A COMPARISON OF THE BIOCHEMICAL AND HIGH-RATE FILTRATION PROCESSES IN THE TREATMENT OF MILK WASTES OF THE BORDEN CONDENSERY AT PERRINTON, MICHIGAN

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE Robert W. Rothe 1940

SUPPLEMENTARY MATERIAL
 IN BACK OF BOOK

A Comparison of the Elochenilcal and
High-Rate Filtration Frocesses in
the treatment of milk vastes of
the Borden Condensery at Ferrinton. lickigenA Thesis Submitted toThe Faculty of
LUICHIGAN STATE COLIEGE
01
AGRICULTURE AND APPLIED SCIENCE
by
Robert Fi. Rotho
Candidate for the Degree ofBachelor of Soience
June 1940

THESIS

Cong.1

Acknowledgement

I wish to express my sincere appreciation and indebtedness to K. E.F. Eldridge for his advice, and suggestions rendered to me in the preparation of this thesis.

Imrioudurin

The purpose of this thesis is to compare two processes for the treatrent of milk waste as applied to the needs of the Borden Corpany ililk Condensery locnted at Ferrinton, Liohigan.

This commarison will involve:
(1) A study of the factory and the wastes from it.
(a) Source of wastes.
(b) Volune.
(c) istrength.
(3) A preliminnry desien of the treatment plant as follows:
(a) High rate filtration with stone filter.
(b) Biocherical treatment with ferrio chlorice and lime.
(3) Comparison of duties as to operation, etc.
(4) Detormination of cost of each plant.
(a) Initial or first cost.
(b) Cost of operntion.
(5) Comparison f relative effienoies of ench plant as to treatment and operation.
(c) Beleation of plant nost suiteble to Borden Condensery at lerrinton.

Experimental plents of both types have been set up and tried ot the plant at ferrinton. Various raten of application and doseges being uscd. Fron the results of those tests and enalyses comiled by ir. E. F. ildride, the nethod giv-
ing the best results wns determinew and used in the vriting of this thesis.

The selection of methods of treatriont for milk wastes should be adapted to the local sitnation with partioular reference to the derree of purification neoessary and the characteristios of the woste from the nilk plant in ruestion.

The condensery at Jerrinton is equinped for the separation of cream, condensint of milk, and the production of dry milk powder. The individual mastes that make up the comrose ite for any one day at tie plant consist of the following:
(1) Waste wator fron washing cans and other utensils.
(a) Borub and rinse mater from the floors. This includes any milk or crearl and slimmed milk that spilled on the floor, and the dirt that collacted.
(3) baste water from toilets and washroons. Volume of Ravg Viaste

The volune of raw waste fiow was determine by weir measurements from a $90^{\circ} \mathrm{V}$-notoh weir. 'i'he results of these measurements are comnilad in mable 1.

Vate		/14		/15		/4
Time	H	Gal/iln.	II	Gal/isn.	H	Gal/uin.
8 A. ${ }^{\text {LI }}$	0.16	11.70	0.19	16.50	0.09	2.78
9 A. II.	0.19	16.50	0.23	13.80	0.15	9.70
10 A.	0.00	20.05	0.23	28.20	0.17	13.37
11 A. in.	0.19	16.50	0.83	23.20	0.20	20.05
12 lioon	0.23	28.20	0.28	46.25	0.20	20.05
1 P. .i.	0.23	23.20	0.30	55.15	0.20	2.05
2F.I.	0.20	33.44	0.30	55.15	0.2:3	20.50
3 I. I.	0.25	34.75	0.80	33.44	0.27	42.35
4 P . H .	0.25	34.75	0.83	45.25	0.29	50.20
		229.09/9		342.34/9		205.05/9
		$=25.47$		$=33.04$		$=82.80$
$\begin{aligned} & 25.47 \\ & 38.04 \\ & 22.80 \\ & \hline \end{aligned}$		86.39/3	equals	88.8 Aver	ge Fl	(Gal/ais
86.39						

Ihis method of disposal consists of applying the milk waste along with the recirculsted effluent to a biologiogl stone filter designed for a continuous applioation. In this wey, the effluent which is returned from the filter mixes with the raw waste as it enters a holding tank, therefore causing considerable dilution and reducing the B. O. D. ${ }^{1}$ of the raw waste. This reduocd B. O. D. of the waste makes it possible to increase the amount and the rate in which it Is applied. A quantity of treated waste equal in amount to the raw waste entering the holding tank is discharged continuously es the final effluont.

