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ABSTRACT

PROJECTIVE PATH TRACKING FOR HOMOTOPY CONTINUATION
METHOD

By

Tianran Chen

Solving systems of polynomial equations is an important problem in mathematics with a

wide range of applications in many fields. The homotopy continuation method is a large class

of reliable and efficient numerical methods for solving systems of polynomial equations. An

essential component in the homotopy continuation method is the path tracking algorithm for

tracking smooth paths of one real dimension. “Divergent paths” pose a tough challenge to

path tracking algorithms as the tracking of such paths are generally impossible. The existence

of such paths is, in part, caused by Cn, the space in which homotopy methods usually operate,

being non-compact. A well known remedy is to operate inside the complex projective space

instead. Path tracking inside the complex projective space is the focus of this article. An

existing method based on the use of generic “affine charts” of the complex projective space

is widely used. While it works well in theory, we will point out the unnecessary numerical

instability it could potentially create via the analysis of “path condition”. This article, then

proposes a numerically superior approach for projective path tracking developed from the

point of view of the Riemannian geometry of the complex projective space.
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Chapter 1

Introduction

1.1 The basics of homotopy continuation methods for

solving polynomial systems

Solving systems of polynomial equations is an important problem in mathematics. It has

a wide range of applications in many fields of mathematics, sciences, and engineering. In

this article we restrict our attention to systems of n polynomial equations in n variables with

complex coefficients of the form

P (x) =


p1 (x1, . . . , xn) =

∑
k1,...,kn

c
(1)
k1,...,kn

x
k1
1 · · · x

kn
n = 0

...
...

pn (x1, . . . , xn) =
∑
k1,...,kn

c
(n)
k1,...,kn

x
k1
1 · · · x

kn
n = 0

which will simply be called polynomial systems. By the Abel’s impossibility theorem and

Galois theory, explicit formulae for solutions to such systems by radicals are unlikely to

exist. So numerical computation arises naturally in the solution to such systems. Homotopy

continuation methods represent a major class of numerical methods for solving polynomial

systems.

Instead of attacking a polynomial system P (x) = 0 head on, the homotopy continuation
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methods consider it as a member of a family of closely related polynomial systems parametrized

by a single real parameter. One member Q(x) = 0 of this family should be trivial to solve.

The solutions of this trivial system should be connected via smooth solution paths to all

isolated solutions of the target system P (x) = 0. More precisely, we construct a homotopy

H : Cn× [0, 1]→ C
n between the given polynomial system P and some chosen system Q: H

is a continuous map from the product space Cn × [0, 1] to Cn such that H(x, 0) ≡ Q(x) and

H(x, 1) ≡ P (x). Throughout this article we require H(x, t) to be algebraic in x, although

the method is widely applicable to nonlinear homotopies. For the purpose of the endgame

analysis in Chapter 3, we also require H(x, t) to be holomorphic in t on a domain containing

the unit interval (0, 1) ⊂ R ⊂ C when t is considered as a complex variable. We further

require the construction of H(x, t) to have the following three properties [17]:

1. (Triviality) The solutions of H(x, 0) = Q(x) = 0 are known.

2. (Smoothness) The solution set of H(x, t) = 0 for t ∈ (0, 1) consists of a finite number

of smooth paths in Cn × (0, 1), each parametrized by t.

3. (Accessibility) Every isolated solution of H(x, 1) = P (x) = 0 is reached by some path

originating from t = 0, at a solution of H(x, 0) = Q(x) = 0.

When the three properties hold, the solution paths defined by H(x, t) = 0 can be traced from

the initial points, the solutions of Q(x) = 0, at t = 0 to all solutions of the target problem

P (x) = 0 using standard numerical techniques. During the last three decades, homotopy

continuation methods has seen extremely active development and grown into a large class

containing a wide range of different homotopy constructions including the Total Degree

Homotopy [16], the m-Homogeneous Homotopy [22], the Random Product Homotopy [18],

the Cheater’s Homotopy [19], the Polyhedral Homotopy [10], and many more. The homotopy
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continuation method has been proved to be a reliable and efficient class of numerical methods

for approximating all isolated zeros of polynomial systems. Furthermore, as it matured,

it is now used as the basic building block for other numerical methods, such as numerical

irreducible decomposition algorithms [25], opening up new possibilities.

1.2 Basic affine path tracking algorithms

Fix any path γ ⊂ C
n × (0, 1) defined by the homotopy H(x, t) = 0, by the smoothness

assumption, γ can be parametrized by the t-variable, and we can write x as a smooth function

x (t) of t with H(x(t), t) = 0. Then it is easy to see that the function x(t) must satisfy the

system of ordinary differential equation

Hx(x(t), t) · dx
dt

+Ht(x(t), t) = 0, (1.1)

or simply Hx
dx
dt = −Ht, commonly known as the Davidenko differential equation [1]. This

forms the basis of the numerical path tracking algorithms with which one can trace a solution

path from its starting point. While any numerical solver of ordinary differential equations can,

in principle, be applied to Equation (1.1) and thus used for path tracking, the special class of

predictor-corrector method is generally preferred. In this scheme, an efficient but potentially

inaccurate “predictor” is responsible for producing a rough estimate of the next point on

the path using the information of known points on the path. Then a series of Newton-like

“corrector” iterations is employed to bring the point approximately back to the path.

One of the most basic predictor-corrector configuration is the duet of Euler’s method and

Newton’s iteration in which the prediction x̃ (t0 + ∆t) for the value of x at t1 = t0 + ∆t is

3



given by

x̃(t0 + ∆t) = x(t0) + ∆t · ẋ(t0) = x(t0)−∆t ·H−1
x (x(t0), t0) ·Ht(x(t0), t0).

This prediction step is followed by a series of Newton’s iteration: at t1 = t0 +∆t, the equation

H(x, t1) = 0 becomes a system of n equations in n unknowns. So Newton’s iterations can be

used to refine the prediction x̃(t1) with

xk+1 = xk −
[
Hx(xk, t1)

]−1
H(xk, t1)

for k = 0, 1 . . ., where x0 = x̃ (t1) is the start point.

Higher order predictors such as Hermite interpolation, Adam-Bashforth methods, and

Runge-Kutta methods may be used to provide better predictions. More sophisticated

correctors which can improve the convergence property of Newton’s method also exist. It

is the goal of this article to extend the path tracking algorithms to the complex projective

space.

1.3 Numerical condition of paths

In the general context of numerical computation, it is a fair question to ask: What does

a numerical algorithm do? While it is generally assumed that numerical algorithms find

approximate solutions of a given problem, it was pointed out by Wilkinson [31] that they

actually compute exact solutions to a nearby problem. The distance between the two problems

is known as the backward error. Whether or not this solution is close to the solution of the

original problem depends, greatly, on the sensitivity of a solution under certain perturbation
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of the problem. The condition number is a numerical measurement of this kind of sensitivity.

For instance, in the case of a system of linear equations of the form Ax = b, the condition

number, respect to some matrix norm ‖•‖ is given by cond (A) = ‖A‖ ·
∥∥A−1

∥∥ or ∞ when A

is singular. Simply put, the condition number and errors are related by the inequality

Forward error 6 (Condition number) · (Backward error) . (1.2)

We refer to [26] for the more precise statements. It is important to note that while the

backward error is controlled by the algorithm and computing devices used, the condition

number is a property of the problem formulation itself. When the condition number is

sufficiently large, the problem is said to be ill-conditioned, and according to inequality (1.2),

one cannot provably control the forward error whenever any backward error is present. In

other words, when the question is bad, there is no good answer .

Here we would like to assign such a condition number to the path tracking problems

homotopy continuation methods intend to solve. We found it unlikely that a single number

can characterize the condition of such a complex problem. In this section, we will define a

weaker concept, the condition of a homotopy path at a point , in terms of a specific linear

equation. We shall then justify the usefulness of such a concept.

Fix a path γ ⊂ C
n+1 × (0, 1) defined by H(x, t) = 0. By the smoothness condition

of the homotopy construction, γ can be parametrized by t as a smooth function x(t) on

(0, 1). We have stated in Equation (1.1) that this smooth function must satisfy the equation

Hx
dx
dt = −Ht. Thus, the tangent vector v of the smooth function x(t) at a fixed point (x, t)
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on the path is a solution to the linear system

Hxv = −Ht. (1.3)

We will call this linear system the tangent vector problem and define the condition

number of the path γ at the point (x, t) to be the condition number of the matrix Hx

on the left hand side of the above equation. If a path has a sufficiently large condition number

at a point respect to some given threshold, we say the path is ill-conditioned at that point.

In general a path is said to be ill-conditioned if it is ill-conditioned at any point, otherwise

it is said to be well-conditioned. The threshold, of course, depends on many factors such

as the precision of the floating point arithmetic, the desired accuracy for solutions, and the

nature of the problem or its application.

1.3.1 Why path condition matters

It is worth reiterating that the path condition at a point, as defined above, is a property of

the tangent vector problem (1.3) at that point determined by the homotopy used, and it is

independent from the algorithm with which Equation (1.3) is solved or the precision of the

floating point arithmetic in which computation is carried out. Also note that error is almost

always present: Even if exact arithmetic can be used, discretization error still exists.

A direct justification to the meaning of the condition number of (1.3) is that, as an

experimentally verified rule of thumb, if the condition number is 10d, then Gaussian elimination

will generally loose d decimal places worth of accuracy to rounding error [27, p.269]. Thus it

is a direct measure of the sensitivity of the solution to the tangent vector problem respect

to perturbation when the Gaussian elimination is used. Its effect on other methods varies.
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While a large path condition number does not make the path impossible to track, it will

adversely affect any path tracking method that depends on the direct or indirect solution to

Equation (1.3).

From users’ point of view, the effect of the path condition is twofold. First, it is a

general experience that bad (large) path condition leads to very slow convergence for many

numerical algorithms used for path tracking and vice versa. A quantitative discussion of

the computational complexity of the path tracking in relation to the condition number can

be found in [4]. Second, when the path condition number is sufficiently large, one cannot

obtain approximations of the path tangent vector with any reasonable accuracy (using any

algorithm in any arithmetic). This should definitely cast doubts on the validity of the final

solutions obtained by the overall homotopy continuation method. In short, the tracking of

ill-conditioned paths is slower and less trustworthy.

1.3.2 Ill-conditioned paths

A path can become ill-conditioned for a number of reasons. Here we will discuss four of the

major causes. There are also other numerical causes and we will have more detailed analysis

in later sections.

1.3.2.1 Divergent paths

By the smoothness condition, along each path we can consider x as a smooth function x (t)

of t for t ∈ (0, 1). While the hope is x (t) converges to a solution of the target system

P (x) = 0 in Cn as t → 1, it could happen that x (t) does not converge to any point in

C
n and instead ‖x (t)‖ becomes unbounded as t → 1. In this case, we say the path x (t)

diverges. Such a path is called a divergent path. Divergent paths have infinite arc length
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and are ill-conditioned. Tracking such paths directly is generally impossible. Since the

genesis of general homotopy continuation methods for solving polynomial systems, much

effort has been devoted for constructing the homotopy so that the number of divergent paths

is minimized. Despite the tremendous progress made in recent years, the handling of divergent

paths remains an important problem.

1.3.2.2 Paths with large coordinates

Even if a path does not diverge, it is still possible for it to contain points with arbitrarily large

coordinates since points in Cn × [0, 1] in general have unbounded coordinates. Notice that

since H is algebraic in x, the magnitude of all non-constant entries of Hx grows unboundedly

as ‖x‖ → ∞. In this situation, if entries of Hx grows at different rate, then it will likely

cause the path to be ill-conditioned when ‖x‖ is large. Geometrically speaking, as the path

x (t) escapes Cn × [0, 1] the norm of its tangent vector ẋ (t) = dx
dt will grow unboundedly

forcing Hx to become closer and closer to being singular.

1.3.2.3 Paths approaching singular points in the middle

In this context, a singular point of a path is a point at which the smoothness condition fails.

More precisely, it is a point where the path cannot be parametrized smoothly by the variable

t. By assumption, when the homotopy is properly constructed, such points should never exist

on the path away from the end point at t = 1. However, it is possible for a path to have a

close encounter with a singularity. When the path is close to a singularity, the path condition

number can also be large.
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1.3.2.4 Paths approaching singular end points

The smoothness condition requires that the paths to be parametrized smoothly by t for

t ∈ (0, 1). However, it is also consistent with this assumption a path hits a singular end

point at t = 1 in the sense that x is not a smooth function in t at t = 1. The analysis of the

structure of the path near such a singular end point is the topic of Chapter 3.

1.3.2.5 Summary of ill-conditioned paths

Firstly, divergent paths are caused by the non-compactness of Cn as well as the choice of the

homotopy. Secondly, path with large coordinates exists largely due to the fact that points in

C
n have unbounded coordinates . Thirdly, the unfortunate encounter with singularities in the

middle had the bad formulation of the homotopy itself to blame. Finally, singular end points

is a feature of the target system. In this article we develop the projective path tracking

method that will eliminate the first three causes of ill-conditioned paths while partially deal

with the last cause.

9



Chapter 2

Projective Path Tracking

As we mentioned in Chapter 1, from the point of view of path condition, divergent paths are

ill-conditioned. Tracking such paths are generally impossible. Divergent paths exist because

C
n is not compact as a topological space. If we replace Cn with a compact topological space

W in which Cn is embedded as a dense subset, then one can show that all homotopy paths,

now in W × [0, 1], must converge to points inside W at t = 1 and have finite arc length [17].

