I’d/lie 397: 2.025/( 3 (/8.225)l6) 3. 5' (5b) :- 3/.2 K (37h) - 3/.2 K COMP. TflV . “-2-094w ‘ufl‘- _..—-- - --¢-_ 2.$25K 4.05K (475) g (/6.225Y/2)-4.05/6) ‘ ....___ (47C) 4 I" X , (5:7,) (4:21) = 48.7 K COMP. ' \ 20.25“ (5- h) = 45.7 K TEN. 2.025K 4.05% 405K J'fi— (6:3) ——->-(7'-7;) t - 1 20.25 K (53) = (/8’225Ygsé- 4.05/6 +/2) (67d) :3 6'6. 7 K ‘CO‘MP. (737;) = 56.7K TEN. o Z.I25'K4.05K 4105K 4054’ t RM— (8:?) e , . ..... (97) " 6.225 (24) -4.0J( 6 +/2 +/8) 5' 30-25 K (81—?) :- (.s‘l‘é) a 58.5 K COMP, (9'17; 3 = 58.5 K TEN. ‘ t "l 2.025/(405K 405K Alfik 4h ~-4——-(/0v f) ' - - W” T v \ (/07) = (/SZZSJGO) “ 4M6*/2+/8*24) 20.25K 5.5 (Mi—1E) = 553 K COM/3 --.--- o .I . I . f a h . . p . G I, h I ' I n p I l I . \ > a . z 0 ..DJ' hfi 1.0.!!!» 5. I. v. .I.. . Ill! . . . . . . . I _ . o I v I . . c n 4111.0! ' 0......- p \ u . . .11 r nil II .x. . i 7 a4 , . . . 4 I u 1 ' oil-0...; d or. ; I p , .. . . I .blv .. 1r. .. V \ . n . - w / . Since Me forces - of The G/OFed member-6 on Me Top of Me Truss are Ta K en as bar-- 130n+al v0 lues , we are able *0 Obmm The die 9 on a/ member values by The 'Free- body method , (Verhca/ members, 0/80.) ' (c371) .- 2025 K 60MB l E —+(/27,) zHu o (/7) = O 20.25 /( (5:3) ZH=0 0727+ (/72);7 3 am: .5— —>-C3/.2 ‘3 T:- ._ 31.2. 3 fl 2) cos 26$" Tan 9 = gmf (IQ) =- 35.0 K TEN. 9:265" (2‘13) ' 3610 (Sm 26.60 3-.- /5jg K COMP. (4T5) __ t 279:0 3" r :24 3w 3.3,. ‘ ,. ‘ 3‘5 b. 3/.2-<, - j ——>—48.7 6’ (374)), = /7.o" Tan '33 2—5:.583 (31—4 =_/_7'._5:._ __ 9310.29 ) cos 30,2. - 30.3 K TEN. 5’ (473’) - 20.3 (Sm 30.2 0) = /0.25/{ comp, '. (677) [H30 (5:2) 6'32 =56.7- . +4 )6 457 4" 48.7% +56.7 new (5276);): 8.0 ‘ T0179: 24.2...67 5-6 = ( ) Co: 6.337" .~: 3‘63-K TEN’ . Q=33.7° (63"?) = 9.6 (5/0 aa7°)=6135 K COM/=2 637's) __Z'/7/=0 (7273); 1' (7~8)/, = 55.5 — 6'6. 7 “(SA 45" 567+ ————-«>—b’8,:)' 6’ '3‘ -= . , £9, - {78)}; /8 lane 6 ’70 (7-8) = "8 3.- 225,. new, 9 was" cos 36.90 (879) = 325(d‘m 36.9 °) = £85K COME 44%? __€_ 3 .12: . , 4 4 55.3 x X 4‘4 4:6 4 6 i 27:0 4.6 +4.4 —4.a5 .-.- (”r—.9) (:21) 001:?) = J. /.5' K TEN. ":.) i 3:?” 62?; "L. 6 I -—- a 5.. é-lQV =2,575' r0" 9 Z - .833 » 9*338° (ST/'22) =- 2'575' = 4.03 K COM/3, ' ‘ 6m 335" _ u . ~ . . I ‘\ . c A . - .-. _ Q ,. \ . . . 3 . < ., . , . \ V _ . ‘ . u ‘ . ‘ r . . . _, .a - v e . \ n . \ ~ _, fl .. ~' n .4 ‘ , _ .t t - w y . | . .\n 3 a \ -T ‘ , _ s . b \ - . ' . a . - ‘ u ,‘ V .. - o _ -‘- I J , I n a. I , 3 - ‘ ~ 0 a, I ,A v ‘ s " _ i ‘ . J ' . v ' .1 . ' e c I . . . - .'7‘\> . __ 7 x . u -, - c \ . 1 ", -u " ' ; -. | r I - . '. "’ - *3: . . . t. . e v V \ ,\ ‘ I, '7 - I l \ I ..3 u Results of The Sfress Gina/yew 3 O GLEK 7' 46.7KT 56.7K T 58.51? 7' Meier/cl for- reueeec 8 “Trudi/ml @5011”) Using ”\S‘foel comma/an" (4.1. ac.) To.- The Sfrucfura'l J‘hape: , 8133:, 'O'nrl Spec/{ICOWOHJ- 8- - 20 000 ”/n for +ensmn efeel S= I7 000 .- .485 2/42 For COMpPCSSIOn Wed When fl/o < [20 Assumma --rhe use of 3/4 ” rivers. For members In bampre'ssmn 3 (24? beck Toback) I 0 3 . ’ 60¢?) a ‘9 [/r; < 2 J 6' 0 _ 1.5—0 -/7mm .600 177-); 2 - 3%)!3 xi 4: 27 “:7" 14' 6'0" (7000 —.485(,%2;)j = £3 F7: 88, 700 “ton? *Tr). 2- 372XJX‘391: 4-3409” lid-60"“ (”200- 485 (1.2)).32 ’3’ ‘ , 3. p3 66,500"c‘mfl *Try 2- e’éan’a Z- a-AN” A-azz" ' .3, 72’ P .2 Pa4aooo'c , 07000 435677)): 7? . 