THE DESIGN OF A TVO-STORY BUILDING

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE

Robert N, Rosso, Jr.
1944
The Design of a Two-StoryBuildingA Thesis Subritted to
The Faculty of
MICHIGAN STATE COLLEGZof
AGRICULTURE AID APPLIBD SCIENC』
by
Robert N. Rosso, Jr.
Candidate for the Degree ofBachelor of ScienceSeptember 1944

Acknowledgments

I wish to thank all the members of the Civil Ingineering Staff for the aid they have given me in the completion of this desisn problem. I also wish to thank li. Caldwell, Lansing Building Inspector, and 0 . J. Munson, Lansing Architect, for their assistance on this prohlem.

I have used several text books to obtain standards, actual construction hints, and design methods. They are as follows: Structural Theory by rale Sutherland and İ. I. Bowman; Structural Design by Carlton T. Bishop; Steel Construction (A. I.S.C.) ; Mood Trusses, a National Lumber Nanufacturer's Association Publication; Construction Estimates and Costs by H. R. Pulver; Reinforced Concrete Design by Hale Sutherland and Raymond C. Reese; and The ACI Building Code.

Contents

Purpose of the Thesis
Roof Design
Floor Design
Store-front Design
Foundation Design
Lintel and Bearing Plate Designs
Specifications
Computations
Drawings

Purpose of the Thesis:
The purpose of this thesis is to design a two-story building, with a sixty foot frontage and fifty-five foot depth. The design is one that involves hoth an engineering and economic vierpoint and may be regarded as an actual problem that micht face an individual with college training.

The building is being designed so that it may be used for many purposes in a town of approximately five to ten thousand population.

The first floor of this building may be used for such purposes as: automobile sales and service, super food market, farm equipment sales and service, or frozen food lockers. It may also be grouped into two or three stores such as: bakery, electrical appliances sales and repairs, auto parts store, and real estate office.

The second floor may be rented or leased as one unit to a lodge or similar organization; or it may be divided into business offices and apartments.

With the above combinations in mind, some of the possible floor plans are: (Scale $l^{\prime \prime}$ equals 40')

Auto Sales and Service
Real Estate Office (R. E. O.)
First Floor

Wlectrical Appliances Auto Parts Bakery

First Floor

Frozen Food Lockers
Real Estate Office (R. it. O.) Bakery

First Floor

Apartment
Business Offices
Second Floor

Lodge Hall
Second Floor

The preceding sketches illustrate the type of building to be constructec anci also aics in the nossible architectural design of the kuilding.

Following the sketch of the proposed building, the tresis will continue with the discussion of the individual design steos taken.

> Proposed Euilding
> $\left(\right.$ Scele $1^{\prime \prime}$ equals $\left.12^{\prime}\right)$

Koof Desion:

In the roof design, two assumrtions were made that will have to $\dot{\text { be }}$ verified before actual construction of the suilding. One assumption was that the second floor was to be rented as one unit not for living purroses. With tris in mind, the window secificetions of the locglity concerned must ice consulted if the second floor is going to be used for arartrents. This micht necessitate the building of a skylisht but it would not effect the truss desinn due to the fact that the material of the skylicht will weioh arrroximotely the same as the roofboards, rafters, and the suxfacinc of the originel desion. The second gssumption was thet the cerioer of the snan would be nerliaible. This does not mean that it is negligible but, due to the time allotted to the senior nroblem, it will ie imrossible to check the truss for comber.

Another assumrtion wos made before the actual comrutations were started, this being, the assumed weight of the roof and trusc. Tre estimated value was fifty pounds rer surare foot of roof area which uas divjced up as follove:
L. L. \quad zci\#/sq.' Snow load
D. L. 8\#/sq.' Roofiooards, refters, surfacins
D. L. 7\#/sq.' Steel
D. L. 5\#/sq. ' Plaster

Three different truss systems were designed: the first consisted of two trusses rlaced at the third points of the building front ard munino rerrencicular to the front; the second is cornosec of three trusses sixty feet long, but with
varying heists of three, four, and five feet mich are running raralls 1 to the front of the building; the third consists of three identical trusses mining parallel to the store fronts. Sketches of the designs are as follows: (Scale $l^{\prime \prime}$ Equals ln')

First Design

Third Desion
difter the three truss sustems vere completely desimed, it was decided that the third dosion vas the one to be used in the construction of the structure. Jach desjen was given due consideretion and ras analyzed as follows:

Truss design mubor one ras rumin; perpendicular to the building front and, for the proner desin of the structure, it is nocossary to horo the trusses rest on pilasters wich $\because o$ ld have to be built at the front and hack of the huilding. jhis would not pemit a possible lere door opninc in the front of the building wich mi ht be necossony if floor space be rented for an auto or ram onummont selesroom.

The second truss system was not used because it involved the construction of three different size trusses which would increase the truss cost.

The third and final desisn was chosen because it ran parallel to the builaing front which eliminates the pilasters from the front of the building. This truss system also has three identical trusses which will give the cheapest material cost.

The calculation sheet for this truss system will now be discussed. lany of the numerical answers will not be repeated in this section of the thesis but complete details appear in the computation section under Roof Design.

The length of the truss is sixty feet and it is divided into ten panels of six feet each. With the assumed load and the known panel lensths, a total load of 4050 pounds was obtained for each panel.
\therefore ith the panel load known, the truss was then analyzed for the stress values of its members. The majority of the stress values were obtained by the three main methods used in design work--the sumation of moments about a point equals zero, the summation of the horizontal forces equals zero, and the summation of the vertical forces equals zero. The other method used in the analysis vas that of the free-body.

After obtaining the stresses in the members, the structural shapes were selected. Two angles were used for every
member, with the anoles placed back to bock. The anoles vere selectea for merbers in both tension end compression as srecified in "Steel Construction" with three-quarter-inch rivets being assumed.

Next the ousset rlates were sketched out. Half-inch material wes used for the rlates and the details appeer on the drawing showind tre complete roof design.

The roofooards and roof-rafters were tren designed, the rofters bein fourteen feet lond due to the fact that the trusses are spaced thirteen and one-half feet apart. No length specification for the roofboarcis was given because they are placed end to end.

The assumed weight was checked next. A one foot section of the truss wos taken cirectly through the center of the truss to determine the weirnt of the steel to aid in checking the assumed lord. As is shown in the computations, the actual lond is slirrtly larser than the assuned load. This is not consicered alarming, however, due to the high snow lo ad considered for locelities around tie central and southern fart of the state.

Floor Design:
The second main design step in the designine of this building was that of comruting the second floor slab, its supporting members, columne, its column footings, the first floor slab, and the besement.

The first stens in the design of the second-ifoor vere that of erransing a nossible floor-beam and girder nlan then assuming a likely live erid dead load for the floor. the next step wes that of meking a floor entry for the strirs tret would prove serviceable for a number of occasions such as that of accomodnting large crowis and clearance for the moving of office furniture and supnlies. (The stairs were designed with the stondard seven-and-one-holf inch riser with a nine inch tread.)