Such a compact space W is called a compactification of Cn. One of the most commonly

used compactification in the context of algebraic geometry is the complex projective space

CP
n. In this chapter, we will develop the tools for homotopy path tracking in CPn.

First, we will explore existing methods for path tracking in complex projective space and

discuss their need for improvement. In the second portion of this chapter we will briefly

outline the Riemannian geometry of the complex projective space. While most of the standard

constructions and concepts can be found in sufficiently advanced textbooks on Riemannian

geometry and complex geometry, for completeness, we shall define all the concepts that are

likely beyond an average 1st year graduate level course on differential geometry. Besides the

nuts and bolts of the basic geometry, the end results of this purely theoretical discussion

include three computational tools: the tangent space formula, the distance formula, and the

geodesic definition on CPn. Guided by the theory, we will derive methods for projective

path tracking in the third portion. Then in Section 2.6, through numerical analysis of the
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algorithms we justify, theoretically, that the proposed projective path tracking algorithms

does not pollute path conditions. In the sections that follow, we demonstrate some useful

numerical techniques for projective path tracking. Finally we shall show, via computational

results, that the geometrically motivated algorithms are also numerically sound.

2.1 Background: working in projective space

One definition for the complex projective space is the set of equivalent classes

CP
n =

(
C
n+1\ {(0, . . . , 0)}

)
/ ∼ (2.1)

where x ∼ y for x,y ∈ Cn+1 if there exists a λ ∈ C\ {0} such that x = λy. In other words,

points of CPn are one dimensional linear subspaces of Cn+1 with the “origin” deleted. It

is common to use the notation [x0 : · · · : xn] for the homogeneous coordinate of a point

in CPn with [x0 : · · · : xn] being equivalent to [λx0 : · · · : λxn] for any λ ∈ C\ {0}. With

such coordinates CPn, as a set, can be covered by subsets Uj =
{

[x0 : · · · : xn] |xj 6= 0
}

for

j = 0, . . . , n, called standard charts. Clearly, each standard chart Uj is equivalent to Cn,

as a set, via the identification [x0 : · · · : xn] 7→
(
x0
xj
, . . . ,

xj−1
xj

,
xj+1
xj

, . . . , xnxj

)
. These charts

equip the set CPn the structure of a complex manifold [28].

The zero sets of polynomials inCPn are not well defined in general since each point inCPn

has infinitely many different coordinates. However, the zero set of a homogeneous polynomial

p ∈ C [x0, . . . , xn] is indeed well defined. More generally, for a system P = (p1, . . . , pn) of

homogeneous polynomials, the common zero set of P in CPn is also well defined. So given

11



any polynomial f ∈ C [x1, . . . , xn] of degree d, we can define its homogenization to be

f̂ (x0, . . . , xn) = xd0f

(
x1

x0
, . . . ,

xn
x0

)

which is clearly homogeneous of degree d, i.e.,

f̂ (λx0, . . . , λxn) = λdf̂ (x0, . . . , xn)

so its zero set is well defined in CPn. Yet f̂ is still closely related to f in the sense that

f̂ (1, x1, . . . , xn) = f (x1, . . . , xn), i.e., f̂ and f are equivalent on the chart U0 defined by

x0 6= 0. This common construction allows us to “lift” a problem into the complex projective

space. Detailed discussion about this technique can be found in any textbook on basic

algebraic geometry.

To apply this to the homotopy continuation method, given a homotopy H(x1, . . . , xn,

t) = (h1, . . . , hn) defined on Cn × [0, 1] that is algebraic in the variables x1, . . . , xn, we shall

consider their homogenizations respect to (x1, . . . , xn)

ĥj(x0, . . . , xn, t) = x
dj
0 hj

(
x1

x0
, . . . ,

xn
x0
, t

)

for each j = 1, . . . , n where dj = deg hj , and the new homotopy Ĥ(x0, x1, . . . , xn, t) =

(ĥ1, . . . , ĥn), which is now defined on Cn+1 × [0, 1]. Then for any fixed t ∈ [0, 1] the common

zero set of Ĥ(x0, . . . , xn, t) inCPn is indeed well defined. We hence consider the equation Ĥ =

0 to define paths in CPn × [0, 1] which we shall call projective paths. To avoid confusion,

the original paths defined by H = 0 in Cn × [0, 1] will be called affine paths. Clearly, for

any path γ ⊂ Cn × [0, 1] defined by H = 0, γ̂ = {([1, x1, . . . , xn], t) | (x1, . . . , xn, t) ∈ γ} give

12



us a projective path defined by Ĥ = 0. In this case, we call γ the affine associate of γ̂.

One key advantage of working in CPn is that it is compact , as a topological space, thus all

projective paths defined by Ĥ = 0 must converge and be of finite length. In the following

subsections, we will discuss existing path tracking methods in the projective space CPn. One

important theorem that is used many times in our discussion is the Euler’s theorem which

we shall state here for an easy reference.

Theorem 1. (Euler’s identity for homogeneous functions) Given a smooth homoge-

neous function f (x0, . . . , xn) of order d,

n∑
j=0

xj
∂f

∂xj
= d · f (x0, . . . , xn) .

[29, Theorem 10.2] contains a simple proof of this theorem. From this we can deduce the

following useful fact:

Corollary 1. Let F = (F1, . . . , Fn) with each Fj ∈ C [x0, . . . , xn] being homogeneous, and

let (x0, . . . , xn) ∈ Cn+1 be a point such that F (x0, . . . , xn) = 0, then

DF(x0,...,xn)


x0

...

xn

 =


0

...

0

 .

In other words, a common zero x ∈ Cn+1 of a system of homogeneous polynomial is also

a right zero vector of the Jacobian matrix of the system at x.

13



2.1.1 Projective path tracking using affine charts

The major difficulty in working with Ĥ, defined on CPn × [0, 1] is that for a fixed t ∈ [0, 1]

a solution to Ĥ = 0, being a point in CPn, has infinitely many different but equivalent

homogeneous coordinates. When it is considered as a system of equations in Cn+1 for fixed t,

Ĥ = 0 has n+ 1 unknowns but only n equations and hence has no isolated solutions. Thus

traditional path tracking algorithms cannot be directly applied to the problem.

In theory, this problem can be resolved by simply transferring the problem Ĥ = 0

back to the affine space Cn. As we have just stated, CPn is covered by standard charts

Uj =
{

[x0 : · · · : xn] |xj 6= 0
}

for j = 0, . . . , n with each being identified with a copy of Cn.

So one could simply work in one such chart. On the chart defined by xj 6= 0, after scaling, we

can assume xj = 1. Then on this chart Ĥ = 0 can be simply represented by the new system

of equations 
Ĥ (x0, . . . , xn, t) = 0

xj − 1 = 0.

In particular, using j = 0 we will obtain exactly the original problem we have started

with, since Ĥ (1, x1, . . . , xn, t) = H (x1, . . . , xn, t). The above equation is an equation in

C
n+1 × [0, 1], and existing affine path tracking algorithms for Cn+1 can be used.

This method can be further generalized. A geometric interpretation of the last equation

xj − 1 = 0 in the above system is that it defines an affine subspace of (complex) codimension

one, i.e., a hyperplane L of Cn+1. Then the above system can be interpreted as the

projection of the projective homotopy paths defined by Ĥ = 0 to the hyperplane L. With this

interpretation in mind, there is no reason to restrict ourselves in using only the hyperplanes

defined by xj − 1 = 0. We can generalize the method by using a hyperplane L of Cn+1
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defined by a linear equation a0x0 + · · · + anxn − 1 = 0, i.e., we can consider the system

induced by L

ĤL (x, t) =


Ĥ (x0, . . . , xn, t) = 0

a0x0 + · · ·+ anxn − 1 = 0.

(2.2)

For later reference, we state the following lemma that was shown in [21] and [25]:

Lemma 1. As long as the original homotopy H satisfies the smoothness condition, given

any fixed t ∈ (0, 1), for almost all L, the projection of the zero set of Ĥ = 0 to L consists of

smooth points.

Thus one can simply choose a generic hyperplane L, and apply affine path tracking

algorithms to the homotopy ĤL = 0 induced by L. Methods based on this idea are widely

used and are adopted by software packages such as Bertini and Hom4ps-3.0 with useful

results.

However, this method is not completely without flaws. First of all, while CPn itself is

compact, its projection onto the hyperplane L in Cn+1 is not. So during the path tracking

process the magnitude of the components xj for j = 0, . . . , n can still grow without bound,

which is indeed the original problem we set out to solve. But most importantly, for the

numerical path tracking algorithms to work well in real world , it is crucially important that

the paths not only satisfy the theoretical smoothness but also possess good numerical path

condition. To illustrate the problem in this regard, let us consider an actual computational

result where the homotopy method based on Equation (2.2) is used to solve the cyclic7 [3]

problem. A randomly chosen a = (a0, . . . , an) is used to represent the generic hyperplane L.

Figure 2.1 shows the path condition number along a single path.

Clearly visible in the graph is the fact that the path condition can reach close to 1016. It is
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Path condition along a single path for cyclic7

Figure 2.1: The path condition number, in log10 scale, of a single path defined by Equation
(2.2) ĤL = 0 for solving the cyclic7 problem: the path condition can be as large as 1016 “in
the middle” of the path tracking.

tempting to conclude that we had a close encounter with a singularity and hence the original

homotopy H or even the target system (cyclic7) is to be blamed. However, when compared

with the path conditions of the original affine associate of exactly the same projective path,

shown in Figure 2.2, the difference is quite striking: while the path condition number of the

original affine associate was kept well under 100 throughout the entire path tracking process,

the projection of the same projective path to L has path condition close to 1016 at certain

points. So the projection to the hyperplane L, in this particular case, has polluted the path

condition.
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Path condition along a single path for cyclic7

Affine charts
Original method

Figure 2.2: The path condition numbers, in log10 scale, of a path defined by Equation (2.2)
ĤL = 0 (shown in solid lines) and that of the affine associate of the same projective path
(shown in dashed line) defined by the original homotopy H = 0 tracked for solving the cyclic7
problem. The two paths represent the same projective path in CPn× [0, 1] defined by Ĥ = 0,
but the difference in their respective path condition numbers is striking!

To understand the cause, we shall now analyze the path condition when the homotopy

defined in Equation (2.2) is used.
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2.1.2 Numerical analysis of the homotopy path

As we defined in Chapter 1, at a fixed (x, t) = (x0, . . . , xn, t) ∈ Cn+1 × [0, 1] on a path

defined by Equation (2.2), the path condition is the condition number of the Jacobian matrix

J =



∂Ĥ1
∂x0

· · · ∂Ĥ1
∂xn

...
. . .

...

∂Ĥn
∂x0

· · · ∂Ĥn
∂xn

a0 · · · an



of ĤL respect to x = (x0, . . . , xn) evaluated at (x, t). In light of Corollary 1, we can see that

J · x
‖x‖2

= 1
‖x‖2

·



0

...

0

a0x0 + · · ·+ anxn


= α · en+1

where α := (a0x0 + · · · + anxn)/‖x‖2 and en+1 = (0, . . . , 0, 1) ∈ Cn+1. By assumption

α 6= 0, hence we have J−1en+1 = x
α‖x‖2

, so for the unit vector en+1,

∥∥J−1en+1

∥∥
2 =

∥∥∥ x
α‖x‖2

∥∥∥
2

= 1
|α| .

Therefore
∥∥J−1

∥∥
2 > 1

|α| and the path condition at (x, t) is at least 1
|α| . When the absolute

value of α is small the path becomes ill-conditioned. Given any threshold µ for path condition

the set of a = (a0, . . . , an) ∈ Cn+1 that cause the path condition at (x, t) to be greater than

µ contains at least the set {a ∈ Cn+1 : |a>x|/‖x‖2 < 1/µ} even if the original homotopy
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H(x, t) is well-conditioned. Furthermore, unless the chart is to be changed at every step, the

same chart must be used on some t-intervals [t1, t2], then the set of a that will cause the

path condition to be greater than µ on that t-interval contains at least

{
a ∈ Cn+1 : |a>x(t)|/‖x(t)‖2 < 1/µ for t ∈ [t1, t2]

}

which could potentially be of rather large Cn+1 Lebesgue measure. From a probability point

of view, while for a fixed (x, t) on a path the choices of a ∈ Cn+1 making the path singular

is small enough to be ignored, the choices of a making the path ill-conditioned may not be.

In other words, while “wrong” choices are rare, bad choices are plenty . In this case it can be

hard to avoid them.

To have a quantitative idea of the probability of making such bad choices, we shall look

at a distribution of maximum path condition numbers. The cyclic7 problem computation is

repeated 10 times using both homotopies H = 0 and ĤL = 0. The maximum path condition

along each path is collected. The distribution of maximum path condition, in log10 scale,

resulted from the two different approach is shown in Figure 2.3. The two approaches are

essentially tracking the same paths: the only difference is the hyperplanes the paths are

projected to. However, the difference in the distribution of the maximum path condition is

striking.

Clearly shown in the histogram is the fraction of ill-conditioned paths defined by ĤL = 0.

While double-precision can still track all the paths and obtain the correct answers, in light of

Inequality (1.2), floating point arithmetic with much higher precision must be used if one

intend to obtain any provable accuracy. As expected, the bad condition has also made the

path tracking process much slower: in this particular experiment, while the number of paths
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with maximum path condition greater than 1010 is less than 5% among the total number of

paths, the amount of time the path tracking algorithm spent on them is actually more than

what it spent on the remaining 95% of the paths!