0MP *Try 2- aexax%‘& v.78” A-a/z’f (77000 -.495(%)':) a ~5- P:23200 ’Com? .,. .,\ . I a I ‘. .. ’ , i , , . ,. 'L . v .. —~.\ J - . I, n r , . I ’ ' / l r ,9 u‘ ". . . ' I -_ . ' .. x I. ’ " I Q.‘ I o ~ ' ' ‘ ,I . , - I ~ ‘ / . , '3' r‘ - - ' I r ' ‘ . ’ 1 ‘ . r‘ ‘ l . - . M-..- 3i.--— _- 3 . F o - --—.4- - 3 - - 'c- — M.‘—_- .. gun... .a «u- -. .-—e—.--._.‘—.—_~.. -_ ’ .i . .. .. .Q. 5 . . .. . K . 5 l l .' \ ~ . . , ' " 5 ' ~. . 3 r J \ . V . a . :_ I _ A .o \ ‘ ‘. _ . ‘ ‘. . l. _ ’ . -‘ l \ - ' v a ' .\. C II \ \ e . ‘, - '. I . . . \ ’ I a.’ . ‘ ' \ ' ‘. - - -’ w ‘ . \ ‘ . - V a I . - . ‘ \ i b -- ‘ J ‘ r ‘ ‘ l O - ' x V‘ - . . 4 n‘. V ~ . \ u \ D ‘l ‘ ‘ ,0 i . . . ~ f ' . . ‘l . . . c. - - “ . y’ ‘ , . 0- l ’ . . . . I . -. n . _ - ._ -d \ ' . K ' u ' ' " ‘ II - n . o ‘ . -- \ l’ A ' , - \ .‘ .’ -v \ . ... ’ “ . u (/ . . L Q r e . ’ \ . . v , . . _ ¢ ‘ , a ‘ , . ’- . fl . I v I v . . ‘ . . , . u .- \ c ‘ ’ f ' g y‘ » ‘ u 1 ‘ ‘ a Q. h \ w r _ .‘ ' . . d . . ~. . I ' ‘ . t \ 5 _ ~ . ' . -( ' ‘ ' 1 \o ‘ ‘l ‘ I. ." Y “ . k . ‘ . ‘ 0 . a 1 , - \ ‘-. ‘ E " v . \ . I a \ , \ . V ’- ' . .' - ' . .’ \ r i \ ~- - - A“ ‘5 ‘ v u ' v > “ ‘ . . ‘ "v . -- -- r ’ ' \ . ., ~ . ' ‘ ‘ . .. ‘ .— . .0! C r A \ ‘~ .. 1 - --. » ‘ n I " .- p’ a .. \ “ y ‘ _- fl. . . n‘ \ , ‘ - .a - ‘ . - a _ ' ‘ V ! ‘ 0 v x ‘ l . ‘ . c ‘ - fa ( R \' | ' . ‘ —- a ‘ " ‘ ‘ ¥ . a. t :3 . J .J 3 \ l I . . w I' ‘ . , . . . ' \ ."\ ’ . o o 0 r \ . . v \ p \ . ‘ - - - -, u , . \ . l . t .‘v - a . V , - , 5 '\ I L I vrry a - 21/2 x2 x 3/3: A: A=.77 Asa/av” (/7000 -.485(%):) . f P fiasco “com All 4: are used back To back WI #1 The Two lanyesf legs Fae/n9 each afber , bof'h For Men: ber- In Term/on and compressmn . Far member: In Term/on; 3:; 743 Area Of Me A - 7/79 areQ of The rlvcf holes. II Areq of 249 3’2X3 X 3’8 =- 4.60” J’éx e x 74 ’= 3/2“ 2V2xax~78 =e./o 2K2x2 x74 = 2/2 Reducf/on of area For- 7/8 ” '7ch hole. fl Mqierlql ‘H'ucKness of K4” =.2/9" 53/5” -=.323”” 3-» £3 For- P- 58,500 ‘h 2,3,] =A= 2925 Since E.326'_+ 52/312) >312 0f ” Use 24: 3% ye x3/a. A-4.é0”' The“ Value .2l9"." I: Mu/f/p/Iecl by 2 because .2 A: are used. *For P:- 48,7001“. 48700 _._, ._.._ p I _ '_ (row A 2.43: Since 2.436" (2/3)?) < 3J2 ” u.“ -2 A JVZXGXV4 .4: 3.12" .. . v x . . A: . . . . \ w . ; . . i . . ‘ H s. x I \\ 4‘ \ .\ . H . m . y . . r . x “\ c I n o \ u \g .. I I ‘ ‘. 1 ‘J a, 4‘, . a h , . . L . . I . \ . ‘ . t . J, . i ¥For P” 35,000 * 36'000 _ ,4: . aoooo - = [75 Smce /.75+ .438 >2./2 Use 2& 2% Y2X3/a #For P- 20,300 ‘* 20300 ,, - a" r—om 4 W5 Smce /.0/5+ .438 < 2J2 Use 24' Z42 xix!“ BIN of mafer-Ia/ {‘01- 00c fruss‘ 3 Ld’kr. 2. t '3: cGoFA L: . f / 2 \3 _ mh' 3; ”rs-H97”, \. W ' ' >5; *5 ~ L ”0;? . ,4 ,‘ ‘ whit? R¢i 1t?! , . 5:“ I‘d“ A a'yryatmkib’ :«K 2:: ""242sz xf/4 6’6” 8 2 a’éxax’a L 2 242xam4: 4’5” C IF3:‘*‘6‘2Y3X3$~ mm L2 * aVaan/4 6'3" .0 2 252m): V4 ~ I 292mm: 5’0” 5 21m 292X2 x34“: ' Lina-m" *8x1g3w #15:: as RQXEX’A; 1.. H5 #54 49,352 {a 4X 5‘? H 7% ..... awe)!” I 2 *éaaxaxgj/4,. _._-___.. ___ . , .1. f .0!» I! ‘i . . 4 ~ o J ‘1‘ I. .‘ U! n 4 s Rive 7‘3 and CuS‘Sef P/Qf'es for 15‘): Roof Trucsee .‘ Usm? 3/4 I, rivets -" Shear ’5000 17” ' Bear/n9 3.3. 32000 ‘7' " 0.5140000 “/0 ” [/6109 I/a ’1 9U35¢T I‘D/ares -—-- SII'ICG 7‘58 Sinai/987‘ A used are %4” 7‘5ch , five "/2 ” thc/(ness W/// defermme H76 bear/n value, which IS /3-/ Kip man/nun; /aod. [/41 .5.C.) .