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CERTAIN SUMMATION AND CUBATURE FORMULAS
le INTRODUCTION

Certain epproximation formules in one variable have been
presented © Dby which a sum is estimated by taking h times the sum of
every h*® term. The value of these summation formulas of Lubbock and
Woolhouse is that they contain remainder terms which give upper bounds
for the error in calculation,

The major purpose of this paper is to obtain extensions
into two variables of Lubbock's formulas of the first, second, and
third type, and of Woolhouse's formula of the first type. Approximae-
tions of a double sum are obtained by teking hk times the sum of every
b*® term in every xth array of one of the variables, To these approxi-
mations are added certain correotive terms which involve finite differ-
ences or derivatives, Remainder terms are obtained, and examples il-
lustrate the use of these double summation formulase.

Also a formula for approximating the value of a double
integral, called a cubature formula, is obtaineds It may be compared
with Hardy's formula of mechanical quadrature in one wvariable., A re-
mainder term is agein available, together with an illustrative example,

We shall make extensive use of the notation of the cale

culus of finite differences. For one variable we define

(1) A f(x) = furh) = f(0

° J,P, Steffensen, Interpolation, Baltimore, The Williams and Wilkins
Company, 1927, pe 138, Hereafter referred to as Steffensen.
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(2) § f0) = f(xr &)~ f(x-4) .
(x+%) + £(x- %)

(3) ?f(x): ]C )lf(x .

It follows that

(4) 0§ §(x) - AL FL)

The quantities defined in (1)-(4) are called the descend -
ing difference, the central difference, the mean, and the mean central
difference of f(x) respectively. Generally h = 1, in which case we
write A, § , 0, ana @S

For two variables we define

(5) A, D Sy) = A [ﬂw“) - f(x:9)]

= A, []((xu;',) - )‘(";1)]
= f(xei940) = fx9+1) = F(xxuq) +Fx1).

The symbols, Zl,' and 531 » are commutative.

Again in one variable we define a displacement symbol P
such that when it operates on f(x) we obtain f(x + h). That is, Ehf(x)
= f(x + h)e Hence A f(x) = (E = 1)f(x), showing that the symbol
A\ 1s a linear function of a displacement symbol. For descending dif-
ferences of higher order, ZS: £(x) = (g - 1) f£(x).

For two variables we define
" N Y
AL A () = (E,-0)7 (6207 Fixiy).
Form=n =1, we obtain (5).

For the central differences we define

(®) 5.8 flrg) = 8, [Flertin) ~ £ (-5:1)]
= & [}(x;*ﬁ-‘a) - f(x ‘I'i‘)}
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= Flxr ) = S0 kines) ~ flxrig-4) + f 0k 974)
and for the mean central differences
(7) /
0Os 038, - T[f(x+l;1+') = f(x-1,4+1)
~ $Gwr)  f )]

The treatment of the remainder terms in this paper de-
pends on certain quantities called divided differences. For one vari-
able we define

)((a.,a,) = Jf('l’) _ 7((0")

a, - a,

%(4.,4,/._4 - fle.) - §(a, )

@, -a,
and finally |
)((Q a.~-—¢t).~ 7(("~“a")—f(d‘””a‘-) ,
e T a, —a,,

where this last expression is an o order divided difference of f(x)

with respect to the arguments 80s 819 eee 5 B0 It may be shown that

< £ (<)
}[(4'/‘1"” dq) = Z (4.--'4.)-"(4:“'1--)(4."4;.-,)--' (4;~4“) )

(X

8o that the value of a divided difference of f(x) of n + 1 arguments
depends upon the value of f£(x) at the n + 1 arguments,®
Similarly, for two variables,

]((f.,‘,;l.) _ Slaak) - F(2: k)

)

0 S8teffensen, p. 15,
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' J(e2;4.) - fla.e,, £,
f(a“a'l /6'014 /(r’ =

- ]{(“-21’-) B ]C(";'(fo) - 7[(@;/",) +{(2;4)

(‘o" ",) (1"0-'#,)

or, in general,

taa . St k)~ fla-a; k)
(e ay, k) = Py

and

e adpy . S a k- d) - f ot bk
)((a 41,,1.,- 1&) (aa—«,.')(//‘,—ﬁ,,)

(o wns b hy ¢ (e b
*+ (@ - @) (4 - 4.)

A formula of major importanceo for the evaluation of a

divided difference is
Floaespbeb) by £ (5%

where @, < §< s and 4, =u < 4o, if x and y lie in the same
olosed intervals as § and M. + The formula indicates that the order
of the partial derivative for each variable is one less than the number
of arguments for that same variable in the divided difference,

In the formulas that will be used, the following factor-
ial notation will appear frequently.
(8) xM = xX(x*1) eee (x=v+1),

© S8teffensen, p. 205,
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9
() x = 22 - 1) - 4) .. [x2 - (v-1)3
P | a 2
(10) x :x(x-—-(x-")---\—-(":‘)];
GV - &1l
(11) «x - X ,
X
"% X vel)
(12) 2o =£__.
X

Function (8) is the descending factorisl. Functions
(9)-(12) are central factorials, It is seen that (9) and (12) are even
functions, while (10) and (11) are odd funoctions. Each factorial is a
polynomial of degree indicated by the exponents. For V = 0, (8), (9),
and (12 ) are assigned the value of 1, and henoce (10) is equal to x and
(11) is equal to 1 / x.

The following Theorem of Mean Value for sums will be
used repeatedly,
H) ) £(x) is continuous in the olosed interval (a,b),
H, ) ¢(x) does not change sign in (oc,d),
B, ) c=x,«d, a=% <4, a <3<,

}:__ ¢(‘;) f(f;) = f({) z 9‘(";)

Proofs Since f(x) is continuous in the closed interval (a,b) it as-
sumes a maximum, M, and a minimm, m, in that interval. Then, if ¢(x)

is positive or zero (otherwise we take = ¢(x)),

WS B0 £ T A5 =M Y 6,

which would not be true except for HZ' Hence there exists an N where
m<N< M such that
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N i%{&) - S eI fE) .

C=1
But £(x), being continuous, equals N for some x = 37 in (a,b). c, is
obtained by replacing N in the above equation by f£(§ ).

The Theorem of Mean Value may be extended to double
sums, Its use will be illustrated in the following important example.

