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ABSTRACT

SPATIAL VARIATIONS IN THE MECHANICAL PROPERTIES OF THE THORACIC
AORTA

By

Jungsil Kim

Cardiovascular disease (CVD) is the leading cause of death in the United States and

a major cause of disability worldwide. A common type of vascular diseases in the U.S. is

aortic aneurysm. Surgical interventions, such as open surgery or endovascular aneurysm

repair (EVAR), are often required to avoid the high risk associated with aneurysm rupture.

To better understand the role of biomechanics in aortic diseases and develop their clinical

interventions, there is a need to understand the mechanical behavior of healthy as well as

diseased aortas and their effects on aneurysm expansion and rupture potential. While it is

well known that the mechanical properties of a blood vessel vary with location and age, little

attention has been paid to its circumferential variations. Therefore, the goal of this study

is to investigate spatial variations in the mechanical behavior of the descending thoracic

aorta. Toward this end, the following has been accomplished: 1) a biaxial experimental

apparatus with a stereo-vision system, which allows us to track the three-dimensional (3D)

motion of the aorta during the inflation test, was developed, 2) the inflation tests at fixed

longitudinal stretch ratios were performed for two longitudinal portions – the proximal and

distal – and four circumferential regions – the anterior, left lateral, posterior, and right

lateral – of the porcine thoracic aorta, 3) stress-strain analysis were developed based on

the approximation of the aortic wall surface using a set of continuous base functions in

a curvilinear coordinate system, 4) the variations of stretch, stress, stiffness defined as a

change in the circumferential stress corresponding to a change in the circumferential stretch,

and pressure-strain elastic modulus were statistically analyzed, and 5) material parameters

were estimated by a parameter estimation method using a constitutive model based on the



constrained mixture approach.

The experimental results showed that the posterior region was much stiffer than the

anterior region. However, the physiological stiffness represented by the pressure-strain elastic

modulus did not show a significant difference among the circumferential regions for the

proximal and distal portions of the thoracic aorta. In addition, the stress showed a significant

difference among the circumferential regions, and the stretch was relatively uniform. In

the parameter estimation, material parameters of elastin and collagen were dominant in

the mechanical response, but the role of the smooth muscle seemed to be insignificant. A

significant difference was found in the parameters of the elastin and collagen fiber between

the anterior and posterior regions.

In conclusion, this study presents an experimental method and analysis to measure local

deformation of a blood vessel. Furthermore, it shows that there exists consistent spatial

variations in the mechanical properties of the thoracic aorta. These findings increase our

understanding of vascular mechanics and adaptation, and will eventually help to improve

clinical treatments and interventions of vascular diseases.
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Chapter 1

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in the United States and a major

cause of disability worldwide. In 2007, CVD accounted for 33.6 percent of all deaths, and

the direct and indirect cost of CVD was estimated at $ 286.6 billion in the U.S. (American-

Heart-Association, 2011). The high mortality rate of CVD has thus promoted the growth

of research on cardiovascular mechanics. Vascular mechanics that has been developed based

on continuum mechanics helps to understand the mechanical state of vascular tissue in

various physiopathological conditions or in genetic disorders. Although understanding the

biomechanics of the blood vessels has been greatly increased for the last three decades,

the heterogeneity of vascular mechanics is still largely undisclosed and the state-of-the-art

technique is not complete enough to explain regional difference in vascular behavior of either

healthy and diseased arteries.

One of the most common types of vascular diseases in the U.S. is aortic aneurysm, an ab-

normal dilation of the aorta more than 3 cm in diameter (American-Heart-Association, 2011),

which occurs mainly among the elderly (Walker et al., 1986). Aortic aneurysms are classified

by the location where they occur: aortic root, thoracic, and abdominal aortic aneurysms.

Abdominal aortic aneurysms (AAAs) are more common than thoracic aortic aneurysms,

and the mortality rate of ruptured AAAs is up to 90% (American-Heart-Association, 2011).
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Thus, the majority of studies of aortic aneurysms have been done on the abdominal aorta,

and relatively few have focused on the thoracic aorta. Thoracic aortic aneurysms are also

serious conditions due to the high risk of rupture, and they frequently occur concomitantly

with other diseases such as atherosclerosis and Marfan syndrome (Isselbacher, 2005). The

most severe disease of the aorta is aortic dissections, which are caused by a disruption or

tear of the intimal layer, resulting in a separation in the aortic wall. Aortic dissections have

a higher risk of mortality than thoracic aortic aneurysm and carry a high mortality rate,

which increases 1 percent per hour unless patients find treatment within the first 24 hours

(Cannon and O’Gara, 2006).

Surgical interventions, such as open surgery or endovascular repair, are often required

to avoid the high risk associated with aneurysm rupture. The decision-making for surgical

repair, however, depends mainly on physicians’ clinical experience. In common practice, a

surgical repair is recommended if the maximum diameter of the aneurysmal aorta exceeded

a certain size (e.g., 5.5 cm for abdominal aortic aneurysms). In reality, however, some small

aortic aneurysms still rupture even before reaching the critical size (Participants, 2002).

Hence, the maximum diameter alone is not a sufficient indicator for the risk of rupture.

Abdominal aortic aneurysms grow faster in the anterior side, but their ruptures are found

most in the posterolateral sides (Schwartz et al., 2007). It is rather suggested that mechanical

failure is a local event and occurs when the local mechanical stress exceeds the local strength

(Vorp et al., 1998). Therefore, there is a pressing need for understanding spatial variations

in mechanical properties of healthy as well as diseased aortas and their effects on aneurysm

expansion and rupture potential.

1.1 Anatomy and histology of the aorta

The aorta is the largest artery originating from the left ventricle of the heart and conveys

oxygenated blood to organs and tissues of the body. It is generally classified into several

2
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Fig. 1.1: Anatomy of the aorta. (For interpretation of the references to color in this and all
other figures, the reader is referred to the electronic version of this dissertation).

portions: ascending aorta, aortic arch, and descending aorta, which is again divided to the

thoracic aorta and the abdominal aorta. Fig. 1.1, which was reconstructed from magnetic

resonance imaging (MRI) images, shows more detail anatomy of a human aorta. The de-

scending thoracic aorta begins just beyond the aortic arch as the aorta bends down into

the body and ends at the diaphragm. It is situated on the left side of the vertebral column,

containing several intercostal arteries along its length, which provide blood to the chest area.

In humans, the mean inner radius and wall thickness of the thoracic aorta are approximately

1.25 cm and 2 mm, respectively (Humphrey, 2001). Below the diaphragm, the abdominal
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Fig. 1.2: Schematic cross section of the wall of an elastic artery. Adapted from (Rhodin,
1980).

aorta is located in front of the vertebral column, and it bifurcates into the left and right com-

mon iliac arteries. The abdominal aorta has several aortic branches, which include the celiac,

superior mesenteric, inferior mesenteric, and renal arteries. The aorta becomes narrower in

diameter as it separates into branches.

The aortic wall is composed of three distinct layers: the tunica intima, tunica media, and

tunica adventitia (Fig. 1.2). The intima is the innermost layer of an aorta and consists of a

layer of endothelial cells and a subendothelial layer of connective tissue. The internal elastic

lamina separates the intima and the media. The media is the middle layer of concentrically-

arranged smooth muscle cells, and contains collagen fibers and elastic fibers. The external

elastic lamina separates the media and the adventitia. Finally, the adventitia is the outermost

layer of an aorta and primarily composed of longitudinally arranged collagen fibers with

elastin and fibroblasts. Compared with an elastic artery, an aorta consists of a thick media
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(a)

Fig. 1.3: Histology of the cross-section of the aorta (a) and its small section stained with
hematoxylin and eosin (H & E) (b), Verhoeff-Van Gieson (VVG) (c), picrosirius red (d), and
the polarized image of picrosirius red stain (e).

layer and a relatively thin adventitia layer (Fig. 1.3 (a)). The primary structural proteins

of the aortic wall are collagen and elastin.

The cross-sectional histology of the aorta with different stains gives us the information

of constituent as shown in Fig. 1.3. The entire aortic ring with surrounding tissue was

stained with picrosirius red (Fig. 1.3 (a)), where collagen is colored red. Nuclei are blue

with hematoxylin and eosin (H & E) stain (Fig. 1.3 (b)) so that cell density can be estimated.

Verhoeff-Van Gieson (VVG) stain is common for examining the elastin because elastic fibers

are colored black, and collagen is red (Fig. 1.3 (c)). In order to examine the orientation

of collagen fibers, polarized light microscopy can be used (Fig. 1.3 (e)). The density of

elastin lamellae varies throughout the aortic wall, and the adventitia layer has denser elastin

lamellae than the media layer.

The microstructure of the aortic wall varies among species. The contents of the collagen

and elastic tissue differ with regard to the portion of the aorta. In this study, we focus on

the descending thoracic aorta and discuss it in detail.
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Fig. 1.4: Typical stress-strain curves of a circumferential strip of an artery during the uniaxial
test (Holzapfel et al., 2000)

1.2 Mechanical behavior of the aorta

The mechanical properties of an aorta vary with species, age, location, and its pathological

conditions. Although there are many documents to report the characteristics of mechanical

behavior of the aorta, some important findings are briefly summarized in this section.

Like many other biological soft tissues, an aorta undergoes relatively large deformations

and its behavior is nonlinear, inelastic, and anisotropic over finite strains. Fig. 1.4 shows

the typical stress-strain response of a circumferential arterial strip during the uniaxial test

in passive condition. An arterial tissue displays stress softening during the first few loading

cycles, as shown in Fig. 1.4. Then it exhibits a nearly repeatable cycle behavior (Yin and

Fung, 1971). Due to the repeatable behavior in cyclic loading, the mechanical behavior of

arterial tissues are often described by using pseudoelasticity. For example, Fung et al. (1979)

stated that, “Since stress and strain are uniquely related in each branch of a specific cyclic

6



process, we can treat the material as one elastic material in loading and another elastic

material in unloading. Thus, we can borrow the method of the theory of elasticity to handle

an inelastic material. To remind us that we are really dealing with an inelastic material,

we call it pseudoelasticity”. However, the hysteresis, the difference between the loading

and unloading curves, is typically small and a majority of experimental studies of a blood

vessel have used only loading curves for characterizing the pseudoelastic behavior. Fung

et al. (1979) also suggested that it is convenient to simplify a complex property of an artery

although the pseudoelasticity is not an intrinsic property.

Long-term vascular adaptation of a blood vessel occurs under various pathophysiological

conditions, such as aging (Groenink et al., 1999; Spina et al., 1983) and cardiovascular dis-

eases (Angouras et al., 2000; Thubrikar et al., 2001; Vande Geest et al., 2006). It appears

that changes in the mechanical state of a blood vessel wall play important roles in vascular

adaptations (Humphrey, 2008). An important goal of vascular mechanics is to accurately

estimate the mechanical state of blood vessels in vivo, which is the key determinants of vascu-

lar homeostasis. Although the time course and detailed mechanisms of vascular homeostasis

remain unclear, many studies have suggested that blood vessels alter their microstructures

to restore a preferred (homeostatic) state (Humphrey, 2001).