The cyclic7 problem is not alone in revealing the numerical problem with the method

based on affine charts. As we can see in Table 2.1, the same numerical problem exists in the

path tracking of many systems.

System Percentage with condition > 1010 Percentage with condition > 1015

cyclic5 [3] 1.67% 0.83%

cyclic7 [3] 4.73% 0.8%

cyclic11 [3] 4.97% 1.03%

eco11 [21] 0.91% 0.91%

eco15 [21] 0.99% 0.71%

9-point [30] 0.99% 0.12%

Table 2.1: Average percentage, rounded to the second digit after the decimal point, of paths
with large maximum path condition number over 10 different runs when the homotopy
ĤL = 0 of Equation (2.2) is used to solve different polynomial systems (all divergent paths
and those with singular end points are ignored). At first glance, the percentages seem rather
small, however one must keep in mind that hundreds of thousands of paths are tracked in
solving some of the systems, so even a very small percentage will translate to a large absolute
number of paths with very high maximum path condition.

Clearly, more numerically stable method for path tracking in the complex projective space

is needed. In the remaining part of this chapter, we shall develop a projective path tracking

method from the point of view of the Riemannian geometry on CPn.
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Figure 2.3: The histogram of maximum path condition in log10 scale for all paths defined by
the original homotopy H = 0 (in striped bars) and those defined by the homotopy ĤL = 0 of
Equation (2.2) (in solid bars) for solving the cyclic7 problem. The height of each bar indicates
the total number of paths having the corresponding maximum path condition. For example
the leftmost striped bar has a height of 852 and occupies a horizontal interval near 2. This
bar signifies that there are 852 paths defined by the original H = 0 having maximum path
condition approximately in the scale of 102. This graph represents the average results of 10
different runs. While the two approaches are essentially tracking the different projections of
the same set of projective paths defined by Ĥ = 0, the difference in maximum path condition
distribution is indeed striking!
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2.2 Geometry of the complex projective space

First, we shall review the Riemannian geometry of CPn. The definition CPn = (Cn+1\{(0,

. . . , 0)})/ ∼ merely describes CPn as a set and carries no obvious geometric structure. While

the standard charts U0, . . . , Un used above equip CPn the structure of a complex manifold,

here we shall take another classical route: CPn can be realized as the quotient manifold of

S2n+1 by the action of a compact Lie group, the circle group. This point of view provides

us the “natural” choices for the smooth and Riemannian structure for CPn. With these

additional geometric structures, we can derive tools for projective path tracking algorithms.

2.2.1 Identification between C and R2

We identify C with R
2 via the map x + iy 7→ (x, y)>. Under such an identification,

the multiplication by a complex number a + bi can be considered as an invertible linear

transformation on R2. It is easy to check that it is represented by the 2 × 2 real valued

matrix a −b
b a

 .

We can of course extend this and identify Cm and R2m via (z1, . . . , zm) 7→ (Re z1, Im z1, . . . ,

Re zm, Im zm). Then the scalar multiplication to vectors in Cm by the complex number

a+ bi, under such an identification, can be viewed as the linear transformation of R2m given
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by the 2m× 2m matrix 

a −b

b a

. . .

a −b

b a


.

In the context of complex geometry, it can be immediately recognized that we are simply

describing the standard complex structure on R2m.

One such scalar multiplication is of special interest to us: multiplying by a complex

number eiθ = cos θ + sin θ i on the unit circle U = {u ∈ C : |u| = 1} of C, which preserves

length. As a linear transformation on R2m, we shall use the same notation

eiθ =



cos θ − sin θ

sin θ cos θ

. . .

cos θ − sin θ

sin θ cos θ


(2.3)

to represent the block diagonal matrix on the right hand side, which is clearly orthogonal.

One can easily check the familiar statements
(
eiθ
)−1

= ei(−θ) and eiθ1 · eiθ2 = ei(θ1+θ2) are

still true as statements of linear transformations, and that 1 = ei0 is the identity matrix.

Simply put, there is a natural isomorphism between the multiplicative group of the unit circle

U of C and that of the orthogonal matrices of the above form. To go one step further, for a
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fixed point v ∈ R2n the statement

d
dθe

iθv =



− sin θ − cos θ

cos θ − sin θ

. . .

− sin θ − cos θ

cos θ − sin θ


· v = ieiθv

still holds in this context. For u,v ∈ R2n, the notation

〈u,v〉R = u>v

always denotes the standard dot product in the Euclidean space. We will use the same

symbols u and v for the two corresponding vectors in Cn and the notation

〈u,v〉C := uHv

for the complex inner product, where uH is the conjugate transpose of the complex vector

u ∈ Cn. There are other possible definitions for the complex inner product. This one is

chosen so that the two inner products have an obvious connection:

〈u,v〉R = Re〈u,v〉C and 〈iu,v〉R = Im〈u,v〉C . (2.4)

It is also a convenient fact that the length of a vector ‖u‖2 =
√
〈u,u〉R =

√
〈u,u〉C

regardless which inner product is used.
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2.2.2 Notation and terminology

In the rest of this chapter the term smooth always means infinitely differentiable while a

manifold is always a connected smooth manifold that is Hausdorff and second-countable.

A smooth curve is by assumption a smoothly parametrized smooth submanifold of (real)

dimension 1. At a point x of a manifold M , we use the notation TxM for the tangent space

of M at x. The tangent bundle of M is denoted by TM while its smooth vector fields is

denoted by X (M). When considering certain group action on M , we use [x] for the orbit of

x ∈M under that action.

Since both inner products 〈•, •〉R and 〈•, •〉C will come into our discussion, we must

use the concept of orthogonality with care. The word orthogonal should always mean the

relationship that two (real) vectors have their real inner product being zero. The term

orthogonal compliment should carry the same meaning in real.

2.2.3 Realizing CPn as S2n+1/U

Let S2n+1 =
{
x ∈ R2n+2 : ‖x‖2 = 1

}
=
{
z ∈ Cn+1 : ‖z‖2 = 1

}
be the (2n+ 1)-dimensional

sphere. It is a standard construction to view CP
n as the quotient of S2n+1 under a group

action. This construction will provide us the smooth and Riemannian structure for CPn.

It is clear that each point (z0, . . . , zn) ∈ S2n+1 represents a point [z0 : · · · : zn] in CPn,

and each point in CPn has such a representative. More formally, let π : S2n+1 → CP
n

be the map given by (z0, . . . , zn) 7→ [z0 : · · · : zn], then π is clearly onto. We would like

to use S2n+1 as our model for CPn via the map π. It has the obvious advantage that all

coordinates for all points are bounded. Indeed ‖x‖2 = 1 for all x ∈ S2n+1. However, the

representative of a point in CPn is not unique, i.e., π is not 1-to-1, as π (x) = π (λx) for any
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λ ∈ C∗ = C\ {0}. But to leave S2n+1 invariant, we must have λ = eiθ. The multiplication

by eiθ, viewed as a transformation on R2n+2, is given by the orthogonal matrix shown in

Equation (2.3). It is easy to check that for x ∈ S2n+1, the points of the form eiθx with

θ ∈ R are exactly those that represent the same point as x itself. Formally speaking,

π−1 (π (x)) =
{
eiθx|θ ∈ R

}
.

Therefore, as a set, we can identify CPn with the set of equivalent classes {[x] : x ∈ S2n+1}

where

[x] := { eiθx | θ ∈ R }.

Next we shall show that this identification is also geometric. Let U = {eiθ | θ ∈ R} be the

unit circle which is a compact smooth submanifold of C ≈ R2. U clearly forms a group under

multiplication, which is itself a smooth operation. In other words, U is a compact Lie group.

From this point of view each orbit Ux = [x] is exactly the set of points representing the

same point in CPn via the map π. Namely, we can consider CPn as the quotient S2n+1/U

of S2n+1 under the group action of U . It is easy to check that U acts on S2n+1 smoothly

and freely. Because U ⊂ C is compact, the action is also proper. By the Quotient Manifold

Theorem [13, Theorem 9.16] CPn = S2n+1/U is a smooth manifold in its own right, and

it has the unique smooth structure such that π is a smooth submersion, and at each point

x ∈ S2n+1 we have the decomposition

TxS
2n+1 = T[x]CP

n ⊕ Tx [x]
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of the tangent space. Note, however, that the decomposition alone does not explicitly tell

us how to choose T[x]CP
n, since any complement of Tx [x] in TxS

2n+1 is algebraically

isomorphic to T[x]CP
n. Nonetheless, if we take the Riemannian structure of S2n+1 into

account, then there is essentially only one “natural” choice of T[x]CP
n and one “natural”

Riemann structure on CPn. We shall make this statement precise.

As a submanifold of R2n+2, S2n+1 inherits a natural Riemannian metric g
S2n+1 ,

which is a smooth assignment of inner products in the tangent bundle TS2n+1. Or more

formally, g
S2n+1 is a 2-tensor field that is symmetric and positive definite simply given by

g
S2n+1 (u,v) = 〈u,v〉R

for u,v ∈ TxS2n+1 at any x ∈ S2n+1. Using this metric, we can decompose the tangent

space at x into

TxS
2n+1 = Vx ⊕Hx

where

Vx = Tx[x] Hx = {h ∈ TxS2n+1 | g
S2n+1(h,v) = 0,∀v ∈ Vx}.

That is, we can decompose TxS
2n+1 into the direct sum of two subspaces that are orthogonal

respect to the inner product given by g
S2n+1 at x. In this case, we can simply define

T[x]CP
n := Hx, the so called horizontal space at x respect to the action of U . As stated

above, the canonical projection π : S2n+1 → S2n+1/U ≈ CP
n is a smooth submersion

in terms of the smooth structure given by the Quotient Manifold Theorem, i.e., at any
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x ∈ S2n+1 the pushforward π∗ : TxS
2n+1 → T[x]CP

n is surjective, as a linear map, at each

point x. There is a unique Riemannian metric g := gCPn for CPn, with respect to which

π is a Riemannian submersion: a smooth submersion that is also an isometry on the

horizontal space Hx over each point x, i.e.,

g (π∗ (h1) , π∗ (h2)) = g
S2n+1 (h1, h2) for all h1, h2 ∈ Hx,

where π∗ is the pushforward of the smooth map π. In the rest of this chapter the notation

CP
n should always mean the n-dimensional complex projective space realized as the quotient

manifold S2n+1/U carrying the smooth structure determined by the quotient and the

Riemannian metric g.

Actually, CPn has much richer geometric structures than we shall make use of in the

following discussion. The Hermitian structure (a continuous assignment of Hermitian product

on the tangent bundle TCPn) and the complex structure, to name a few, are not explicitly

used here but are naturally quite important in the study of CPn. We refer to [4] for a more

detailed discussion.
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2.2.4 Tangent formula for CPn

Following the notation we introduced above, at any point x ∈ S2n+1, the tangent space

T[x]CP
n = Hx, viewed as the horizontal space of TxS

2n+1 respect to the action of U ,

consists of all the vectors that are orthogonal to the vertical space Vx = Tx [x]. At x the

tangent space TxS
2n+1 of S2n+1, as an embedded submanifold of R2n+2, is simply the linear

subspace {x}⊥ ⊆ TxR
2n+2 ∼= R

2n+2. For Tx [x], it is clear that near x, the one (real)

dimensional submanifold [x] is parametrized by γ (θ) = eiθx with γ (0) = x. So

γ̇ (0) = iei0x = ix .

As a vector in TxR
2n+2, it is the generator of the one dimensional vector space Tx [x]. So

far, we have

Tx [x] = span {ix} and TxS
2n+2 = {x}⊥ .

As we just stated, T[x]CP
n is the linear subspace of TxS

2n+1 = {x}⊥ that is orthogonal

to Tx [x] = {ix}. So it is simply {ix}⊥ ∩ {x}⊥ in TxR
2n+2 ∼= R

2n+2, i.e., it is the set of

vector v such that

〈ix,v〉R = 0

〈x,v〉R = 0

which is equivalent to the complex equation 〈x,v〉C = 0 based on the observation from

Equation (2.4). Therefore the tangent space can be characterized as

T[x]CP
n =

{
v ∈ TxR2n+2 : 〈x,v〉C = 0

}
.
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In particular, for a smooth curve x (t) : [0, 1] → CP
n, its tangent vector ẋ (t) ∈ T[x]CP

n

has the property that

〈x (t) , ẋ (t)〉C = 0

when both vectors are considered as vectors in Cn+1. Notice that when we restrict ourselves

to the point of view of Riemannian geometry we must consider the above equation as a

system of two equations 〈x (t) , ẋ (t)〉R = 0 and 〈ix (t) , ẋ (t)〉R = 0 in R2n+2. The first one

states that ẋ must lie flat in the tangent space of S2n+1, while the second one requires the

tangent vector to be inside the horizontal space that is orthogonal to the orbit of x under

the group action of U . The same equation can also be derived from the point of view of the

Hermitian structure on CPn, for that we again refer to [4].

2.2.5 Distance formula for CPn

The concept of distance on CPn plays a number of important roles in the numerical algorithms

that we will discuss later in this article, ranging from detecting the convergence of projective

Newton’s iterations to testing the sameness of end points in projective Cauchy integral

method. A “natural” concept of distance can be derived from the Riemannian metric on CPn.