Design of a High Rate Filter
\therefore plant giving comrlote trentment by this uncthod onsists of three units:
(1) A holding tank to equalize wnsto and give a Ionger period of operation for the filter.
(2) The filter.
(3) A setting tank to romove suspended material from the maste discharged by the filter.

Holding Tank:

[^0]1 Biochemical Oxygen Leniand
conditions of nomal orerstion. lhis deta end results are show in teble number 1. Composite samples of the rew waste were also trien and anolysed for 5 day B. $0 . D$. as shom in Teble number 2.

Results of inolyses of Lilk Filter
Table No. 2 Comosite Samples

Date	5-Day B. O. D.			Suspend od Solids		
	$\begin{aligned} & \text { Raw } \\ & \text { nom } \end{aligned}$	\qquad	$\begin{aligned} & \text { Heduc- } \\ & \text { tion } \end{aligned}$	Haw nna	$\begin{gathered} \text { Minal } \\ \text { Effluent } \\ \text { Dpon } \end{gathered}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion } \\ & \hline \end{aligned}$
9/6	355	27	02.4	304	76	75.0
9/7	675	33	94:4	472	70	8510
9/3	3.50	70	80.0	272	98	64.0
9/9	803	43	94.0	1108	120	29.2
9/11	540	43	93.3	644	76	88.1
9/12	573	47	91.6	382	106	62.4
9/13	407	50	87.7	264	83	66.6
9/14	413	43	89.4	606	128	78.8
9/15	713	49	93.1	404	62	85.4
10/4	775	**	****	***	***	****
AVLRAGE	560	46	91.8	434	92	77.1

The average B. O. D. of the effluent from the present filter at Ferrinton is 40 ppw . The raw waste entering the holding tank has en evorafe B. O. D. of 560 ppm

Frevious experiments have shown that the mixture applied to the filter gave best results if the B. O. D. when arplied was botween $150-200 \mathrm{ppm}$.

By recirculating a mixture 8 tines the rnv wa: te flow,
the reanesd B. O. L. of the mixture by dilution ma found to be 110 ppr.
 $7 / 8$ of racirculation 15 final eff. B. O. . . $=467 \times 46=322$

8 parts 882
B. O. D. of mixture is $839,8=110 \mathrm{ppm}$, which is within the limits prescribed for beet results.

The holding tant is docicned for a copacity equal to the total dally flow plus $25 ; 5$ for night flow. The wasto is discharged for nine hours 2 esy, the greatost concentration is arnund four o'clook in the sftermoor, when oonsiderable washing up of the plant occurs. The night flow is relatively low and is nrectionlly clenr weter.

Average flow equnls $2 \pi .8$ Gallons per minute.
$28.8 \times 9 \times 60$ equals 15,550 Gnillons
25\% increase equals 3,885
19,435 Gallons
Required capacity oi the tank: $19,435 / 7.48=2,598$ Cubic feet. The tank was designed to allow for settling end the removal of sludge accur ulutcd. The bottom of the tank was given a slope at the entrance so that thene is a drop of one foot in fourteen feet to a surp which is deeper by one foot. The sump was made two fuct in with and has a beffle separating it from the reat of the tenk. A t one end of the sump there is a draw-off pipe and vaive which runs through the wall soparating the holding tank from the settiling tank. (The same purp and pire line is used for drawing sludge from
both tanks. Geite vilves erc placed in the line so that they may be cirawn off separately.) it the far end of the holding tank a $2^{\circ} x 2^{\circ} \times 1^{\prime}$ sump and pump was placed to nurn the mixture to the filter.

Caloulations:
Required capacity of tank equals $\therefore 593$ cubic reet.

Aotual volume from adonted dimensions:
Sump (2×2x1)
Sluage tank (11 x 13.6)
4.0
$\equiv \quad 149.6$

Lemainder of tank (30 x 5×13.6) 2448.0
2601. 6

Allow 3.5 foot freeboard $=\quad 630.0$
3231.6 oubio feet

A ctual height of water surface (from top of sump)

$$
\begin{aligned}
2598-4-(11 \times 13.6) & =30 \times 13.6 \mathrm{~h} \\
2598-149.6 & =408.8 \mathrm{~h} \\
\mathrm{~h} & =\frac{2444.4}{408}=6 \text { feet }
\end{aligned}
$$

Design of Pilter:
The filter is desisned for the appliartion of 200,000 gallons of water per acre per day.