Suppose we have the double sum

e & , NG
ZZPW (T) (T)“)Jf‘t({s;“‘ff

~1
S=zo t=o

The factorials, (T) » (£) ", and hence their product, do not change sign

within the limits of the summation for 8 and t. It is assumed through-
out this paper that the function under consideration has continuous
partial derivatives of sufficiently high order in x and y. Then the

Theorem of Mean Value applies, and we have

hot ke ‘ (S(P)(f_)(t)
22w 8 R (1% = <, f, (57,
where
b-1 R-1 ) t)

O<Pt = g Z P!’gf (%) ('E) ’

and where min.{f,} < {< max.(f,} and min.{#.f <4 < max.{k.}. These
minimim and maximum limits for §{ and U may be used because the end
points of the closed intervals in H; of the Theorem may be chosen as
the minimum end maximum velues of §. ( and ®. ),
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Te
2, EXTENSION OF LUBBOCK'S FORMULA OF THE FIRST TYPE

The interpolation formula in descending differences for
two varisbles may be written

SRR DI BTN ENCSTEIR Y

where the remainder term may be expressed in terms of descending factor-

ials and divided differences as followss
s\
(e) R - (‘ gk xen - xeper %)
(1)
t
@V (o= = 1)

(V)7 (ergrxmes = xept; gy - 4e871).

The remainder term may also be written °

' ()
as) R = ;P)-(%)(’,f,.(ﬂs‘l*'f‘) . —)t{;(’“’ )
N
— = (©) (&° ﬁ,f(fsz’te}'

where xe)’,}{_:g X +p=-1, y<u,4, <y +q =1, f,,f,lh“u't each
depend on x+8/h and y +t / k.

For p = q = 3, the interpolation formula (13) becomes
Jleegs1t8) = FO0p + () Aflsn) + (2 (= 1) A, F(oy)
F (5) A F )+ (£) () a0 8y i) + () -)(5) A5 24 Flxiy)

FE) & o0 + GIENE) A, A floy)

O Steffensen, p. 205,
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FE)E)(E) 8. A f(xy)
(G (ED (1%
(G- E D0

A () EN A E G f L ()

We first sum (13) from 8 =0 to s = h -1 and from

t=0 to t=k =1,

(16) h-r koo h-1 k-t P g
Zzﬂ‘* -2 27 % Vi) A, 4 fuy
sz s=0 t=o (=0 j:o
b ke
+ R .

When s or t equals zero, the last term of (16) 00;1-
tains divided differences with repeated arguments which may be shown to
be finite in value. Since the factorial coefficients vanish for s or
t equal to zero, the last term of (16) is not affected by the equality
of two of the arguments.

In the first right hand member of (16) it is permissible
to interchange the first two summations with the last two since all the

summations are finite. Then let

(17) bl & INT)
<, = 2 2 'L,T(ST) ).
S:=o0 Tz0

From (17), <(,,= h k. In (16) write the term containing «,, apart,

obtaining
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(18) iiﬂn%;yf%) = hk)((";‘l)
+'Z*Z' AA}(K’)]‘ZZR

where both i and j may not be zero simultaneously (i = j # 0).
Now sum (18) from x =0 to x=m = 1 and from y = 0 to
y=ne1l, Since

Z 7 Y 7— mrvs)= ) ) fs

we have
hw-1 Ry-y

o S ey 0 E e
Zz‘ifz’cx A, A)‘(uv)

(c: ¢ f")

S BN

X=0 Y=o s=0

In the second term of the right hand member of (19) we

interchange the first two summations with the last two and make use of
the fact that

™ R
.
o

(20) L n - - 1 / . t.-'
: ; Aa Av f(aJ V) = AA Av ]l(u)y)
& o V=0 °
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Then (19) becomes

ha-i Rw-s —
(21) Z Zﬂ%;%) = hk Z Zﬂ% )
p-r 8-t Gt g T
+ Z Z °(¢'l- A D, /I(u)v)
((;;f !:) ° °

moi  m=s Pt F-1
DI IVADELY
X0 e S:o h=o
The remainder term in (21) needs special consideration.

In (16) we find that the partial derivatives involved in the three
terms of R are each assumed to be continuous functions. Furthermore
the quantities (-‘{- ® , ({)‘” , and their product do not change sign for
the values of 8 and ¢ employed in the summations, It follows that
the Theorem of Mean Value may be applied to each part of the remainder

term. Using the abbreviated notation of (17) we have

h-1 k-1
( ) ~ l , -
22 j _>- R = c><'>° ]Lfl.(g,-‘j) +o(°t]€,r(x/-’l1)
s=0 €t=o

where min,ff\<f < max.{f§ , min.{}<% < max.{%.) and similarly
for § and 4’ o Also x<x'<x+(h=1)/h, y<y' = y+(k-1)/k,
When the summations used in (19) are applied to (22) it

is evident that there is a different § , § , and x' for each x and

a different # , % , and y' for each y. The Theorem of Mean
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Value may be applied once more since <, , 0("3' , and 0<l’5 are con-

stant during summation over x and y. Thus

I R S
(23) Z }7‘0 ?: Z R = ™=, fm(f.;k,)

T mn (ofﬁ‘t(’;}’(») ik o<Pt p,t[iiiu.o) )
where 0 < 9§, §f, < m+p =2,
0<% =n-1/k

In formulas (21) and (25) set f(x;y) = F(k x;ky) + Then

0<% %, < n+tq-2, 0< §,<m = 1/h,

hw-/ Ru-y - M-
55 e - 055 e
A -0 V=0 A =o V=0
P gt Nk
. Z Z“"J A A k) m
iro 20
(<= 4 #o)

o B (0) HRmn )

P, %

3

where Oéf,,f, < h(m +p =-2), 0&%, %, < k(n + q - 2),

0<§{ =« hm=1l, 0<% =< kn-1,

Formula (24) is the first of the sumation formulas that

we have been secking, It may be regarded as san extension into two var-

iables of Lubbock's formula of the first type with a remainder term,°

0 Steffensen, p. 139,
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By means of (24) a double sum may be approximated by taking hk times
the sum of every hth term of one independent wvariable corresponding to
every kth array of the other independent variable, This amounts to us-
ing the corner points only of h by k rectangles in the xy-plane,.
Corrections to this sum are determined by other quantities which in-
volve finite descending differences and a remainder term which depends
on partial derivatives of order p and q in x and y respectively.

In practical work the size of the remainder term should
be estimated first for different values of p and q, m and n, and h and
k in order that one may be aware from the start of the error in esti-
mation, If the remainder term indicates an error in the sixth decimal
place, it would be wise to carry all calculations to at least eight
deocimal places,

But first the coefficients, O(‘-a’ » in (24) must be deter=-
mined, From their definition in (17)

b= L3

, « (3)
R AL IO

S=o € :=zo0

Thus 0(;1- may be readily determined from tables for A o°

¢

For h=k=5 we find

o(to = °<0| = o 1a = °<.1, = - §
o<10 = °<°& = — & °<“ = Lf‘
O(’. = 0(., = 1 °<‘u. = .16
«’-><33 = oW |
LS (ryg

Suppose we wish to calculate x e Then
1

Xz100 1:!00

O S8teffenseen, p. 140,



13.

1k XS
and sum E E F(ﬂ;l’).
AU =o Y=o

Iet h=k=5,m=n=3, p=q=3

let [(u;v) = !