After that was comrleted, a four inch floor slab design was comruted. The reinforcement steel rurining from the front to the back of the building was tren computed. (Ihis included koth nositive and nerative steel.) Since this steel wss running in one direction, it was necessary to use temcerature stecl. Its calculotions are also shovn in the computation section.

With the second-floor slab designed, the next step was that of determining the structural sizes of tre floor beams and gircers. The 12 WF was used throughout to Five a uniform thickness to the floor desion of the second floor and a uniform first floor ceiling line. Leam connectors were also designed to fasten floor bears and girders.

The columns supporting the second floor were then designed. Their design coming almost directly from the A. I. S. C. tables. The design of the column footings follored, and their design was taken from the method described by Sutherland and Reese. It involves the use of formulas which they developed in their text; for future reference their text should be consulted.

The first-floor slab was then designed hy using a concentrated load spread over a six inch square. The pronortion of the floor over the basement vas computed on a live and dead load basis, however. Reinforced steel was placed in just one direction except over the basement where temperature and negative steel were used. The girder system supporting the slab over the basement was designed similar to that supporting the second-floor slab.

The basement slab vas not designed due to the fact that it will act as a vearing surface mairly. The five inch slab will prove sufficient for the besement.

Store-front Design:

This design was submitted to enable a possible large aoor ovening in the front of the building, if needed.

Foundation Design:
The foundation was designed with the walls considered as being composed entirely of blocks. The second floor also gives an additional weicht to the wall; this was considered by assuming that half the floor beam snan was reacting down the wall, with the total floor weight being used.

The proportion of the building over the basement gives a three-story arrancement; therefore, a sixteen-inch wide outer wall must be used for the basement. The rest of the building was considered as a tro-story building and only a twelve-inch vall was used. This arrangement conforms with the building specifications of Lansing, Michigan.

No steel was used in the foundation because of the light wall loads.

The basement wall is composed of blocks, and the foundation is of concrete as shom in the computation sketch.

The eight-inch block wall, used for the interior wall of the basement, requires no foundation because there is no wall load. However, the foundation design given for this wall should be used to give security.

The five-inch basement-floor slab should be poured with the foundation around the basement.

Lintel and Bearing Plate Design:
The problem of designing the lintels was a simple one, and the designs are given in the computation section. The lintels were made of either a channel or angle velded to a plate one-quarter-inches thick and nine-inches wide.

The bearing plate design method used throughout is that prescribed by the A. I. S. C. . The three-quarterinch plate was used in all cases, because this was the thinnest plate advisable to use fron a practical standpoint.

The plates are to be set in poured concrete with anchor bolts. The holes in the blocks supporting these plates should be filled with concrete from the foundation on un. The proportion of the structure resting on these plates will be tack-welded in place.

Specifications:
The building is one of two-stories and was described in the "Purpose of the Thesis". It was the purpose of the thesis to design the building; such matters as detailing and forming the bill of material vere not undertaken, but may be easily obtained by careful analysis of the computations.

The foundation is to be of poured concrete throughout. The front wall is to be made with a brick face and an eight-by-eight back-up block. The other three walls are to be made of eight-by-trelve-by-sixteen standard block. The outer basement wall is to be made sixteen-inches thick, vith the inner basement wall eisht-inches thick.

All concrete is to have at least three thousand pounds per square inch compressive unit stress in the extreme fiber of concrete in flexure. Three-quarter-inch asgregate will be the maximum allored in the mix.

All the lumber used in the construction of this buildins should have at least a twelve thousand pound per square inch bending stress in the extreme fiber.

Steel used should be of the twenty thousand pound per square inch caterory, except the reinforcement steel, which is to be deformed bars rith at least an eighteen thousand. pound per souare inch value for tension.

The roof is to be made of roofboards, heavy felt-rot less than thirty pound felt--, two-ply felt is then to be lain and mopped with asphalt pitch. lext, special mesh is to be laid with asphalt pitch and a cover of crushed slag or
one-cuarter to five-eighth-inch vell screened srovel. The roof is to be flashed with sixteen ounce copner at the wall boundaries end the peak.

The stairs ere to be of concrete with permanent steel forms being used if possible.

Plasterina is to be done on metal lath, tack-molded to the steel. (It is more than likely that small angles will have to be added to sive the proper supoort, but this will be left for the detailer to decide, howner.)

Building tils is to be used in partitioninc the ralls for the separate divisions--four-inch tile rill be suitable, but this may vary.

All rindows should be of three-foot sash width and may be of wood or steel, but this should be decided unon by the future ormer before the building is detailed.

Four-foot doors are to be used in the buildiny front, but three-foot doors may be used in the interior.

Heotinc, plumbing, electricol viring, basement drainage, and any otner itom thet hes not been discussed will be left up to the discretion of the oner or contractor, which ever the case may be.

The building specifications for the locality were the building might be erected should be consulted before the complete building amponcoments are made.

ROOF DESIGN:

Three roof trusses running parallel to the store fronts.

Considering a total Live f Dead load of $50 \% / a$ of roof area, and a truss with 6" panels; We obtain a total load of 4050* on each panel.

$$
50(13.5)(6)=4050^{*}
$$

$$
\text { T: } 1<1<1-9 \frac{+}{+}
$$

\because
3
$\because \quad \because$

a) h
20.25 K

The $50 * / a^{\prime}$ is considered as acting in a vertical direction to the roof surface, thereby producing a vertical load of 4050* on each panel.
$.5^{\prime}$ rise in each panel gives an \angle of approximately 4.8°.

$$
6^{\prime} \cdot 5^{\prime} \quad \tan \theta=\frac{.5}{6} \quad \theta=4.8^{\circ}
$$

Due to the small $<$ the vertical load change will be very small but will be considered throughout. in the stress analysis of the truss; also the actual stress value of the top members will be considered as having the same value as the horizontal component, because of the natural cos value .997.

$$
\begin{aligned}
& \sum M=0 \\
& (\overline{2-b})_{h}=\frac{(18.225)(6)}{3.5}
\end{aligned}
$$

$$
\begin{array}{lll}
(\overline{2-b})=31.2 \mathrm{~K} & & \text { COMP. } \\
(\overline{3-h})=31.2 \mathrm{~K} & & \text { TEN } .
\end{array}
$$

$$
\begin{aligned}
& (\overline{4-c})=\frac{(18.225 Y(2)-4.05(6)}{4} \\
& (\overline{4-c})=48.7 \mathrm{~K} \quad \text { COMP. } \\
& (5-h)=48.7 \mathrm{~K} \quad \text { TEN } .
\end{aligned}
$$

$$
\begin{array}{ll}
(\overline{8-e})=58.5 \mathrm{~K} & \text { COMP. } \\
(\overline{9-h})=58.5 \mathrm{~K} & \text { TEN } .
\end{array}
$$