In the study of vascular mechanics, the discovery of residual stress in an artery has been

of great importance. When an arterial ring is cut radially, the ring springs open. Chuong

and Fung (1986) reported that the stress resultant and stress moments were zero after the

radial cut from the static equilibrium. They identified a stress-free state and showed that

circumferential residual strain reduced the transmural gradients of stress and strain (Chuong

and Fung, 1986).

During the last several decades, mathematical descriptions for mechanical behavior of

blood vessels have been extensively developed. Takamizawa and Hayashi (1987) proposed

the uniform transmural circumferential strain hypothesis, but Guo et al. (2005) found that

the uniformity of the transmural strain was limited when the opening angles of arteries
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were smaller than 180◦. Zhang et al. (2005) proposed the uniform biaxial strain hypothesis,

including the uniformity of the both circumferential and axial strains in vivo. Later, it was

also shown that the vascular smooth muscle action contributes to more uniform strain and

stress distribution throughout the arterial wall (Rachev and Hayashi, 1999).

Many constitutive models have been developed to describe the mechanical behavior of

a blood vessel under specific conditions of interest. Strain energy function, commonly in

exponential, polynomial, and logarithmic forms, is used to determine a constitutive model in

hyperelasticity. The simplest strain-energy function W per unit volume is the neo-Hookean

model

W = c1 (Ic − 3) (1.1)

where c1 is a material parameter having the dimension of stress and Ic = trC. It is ap-

propriate for homogeneous, isothermal, and hyperelastic materials. Another commonly used

strain energy function for rubber-like material is the Mooney-Rivlin model

W = c2 (Ic − 3) + c3 (IIc − 3) (1.2)

where c2 and c3 are material parameters, and

IIc =
1

2

[
(trC)2 − trC2

]
. (1.3)

Vaishnav et al. (1973) proposed a two dimensional (2D) strain-energy function in poly-

nomial form to describe the three-dimensional (3D) anisotropic behavior of passive vascular

tissue as

W = a1E
2
ΘΘ + a2EΘΘEZZ + a3E

2
ZZ + a4E

3
ΘΘ + a5E

2
ΘΘEZZ + a6EΘΘE2

ZZ + a7E
3
ZZ (1.4)

where ai(i = 1, · · · , 7) are material parameters having in the unit of stress.

A well-known strain energy function for soft tissue was proposed by Chuong and Fung
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(1983). It is a 3D strain energy function W per unit initial volume in the undeformed

configuration such that

W =
1

2
c4 exp (Q) (1.5)

where c4 is a material parameter having the same unit of stress and Q is given by

Q = b1E
2
RR + b2E

2
ΘΘ + b3E

2
ZZ + 2b4ERREΘΘ + 2b5EΘΘEZZ + 2b6EZZERR (1.6)

where bi(i = 1, · · · , 6) are non-dimensional material parameters, and EIJ (I, J = R, Θ, Z)

are Green’s strain components in the cylindrical polar coordinate (R, Θ, Z). Later, a modified

3D strain-energy function of Fung’s type form was formulated by Humphrey (1995) with

shear terms in the exponential function.

Another type of a 2D strain energy function in logarithmic form was proposed by Takamizawa

and Hayashi (1987) as

W = −c5Ln(1−Q′) (1.7)

where c5 is a material parameter and the function Q′ is given by

Q′ = 1

2
d1E

2
ΘΘ +

1

2
d2E

2
ZZ + d3EΘΘEZZ . (1.8)

Here di(i = 1, 2, 3) are non-dimensional material parameters.

A combined polynomial and exponential form of strain energy function was proposed by

Holzapfel and Weizsacker (1998) as

W =
c6
2

(Ic − 3) +
c7
2
{exp(Q)− 1} . (1.9)

where material parameters c6 and c7 having the unit of stress. Later Holzapfel et al. (2000)

proposed another strain energy function, which modeled an arterial tissue corresponding to

the isotropic deformations and anisotropic deformations, considering two collagen fiber fam-
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ilies. To determine the isotropic response, neo-Hookean model was used and the anisotropic

response was determined by an exponential function such that

Waniso (I4, I6) =
k1
2k2

∑

i=4,6

[
exp

{
k2 (Ii − 1)2

}
− 1

]
(1.10)

where k1 a material parameter in the unit of stress and k2 is a dimensionless parameter. I4

and I6 are invariants of C. Holzapfel and others also developed two-layer model (media and

adventitia as a fiber-reinforced composite) with residual strains. Yet another strain energy

function was proposed by Zulliger et al. (2004b)

W = fece (Ic − 3)3/2 + fc

{
1

2
Wc

(√
I4 − 1

)
+

1

2
Wc

(√
I6 − 1

)}
. (1.11)

where fe and fc are the area fraction of elastin and collagen, respectively, ce the elastic

constant, and Wc the strain-energy function of the collagen. It accounts for wall compositions

and structures, such as the wavy nature of the collagen fibers and their angle.

While the aforementioned constitutive models have been developed for traditional stress-

strain analysis, the constitutive model based on a constrained mixture approach has been

developed to describe continuous growth and remodeling of vascular tissue (Baek et al., 2006;

Humphrey and Rajagopal, 2002; Zeinali-Davarani et al.). That is, it deals with not only the

separate contribution of each constituent of a blood vessel but also the continuous production

and removal of each constituent during the vascular adaptation. Thus, a constrained mixture

model can provide the potential role of each constituents, elastin, collagen, and smooth

muscle, in the mechanical behavior of stressed material.
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1.3 Variation and heterogeneity of the mechanical be-

havior of the aorta

The mechanical properties of the aorta vary with locations on the aortic tree (Han and Fung,

1995), and, indeed, the aortic wall is not isotropic (Weizsacker, 1988; Zou and Zhang, 2009).

For example, the dog thoracic aorta in situ was stiffer in the longitudinal than the circum-

ferential direction (Patel et al., 1969), there is the longitudinal variation in circumferential

strain and elastic modulus of mouse aortas (Huang et al., 2006), and the stretch ratio and

Cauchy stress were lower in the thoracic aorta than the abdominal aorta (Guo and Kassab,

2004).

The arterial wall is a heterogeneous composite consisting mainly of collagen, elastin,

and smooth muscle cells. The relative amount of these constituents is responsible for the

mechanical properties of a blood vessel and varies with locations along the arterial tree

(Fischer and Llaurado, 1966; Halloran et al., 1995; Lillie and Gosline, 2007; Purslow, 1983;

Roach and Song, 1994; Stergiopulos et al., 2001). The histology of the aorta is different

between the thoracic and abdominal regions. The thoracic aorta contains relatively more

elastin, whereas the abdominal aorta contains relatively more collagen (Thubrikar, 2007).

Elastin and collagen are the major components of the ascending thoracic aorta, and smooth

muscle cells are the major components of the abdominal aorta.

The influence of elastin on the mechanical properties of the aortic tissue has been inves-

tigated (Gundiah et al., 2007; Lillie and Gosline, 2007; Zou and Zhang, 2009). Elastin fibers

are primarily responsible for the linear behavior of an artery in the low pressure range (Gun-

diah et al., 2007; Shadwick, 1999; Stergiopulos et al., 2001). On the other hand, collagen is

recruited in the higher pressure range and contributes to the nonlinear behavior of arterial

tissue with elastin (Groenink et al., 1999; Shadwick, 1999). The orientation of collagen and

the amount of cross-linking contribute to the mechanical behaviors of vascular tissue (Has-

kett et al., 2010; Holzapfel et al., 2002). Stergiopulos et al. (2001) attempted to characterize
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the elastic properties and composition of the separated inner and outer halves of porcine

aortic media, and they concluded that these properties were similar. The three-dimensional

structure of the rat aortic media was observed using 3D confocal microscopy, the number of

medial lamellae in anterior region were greater than the posterior (O’Connell et al., 2008).

1.4 Experimental characterization of mechanical be-

havior of the aorta

For the experimental studies, ex vivo including in vitro tests are commonly employed, al-

though in vivo tests would characterize the biomechanical behavior of a blood vessel under

actual physiological conditions. It is due to the limitation of in vivo tests such as the complex-

ity of in vivo physiological conditions, difficulty of obtaining accurate strain measurements,

and the uneasiness of controlling experiments.

A variety of ex vivo testing methods have been developed to characterize the mechanical

properties of vascular tissue using different shapes of tissue specimens, such as strips, flat

sheets, rings, or cylindrical tubes. The most common biomechanical test is the uniaxial

extension test with a strip for investigating mechanical behavior of the vascular tissue in one

direction under cyclic loading (Gundiah et al., 2007; Iliopoulos et al., 2009b; Lally et al.,

2004; Okamoto et al., 2002; Sokolis, 2007), but it is not suitable to quantify the anisotropic

behavior of vascular tissues. The ring test (Guo and Kassab, 2004; Huang et al., 2006; Lillie

and Gosline, 2007) is another type of the uniaxial test on arterial rings. It is commonly

used to quantify the yield strength or active smooth muscle tone of a blood vessel in the

circumferential direction, but it is insufficient to study the anisotropy of vascular tissues

because it does not measure deformation and force in axial direction. A planar biaxial

test with excised flat sheet specimens has been popular for investigating biaxial mechanical

behavior of aortic tissue (Lally et al., 2004; Okamoto et al., 2002; Tremblay et al., 2010;

Vande Geest et al., 2006; Zhou and Fung, 1997). However, lateral excision of the tissue may
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alter the spatial distribution of residual stress in the specimen and, thus, it is difficult to

simulate the deformation of the artery experienced during the cardiac cycle. On the other

hand, the inflation test with a cylindrical tube segment is the preferred test for obtaining

biaxial mechanical properties of a blood vessel (Blondel et al., 2001; Humphrey et al., 1993;

Langewouters et al., 1984; Schulze-Bauer et al., 2002). This test reflects closely the motion

of the aortic wall during the cardiac cycle so that we estimate in vivo stress, although the

surrounding tissue are not usually taken into account in the ex vivo test.

Since vascular tissues experience finite deformation and stress during the test, a video-

based tracking technique is typically applied, with multiple markers embedded or affixed to

the tissue specimen (Everett et al., 2005; Hu et al., 2007; Hsu et al., 1995; Saravanan et al.,

2006; Thubrikar et al., 1990; Zhang et al., 2002). In the traditional ex vivo inflation test, a

blood vessel is assumed to be a perfect cylindrical tube and only the outer diameter change

of the vessel is measured during the test (Blondel et al., 2001; Langewouters et al., 1984;

Schulze-Bauer et al., 2003; Valdez-Jasso et al., 2009). Hence, the spatial distribution of local

mechanical properties of the vessel is not commonly characterized in the traditional inflation

test.