__ ————-—-—-',' 4’3AZ/f 3/.2-2 l \ /3./ , 35.0 _ _ \350,‘ 152/ - 3 Rivers T 20.25 —' 3 Flt/87‘s = E? RIV f3 13/ C 20.25 .M/n/mum I'M/C7" Spacing C4.I.S.C.) Is 3 river diamefers t .m i (75):?) =2.25' ' Use 235 l E *0 ft. For end sS/Oac/nj use 2.0 I] For q l/a " gusse'f' [awe and Q fem/on Ioaa’ of 65.0 K rhe cross-secfzon area of Me gamer. plate of flye NI I'll/Cf Should be- p 32-— 35000__ , a” ,4 20000-34 1.75 SKefc/ues are drawn 7‘b Me scale .l’élo” x M- 94 v- \ \ .‘. u x ‘ .- .0 c ‘ V ’ . ¢ \ . A . . ‘2" ' v x . ‘ . .v.\ ‘\ . ‘ .: ' _ c. ‘ I? 1‘ ‘ ' A ‘ n t , 2 .J .‘ ‘I . \ . a 1 ' - >1 m I ‘ . ‘ I. ‘ \ \ -- “7" ‘ , ‘x 4 ‘-\~/ q,_.- -' . »,4.‘ \ \ - u- . _ .‘ ~ , ~ . u ' x 1 ‘ w‘ \ ‘ ‘ . L ‘ V. \ \ fl _ , r '\ . c . ‘ ‘ ' J Y r’» A. — a w > H ‘ , V 4 ' V \. 5' I .. .. \u, ‘ - -— I < --._ \ z .. s . ‘ A , - ‘ . - O. ¢. ‘ \ . -. ‘ 3‘.‘ Q ‘. \ u . ‘ ‘ A -'2 "' !\ . m . ... I ~ 4 , ‘ . ,\ ~ \ - ‘ I ~ . ‘ . 0’ ~ . J p\ I“. -c y 1 . . ‘ ~ 4 fl v \ I , N u .. . \ ‘ . ' A A ‘ o I . A 5 . ‘ , v . . . . - -. \ ' . c § . .5 M . ‘ ‘ ‘ ‘ ' - _ 1 _ I .. ‘ | \ V.» k) ‘ \l L - ’1 w‘ . “._\) . "‘.1 x ‘ ‘0’ -. 2 .‘ ‘ ‘- 1 . _ ‘_ ~ , i .- r ;I . . I ‘ b . 350K /3/ = 2 kirefxs ”Se 3 Fla/3&9 20.3 5’2 fill/:71? 3’02 =3 R/yefs I3. / I3./ \ ‘12.- 3" $)\(3\ "—‘C- -_ ---o— o * c—S \\%’ “*- d!- L x :1 g Q %fe*a—p~425" ‘ ' “1....” .122. “.21 I 56.7K 27 553k . ‘ . 653K 4303K 403K JaJK-fy ' 7‘ 3V1?” " [Y’SES'K V. 26“ 7 DeMI/xs‘ 01‘ ”wee Sketches Iah RIB-Inf. Rea-F r'a {fer-s and roof boards 8’ Rafter: 2 s: ?- 5 = g 5 a 23..- Asfiwme J‘s I860 7" " fir- WOOJ . L1 '8’; i 4/ 30 ‘7 ’ LL. Show N *‘ ” E 38 /” ..8.3/” 0.1.. ram-rs 38 roof boards . roofing a : M=%ZZS‘QSI;gX/3'5)= I300’£ a ' A5600 M3 /300 /a 9.1660 *5 = ———_ /. f ) . 0 5 1200 a 30 we 2X8 X/4 ’ Wf: 3.3.9 “/1 Roof board}; 3 38.0 “3.39 ‘6‘46/ */0 ’ by!“ __ (34.6!)75fi 2 6.5 I,“ S= 5.;02) Ma Iz "' 12 Izoo . 3 d I Sa.065"? It: .3 ‘5 c d3 2 2 .055 =. .065 =20! d '.0325 d ’ a ‘ .4 E , - d 0/8 Use Ufa mafer'la/ ’w .. a . _ ' (- .s‘ O r-O-g. Weighr 0+“ roof bear-As bqsgd on 40 */cu. Ff. ‘Far wood, (A.L\$C.) 4O 2 73"?“- X=3,33.*’/a’ Check on assumed wengi‘é‘ : Cur Q Serf/on l’ Md: down #29 Cen‘fer of fin» frucs Awning G P «feel to weigh lo “/36 ca} !’ Rave 7‘: 3 4:. 6.7/00 i a-3%xsx¢s Mid “/1 éflaajw -- 31.5 1* a-a’éxzxg, 72 , sfiuwAA =L§ao * //2'/ g i’Zo’ * mm “‘13.: = as /n’ ' Show 30.0 */9 ’ Steel 6.8 Roof 8.0 9454.9!" 600 a “717’ The check-.18 A8 “/0’ 11:91. 544* '18 MT Com?! a’ered q/ q rrmn? 'due fo “the lily}: “'1 ‘l": ‘w-d .§\ a. ' J . ‘ . , . . . O o A .~ _ . .. _ . .‘lkl. . . v4 ~ A ' .cu. ' x \ . ‘ _ . \1 “ . .r Q O‘ s I. ‘ I. l x z A! \6 I. U u .I x a x \ (x. 3'1 . \ .J . . u - h D # _ I, f 4 In \ A \ \ n. J n ‘1 . n . . .V .v ‘ c ‘ ‘ . .- ‘ \ D I. \ ‘ v 6 \~ 2 I . T M . , ‘ .‘ . . . r _ v ‘. v: ~ \ o I . rv . r ~_ .. . I. a w n ' A . fl 0 . r V. . ‘ \ .q l‘ . .. . \ . y ‘ a . \ . u . . . a . I \ A \D . . . .. . IV \ I Q: , \ . . k. k .‘ ) . s ,. u . q \. ‘ \ .v ‘W . .\ | ¢ Q r v . L. . y 1 6. FLOOR DESIGNS 8 Second 70/00!" 0 Lire Load xoo it/l7" Dead Load 6'0 ‘7 0‘ ’ 4 ” rem Forced Slab 3 Wall Imc ’ f - ‘ GH‘dQI‘Q 0 F/oor- beam Open/n9 +—/6 TM 4; "N \ Budd/[73 Fronv" “ / F/oor' beam and gnu/er“ plan. +‘ . wllllllulllll... Sfmr's 2 Fir-37 ro second Flam~ 7 72 ” riser / /fi- ” 9 H fread 7% / V f ‘1 /T-z§' F— l I / 5.3 x / y / IE' 2.3 = A13 _ I 4/ 3 X X- /6.0 / l I I / A , ' /0 __ X I ' l~+——/X5———>-‘ 72 -—/3—3 X:d/9;’ C/eorance 7. Basemcn?