$20.25 K$

$$
(1 \overline{0-f})=\frac{(18.225)(30)-4.05(6+12+18+24)}{5.5}
$$

$$
(\overline{10-7})=55.3 \mathrm{~K} \quad \text { COMP. }
$$

Since the forces of the sloped members on the top of the truss are taken as horizontal values we are able to obtain the diagonal member values by the free-body method. (Vertical members, also.)

$$
\begin{aligned}
\Sigma V & =0 \\
(\overline{a-1}) & =20,25 K \quad \text { COMP } \\
\Sigma H & =0 \\
(1-h) & =0
\end{aligned}
$$

20.25 K

$$
\Sigma H=0
$$

$$
(\overline{1-2}) h=31.2
$$

$$
(\sqrt{-2})=\frac{31.2}{\cos 26.6^{\circ}}
$$

$$
(\overline{1-2})=35.0 \mathrm{~K} \text { TEN. }
$$

$$
\theta=26.6^{\circ}
$$

$(2-3)=35.0\left(\sin 26,6^{\circ}\right)=15.6 \mathrm{~K} \quad$ COMP

$$
(3-4)_{h}=17.5
$$

$\tan \theta=\frac{35}{6}=.583$

$$
(3-4)=\frac{17.5}{\cos 30.2}=20.3 \mathrm{~K} \text { TEN. }
$$

$$
\theta=30.2^{\circ}
$$

$$
(4-5)=20.3\left(\sin 30.2^{\circ}\right)=10.25 \mathrm{~K} \text { comp. }
$$

$$
\begin{aligned}
& \Sigma H=0 \\
& (5-6) h=56.7-48.7
\end{aligned}
$$

$$
(5-6) h=8.0
$$

$$
\tan \theta=\frac{4}{6}=.67
$$

$$
(5-6)=\frac{8}{\cos 33.70}=9.63 \mathrm{~K} \text { TEN. }
$$

$$
\theta=33.7^{\circ}
$$

$(\overline{6-7})=9.6\left(\sin 33.7^{\circ}\right)=5.35 \mathrm{~K} \quad$ comp.

$$
(\overline{7-8})_{h}=1.8
$$

$\tan \theta=\frac{4.5}{6}=.25$

$$
(\overline{7-8})=\frac{1.8}{\cos 369^{\circ}}=2.25 \mathrm{~K}
$$

TEN.

$$
\theta=36.9^{\circ}
$$

$$
(\overline{8-9})=2.25\left(\sin 36.9^{\circ}\right)=1.35 \mathrm{~K} \text { comp }
$$

$$
\begin{aligned}
& \frac{6}{55.3}=\frac{.5}{x} \quad x=4.6 \\
& \Sigma V=0 \quad 4.6+4.6-4.05=(10-g) \\
&(10-g)=5.15 \mathrm{~K} \quad \text { TEN }
\end{aligned}
$$

$$
\begin{aligned}
&(\overline{9-10})_{r}=2.575 \quad \tan \theta \\
&(9-10)=\frac{2.575}{6}=.833 \\
& \sin 39.8^{\circ}=4.03 \mathrm{~K} \text { comp. } \theta
\end{aligned}
$$

Results of the stress analysis:

Material for trusses s (Structural shapes) Using "Steel Construction" (A.I.S.C.) for the structural shapes, sizes, and specifications.
$S=20 ; 000 * / a$ for tension steel
$S=17,000-.485 l^{2} / n^{2}$ for compression
steel when $\mathrm{l} / \mathrm{n}<120$
Assuming the use of $3 / 4$ "rivets.
For members in compression 8 (24 back to back)

$$
\begin{aligned}
& l / \eta<120 \quad l=6.0^{\circ} \quad \frac{6(12)}{120}=r_{\min }=600^{\circ} \\
& \text { *Try } 2 \text { - } 3 k \times 3 \times \frac{1}{2} 4 \\
& {\left[17000-.485\left(\frac{72}{1.07}\right)^{2}\right]=\frac{P}{A}} \\
& ク=1.07^{*} \quad A=6.00^{\prime \prime} \\
& \text { - Try } 2-31 / 2 \times 3 \times 3 / 8 \mathrm{Ls} \\
& \eta=1.09^{\prime \prime} \quad A=4.60^{\prime \prime} \\
& \left(17000-.485\left(\frac{72}{1.09}\right)^{2}\right)=\frac{1}{A} \\
& \therefore P=60,500 \text { COMP } \\
& \text { - Try } 2-31 / 2 \times 3 \times 1 / 4<5 \\
& r=1.11^{\prime \prime} \quad A=312^{\circ "} \\
& {\left[17000-.485\left(\frac{72}{1.11}\right)^{2}\right]=\frac{P}{A}} \\
& \therefore P=48,000^{*} \text { COMP. } \\
& \text { *Try 2- } 2 \frac{1}{2} \times 2 \times 1 / 4<s \quad 1=.78^{\prime \prime} \quad A=2.12^{\circ "} \text {. } \\
& {\left[17000-.485\left(\frac{72}{73}\right)^{2}\right]=\frac{P}{A} \quad \therefore P=27,200 \text { "COMP }}
\end{aligned}
$$

$$
\begin{aligned}
& \because \because-\quad \because \quad \because \quad \because \quad \because \quad \cdots \quad . \quad \therefore \\
& \cdots, \quad, \quad \text {, , } \\
& \because i \quad \because \quad \ddots
\end{aligned}
$$

$$
\begin{aligned}
& 1.1=i
\end{aligned}
$$

$$
\begin{aligned}
& \because \quad \ddots \quad \ldots \quad \ldots \quad \ddots \quad \cdot \quad \cdots \quad \text { ソ } \\
& \begin{array}{lll}
1 & , & , \\
\vdots & \ddots & \ddots
\end{array}
\end{aligned}
$$

- Try $2-21 / 2 \times 2 \times 3 / 8<5$

$$
s=.77 \quad A=3.100^{\prime \prime}
$$

$$
\left(17000-.485\left(\frac{72}{.77}\right)^{2}\right]=\frac{P}{A} \quad \therefore P=39,500 \text { COMP }
$$

All $\&$ are used back to back with the two longest legs facing each other, both for member in tension and compression.