The amount of waste applied is:
$Q=8 \times$ average ra whstc flow
$=8 \times 28.8 \times 40 \times \because 4=332,000$ gallons per day filiter area required:

A $=(332,000 \times 43,560) / 2,000,000=726$ square feet
$\alpha=\mathrm{V} \times 4 / 3.142 \times 726$
$=30.4$
The illter consists of a large cylindrical reinforced concrete tank set above the surface of the ground. The bottom wes given a slope of $1^{\prime \prime}$ in 8^{\prime} in the direotion of the outlet. Drainese is by half-tile pine laic in pasallel rows with open joints runing townas the outlet. To fecilitate dreinage, amall reotencular charrel was set in the floor and covered with loosely jointed brick so that the upper surface of the briok is flush with the floor of the filter. it each end of the parallel lines of tile drains on the floor an upright 6° tile pipe is placed to provide circulation of air to the stone. This pipe is placed to provide circuculation and extends just to the suriace and 13 su norted by the stone surrounding it.

The size of stone used varies from four inch diameter for a depth of one foot to a size botween $2 \frac{17}{7 n}$ and $3 \frac{1}{7}$ up to the surface making a total depth of six feet. A four foot pier wos constructed in the center for holding the shaft of the rom
tating distributor. It is of rectangular cross section varying from a side of two feet at the base to one foot at the top. The shaft of the roteting arm is stationary, and fixed Into the concrete so that over $2 / 3$ of it is embedded for support. The pine line from the purip at the holding tank joins this shart in a tee connection just above the pier, but below the surface of the stone. Various types of distributors may be purchased from concerns specializing in their construction. The type conterplated for use in this problem was one which would be supported on the end of the fixed shaft by a ball bearing arragement at the end.

The influent from the holding tank is mixid with the reairculated waste fron the filter and apolied at the rate of 230 gallons fer minute.. This diluted waste was proportioned so that $1 / 8$ of it is raw waste and $7 / 8$ the reoirculated effluent from the setting tank. I'hus, a volume equal to 8 times the raw waste from the plant is applied continuously to the filter, and an amount equal in volume to the raw waste is discharged to the strearn, aiter passing through the settling tank.

The Settiling Rank:

The effluent from the filter flows by gravity into the settiling tank. The pipe entere the end of the tank at an angle so that the wall is used as a baffle in abating its velooity. A weir equal in length to the width of the tank was placed at the other end. The effluent flows over this weir into a small channel which in turn discharces into a
weir box with a $90^{\circ} \mathrm{V}$-notch. An outlet in the bottoin of the box returns $7 / 8$ of the flow to the inlet pipe of the raw waste as it enters the holding tank. Ife remainder of $1 / 8$ of the effluent, which is equal to the volurse of the raw maste flows over the weir and is discherged into the stream.
'l'he tank is designed with a hoppered bottom dosigned so there is a detention neriod of 30 minutes. A sludro draw-off pipe and velve is placed et the contor of the tanl. This same purip and pipe line is used for draving sludze fron the holding tank.
cialcilations:

$$
\begin{aligned}
\text { Tank Caphoity: }= & 1 / 24 \times \text { detention neriod } \times \text { flow } \\
& 1 / 24 \times 1 / 2 \times 332.000=6,920 \\
& 6,020 / 7.18=905 \text { cubic feet required }
\end{aligned}
$$

Volume of desisned tank:

c 120 - fairly smooth f 0.0269

h $11 / \mathrm{d} \times \mathrm{v}^{2} / \mathrm{a} \mathrm{e}$
$\frac{0.0269}{4 / 12} \times r^{2} / 2 \mathrm{c}$
$0.0807 \times V^{2} / 2 g$

Item	$v^{2} / 20$
Entry	1.00
90 Bend	0.50
5. -4 Mpipe	0.42
90 Bend	0.50
4: Plpe	0.32
90 Bend	0.50
10. Pipe	0.81
45 Bend	0.13
18' Pipe	1.45
90 Bend	0.50
$7 . \quad$ Fipe	0.56
Tef	1.50
2' - 6npipe	0,21
Total	9.46

Aree of 4^{*} pipe 0.0873
ค $\begin{array}{ll}230.4 & \text { E.p.m. } \\ 0.513 & \text { c.f.s. }\end{array}$
$\nabla \mathrm{N} / \mathrm{A} \quad \frac{0.513}{0.0873} \quad 5.87 \%$ sec.
$r^{2} / 2 g \quad \frac{(5.87)^{2}}{64.4} \frac{34.7}{64.4} \quad 0.538$
Los: -

$$
9.46 \times 0.5385 .10
$$

Loss in distributor

> 30 Openings assume $3 / 8^{\circ}$ diameter

A $0.7856(1 / 32)^{2}$ 0.000767

C per nozzle -

Loss 11.64*
ws elevation of dist.
103.5
w.s. \quad in hold tank static head dist. loss pipe losse
Total puinping hesd $\frac{5.10}{27.24}$