‘ To First Floor: // ‘ 3:, %= 5% X= //.4’ / l~(—//.4’—+4 , X 5/626 desxgn ~ Second P/oor‘ 3 Use : n=' /2 FE = 3000 717' {C =(3o7/c’ - /0$0 */ I’ x +3. #8000 */w , i fl/n r/O’OO .V" " Jd d - o’ /500 4- /050 / l l X ‘- W X’ ‘4’” ’5 * . .4/20’ a’~ a =jd=.aséd (2'3 3\ fl \ O C . ‘ ' W -‘ * . u . r \ ,4 V- . v \ ' s \ A-- .‘ I '9 .‘l. ‘\ ‘ \ ‘ . 1 . ‘ ‘{ . .. .. I \, 7. f ’ '~ . - — \ _ V‘ ‘ g \ 4. u ‘v t» f r ‘ ’ ‘ .. w. . ‘ ‘ \ \ 's \ \ J \ r . u . i I - K V b '. . .- 9 4 ' ‘- I . - fi ‘ f '. ~ . x . . . < 1 '-k . " ’ .- \ , ‘J ( ~ - VI -- . . - .. . . Y i . a: l _ , ' l \\ , 1 _ , "\ 5 \ . , ~ : - \ x I k ‘ \ ‘.\ .v ‘ , '3 5 ‘ c ‘ H w ‘ \a - r \ I" .r - V I ‘ a ,. -. '1 .k. ‘ ‘ 1‘ ,1 V q, I \ \ ' \. K \A‘ .y, r\ ‘ 3 ‘V _ -l _ § '5. - .. ‘ \ . 7‘ x " 2 “" I l/ M= 6—21 = 1‘37?) = @002) = 2/50 # c = (wear/2W2”) = 2590 d (CK/d} =M assoc/(seam!) =/2/50 223; Use 425' ” Tofa/ necessary flaw/(hex 535,9- £017 615'” Ca r - 2590c} = 25-90(25) :6480 ** Area of” Gfec/ a :43 =__.6480 = .360” /8000 Area 01‘ . V2 i; = “20‘7” Therefore 1188' 2 "' «Ed/ff. 7:0!- 6 sfecl ’43» ¢ @ 5 ” Check for bond .' [/2/ Circumferehée =167/ A70 (4,5) _ 99 ,7” , ’q :z° dd = £7A57/X86372,37 A <(05'YFE) (0513000) = x50 ‘7, ,, Them-Forc' bond [6‘ $af/Jfac7‘ory. Check foi- afiear .’ = __L = /50(4’5) __ ,t 0 1/ 7r bj'd . fl2x863X35) ”2g / 7/- < .oaf’c I 603%??00) = 90 7! ” TBercforc Shear IS saf/sfacfory. S/nce 7‘6: Gfee/ IS rum-1m? #7 one dlrec7‘xorl hamper-afar: €ree/ .. WI” 6e used 3’ 45= .002 ’4‘ ”Sin? 3/8!” bar-J: .// =.ooa HIS/946m?) 9’8“ 93 /3,5 ” (.‘ . .. a - . .ri / l .v m ‘ .v _ n. .., ‘\ .1 ‘ \ \Q I r Q q 41 fl 2 .\ V . a. . n . .x r . — _, .\ _ m . . _ f .. _ s \ a. n’ ‘ . . \ ,A . r \\ v ; z . .4 a H 4. . .. u , . .. . 3‘ \ ‘ .w a m 9 . _ . h u. . . a - .. a I z _ m . . A \ a .. 1 .a \ ' i c K .x. \ ‘.\ v . 'For- negor/re stee/ : fg/n + * ' Lia/n9 rhe Game m/ues as 'd / T for + sfeel. j I C= 2590o’ j’d '.863f/ x , ‘ /50(9) (/2) 600 ’1‘:- a -— s- f 0 /4 M /0 /0 c /4 600 = (25904)“,8630’) (17:535‘35" d-Z.56 ’1 259003.56) _ ‘ a a As ‘ xaooo ' ‘37 Use “2% @ 6” For negaf/VC sfce/ Leng‘Hq O‘F neyq‘hve Sfee/ I From' H.[S.C.—/enyffi of neya‘hvc Momen‘f' I: AFR/28 ‘Q . /cnjf’h == /e.n9fh I767. Mom, 7‘ (301/600— die.) 13(9102) + 300%) -4e,3 H5. 6/.(5’ " Use 572’ /en77‘/7, rm W/// a/xow (5,. #19 /o’ spun at fhe sfa/r's. ChecK on Me IO, span; ‘ I M = fig}- 5/020”) -.-. 250 (/2) = A5000 "‘ II (2590 d)(, 863d) =/5ooo d ‘= 6,70 d =25? . 2590 (2.59) _ . ~ Therefore Me /0’ Span W/// "of cause a chem e m flue s/ab dew n . * Use 01'3” and 7"4” For cleft/GI design of Me s/ab. Floor beams and 91rders 3 l-<—3’—>-1 ‘ F/oor' beam 3 W 16547:" L.L, x00%’ I‘K F/oor- beam (Concref'e)0. L. 50 30 K (Io/asfer') 0.1.. 4; (beam Sfee/JDL. IO _— + L20 mm ’65% I i .-= #‘L 157v 9065190) 29700 -3o/v 77:2 def/ecf/on of Floor beams Carry/n9 p/asfer' ceI/m 5‘ Shou/a’ be Inn/fed 7‘0 nof More thn ’/360 OF The Span AFN-91% . ' 0/360 3(ao)(/2) =, 57 ’ From A.I.6‘.C‘. : /2 W" 36 I def/ecf/on v.69" ZO’Lony ,5 0 load=G//\’ 30K _ X .