Recall that the Riemannian metric g of a Riemannian manifold M is a smooth assignment of

inner product in the tangent bundle TM . It also induces a smooth assignment ` of lengths

to vectors in TM (a Finsler structure) given by

` (v) =
√
g (v,v).
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With this, for a smooth curve γ : [0, 1]→M , we can measure its length by

∫ 1

0
` (γ̇ (t)) dt

which is indeed invariant under reparametrization [13, Proposition 11.15] and hence a property

of the curve itself. So it is meaningful to assign a length ` (γ) to the smooth curve γ as

defined above. This definition can be easily extended to piecewise smooth curves by summing

the length of individual segments. Armed with the tool for measuring length of piecewise

smooth curves, we can then define the distance between two points in CPn to be the infimum

of the length among all piecewise smooth curves connecting the two. While quite elegant,

this definition does not offer a computable formula. A more direct approach requires the

concept of geodesics .

2.2.5.1 Riemannian geodesics

In the search of the shortest paths between two points, a.k.a. the minimizing curves, our

intuition would be of great help. In the Euclidean space, the shortest path between two points

is simply the straight line segment joining the two which also happen to be the most straight

path. This concept of “most straight paths” can be generalized to Riemannian manifolds, and

this generalization is known as geodesics . The link between “straightness” and “shortness” is

preserved to a certain extend: as we will state later, all minimizing curves are geodesics as

long as they are parametrized in the “right way”, and all geodesics are locally minimizing.

Intuitively, geodesics are curves that are “as straight as possible”, much like the straight

line segments in the Euclidean space. The “straightness” of straight lines can be characterized

precisely: a curve with constant speed parametrization is straight if and only if its acceleration
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is always zero. We simply have to generalize this notion of zero acceleration to curves in

Riemannian manifold. While it is tempting to define the acceleration of a curve γ : [0, 1]→M

on a manifold M to be the second derivative “ γ̈ ”, one immediately runs into trouble with

this approach: the tangent vectors at different points actually live in different tangent spaces.

So to define the concept of acceleration, we need a geometrically meaningful way to capture

the notion of the acceleration “ γ̈ = d
dt γ̇ ” along the curve γ. More formally, we need an

operator that gives us a coordinate independent method for differentiating a vector field

along a curve. Being the analog of d
dt , it obviously has to be linear (over R) and satisfies the

product rule. However, these requirements do not uniquely determine our desired concept

of “acceleration”. Fortunately, there is an important theorem, lies deep in the heart of

Riemannian geometry, which basically states that there is one “right” definition, with which

we have the link between curves with zero acceleration and those with shortest length. In the

following paragraphs, we shall state these ideas rigorously.

A linear connection [12, Lemma 4.9] on M is a bilinear map ∇ : X (M) × X (M) →

X (M), with the notation ∇XY := ∇ (X, Y ), such that for f1, f2 ∈ C∞ (M) we have

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y

∇X(f1Y ) = f1∇XY + (Xf1)Y.

We also say ∇ is symmetric if it satisfies ∇XY −∇YX = [X, Y ], where [X, Y ] is the Lie

bracket of the vector fields X and Y . Let X (γ) be the space of all vector fields along a

smooth curve γ parametrized by variable t, then respect to a given linear connection ∇,

there exists a unique linear operator [12, Lemma 4.9] Dt : X (γ) → X (γ), where t denotes
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the parametrization variable, such that

Dt (fV ) = ḟV + fDtV

for any smooth function f defined on [0, 1], and

DtV (t) = ∇γ̇(t)Ṽ

for any extension Ṽ of V on M . Dt is called the covariant derivative operator along γ,

and in general it will play the role of “ ddt” along curves in Riemannian manifold. We define

the acceleration of γ to be the vector field Dtγ̇ along γ, and γ is called a geodesic with

respect to ∇ if its acceleration is zero, i.e.,

Dtγ̇ ≡ 0

on the interval (0,1). This equation is called the geodesic equation. Such a definition of

geodesics depends on the connection ∇ we use, so in order to have a concept of geodesics we

must first choose a connection. It is a useful fact that every smooth manifold admits at least

one linear connection. For example, embedded smooth submanifolds of Euclidean spaces

have tangential connection ∇> [12, p.66]. For a Riemannian manifold M with metric g,

however, there is a special one. A linear connection ∇ is said to be compatible with g if for

all vector fields X, Y, Z

Xg (Y, Z) = g (∇XY, Z) + g (Y,∇XZ) .
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Theorem 2. (Fundamental Lemma of Riemannian Geometry) Let M be a Rieman-

nian manifold with Riemannian metric g, there exists a unique linear connection ∇ on M

that is compatible with g and symmetric.

We refer to [12, Theorem 5.4] for the proof. This connection is called the Riemannian

connection (a.k.a. Levi-Civita connection) of g. Geodesics respect to the Riemannian

connection are called Riemannian geodesics. As we have anticipated, such geodesics has

a close link to minimizing curves.

Theorem 3. Every minimizing curve is a Riemannian geodesic when it is given unit speed

parametrization.

We again refer to [12, Theorem 6.6] for a proof that uses variational calculus. A simpler,

albeit longer, proof can be found in [6]. The converse is almost true:

Theorem 4. Every Riemannian geodesic is locally minimizing.

See [12, Theorem 6.12] for the proof and a detailed discussion. Geodesics that happen

to be minimizing is called minimizing geodesics. With this concept, we can see that the

distance between two points is simply the length of the minimizing geodesic joining them.

The distance function defined this way will be called the Riemannian distance. Since we

will not use any other distance, the Riemannian distance will simply be called distance.

Next, we shall review the distance formula on S1 and S2n+1, and then use them to construct

the geodesic and the distance formula on CPn. The distance on S1 and S2n+1 are denoted

by d
S1 and d

S2n+1 respectively, while our final goal, the distance on CPn, is simply denoted

by d.
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2.2.5.2 Distance on S1 and S2n+1

It is clear that the distance between two points x = (a, b) and x′ = (1, 0) on the unit circle

S1 ⊂ R2 has to be the length of the shorter arch between the two points on the unit circle.

This length is given by the angle between x = (a, b) and the horizontal axis on which x′ lies:

d
S1
(
x,x′

)
= cos−1 (a) = cos−1

 1

0


> a

b

 = cos−1
(
〈x,x′〉R

)
.

The same formula works in general for S2n+1. For two distinct points on x,x′ ∈ S2n+1 ⊂

R
2n+2, there exists a unique 2-dimensional linear subspace of R2n+2 that contains both x

and x′. This subspace intersects S2n+1 on a circle. This circle is called the great circle

through x and x′. It is intuitively clear that the distance between them has to be the

length of the shorter arc joining the two on the great circle (geodesic) that passes through

both of them. Surprisingly, this seemingly obvious fact is not completely trivial to check.

Here we refer to [12, Proposition 5.13] for an indirect proof that uses the fact that S2n+1 is

homogeneous and isotropic. There exists an orthogonal change of coordinates after which

the two points x and x′ together with the great circle passing through them lie flat in

R
2 ⊂ R2n+2. Indeed, this change of coordinates is given explicitly by the QR decomposition:
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there exists a (2n+ 2)× (2n+ 2) real orthogonal matrix Q such that

Q

(
x x′

)
=



1 a

0 b

0 0

...
...

0 0


for some a, b ∈ R. So the orthogonal transformation Q maps the great circle through those

two points to the unit circle S1 ⊂ R2 ⊂ R2n+2, and we can thus compute the distance as we

did in the previous case. Since Q, being orthogonal, preserves dot product, we get

d
S2n+1

(
x,x′

)
= cos−1 (a) = cos−1

(
(Qx)>

(
Qx′

))
= cos−1

(
〈x,x′〉R

)
.

In this case, the distance is still given by the arccos of the real inner product of the two

points as vectors in R2n+2.

2.2.5.3 Closest representatives of two points in CP
n

For two points [x], [x′] ∈ CPn ≈ S2n+1/U , each of them has infinite number of representatives

in S2n+1 of the form eiθx and eiθ
′
x′ respectively. We first need to find a pair with the

minimum distance on S2n+1. That is, we want to minimize the function d
S2n+1

(
eiθx, eiθ

′
x′
)
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which is given by

cos−1(〈eiθx, eiθ′x′〉R) = cos−1(Re〈eiθx, eiθ′x′〉C)

= cos−1(Re eiθ〈x, eiθ′x′〉C)

= cos−1(Re e−iθ〈x, eiθ′x′〉C)

= cos−1(Re〈x, ei(θ′−θ)x′〉C)

which, in turn, is simply d
S2n+1(x, ei(θ

′−θ)x′). So it is enough to fix the representative x

of [x] and minimize the distance over all the representatives of the other orbit [x′]. Hence,

without loss of generality, we can focus on minimizing the real-valued function

d
S2n+1

(
x, eiθx′

)
= cos−1

(
〈x, eiθx′〉R

)

over θ ∈ R. If we let r and φ be the real numbers such that reiφ = 〈x,x′〉C, i.e.,

r =
∣∣〈x,x′〉C∣∣ and φ = arg〈x,x′〉C

for some suitable branch of the complex argument function. Then 〈x, eiθx′〉R is simply

Re〈x, eiθx′〉C = Re
(
eiθ〈x,x′〉C

)
= Re

(
rei(φ+θ)

)
= r cos (φ+ θ) .

Therefore we want to minimize

d
S2n+1

(
x, eiθx′

)
= cos−1

(
〈x, eiθx′〉R

)
= cos−1 (r cos (φ+ θ))
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over θ ∈ R. First of all, it is clear that if r = 0, then the above function is a constant function,

and any θ would give us the “minimum value”. For r = 1, the above function is simply

cos−1 (r cos (φ+ θ)) = cos−1 (cos (φ+ θ)) = |φ+ θ|

which is minimized at φ = −θ. Finally, by the Cauchy-Schwarz inequality r =
∣∣〈x,x′〉C∣∣ 6

‖x‖2 · ‖x′‖2 = 1, so we only need to consider the case 0 < r < 1. In this case, using basic

calculus, to find the critical points we solve

d
dθ cos−1 (r cos (φ+ θ)) =

r sin(φ+θ)√
1−(r cos(φ+θ))2

= 0

which gives sin(φ+ θ) = 0. Hence θ ≡ −φ (mod π). But since

d2

dθ2
cos−1 (r cos (φ+ θ)) =


r√

1−r2
if θ ≡ −φ (mod 2π)

−r√
1−r2

if θ ≡ −φ+ π (mod 2π)

the minimum is attained at θ ≡ −φ (mod 2π). We thus conclude that among all represen-

tatives eiθx′ of [x′] in S2n+1/U , e−iφx′ is the closest, in terms of the distance, given by

d
S2n+1 , to x. Furthermore, among all representatives of [x] and [x′], (x, e−iφx′) forms a

pair with the minimum distance. For later reference, let us define

ηx(x′) := e−iφx′ where φ = arg〈x,x′〉C,
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with a suitable branch of the complex argument function, to be the nearest representative of

[x′] to x on S2n+1. It is easy to see the important property

〈x, ηx
(
x′
)
〉C = 〈x, e−iφx′〉C = e−iφ〈x,x′〉C =

∣∣〈x,x′〉C∣∣ . (2.5)

Based on this, we can easily derive

d
S2n+1

(
x, ηx(x′)

)
= cos−1

(
Re〈x, ηx(x′)〉C

)
= cos−1

(∣∣〈x,x′〉C∣∣) . (2.6)

Next, we shall show that this distance also gives us the distance between [x] and [x′] in

CP
n = S2n+1/U .

2.2.5.4 Geodesics in CP
n

We start with finding out the geodesic between [x] and [x′] in CPn. We have just shown

that among infinitely many representatives in S2n+1 the two points x and ηx(x′) form a

closest pair in terms of their distance in S2n+1. Let γ : [0, 1] → S2n+1 be the minimizing

Riemannian geodesic (the shorter arc of a great circle) in S2n+1 joining x and ηx
(
x′
)

with

γ (0) = x, γ (1) = ηx
(
x′
)
. We wish to show the smooth function γ̂(t) := [γ(t)] parametrizes

the minimizing Riemannian geodesic in CPn joining [x] and [x′], and the two curves have

the same length. This can be accomplished in three steps. First, we shall prove that the

tangent vector of γ is always in the horizontal subspace Hγ(t) of Tγ(t)S
2n+1. In this case,

γ is said to be horizontal. With this, we will then show that γ̂ is indeed a Riemannian

geodesic in CPn. Finally, we need to establish the minimizing property of the geodesic γ̂.

By construction, at each point γ (t) ∈ S2n+1 of the curve, the tangent space can be
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decomposed into orthogonal subspaces

Tγ(t)S
2n+1 = Vγ(t) ⊕Hγ(t) where Vγ(t) = Tγ(t) [γ (t)] = span {iγ (t)} .