For members in tension:
$s=\frac{P}{A} \quad A=$ Area of the $\angle s$ - the area of the rivet holes.
Area of $2 \angle 5 \quad 3 / 2 \times 3 \times 7 / 8=4.600^{\prime \prime}$

$$
\begin{aligned}
& 31 / 2 \times 3 \times 1 / 4=3.12 \\
& 21 / 2 \times 2 \times 3 / 8=3.10 \\
& 21 / 2 \times 2 \times 1 / 4=2.12
\end{aligned}
$$

Reduction of area for $7 / 8$ "rivet hole.
Material thickness of $1 / 4^{\prime \prime}=.2190^{\circ}$

$$
3 / 8^{\prime \prime}=.328^{\prime \prime}
$$

$s=\frac{P}{A} \quad$ For $P=58,500 *$

$$
\frac{58500}{20000}=A=2.9250^{\circ "}
$$

Since $2.925+(.210)(2)>3.120^{\prime \prime}$

$$
\therefore \text { Use } 2<s \quad 31 / 2 \times 3 \times 3 / 8 \quad A=4.60^{\circ}
$$

The value .2190" is multiplied by 2 because 2 Ls are used.
For $P=48,700^{} \frac{48700}{20000}=A=2,4350^{\circ}$
Since $2.435+(.219)(2)<3.12$

$$
\therefore \text { Use } 2 \Delta 31 / 2 \times 3 \times 1 / 4 \quad A=3.12^{\circ "}
$$

*For $P=35,000 * \quad \frac{35000}{20000}=A=1.75 \%$
Since $1.75+.438>2.12$

$$
\therefore \text { use } 2 \angle s \quad 21 / 2 \times 2 \times 3 / 3
$$

*For $P=20,300 * \frac{20300}{20000}=A=1.015^{\circ}$
Since $1.015+.438<2.12$

$$
\therefore \text { Use } 2 \text { Ls } 2 \pi / 2 \times 1 / 4
$$

Rivets and Gusset Plates for the Roof Trusses:

$$
\begin{array}{r}
\text { Using } 3 / 4 " \text { rivets - Shear } 15000 \# / 0 " \\
\\
\text { Bearing S.S. } 32000 \% / 0 " \\
\text { D.S. } 40000 \% / 0 "
\end{array}
$$

Using $1 / 2$ " gusset plates _ since the smallest 4 used are $1 / 4$ " thick, the $1 / 2$ " thickness will determine the bearing value, which is 13.1 Kip maximum load. (A.I.S.C.)

$$
\frac{31.2}{13.1}=3 \text { Rivets }
$$

$$
\frac{35.0}{13.1}=3 \text { Rivets }
$$

$$
\frac{20.25}{13.1}=2 \text { Rivets }
$$

20.25K

Minimum rivet spacing (A.I.S.C.) is 3 rivet diameters E to E.

$$
(.75)(3)=2.25^{*} \quad \text { Use } 2.5^{*} \notin \text { to } \underline{E}
$$

For end spacing use 2.0 "
For a 1/2" gusset plate and a tension load of 35.0 K the cross-section area of the gusset plate at the let rivet should be-

$$
s=\frac{P}{A} \quad \frac{35000}{20000}=A=1.75^{\circ}
$$

Sketches are drawn to the scale . " $=1.0$ "

$$
\begin{aligned}
& \therefore \quad \therefore .3-\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccccc}
\because & \because & \because & \because, & \cdots & \ddots \\
\because & \ddots & \ddots & \ddots & 1
\end{array} \\
& \begin{array}{cccc}
\because シ & \cdots & \ldots & \\
\sim & \ldots & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \because
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad-\quad . \quad \begin{array}{lll}
& \ddots & \ddots
\end{array}
\end{aligned}
$$

$\frac{48.7-31.2}{13.1}=2$ Rivets Use 3 Rivets

$$
\frac{20.3}{13.1}=2 \text { Rivets } \quad \frac{31.2}{13.1}=3 \text { Rivets }
$$

Details of these sketches an R.T. Print.

Roof rafters and roof boards :
Rafters 8

$$
s=\frac{M c}{I} \quad S=\frac{M}{v} \quad S=\frac{I}{c}
$$

Assume $S=1800 * / \omega^{*}$ for wood.

$$
\begin{aligned}
& M=\frac{w l^{2}}{8}=\frac{(38)\left(\frac{18}{12}\right)(13.5)^{2}}{8}=1300^{\prime} k \\
& 1300(12)=15600^{\circ} * \quad S=\frac{15600}{1200}=13.0^{13}
\end{aligned}
$$

use $2 \times 8 \times 14^{\prime} \quad w_{t}=3.39 * /$
Roof boards:

$$
M=\frac{w l^{2}}{12}=\frac{(34.61)(1.5)^{2}}{12}=6.5^{\prime} \quad s=\frac{6.5(12)}{1200}
$$

$$
I=\frac{b d^{3}}{12} \quad c=\frac{d}{2} \quad S=\frac{I}{c}
$$

$$
.065=\frac{\frac{\lambda 2 d^{3}}{12}}{\frac{d}{2}}
$$

$$
\begin{gathered}
.065=2 d^{2} \quad d^{2}=.0325 \\
d=.18
\end{gathered}
$$

Lie IXB material

Weight of roof boards based on 40 \#/Cu. ft. for wood. (A.I.S.C.)

$$
\frac{40}{x}=\frac{12}{1} \quad x=3.33 * / a
$$

check on assumed weights:-
Cut a section 1^{\prime} wide down the center of the truss.

Assume G.P steel to weigh $10 \% 36 \mathrm{cu}$

$$
\text { GAP. }=\left(\frac{12 \times 12 \times 1}{36}\right) 10=40 .
$$

Rivets $=45^{*} / 100$
10 Rivets $=4.5^{\#}$

$$
2-3 \frac{1}{2} \times 3 \times 1 / 8
$$

$$
15,8 \%
$$

$$
2(15.5) \quad-31.6
$$

Total $\frac{112.1}{13.5}=8.8^{*} / 0^{\prime} \quad 112.1$
Snow $30.0 \% / 0^{\prime}$
Steel 8.8
Roof 8.0
Plaster $\quad \frac{5.0}{51.8}+0^{\prime}$
The check is 1.8 / $/ 0^{\prime}$ high but is not considered alarming due to the high snow load.

FLOOR DESIGNS:
Second floor:

$$
\begin{array}{ll}
\text { Live Load } & 100 \text { \#/a' } \\
\text { Dead Load } & 50 \# \pi^{\prime}
\end{array} \quad 4^{\prime \prime} \text { reinforced }
$$

Building front

Floor beam and girder plan.