— u ’ 31K "6911 X—zé7 Therefore /Z_l4£15’6 may be used. Gu-der-s 2 I Floor beams N (If From 4,123.0 l/ J U G/ro’er ,2 W: 65 54 ’ Lon? 30K To check rbe d‘fee/ wavy/27* assumed! F/oor beams (35120):- 720 H“ Giro/er {65)9) = 685’ 1305- ** Surface area 1 9 X510 =/80"’ %= 725 *7” ’ Which cheeks. Beam Connectors To be used Mrouglyouf-g 141.30. Me 'Hm d 8 3/4 " R/vei‘s Use 24? 4x4x*?43 Double Shear 7" 5%6 3.36% H + fig,- 2 Daub/e Shear +445 NJOK 4 + T * Shear = -/5.0K .9. 5/ 7/1.: :3' Enclosed bear/n7 on ‘9‘ rho web 60.01' I IZMF'JG ' += .305’ /2W-"65 += .390” 0.3; Leas (4 fire“) - (4)7430) = 4.572 K Web L03: ,5- __ /6 /P f .... use 2 Co/umrnss (‘o/umn underneorh I ‘4 T‘F/oor beam . . ,fif GN‘O’er‘ From 41:5.C. ; :4 fl 8 VFJ/ d, 60 y K /£"y£ I (on? ’ Co/umn Base P/ares : A. I S, C. Moffioa’ WEE" Bear/09 0n Concrere @3757? ‘1' 637513000) --- ”25' ‘7” ” 4 p= #25 “/v ” F L.3 604’ .8 n u b l" ' bye/=- a L T .asd L f A= -,-,-= 632:0 w: Assume Bye =3” A-a/U” P a keg/coo __: 740 7”,, .80b= CéoYe) =64 ” n .— 3:254 = t3” ‘fz=./5pn ’ = .Lfi‘C75XA3)‘= .l9/ 0" f = ,438 ” .950:- 695y8)=75 ” m... 3-7.6 ~ 7,, C? _ . fzz'lj'pml .7“ IS governed W ./5p)72. SINCE n >07 Use a I" ,c/afe . 9X3 become a p/afe Under- !” IS ”07‘ used ”7 ach/a/ pracf/ce for a base 'p/Qfe. ' Colt/Inn foo‘fmj 3 Sufher/and f! Reese Mefhod Fé =3000 ’70 " Use 74 = ,02 {6 fig -..-. IOJO "’7 U " 801/ pressure =2000 *‘/u ’ 600K Load j = 7/5 - - .5 {0.4. Calm-m) it I 1%, @000 /a 6.0 (Foo‘rm at.) 6 6.5K 75ml Load . u o- . , A ~ \ 0-. .-. . "W W " - -- " M;- , \ / 20000 33.250 \ / ' _____ / — TbereFor-c use 4 T\ /| 6X6 {def/r13. I \ I {F . I lam" H W"02é0°°)’507”” l \ . I /~" \l j'Wa‘ K: “/L /“—* ~- Q= 7.5” L=60’ / ' \ . ' ~-’* = z 00 A» ~ $45!: 5047/; W ‘ . . ‘ 0:..055 ' __L I \ ‘ // [00’ (Mere/1 ouf of l/ I '25, Scale.) *4/304 L- 375’ .‘ ——T A -_-_ _V3C*4Cf'+5£-§(/44c7 d a 6(/a(066)+46054)‘ 445‘3— ’25271‘46066y 2+4(06é) ~ ‘ ’ d-a a.esKZ'—‘ 77‘4” =2¢5f£73j=7 Acrao/ Ive/767‘ Io'o (6161/29=4 5750* Ofber load: 50500 36 67250 if nef’ 301/ proof/870 ‘t/F ’ _l‘ d: fixed as / ’ because .74’ would be ro low a value, _ .Dxi‘ u i "u‘ I": if I‘ 'IYI‘ I U'. ‘l .‘1‘ O—v-A Q..--..- .— q-. A. -L...-~ ‘3 x. . 4 \. 5 .. Q . ~ . ‘ p ., V .. .. . . x _ C I 1\ -‘ o \ ‘ .. v u s . . . . . .0 . J \ . v .7 . d .s . . , ‘ n ‘I ‘ e . ‘ . u . - . , . ,C . . . . Check on Shear- 8 (63-2175“) = 05.0- 7.55 = 28.45 a ’ 28.45(/870) = 63200 ‘* = 1/ 7": if 2 §3200_ C de 463.016 876172) = 38.5 fi/dll . Shear- Is a// r/yhf s/nce 38.5%”<60.0%” Morgen? af fhe edye of“ cap: a - [:1 (75)(2.625]/870)‘3L§§-§l .-. 4330/44 2». Z c. (2. 6251/0 70 )[ Gs“ )fia 5252/ = 2260 o 27430/2 M =-- 27430/x2 =329,000 ”4 Effecf/Ve 144de 5’ .75 +2.00 H.625 = 4.370“ ’ 329 000 R (4 37510242) 4‘3 5‘ From Me fab/es m Sufber/ond 4' Reese’s 'rexr fo» rc’ «3000 “/0" R < 236 -— Hm checks. 329000 Areq of \s‘fe / = ’ 14 "-' “—1-" 5 7510' A46 2 4.37.7 A_ , Use 8-7296 @ 3” A of ’/2 = .254” V n == .0, H _ .75< 6, V=L7—-f,_*——€(/s7o)263 ' 0 a A! =- .06::’ 7% = .5762 [3000 =/6600¢ 4 a /86 “'/‘7 " 0 = pe/r'lmefer- “2'625 ’ V - ‘ . _ \ _ a. . ' ’ I d 1 . -' I v - A. " - r 7 ‘ I a h I' - I ' ' I #7 u . . I ‘ _. 4 - l ' a \ u .’ w ’v , r I, L ‘ ‘ - ‘ I _ I I v ' ‘ .. s A —c . 7 - Y r h r V ' \a " -2 r y I > . 2 ‘ ‘ D | ' r ‘ g- \ J I a C ‘ . t ‘A I- _ ‘ . . . r I V w ‘ 7 - \WV ‘ fl ‘ V I , . I ‘7 . I \ ’ ‘ I , ‘ - 1 “ ‘ ‘ ‘- -‘ \ , - C - ‘ b l. ‘ I _ " — V‘- - V ,.. - ~ ‘ A ’ .. . ‘ 3 - ’ . v I - 9 O ' 1 I ,> - * v I a v. v v ' > “ ' L . -. r .