Recent advances in the 3D medical imaging have allowed one to use a tracking technique

to measure nonuniform deformation during the test. For example, Draney et al. (2004)

quantified in vivo cyclic strain of porcine aortas using cine phase contrast magnetic resonance

imaging (MRI). In their study, the cyclic strain were not uniform along the circumference of

the aorta, but their results were highly deviated. Danpinid et al. (2010) proposed a method

to investigate the local stress-strain relationship of both normal and pathological murine

abdominal aortas using an ultrasound motion estimation technique, and it allowed one to

identify the vascular disease. Recently, Genovese (2009) introduced a new optical system

with a concave conical mirror, which provides the full-field measurement of 3D deformation

of an artery, and Avril et al. (2010) developed an inverse method to determine material

parameters using the experimental data under the traditional assumption. The accuracy of
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the method and its utility is, however, not yet clearly demonstrated and there is still a need

for developing more analysis methods to make full use of 3D spatial information of the artery.

Development of such strain measurement techniques promotes the study for characterizing

the heterogeneity in the mechanical properties of a blood vessel over a wide range of pressure,

and thus more experimental techniques and novel analysis methods need to be developed.

1.5 Objective of this study

While it is well known that the mechanical properties of a healthy blood vessel vary with

location (Lillie and Gosline, 2007; Sokolis, 2007) and age (Groenink et al., 1999; Spina

et al., 1983), their circumferential variations have received little attention. In the majority

of biomechanical analysis in vascular studies, an artery has been considered as a hollow

conduit with a constant thickness, and uniform stress and strain distribution in the vessel

wall has been assumed in the circumferential direction (Chuong and Fung, 1986; Takamizawa

and Hayashi, 1987; Zhang et al., 2005). Furthermore, in most previous experimental studies

using the inflation test, only outer diameter change associated with a pressure change was

measured, and the circumferential variation in the local mechanical properties of the vessel

was not usually characterized. Recent biomedical imaging studies, however, showed the

non-uniform circumferential behavior of the aorta during the cardiac cycle (Draney et al.,

2002, 2004), the asymmetric distension of the aortic wall (van Prehn et al., 2009a,b), and

an increased amount of the anterior aortic wall motion relative to the posterior (Goergen

et al., 2007). Therefore, it is essential to consider nonuniform deformation of the aorta in

the circumferential direction to obtain a physiologically more accurate mechanical model.

Nonetheless, few experimental studies have quantified the circumferential variation in the

mechanical behavior of the aorta.

The goal of this study is to investigate the spatial variations in the mechanical properties

of the thoracic aorta. In order to investigate the spatial variation, the aortic wall is classified
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by the location of the aorta: the proximal and distal portions in the longitudinal direction;

and the anterior (A), left lateral (L), posterior (P), and right lateral (R) regions in the

circumferential direction. The specific aims of this study are:

• to develop a biaxial experimental apparatus to measure the local deformation of a

blood vessel

• to perform the inflation tests at fixed longitudinal stretch ratios for the two longitudinal

portions and the four circumferential regions of the porcine thoracic aorta

• to develop a stress-strain analysis using 3D experimental data

• to investigate variations in stretch, stress, stiffness, and pressure-strain elastic modulus

and analyze statistically

• and to estimate material parameters using a constrained mixture model

This dissertation consists of six chapters. Chapter 2 describes the experimental appara-

tus designed and constructed for this study. It includes features of the extension-inflation

test device and a stereo vision system that allows us to track 3D motion of the aorta dur-

ing the test. After that, it describes sample preparation and the protocol of the inflation

test. Camera calibration and image processing is addressed lastly. Chapter 3 focuses on

biomechanical analysis to determine the local mechanical properties of the thoracic aorta. It

introduces the kinematics in the curvilinear coordinate system, approximation of the surface,

and then equations of the circumferential stretch, stress, and stiffness in both longitudinal

and circumferential directions.

Chapter 4 presents a constitutive model to describe the mechanical response of the both

proximal and distal portions of the thoracic aorta during the inflation test. It includes the

parameter estimation study using a constrained mixture model.

Chapter 5 shows the results of experiments, stress-strain analysis, material parameters,

and the statistical analysis. The major finding of this study and discussion are finally
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presented.

Lastly, Chapter 6 summarizes this dissertation and contribution of this study and then

briefly discusses potential future study.
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Chapter 2

EXPERIMENTAL METHODS

2.1 Experimental apparatus

An extension-inflation test system (Fig. 2.1 and Fig. 2.2) was developed to measure the bi-

axial deformation of a blood vessel. It consists of three main parts: motion, data acquisition,

and vision systems.

A polycarbonate test chamber is placed on the lower crosshead in the center of the test

device. Two moving crossheads are driven by a stepper motor in opposite directions, while

the center of the device remains fixed. A specimen is connected to a syringe pump (KDS

210, KD Scientific, MA, USA) by a tube. Bidirectional infusion-withdrawal motion of the

syringe pump inflates and deflates the specimen.

A 34.47 kPa (5 psi) gauge pressure transducer (FPG2AT, Honeywell-Sensotec, OH, USA)

is installed to the tube, which is connected to the specimen. In this study, the transmural

pressure is defined as the difference between internal pressure and external pressure of the

region where markers attached to the specimen. In Fig. 2.3, transmural pressure can be
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Fig. 2.1: Schematic diagram of the experimental set-up for the extension-inflation test.

calculated via

P trans
B = P inter

B − P exter
B (2.1)

= PA − γh1 − γh2 (2.2)

= PA − γ (h1 + h2) (2.3)

= PA − γh. (2.4)

where PA and PB are the pressure at the location of A and B, respectively, and γ is the

specific weight. The axial load applied to the specimen during the test is measured using a

4.54 kg (10 lb) load cell (Model 34, Tension/Compression, Honeywell-Sensotec, OH, USA),

18



Fig. 2.2: Schematics of the experimental device.

which is attached to the upper cannula of the specimen. The measurements are collected in

a computer by a data acquisition board at a 100 Hz sampling rate.

The stereo vision system, consisting of two CCD monochrome cameras (KPM2A, 768H

× 494V, Hitachi, Japan) with fixed focal length lenses (HF25HA-1B, Fujinon, Japan), allows

the tracking of the 3D position of markers attached to the specimen. Two cameras are placed

at different positions but at the same height, focusing on the central region of the test device

where the specimen is mounted (Fig. 2.4). The distance of two cameras is approximately

30 cm, and the angle between two cameras and the specimen is approximately 30 degrees.

The frame grabber obtains images of markers affixed to the specimen using the two cameras

alternately at 5 frames per 2 seconds.

A computer program is designed to control the experimental system using Labview 8.2.
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Fig. 2.3: Schematics of the test chamber to show calculation of the transmural pressure

The speed and direction of the syringe pump are controlled by the automated Labview

program based on the pressure readings.

A few considerations were made when designing the test device. First, this test device

has a multiple-cannula mounting connector for testing several types of blood vessels. This

test device is able to test various sizes of specimens, whereas most of existing pressurization

testers have been used only for small vessels or short segments of blood vessels. Second,

this test device has a vertical mounting system. The vertical set-up is designed to avoid

the bending of a blood vessel caused by gravity, since the target length of an aorta sample

in this study was about 12 cm. In addition, the vertical mounting system allows us to use

multiple cameras around the specimen to record its deformation from multiple directions.

Third, its height is adjustable, while the center of the device is fixed. Due to the irregular

length of blood vessels and different longitudinal extension for testing, the adjustable height

of a test device was needed. Two parallel crossheads maintain the center of the specimen in

longitudinal direction, while the crossheads travel in opposite directions along two vertical

threads. Lastly, it has less incidence of and is easy to remove air bubbles. At the end of the
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Fig. 2.4: Two camera set-up

tube away from the specimen, saline solution is injected into the tube using a three-way-

valve. To remove air bubbles inside the specimen and the tube, upper cannulas (2.6) were
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Fig. 2.5: Overview of the experimental process using the extension-inflation test device.
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Fig. 2.6: Schematic drawing of an upper cannula connector.

specially designed. They have a tiny hole, which can be opened while the saline solution is

filling the specimen and can be closed after the removal of air for the test.

2.1.1 Calibration of sensors

The load cell has been calibrated by using weights with a string. Five different weights in turn

are hung, and each voltage output from the data acquisition board is recorded, respectively.

A linear least squares regression is used to determine an equation of best-fit line for the test

data, that is, the known weights and the voltage outputs of load cell corresponding to the

weights. The slope and y-intercept of the fitting equation are used to convert voltage outputs

into axial loads applied to the specimen during the test. Fig. 2.7 (a) shows an example of

the least squares regression for calibrating the load cell.

Likewise, the pressure transducer has been calibrated by using a single-limb manometer

connected to the pressure transducer with a vinyl tube. Five different column heights of

water in the manometer and their corresponding voltage outputs of the pressure transducer

are recorded. The room temperature is accounted for calculating the hydrostatic pressure for
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Fig. 2.7: A representative example for the linear least squares regression of load cell data (a)
and pressure transducer data (b).

the case of each water column. A linear least squares regression is used again to determine a

relationship between the pressure and voltage output of the pressure transducer. The slope
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and y-intercept of the fitting equation are used to calculate the internal gauge pressure of

the specimen. Fig. 2.7 (b) shows an example of the least squares regression for calibrating

the pressure transducer.

2.2 Specimen preparation

thorcic aorta

abdominal aorta

(b)

(c)

(d)

(a)

microspheres

Fig. 2.8: (a) The porcine aorta sample from the thoracic to the abdominal, (b) the thoracic
aorta with surrounding tissues, (c) the thoracic aorta after removing surrounding tissues,
and (d) a cannulated aorta specimen with micro spheres attached on the wall.

Aortas from approximately six-month-old pigs (Fig. 2.8 (a)) were obtained from a local

slaughterhouse. They were stored at 5◦C until testing within 24 hours after death. For

the inflation test, the peripheral, loose connective tissues are carefully removed from the

adventitia of the aorta, while aortic branches are kept intact (Fig. 2.8 (b) and (c)). The

proximal or distal portion of straight descending thoracic aorta, approximately 15 cm long,

is isolated. All aortic branches are ligated with nylon thread, and both ends of the isolated

aorta are connected to cannulas with care to ensure the aorta is not bent or twisted. Ap-

proximately 140 black spheres with a diameter of 550 µm, as markers, are attached to the

aorta along its circumference. They are attached to the aortic wall near either the first to

third intercostal arteries for the proximal portion of the thoracic aorta or the fifth to seventh
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intercostal arteries for the distal portion, avoiding the regions of aortic branches (Fig. 2.8

(d)). Additional microspheres are attached to the proximal and distal regions of the speci-

men with 7 cm distance to obtain the reference measurements of longitudinal stretches. In

order to reduce the amount of glue, a pulled-glass micropipette is used. Then the specimen

is mounted vertically in the test chamber and the inside of the specimen and test chamber

are filled with 0.9% NaCl solution. The osmolarity is kept for all tests to limit the effect of

osmolarity on the mechanical behavior of a vessel (Guo et al., 2007).