Stairs:
First to second floor :

$$
\begin{aligned}
& 71 / 2 " \text { riser } \\
& 9 " \text { tread }
\end{aligned}
$$

Basement to first floor:

$$
\frac{9}{7.5}=\frac{x}{9.5} \quad x=11.4^{\prime}
$$

Slab design - second floor:
Use: $\quad n=12 \quad f^{\prime} c=3000 \% 0^{\circ}$

$$
f_{c}=(, 35) f_{c}^{\prime}=1050 \# / 0
$$

$$
f_{s}=18000 \% / 4
$$

$f_{s} / n=1000 \% /{ }^{\prime \prime}$

$$
\frac{d}{x}=\frac{1500+1050}{1050} \quad x=.412 d
$$

$$
1.0 d-\frac{.412 d}{3}=j d=.863 d
$$

$$
\begin{aligned}
& M=\frac{w l^{2}}{12}=\frac{150(9)^{2}}{12}=1010(12)=12150 " \\
& C=(.412 d)(12)\binom{1050)}{2}=2590 d \\
& (C Y(d)=M \\
& 2590 d(.863 d)=12150 \\
& d^{2}=\frac{12150}{2235}=5.45 \quad d=2.34 "
\end{aligned}
$$

Total necessary thickness $2.5^{\prime \prime}+1.0^{\prime \prime}=3.5^{\prime \prime}$

$$
C=T=2590 \dot{d}=2590(2.5)=6480
$$

Area of steel $=\frac{P}{v}=\frac{6480}{18000}=.360 \%$
Area of $1 / 2^{\phi}=.20 a^{N}$
Therefore use $2-1 / 2 \phi / \mathrm{ft}$ for Θ steel.

$$
1 / 2 \phi \text { (9) } 6^{\prime \prime}
$$

Check for bond: $1 / 2 \phi$ Circumference $=15 \geqslant \%$

$$
\begin{aligned}
\mu=\frac{V}{\Sigma 0 j \sigma}=\frac{150(4,5)}{2(1.57 /(.863)(2.5)}=99 * / a \\
\mu<(.05)\left(f^{\prime} c\right) \quad(.05)(3000)=150 \pm / 0 \mu
\end{aligned}
$$

Therefore bond is satisfactory.
Check for shear:

$$
\begin{aligned}
& v=\frac{v}{b j d}=\frac{150(4.5)}{(12)(.863)(2.5)}=26 * / a " \\
& v<.03 f^{\prime} \mathrm{c} \quad(.03)(3000)=90 * / a "
\end{aligned}
$$

Therefore shear is satisfactory.
Since the steel is running in one direction temperature steel .. will be used: $A_{s}=.002 A_{c}$ Using $3 / 8 \&$ bars: $.11=.002\left(4 X_{\text {spacing }} 3 / 8 \&\right.$ \& $13,5 \%$

For negative steel:

Using the same values as for + steel.

$$
\begin{aligned}
& c=2590 d \quad j d=.863 d \\
& 14600^{\prime \prime} t=M=\frac{w^{2} l^{2}}{10}=\frac{150(9)^{2}(12)}{10}
\end{aligned}
$$

$$
\begin{aligned}
& 14600=(2590 d)(.863 d) \\
& d^{2}=6.520^{\prime \prime} \quad d=2.56^{\prime \prime} \\
& A_{s}=\frac{2590(2.56)}{18000}=.370 "
\end{aligned}
$$

Use ila (a) 6" for negative steel Length of negative steel:
From A.I.S.C. -length of negative moment $1512 / 28$ \& .

$$
\begin{aligned}
& \text { length }=\text { length neg. mom. }+(30) \text { (bar da.) } \\
& \frac{12}{28}(\vartheta)(12)+30(1 / 2)=46.3+15=61.3
\end{aligned}
$$

Use $5 \frac{1}{2}$ ' length. This will allow for the 10' span at the stairs.

Check on the 10^{\prime} span:

$$
\begin{aligned}
& M=\frac{w \rho^{2}}{12}=\frac{150(10)^{2}}{12}=1250(12)=15000 \quad " * \\
& (2590 d)(.863 d)=15000 \quad d^{2}=6.70 \quad d=2.59 " \\
& A_{s}=\frac{2590(2.59)}{18000}=3.73^{\circ "}
\end{aligned}
$$

Therefore the 10^{\prime} span will not cause a change in the slab design.
*Use $d=3 "$ and $t=4 "$ for actual design. of the slab.

Floor beams and girders:

I^{\prime} floor beam

Floor beam:

$$
9(165)(20)=29700=30 \mathrm{~K}
$$

The deflection of floor beams carrying plaster ceilings should be limited to not more than $1 / 360$ of the span length.

$$
(1 / 360)(20)(12)=, 67
$$

From A.I.S.C. :
12 NF 36 I
deflection $=.69^{\prime \prime}$
20^{\prime} Long
load $=31 \mathrm{~K}$
$\frac{30 K}{31 K}=\frac{x}{.69} \quad x=.67^{\prime \prime} \quad$ Therefore in w-36 may be used.
Girders:

beams
From A.I.S.C.
12 WV 65
54^{\prime} Long

-
\cdots
\because
$\because \because$
\because

To check the steel weight assumed:
floor beams $(36)(20)=720^{4}$
Girder

$$
\begin{aligned}
& (36)(20)=720^{4} \\
& (65)(9)=\frac{585}{1305}
\end{aligned}
$$

Surface area: $9 \times 20=180^{\circ}$

$$
\frac{1305}{180}=7.25^{\#} / a, \quad \text { Which checks. }
$$

Beam connectors to be used throughout: A.I.S.C. Method:

3/4" Rivets Use $2454 \times 4 \times 3 / 8$

$7 / 8^{\prime \prime}$ holes

Double Shear $t=5 / 16$ 9.38K
Double Shear $t=7 / \mathrm{s}$ 11,30K
Shear $=15.0 \mathrm{~K}$
Enclosed bearing on the wet 30.0 t
O.S. Legs (4 Rivets)

$$
(4)(11.30)=45.2 \mathrm{~K}
$$

Web Legs

$$
\frac{15}{(30)(.3125)}=1.6 \text { Privets - use } 2
$$

Columns:

From A.I.S.C.

$$
8 W w^{2}
$$

121/2' Long

Column Base Plates:
A.I. S. C. Method

Bearing on concrete $=.375 f^{\prime}$

$$
\begin{aligned}
& (375)(3000)=1125 * / \pi " \\
& P=1125^{*} / \pi^{\prime \prime} \\
& L=60 K
\end{aligned}
$$

$$
b \xi^{\prime} d=8^{\prime \prime}
$$

$$
A=\frac{L}{P}=\frac{60000}{1125}=53,40
$$

$$
\text { Assume } B f^{\prime} C=9^{\prime \prime} \quad A=810^{\prime \prime}
$$

$$
p=\frac{60000}{81}=740 * / \pi "
$$

$$
.80 b=(.80)(8)=6.4^{\prime \prime} \quad n=\frac{9-6.4}{2}=1.3^{\prime \prime}
$$

$$
t^{2}=.15 p n^{2}=.15(.75)(1.3)^{2}=.1910^{11}
$$

$$
t=.438^{11}
$$

$$
.95 d=(.95)(8)=7.6^{\prime \prime} \quad m=\frac{9-7.6}{2}=.7^{\prime \prime}
$$

$t^{2}=.15 \mathrm{pm}^{2} \quad t$ is governed by . $15 \mathrm{pn}^{2}$ since $n>m$
Use a $1 "$ plate 9×9 because a plate under $l^{\prime \prime}$ is not used in actual practice for a base plate.