‘ Y - 0 ~ - v " I. . r ‘ - > y - .4 I ‘ I ' I F " ' ‘ t a) 7 ’ ' . . ‘I I , I . - ‘ . k. \. I ‘ s.‘ - ‘ v k— \r I ' ‘I ’ u - \ K. . » I ‘ . ' ‘7 l - . > . I p ._ r 2‘ : O‘ . \ ., .5 ' r i I". . I . r- 4 . l .- _ _- J ' '~-.~" 1 0' v - V. ' \" I \ ‘ ‘ t I - r . ‘J h ‘| ‘ \ . .. . . . ‘ i - I ‘ . . l‘ ‘ > \. ' n ‘ 7 I a' ‘ - ' u“ .\ . I. -—-" o 1' -1 .5 ‘ b. . .~. - $ .' . r I) l I‘. . . . r " --’ I‘ \ I ." -—.' ‘ ‘ . I‘ ' -- . o.- 7 D‘ \ ‘ ‘ . ‘o .5 -- l6600 n=— =42 r (aoY/86Y7/8Y/2) ; 5 Ods Smce 8 rock? were. used +he deszgn IS a// righ‘f' For bond. ‘ The Sfee/ AS 7‘0 be Ia/o’ In bar‘h dIr'CCT/OUS and A? re be 67¢" why. Firsf- F/oor- concrcre S/Qb 3 I I Basemenf' L f ISXJ’O' 4—//’-—)- I I Firs?" f/oor- and baé‘emem“ plan .- -._._ .__- ——.—.M _ fl..- - _.- —. -— _-- .fi. ,l'l’lf ’II] -_-_. o _ u ‘ _ iii! 0 .n so .11: I . ‘ . . . . . . _ . v V c _ _ n g I A .\ s (I u \ I‘V"d *_ ‘- fl- Assume a concenrrofed /00d 0? 2500‘“; on a sguare 6‘" on a Side. P: = 3000 “/a” n- /2 , fc , /050 7a" 7;: 032‘; {8 .~.— /8000 ‘7‘," :1 ~.- .863 Assume : d- 6"” 7‘02‘4/ Mick/186‘: - ”6-6 ” Per/mefer- around Me Sgt/ore =36” v- _ __2f_=__ P=25001t C " A ,4 =(per/mc1'erXf/7/ckflfss) 2500 _. a ,, £73616) —-//,6 /, This 'Va/ue Mei/cafe: a 30?: ran; 6 ‘For- shear- smce five maxzmum Ié’s #7,”. Check For Momen'f: Assume a 6‘” 6/06 secf/on and bear-mg pressure of EOOOfi/fi/ for SON. L T“ 2500 5 *0 V .-‘ 0!. 9 (/5. V‘io i 39 . ”mm” 1000 ”V H. 250C):B /oad = 5000‘”/’ «For- 6” II he ’1 5000 ”7’ / “'31” 52500 ‘2 , IOOO _ ’5 I??§“X? ~ as" *1 i /000*‘- ; + i A2 / ) Shem. 0 52/ “0 -- 625% ,/000"* ” 525,... 625/42) = 7500 if h I M: Cj'a’ M B”. 0 (3:12?" 7500 1* c: -——-— =/740 (863107 _ /740 __ p ’/ AS‘ @000 ‘ ‘037 A of 3/8 9‘ = .//D ” Z/qe 3/3 d @ 6 I, The above cafes/9n W/// be poured over proper/y graded 81/6 801/. For five area over" five basement use we follow")? dafa and COMPUfaf/OHS ° LL. K50 */0 ’ Use C33530/d) from D. I... . 75' */ a ' Hue second Floor- Tofa/ 225‘ "'7: ’ desxgn.‘ _» _--q .0—’ «- \ I o I . -v‘ ‘ \ ‘J Max 225(/0)z = 22500 I: /2 12’ Cj'd = (32500 (253021)”,86300 = 22500 M . (2257 =22500 ’9: , 22500 = = /01/ 223::~ d = 51/8 ” Use 3.5 ” 7‘=4.5"’ £590 015-) __ a ’I A" " leooo “503 use Vaf‘bqrs A: .254” ’/2/@ 6" W? beam; +0 be Used In Me baSemenf.‘ I V’m‘fi fi LL. =/50 2/,“ , _ 1 W206 /a 47...; A50 00: 54, 1‘70 , ( Sik 206 “/v’ E i ' . (/0 /5j/306) =30900 *- L— /5"__.:t )[Use 3/ h’ A5151? IJZS'K From A. I. S. C. IO w=33 // [/Mjfl /o 146’ ‘73 'T‘p/ IOMJa‘l L _ __ _ J colum n : I C / M J | 4 JJ 0” h . /0 // 205 =227oo" ”350* ( I X )- - (— 0 r” 2:700 =Reqc‘hon on column Jxa W-‘J/ F? = #350 if- a. ’/ ' . 5 0”? Co/umn 8W3/ Use Same 5/3: 0009 p/af'fs as before. -A \ \ I p .1 ‘ '- , \ o L w“ 46’ No nega‘hve sfeel WIN be 4/53 on five Fir-ST F/Oor' sir/46 -- excepf Over fhe basebaent Maya f/Ve “vol 5; C: 2530 d {d = .863d W‘ 2 z , M ’ ‘75- = 0/6000) =-- (3060 (/2) =24720 9“ de=M 24720 =dZ= //,/ 0/3334” (2590% 863) Use d: 35,, _ {2590)‘3,5) __ d 1/ A5 " /8000 ' 50/ Use 72/ @6” A-,25"" Lengflq 0F negqfwe sfee/ 3 A=§4Z 5 (III) + 30(60!’ did.) = P of 'Sfec/ é—fi-(IOXIz) 4' 30(@r'/_:§) =- 52” + x7 ”= 69 ” I: J? 75 ’ TemPeI-afure steel 8 A3 a ,002 Ac Use 3/8 5’ bars 4= .//v” ./I = ,002 (4,5)(Spacln9) s: /2* " Use 3/8 9" @ /2 ” Bar/1 fh: femperqfqrc and neyaf/Ve .sfee/ were demgned "”79 'Same 05" Ma? used In rhe second, floor- slab.