h $7.66 \times 0.004050 .031$

c 180 lairly smooth
I 0.0269
h $11 / \mathrm{d} \times \mathrm{V}^{2 / 2 g}$
$\frac{0.0269}{4 / 12} \mathrm{~L} \mathrm{~V}^{2} / 2 g$
$0.0807(\mathrm{~L}) \mathrm{V}^{2} / 2 g$
A 4"pipe 0.0873
Q $20 \mathrm{g.p.m}$. 0.0445 c.f.8.
$V \quad 0 / \mathrm{A} \frac{0.0445}{0.0873} \quad 0.51 \% / \mathrm{sec}$.
$v^{2} / 2 B \frac{(0.51)^{2}}{64.4}$
$\frac{0.2615}{64.4} 0.00405$
Statio heed 3.000
eriction $\quad 0.03$
Total pumping $=\frac{3.03}{}$ feet

The biochemical treatrent process of milk waste trentment is known as the Guggenheim Process, patented by the Cuggenhein Hrothers, New York City.

In this prooess the milk waste is treated with ferrio chloride and lime and then aerated. The floo resulting from aeration is allowed to settle, and the sludise which is aocumpated is returned to the raw waste to pass again through the process.

From previous tests run on the ra:\% wastes at Ferrinton, it was found that lime applied at the rate of 100 ppra and ferric ohloride at 30 to 40 ppm gave the best results when aerated for a period of four hours.

The plent for this type of treetment consists of the following unite:
(1) A holding tank for recoiving the raw waste.
(2) Chemical tanks.
(3) Lixing device.
(4) Aeration tank.
(5) Settiling tonk.

Lolding Tank:

The volume of the tank is desiened so that is is possible to pump at a constant rate and have the tank emptied once every 24 hours. The pumping rate was determincd from

The everage hourly flows complied from the flow data of the plant. A numping pate of 25 eallons per minute wis found to be sufficient. 娒 starting, the rump in oneretion at 10 A. . W., theie is sufficient accumulation of rew waste to permit a constant onerntion of the mun through the whole working day. The maximum rov weste flow occurs at 4 o'clock when considerable weshing up oosiris in the plant. The naximm volume which will be in the tank will ocour at about this timo and amounts to 6,398 frilons. 'i'he rasy waste flowing into the tank grocually decronses ofter four o'clook so that the purping rate sonn exoeras it and cvontually cropties the tank.
a tonk of 8,000 eallons capacity wes requirod.

$$
\frac{8.000}{7.48}: 1,070 \text { orvio foet }
$$

Thus the punp will be in operation about 1? hours each day.

The table bolow shows volume of waste in the tink for eny hour of the day.

Time	Paw inste Hiow $\mathrm{Gal} / \mathrm{i}$ in $\mathrm{Gal} / \mathrm{Hr}$		Lraw Vown by Purnp $1500 \mathrm{Gal} / \mathrm{Hr}$	Volume of haste In Tank Gallons
7-8	10.33	620	Nene	820
8-9 La	14.80	8 88	None	1508
9-10 AIS	20.54	1330	itart lump	2738
10-11 Ai	21.53	1295	1500	2533
11-12 fin	31.50	1890	1500	2923
12-1 Dis	34.50	2070	1500	3493
1-2 IMI	40.03	2400	1500	4393
2-3 Pid	38.51	2310	1500	5203
3-41-21	43.73	26:35	1500	6323

5-day B. 0.1 .			fieration tank
$\begin{aligned} & \text { Taw } \\ & \text { pom } \end{aligned}$	$\begin{gathered} \text { Preated } \\ n n m \\ \hline \end{gathered}$	$\begin{gathered} \text { Reduction } \\ \text { Eercont } \end{gathered}$	$\begin{aligned} & \text { Suspended } \\ & \text { cur } \end{aligned}$
123	5	95.8	3340
150	10	93.4	1.55004
170	11	98.8	2.02204
190	40	79.0	- - -
200	16	92,0	3.72792
204	15	92.8	1.3 2868
214	34	84.2	- -
231	30	87.0	1.11043
233	5	97.8	2.5 4.476
250	30	83.0	1.3 3064
253	33	91.1	1.3 --
253	17	93.6	3.62404
266	17	83.6	2.02163
285	55	80.6	2.0 -
290	39	85.5	2.5
290	23	92.0	3.1
85	39	91.0	1.11016
3.38	32	90.6	1.4 3844
34.3	60	82.5	2.023352
356	48	86.5	1.62568
400	37	91.0	2.8 3156
400	37	91.0	2.54292
408	128	68.5	- -
415	34	91.7	2.63924
447	64	85.7	- --
450	35	92.3	3.42203
480	34	93.0	3.01024
450	25	94.4	2.5 3664
500	36	92.9	3.03000
585	5%	89.2	2.0 2i264
536	52	90.2	2.01904
624	73	87.5	2.02200
650	48	92.6	2.71016
654	42	93.6	3.02524
684	147	77.9	2.0 2500
740	42	94.4	3.01032
815	107	8 C .8	2.8 3000
1000	107	89.8	3.07520
1004	120	88.0	3.01761
1268	135	89.8	2.02175
1300	43	96.5	3.0
	156	90	20.2504
Avg 476	51	89.2	2.4 2746