(«+108) (V+ioo)

The remainder term is given by

5 3" L, (3¢)
(5,-0-!00)" (w4 106) *

3 a
§-3 =, (’6)
(fa+I°°) (ﬂﬂ—ln)*

5 3lo<,, (-¢)
(1, + |oo)"(4«, * 100)

To obtain the upper limit for the error we choose { = {, = §,

=%, = U =%, =0 The negative sign of the error indicates that

y
the caloculated sum will overestimate the real sum by an amount which
may be calculated to be not more than +00000135" o

The values of F(haskv ) 10 9= U,, are given in
Table I, Values marked in red are used directly in the ocalculations;

the others are needed to calculate some of the descending differences,

y = = 1 V=2 V=3 V=4

0 100000 95238 90909 " 86957 83333

1 95238 90703 * 86580 82816 79365

W 2 90909 86580 82645 - 79061 ~ 75758

3 86957 ° 82816 79051 75614 72464

4 83333 79365 75758 72464 69444
Table I

The first term in the right member of (24) becomes
x S

(25) 252 ) F(s4; %) = 25(,000818802)
40 V:-o

Only the nine wvalues in the upper left hand corner of Table I enter into

«02047005.

this sum,

For 4§ = 0 we have
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<

3
(26) E 0(0: A-L A*,-' Fhukv)
f:l

°© lo

( Uo 3 V1,3 Up,3° Uo,o =00 U2,0)

U, U, .-U U _-U ).

AW
(0,3 1,3 2,3 0,0 1,0 2,0

The first term may be obtained from Table I while the second term may
be obtained from Table II which has been constructed from Table I,

AU, | AU,
0 - 4762~ - 3624
1 - 4535 " - 3451
“@ 2 - 4329 " - 3293"
3 - 4141 " - 3150"
4 - 3968 - 3020
Table II
Then (26) becomes
10(=6000037323) = 2(4000003258) = =,000379746.
For 1 =1 we have
3 3
(27) Z,x N O m] ] = 10 A, Flhub)|
3 3
+ 4 F (b, kv) — .8 A, Fhxky) l .

o

The first term in (27) has the same value as the first term in (26)
since 1 / xy is symmetric in x and y together. Relation (27)
becomes

-e00037323 + 4(U3.3 - o5 = Us.0 Uo’o)

-.8A,(US’3-U -U v )
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= ®400037323 + 0000068 + 0000001176 = «,0003663124 ,
For 1 =2, (24) gives

2 . 3 3 ) 3 3
(28) Z °<af A, A*v. Fbx; kv)] l = =2 A,.,Av F(Lu;hr)’ ,
= o o
13 7 3
YA F_(Lu,kv)’ I +.16 A, A, F(Lu;kv)’ ’ .

The first and second terms of (28) have the same values as the second
term of (26) and the third term of (27) respectively. To evaluate the

third term of (28) we form Table III from Table II,

AA U A AY,

0 227" 173"

/‘L X X

3 173 130
Table III

Then (28) becomes
= 000006518 + 0000001176 + 16(s000000011) = - ,00000639664 o

Adding the results from (25), (28), (27), and (28) gives

(It

i 2 S5y = «019717592 .

X=(00 q =100

J

In this particular problem the answer might have been

obtained by considering
2

iti—,‘? = (i%) =  (.140416149)2

X=(e0 (=lee X /00

=  +019716695",

which indioates that the actual error is almost § in the 7°" decimal

place while the remainder term gave an upper bound of slightly more
than 1 in the 6B decimal places The negative sign of the error as
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caloulated from the remainder term foretold that the saloculated sum
overestimated the actual double sum,

il

[/
/[ [/
[ [ [ LS
/

Ft'rrre 1

Figure 1 illustrates the technique of summing by formula
(24). The functionsl values in the left hand member of (24) would be
represented by ordinates (not drawn in the figure) erected at the
points of intersection of the amall network of reotangles. (In the
figure, h =k =4)., The first term in the right member of (24) is cal-
oculated from the values of the ordinates erected at the corner points
of the larger network of rectangles. The corrective terms are then
based on deecending differences which are determined direotly from the
values of these latter ordimates.
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3. EXTENSION OF LUBBOCK'S FORMULA OF THE SECOND TYPE

An interpolation formula © in two variables involving

the mean and eentral differences may be written

lr s @d- 201 | kd 2
| S
(29) )[(x*%" 7+%) = z (ac-1)! (T) os, + a‘—ﬂ(—‘v—) Sx
(=0 L
g-1 r | ‘ [Rﬂ" ag=s . ‘ [33] i
z e (AT) os§ + oY (ﬂ L)

where the terms in the symbolic product operate on f£(x3;y). The meaning
of formula (29) for p= q= 2 has been indicated in the above refer-

ence, For later convenience, however, we choose to write the remainder

term as

[' -
(30) R = (%)Aﬂ ')[(H:—,X,xill-- Xt(p-1), 1+{—)

-

fxess %oty - gtign)

PR
t
(0 Jergon - ntwgrtn - y2g)
where the first term contains a divided difference of 2p arguments in
x end one in y; the second, one in x and 2q in y; and the third,
2p in x and 2q in y. .

We define

O Steffensen, ppe 145, 209,
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( [1 )']

(31 X - E E +)
) 1"/ 1‘; (Jc)' (z‘)' " )

where the summations refer to s and +t which take on all wvalues at
unit intervals fram -(h = 1)/ 2 to (h=-1)/2 and from =(k - 1)/ 2

to (k - 1)/ 2 respectively.
Now sum (29) over these values of & and t,

(32) 7 > ]L(“ Syt Z ZXJ‘”J‘S“}(K;J)
Z

-la)
have

[2]-
ished since (%) and

where the other terms in the product

[2{_]—!

(%) are odd functions.
Next sum (32) from x =0 to Xx=m=~1 and fromy =0
to y=n -1, and write the term containing X, (= hk) spart. But

since
I B hom = (o) ke -kl
M
3 S Y Jxotsy } Vo
Xzo y=o -_(_‘-,;_'l ~(kR=1) ") 9='k‘

o - G20 -l

o > ) ) = “‘ii/{“’”)

V= ~(h l)

PR p- -

}‘}‘_LWHM

=0

(¢=¢ 4")
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In the second right hand member of (33) interchange the

first two summations with the last two and make use of the fact

?\ T 588 e = 88 ,)

Then (33) becomes
(_L_L'-‘ 1““
oy - (

o’ R ugg‘;@,u)

‘= -( (b-1) -(‘1 (R-1)