In particular, at t = 1, we have Vγ(1) = span {iγ (1)} = span
{
iηx
(
x′
)}

which give us the

direction of the orbit
[
x′
]
. Also by definition, the great circle passing through x and ηx

(
x′
)
,

as a set, is the intersection between S2n+1 and the unique 2-dimensional linear subspace

L = span
{
x, ηx

(
x′
)}

of R2n+2 that contains both x and ηx
(
x′
)
. Then γ, being a segment

of this great circle, must also lie flat inside the subspace L, and hence L must contain the

tangent vector γ̇ (1). So to prove γ̇ (1) is orthogonal to Vγ(1), it is enough to show that the

vertical space Vγ(1) is orthogonal to the basis {x, ηx(x′)} of L which contains γ̇(1). Notice

that

〈x, iηx(x′)〉R = Re〈x, iηx(x′)〉C

= Re(i〈x, ηx(x′)〉C)

= Re(i
∣∣〈x,x′〉C∣∣)

= 0

by Equation (2.5), and similarly,

〈ηx
(
x′
)
, iηx

(
x′
)
〉R = Re〈ηx

(
x′
)
, iηx

(
x′
)
〉C

= Re
(
i〈ηx

(
x′
)
, ηx

(
x′
)
〉C
)

= Re (i)

= 0.
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Therefore the generator iγ(1) = iηx(x′) of Vγ(1) is orthogonal to both x and ηx(x′) which

are the basis of the subspace L. This implies Vγ(1) is orthogonal to the entire subspace

L = span{x, ηx(x′)}. In particular, it is orthogonal to γ̇ (1) ∈ L. Therefore γ̇ (1) lies in

the horizontal subspace Hγ(1). Repeating the same argument for any other t ∈ [0, 1], so

γ̇ (t) ∈ Hγ(t) for all t ∈ [0, 1]. With this observation, we can now apply the following theorem

[6, Proposition 2.109]:

Theorem 5.

i. If γ is a Riemannian geodesic of S2n+1 and γ̇ (1) is horizontal, then the curve γ̂ = [γ (t)]

is a Riemannian geodesic of S2n+1/U of the same length as γ.

ii. Conversely, if γ̂ is a Riemannian geodesic of S2n/U with γ̂ (0) = [x], then there exists

a unique Riemannian geodesic γ in S2n+1 such that γ (0) = x, [γ (t)] = γ̂ (t), and it is

horizontal in the sense that γ̇ (t) ∈ Hγ(t). In this case, γ is called the horizontal lift

of γ̂.

Hence γ̂ is a Riemannian geodesic of CPn = S2n+1/U joining the two points [x] and

[x′]. To show this geodesic is indeed minimizing, suppose there is a shorter minimizing curve

γ̂2 : [0, 1]→ CP
n joining [x] and [x′]. Without loss of generality, let us assume it has constant

speed parametrization. By Theorem 3, γ̂2 is a Riemannian geodesic. Then the second part

of Theorem 5 implies that there is a unique Riemannian geodesic γ2 : [0, 1] → S2n+1, the

horizontal lift of γ̂2, such that γ2 (0) = x, γ̂2 ≡ [γ2], and γ̇2 (t) ∈ Hγ2(t) for t ∈ [0, 1]. Let

x′′ := γ2 (1), then [x′′] = [x′] by construction. Let us still use `CPn and `
S2n+1 as the

operators that assign length to smooth curves. Since γ2 is horizontal, we necessarily have

`
S2n+1(γ2) = `CPn(γ̂2) because the quotient map π : S2n+1 → S2n+1/U ≈ CP

n is a
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Riemannian submersion, thus

d
S2n+1

(
x,x′′

)
= `

S2n+1 (γ2)

= `CPn (γ̂2)

< `CPn (γ̂)

= `
S2n+1 (γ)

= d
S2n+1

(
x, ηx

(
x′
))
.

This provides another representative x′′ of [x′] that is closer to x then ηx(x′), a contradiction.

We conclude that such a shorter minimizing curve joining [x] and [x′] cannot exist, and thus

γ̂, as constructed, is the true minimizing Riemannian geodesic joining [x] and [x′] with which

the distance between them can be defined.

2.2.5.5 Summary: the distance formula in CP
n

The distance d([x], [x′]) between the points [x], [x′] ∈ CPn is simply the length of the

minimizing Riemannian geodesic γ̂ joining the two which, as we have just derived, is the

same as the length of γ:

d
(
[x], [x′]

)
= `CPn (γ̂) = `

S2n+1 (γ) = d
S2n+1

(
x, ηx

(
x′
))

.

Therefore we have the distance formula

d
(
[x] , [x′]

)
= cos−1 (∣∣〈x,x′〉C∣∣) . (2.7)
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2.3 Projective predictors

For some fixed t0 ∈ [0, 1], given a representative (x, t0) of a point with [x] ∈ CPn on a

projective homotopy path, i.e, Ĥ(x, t0) = 0, the job of a predictor is to produce a prediction

x′ so that the point (x′, t0 + ∆t), for some given step size ∆t > 0, represents a point that is

close to being on that projective path. The simplest possible predictor is the zero predictor,

which actually does nothing. More precisely, the zero predictor produces (x, t0 + ∆t) as the

prediction from (x, t0). [4] has demonstrated the effectiveness of such a predictor. However

such method is in general too inefficient to be used in practice.

2.3.1 Projective Euler’s method

The projective Euler’s predictor produces the prediction x′ by moving x one step toward

the tangent direction of [x(t)], viewed as a smooth curve in CPn. This requires three steps.

First let v be the solution of the system of equation

[
Ĥx (x, t)

]
v = −Ĥt (x, t)

〈σx,v〉C = 0

where σ ∈ [σn, σ1], called the conditioning factor, is an arbitrary real number chosen

between σn and σ1, the n-th and the first singular values of the matrix Ĥx (x, t). The

solvability of the above linear system and the role σ plays here will be discussed in detail

later. We shall simply state here that under the smoothness assumption of the homotopy

this system is numerically solvable. Next, we let

x̃ = x+ v ·∆t
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where ∆t is the step size. Finally we take

x′ = x̃/ ‖x̃‖2

to be the prediction, which is obvious inside S2n+1. To express this method more formally,

let us define the map R : Cn+1 → S2n+1 given by

R (x) =
x

‖x‖2
.

Then R is a retraction of Cn+1, taking away the origin, to the subset S2n+1, and the

prediction E(x,∆t) := x′ of the projective Euler’s method can be expressed as

E (x,∆t) = R

x−∆t

 Ĥx (x, t)

σxH


−1 Ĥt (x, t)

0


 .

2.4 Projective correctors

The prediction
(
x′, t0 + ∆t

)
produced by a predictor may not be exactly on or even very

close to the path defined by Ĥ = 0. If the next prediction step is to start from such a

poor approximation, the error can quickly build up to an unacceptable level. To curb such

error accumulation, a corrector is needed to return the prediction to the path. If we now fix

t1 = t0 + ∆t, the equation Ĥ = 0 becomes a system of n homogeneous polynomial equations

in n+ 1 unknowns. The job of a corrector is to produce a refinement x′′ of the approximate

solution x′ of Ĥ = 0 at t = t1. For correctors, failure is always an option. When a corrector

fails to bring the prediction back to the path quickly and reliably, it is usually the case
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that the step size ∆t used in the prediction step is too large, and the prediction should be

performed again with a smaller step size.

A natural choice of the corrector is an extension of the Newton’s iteration to the complex

projective space. In the following subsections, we will outline this method, developed in [24],

and two related methods.

2.4.1 Projective Newton’s method

In [24] Michael Shub and Steven Smale proposed the Projective Newton’s method given

by

N (x) = R

x−
 Ĥx (x, t)

σxH


−1 Ĥ (x, t)

0


 .

Notice that a conditioning factor σ, identical to the one used in the projective Euler’s method,

is introduced to improve the numerical stability of the method. The role it plays here will be

discussed in Section 2.6. Using the starting point
[
x0
]

=
[
x′
]

produced by a predictor, we

can perform projective Newton’s iterations

xk = N
(
xk−1

)

for k = 1, 2, . . . until certain stopping criteria are met. One can interpret a single step of

projective Newton’s iteration geometrically as a single step of the regular Newton’s iteration

restricted to the hyperplane of Cn+1 defined by the tangent space of CPn at that point.
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2.4.1.1 Convergence property

It is more convenient to discuss the convergence property if we use another measure of the

“distance” as defined in [24]

dT ([x], [x′]) := tan d([x], [x′]) =
∥∥x− ηx(x′)

∥∥
2
.

With this, it has been shown in [4] that for an exact regular isolated solution [ζ] of F ([ζ]) =

Ĥ(ζ, t) = 0 there is a neighborhood U containing [ζ] of CPn such that if [x0] ∈ U then

dT

(
[ζ] , [xk]

)
6

(
1

2

)2k−1

dT

(
[ζ] , [x0]

)

for k = 1, 2, . . .. So with dT used as the “distance”, the projective Newton’s method can

be considered having quadratic convergence property when the above condition is satisfied.

We refer to [4] for the proof as well as the exact statement. When the actual Riemannian

distance d = dCPn is used, the above formula becomes much more complicated. Nevertheless,

we can still conclude, qualitatively, that as long as the starting point [x0] is sufficiently close

to the solution [ζ], the projective Newton’s method converges very quickly.

2.4.1.2 Stopping criteria

The Newton’s method, being an iterative method, can be repeated indefinitely. Stopping

criteria are used to mark the termination of the algorithm. Following the point of view that

a projective Newton’s iteration is simply a regular Newton’s iteration restricted to certain

hyperplanes, we expect the existing stopping criteria developed for the Newton’s corrector in

the context of affine path tracking to be usable with minimal modifications:
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• First of all, a small residual is an obvious stopping criteria. The residual, a numerical

measure of the closeness of a point from being a solution, is the topic of Section 2.7. If

the residual at [xk] is sufficiently small, the correction is considered to have succeeded.

This threshold depends on both the path condition and the machine epsilon.

• If the Riemannian distance d([xk+1], [xk]) between consecutive points [xk+1] and [xk]

is greater than a certain threshold, then the correction is considered to have failed.

This criterion is used to prevent a phenomenon commonly known as “curve jumping”

in which the path tracking algorithm accidentally switch paths. We refer to [15] for the

discussion of this rare but potentially dangerous phenomenon. The threshold used here

is proportional to the quotient between the volume of S2n+1 and the number of paths

defined by the homotopy.

• Finally, if the sequence of points
[
x1
]
,
[
x2
]
, . . . in CPn does not stabilize, in the sense

of Riemannian distance d, within a few iterations, we consider the correction to have

failed. In our actual implementation the limit on the number of iterations range from 3

to 7 depending on the path condition.

We refer to [15] for the complete list of the stopping criteria as well as their detailed

descriptions. Our preliminary implementation, equipped with these stopping criteria, has

shown competitive performance, as we shall see in the last section of this chapter.

2.4.2 Projective Newton’s method with damping factor

The regular Newton’s method is often modified with a damping factor to improve its

convergence property. The same modification can be applied to the projective Newton’s
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method given a damping factor λ ∈ [0, 1], given by

Nλ (x) = R

x− λ
 Ĥx (x, t)

σxH


−1 Ĥ (x, t)

0


 .

Clearly, the projective Newton’s method can be considered as the special case with λ = 1,

i.e., N = N1. Just like the Newton’s method, the dampened version is repeated with the

starting point
[
x0
]

=
[
x′
]

produced by a predictor:

xk = Nλ
(
xk−1

)

for k = 1, 2, . . . potentially with non-constant damping factor λ, until certain stopping criteria

are met. Our preliminary implementation adopts the same stopping criteria used for the

projective Newton’s corrector, and the damping factor ranges from 0.5 to 1.0 depending on

the number of consecutive failed corrections. We refer to [26] for the general theory and

convergence analysis.

2.5 Projective Newton’s homotopy

Another corrector is the projective Newton’s homotopy method. In this method one solves

the correction problem via another homotopy continuation method. Since in the correction

problem we fix t1 = t0 + ∆t, we can define F̂ (x) = Ĥ(x, t1) which is a nonlinear system of n

equations in n+ 1 unknowns. The prediction x′ is assumed or at least expected to be close to

a true solution [ζ] of F̂ (x) = 0 in the complex projective space which the corrector intends to

locate. In order to do so, we can consider the homotopy Ĥt1 : Cn+1 × [0, 1]→ C
n+1 given

48



by

Ĥt1(x, s) =


F̂ (x)− (1− s)F̂ (x′) = Ĥ(x, t1)− (1− s)Ĥ(x′, t1)

〈x,x′〉C − 1 = 〈x,x′〉C − 1

.

Clearly, at s = 0, Ĥt1(x′, 0) = 0, and at s = 1, the solution set of Ĥt1(x, 1) = 0 may contain

some representatives of [ζ]. Standard path tracking techniques can be used to tracking the

solution path from s = 0 at x′ to s = 1.

Just like the Newton’s iteration, the projective Newton’s homotopy may or may not

converge. The convergence property and the cost analysis can be found in [1]. While generally

much more expensive, as an experimentally verified rule of thumb, the projective Newton

homotopy generally offers much larger region of fast convergence than the projective Newton’s

method. Hence we suspect that this method has its own niche among the correctors.
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2.6 Numerical analysis of the algorithms

Theoretically, for the above algorithms to work, the square linear system of equations in

v ∈ Cn+1

[
Ĥx(x, t)

]
· v = b

〈σx,v〉C = 0

must be solvable for any vector b ∈ Cn and a pair (x, t) representing a point ([x], t) on

a projective path defined by Ĥ = 0. Moreover, since these are intend to be a numerical

algorithms, we must also show the above system is well conditioned. For this fixed t, define

F (x) = Ĥ(x, t) = (f1, . . . , fn), then the above equation can be written as

 DF (x)

σxH

v =

 b

0



where DF (x) is the Jacobian matrix of F respect to x. Since F (x) = (f1, . . . , fn) is a system

of homogeneous polynomials and F (x) = 0, by the Euler’s theorem (1) for homogeneous

functions,

n∑
j=0

xj
∂fi
∂xj

= di · fi(x) = 0

for each i = 1, . . . , n where di = deg fi. Letting A = DF (x), we have Ax = 0. In other words,

x ∈ kerA. Then we can find n right singular vectors {v1, . . . ,vn} such that {v1, . . . ,vn,x}

form a orthonormal basis of Cn+1 with respect to the complex inner product and A has the
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singular value decomposition of the form

UHA

(
v1 · · · vn x

)
=


σ1 0

. . .
...