2.3 Test protocol

The unloaded reference length wherein the blood vessel is at zero longitudinal force and at

zero transmural pressure is recorded, ignoring the effect of the weight of specimens. The

specimen is preconditioned longitudinally and circumferentially to obtain repeatable me-

chanical response of the blood vessel and to reduce possible stress concentration induced

during the preparation. The specimen is then elongated at stretch ratios of 1.35, 1.40, or

1.45 with respect to the reference length. The aorta has a pre-stretch in the longitudinal

direction at the in vivo state, and its in situ stretch ratio was estimated between 1.2 and

1.45 (Han and Fung, 1995). For each fixed longitudinal stretch ratio, the inflation test is per-

formed by pressurizing and depressurizing the specimen five times at approximately 1/110

Hz frequency over a transmural pressure range from 1.33 kPa to 21.33 kPa (10 - 160 mm

Hg) at room temperature. Digital images of markers affixed to the specimen are collected

simultaneously with pressure and axial load measurements.

In this study, the aortic wall is classified into four regions in the circumferential direction.

The wall between two consecutive intercostal arteries is defined as the posterior region, its

opposite across the lumen is defined as the anterior region, and the two side regions between

the anterior and posterior regions are determined as the left and right lateral regions. For

the proximal thoracic aorta, the inflation test is repeated at the four circumferential regions
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Fig. 2.9: Schematics of a world point and its corresponding image point

(A, L, P, and R) after a 90-degree rotation of the specimen between one region and another.

For the distal thoracic aorta, the test is repeated at two circumferential regions (A, P) after

180-degree rotation. Great care is taken in ensuring no twisting of the specimen after the

rotation.

After the inflation test, two cross-sectional cuts of the specimen to obtain an aortic ring

are made at the test region where the markers are affixed. Three repeated wall thickness

measurements per specimen are taken at every 45 degrees along the circumference using a

digital vernier caliper. Then, the aortic ring segments are fixed in 10 % formal saline for

histology examination.

For this study, seven samples of the proximal thoracic aorta and four samples of the distal

thoracic aorta were used, and their experimental information is tabulated in Table C.1 in

Appendix C.

2.4 Marker tracking and 3D position reconstruction

2.4.1 Calibration of cameras

A 3D calibration jig, which displays array of dots with known spacing, was used. A finite

projective camera model have been employed to determine a camera matrix. Projection
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Fig. 2.10: Calibration jig and camera set-up

under this model is a linear mapping in the form of x = MX using homogeneous coordinates,

where a camera matrix M describes how a 3D world point X = (X, Y, Z)T projects to a 2D

pixel point x = (x, y)T in the image coordinate. In brief, the camera matrix is determined

via three steps. First, a 3D world point (X,Y, Z) is transformed to a point in the camera

reference frame by rotation and translation. Next, the point is projected onto the image

plane at (xcam, ycam). Lastly, the point (xcam, ycam) on the image plane is mapped into the

pixel coordinates in an image. (The details are introduced in Appendix A.) Therefore, the
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homogeneous linear mapping can be written as





sy

sx

s


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

(2.5)

where s is a scaling factor and Mij is an element of the calibration matrix.

In equation (2.5), there are 11 unknowns, and more than 6 pairs of 3D world points and

their corresponding pixel points in the image are needed. World points are obtained from

the calibration jig (Fig. 2.10) and the centers of their pixels in images are extracted through

image processing of the images. Using n-number of pixel points corresponding to the world

points of the calibration jig, equation (2.5) can be rewritten in the form of u = Ab. Here,

u represents a vector of an image pixel point of x-axis and y-axis alternately, A represents

n × 11 matrix, and b represents all elements of the calibration matrix in a vector. In order

to determine the optimized parameter b of the calibration matrix, the pseudo inverse (least

squares) calculation has been applied. The parameters b is obtained by b = (ATA)−1ATu

via minimizing ‖ Ab− u ‖2.

2.4.2 Image processing

Two CCD cameras obtain serial digital images of the specimen during the inflation test. The

center of each marker is extracted via the following steps. Firstly, the image mask from the

entire image, that is a small region of markers on the specimen, is defined and the masked

region is extracted. Next, the manual threshold type is selected and its range for the masked

image is set up, when thresholded markers are displayed clearly from the background. If

dark objects are being looked for, markers are shown as dark objects and the aortic wall

is shown relatively brighter. After that, border objects of the masked image are removed.

Then, the center of mass for markers in x and y directions are obtained from each images
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(a)                                                                   (b)                                                       (c)               

Fig. 2.11: An example of the processing to extract the position of markers in pixel. (a) the
entire image, (b) the masked image, and (c) thresholded image

via the particle analysis, which is a built-in function of NI Vision Assistant.

2.4.3 Marker tracking

Using the 2D position data of markers in pixels, the motion of markers is traced over the

inflation test. However, the total number of particles in images is not the same as the

number of markers. Thus, Matlab programming, so-called the marker tracking algorithm,

has been developed to track markers in which we are interested. The algorithm consists of the

followings steps. First, some markers of interest are selected from the first image and saved

with labels. The positions of markers ((xi, yi) in the first image, where i denotes the label

of a marker) are compared with the new positions of markers in next image ((xj , yj), where

j denotes the label of a marker). Second, the distance between markers from two images

(| (xi, yi) − (xj , yj) |) are calculated. If a marker of i from the first image had a minimum

distance with a marker of j from the next image, we assume that those two markers are the

same ones and their distance and labels are recorded. If more than two markers of j in the

new image have a same marker of i as a distance between two markers from two consecutive

images is minimum, the label of i is repeated. Then a marker of j with a smaller distance

from a marker of i is taken as new position of the marker of i in the previous image. The

other marker of j which has the same marker of i as the minimum distance is discarded.
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Fig. 2.12: Stereo images from left side camera (a) and right side camera (b), and the recon-
structed marker positions in 3D (c)

Therefore, the number of new markers remains as the same number of markers from the first

image. However, some of markers from the first image may not be shown later. In this case,

the minimum distance of the markers may be bigger than the averaged minimum distance

between two consecutive images for all markers. If some markers had a much bigger distance

than the averaged minimum distance, they are discarded and the same steps are repeated to

find the minimum distance between an image and the next image for the markers. Finally,

the new positions of markers are determined. The same process is repeated for the next

image with the updated positions of markers until the positions of markers in the last image

are determined.

2.4.4 3D position reconstruction

Once camera matrices are determined, 3D positions of markers can be obtained using pairs

of 2D stereo images taken from both cameras. Linear mapping derived from equation (2.5)

for each camera yields four equations with three unknowns (X, Y, Z), which represents a 3D

world point corresponding to a pair of image points (x1, y1) and (x2, y2) for both cameras,
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as
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(2.6)

where superscript 1 and 2 denote two different cameras. Likewise the process of determining

a camera matrix, the pseudo inverse (least squares) calculation is employed to determine the

unknown world point (X, Y, Z). Fig. 2.12 shows the stereo images and the reconstructed 3D

positions of markers.

2.5 Histology sample preparation

At the mid-section of the sample where markers are attached, two transverse cuts of the

aorta are made. The aortic ring is fixed in a 10 % formalin solution at room temperature

for 3 days and is embedded in paraffin for approximately 24 hours. Then it is sectioned at 5

µm thickness and stained with hematoxylin and eosin (H&E), Verhoeff-Van Gieson (VVG),

and picrosirius red.
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Chapter 3

BIOMECHANICAL ANALYSIS

3.1 Kinematics in curvilinear coordinate systems

In cardiovascular mechanics, curvilinear coordinates, such as cylindrical polar coordinate and

spherical polar coordinate, are often used to describe the geometrical shape of a blood vessel

better. For a curvilinear coordinate system, an orthogonal natural basis, called covariant base

vectors, are defined as Gi in the reference configuration and gi in the deformed configuration.

Gi and gi need not to be of unit magnitude, and in general they depend on position.

Let us consider db as a differential vector in space. It can be written as

db = dzigi = dz1g1 + dz2g2 + dz3g3 (3.1)

with respect to the deformed curvilinear coordinates zi.

A reciprocal (contravariant) basis vectors Gi in the reference configuration and gi in the

deformed configuration are determined to satisfy the orthogonality condition via

Gi ·Gj = δ
j
i , Gi ·Gj = δi

j , (3.2)

gi · gj = δ
j
i , gi · gj = δi

j (3.3)
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where δ
j
i = 1 if i = j and δ

j
i = 0 if i 6= j.

A differential vector db in equation (3.1) can be written using contravariant basis vector

gi as

db = dzig
i = dz1g

1 + dz2g
2 + dz3g

3 (3.4)

with respect to the deformed curvilinear coordinate zi.

In the Cartesian coordinate system, db = dxiei, where the normal basis ei is written as

ei =
∂b

∂xi
(3.5)

Likewise, in curvilinear coordinate system, the vector db is expressed as db = dzigi, and

orthogonal basis vector gi is

gi =
∂b

∂zi
. (3.6)

Using a chain rule, gi can be rewritten as

gi =
∂b

∂zi
=

∂b

∂xk

∂xk

∂zi
=

∂xk

∂zi
ek (3.7)

gi =
∂b

∂zi
=

∂b

∂zα

∂zα

∂zi
=

∂zα

∂zi
gα. (3.8)

When the covariant basis vector gi are orthogonal at each point, the orthonormal vector ê

is determined by the division of the covariant basis vector by its magnitude, such that

êi =
gi

| gi |
(no summation on i) (3.9)

where êi does not change with position, and

| gi |=
√

gi · gi =
√

gii (no summation). (3.10)

Basic manipulations of components for the curvilinear coordinate system are analogous
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to those for the Cartesian coordinate system. However, the differentiation of a position

vector with respect to the curvilinear coordinate system yields two terms. For example, a

differential vector dv can be rewritten as

∂v

∂zm =
∂

∂zm

(
vigi

)
=

∂vi

∂zmgi + vi ∂gi

∂zm , (3.11)

here the second term can be

∂gi

∂zm =
∂

∂zm

(
∂xk

∂zi
ek

)
=

∂2xk

∂zm∂zi
ek. (3.12)

After substituting equation (3.8) into the second term in equation (3.11)

∂gi

∂zm =
∂2xk

∂zm∂zi

∂zj

∂xk
gj . (3.13)

The equation of the balance of linear momentum is div(t) + ρb = ρa, where t is the

Cauchy stress tensor, b is the body force vector, and a is the acceleration vector. The

divergence of a tensor t in curvilinear coordinate system is given by

div(t) = gm ·
(

∂tij

∂zmgi ⊗ gj + tij
∂gi

∂zm ⊗ gj + tijgi ⊗
∂gj

∂zm

)
. (3.14)

The deformation gradient tensor F is the gradient of mapping function to describe the

motion of a continuum. When a position vector for a material point in the undeformed

configuration X has displacement, the material point has new position x in the deformed

configuration. For an infinitesimal change of the position vector in the curvilinear coordinate

system, the deformation gradient F is the fundamental measure of the deformation as

F =
∂x

∂X
=

∂xi

∂XJ
gi ⊗GJ = F i

Jgi ⊗GJ . (3.15)
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where F i
J = ∂xi

∂XJ . Then the determinant of the deformation gradient J is given by

J = detF =
g1 · (g2 × g3)

G1 · (G2 ×G3)
. (3.16)

The covariant component of C is

C =
(
F i

Agi ⊗GA
)T ·

(
F

j
Bgj ⊗GB

)

=
(
F i

AF
j
BgijG

A ⊗GB
)

(3.17)

= CABGA ⊗GB

3.2 Numerical analysis and approximation

The cylindrical coordinate is often used in vascular mechanics to describe the positions of

material particles. It is appropriate to solve blood vessel problems since the base vectors of

the curvilinear coordinate need not be independent of position. In this study, the positions

of markers are determined in the Cartesian coordinate from the image processing, and then

they are converted to the cylindrical polar coordinate.