ZZ |

(«-;aﬁﬂ

4
3
}-1

&

\.|~

m -

SV

= - -(R-1)
X=e 1=° '(—a‘) e

where the remainder term needs special consideratione

In (32) the remainder term appears as a double sum of
three separate terms and remains unchanged when 8 is replaced by
-8, or t 1is replaced by - t, or boths For the first term replace
8 by - 8 and average it wﬁth the originale For the second term re-
place t by - t and average it with the original, For the third term
three other equivalent forms may be obtained by replacing s by -8, t by
-t, and both s by =-s and t by -t; the arithmetic mean of these four
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equivalent forms, if we omit writing the double summation sign of (32),
is

[19] l [zﬂ
7’:[(: 7((“ e O TN LR E )

)F
B ﬁ K
- (_)113 5 )((”_’K XE S KE), gt g gty E(g )

&g~

s Rp-
I G I T R O S R 7’(17»]

which becomes

g)-1
O f Ot rnan, - xen g - ye6o)

g}~
J )[(x o X, X - - XE(p-a) t’+ {4, == 71‘(}"))

-_31:(-‘S‘_)&P]({_)@ﬂ“f(xt%,x,xt// - .- xi(P-')}Y—{‘:"/7t’/ - - 7":(8-/)) )
N NN T
Ap ¢
(_f‘—) (f) ]((”.':‘_'x/"t’, - Xt(P'!)', 71‘7‘;.,1,11/’- --1-1-(3-:)) .

Since a divided difference of (2p + 1) arguments in x
and (2q + 1) arguments in y may be expressed in terms of partial deriv-
atives of the (Zp)th order in x and (Zq)th order in y, this part of the
remainder term from (32) may be written

Gel  Rtl .
} > i E) @ L (1)

(b)) -h) g

whorox-pﬁ-lé)',’ < x+pe-1 andy-q+1£u1' <y+q-1l.

Using similar properties of divided differences on the
averages for the first two terms of the remainder term in (32) we may
write
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Aot ]
2 2 []
(35) > > [:(g;)l (_) 7( (;:‘1“ (zt)l(f) /o,ar (x+%;’k*)
) :. —ﬂf)‘ [ar] flﬂ

][“t s}h;] )

whorex-p+lé{,,f;£ xX+p=1,y=q+1 <y qf‘y+q-1,

(t
Y (lt)' "

The central factorials in (35) do not change sign in the
intervals of summation for & and t; and since the partial deriwvatives

are assumed continuous, the Theorem of Mean Value may be applied to

(35), giving
(36) mn kaf/" ]Em(f;.”) B y"ﬂtfo,w (X;ﬁ) ~ha kxmo)gp,afr(i;il)’

- -

an.dx-%""l/ilﬁx.ﬁx*—%-lﬂ’y-%{—l/ksy' £Y+%‘-1/k.

When the summations introduced in (33) are applied to
(38), the Theorem of Mean Value may be used again, giving

(37) 2 Ka,:,. f;p,. (%; H,)+ mn o 18 o,at({&)uo) =~ y&p,it fa’,q(fﬁ 7‘:);

where le-p<§ f,<m+p-2, l=-q<yu=n+q-=2,

and 1/2h-3<f < me}=«1/2h, 1/2k =3 <% < n=-%=1/2k,
Finally, in (34) and (37) replace f(a;v) by

F(Lalr"—;’—)kw—ﬁ%) e Then

(38) bwot ke oy
> > F(a V) hk Z ZF(‘MM" (. kvt Rt «)
il i o agt .
+ Z 2 kz.’ "J. Si‘ (S;t F(luu-”a;’) h“ki")l ’
(=0 7';0 ’ L1

((.:f #o)
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ap 2
+ L‘ mn kap,o F&-f,o(fl} 1(:) t k t"“ y",lt /:::1‘, ({:/ Ita)

ap ag
—_ L ‘( M % yap,z’- Ef,;r(fs}us) p)

where h(l -p)+ (h=1)/2<4 §, = h(m+p =-2)+ (h=-1)/2,
(39) k(1 -gq) +(k=1)/2=%,% < k(n+q-=-2)+ (k=1)/2,
0<§f,<hm-1, O<#<kn-1,

Formula (38) is the second of the summation formulas
that we have been seeking. It may be regarded as an extension of
Lubbook!s formula of the second type with a remainder term °. Formula
(38) enables one to estimate a double sum by taking hk times the sum of
a series of terms which would be situated near the midpoints of the
sides of h by k rectangles. This estimation is to be corrected by
terms involving central differences and by a remainder term involving
partial derivatives. In comparison with (24), formula (38) has the ad-
vantage that only central differences of odd order are employed. In
practice it is easier to apply if h and k are odd integers for then the
value of F need be obtained at integral points only. For h = 2¢,

k = 2d, the values of F(2 64 + 0 =33 2 dVv + 4d = 3) are not usually
found in the given table,

Before formula (38) may be used, the coefficients, Xli,af .
mst be determined, From their definition in (31), we find

[a<]
Y"zc,a‘ = (.u)' Z (i“— (“)' Z( )

..( - - f-l

=P-P,

i y )

O8teffensen, p. 143,
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where tables © for [,; have already been calculateds For h =k = 5,

we find
xllo = Xol £ S = 1 b4 yzl a = .04
o= Koy = = o072 .= K., = -.00288
ks,. = Ko = +00928 X, . =  +00020736
X = 000003444736 .
66
114 o™

In order to caloulate E E Xy
X = (0e® 1:10.

Flav) = PPy eTYYy md wm D D Fluy),

let h=k =5, m=n =3, p =q= 3, The remainder term becomes

s let

ra 2 2

st X, b S Ko 61 53 K (6
(§,+100)7 (%, + 100) ‘fafloo)(‘hzfloo)? (f,+100)7 (R3+100)?

To obtain the upper limit for the error, we choose

;':{,zn":ﬂ’z“? {az"l‘:o.

)
Hence the error im calculation 1s positive in sign and is slightly less
ghan 4 in the 10"} decimal place. That is, the sum caloulated by
fornula (38) should underestimate the actual total slightly.