σn 0


for some unitary n× n matrix U , where {σ1, . . . , σn} with σ1 > σ2 > · · · > σn are the first

n singular values of A. It follows that

UH
1


 A

σxH

(v1 · · · vn x

)
=

 UHA

(
v1 · · · vn x

)
σxH

(
v1 · · · vn x

)


=



σ1

. . .

σn

σ


.

Simply put, the matrix

 DF (x)

σxH

 =

 A

σxH

 has singular values σ1, . . . , σn, and σ

which is within the interval [σn, σ1] by our construction. Thus the maximum and the minimum

singular value of

 DF (x)

σxH

 are still σ1 and σn respectively, and its condition number is

cond

 DF (x)

σxH

 =
σ1

σn
.

Theoretically, at least, by the smoothness condition of the homotopy construction,
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DF (x) = Ĥx (x, t) must be of full row rank and thus σn 6= 0. This implies that the

matrix

 DF (x)

σxH

 is nonsingular. But more importantly, its condition number is exactly

σ1
σn

which is determined by the original homotopy construction. Since the path condition

at (x, t) is defined to be the condition number of this matrix, we can conclude that our

projective path tracking algorithms do not pollute the path condition.

2.7 Numerical determination of residual

In the affine path tracking process, one tracks a smooth path defined by H(x, t) = 0 where

H : Cn × [0, 1]→ C
n. However, it is usually not possible to stay exactly on that path due to

truncation error from the numerical algorithms used or rounding error caused by floating

point computation. The best one could hope is, during the path tracking process, we have

H(x, t) ≈ 0 at each step. In this context, the magnitude of the norm ‖H(x, t)‖ is generally

a good measure of how far the point (x, t) ∈ Cn × [0, 1] is from the path in the sense that

when ‖H(x, t)‖ = 0 it is definitely on the path, and when ‖H(x, t)‖ is very large then it

is very unlikely to be close to the path. Hence this norm ‖H(x, t)‖, called residual, is

usually a good numerical indicator of the closeness of a point to paths defined by H(x, t) = 0.

Throughout the path tracking process, one must make sure the residual is small.

In this section, the notion of the residual for projective path tracking will be developed.

Just like in the affine case, for a fixed t, the condition Ĥ(x, t) = 0 ∈ Cn is a clear indication

that [x] ∈ CPn is indeed a solution, in CPn, to the homogeneous system Ĥ(x, t) = 0.

Unfortunately, Ĥ(x, t) ≈ 0 does not imply (x, t) is close to being a solution to Ĥ(x, t) = 0. To

see this, note that the norm ‖Ĥ(x, t)‖ is not generally meaningful: the values of homogeneous

polynomials are not well defined since for a homogeneous function f : Cn+1 → C of
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degree d, f (λx) = λdf (x), while x and λx in Cn+1 actually represent the same point in

CP
n =

(
C
n+1\ {0}

)
/ ∼.

2.7.1 Affine residual

In many cases, the original residual ‖H (x, t)‖ is what the users really care about. By definition

H (x1, . . . , xn, t) = Ĥ (1, x1, . . . , xn, t). For a point [x] in CP
n = (Cn\ {0}) / ∼ with

homogeneous coordinate x = [x0 : · · · : xn] with x0 6= 0, it is equivalent to
[
1 :

x1
x0

: · · · : xnx0

]
,

so the affine residual is

ρA (x) :=

∥∥∥∥H (x1

x0
, . . . ,

xn
x0
, t

)∥∥∥∥
2

=

∥∥∥∥Ĥ (x0

x0
,
x1

x0
, . . . ,

xn
x0
, t

)∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥



1

x
d1
0

ĥ1 (x0, . . . , xn, t)

...

1

xdn0

ĥn (x0, . . . , xn, t)



∥∥∥∥∥∥∥∥∥∥∥∥∥
2

which is equivalent to a weighted norm ‖ • ‖W (x) with weights W (x) = (1/|x0|d1 , . . . ,

1/|xn|dn) given by

∥∥∥Ĥ (x, t)
∥∥∥
W (x)

:=

√√√√ n∑
k=1

(∣∣∣ĥk (x, t)
∣∣∣ / ∣∣∣xdk0

∣∣∣)2
.

Thus we can use ‖Ĥ(x, t)‖W (x) as a measure of how close x is from being a solution of

Ĥ = 0 at the fixed t-value whenever x0 is not close to zero. Similarly, the relative residual is
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given by

‖Ĥ(x,t)‖W (x)∥∥∥(x1
x0
,...,xnx0

)∥∥∥ =

√∑n
k=1

(
|ĥk(x,t)|/|xdk0 |

)2

‖(x1,...,xn)‖/|x0|
=

√∑n
k=1

(∣∣∣ĥk(x,t)
∣∣∣/∣∣∣∣xdk−1

0

∣∣∣∣)2

‖(x1,...,xn)‖
.

The obvious downside of this affine residual is that it is undefined for any point with x0 = 0.

For any point with x0 close to being zero, the computation of the affine residual as defined

above is numerically unstable.

2.7.2 Tangential residual

In many cases it is useful to restrict ourselves to the projection of CPn = (Cn+1 \ {0})/ ∼

on a hyperplane of Cn+1 as we did when using (2.2).

For a fixed t and [x0] ∈ CPn that is known to be close to the actual solution of Ĥ(x, t) = 0

one is seeking, the hyperplane determined by the tangent space at this point x0 + T
[x0]

CP
n

can be used as a hyperplane to which we project CPn = (Cn+1\{0})/ ∼, and define the

tangential residual

ρT (x) :=

∥∥∥∥∥∥∥∥
 Ĥ (x, t)〈

x0

‖x0‖2
,x

〉
C

− 1


∥∥∥∥∥∥∥∥

2

which implicitly depends on the choices of the point x0. Unlike the affine residual ρA, the

tangential residual is defined for any [x] sufficiently close to [x0] in terms of the Riemannian

distance. An apparent downside is that different representatives λx of the point [x] will

produce different residual. In our experiments, however, we found this almost never causes

problems.
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2.7.3 Spherical residual

Another residual stays true to our point of view of the complex projective space CPn ≈

S2n+1/U is what we shall call the spherical residual ρS . While ‖Ĥ(x, t)‖2 is not well

defined for [x] ∈ CPn = (Cn+1\{0})/ ∼, the value

ρS (x) =
∥∥∥Ĥ (x, t)

∥∥∥
2

is, however, well defined on S2n+1/U . This is because [x] := {eiθx|θ ∈ R} in S2n+1/U , and

ρS is clearly invariant under such action.

2.7.4 Summary of residuals

Each of the definitions for residuals has different properties and its own pros and cons:

• The affine residual ρA is usually what the users actually care about, however it is

undefined for any points with x0 = 0.

• The tangential residual ρT is always computable, but it is, in general, not well defined.

• The spherical residual ρS is always well defined on S2n+1/U , but it has no connection

to the affine residual the users care about.

In our preliminary implementation, a combination of these residuals is used. Inside Newton-

like correctors the tangential residual ρT is used with the role of x0 played by the most recent

x-value produced by the iteration. In all other places during the path tracking process, the

spherical residual ρS is used. In the final refinement stage, in which the solutions are “refined”

to a higher accuracy, if we are confident that a solution [x0 : · · · : xn] is in the affine part of

CP
n, i.e., x0 6= 0, then ρA is preferred.
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2.8 Special conditioning

2.8.1 The curious case of barry

Figure 2.4 shows the path condition along a single path when our projective path tracking

algorithm on S2n+1/U is used to solve the barry problem from the PoSSo [2] test suite.

With only 3 equations and 3 unknowns, barry is one of the smallest systems in the PoSSo

test suite. We thus expect it being very easy to solve.
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Path condition along a single path for barry

Figure 2.4: Path condition, in log10 scale, along a single path tracked for solving the barry
problem using projective path tracking algorithms on S2n+1/U . The maximum path condition
exceeds 109.

The maximum path condition exceeds 109. While our path tracking algorithm with
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double-precision floating point arithmetic had no trouble tracking this path, considering the

simplicity of the system, this result is certainly surprising and, to a certain extend, unsettling.

It turns out, the bad numerical path condition is caused by unusually large difference in the

scales of the rows of the Jacobian matrix. Figure 2.5 shows the large difference in the scales

of the rows in the Jacobian matrix along a single path when the projective path tracking is

used. Clearly, this would naturally cause terrible path condition.
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Figure 2.5: The 2-norm of rows, in log10 scale, of the Jacobian matrix along a single path
defined by Ĥ = 0, tracked using projective path tracking algorithms on S2n+1/U for solving
the barry problem.
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2.8.2 The general problem

Our experiments have shown that the problem of large difference in the scale of rows in

Jacobian matrix revealed by the above observation is widespread when projective path tracking

is in use. Indeed, this problem has plagued not only the path tracking algorithms on S2n+1/U

we have proposed here but also any path tracking algorithms involving the homogenization

of the homotopy including the method using affine chart described in Equation (2.2). To see

why, consider a homogeneous polynomial f ∈ C [x0, . . . , xn] of degree d, then each ∂f
∂xj

for

j = 0, . . . , n is homogeneous of degree d− 1 unless f is constant respect to xj . In either case,

we have

∂f

∂xj
(λx0, . . . , λxn) = λd−1 ∂f

∂xj
.

For a fixed t, if we write the Jacobian matrix of F (x) = Ĥ (x, t) respect to x at a point x

as the row matrix J (x) =


v1

...

vn

, since F = (f1, . . . , fn) is homogeneous, we have

J (λx) =


λd1−1v1

...

λdn−1vn

 ,

where di = deg fi. Namely, when the given point x is scaled by a fixed factor, the rows in J

are scaled by different factors determined by the degrees of the corresponding polynomials,

then when the original system contains polynomials of very different degrees. The difference

in the scales of the rows in J (x) can be very sensitive to the scaling x 7→ λx.
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2.8.3 Dynamic row-scaling

The problem stated above can be solved quite simply via row scaling. Clearly, the system of

linear equations

Jv = b

is equivalent to

AJv = Ab

whenever A is invertible. So to bring all the rows to more or less the same scale, we can take

A to be the diagonal matrix

A =



1/ν1

. . .

1/νn

1



where νj =
∥∥Jj∥∥ is the norm of the j-th row of the Jacobian matrix J . In principle any norm

can be used here. Our actual implementation uses the ∞-norm, for the ease of computation.

Figure 2.6 shows the path condition of the same path tracked for solving the barry problem

with and without the dynamic row-scaling technique. The difference is day and night. In

solving a large number of polynomial systems with projective path tracking, this simple

technique is helpful, and, in certain cases, essential in improving the path conditions.

However, it is important to note that while row-scaling is useful in improving the path
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Figure 2.6: The comparison between path condition of a single path tracked in solving the
barry problem using projective path tracking with (dashed) and without (solid) the dynamic
row-scaling

condition, this transformation may conceal the fact that we are near a true singularity of a

path, and thus it must be used with caution. Indeed this technique should only be used when

one is confident that the path is away from a true singularity. In our actual implementation,

this procedure is only active away from the endpoint at t = 1 where singularity may appear.

Near the endpoint, the so called “endgame” techniques are used. Projective endgame is the

topic of the next chapter.
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2.9 The path tracking algorithm

The overall projective path tracking algorithm is summarized by the flowchart in Figure

2.7. In this flowchart, only the projective Newton’s method is shown as the corrector, since

it is indeed the main corrector we use in the path tracking algorithm. We should note,

however, the other two projective correctors, the dampened projective Newton’s method and

the projective Newton’s homotopy, can also replace or supplement the projective Newton’s

method. In this flowchart the operator E and N represent the projective Euler’s method and

the projective Newton’s method respectively. εN is the threshold for testing the convergence

of the projective Newton’s method. When the tangential residual is less than this threshold,

the projective Newton’s method is considered to have succeeded. The real number εd is

another threshold that plays a similar role: When the Riemannian distance moved by a

single Newton’s iteration is less than this threshold, the projective Newton’s method is

also considered to have succeeded. kmax is the maximum number of Newton’s iteration the

corrector is allowed to use.
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x ← x0

x′ ← E(x,∆t);
k ← 0

x ← x′′

x′′ ← N (x′);
k ← k + 1

∆t ← ∆t
2

ρT (x′′) < εN ?

t ← t + ∆t

x′ ← x′′

t < 1? Finish

Start

d(x′′,x′) < εd?

k < kmax?