DRAWING OF HOLDING TANK SHOUTING DLUWGIUTS

Ail VOLUMSB

Volume of tank assuming one foot freeboard equals 1360 cubic feet. The tank was given a hoppered bottom to prevent any accumulation of solids on the sides. The dram off pipe was placed in the center so the exit is flush with bottom of the tank. The drawoff pipe runs to a pump set in the bottom of a well at the same elevation as the draw off pipe.

The tank is also provided with two lengths of air pipe, each 18 feet long to keep the raw waste in a fresh conditimon. A valve on the line permits adjustment in the amount of flow.

The raw waste pump is of the centrifugal type. The pipe line from tank to pump was designed to give a velocity of 215 feet per second at the point of discharge, into a mixing box $10 \frac{1}{2}$ feet directly above the pump. A pipe 2 inches in
diameter was used to give this velooity and thereby provide turbulence for the mixing of the chemicals in the box.

The caloulations for the pipe line and the horsepower required follow:

Plpe Priotion

$$
\begin{aligned}
\varepsilon & =120 \\
\mathbf{s} & =0.033 / 800 \\
\mathbf{h} & =11 / \mathrm{d} \times \mathrm{v}^{2} / 2 \mathrm{~g} \\
& =0.033 \mathrm{~L} \mathrm{~V}^{2} / 2 \mathrm{~g} \\
& =0.198 \mathrm{~L}\left(\mathrm{~V}^{2} / 2 \mathrm{~g}\right)
\end{aligned}
$$

$q=25 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{m}_{\bullet}=0.0556$ c.f.s. V = 2:/sec。

Use a 2 pipe

$$
\begin{aligned}
A & =0.7856 \times(2 / 12)^{2} \\
& =0.02182
\end{aligned}
$$

$=\frac{0.0556}{0.02182}$
$=2.55 \mathrm{sec}$.
$v^{2} / 28=\frac{(2.55)^{2}}{64.4}$
$=0.101$

Item $\quad \nabla^{2} / 2 g$

Entry	0.10
90 Bend	0.50

$$
\boldsymbol{v}=\mathrm{n} / \mathrm{A}
$$

12.5.Pipe 2.50
10.51pipe 2.30

Discharge 1.00
6.40

Friction head $=6.40 \times 0.101=0.646^{*}$
Static head $=10.50$
Total head $=\overline{11.146^{\circ}}$
Horse power of pump required. (assume 50% efficient)

$$
H_{.} P_{\bullet}=\frac{25 \times 8.34 \times 11.146}{330000 \times 0.50}=0.1448
$$

Assuming motor is 85\% efficient -

$$
\text { H.P. }=\frac{0.1448}{0.85}=0.1700 \quad \text { Use a } 1 / 4 \text { H.T. motor }
$$

13xing Box and Chomical Feeders:

The velocity from the centrifugal pump unon discharge into the mixing box gives sufficient turbulence to the waste so that the lime and ferric chloride which are added at this point are kept in constent motion.

The box is of rectangular cross-section with a co ciegree ∇-notch outlet at one end.
hount of Line:
The lime is applied by menns of on electrically vibrated feeder manufactured by the Jeffry-Traylor Co. The capacity is rogulated by menns of a calibrated dial transformer. For this installation it is to be set to deliver 100 pnn or 1.25 pounds per hour.

Q : 25 Gellons per minute
$1 \mathrm{ppm}: 8.34$ pouncis per million gallons

$\frac{100 \times 25 \times 60 \times 8.34}{1,000,000}: 1.25 \mathrm{ibs} . / \mathrm{ho}_{\mathrm{u}}$
 The feeder can be provided with one, three, or

five cubio fect hopper enpacities, furnished by the mnnufacturer.