Table IV contains the values of F( Suta; svta) X l01= U, v
The nine central values determine the first term in (38) which is
(40) 25(,000788390) = 01970975 «

Since the original entries are aocurate to nine places

only, (40) may be in error in the 8*h decimal place, a result which is

larger than the error indicated by the remainder term. This can only

O Steffensen, pe. 145.
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be remedied by increasing the accuracy of Table IV,

carry the present problem through in order to illustrate the technique

of calculating the central differences,

We shall,however,

V= <2 V= =1 v= 0 v=1 V=2 V= 3 Y= 4
-2 | 118147 | 112057 | 106564 | 101585 97050 92902 89095
«1 | 112067 | 106281 | 101071 96348 92047 88113 84502
O | 106564 | 101071 96117 | 91625° 87535 | 83794 80360
1 | 101585 | 96348 | 91626 | 87344°| 83445 | 79879 | 76605
2 97050 92047 87535 | 83445° 79719 * | 76313 73185
S 92902 88113 83794 79879 76313 730561 T0057 |
4 89096 84502 80360 76606 73185 70057 67186 I
Table IV
In Table V the following pattern has been used for
A = =2 tou = 4, except for the first column for which the walues

may be found in each row of Table IV,

<

7y~

FSNSINSINS

~

< <
¥

SV g
§ U, -
§ U, ¢
S U, i
VAR
S U, 54
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In Table VI the pattern for V= =3, 23 is

$U,, x

’ g gu-ilu
§Uqy *
SUJ,V X
5v,, 58 Uu

In Table VII the pattern for V= =3, 2% is

Sau_zﬂ ;
3 J.(S U.,i‘., 2 3

bV v

8 Uo,v 3 = SJS Uolv ~LA'V

81 U 88 U_:I,d

81 u l 8 S; U,l;,u S;g? U

a,v 2,V 3 3

Ssju“.u 2 Sgua"iv

§u,. 0 58, :

83 U 88 U,A,l.,

For 1=0, j=1 in formula (38) we have

S
i 2%
(41) - 2t
Su+a; SV+
Xo,a SJ- 8# F( I 1)‘
S
= 5, [U"'“* FUGe Vs = U m Yy Ua.-a] )
which, from Teble V, is
- 3741 - 3566 = 3406 =(=4954) =(=4723) - (4512) = .000003476 .

For 1 =1, = 0 we obtain the same value,
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= =2 A = el “= 0O o= 1
-8080 5776 5493 5237
597 566 . 539 .  51a
-5493 «-83 5210 -79 «4954 =77 4723 -T2
614 487 462 442
4979 4723 -4492 4281
-4536 4301 «-4090 -3899
387 367 349 L 383
-4148 -46 -3934 -44 3741 42 -3566 -41
341 323 307 292
-3807 -3611 -3434 -3274
L= 2 L= 3 s = 4
«5003 -4789 4593
L) 470 451
-4512 -89 -4319 -66 -4142 -64
422 404 387
=4090 -39185 -37566
-3726 -3566 -3420
320 304 292
-3406 42 -3262 -36 -3128 =35
278 268 257
-3128 ~2994 -2871
Table V
= -%‘ < % V= = % V= 2 %
5210 -3934 -83 -46
256 193 4 2
4954 3741 79 =2 -44 O
2 8~ 2" -1
77 3 -42 1
5 1
-4512 -3406 -T2 -41
193" 144 3 -1
~4319 «~3263 69 0 -42 T .
-1 6" -12
Table VI -66 =1 =36 -5
2 1
-64 =35

Table VII
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For 1=0, j =2, we have

(42) X & Fsa+a, $'v+a)’

-
>

= (-. 072) S [ 0,21 Uwi/ +U3,2’= ~Uy; -U, - Uz,“’-j] )

which, from Table V, is equal to =,000000006696., Similarly for i = 2,
J - 0.
For 1 =j =1, formula (38) gives

(43) RN

k) LS. 8, F(sura, svn)

3
which, by use of Table VI, is equal to
(,04)(144 = 193 = 193 + 256) = 00000000056 .
For 1 =1, j=2 we have

(24) X 5 g F(su+a; S'wz)

-

which, by use of Table VII, is equal to
(=.00288)(6 = 3 =2 +2) = =,00000000000864 .

I

Similarly for 1 =2, j =1,

For 1 = j =2, formula (38) gives

1

(45)

K., 5.5 Flraess +)l|

3
= (. 0002073¢) S S, [_,.ng - sz, - U, . —'::‘-'a:[f
which, by use of Table VII, is equal to 0000000000010368

The sum to nine decimal places of terms (40) = (45) is

«019716689, while the actual sum is (019716695~ 80 that the underesti-



[ 2 s = = p Vs TS R SR
—. U b - o o \m!:—
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mation is 6 in the 91 decimel place. In view of the accuracy of the
original set of values this error may not be considered extreme.

The applications of formulas (24) and (38) %o

L "é

—{7— show that the latter gives, in this particular case,
Xzr00 ’:/09

the greater ac;uracy when each is written out to the same number of
terms., The ooefficienté in (38) decrease more rapidly than those of
(24), but a comparison of the two remainder terms, for the same p and
q, involves consideration of partial derivatives of different order.
The upper limits for the two errors will depend on the particular

function used and the ranges of summation.
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4, EXTENSION OF LUBBOCK'S FORMULA OF THE THIRD TYPE

Another interpolation formula ° in two variables involv=-

ing the mean and central differences may be written

(46) P-1 E‘“’a-l 2 Bisd e

foostiren)-)[anl) a2 78]
¥-1 Ei*ﬂ" . E“"a )

[t N 879 2

. JZ[(“I)'(k) DS‘I * (a;ﬂ)!(_z_) S.’ J

+ R,
where the terms in the symbolic product operate on f(x LSl ks &i) e The

meaning of this formula for p =q= 2 has been indicated in the above

reference, The remainder term may be written

(47) G- Ggsd-
R = @_[,")T(f\—) £P1°(£;7+%+%)+¢!(€_) ]{’4‘,()(4‘_#-’;-;7“)

Rp+d~ a3t
! S *
(ae}!(zo)!(“ (*) th"

where x -p + 1< =

(ffl; 14';) ’

xX4+p,y=-q+t lsués Yy +q, and similarly for
I ‘
fs and %, .

We define pox N
(48) i = o c \l_ﬁin}-l . Ea'fg—l
Szc‘,a" - (as)t () Zﬁ_ -(z (T) (‘;{) )

where 8 and t +take on values at unit intervals from =(h = 2)/2 to
(h = 2)/2 and from =(k = 2)/2 to (k = 2)/2 respectively.

Now sum (46) over these values of s and t.

© Ssteffensen, pp. 210, 221,
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h-2 k-2
t _
(49) 7 )((7“3'1+3;.‘/1*§+K) —
—1h-2) - (k-3)
a x
P §-7

e B
+
21 _R,
~(h-2 -(k-2)
a a
where the particular method of summation has caused the terms in the
s\2c+1 Gj+1
product involving the odd funoctions (1\') ) to vanish,
Add E ]L(X irac: *“ E )L (x+443 }[(x )

¢k Py
a
to both members of (49)e Keep the term containing S = (b-1)(k-1)

apart and make use of the fact

(50) 1 D)((xw- +1) = . 2\, f(%y)
o OO fxessyen) = f(xiy) + il

+ A f(xy) + ADxA flxy)
2 b

Then (49) may be written

(51) 7&? ]L(“'*h/‘jf‘ ) =

S= -A_ = -L
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Zﬂw+'+t) Zﬂw 1) = Hluy)

t&" =_§_
a

+ (h=1) (k=) [f(w) + Aoy 4 AFRY) | ALy )‘(x;«)J
X 2

L
- i 13
. Dgx [ S,, f(x+§;7+'3)
o 21. ,,
(¢ f#o\

-2

SN

-(L a)  -(k-a) ‘\\

Now sum (51) from x = O to x=m - 1 and from y = O to

y=n = 1 and make a slight change in notation.

hw-t  Rus -1 Rn
@ ) ) ) - ZZ

b -1 -

D)t - Z Y Hon
+ (k-1) (k=) i Z[f{a;v) + QAJJL“_"_)_ " A,)i(n;o) 4 Du AL}(«;U)J

1 4 f

+§_77—75M*r:18 Ds)l v+3)




P 2
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From Lubbock's formula of the third type in one variable

we have
k-4 - »
6 ) fld) = k) fl) - A e
Ll '
+ Z Q“f 0, )((“/“/
j’f-r °
+ Qat J{'aﬁ (A/’k:),
and
hw =~ P .
P~ .