∆t← max(∆t, 1− t)

No

No

Yes

No

Yes
Yes

Yes

No

Figure 2.7: The flowchart summarizes the overall projective path tracking algorithm

2.10 Numerical results

In this section we present some numerical results obtained when the projective path tracking

algorithms on S2n+1/U is used. We mainly focus on the improvements on path conditions in

contrast to the traditional approach of using generic hyperplane charts, described in Equation

(2.2). Here we chose a well known problem: the cyclic7 problem. However it is a representative

of similar results we obtained from a large set of problems. Figure 2.8 shows the distribution

of the maximum path conditions along each path tracked in solving the cyclic7 problem using
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the projective path tracking algorithms on S2n+1/U with the dynamic row-scaling technique.

Compared with the maximum path conditions when the method defined in Equation (2.2) is

used, as shown in Figure 2.3, the paths here appear to be much more tamed with maximum

condition number less than 104 which is well within the reach of double-precision floating

point arithmetic.
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Figure 2.8: The histogram shows the distribution of maximum path conditions along all
paths tracked for solving the cyclic7 problem using projective path tracking algorithms on
S2n+1/U together with the dynamic row-scaling technique.

The difference is more obvious when we plot the distributions of maximum path conditions

obtained from different path tracking methods. In Figure 2.9 we can clearly see the difference.
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Figure 2.9: The histogram shows the distribution of maximum path conditions along all
paths tracked for solving the cyclic7 problem with the two different methods. The height
of each solid bar represents the number of paths having the corresponding maximum path
condition when the traditional method with affine charts described in Equation (2.2) is used.
The striped bars show the same information when the projective path tracking algorithms on
S2n+1/U developed in this chapter is used. As with previous cases, this graph represents the
average result of 10 different runs.
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Chapter 3

Endgame

Since CPn is compact, a projective path γ̂ ⊂ CPn× [0, 1] defined by Ĥ(x, t) = 0 necessarily

has an end point in CPn at t = 1. However, as discussed in the previous chapters, it is

possible that the end point lies outside U0 = {[x0 : · · · : xn] |x0 6= 0} which we identify with

C
n. We generally use the expression “solutions at infinity” to describe such end points, and

these solutions are usually considered extraneous. To identify these extraneous “end points

at infinity”, it seems that one may just simply marks all those with x0 = 0 or sufficiently

close to 0. However, Table 3.1 shows a very different reality. Contained in that table is the

scale of |x0| at the end points of a few paths from different systems that are known to be “at

infinity”. While we expect these values of |x0| to be exactly 0 or at least within machine

epsilon from 0, we can see the scale of |x0| range from 10−4 to as large as 10−2. Thus it is

clearly impossible to classify them as end point “at infinity” based on those numbers alone.

The reason, as it turns out, is that these end points happen to be singular in the sense

that the smoothness condition fails at those points. It is well known that if the end point is

singular, ordinary predictor-corrector methods for path tracking, as described in the previous

chapters are unable to locate the end points accurately.

The job of the endgame is twofold. First, it should identify paths with end points being

“solutions at infinity” of the target system. Second, it has to obtain the end point accurately

even if a path has a singular end point. In the case the end point is indeed singular, a
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System log10 |x0| of the end point

noon3 [23] −4

reimer2 [2] −4

reimer3 [2] −3

reimer4 [2] −2

cyclic5 [3] −4

cyclic5 [3] −2

Table 3.1: The scales of |x0| at end points of some paths that are known to be “at infinity”:
These paths comes from solving systems listed on the first column using the projective path
tracking we have discussed.

bonus feature for the endgame would be to discover additional information that describe

the geometric structure around the singular end point. In this chapter, we shall develop the

proper language in which the endgame can be discussed rigorously as well as the numerical

techniques with which the endgame problem can be solved in practice.

3.1 Local theory of homotopy paths

In this section, for completeness, we shall briefly outline some relevant concepts and theorems

in the local theory of holomorphic varieties (a.k.a. analytic sets). Detailed discussions can be

found in [7], [8], and [9]. The theory provides us the proper language to discuss and describe

the endgame techniques.
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3.1.1 Background: local theory of holomorphic varieties

In this section we shall briefly review the basic theory of holomorphic functions and holo-

morphic varieties. The study of the function theory on Cn starts from its topology. Open

polydiscs will be used as the basis of the topology. An open polydisc in Cn is a subset

∆(w; r) ⊂ Cn of the form ∆(w; r) = {(z1, . . . , zn) ∈ Cn : |zj − wj | < rj for j = 1, . . . , n}

where w = (w1, . . . , wn) ∈ Cn is the center and r = (r1, . . . , rn) ∈ Rn is the polyradius.

In this chapter a “neighborhood” of a point is always an open polydisc centered at that point.

Definition 1. A complex-valued function f defined on an open subset D ⊂ C
n is called

holomorphic in D if each point w = (w1, . . . , wn) ∈ D has an open neighborhood U in D

such that the function f has a power series expansion

f (z) =
∞∑

v1,...,vn=0

av1,...,vn (z1 − w1)v1 · · · (zn − wn)vn

which converges for all z = (z1, . . . , zn) ∈ U .

In this chapter, we will focus on the local properties of holomorphic functions. We thus

need the language of function germs.

Definition 2. Two C-valued functions f : U → C and g : V → C are called equivalent at

the point p ∈ U ∩ V if there is an open neighborhood W of p such that W ⊆ U ∩ V and

f ≡ g on W . This is an equivalence relation, and an equivalence class is called a germ of

C-valued function at the point p.

The set of all such germs at a point p ∈ Cn naturally forms a ring under the pointwise

addition and multiplication. The field of complex numbers C sits inside this ring in the

form of constant functions with 1 ∈ C being the unity of the ring. Therefore the set of
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germs actually has a C-algebra structure. Within this algebra, the set of germs given by

holomorphic functions forms a sub C-algebra called the germs of holomorphic functions,

for which we will use the notation nOp. It is clear that for any two points p, q ∈ Cn, nOp

and nOq are isomorphic as C-algebras. Therefore the local theory of holomorphic functions

is the same at any point. It is easy to check that nOp is an integral domain and hence has

a well defined field of quotients nMp, the field of germs of meromorphic functions.

It is also easy to see that nOp is a local ring with non-units forming the unique maximal

ideal. The Weierstrass Preparation Theorem [9, p.68 Theorem 2] and Weierstrass Division

Theorem [9, p.70 Theorem 3] are two of the important theorems that reveal the structure

of the embedding n−1Op ⊂ n−1Op[zn] ⊂ nOp. They form the stepping stones of many

induction proofs about the structure of nOp. In particular they are used to establish the

fact that nOp is Noetherian [8, Theorem 2, p.7], which is an extension of the Hilbert basis

theorem. We shall now turn our attention to the zero sets of holomorphic functions.

Definition 3. Let B be an open subset of Cn. A holomorphic subvariety of B is a

subset V of B such that for each p ∈ V there exists a neighborhood U of p and f1, . . . , fk

holomorphic in U such that

V ∩ U = {z : f1(z) = · · · = fk(z) = 0}.

Just like the situation for holomorphic functions, the language of germs facilitates our

study of local behavior of holomorphic varieties:

Definition 4. For open sets B1, B2 in Cn, if V1 and V2 are holomorphic subvarieties of

B1, B2 that contain p respectively, we say V1 is equivalent to V2 at p if there exists a
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neighborhood U of p on which

V1 ∩ U = V2 ∩ U.

It is easy to check that this indeed defines an equivalence relation, and hence we can talk

about the equivalence classes of holomorphic subvarieties.

Definition 5. A germ at p of a holomorphic subvariety is an equivalence class of

holomorphic subvarieties under the above equivalence relation. We say a germ of holomorphic

subvariety is reducible if it is the union of two proper germs of holomorphic subvarieties,

and irreducible otherwise.

Now we have two different kinds of objects. On the algebraic side, we have germs of

holomorphic functions at a point. On the geometric side, we see germs of holomorphic

subvarieties at a point. The relationship between these two kinds mimics that between

polynomials and varieties that is central to algebraic geometry. For f1, . . . , fk ∈ nOp, we use

the standard notation V(f1, . . . , fk) to denote the germ of holomorphic subvariety defined

by f1, . . . , fk. To simplify the notations, here we generalize the notion of holomorphic

subvariety to allow the empty set ∅ to be considered as a germ of holomorphic subvariety:

V(f1, . . . , fk) = ∅ if any fj(p) 6= 0. We can extend this notation to any ideal I ⊆ nOp. Since

nOp is Noetherian, I is generated by finitely many germs of holomorphic functions represented

by f1, . . . , fk with some sufficiently small common domain U containing p, then their common

zero set V = {z ∈ U : f1 (z) = · · · = fk (z) = 0} represents a germ of holomorphic subvariety

at p. We define this germ to be V (I). From the opposite direction, given a germ V of a

holomorphic subvariety at p ∈ Cn, we use the notation I (V ) to denote the set of germs

of holomorphic functions f ∈ nOp that vanish on V . One can show that I (V ) is an ideal,
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commonly known as the ideal of the germ V . Indeed, I (V ) is radical, i.e.,
√
I (V ) = I (V ).

The well-definedness of both definitions are actually not completely trivial to verify. We refer

to [5, p.77] for the proof and discussions of the properties of the two operators. An important

consequence is that any germ V of a holomorphic subvariety can be written as a finite union

of irreducible germs. This union, called the irreducible decomposition of the germ V is

actually unique up to a permutation. We can show this by noticing the ideal I (V ) of the

germ V is an ideal in nOp which is Noetherian. The complete proof can be found in [8, p.15

Theorem 7].

We shall now focus on irreducible germs of holomorphic subvarieties. Our goal is to

have a canonical form for all such germs. Recall that a mapping between two topological

spaces is called finite if the inverse image of each point is a finite set, and is called proper

if the inverse image of any compact set is also compact. Furthermore, a covering map is

a surjective continueous map from a locally path-connected topological space to another

topological space such that around each point in its image, there exists an open neighborhood

whose inverse image under this map is a disjoint union of connected open subsets in the

domain [14, p.278].

Definition 6. A continuous, finite, proper, surjective map π : V → W between two second-

countable Hausdorff spaces is called a finite branched covering if there is a dense open

subsets W0 ⊆ W such that V0 = π−1 (W0) is dense in V and the restriction of π0 : V0 → W0

of π on V0 is a covering map.

Here the space W is called the base, while V is called the cover. The restriction

π0 : V0 → W0 of π on V0 is called a regular part of the finite branched covering π : V → W .

So far, this construction is purely topological. What we need is an analytic version of this
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concept:

Definition 7. A finite branched covering π : V → W between two holomorphic varieties, as

topological spaces, is a finite branched holomorphic covering if there is a regular part

π0 : V0 → W0 of π for which W\W0 is a holomorphic subvariety of W and π0 is a locally

biholomorphic mapping.

Theorem 6. (Local parametrization theorem) [8, Theorem 10, p.48] For an irreducible

germ V at p ∈ Cn of a holomorphic subvariety, with a suitable nonsingular linear change

of coordinates of Cn there exists an integer d 6 n such that the natural projection π : Cn =

C
d×Cn−d → C

d, restricted on V , is a finite branched holomorphic covering over some open

set in Cd.

We call the smallest such integer d the Weierstrass dimension, or simply the dimen-

sion, of the irreducible germ V . Note that in this context, the regular part of this branched

holomorphic covering πV over some open set in Cd is a connected complex manifold of

complex dimension d. For the rest of the discussion, we will only focus on the case when the

dimension is 1, and in this case, we have a particularly simple and useful description of the

cover. Notice that Theorem 6 is essentially a local theory, so we should be able to easily

extend it into the projective space, after all CPn is locally affine.

3.1.2 Local normal form of affine homotopy paths

Now we would like to derive the canonical form of a path γ ⊂ Cn × [0, 1] defined by

H (x, t) = 0

71



that converges to some end point ζ ∈ C
n at t = 1. If we consider H = (h1, . . . , hn)

as a map H : Cn+1 → C
n holomorphic in (x, t) = (x1, . . . , xn, t), then the zero set

{(x, t) ∈ Cn+1 |H(x, t) = 0} is a holomorphic subvariety of some domain in Cn+1. We

can then consider the germ of the holomorphic subvariety V = V(h1, . . . hn) at the point

(ζ, 1) ∈ Cn+1.

In this context the endgame in path tracking for homotopy continuation method can be

understood as the geometric characterization of the germ V at the end point (ζ, 1) as well

as the computation of an accurate estimate for the end point (ζ, 1) using these geometric

information. To outline the basic idea, we shall start with a few nontrivial observations:

Firstly, in the irreducible decomposition V = V1 ∪ · · · ∪ V`, over a sufficiently small t-interval

the path γ must lie in exactly one such irreducible germ. Secondly, by Theorem 6 this

irreducible germ can be realized as a finite branched holomorphic covering over some domain

in Cd for which the regular part is a complex manifold of dimension d. But by the smoothness

condition, we necessarily have d = 1. Thirdly, topologically speaking, the finite branched

covering must be isomorphic to the standard finite branched covering given by z 7→ zm where

m is the number of sheets. Finally, the role of the special variable that serves as the base

space can be played by none other than the path parameter t. These observations are made

precise by the the following important theorem:

Theorem 7. With the notation used above, at t = 1, the path γ has the convergent power

series expansion of the form

xj =
∞∑
k=0

ajks
k

t = 1− sm
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for j = 1, . . . , n, where m ∈ Z+.

We refer to [25] for the proof of this theorem based on the Local Parametrization Theorem

6. A number of other different approaches can be used to prove this theorem, in particular

one also can consider it as the Local Normal Form theorem for holomorphic maps between

Riemann surfaces, which can be found in [20]. A variety of endgames were developed based

on this theorem.