Column footing: Sutherland $\&$ Reese Method

$$
\begin{aligned}
& f_{C}^{\prime}=3000 * / a " \quad \text { Use } \quad v_{C}=.02 f_{C}^{\prime} \\
& f_{C}=1050 \# \pi
\end{aligned}
$$

Soil pressure $=2000 \% / \square 1 \quad 60.0 \mathrm{~K}$ Load

$$
\begin{array}{ll}
j=7 / 8 \tag{D.L.Column}\\
f_{s}=18000 \\
\#
\end{array} a \cdots \quad \begin{array}{ll}
6.5 & (\text { D.L. Column) } \\
& \text { (Footing D.L.) }
\end{array}
$$

$$
k
$$

$$
>
$$

$$
\frac{66500}{20000}=33.250^{\circ}
$$

Therefore use a 6X6 footing.

$$
\begin{aligned}
& \nu_{c}=.02(3000)=60 \# / a^{\prime \prime} \\
& j=7 / 8 \quad K=a / L \\
& a=.75 \quad L=6.0^{\prime} \\
& K=\frac{.75}{6}=.125 \\
& c=\frac{w}{504 V}=\frac{2000}{504(60)} \\
& C=.066
\end{aligned}
$$

(Sketch out of scale.)

$$
\begin{aligned}
& \frac{d}{L}=\frac{\sqrt{2 C+4 c^{2}+\frac{k_{2}}{1}-\frac{K}{2}(1+4 C)}}{2+4 C} \\
d= & 6\left(\sqrt{2(.066)+4(.066)^{2}+\frac{(125)^{2}}{4}-\frac{125}{2}[1+4(.066)]}\right. \\
d= & 2.65 \sqrt{2+0.774}=2.65(.266)
\end{aligned}
$$

Actual weight $150(6)(6)(1.20)=6750 *$ other load $=60500$

$$
3667250
$$

net soil pres. $=1870 \# / \pi^{\prime}$
*d used as 1 'because. it' would be to low a value.

\qquad
$\begin{array}{lll}i & \vdots & \because \\ i & \vdots & \vdots \\ i & \ddots\end{array}$

$\begin{array}{llllll}\therefore & \ddots & \ddots & \ddots & \ddots & \\ & \ddots & \ddots & \therefore & \ldots & \end{array}$

Check on shear:

$$
\begin{aligned}
& \left(6^{2}-2.75^{2}\right)=36.0-7.55=28.450^{\prime} \\
& 28.45(1870)=53200 \pm \\
& v_{c}=\frac{V}{b j d}=\frac{53200}{4(33.0)(875)(12)}=38.5 * / 0^{\prime \prime}
\end{aligned}
$$

Shear is all right since $38.5 \neq a^{\prime \prime}<60.0{ }^{+1} / a^{\prime \prime}$
Moment at the edge of cap:
$2 \geqslant / 5$

$$
\begin{aligned}
& \quad(.75)(2.625)(1870) \frac{2.625}{2}=4830^{\prime} 4 \\
& (2.625)^{2}(1870)\left[\left(\frac{2}{3}\right)(2.625)\right]=\frac{22600}{27430^{\prime}} \\
& M=27430(12)=329,000^{\prime \prime} H
\end{aligned}
$$

Effective width:

$$
\begin{aligned}
& .75+2.00+1.625=4.375^{\prime} \\
& R=\frac{329000}{(4.375)(12) / 12)^{2}}=43.5
\end{aligned}
$$

From the tables in sutherland f Reese's text for $f_{C}^{\prime}=3000 \# / 0 " R<236 \cdots$ this checks.

Area of steel $=\frac{329000}{(18000)(7 / 8)(12)}=1.460^{\prime \prime \prime} \mathrm{m4} 325^{\prime}$

$$
A_{s}=\frac{M}{f_{s} j d} \quad \frac{1.46}{A_{s}}=\frac{4.375}{6.0} \quad A_{S}=2.00^{\circ}
$$

Use 8-1/2申 (3) U $^{\prime \prime}$ of $1 / 24=.25^{\circ "}$

$$
\begin{gathered}
n=\frac{V}{0 \mu j^{\prime} d} \\
\mu=.062 f_{c}=.062(3000) \\
\mu=186 \% a \prime \quad 0=\text { perimeter }
\end{gathered} \rightarrow\left\{\begin{array}{l}
6^{\prime} \quad V=\frac{.75+6}{2}(1870) 2.63 \\
\end{array}\right.
$$

$$
n=\frac{16600}{(2.0)(186)(7 / 8)(12)}=4.25 \mathrm{rods}
$$

Since 8 rods were used the design is all right for bond.

The steel is to be laid in both directions and 15 to be 5.5 long.

First floor concrete slab:

First floor and basement plan

Assume a concentrated load of $2500 \#$ on a square $6 "$ on a side.

$$
\begin{array}{ll}
f_{c}^{\prime}=3000 \psi / a \prime & n=12 \\
f_{c}=1050 \% \sigma^{\prime \prime} & v_{c}=.03 f_{c}^{\prime} \\
f_{s}=18000 * / a " & j=.863
\end{array}
$$

Assume:

$$
d=5 " \quad \text { total thickness }=1+5=6^{\prime \prime}
$$

Perimeter around the square $=36$ "

$$
\begin{array}{ll}
v_{c}=\frac{P}{A} & P=2500 \# \\
v_{c}=\frac{2500}{(36)(6)} & =11.6^{\#} / 0^{\prime \prime}
\end{array}
$$

This value indicates a safe range for shear since the maximum $v_{c}=90^{*} / 0 "$.

Check for moment:
Assume a 6" slab section and bearing pressure of $2000 \% / \omega /$ for soil.

	2500	

$$
\frac{2000}{6 / 12}=1000 * / 1
$$

$$
A_{s}=\frac{1740}{18000}=.09701
$$

A of $3 / 8 \phi=.10^{\circ "}$ Use 3/8 ϕ (3)"
The above design will be poured over properly graded subsoil.

For the area over the basement use the following data and computations:

$$
\begin{array}{lll}
\text { L.L. } & 150 * / 0^{\prime} & \text { Use } c=2590(d) \text { from } \\
\text { D.L. } & 75 * / 0^{\prime} & \text { the second floor } \\
\text { total } & \frac{725 *}{} \text { design. }
\end{array}
$$

W beams to be used in the basement:

$$
\begin{gathered}
\text { L. L. }=150 \# / 0^{\prime} \\
\left(\frac{4.5}{12}\right) 150 \text { D. L. }=56 * / 0^{\prime} \\
206 \# / 0^{\prime} \\
(10)(15)(206)=30900
\end{gathered}
$$

use oik

From A.I.S.C.