4
where 1 = p<§ <m +p -1 and l-qet;<n+$-1. Also

—

Y
Q _ , —‘s- ﬁsfg‘l
W (ag)! ( “) .
S=-(h-a)
P S

It follows from (48) that

(65) S = Qa; - @

lilzt'

It' .

© Steffensen, pe. 146.
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We also make use of the followings

DI — NS R
&« =0 V=0 V=o 0
(57) 2 iﬁiﬁﬂi = + i %(ﬂ)’) "

LY

SE T Al _ i,
e B *r}(’)
“ =0 V=o o lo

) ) Z 08 08 flasmes) -

Substituting the results of (53), (54), (56), (57), (58),

° .

and (59) in (52) gives, after some simplification,

N "

w ) ) fl ;)-MZZJ(« ) 2D e |

ku«-’)Zf )li) Jc“) i
i ZZOD (w)h

>N Z Spy 05 O Hlur)
Czo 7= ’

(<=440°)

L S
o}o







i Z ) Qat f‘"t (a"&:) * .,Z% @y )(u,. (%, ")

!

h-2 -
» k-2

\/p;

>

X :zo

R .

- (k-a)

-
=~

!

~

ze - a

N

!
The remainder term in (60), which consists of the last

three terms, may be simplifieds Upon application of the Theorem of Msan

Value the first two of these terms may be written

(61) o Qi JL:.p,, (5;%) + mw Qag f»,.x,- (5. k4),
where 0<¢f, < m=1, 1 =q<%,<n+4+q=1, and
lep=<§{,<m+p=1, 0<%, < ne-l,
To evaluate the last term of the remainder term in (60)
we first apply the Theorem of Mean Value to the remainder term of (51).

Then
-2 R -

a

@ P ) Rz S b (Fy)E S h (%)

— Sy ){W (f. %

- -

where x = p+ 1< §,f £« x+p,y=-q+l<%,« < y+q, and
x+1l/hext«<x+1-1l/h y+l/kecy' < y+1 -1/,

When the summations over x and y are introduced, the
Theorem of Mean Value may be applied once more, and the final form for

this part of the remainder term becomes
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M~ Kot

(63) > > 7 Z-R- e &fo AP.(ﬂﬂ)

yzo -(b-2) 1) -Uz -a)

°o,a¢ fojzﬂ- (3:}7( ) o S:\P Y fp,q/ffik-f>;

+’h~1~5

where 1 = p<f,,f,<m+p=-1,1=qg<u, u<n +q =1, and

1h=f, < m=-21/, Lk<w, = n=21/ke
In (60), (61), and (63) set fF(u.»)-Flhx;k)s Then

b k‘\-l = — -t

(64) } ; Flu;y) = hk ZZF(Au kv)
+—ﬂ’—')—il~”(uk)l h(l. k(h-1) ZF(AM kv)[

o (ko) (k=) F(au,,k,)//
“

o ‘o

P~t P

ZZQ,DS F(Lah/ +22({) as. F(lmhv)
y i DS., F(lm;kv)
- & a'

(t f#-")
+ 11‘?1». N (\)4‘, EP»° (f., 11,) + k‘t‘hxn Qat E,at ({1'11(1)

Y

o lo

+ Alf‘k ‘k. S;P"’ Flf;' (f,-l"(,) + hat’k\.‘k S;/at 513-(;#,’”4)

—h R ma S*f,at F;p,at (fe3%5),






36.

where 0 =f < h(m=-1), k(1 -g)<n 2, % = kin+gq-1),
h(l =p)<f.6,fs =< h(m+p-1), 0<%, < k(n -1),
1<f, <« m =1, 1<% < kn=-1,

Formula (64) is the third of the summation formulas that
we have been seeking. It may be regarded as an extension of Lubbock's
formula of the third type with a remainder term °. The summing is done
at the corner points as in formula (24) which has the same first term
as formula (64)s For identical values of p and g, more terms are
used in estimating by means of (64) than by means of (24) or (38). The
correotive terms in the present formula involve the less known mean
central differences. The remainder terms of (24) and (64) are not di-
reotly comparable because they contain partial derivatives of different
orders, although it will be noticed that the remainder in (64) involves
two extra terms. The remainder term in (38) is the best of the thres.

We shall illustrate the application of formula (64) to

s e .
> 4 when h=k =5, m=n =3, and p = q = 2. The
X=zioo q=doe X‘[

following coefficients may be found from relation (55) and tables for

00
Qae o

Q.= —.u Si. S = —i¢
O.’= . 01736 S.a’& = NS
AJ oosuieqe S, .S . =  -39us4

The value of the remainder term is

;.;32(.07“) Q4 + s* 5‘(.0';;0) 24
(f,4100)" (.t 100) (§,+ 190) (xa# 100)°

O §Steffensen, Pe 146,
00 Steffensen, p.l147.
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2 i a
53 (29¢4) 2% L 53 (a0s) 2u
(f’+loo)’-(ﬂ,+loo) (5, +100) ('u"jmo)f

5'31(.0054/6'“) 57¢
({,,-‘Ho.)‘ (1\51'10.){

2

where F(u-'v)=

!
(»+ loo) (v+ 109)
To obtain the upper limit for the error we choose f, =Y,= 0,

=0, :0s=% =%, :=u5==5,and §,.§, = 1. The error is

indicated as being less than 2 in the 7°® decimal place.

Values of F(lu.-,kv) X ]oq = U, are recorded in
Teble VIII.
vz e)] y= 0 v=1 v= 2 vz 3 v= 4

and we are summing Zl_—_ i_F(“;")
& Vzo

then

-1 110808 105263 100251 95694 91533 87719

0 106263 100000 95238 90909 86957 83333
1 100251 95238 90703 86580 82816 793656
A 2 95694 90909 86580 82645 79051 75758
b 91533 86957 82816 79051 75614 72464
4 87719 83333 79365 75758 72464 69444
Table VIII
The first term in (64) has a value of
(65) 25(,000818802) = 402047005 .