3.1.3 Local normal form of projective homotopy paths

The goal of this section is to derive series expansions for projective paths similar to that

provided by Theorem 7. These results are well developed, we refer to [20] for more in depth

discussion. Let γ̂ ⊂ CP
n × [0, 1] be a path defined by Ĥ (x, t) = 0 that has an affine

associate γ ⊂ Cn × [0, 1] which is defined for all t ∈ (0, 1), i.e., x0 6= 0 along γ̂ for t ∈ (0, 1).

By the smoothness condition, they are smooth paths parametrized by t for t ∈ (0, 1) in

CP
n and Cn respectively. Because CPn is compact, γ̂ necessarily converge to some point

[ζ] = [ζ0 : · · · : ζn] in CPn at t = 1. By the previous analysis, the projection of the germ

represented by γ̂ at ζ onto the hyperplane

L (x) := 〈ζ,x〉C − 1 = 0

where x = (x0, . . . , xn) ∈ Cn+1 is also smooth. This additional equation defines γ̂ as an affine

homotopy path to which Theorem 7 may be applied. Algebraically, there exists a punctured

disk D = ∆ (1; ε) \ {1} such that for each t ∈ D, there is a representative (x0, . . . , xn) ∈ Cn+1
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of γ̂ (t) that is a nonsingular solution of the system

Ĥ (x0, . . . , xn, t) = 0

L (x0, . . . , xn) = 0.

By Theorem 7, t = 1− sm and xj =
∑∞
k=0 ajks

k for j = 0, . . . , n. By assumption γ̂ has an

affine associate γ ⊂ Cn× [0, 1] which is a smooth path in Cn parametrized by t for t ∈ (0, 1).

So it is necessary that x0 6= 0 ∈ 1O0, i.e., it is not the zero power series. To summarize, near

t = 1, the projective path γ̂ can be parametrized by a holomorphic map in a variable s of the

form 

x0 =
∑∞
k=0 a0ks

k 6≡ 0

x1 =
∑∞
k=0 a1ks

k

...

xn =
∑∞
k=0 anks

k

t(s) = 1− sm

(3.1)

which satisfies the additional equations

a00 = ζ0

...
...

...

an0 = ζn

〈ζ,x (s)〉 = 1.

Remark 1. In light of Lemma 1 and the analysis in Section 2.1.2, the role of the true end

point ζ can be played by some sufficiently close ζ̃ in this power series expansion. Of course,
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it is generally impossible to determine, a priori, how close is sufficiently close.

Note that such a power series expansion exists for paths that converges to point in Cn

or outside Cn (points at “infinity”). While it is dependent on the hyperplane defined by

L (x) = 〈ζ,x〉 − 1 = 0, we can easily remove this artificial dependency by rewriting the series

and obtain a convenient alternative expansion. Since x0 (s) is not the zero power series in s,

it must be of finite order. Let d be its order, then

x0 = sd
∞∑
k=0

a0ks
k

for a00 6= 0. Then
∑∞
k=0 a0ks

k is order 0 and hence invertible in the ring 1O0. Let b ∈ 1O0

be its inverse, then in 1M0, the inverse of x0 has the form s−db. Since the affine associate γ

of γ̂ is given by
(
x1
x0
, . . . , xnx0

, t
)

for ([x0 : · · · : xn] , t) ∈ γ̂, each coordinate
xj
x0

can be formally

written as

xj
x0

= s−db
∞∑
k=0

ajks
k = s−d

∞∑
k=0

ãjks
k =

∞∑
k=−d

ãjks
k

which are well defined germs of meromorphic functions in 1M0. Therefore in affine space we

have Laurent series expansions of the form

xj =
∞∑

k=−d
ajks

k

t = 1− sm

for some finite d ∈ Z with j = 1, . . . , n. By “factoring” out the lowest term from the series

expansion for each xj , we can write xj as the product of aj,−ds−d ∈ 1M0 and another series
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in 1O0. After relabeling, we obtain an equivalent form in the affine space Cn:



x1 = a1s
ω1
(

1 +
∑∞
k=1 a1ks

k
)

...

xn = a1s
ωn
(

1 +
∑∞
k=1 anks

k
)

t(s) = 1− sm

(3.2)

where ω1, . . . , ωn ∈ Z are the orders of the power series expansions.

The power series expansions (3.1) and (3.2) allow us to perform endgame classification

via well developed power series techniques (a.k.a., Puiseux series techniques) described in

[11],[15], [17], and [25] in conjunction with projective path tracking. These techniques have

been used in our actual implementation, and they are efficient and effective in many cases.

However, as explicitly pointed out by [25, p.186] and [11], their usefulness diminish as the

integer m increases. Indeed our experiments have shown that it is generally of little hope

in applying these techniques to paths with m greater than three or four using standard

double-precision floating point arithmetic only. Thus the power series techniques are only

used as the first line of defense in our implementation. A more powerful, albeit expensive,

technique via Cauchy integral is preferred.
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3.2 Projective endgame based on Cauchy integral

Let us continue to use the notations γ̂ and γ for the projective path and its affine associate

with ([ζ] , 1) being the end point of γ̂. With (3.1), the endgame based on Cauchy integral

described in [25] can be easily extended to CPn. Let
([
x0
]
, t0
)

be a point on γ̂ sufficiently

close to ([ζ] , 1). By (3.1) and Lemma 1 the coordinates of the projection of the path γ̂ to

the hyperplane defined by L (x) = 〈x0,x〉C − 1 = 0 is parametrized by a holomorphic map

given by xj (s) =
∑∞
k=0 a0ks

k for each j = 0, . . . , n. By the Cauchy Integral Theorem,

xj (0) =
1

2πi

∫
Γ

xj (s)

s
ds

for each j = 0, . . . , n and any loop Γ around s = 0 which is the only possible singularity of

xj (s) in the interior of Γ. More generally, written in a vector notation, we have

x (0) =
1

2πi

∫
Γ

x (s)

s
ds. (3.3)

In other words, the value of x at the end point of the path γ̂ can be computed via an

integral, since [ζ] = [x (0)] as points in CPn. This is the basic idea behind the projective

Cauchy integral endgame. Unfortunately, this integral cannot be computed directly since the

relationship between t and s is not known. Thus we first need to know the value of m in

t = 1− sm. Second, we need to collect numerical samples of the value of x along the loop Γ,

so that the above integral can be evaluated. Conveniently, the two pieces of information can

be obtained from the very same process, killing two birds with one stone.

Recall that t = 1−sm which may not have holomorphic inverse in a disk centered at s = 0.

However, we certainly have a holomorphic branch of the “inverse”, given by s = e
1
m log(1−t)
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with the principle branch of the logarithm function. Then along this branch, the value of x

can be expressed as a function of t given by x

(
e

1
m log(1−t)

)
. If we parametrize the small

circle of radius r = 1− t0 centered at 1 in t-space as t = 1− reiθ using the angle θ, the value

of x, now as a function of θ, can be expressed as

φ (θ) := x

(
e

1
m log

(
reiθ

))
= x

(
m√reiθ/m

)
.

Then it is easy to check that m is the smallest natural number among all k ∈ Z+ such

that φ (2kπ) = φ (0). That is, the values Φ = {φ (θ) |θ ∈ R} ⊂ CPn form a (closed) loop

parametrized by θ ∈ [0, 2mπ].

In the projective Cauchy integral endgame, we consider the loop Φ as the projection on

the x-space of a homotopy path defined by the equation

Ĥ
(
x, 1− reiθ

)
≡ 0.

Hence the techniques described in the previous chapter can be used to track the path Φ.

The strategy is then to track the value of φ (θ) as θ increases in discrete steps until the

first occurrence of φ (2kπ) = φ (0), at which point we will obtain two things: The value k

which gives us m and the set of sample values of φ (θ) with which the above integral can be

approximated numerically, which in turn gives us the estimate of the end point ([ζ] , 1).

More precisely, the process has three stages: the sampling stage, integration stage, and the

verification stage. In the sampling stage, we perform the projective path tracking algorithms

to track the path φ (θ) in prescribed and equally spaced steps θ1 = ∆θ, θ2 = 2∆θ, . . . starting

from θ0 = 0 and the initial point φ (0) = x0. During this path tracking process, the model
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CP
n = S2n+1/U is used, so all the sample points φ

(
θj
)

have unit norm. The sample points

φ (θ1) , φ (θ2) , . . . are then scaled via

φ̂
(
θj
)

:=
φ
(
θj
)

〈x0, φ
(
θj
)
〉C

so that they lie on the hyperplane defined by L (x) = 〈x0,x〉C − 1 = 0. This process

continues until we have determined that φ
(
θj
)

= φ (0) for some θ` = 2kπ where k ∈ Z+ is

the winding number of the loop. This stopping criterion is, of course, an ill-posed question.

We will discuss the stopping criteria in the following subsections. Next, the samples are used

to approximate the Cauchy integral 3.3 using the trapezoid method given by

ζ̃ =
1

`

∑̀
j=0

φ(θj)

Finally, in the verification stage the residual ρ(ζ̃) is computed. Since we expect ζ̃ to be a

close approximation of a solution to Ĥ(x, 1) = 0, the residual ρ(ζ̃) should be relatively small.

If ρ(ζ̃) is greater than a certain threshold, the result is discarded, and we consider the Cauchy

integral endgame to have failed. From our experiences, this criterion is generally sufficient

to verify the projective Cauchy integral endgame has worked correctly. However, in Section

3.2.3, we will discuss a stronger verification process.

It is experimentally verified that when the projective Cauchy integral endgame works

correctly, it provides us much better accuracy than what can be obtained from projective

path tracking algorithm alone for singular endpoints. Using the Total Degree Homotopy [16]

with projective path tracking developed in the previous chapter, all paths of noon3, reimer2,

reimer3, cyclic4, and cyclic5 can be tracked to their endpoints. Unfortunately, as shown
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in Figure 3.1, in most cases the scale of |x0| makes a poor indicator of the path going to

“infinity”. With projective Cauchy integral endgame, however, we can improve the estimate

of x0 greatly: the aforementioned paths now has |x0| at end points close to machine epsilon

using double-precision floating point arithmetic, making it a good indication that the path

end point is “at infinity”.

System Winding number
log10 |x0|

with path tracking with Cauchy integral
noon3 2 −4 −17
reimer2 2 −4 −16
reimer3 3 −3 −15
reimer4 4 −2 −14
cyclic5 2 −4 −15
cyclic5 5 −2 −15

Table 3.2: Comparison of the magnitude of |x0|, in log10 scale, with and without the Cauchy
integral method. The second column shows the winding number of the loop used for evaluating
Cauchy integral. The third column shows the approximate order of magnitude of |x0| at the
end point using the projective path tracking alone, while the last column shows the same
measure but with Cauchy integral producing the end point.

3.2.1 Stopping criteria based on Riemannian distance

When do we stop collecting samples of φ(θj)? Namely, how many {φ(θ0), φ(θ1), . . .} should we

collect? In theory, we should stop at the smallest natural number k such that [φ(2kπ)] = [φ(0)]

as points in CPn, and for this purpose the Riemannian distance function d = dCPn on CPn

can be used, i.e., we require

d ([φ (2kπ)] , [φ (0)]) = 0.

However, with numerical error, this criterion is unlikely to ever be satisfied exactly. So we

must answer the question: how small is small enough? From the experiments, we found

80



it doubtful that there is a threshold one can use for all systems. In general the distance

d([φ(2kπ)], [φ(0)]) must be compared to the size of the loop Φ. So we can keep track of the

maximum distance from [φ(0)] to points [φ(θ1)], [φ(θ2)], . . .

dmax := max
j

d
([
φ
(
θj
)]
, [φ (0)]

)

which should provide us a good estimation of the size of the loop Φ. Then the closing of the

loop can be numerically determined by the condition

d ([φ (2kπ)] , [φ (0)])

dmax
< ε

for certain threshold ε. In our preliminary implementation, the value ε = 10−3 is used, and

it is successful as a stopping criteria for almost all paths with a winding number 12 or less.
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3.2.2 Stopping criteria based on tangent vector

A potentially more robust stopping criteria comes from the observation that if Φ does indeed

form a loop with k being the smallest natural number such that φ(2kπ) = φ(0), then it is, in

addition, a smooth loop, which means as tangent vectors of T[φ(0)]CP
n we must have

φ̇ (2kπ) = φ̇ (0) ,

therefore the angle between the two vectors

cos−1 〈φ̇(2kπ), φ̇(0)〉R
‖φ̇(2kπ)‖2 · ‖φ̇(0)‖2

should give us another indicator for whether or not we have collected a full loop. Together

with the stopping criteria based on the Riemannian distance this should provide us a more

robust criteria, in theory at least. In our numerical experiments, we found this technique

being helpful in preventing premature termination of the sampling stage in certain cases.
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3.2.3 Consistency tests

As a final line of defense, the projective Cauchy integral endgame is computed with smaller

and smaller radius r = 1− t0 closer and closer to the end point at t = 1. If each iteration

worked correctly, we would expect

• The winding number m1,m2, . . . remain a constant,

• The variation of the endpoint estimates ζ̃
1
, ζ̃

2
, . . . should be no greater than twice the

square root of the machine epsilon.

Thus the stabilizing of the results of successive projective Cauchy integral endgames should

give us a very strong indication that the projective Cauchy integral has worked correctly and

provided us the accurate approximation of the end point ζ̃ ≈ ζ.
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