Amount of Ferric Chloride:
A 40% solution of ferric chloride is to be applied by means of a sinhon set to deliver 30 ppm or 0.375 pounds per hour.

$$
\begin{aligned}
& \frac{30 \times 25 \times 60 \times 8.34}{1,000,000}: 0.375 \mathrm{lbs} . / \text { hour } \\
& .375 \times 1000 / 262: 170.5 \text { grans } \\
& \text { A } 40 \% \text { solution is used: }
\end{aligned}
$$

$$
\begin{array}{rll}
170.5 / .40 & : & x / 6 \\
x & : & 255.5 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O} \\
& 170.5 \mathrm{~g} \text { of } \mathrm{FeCl}_{3}
\end{array}
$$

$$
\begin{aligned}
& 170.5 / 255.5=.677 \text { grams per cubic centimeter } \\
& 255.5 / 60=4.26 \text { co per minute } \\
& .677 \times 4.26 \times 2.2 / 1,000 \times 60=0.375 \text { if per hour. } \\
& \text { Therefore, the ferrio chloride siphon is set } \\
& \text { so that it delivers } 4.36 \text { cubic centineters per min- } \\
& \text { ute. with a constant flow of this emount, a five } \\
& \text { eallon bottle is of sufficient copscity to allow } \\
& \text { a run of six days before refiling. } \\
& \qquad 1 \text { \&allon }=3,785 \text { cubic centineters } \\
& \frac{5 \times 3,785}{4.26 \times 60 \times 12}=6.18 \text { days }
\end{aligned}
$$

Gravity Ilow to heration Tank:

The milk wnste flows by gravity from the mixing tank to the aeration tank. It is carried by means of a 60° triangular trough with a side of one foot in length attached to the outlet at the end of the box. The trough has a slope of $\frac{1}{2}$ foot in ten feet from the mixing box to the return sludge pipe. it this point, the trough ohanges its direotion 90° and follows the wall of the aerotion tank to within one foot of the end wall where the waste is discharged. This slope of the trough and the 90° bend provides a hydraulic pump effeot so that the miak waste chemicals and return sludge should be well mixed upon disoharge into the acration tank.

Seration Tank:

The oapaoity of this tank is desifned so that there is four hours retention.

$$
4.0 \times 25 \times 60 \text { equals } 6000 \text { gallons }
$$

Twenty-five percent of the total flow is allowed in the aeration tank also for return sludge.

6000 plus 1500 equals 7500 gallons $\frac{7500}{7.43}$ equals 100 cubic fect required.

The seration tenk whe made rectengular, and the same in depth and length es the holding tenk to make possible the use of a comion wall for the two tanks. The total volume of the tank including one foot freeboard is 1125 cubic feet.

Previous exncriments shof that a çuantity of air equal to 5 cubic feet per gallon give the best results, with 15\% of the surface area provided as aeration area.

The diffuser pipe used in the experiments were of $13^{n \prime}$
lengths perforated with $3 / 8$ inch oircular openings. Each length of pipe mas wroppod in oloth fabric of the following dimensions:
 $=1^{\circ} \cdot 3^{\circ}$ of pipe.
surface area of tank -

$$
20 \times 6.0=120^{\circ \prime}
$$

15\% of surface area is for aeration -

$$
120 \times 0.15=18 \text { sq. ft. }
$$

$18 \times 3=54$ ft. of fabric covered pipe required.

Three lines of lis "pipe at 18^{\prime} per line were placed at the bottom of the tenk. A header was pleoed above the surface of the tenk as shown in the sketoh.

The header is provided with valves, so that each line of air pipe may be regulated separately, or be removed for repairs without interrupting the operation of the others. Two air meters were placed on the delivery line from the air compressor so that the quantity of flow may be measured for the aeration tank and the air lift.

The effluent from the aeration tank flows into the settling through a triangular outlet loost d disegonally opposite the point at whioh the waste enters.

Settiling Tank:

The settling tank is designed for a retention period of one hour.
$25 \times 60 \times 1$: 1500 gellons
A llowing 25%, or about 400 gallons for the sludge which is being continually reciroulated back with the raw weste, 2000 gallons capacity is sufficient.
$\frac{2000}{7.43}$
equals 267 cubic fect required

The tank is designed with howrered botton and small sump at bottom of 2 cubic feet capacity. an air lift pipe is used to lift the settled sludze to the surfece where it is discharged into the raw waste as it flows to the aeration tank. Ar Lift:
25% of the flow is recirculated into the raw waste by the air lift

$$
G=\frac{25}{4}=6.25 \mathrm{~g} \cdot \mathrm{p.m} \cdot=0.0139 \mathrm{c.1.8}
$$

$$
\text { Try } 2 \text { " sludge pipe } A=0.01228
$$

$$
\begin{aligned}
& v=0 / A=\frac{0.0139}{0.01228-0.00136}=\frac{0.0139}{0.01032}=1.25 \% / \mathrm{sec}
\end{aligned}
$$

The air pipe is placed within the eduction pipe.
The amount of air for the lift is regulated by a valve placed between the delivery pipe and the min line. To take care of excess sludge, a sludee pipe was placed at the top of the eduction pipe to onrry the exsess off where it enn be discharged or hauled avay. A ralve wos placed on both lines so that the flow of sludge through each may be regulated.