‘ F0orm9 for basemewf Column 2'“ Assume a polss/ble /00d of 80K #0 mc/aa’e even/Hung excep+ rhe fear/n9 0.1... . r u A . 2-. v o ‘ o u _ . . <1 , ,~ 2 .5 - , v . . _ ' b . \ _ O- I . A g A , D -- - -. ‘ r .- - O ,3 . . , ‘4 f . — _ ,r. .. 9 Y " i ‘ I . ‘ . V r " .- “. 1 - ’ ' ”r {é 3 3000 «1/, [I 801/ =E’OOO ~7::1’ LL. 300k j‘ 7/8 AL! [’5- 164331117794 Woof/n? Wfi) 3/.6/1’ 3/500 / 2000 =/5:75”’ 4’X4/2/6a ’1 Assume a d" va/ue or 5” or. .54 / T 0-1. = f/é‘OY/6X7o') = /800 “/a’ / A625" 30000 74' '/ $ /6 L3/8oo ’ fi 7 ’ /.990 Vu’ “ I '75 Cth on shear 2 i I \ 2.220" {41“75') = /6 ~3.05 =/2.94” V 25 700 V '-'-'-' ---- a L ‘ bj'd 452/)(875x6) I \ ' ‘ I 1/ I ‘E" - :33?! 1/; = 58.3 “/p ” < 607, I ' l W .50’ .375’ Momenf 0+ five edge 0F cape, «:1 (/.025Y,75)(/330)("5aa°) —.. @7510 am (/.;25)a(-§— Aést/sao) .. 5700 ’u. M % (7670172) : 92000 ”d 76 75 ’ 1‘ Effec‘f/ve wxdfh g a75+ l-OO '4‘ lo/ZO- t 8.875 I v \ . \ . . n . r \ ~ 0 - — .7 l I \ ‘ x ‘ ...A c a k . r I a ‘ \. v - ‘ q . . . . . " i ‘ ‘ \4 _ , . ‘ , .- ‘\ ‘ x. _‘ . \. ‘ . , 0 . 0' . .. v \ \ . ‘ ‘ 1 ‘. . ‘ A . ‘ ' o . f v ‘ , ‘ I ‘ I . - . ‘ ‘ a . 0 . ‘1 _ 0 . l . ,._ h I . \. ~ \ H 4 . n V I D, h I \ 1 ‘ , 4-. ’ A . ‘ I _ 5 I I I I- I -_ I ”c.“ . 0-.-, I ‘ a . o' i . - ’ V! ‘ ‘ .— . y - 1 . t ~» '\ 40" 92000 92000 ’00 751/215? ‘ 24—0 = 742 < 23 6 ~ __ 92000 __ o I Area of steel ”(/5000l7/8X6) ._ .9750 ”72.875 .975 _ ,4, ”ER—T AS'/,34‘7‘/n 4.0’ Use 6-’/ @6” Check on bond: 40+ = v. __(/330)( 7520.620] 7680 0400! =(2Y875I6 Isa) 1" /955 *M ruW ’7 ‘ 3.93 rods Since 6 ‘ r064? were awed fh I: (Vice/(8 saflsf’acfory . ' I . The method used . lh design/n .v‘hl: Foofln , w a s M 9 00m 0 method used earlier- In fhe d any n . ' P f STORE— FRONT DES/6N : L\\\\Y \ \ \Fm X\\\\\\ «(U T: 3’ 1L. R 1—: g q, L (ah/hm: are 307‘ on q 9309” base p/afe --~ #7: base ,o/a re xs 36* m The foundaflon #7917 welded ‘Icon— SW‘UCT/on IS used. The 7 Fauna/a r‘xoh IS spread as S/Iown 0n Me ,or-mT Show/m? T'he ' area needed 1'0 but/d 011/ /0’/n7 . From KLL 51C, use 8 W24 for Co/Umns Base -,o/afe /”Y3'i’9 u 46 FOUNDATION DESIGN 8 For five Foundal‘lon secf/ons nof around The basemenf’ 2 ‘ Assume CI 4 I From" Ilne - P/SX/Z X/é B/oc/f 7 j—T - Concrefe = /50 Van. £1. 5 8X/2X/6 = 65* g /0’ . “Q l 734/8 // sfr/p 2 I 733 a +(-/.33 /Cu.fi, __ x X y I j T afxalY/s) _ 65' 73 m j , /7‘98 , 5 IE B/ock = 73 VCMFfi + Q 4, ‘ Use 70" ’0707/. {3%, A 4 fl 4+5] ’4‘} Poured concrefe _L_ j ' ’ 4Wk— Assqme IO of +69 second floor"- .f'o be Inch/Jed In WC?” Weight Jecond F/oor- 2/60'70 ’. APPrOXImQ'ILe P =- (75Y27o33) + /0//65) f 45/450) F: 2050 + #550 4-670" = 4370’ 1* Assume bear/n3 pressure =2000d9/17 / SOIL P 4 , s: 715‘ (0w: 23(7)“: = 0037’ use 325 —%;/.P acf-mj direct/IV Verf/ca/ on a /2 ” 2.20” ' + (/0147) = “4:35- + = /. 0/ ” I +=05’ a w=2.25’ l u.- I 'I l I u I . A O Q ~ .. V w o For Me secflon arcand 'f'he basemenf "'- oufer )wall 8 SQme /oadlncj 0606/8 eql‘fl’) Q3 before --- Assume w =5“; #:2’ - ---r F p=aoso + /550 $131921”) amen + I leK 4/67, a’ 9,2 I .+/a){37)//50) L 0 LL ¢ £050 7’ '2' ' /650 Illa/I4 9/8 900 P: 55/8 it '5675’ ‘ / f I =.