3.2.1 Coordinate transformation

The 3D positions of markers affixed to the specimen are obtained before and during the

inflation test. The load-free state is regarded as the reference configuration, and the deformed

state during the test is regarded as the deformed configuration. Because of the cylindrical

shape of the vessel wall, the position of a marker (X, Y, Z) in the Cartesian coordinate system

is converted to variables (Θ, S, R) in the cylindrical polar coordinate system via

X −Xo = R cos Θ, Y − Yo = R sin Θ, Z = S (3.18)
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Fig. 3.1: The surfaces in the reference configuration and the deformed configuration are
approximated by continuous functions of two variables, Θ and S, convected to the surface.
The deformation gradient of the surface corresponding to the mapping is denoted by F.

where {Xo, Yo} is the center-line approximated by the marker positions. Likewise, the posi-

tion (x, y, z) in the deformed configuration is converted to variables (θ, s, r) via

x− xo = r cos θ, y − yo = r sin θ, z = s (3.19)

The outer surfaces of the vessel wall are parameterized using two variables Θ and S, which

provide a convected curvilinear coordinate system for the surface during the deformation.

The normalized variables S and Θ can be obtained via

S =
2(S − Smin)

Smax − Smin
− 1 (3.20)

Θ =
2(Θ−Θmin)

Θmax −Θmin
− 1, (3.21)

and then −1 ≤ S ≤ 1 and −1 ≤ Θ ≤ 1.

All variables in the reference and deformed configurations are expressed as functions of
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Θ and S, as

Θ = Θ(Θ), S = S(S), R = R̂(Θ, S), (3.22)

θ = θ̂(Θ, S), s = ŝ(Θ, S), r = r̂(Θ, S). (3.23)

3.2.2 Deformation gradient

The covariant base vectors of the surface, Gi in the reference configuration and gi in the

deformed configuration, are defined as

Gi =
∂X

∂Σi
, gi =

∂x

∂Σi
(3.24)

where Σi are two variables convected to the surface Θ and S.

In a convected curvilinear coordinate system, the 2D deformation gradient F∗ of the

surface is given by

F∗ = gi ⊗Gi (3.25)

where ⊗ denotes the tensor product. Since the covariant and contravariant base vectors are

generally not orthonormal, local orthonormal base vectors Êi in the reference configuration

and êi in the current configuration are determined at each point as

Ê1 =
G1
| G1 |

, Ê2 =
G2 − (G2 · Ê1)Ê1

| G2 − (G2 · Ê1)Ê1 |
(3.26)

ê1 =
g1
| g1 |

, ê2 =
g2 − (g2 · ê1)ê1
| g2 − (g2 · ê1)ê1 |

(3.27)

where the subscripts 1 and 2 represent the circumferential and longitudinal directions, re-

spectively.

The covariant and contravariant base vectors thus can be expressed in terms of the local

orthonormal base vectors Êi or êi. Finally, the 2D deformation gradient F with respect to

the local orthonormal base vector can be written as Fpq = êp · FÊq.
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3.2.3 Approximation of the surface

The surfaces of the vessel wall are globally parameterized using two variables S and Θ, which

are convected to the two-dimensional curvilinear coordinate system. The surfaces of vessel

wall in both configurations are approximated using Legendre polynomial functions, which

make two variables orthogonal to each other.

The four functions (R̂, θ̂, ŝ, and r̂) in equation (3.22) and (3.23) are approximated by

the finite series of continuous base functions of Θ and S

(
R̂, θ̂, ŝ, r̂

)
=

nU∑

j=1
αjφj(Θ, S) (3.28)

where nU is the number of degrees of the base function and αj is a parameter. The base

function φj is defined as a combination of Legendre polynomials of Θ and that of S, that

is, φj(Θ, S) = ψk(Θ)ψl(S) where ψk and ψl represent kth and lth degrees of Legendre

polynomials, respectively, for each variable. For example, ψ0 = 1 and nth degree (n=1, 2, 3,

... ) of Legendre polynomials of a variable x are given by

ψn (x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
. (3.29)

In this study, 3rd and 4th degrees of Legendre polynomials are used in the longitudinal and

circumferential directions, respectively.

In our pilot study, the edge of the surface domain has a large variation in stretch dis-

tribution, and so the accuracy of the Legendre polynomial approximation decreased near

the edge of the domain. Once the coordinate was transformed to the cylindrical coordinate

and the positions of markers were approximated, different areas of the central region of the

domain were tested for determining the optimal area of the central region, which had a high

accuracy of the approximation. The stretch distributions of a silicon tube, which has rela-

tively uniform stretch distribution, with different areas of central region were compared to
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each other. The central region of domain with -0.7 < Θ < 0.7 and -0.7 < S < 0.7 showed

nearly uniform stretch distribution, so that the reduced domain were used for stress-strain

analysis.

3.2.4 Least squares estimation

Let Φexp(Θn, Sn) be the experimental data of marker positions at a point (Θn, Sn) for

n = 1, 2, ..., nD, where nD is the number of markers. We used 36 ± 6 markers in this study.

Parameters αi for each approximation function can be estimated by the least squares method

with an optimization function E

E =
nD∑

n=1





nU∑

j=1
αjφj

(
Θn, Sn

)− Φ
exp
n (Θn, Sn)





2

. (3.30)

Taking partial derivatives of E in equation (3.30) with respect to αi

∂E

∂αi
= 2

nD∑

n=1





nU∑

j=1
αjφj

(
Θn, Sn

)− Φ
exp
n

(
Θn, Sn

)


 φi

(
Θn, Sn

)
. (3.31)

At the minimum, ∂E/∂αi = 0, which leads to the linear equation Kα = f , where

α = {α1, ..., αnU }T and

Kij =
nD∑

n=1
φi(Θn, Sn)φj(Θn, Sn) (3.32)

fi =
nD∑

n=1
Φ

exp
n (Θn, Sn)φi(Θn, Sn). (3.33)

The fitting parameters α for the Legendre polynomials can be obtained by solving the above

linear equations using the experimental data.

α =
(
LTL

)−1
LTΦexp (3.34)
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where L =
{

φ1, φ2, ..., φNU

}T
.

3.3 Thickness of the aortic wall

In the load-free state, the aortic wall thickness H0 at a certain position along the circumfer-

ence is approximated by a curve fit to the measurements of aortic wall thickness at every 45

degrees, using the Fourier series

H0(θ) = a0 + a1 cos(θ) + a2 sin(θ) + a3 cos(2θ) + a4 sin(2θ). (3.35)

The aortic wall thickness during the inflation test in the deformed configuration can be

calculated by the incompressibility condition (Carew et al., 1968), which means that the

determinant of the deformation gradient is unity (det F=1). In 3D, the deformation gradient

can be written as

F =




F11 F12 0

F21 F22 0

0 0 λ3




(3.36)

where λ3 = h/H0, h being the deformed wall thickness. The 1 and 2 directions are in-plane

(i.e., circumferential and longitudinal directions) and the 3 direction out-of-plane (radial

direction). From the incompressibility condition, the wall thickness during the deformation

is given by

h =
H0

F11F22 − F12F21
. (3.37)

3.4 Curvature of the aortic wall

The principal curvature of the aortic wall is obtained by the first and second fundamental

forms of a surface in differential geometry. We use the same parameters in the fundamental

forms of a surface as parameters in our approximation, that is, S and Θ.
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The first fundamental form of a surface is

I = EdS
2

+ 2FdSdΘ + GdΘ
2

= dx · dx (3.38)

where

E =

(
∂x

∂S

)2
+

(
∂y

∂S

)2
+

(
∂z

∂S

)2
(3.39)

F =
∂x

∂S

∂x

∂Θ
+

∂y

∂S

∂y

∂Θ
+

∂z

∂S

∂z

∂Θ
(3.40)

G =

(
∂x

∂Θ

)2
+

(
∂y

∂Θ

)2
+

(
∂z

∂Θ

)2
. (3.41)

The second fundamental forms of a surface are

II = LdS
2

+ 2MdSdΘ + NdΘ
2

= −dx · dN̂ (3.42)

where

L =
1√

EG− F 2

∣∣∣∣∣∣∣∣∣∣

∂2x

∂S2
∂2y

∂S2
∂2z

∂S2

∂x
∂S

∂y
∂S

∂z
∂S

∂x
∂Θ

∂y
∂Θ

∂z
∂Θ

∣∣∣∣∣∣∣∣∣∣

(3.43)

M =
1√

EG− F 2
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∂S∂Θ
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(3.44)

N =
1√

EG− F 2

∣∣∣∣∣∣∣∣∣∣

∂2x

∂Θ2
∂2y

∂Θ2
∂2z

∂Θ2

∂x
∂S

∂y
∂S

∂z
∂S

∂x
∂Θ

∂y
∂Θ

∂z
∂Θ
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(3.45)

and the unit surface normal vector N̂ is given by

N̂ =
g1 × g2
|g1 × g2|

. (3.46)
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The detail derivatives of differentiations are introduced in Appendix B.

Let κ be a normal curvature and it has two extremal values, which are the principal

curvature, κn (Struik, 1988),

κ =
II

I
=

LdΘ
2

+ 2MdΘdS + NdS2

EdΘ
2

+ 2FdΘdS + GdS
2 . (3.47)

Therefore, we have

(
EG− F 2

)
κ2 − (EN + GL− 2MF ) κ + LN −M2 = 0. (3.48)

The two extreme values of κn in equation (3.47) are two principal curvatures κ1 and κ2.

We assumed that the outer radii of curvatures of the aortic wall are

r1 =
1

κ1
, r2 =

1

κ2
. (3.49)

Here the sign convention is that the radius of curvature is positive if the center of curvature

is on the r-negative side of the surface. The detail derivatives of the parameters are included

in Appendix B.