The elevation of the water surface in the aeration and settling tanks 13 kent constant by a rectanezilar welr placod on the dischar;e side of the settling tank. The supernatant effluent discharges over the weir into a mall fluas which in turn discharges into a weir box and thence to the strean.

The weir box will enable mensurement of flow so that the pumping rate from the holding tank may be known at eny time.

dejerination of cout

Concrete in Filtration Flant:

(1) Holding and settling tanks: 2005 cu.ft. (assuring a wall 10^{*} thick)
(a) Filter base and wall (1" thioli) 1810 ou.ft.

Covering of holding tank ves ascurod $6^{\prime \prime}$
$\frac{3315}{27}$ cu.ft.
141.5 cu.yd.

Conercte in Biochemical Fiant:

All valls and floors $10^{\prime \prime}$ thick
Holding tank oover 6" thick
lieir and mixing boxes 6" thick

$$
\begin{aligned}
\text { Total volume required } & : \quad 1647.7 \text { cu. Pt. } \\
& : \quad 61.0 \text { ou.yd. }
\end{aligned}
$$

Item	Quantity	Unit Frice	Amount
Hecatation	$340 \mathrm{cu.jd}$.	\$1.00	\$ 340.00
Reinforoed Conerete and forms	$141.5{ }^{\circ}$	50.00	4250.00
$4^{\prime \prime}$ C. I. Fipe	$76.3{ }^{\prime}$.80	46.00
$4^{\prime \prime} 90^{\circ}$ Bends	9	1.25	12.50
$4^{\prime \prime} 45^{\circ}$ Bends	1	1.25	1.25
4" Gate Valves	2	50.00	100.00
4"x 4×2 Teos	2	1.25	2.50
Valre Stands	2	20.00	40.00
230 gpm Funp and Notor	1	400.00	400.00
$20 \mathrm{gpmi} \quad$ \# \quad *	1	150.00	150.00
Rotating $\mathrm{H}_{\text {istributor }}$	1	150.00	150.00
Split drain tile	200^{*}	.10	20.00
Briok	200	\$15./2000	3.00
6" Tile Urrights	54	. 40	21.60
Filter Stone	187 cu. $\mathrm{y}^{\text {d }}$.	3.00	561.00
Eleotrio Viring		75.00	75.00
Contingenoies : 15\%			$\begin{array}{r} \$ 9172.00 \\ 925.00 \end{array}$
Dstinated Total Cost			\$ 709\%.85

Item	Cuantity	$\begin{aligned} & \text { Unit } \\ & \text { Price } \end{aligned}$	Amount
iscavation	200 ou. yd.	\$1.00	\$ 200.00
Reinfored Conorete and foms	$61 \mathrm{cu} . \mathrm{yc}^{\text {a }}$.	30.00	1330.00
s" Geite Velves	1	50.00	50.00
25 gna purp and motor	1	150.00	150.00
Air meters	2	75.00	150.00
Air compressor	1	250.00	250.00
14' Aim Fipe Galvan.	150*	. 14	21.00
12" Brass Velves	6	6.00	36.00
1.' Elbows	5	. 30	1.50
14" Tees	8	130	2.40
Lime Feeder	1	125.00	125.00
2" Pipe	43°	. 25	11.50
$\begin{aligned} & \text { Conorete-Triangular } \\ & \text { Trough } \end{aligned}$.75 cu. yd.	30.00	22.50
4' C. I. Fipe	$17.5{ }^{\circ}$. 60	10.60
$4^{\prime \prime} 90^{\circ}$ Bend	2	1.25	2.50
			\$2662.90
Contincencies: 15\%			400.00
Estimated Total Cost:			\$3062.90

OMBRARITM COURS

Hish linte Filtration:

(1) Depreciation:

A Iife of 20years is assumed with depreciation at 5% per year.
$\$ 7097.85 \times 0.05:$
\$ 360.00
(2) Labor:

The lnbor required amounts to ebout t::o hours per
dey. Assuming irl. 00 per day, 1×365365.00
(3) Furping costs:

The raw waste purp is the largest iten. lost of electricity is assumed to 2 cents per kiloratt hours. Por a 3 H. P. purn.