The second term becomes

(e8) lo(UO,S - UO,O+ U1,3 - 01,0 + 02’3 - 02,0)

and the third term has the same value,



The fourth term is
(67) 4(11".,.,.3 - Uo,3 'US,O UO,O) = 0000068 .

The fifth term in (64) may be written

3

3
(88) +Q, 08, F(55v) } + Q0 §, Flio;¥)

Q. O Flen)

= -.w0d 5, [Uo,z + U:,; ‘I‘U‘, - Uo,.' Ul,o = Ua,.] ’

whioch, from Table IX, is equal to =¢4(.000003503) = «,0000014012 .

The sixth term has the same value.

as, v, , [asu.,,
-1 = 5276 -3988
o - 5012 -3788
0§ asu./o8as v,
1 - 4774 =3608 0 251 190
i A
2 = 4557 =3444 ) 190 144
3 - 4358 -3294 Table X
4 - 4177 «3157
Table IX
For 1= 0, j= 1, the seventh term in (64) may be
written 3 3
(69) § oé§ s, F(‘w,-kv)l
0,2
® [

= —¢08,(U,tay,,+au )

which, from Table IX, is equal to
- o8 [(-.3788) + 2(-3608) + 2(-3444) + (-3294)
-(=5012) = 2(=4774) - 2(-4567) = (-4358)] = =.0000054768 .
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Similarly for i =1, j= O.
For i =3 =1, fornula (64) gives us

(70) 26 08,068, (Y,, - U.—0,,+U,.),

which, from Table X, is equal to 0000000024 .

Combining the results of (65)-(70) gives us ,0197166364
which underestimates the actual sum by slightly less than 6 in the 8D
decimal place. This checks with the fact that the error as indicated
by the remainder term is positive and has an upper limit of 8 in the

7th

decimal places A larger error in estimation was made when formula
(24) was used with larger values of p and qs Because of this, the

upper bound for the error should be calculated from the remainder term
before any of the tables of differences needed in the summation formu-

las are set up.
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5+ EXTENSION OF WOOLHOUSE'S FORMULA OF THE FIRST TYFE

In one variable Woolhouse's formula of the first type is
based on the seme principle as the Lubbock formulas except that the
former employs derivatives instead of differences in its corrective
terms. ° Its derivation depends upon writing the Euler-MacLaurin sum=-
mation formula in two different forms and then eliminating the integral
between them., Since the Euler-MaclLaurin summation formula in two inde-
pendent variables with a remainder %% has been recently developed, it
is now possible to obtain an extension of Woolhouse's formula,.

For later convenience we define a polynomial in two in-
dependent variables x and vy, Bm.n(x,y) , such that

M~ Nn-=1

(71) D, B () = m Xy
and
(72) D, D: Bty = —=t2ti_ B i (xy),

(moi) (m- )

where the first subscript of B denotes the degree of the polynomial in
x, and the second the degree in y. D,:' represents the ith derivative
with respect to x.

Such polynomials are called Bermoulli product polynomials
from the fact that

Bm.n(x.y) = B (x)-B(y),

where Bm(x) is the Bernoulli polynomial of n > degree in one variable,®°°

© Steffensen, p. 148.

90 W.D. Baten, A Remainder for the Euler-MacLaurin Summation Formula in
Two Independent Variables, American Journal of Mathematics, Vol LIV,
April, 1932, pe. 265, Hereafter referred to as Baten,

000gteffensen, pe 120
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The values of the product polynomial for x =y = 0 are the values of
the Bernmoulli product numbers which are designated by the symbol B

»

It follows that B = B -B_ where B is the m th Bernoulli number
m,n mn
in one varieble.

We also define a funotion, 'B:n n(x,y), of period 1 in
¢4

x and y which equals Bm.n(x,y) for 0<x<1 and O0<y <1,
m! n!
For all x and y Bm.n(x +1l,y+ 1) = Bm’n(x,y). The properties

of this function have been discussed elsewhore.® It has immediate use
in the Euler-MacLaurin summation formule in two variables which may be
written

™ ZZZM) ZZ LS (w)l ’
..
F frii o]

[ [5,696,, e,

where G"'f(x'ﬂ = 3‘._9?‘()(,1) o The function g(x,y) is continuous in
x and y and possesses continuous derivatives of all orders in x

and y which are integrable. The last three terms of (73) constitute

© Baten, p.268.
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the remainder term.

In (73) let g(x,y) = f(hx,ky). Then we have

G"rd (x9) = VR E'f (Lx,k1) where E/i (l”"ka) = f‘,.',‘_" (hx, ky) .
After multiplying all members by hk we obtain

™ A ke
(74) “lZZ)‘(Lx ky) = ZLk o (x,)] l

X =0 (= o lo

P k"' _ 'R N
_Z[L‘kchl'(o,L)E;‘H(x,r)dpl
/u e ),,.,(fudl

'“h"// Lek
—k g (67 Ff’.f'zr*'( tke) df L-.

Another variation of (73) may be obtained by replacing
g(xy) by f£(x,y) end Gyy(x,y) by Fy4(x,y) end also by replacing
m by hm and n by kn, Subtracting (74) from this latter wvariation,
we obtain

i.-l k"l -1 -/

) 7— 7‘3‘(*1) bk Z Z F (b, by
Z Z(‘« kt") + F (x,y)’ ‘
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t he
P ¥ —=
S [N E, EE, (o) e
‘:O

T [ /8, () AT

bw _ka

- [0/0 Bht(f;,)li;ﬁlrl(f,gdalr.

Formula (75) may be compared to Woolhouse's formula of
the first type in one variable. It will be noticed that the first term
in the right member of (75) is identical with the corresponding term in
formulas (24) end (64)e The second term is the corrective term which
involves integrals and derivatives of f(x,y). Since the term in this
double sum corresponding to 1 =j=0 is O, the evaluation of a
double integral is avoidede The remainder term consists of the last
four terms and offers the same difficulties as the remainder term of
the Euler-MacLaurin summation formula in two variables, For actual use
formula (75) is not as convenient as desired. It seems that further
work might be done in modifying (75) so that the remainder term would
be more adaptable to numerical evaluation. We shall, however, illuse

trate the use of the formula for a simple example where the remainder

term is zero.

g 7
a a
To sum E E Xy let h=k =5, m=n= 2,
X =0 §=0

2
p=q= 3. 8ince f£(x,y) = xyz, we have F(X,‘[) = XY and



S

PT/ -
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R, = 2xy Fia = 2%y
Fo= Xy Fau = wxy

It may be verified that all terms of (75) containing third order par-

tial derivatives vanish, We also need

~ 4 - - -
Bao=8u= a ) BAOtBOl—' 6'B|a=Bal= ﬁ'/ Bli—"r.