3.5 Stress and strain analysis

The stretch λi is calculated at each point by

λi =

√
Êi · (F∗TF∗)Êi( i=1, 2) (3.50)

where subscript 1 and 2 denote the circumferential and the longitudinal directions, respec-

tively. In the classical method, the relationship between the transmural pressure and the

tension is referred to as Laplace’s law, that is T = Pr
h , where T is the tension in the walls,

P is the transmural pressure across the vessel wall, r is the radius of the vessel, and h is the
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Fig. 3.2: Free body diagram of membrane tissue.

thickness of the wall. The higher pressure difference the more tension, the thicker wall the

less tension, and the bigger radius the more tension there is. However, previous studies using

this equation do not take into account changes in radius or tension along the circumference.

In this study, the radius of the aorta depends on the circumferential position. Thus, the

membrane hypothesis was applied to the aortic tissue to determine stress. The effect of

bending throughout the vascular wall was so small that it was ignored when the aorta was

loaded.

For a small section of the aortic segment, depicted in Fig. 3.2, the relationship of the

transmural pressure and the tension was derived in the similar way with the Laplace law.

Three forces are acting upon the wall: one due to pressure (FP ) acting radially and the

others due to tensions (F1 and F2) acting tangentially in two principal directions (S1 and

S2). From the equilibrium of forces,

FP = F1 + F2. (3.51)
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From the shell membrane equilibrium equation,

T1
r1

+
T2
r2

= P (3.52)

where T1 and T2 are membrane principal stress resultants per unit length in circumferential

and longitudinal direction, respectively. Here, the local radius of curvature of the membrane

r1 and r2 in circumferential and longitudinal direction, respectively, are calculated by the

classical differential geometry of the surface as explained in the previous section.

For a cylindrical polar model, the mean radius of the curvature in the longitudinal di-

rection is much larger than that in the circumferential direction (r2 À r1). Therefore,

equation (3.52) can be rewritten in terms of the mean circumferential Cauchy stress σ1, that

is T1 = σ1/h. The mean circumferential stress σ1 for each circumferential region can be

estimated by

σ1 =
P (r1 − h)

h
. (3.53)

Here, we assume that stress σ1 is the circumferential stress of the midwall.

Let us consider stress in the longitudinal direction. Bending of the aorta in vivo during

the cardiac cycle is negligible (Choi et al., 2009) and we assume that the blood vessel has no

bending moment applied at the end during the inflation test. During the inflation test, the

blood vessel wall thickness (h) depends on its circumferential location (θ). The estimation of

the aortic wall thickness was addressed in previous section (equation (3.37)). The bending

moment M on the vessel wall

M =

∫ 2π

0
(σ2x

′)rmhdθ = 0 (3.54)

where σ2 is the longitudinal stress on the vessel wall, and rm is the mean radius of curvature

at the midwall. The distance x′ = x − x̄ as shown in Fig. 3.3 (b), where x̄ is the centroid.

Because of the asymmetry, the centroid of area is not same of middle of aortic ring. The
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Fig. 3.3: (a) Free body diagram of a blood vessel sample during the inflation test and (b)
the cross-section of the aortic wall.

centroid, x̄, is calculated by

x̄ =
1

A

∫ 2π

0
xdA =

1

A

∫ 2π

0
cos θr2

mhdθ (3.55)

where x = r cos θ.

Because of the asymmetry of the aortic wall thickness, the cross-sectional area of the wall

(A) and the centroid of area (x̄) can be calculated as functions of θ. The piecewise area of

the aortic wall is dA = hds, where s is the arc of circular shape of the aortic ring. If θ is

46



very small, ds = rmdθ. The total cross-sectional area of the aortic ring, A, is given by

A =

∫ 2π

0
dA =

∫ 2π

0
rmhdθ (3.56)

. Let the longitudinal stress assume σ2 = ax′ + b, where a and b are constants. The forces

in longitudinal direction during the inflation test reach the equilibrium and thus

∫ 2π

0
σ2hrmdθ = Pπ(r1 − h)2 + Fz. (3.57)

where Fz is axial force to be applied the specimen during the inflation test. In equation (3.54)

and equation (3.57), σ2 is substituted in terms of a and b by the assumption σ2 = ax′ + b.

Then these two equations are arranged in matrix form as




∫ 2π
0 x′2hrmdθ

∫ 2π
0 x′hrmdθ

∫ 2π
0 x′hrmdθ

∫ 2π
0 hrmdθ








a

b





=





0

Pπr2
i + Fz





. (3.58)

Two constants a and b can be estimated using Gaussian quadrature (see Appendix B.2), and

the longitudinal stress σ2 is determined.

In order to estimate material stiffness, the circumferential stiffness k1(Pi) is calculated

by fitting a 6th order of polynomial function to the stress-stretch curve. That is, the circum-

ferential stiffness in this study is defined as a tangent of the mean stress-stretch curve at the

transmural pressure Pi such that

k1(Pi) =
∂σ1
∂λ1

|λ1(Pi)
=

σ1 (λ1 +4λ1)− σ1 (λ1 −4λ1)

24λ1
. (3.59)

To estimate the structural stiffness during the cardiac cycle, the pressure-strain elastic

modulus Ep can also be calculated. Ep was introduced by Peterson et al. (1960) and after that

many others adopted this pressure-diameter relation. The pressure-strain elastic modulus

represents distensibility of a blood vessel by ∆P/∆ε, where ∆P is the maximum pulse
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pressure between the diastolic state and the systolic state and ∆ε is the change in strain

during the same period. The pressure-strain elastic modulus resulted from both wall stiffness

and the geometry of the blood vessel. Originally it is expressed as

Ep =
Psys − Pdia(

Dsys −Ddia

)
/Ddia

(3.60)

where subscripts sys and dia denote the systolic and diastolic conditions, respectively, and D

is the diameter of lumen (Feigl et al., 1963). In this study, the denominator of the equation

(3.60) was divided by Do, which is the diameter of the lumen at the load-free state. Thus,

equation (3.60) can be rewritten as

Ep =
Psys − Pdia(

λsys − λdia

)
/λdia

(3.61)

The systolic pressure and diastolic pressure have been assumed Psys=15.20 kPa (114 mm

Hg) and Pdia=10.13 kPa (76 mm Hg), respectively. These pressures were determined when

the external pressure by the surrounding organ and tissue was considered as 5% of the

transmural pressure (Zhang et al., 2005).

3.6 Statistical analysis

The mean of the computed values, such as stretch, stress, and stiffness, for the four circumfer-

ential regions of the aorta are compared statistically. The mean of a data set xi (i = 1, 2, · · · , N)

is defined as

x̄ =
1

N

N∑

i=1
xi (3.62)

and the standard deviation (SD) is computed via

SD =

√∑N
i=1 (xi − x̄)2

N − 1
(3.63)
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All aorta specimens are assumed to be independent statistical samples. Due to an in-

creased chance of an error in doing multiple two-sample t-tests, ANOVA is suitable in com-

paring more than two. Hence, the significant difference among the four regions and each

pairs of regions are evaluated by using one-way repeated measures ANOVA, which general-

izes t-test to more than two groups, with Sidak adjustment. Also, the significant difference

between two longitudinal portions for each region is evaluated by two-sample t-test. The

difference is considered significant when p < 0.05.
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Chapter 4

CONSTITUTIVE RELATIONS AND

PARAMETERS

4.1 Constitutive relations

The energy equation is

ρo
dε

dt
= PT :

dF

dt
− O0 · q0 + ρog (4.1)

where ρo is mass density, ε the internal energy density defined per unit mass, P the first

Piola-Kirchhoff stress tensor, O0 the del operator (O0 =
∂()
∂X), q0 the heat flux vector, and

g a heat addition defined per unit mass. The internal energy is related to the Helmholtz

potential ψ and entropy η, that is, ε = ψ + ηT , where T is the temperature.

For an isothermal process with no heat transfer (i.e. T=costant, q0 = 0), the equation

(4.1) yields (
−ρ0

dψ

dF
+ PT

)
:
dF

dt
= 0 (4.2)

and the first Piola-Kirchhoff stress tensor P can be

PT = ρo
∂ψ

∂F
←→ P = ρo

∂ψ

∂FT
. (4.3)
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The Helmholtz potential ψ and the strain-energy W are related in an isothermal process,

that is, ρoψ (F) = W (F). From the material frame indifference

∂ψ

∂FT
= 2

∂ψ

∂C
· FT (4.4)

where C = CT and C = FT · F. From equation (4.3) and (4.4), the first Piola-Kirchhoff

stress tensor

P = 2
∂W

∂C
· FT . (4.5)

The alternate constitutive relations for the Cauchy stress can be written as (using t̂ =

1
J F ·P)

t̂ =
2

J
F · ∂W

∂C
· FT (4.6)

which is defined as the actual acting force on a body over the current area. However,

equation (4.6) does not take into account the incompressibility constraint (J = ρ0/ρ = 1).

After applying the constraint, equation (4.6) is rewritten as

t = −pI + 2F · ∂W

∂C
· FT (4.7)

where p is a Lagrangian multiplier, which depends on position and time. Each component

of equation (4.7) is

t11 = −p + t̂11

t22 = −p + t̂22 (4.8)

t33 = −p + t̂33.

The strain energy function W of vascular tissue is a function of the right Cauchy-Green

deformation tensor as

W = W (Cij), wherei, j = 1, 2, 3. (4.9)
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Here 1, 2, and 3 denote the circumferential, axial, and radial directions, respectively.

For a general hyperelastic behavior, equation (4.6) can be written with an index notation

as

t̂ij =
2

J
FiA

∂W

∂CAB
FjB , where i, j, A, B = 1, 2, 3. (4.10)

During the inflation test, the deformation gradient is assumed to be

F =




F11 F12 0

F21 F22 0

0 0 λ3




=




λ1 0 0

0 λ2 0

0 0 λ3




(4.11)

where λ3 = h/H0 based on the incompressibility assumption. The right Cauchy green tensor

C becomes

C =




λ2
1 0 0

0 λ2
2 0

0 0 λ2
3




. (4.12)

Based on the thin-wall analysis (Holzapfel et al., 2000), let the stress in the radial direction

t33 be zero. Then the Lagrangian multiplier p = t̂33. Consequently, equation (4.8) is

rewritten as

t11 = t̂11 − t̂33 =
2

J
F1A

∂W

∂CAB
F1B −

2

J
F3A

∂W

∂CAB
F3B

t22 = t̂22 − t̂33 =
2

J
F2A

∂W

∂CAB
F2B −

2

J
F3A

∂W

∂CAB
F3B (4.13)

t33 = 0
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4.1.1 Constitutive models

Mixture model

In this study, the constitutive model based on a constrained mixture approach (Baek et al.,

2006; Humphrey and Rajagopal, 2002) has been adopted to describe the mechanical proper-

ties of the aorta. Let the natural configuration represent the stress-free state of a constituent

of aortic wall. Deformation is considered in two steps: first, mapping from the natural con-

figuration (stress-free state) of each constituent to the reference configuration (in vivo state),

second mapping from the reference configuration to the deformed configuration.