10 WF 33

Column:

$$
\begin{aligned}
& (10)(11)(206)=22700 \\
& \frac{22700}{2}=\text { Reaction on column } \\
& R=11350 \# \\
& \text { Column \& W } 31
\end{aligned}
$$

Use same size base plates as before.

$$
\begin{aligned}
& M=\frac{w p^{2}}{12}=\frac{225(10)^{2}}{12}=\frac{22500}{12}\left(\text { (va) }=22500^{\prime \prime}\right. \text { * } \\
& c_{j d}=22500 \\
& (2590 d)(863 d)=22500 \\
& d^{2}=\frac{22500}{2235}=10.1 \\
& d=3.18 " \text { Use } 3.5 " t=4.5^{\prime \prime} \\
& A_{1}=\frac{2590(3.5)}{18000}=.5030 \mathrm{~m} \\
& \text { Use } 1 / 2^{A} \text { bars } A=.25 a " 1 / 2 \wedge \text { (G) } 6^{\prime \prime}
\end{aligned}
$$

No negative steel will be use on the first floor slab - except over the basement.

Negative steel 8

$$
\begin{aligned}
& C=2590 d \quad j d=.863 d \\
& M=\frac{w 1^{2}}{10}=\frac{206(10)^{2}}{10}=2060(12)=24720^{\prime \prime} \text { \#t } \\
& C j d=M \quad \frac{24720}{(2590)(.863)}=d^{2}=11.1 \quad d=3.34^{\prime \prime} \\
& A_{S}=\frac{(2590)(3,5)}{18000}=.501^{\circ \prime} \quad \text { Use } d=3.5^{\prime \prime}
\end{aligned}
$$

Use $1 / 2 \phi$ @ $6^{\prime \prime}$

$$
A=.25^{\circ}
$$

Length of negative steel: $A=\frac{\pi d^{2}}{4}$

$$
\begin{gathered}
\frac{12}{28}\left(f^{\prime \prime}\right)+30(\text { bar dia. })=l \text { of steed } \\
\frac{12}{28}(10)(12)+30\left(\sqrt{\frac{4(.25}{3.14}}\right)=52^{\prime \prime}+17^{\prime \prime}=69^{\prime \prime} \\
\rho=5.75^{\prime}
\end{gathered}
$$

Temperature steel 8

$$
\begin{aligned}
& A_{s}=.002 A_{c} \quad \quad \text { /se } 3 / 8 \neq \text { bars } \quad A=.10^{\prime \prime} \\
& .11=.002(4,5)(\text { spacing }) \quad s=12^{+\prime \prime}
\end{aligned}
$$

$$
\text { Use 3/8申 @ } 12^{\prime \prime}
$$

Both the temperature and negative steel were designed the same as that used. In the second floor slab.

Footing for basement column : -
Assume a possible load of 30K to include everything except the footing D.L..
$\because-$

$$
f_{c}^{\prime}=3000 \# / 0^{\prime \prime}
$$

LL. 30.0 K
D.L. $\frac{1,5}{31,5 K}$, (Assumed footing wt.)

$$
\frac{31500}{2000}=15.75=1
$$

$$
j=7 / 8
$$

soil $=2000$ \#/a.

Assume a "d" value of 6" or .5"

$$
\begin{aligned}
&\left.D . L_{1}=(150)(16) X .75\right)=1800 \# / 0^{\circ} \\
& 16 \frac{30000 \#}{\frac{31800}{1990} \# / 0^{\circ}}
\end{aligned}
$$

Check on shear 2

$$
\begin{aligned}
& \left(4^{2}-1.75^{2}\right)=16-3.06=12.94^{\prime \prime} \\
& (12.94)(1990)=V=25700 \\
& v_{c}=\frac{V}{b j d}=\frac{25700}{4(21) .875)(6)} \\
& v_{c}=58.3 * / 0^{\prime \prime}<60 \% / 0^{\prime \prime}
\end{aligned}
$$

Moment at the edge of cap:

$$
\begin{aligned}
& \square(1.625)(.75)(1990)\left(\frac{1.625}{2}\right)=1975^{\prime} \# \\
& 2 \rightarrow \sqrt[S]{ }(1.625)^{2}\left(\frac{2}{3}\right)(1.625)(1990)=\frac{5700^{\prime}}{7675^{\prime}} \# \\
& M=(7675)(12)=92000 \prime *
\end{aligned}
$$

Effective width:

$$
.75+1.00+1.125=2.875^{1}
$$

$$
\begin{aligned}
& R=\frac{92000}{(2.875)(12) / 6)^{2}}=\frac{92000}{1240}=74.2<236 \\
& \text { Area of steel }=\frac{92000}{(18000)(7 / 8)(6)}=.975^{\circ "} \mathrm{in} \mathrm{2.875} \\
& \frac{.975}{2.875}=\frac{A_{S}}{4} \quad A_{S}=1.360^{\circ} \ln 4.0^{\circ} \\
& \text { Use 6- K } 0 \text { 8" }
\end{aligned}
$$

Check on bond:

$$
\begin{aligned}
& n=\frac{v}{0 \mu j d}=\frac{(1990)\binom{4.0+.75}{2}(1.625)}{(2)(.875)(6)(186)}=\frac{7680}{1955} \\
& n=3.93 \text { rods }
\end{aligned}
$$

Since 6 rods were used this checks satisfactory.

The method used in designing this footing. was the same method used earlier in the design.

STORE-FRONT DESIGN:

9" $\times 9$ " base plate - the base plate is set in the foundation then welded con struction is used. The foundation is spread as shown on the print showing the area needed to build building. From A.I.S.C. use \& W-24 for columns Base plate " $\times 9$ "× "

FOUNDATION DESIGN:
For the foundation sections not around the basement:

Assume a 4' frost line.

Block

$$
\begin{aligned}
& \text { Concrete }=150 \# / C w_{1} f t . \\
& 8 \times 12 \times 16=65
\end{aligned}
$$

Take /'strip

$$
\begin{gathered}
\frac{1 c u \cdot f t_{1}}{\frac{8(12 Y(16)}{1728}}=\frac{x}{65} \quad X=73 \# / C M^{\prime} \\
\text { Block }=73 \quad / C U_{1} f t_{1}
\end{gathered}
$$

Use $75^{*} / \mathrm{Cu} . \mathrm{ft}$,

Assume 10^{\prime} of the second floor to be included: in wall weight. Second floor $=165 \mathrm{~m} / a^{\prime}$
Approximate $P=(75)(27.33)+10(165)+4,5(150)$

$$
P=2050+1650+675=4375
$$

Assume bearing pressure $=2000^{+} / 0^{\prime} \mathrm{sol} / \mathrm{l}$

$$
s=\frac{P}{A}
$$

$$
\text { (1) } w=\frac{4375}{2000}=2.187^{\prime} \text { use } 2.25^{\prime}
$$

$\frac{1}{\square} P$ acting directly vertical on a $12^{\prime \prime}$ 2.25 square

$$
\begin{gathered}
v_{c}=90 \% / \mathrm{m} \\
\left.+(12)_{4}\right)=\frac{4375}{90} \quad t=1.01^{\prime \prime}
\end{gathered}
$$

$$
t=0.5^{\prime} \quad \varepsilon^{\prime} \quad w=2.25^{\prime}
$$

$$
\ldots
$$

\square

1 $\therefore \quad:-\cdots$
, , --

For the section around the basement outer wall:

Same loading above earth as before-

Assume $w=3^{\prime}\left\{+=2^{\prime}\right.$

$$
\begin{aligned}
P=2050+1650+ & \left(\frac{16}{12}\right)(9.2)(75) \\
& +(2)(3)(150)
\end{aligned}
$$

$$
\begin{array}{r}
2050 \\
1650 \\
918 \\
900 \\
\hline 5518
\end{array}
$$

Actual

$$
\begin{aligned}
& w=\frac{5518}{2000}=2.759^{\prime} \\
& t=\frac{5518}{(90)(48)}=1.2^{\prime \prime}
\end{aligned}
$$

Use $W=2.75^{\prime} \quad \xi^{\prime} t=1.0^{\prime}$ for practical reasons.