-—————::: , AC 061 W 2000 2759 7-:‘55/8 = LE” 00%) [/50 w: 2.75’ ,5 %=/.0’ +0,- pracf/ca/ reasonc. / I USE W 3 loo and 7‘3 /.0 For- fhe Foundqf‘lon zmo’er f‘he <9 X6 X/6 5/064” WQ// which Farms fhe Inner- Wa/AS‘ . Where ,o//asfer.5' are #7 f/ye W4 Us H7: Foundaf/an 6W”? J‘ 01/ 7‘ qrauna’ If Wlfl) fke some add/f/ona/j W/a’f/p ado/ed To /7‘. (This ' (6‘ Show!) In Me , prm 1" Show/m? Me areq needed f0 bw /o’ flu: build/n? , j LIA/TEL and BEARING HATE DES/6N5 ° 0 me'e/J‘ 8 /2’;’ Br/cK Masonry wa// Common (Dr/0K == A80 ’7 CU. Ff, s= 20000 ‘7’” For \S‘fee/ . All //nfc/ dewyns W/// refer #0 H26 fol/owm3 6/(07‘0/7 3 5,-ch masonry wavy/77* figured Ins/0’9 0+” A Only. F= Open/n? m ,Wal/ L 3 fofq/ mfe/ ‘ /en 7‘47 X 2 fon/ Ive/961‘ 0 /eff A For I: //’ 3 Lax/2’ _ _ 602), > J, 8 M 2/60K6) 525951020/2) = #3960 -4320 B.M '= 8640 I" _ M =L540I/2) _ ”‘7 6‘ 20000 ' 6'2 ” FPO"? 14.1.5.6. use 7 f 9.8 WIf/‘I a ’/4 X9, p/Qfe we/deo’ 70 7476' C . Drop bo/fs 747/009 I; file p/a 7‘: 7'0 {sten #76 W/ndaw - sash . For fla/o’ use Me some drucfw‘a/ Shape: as those used when I =// ’, Z. = // for I = /0 I, l #or' 1:3, 2 L=4’ L,xA==—‘%Zl//20) :240 7* é 5. 232%) 240(3,—) = 320 ’tt 3: 312.: 3200.2) - 6 220000 Use 6: aa’daXEX/Kd 4 MM 0 Z/IXS” p/aTe welded 7‘0 7/76 A. ,0 ==./9a’ I’ll." For .9 = 4’ ' La 5’ . L, =/'?= (2215) (/20) = 370.“ 3M. ' (770135) — 375/37 = 525‘ ’tt / J 3=’€;'=‘ (BENT)(£3) = ‘3Z5M0 20000 Use 0 292x22 x ’/4 4 WIN, a k/CVS” P/qfc welded 70 “the '4 . (3/42” A33 I0 m f/ac' Verf/ca/ p051 hon .) :a’éfl/ey flax/flan 01" A r/ve \S‘ame Far- i=6”. and 3:4’ Ilnfeh For- I'B/E’ z. =/3 ’ 1., a]? = -—é—J—/\:6'$ (/30) = 2540 It“ 2 BMW. ‘ /3 .. .. _ ~_. / (27:0)?70) 2340/?) -— #000 e - __ = //ooo x2 _ a S 3 20000 K f6‘05 0:0 7 1." 72,20" mm //4 ”X 9 ” p/qfc . Bear-“m3 P/afes g #or llnfC/S 3 N0 acfua/ bear-In p/afe Is needed J bur 7%: //4 " p/afe w/I/ acr as SuchJ and five lengfh 01“ 7/70] finfe/J‘ OVGr/ap five masonry 0 V2. ’ a? each end of fhe open/I73. \l] .\ r .. .J J L . 0. .. - . u . .. . . _ I.- . . . § \0 i \- u _ . A: A w ‘ ‘ .x. 3 .. . 0 ~ .\ 0 y < x . v 1. v . . r. q I. v 1 w 2 . d -. .\ . , . \. , , + - \ . 1 _. .. 0 . . \ y a . . \ . - r. _ v A . . . . A, - . n V . _ . . . h . x . l v ‘ .. x . . ., 0 To/rm The mamem /mfc/ reaCf/Or) OF 2540* and a bearm pressure for- a masonry Wa// of 2950‘170 " we 90*: p 20-40 _ ,, 32? A'250 ”0“?” Same fire wal/J are /2 " Wide ~—--—- 0 I .9177}; won/d prove a 450 f/Sf'acfor-y bear/n area. Tbenef‘ore I70 bear/n9 p/q fe IJ‘ needed. II 8 ea PM? [0/0 fes for fhe r’oo‘f~ frquS‘: +4.1". 5. C. MCfAOd Bear/n? Pressure =250%" 3” /e3 OF 392 XJXZ¢A j \- $ 7 Bear-m? p/afc Fh’u‘n" I ->- 4 L-<—- Ac? ”—+— 20250 a z :2 5/47 W Assume C= /2 ” /25’=8/ L57" 3: 7” nc‘f p=2/022/jo =24/‘79/” n'=§-/ =g-l-‘25’ +‘ = /5 p n 1/0 Jaw/[2 5f:- 22 60 #3476” *0 ‘l Use 3/4 ” p/a fe because Hus IS the fhm- nesf used In acf'ua/ prq cf/ce , We/ded consfrucf/on A? Used (2/011 9 w/ 7% anabor bo/fs, Bear/n9 p/af’Cd‘ For 'H‘IE’ F/oor~ beamsg l5/I’ Floor- beam Ff flat/V736 0mg : E LIZ-:- Fe C e- - l5000 = a” \ A“ 250 60 Assume B: 8 ” c =- 9” O l/ Der p = (/3125) -== 208 *7” ”=2? -/ =3 ¢‘=(/5j7208)(3)2=.2a/ + = .53 Use 3/4“ ,O/af'e 83(3” 7- A/se we/ded conSfrucf/on and anchor 00/7“? . _..-.- ~— 1 0-42.? “if TY LIIIIRIARIES illllfl 8581 49 1 303 U! MW MICHIGAN STA!!! UNIVERI Q 1 — ~ 4-“.— “-__ - ,x... . {{‘oo I'D. ,..r..!s.....l..l!tbvrl r OLDLIII "Tl'iifikfiski‘lujlflifligfm fififlfifliflflifliflfiflmfl'ES