The arterial wall is assumed to be a mixture of the constituent of i, such as elastin (e),

multiple collagen families (1, · · · , k, · · · , 4), and smooth muscle (m). The strain energy W

of the mixture per unit volume is

W = Σiν
iW i = νeW e + ΣkνkW k + νmWm (4.14)

where νi are the unit reference volume for each constituent of i. It has been assumed that

there is no active tone presented during the inflation test in this study.

For the elastin, a mapping from the natural configuration to the reference configuration

(in vivo state) Ĝe is defined as

Ĝe = diag
{

Ĝe
1, Ĝ

e
2, Ĝ

e
3

}
(4.15)

such that the mapping of the elastin from the natural configuration to the deformed config-

uration

Fe
n = F · Ĝe (4.16)

and therefore

Ce
n = (Fe

n)T · Fe
n =

(
Ĝe

)T ·C · Ĝe. (4.17)
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The Cauchy stress t̂ of elastin can be rewritten in terms of Fe
n and Ce

n as

2F
∂W e

∂Ce FT = 2FiA
∂W e

∂Ce
AB

FT
Bj

= 2FiA

(
Ĝe

Ak
∂W e

∂Ce
n[kl]

ĜeT
lB

)
FBj

T

= 2F e
n[ik]

∂W e

∂Ce
n[kl]

F eT
n[lj] (4.18)

= 2Fe
n
∂W e

∂Ce
n
FeT

n

Strain energy of elastin W e per unit reference volume are given by

W e (Ce
n) =

c1
2

{
Ce

n[11] + Ce
n[22] + Ce

n[33] − 3
}

(4.19)

where Ce
n[11],C

e
n[22], and Ce

n[33] are components of Ce
n,

and

2F e
n[ik]F

e
n[jl]

∂W e

∂Ce
n[kl]

= c1

(
Ĝe

iλi

)(
Ĝe

jλj

) ∂W e

∂Ce
n[kl]

. (4.20)

Each component of equation (4.20) is

2F e
n[i1]

∂W e

∂Ce
n[11]

F eT
n[1j] = 2F e

n[11]
∂W e

∂Ce
n[11]

F eT
n[11] = c1

(
Ĝe

1λ1

)2

2F e
n[i2]

∂W e

∂Ce
n[22]

F eT
n[2j] = 2F e

n[22]
∂W e

∂Ce
n[22]

F eT
n[22] = c1

(
Ĝe

2λ2

)2
(4.21)

2F e
n[i3]

∂W e

∂Ce
n[33]

F eT
n[3j] = 2F e

n[33]
∂W e

∂Ce
n[33]

F eT
n[33] = c1

(
Ĝe

3λ3

)2
.

In the radial direction, the homeostatic tensor Ĝe
3 and stretch of elastin λ3 can be substituted

by the circumferential and axial components from the incompressibility constraint, such that

Ĝe
3λ3 =

1

Ĝe
1Ĝ

e
2λ1λ2

. (4.22)
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For the collagen fiber, the stretch of kth collagen fiber family in the natural configuration

(stress-free state) from the deformed configuration is defined as

λk
n = Gc

hλk (4.23)

where Gc
h is homeostatic stretch. The stretch of the kth collagen fiber is

λk =

√(
λ1 sin αk

)2
+

(
λ2 cos αk

)2
, (4.24)

where αk is the orientation of the kth collagen fiber family. The Cauchy stress of the collagen

fiber family

FiAFjB
∂W k

∂Ck
AB

= λk
i
2∂W k

∂λk
i
2 = λk

i
2∂W k

∂λk
n
2
∂λk

n
2

∂λk
i
2 , (4.25)

where the strain energy of collagen W k per unit reference volume is given by

W k
(
λk

n

)
=

c2
4c3

[
exp

{
c3

(
λk

n
2 − 1

)2
}
− 1

]
(4.26)

and therefore

∂W k

∂λk
n
2 =

c2
2

[
exp

{
c3

(
λk

n
2 − 1

)2
}] (

λk
n
2 − 1

)
(4.27)

∂λk
n
2

∂λk
1
2 = Gc

h
2
(
sin αk

)2

∂λk
n
2

∂λk
2
2 = Gc

h
2
(
cos αk

)2
. (4.28)

For the smooth muscle, the stretch in the natural configuration from the deformed con-

figuration is defined as

λm
n = Gm

h λ1 (4.29)
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where Gm
h is homeostatic stretch. The Cauchy stress of the smooth muscle

FiAFjB
∂Wm

∂Cm
AB

= λm
i

2∂Wm

∂λm
i

2 =
∂Wm

∂λm
n

2
∂λm

n
2

∂λm
i

2 , (4.30)

where the strain energy of smooth muscle Wm per unit reference volume is given by

Wm (λm
n ) =

c4
4c5

[
exp

{
c5

(
(λm

n )2 − 1
)2

}
− 1

]
(4.31)

and therefore

∂Wm

∂λm
n

2 =
c4
2

[
exp

{
c5

(
λm

n
2 − 1

)2
}] (

λm
n

2 − 1
)

(4.32)

∂λm
n

2

∂λm
1

2 = Gm
h

2

∂λm
n

2

∂λm
2

2 = 0. (4.33)

The volume fraction of the constituent of i is prescribed as following (He and Roach,

1994; Holzapfel et al., 2002; Menashi et al., 1987):

νe = 0.2, νm = 0.2, νk = [0.1, 0.1, 0.4, 0.4] (1− νe − νm) . (4.34)

In this study, a four-fiber family has been considered. It is assumed that a one-fiber

family is aligned to the circumferential direction, another the longitudinal direction. The

other a two-fiber family is disposed helically with respect to the longitudinal direction.

αk = [0◦, 90◦, α◦, (180− α)◦]

Parameters
[
c1, c2, c3, c4, c5, G

e
1, G

e
2, G

c
h, Gm

h , α
]

to describe the mechanical behavior of

the aorta in this study are assumed to be unknown and determined by the parameter esti-

mation.
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4.1.2 Parameter estimation

The constitutive parameters are estimated by fitting the inflation test data of a healthy

porcine thoracic aorta at three different longitudinal stretches of 1.35, 1.40. and 1.45. The

stretch and stress are normalized with homeostatic stress and stretch, which are obtained at

95 mm Hg at the longitudinal stretch of 1.35. The magnitude of normalized stretch and stress

depend on the homeostatic ones, but it does not effect the shape of curve in the stress-stretch

plot. Parameters are determined by minimizing the objective function ẽ which represents

differences between the theoretically predicted results and experimentally calculated results

based on measurements in the two stretching directions

ẽ =
m∑

k=1

[
(t11|t − t11|e)2k + (t22|t − t22|e)2k

σ2
h

]
(4.35)

where the subscripts t and e denote theoretical and experimental values, respectively, and

σh is the homeostatic stress of the artery.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Validation of the experimental measurements
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Fig. 5.1: Comparison of stretch-stress plots before and after the rotation of a specimen. A:
anterior region, L: left lateral region, P: posterior region, and R: right lateral region.

In our pilot study, the inflation test for the same region of an aorta was repeated after

rotating the specimen under the same experimental conditions in order to ensure the repro-

ducibility of our experimental results. Fig. 5.1 shows an example of stress-stretch response of
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Fig. 5.2: Comparison of the distribution of circumferential stretch between two methods:
(a) stretch distribution by linear approximation with triangular elements and (b) stretch
distribution by the approximation in the present study. Black dots represent markers in the
deformed configuration.

an aorta before and after rotating. There was little difference in the stress-stretch responses

after the rotation.

5.2 Validation of the approximation using continuous

functions

A flexible silicone tube, which has nearly uniform radius and stretch distributions, was used

to compare the circumferential stretch distributions obtained by two approximations: one

was derived from the continuous functions explained in the previous chapter; and the other

was based on linear polynomial approximation with triangular elements, which is a typical

method used in finite element analysis and previous experimental studies (Hu et al., 2007;

Saravanan et al., 2006). Although both stretch distributions looked similar, the stretch

distribution obtained by the approximation using continuous functions showed smoother

and slightly higher variation than that obtained by linear approximation (Fig 5.2).
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In addition to the circumferential stretch, the outer radii of small cylindrical rods were

investigated, assuming each rod had a constant radius. Microspheres (i.e. markers) with

a mean diameter of 196, 390, and 550 µm were attached onto the surfaces of two rods

with different diameters of 1.27 and 1.91 cm using adhesive and a pulled glass micropipette.

Pairs of digital images of markers on the specimen were obtained and processed to extract

the positions of markers. The radii of the specimens with different sizes of markers were

estimated by the method described in the previous chapter. The radii of the specimens were

also estimated by fitting the equation of a perfect cylinder with the marker positions using

the least squares method. The entire procedure was repeated three times for each specimen

and the average values of the radii were obtained. Overall, the radius difference between the

two methods was less than 2%.

5.3 Variation of the aortic wall thickness

Aortic wall thickness varied gradually along the circumference (Fig. 5.3). The anterior region

was thickest (2.2 ± 0.3 mm for the proximal thoracic aorta and 1.8 ± 0.3 mm for the distal

thoracic aorta) and the posterior region was thinnest ( 1.5 ± 0.2 mm for the proximal and

1.2 ± 0.1 mm for the distal). The ratio of the mean wall thickness of the anterior region to

the posterior was 1.5 ± 0.1 for the proximal and 1.6 ± 0.2 for the distal. Although the wall

thickness decreased as the distance from the heart further, the ratio remained similar.

5.4 Radius of curvature of the aortic wall

The outer radius of the aorta responded to the change of pressure as shown in Fig. 5.4. At

the load-free state, the mean and standard deviation of the radius of the proximal aorta for

each region were 8.5 ± 0.8 (A), 8.8 ± 1.0 (L), 8.1 ± 1.0 (P), and 8.7 ± 0.9 mm (R). It showed

that the mean radius of the posterior region was slightly smaller than other circumferential

regions. On the other hand, the radii of the four regions became nearly uniform as the
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(a) Proximal portion of the thoracic aorta
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(b) Distal portion of the thoracic aorta

Fig. 5.3: Mean and standard deviation of the aortic wall thickness along the circumference:
(a) the proximal thoracic aorta, (b) the distal thoracic aorta. 0◦: the anterior region, 90◦:
left lateral region, 180◦: posterior region, and 270◦: right lateral region

pressure was applied during the inflation test. At the transmural pressure of 12.00 kPa, the

mean and standard deviation of the radius for each region were 10.0 ± 0.7 mm (A), 10.1 ±
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Fig. 5.4: A representative example of the distributions of the radius of curvature for the
four circumferential regions of one thoracic aorta sample at transmural pressures of 8.00
kPa (60 mm Hg), 12.00 kPa (90 mm Hg), and 16.00 kPa (120 mm Hg), respectively, and a
longitudinal stretch ratio (ΛZ) of 1.35.