Use $w=1.0^{\prime}$ and $t=1.0^{\prime}$ for the foundation under the $8 \times 8 \times 16$ block wall which forms the inner walls.

Where pilasters are in the walls the foundation swings out around it with the same additional width added to it. (This is shown in the print showing the area needed to build this building.)

LINTEL and BEARING PLATE DESIGNS:

Lintels:
12" Brick masonry wall
Common brick $=120$ \#/ cu. ft. $S=20000 \# / \pi /$ for steel.

All lintel designs will refer to the following sketch:

$l=$ opening in wall
$L=$ total lintel length
$X=$ total weight of left Δ

- . ,
... .! .

For $l=1 /$:

$$
\begin{aligned}
L & =12^{\prime} \\
L_{1}=R & =\frac{\frac{6(12)}{2}(120)}{2}=2160^{*}
\end{aligned}
$$

B. M.

$$
\begin{aligned}
& 2160(6)-\frac{6(6)}{2}(120)(2)=12960-4320 \\
& B, M= \\
S= & \frac{M}{s}=\frac{(8640)(12)}{20000}=5.2^{\prime \prime}
\end{aligned}
$$

From A.I.S.C. use $7[9.8$ with a $1 / 4 " \times 9$ "plate welded to the C.

Drop bolts through the plate to fasten the window-sash.

For $l=10^{\prime}$ use the same structural shapes as those used when $l=1 /$ '. $L=1 I^{\prime}$ for $\rho=10^{\prime}$.

For $l=3^{\prime}:$

$$
\begin{aligned}
L & =4^{\prime} \\
L,=R & =\frac{\frac{4(2)}{2}(120)}{2}=240
\end{aligned}
$$

$B . M$.

$$
\begin{aligned}
& 2(240)-240\left(\frac{2}{3}\right)=320^{\prime} t \\
& S=\frac{M}{S}=\frac{320(12)}{20000}=.190^{13}
\end{aligned}
$$

Use a $21 / 2 \times 2 \times 1 / 4<$ with a $1 / 4 " \times 9$ " plate welded to the L.
-
-

For $l=4^{\prime}$

$$
\begin{aligned}
L & =5^{\prime} \\
L_{1}=R & =\frac{\frac{(2.5)(5)}{2}(120)}{2}=375
\end{aligned}
$$

B. MI

$$
\begin{aligned}
& (375)(2.5)-375\left(\frac{5}{6}\right)=625^{\prime} \\
& S=\frac{M}{S}=\frac{(625)(12)}{20000}=.375^{1 / 3}
\end{aligned}
$$

Use a $21 / 2 \times 2 \times 1 / 4<$ with a $1 / 4 \times 9$ " plate welded to the $<$. $(2 / 2 "$ leg is in the vertical position.)

Position of \angle the same for $\rho=3^{\prime}$ and $P=4^{\prime}$ lintel.
For $\rho=12^{\prime}$

$$
\begin{aligned}
& L=13^{\prime} \\
& L, R=\frac{\frac{13(6.5)}{2}(120)}{2}=2540
\end{aligned}
$$

B. NI,

$$
\begin{aligned}
& (2540)(6.5)-2540\left(\frac{13}{6}\right)=11000 \\
& S=\frac{M}{S}=\frac{11000(12)}{20000}=6.05^{113}
\end{aligned}
$$

Use 7 L12.25 with $1 / 4 " \times 9$ "plate.
Bearing plates:
For lintels:
No actual bearing plate is needed, but the $1 / 4$ " plate will act as such, and the length of the lintels overlap the masonry a $1 / 2$, at each end of the opening.

$$
r-1
$$

$$
!\because
$$

$$
\begin{array}{lll}
1 & -1 & -1 \\
- &
\end{array}
$$

$$
\because \because=, \quad 1
$$

\qquad

$$
\because \because \quad \because \quad \because \cdots
$$

$$
\begin{array}{cccc}
\vdots & \vdots & \cdots & \cdots \\
& & \ddots & \cdots \\
& \ddots & \cdots
\end{array}
$$

Taking the maximum lintel reaction of 2540* and a bearing pressure for a masonry wall of $250 \% / 0$ we get:

$$
s=\frac{P}{A} \quad A=\frac{2540}{250}=10,20^{\prime \prime}
$$

Since the walls are 12" wide ma I" strip would prove a satisfactory bearing area. Therefore no bearing plate is needed.

Bearing plates for the roof truss:

A.I.S.C. Method Bearing pressure $=250 \%$ " $r^{\prime \prime} \log$ of $3^{1 / 2} \times 3 \times 1 / 4<$

$$
A=\frac{20250}{250}=810^{\circ}
$$

Assume $C=12^{\prime \prime}$

$$
12 B=81
$$

$$
\text { net } p=\frac{20250}{12(7)}=241 \# / 0_{k / 0} \quad n=\frac{\beta}{2}-1=\frac{7}{2}-1=2.5^{\circ}
$$

$$
t^{2}=.15 \mathrm{pn}^{2}=(.15)(.241)(2,5)^{2}=.2260 \quad t=.476^{\prime \prime}
$$

$$
\begin{aligned}
& \begin{array}{ll}
& \therefore+ \\
\therefore \cdots+\cdots
\end{array} \\
& \because \because . \vdots i \\
& \cdots=- \\
& \therefore \quad \therefore \quad \begin{array}{r}
\because \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}
\end{aligned}
$$

-..

Use 3/4" plate because this is the thinnest used in actual practice. Welded construction is used along with anchor bolts.

Bearing plates for the floor beams:

$$
A=\frac{15000}{250}=60^{\circ "}
$$

Assume $B=8$ " $C=9$ "
net $p=\frac{15000}{(8)(9)}=208 \# / a " n=\frac{8}{2}-1=3$

$$
t^{2}=(.15)(.208)(3)^{2}=.281 \quad t=.53
$$

Use 3/4" plate $8^{\prime \prime} \times 9^{\prime \prime}$ - Use welded construction and anchor bolts.

1