The first term in (75) is 65(625) = 15625.. The
second term becomes, from symmetry,
1% o 1° o
a 3 3
2(-#) (-3) - I / + 2= 2 (53) 2L ,
19 (0 * 10 © |o
+ 2 (- mv)(-ﬁ) u1l I - 2y (L) x‘f’ l ~ 6au (7 ) wxy )

o lo o lo

[ ]

whioh equals 65600, Hence the double sum is 81225 which checks,
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6. EXTENSION OF HARDY'S FORMULA OF MECHANICAL QUADRATURE

In one variable Hardy's formula of mechanical quadrature
may be obtained as a speoial case of the Cotes' formula which depends
upon integration of the Lagrange interpolation identity between fixed
limits,® A set of formulas for mechanical cubature may be obtained in
e similar manner by integrating the Lagrange interpolation formula for
two variables between fixed limits for x and y. We assume the
Lagrange interpolation identity ©°

e Flx9) = 7—7 (:)me TR,

— & P.() P
where E_,fa]—l _ G;,ﬂ-l
B.("): X A ) R("): —7775—- )
and

G- |
R = KX ‘f(xlojtll -0 t-r'; ‘1)

Ls+a]
v f(uper -t

R+3d-1 s+~

- X 41 ]{(X,a,t_lj" rtr,; ‘/,oltll---ts),

We now integrate (76) from x=-m to x =m and from

y=-n to y=n and make the following substitutions.

R EAC) g . [Eo
U, - v U /w

Then

O Steffensen, ppe 154, 167-168,
00 Steffensen, p. 224.
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(77) /"]:;(th" = ZZU U, f(:9) +

d--v U- -3

If we choose unity as the intervals of integration for
x and y by letting f(x;y) = F(““, S , then (77) may be
written

(78) /f Foolddy = VLV, F o+ V, 2V, .,

where N
V. = — U | V.=7’,:U,,
Frwo = FlEme) + F(G2°), Fuo, = Floz)+ Fo=y),

F( +F(u~' n) + F(- aa-. za) F( )

11-\. 4\

The remainder term in (78) may be shown to have the form

Gar+a) E-‘*a
R = OJ«, ar+ae (f” «') + oi* ,i-%’*& (i‘j 1")

G~+d  [s+d

-0, O

am 1 Rﬂl,aso-:.( 3,

")

J

where each f end % lies within the finite limits of integration, and

D ——————
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&Y it
Gkl
O = - Tre /K de
3™ (ak)! (11.)

- ak]

Values for the coefficients V. , V, » and Oa,__ may

be obtained from tables.’ If, in formula (78), we let r =m = 3,

s =n =3, we obtain

£ 4
79
(79 // F(xq)dedy = _______705'600 [73‘“"* F..

t Buu (R, tF,,) 57752 (F 4 F,)

+qu.z(F;,°+E__o,) + 129 f—;“

+ 46b56 F;“ + (681 F;”

+ S£3a (F;u + F;,a)

Firen (R rFy) #1056 (Gpr B,)

= e [FL () B (o) #0e Bl

where .0%64 means .00000000064 .

To the right hand member of (79) we add and subtract the

© Steffensen, p. 158.

e

A A e e
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quantity _'4#7e = AL A., E,-; + The subtracted part we put

TJose 0o

with the remainder term and make the substitution

A, A F,, - fuluxd,
X ‘b. ‘s

The added part is combined with the functional walues
after the following substitution has been made

3 .

A D, = mee L= e (R F)
F 1o (Rt F.) 20 (Rt )
+ 229§ F;,, + 36 F;az + Ftn
- ?O(Ea,"’r’;,z) +|5( “'“ ’”;'3)
- "( *la tls)

to give

(81) / /F(K e dy = [éeuu F,,

/, Jos600

'u

— 354 5C (F+ )+235271(F +F a)

—19369{53016,,) + 332829 f,

1

+ G9792 F,, + 3159 F

+ tis

PSPPI he e O

= =
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~127008 (F+ Ryl + 23247(5,,4—&,,)]

—. o [F,:,(f,;":)-"' E,,(ﬁ;’f») .06y F;,(f,;t(,)] — .0 1 (5 l‘r) .

Formula (81) is to be compared with Hardy's formula in
one variable. Cubature formula (79) mekes use of 49 ordinates. Formu-
la (81) has the advantege that 8 ordinates, F.,, + F,, , have
been dropped out, although the remainder term does contain one extra
term. Table XI indicates which 41 of the 48 ordinatep are used. The
method of this section might be used to eliminate any.set of 1, 4, or
8 ordinates used in (79), but the substitution (80) leaves the coeffi-
cients in the most convenient form.

Ve shall illustrate the use of formula (81) in evaluating
the double integral 3 3

/[x.jf,, de dy .

3 a

For the region of integration under consideration it may
be shown © that the upper bound for the error is determined from the
fact
2 _(av+aa)!

- k3122 V% X
2 iz

(5,4)

' am,av

Hence the upper bound for the error is

? .r! 2 /
.0 bl ﬁ; : +-/:! + .0 9¢| ff' & . 0oooooo0o0 b,
2°Ix 270x 2 =

O Steffensen, pe 229,

T

o
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The functional values needed to carry through the cuba-

ture are presented in Teble XI.

’ . 2 £
x y=2 |y=2¢|y=27|y-2z y=2% y=2¢|y=3
2 1 B 8] = 2
85 41 50 13
ot 3 78 39 78 39
13 365 197 425 229
o4 21 84 3 84 21 84 21
85 365 14 421 113 485 130
oL 10 45 90 1 90 45 10
41 197 421 5 481 257 61
2% 6 96 24 96 3 96 24
25 425 113 481 16 545 145
ok 51 102 51 102 3
229 485 257 545 17
s || -2 21 | 12| 2t 1
13 130 61 145 6
Table XI.
The required wvalue, apart from the remainder term, is
' o L) — Y3suse (I +90 16 4, 9o
—7:?:::—'[ ¢ 433‘#(5) # (%1' wxi | wer wi

n 39 45 4 51/ 45')
+ 235¢ 1(——‘” + a1 “_7+ +5h

_ 4+ 10 4 /> 4 o
lnu(—(‘ o + 2 —“)

+ 332729 (——,"" 3 4+ 2% + 2 )

o
i
-
iy
w
<
[
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39 34, 5 3
yorvra (Zh e F S+

lu

+ sy (A v L or L)

— l.z')oog{_‘ft.f-ﬁ + 19 4+ 8¢ 4 96 4-Jea 4 jo2 96
“e¢5 | kas  3es T6s | was 475 5 Fas

+ 232 (xi I ARFRNTE AN VN Sy | 27 4 A«
%1 130 t 5o &) Qs /30 t I« s (4 §

+
Q000 /345 |

n

Since the value of the integral is ,200021343, the
th
actual error is only 2 in the 9 decimal place while the upper

bound for the error is 6 in the ch decimal place,

-

2 e
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