$3 \times .746 \times 24 \times .02 \times 365:$	392.00
Sludee purning costs:	8.00

Total oneratine cost:
\$ 1125.00

Biocharienl Trontment:

(1) Lenrecintion: at 12%
. 1 x x 3062 :
$\$ 366.00$
(2) Lorbor:

Ancroximntely $\frac{1}{3}$ day by shilled operator. $\quad 100$ per month.
$\geq 100 \times 12 \quad 1200.00$
(3) Lime: 1.25 if per hour: 12 hour operstion.

1. $25 \times 12 \times 6 \times 52: 4675$ 1bs.per 4625/2000 : Sils. Pon in secks : 42.00
(4) Ferric Chloride: 0.375if/Lr.
$0 / 375 \times 12 \times 6 \times 52: 1400$ 壮/Yr。.07: 93.00
> (5) Fuming Cost:
> (3) 802 por kilowtit hour For a 2 horsepover motor, $2 \times .746 \times 24 \times .02 \times 565 \quad: \quad 260.00$

> Total Operating Cost:
> $\$ 1966.00$

COAN ISON OF DUNITS

Mintetion Inant:

(1) Three to Pour weeks is required to dovelop tho filter orenians. To aid in building it up, a wor extract of minure ney be used.
(2) Composite samplos should be collected enu anelysed occesionally to detcmino the strength of the weste applied. If it becomes too strong, movision nust be made for diluting it with clenn wher.
(5) The holes of the distributor ams zust be minde cloan occasionally.

Chemicel Trentment:

(1) A trained onerator should be at hena at lenct half of the diny. He shoulu run tests and enalyses ocesionally to chock the ofineiency of treatment.
(2) The holaing tour must bo oomletely emtiod once eech day to prevent septic conditions. the walls should be mohen with wier onco e weok to prevent septio ections.
(3) Rew woste should bo kopt fresh by pesoing a small qu*ntity of air into it.
(a) The lire fecicr should be mantained to aeliver 1.25% por hour at a purning rate of 25 gmm.
(5) The ferrio chloride siphon should be set to deliver about 4 cubic centimeters per minute.
(6) The amount of air delivered to the eeration tank should be 5 cubic feot per callon or 125 cu.ft. ner minute when pumping st 25 gallons per rinute.
(7) The sludfe in the setling tank must be kept moving into the acration tank. If an accurulation of sludge occurs septic conditions will develop which nay u;set the process.
(8) Buspended solids in the aeration should be maintained at 3000 p.p.m.

Treatment	rirst Cost	Operating Cost Fer Year	iverage Reduction Be O. D.
Filtration	\$7097.85	\$1125,00	91.8%
Biochemioal	念 3062.90	§1966.00	89.2\%

From the comparison of duties it is evident that the high rate filtration process requires the least attention for erficient operation. the first oost of this plant is twice that of the biochemical treatrient, but the operating costs of the lattor is higher since muoh more attention is required to maintain the proper procortioning of chemicals, wnste, and air. The average b. 0. D. . reduction $^{\text {is about the same for each }}$ plant, both processes being very efficient.

Fidridge, F.F. "A Further Study of gilk Waste Treatment Processes, " Eulletin 77, Wich. Eng. Exp. Sta. East Lansine. 题ch. Nov. 1937.

Fldridge, E.F.." The Disposal of Wastes From wilk Products plants," Bulletin 272, Mich. Eng. Exp. Sta. Eest Laneirg. Mich. June 1936.

Eldridge, E.F. and Theroux, F. R_{0}. Report on Senitary Engineering Projects Year 1936" Bulletin 71.

Steel. E. W. and Zeller. P.J.A., The Treatment of Dairy Wastes," Bulletin 38, Texas Eng. Exp. Ste., Hay 1930.
 Wisconsin." Reprint from Sewage Forks Journal. Vol.10. No. L_{2} Jan. 1938.

Eldridge, F.F.: Report On Sanitary Engineering Projects 1938, Bulletin 83 Mich. Eng. Exp. Sta. East Lansing. ML. Nov. 1938.

Anar, CoA.g" Practical frethods of Preventing Dairy Taste "uisance," Reprint from Sewage works Journal. Vol. 10, Jan. 1938.

[^0]: Before any attempts wore made at designing, the average daily flow from the condensery was determined from flow moasurements taken over a period of several veeks under