0.7 mm (L), 10.2 ± 0.7 mm (P), and 10.1 ± 0.8 mm (R).

5.5 Stress and strain relationship of the aorta

The circumferential stretch and the circumferential Cauchy stress during the inflation test

at three fixed longitudinal stretch ratios of 1.35, 1.40, and 1.45 were computed for each

circumferential region of each specimen. In a repeated cyclic loading condition, loading and
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Fig. 5.5: A representative example of the five repeated loading and unloading curves of the
anterior region of the thoracic aorta.

unloading curves exhibited a small hysteresis (i.e., pseudo-elastic behavior) like other vascular

tissues (Fig. 5.5). Therefore, the last loading curve was used for stress-strain analysis in this

study.

The circumferential stretch (Fig. 5.6) and the longitudinal stretch (Fig. 5.7) were dis-

tributed nonuniformly within the domain and they varied according to the circumferential

region. As the pressure increased, the circumferential stretch was increased gradually, but

the longitudinal stretch was relatively uniform compared to the circumferential stretch.

Likewise, the stress also changed with respect to the change of pressure and varied with

the circumferential region. The averaged stretch and stress within the domain for each region

were calculated for comparison among the four circumferential regions of the aorta. Fig. 5.8

displays the circumferential and longitudinal stress-stretch curves for the four regions. All

aorta samples exhibited similar nonlinear stress-stretch behavior. The stress-stretch curves

deviated from each other progressively as the pressure increased. The extent of deviation

for the circumferential stress-stretch curve was more than that of the longitudinal one, and
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Fig. 5.6: A representative example of the distributions of circumferential stretch for the four
circumferential regions of one thoracic aorta sample at transmural pressures of 8.00 kPa,
12.00 kPa, and 16.00 kPa, respectively, and a longitudinal stretch ratio (ΛZ) of 1.35.

the overall change of the circumferential stress was larger than the longitudinal stress. In

the low pressure range, the stress-stretch response for each region was nearly linear, but it

became nonlinear after the transmural pressure exceeded a transition point, which ranged

from 10.93 to 14.53 kPa (82 - 109 mm Hg).

The circumferential stiffness of the four circumferential regions is plotted with respect

to the increase of pressure in Fig. 5.9. In the low pressure range, the stiffness was nearly

constant, which corresponded to the linear stress-stretch response, but increased markedly

after the transition point.
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Fig. 5.7: A representative example of the distributions of longitudinal stretch for the four
circumferential regions of one thoracic aorta sample at transmural pressures of 8.00 kPa,
12.00 kPa, and 16.00 kPa, respectively, and a longitudinal stretch ratio (ΛZ) of 1.35.

The mean of the circumferential stretch, which was averaged within the domain, was

computed for each region of all aorta samples. There was no significant difference in the

mean stretch among the four circumferential regions at the transmural pressure of 12.00 kPa

(90 mm Hg) (Fig. 5.10). The mean and standard deviation of the stretch at the transmural

pressure of 12.00 kPa and at longitudinal stretch of 1.35 were 1.20 ± 0.06 (A), 1.22 ± 0.03

(L), 1.22 ± 0.05 (P), and 1.21 ± 0.04 (R). The mean and standard deviations of the stretch

at different pressure and different longitudinal stretch are tabulated in Appendix C.
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Fig. 5.8: A representative example of the circumferential Cauchy stress and circumferen-
tial stretch curve (a) and the longitudinal stress and circumferential stretch curve (b) at a
longitudinal stretch ratio (ΛZ) of 1.35.

In the same manner, the mean of circumferential stress averaged within the domain was

computed for each region, and a significant difference was found among the four circumfer-

ential region. For the proximal portion of the thoracic aorta, in the post-hoc analysis, there
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Fig. 5.9: A representative example of the circumferential stiffness and transmural pressure
curve at a longitudinal stretch ratio (ΛZ) of 1.35.

was a significant difference between the anterior and posterior regions, the anterior and left

lateral regions, the anterior and right lateral regions, the left lateral and posterior regions,

and the posterior and right lateral regions at the transmural pressures above 8.00 kPa (60

mm Hg). For the distal portion of the thoracic aorta, a significant difference was also found

between the anterior and posterior regions. The mean and standard deviations of the stress

at different pressure and different longitudinal stretch are tabulated in Appendix C.

5.6 Circumferential variation in the stiffness

The circumferential stiffness in this study is defined as a change in stress with respect to a

change in stretch in the circumferential direction. Hence, it presents the intrinsic stiffness

of the vascular tissue. There was a significant difference in the stiffness among the four

circumferential regions. The mean stiffness of the posterior region had the highest value,

and the anterior region had the lowest. The difference in the stiffness among the four

regions became more prominent as pressure increased. Fig. 5.12 shows the mean stiffness
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Fig. 5.10: Comparison of the mean circumferential stretch of the proximal thoracic aorta at
the transmural pressure of 12.00 kPa for each longitudinal stretch ratio (ΛZ).
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and the statistical evaluation of their significance at the transmural pressure of 12.00 kPa,

which is within the transition region for the thoracic aorta at each fixed longitudinal stretch

ratio. The stiffness at the anterior region differed significantly from the posterior. However,

the mean pressure-strain elastic modulus, which represents the structural stiffness, had no

significant difference among the four regions (Fig. 5.13). The mean and standard deviation

of the circumferential stiffness for each region at the investigated transmural pressure of 8.00,

12.00, and 16.00 kPa are listed in Table C.5 in Appendix C.

5.7 Longitudinal variation in the mechanical behavior

of the aorta

The aorta at all tested regions exhibited typical nonlinear pseudoelastic behavior. For the

mean circumferential stretch of the distal thoracic aorta, there was no significant difference

between the anterior and posterior regions, which is the same trend as the proximal thoracic

aorta (Fig. 5.14). The values of mean stretch of the anterior and posterior regions of the

distal thoracic aorta had a higher standard deviation than that of the proximal. The stretch

of the anterior region in the distal portion was slightly higher than the proximal, although

the difference was not statistically significant. The stretch of the posterior region had almost

the same amount of the stretch in both proximal and distal portions.

The mean stress of the distal thoracic aorta was higher in the both anterior and posterior

regions compared to that of the proximal portion at the same transmural pressure 12.00 kPa

(Fig. 5.15). Similar to the proximal portion, the mean stress of the posterior region at the

distal portion was significantly higher than that of the anterior region. The specific values

of the stretch and stress are included in Appendix C.

The mean circumferential stiffness was also changed with the change in pressure (Fig.

5.16). The difference in the mean stiffness of the posterior region from the proximal to

the distal portions of the thoracic aorta was significantly higher than that of the anterior
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region, and their difference became larger as pressure increased. The posterior region remains

significantly stiffer than the anterior regions for both longitudinal portions. However, the

pressure-strain elastic modulus did not show the significant difference between the proximal

and distal portions for both anterior and posterior regions, although the mean pressure-

strain elastic modulus was higher at the distal portion (Fig. 5.17). It may be due to the

large standard deviation. The specific values of the circumferential stiffness and pressure-

strain elastic modulus are included in Appendix C.

5.8 Material parameters

Material parameters are one of common indicators to describe the mechanical response of the

vascular tissue using a constitutive model. Parameter estimation was performed to determine

the material parameters of the aorta for each region. A representative best-fit curve of the

theoretical prediction to the experimentally measured data is shown in Fig. 5.18. For most

of the test samples, the regression curves fit better to the circumferential stress-stretch curve

than the longitudinal curve.

The mean and standard deviation of all parameters are shown in Table 5.1. Parameter

c1 presents the isotropic behavior of the elastin of the aorta. The c2 is a parameter of the

exponential part of the constraint mixture model, which represents the mechanical behavior

of the four collagen fiber families (See Chapter 4.4.1). The anterior region of the thoracic

aorta has the biggest mean value of c1 in the proximal portion, but there was no significant

difference among the four circumferential regions (Fig. 5.19). On the other hand, the pa-

rameter c2 in the anterior region has the smallest mean value among the four circumferential

regions (Fig. 5.19), and a significant difference was found between the anterior and right

lateral regions. For the statistical analysis of c1 and c2, data from all 11 aortic sample were

used regardless of the longitudinal portion. In a statistical analysis, there were significant

differences of c1 and c2 between the anterior and posterior regions (Fig. 5.19 and 5.20).
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Table 5.1: The mean and standard deviation of material parameters for all aorta samples

Parameter \ Region Anterior Posterior
c1 (kPa) 406± 96 318± 93
c2 (kPa) 155± 63 318± 209

c3 2.73± 2.87 6.33 ± 7.91

c4 (Pa) (31.2± 83.7)× 10−9 (1.48± 4.54)× 10−6

c5 (1.93± 4.74)× 10−6 (7.7± 17.1)× 10−3

Ge
1 1.12 ± 0.06 1.23 ± 0.07

Ge
2 1.19 ± 0.04 1.15 ± 0.06

Gc
h 1.09 ± 0.01 1.09 ± 0.01

Gm
h 1.10 ± 0.00 1.10 ± 0.00

α(◦) 26.5 ± 6.4 31.9 ± 12.1

(a) The anterior and posterior regions

Parameter \ Region Left lateral Right lateral
c1 (kPa) 355 ± 90 345± 76
c2 (kPa) 226± 104 197± 76

c3 4.10 ± 3.47 5.83 ± 5.57

c4 (Pa) (0.685 ± 0.108) ×10−9 (23.6 ± 37.1) ×10−9

c5 0.202± 0.522 2.28 ± 5.36
Ge

1 1.19 ± 0.10 1.20 ± 0.07
Ge

2 1.14 ± 0.06 1.17 ± 0.04
Gc

h 1.09 ± 0.01 1.09 ± 0.01
Gm

h 1.10 ± 0.00 1.10 ± 0.00

α(◦) 24.5 ± 11.7 30.0 ± 4.7

(b) The left and right lateral regions
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While the material parameters in the unit of stress corresponding to the behavior of the

elastin (c1) and collagen (c2) have large values, the parameters for smooth muscle (c4) very

small. All homeostatic stretch parameters, Ge
1, Ge

2, Gc
h, and Gm

h are less than 1.2 for each

constituent. The averaged angle of collagen fiber family for each region is about 28◦.

5.9 DISCUSSION

5.9.1 Nonlinear, anisotropic behavior of the aorta

The stress-stretch curves for all local regions of the thoracic aorta in this study exhibited

nonlinear behavior similar to other studies (Groenink et al., 1999; Stergiopulos et al., 2001;

Sokolis, 2007). The circumferential stress increased linearly up to a transition point beyond

which the stress changed rapidly with the increase of the stretch. This nonlinear trend of the

circumferential stress with respect to the stretch (or strain) is consistent with other works

for the human thoracic aorta (Spina et al., 1983), the canine thoracic aorta (Zhou and Fung,

1997), and ovine thoracic aorta (Wells et al., 1999). The range of linear circumferential

stress-stretch response in this study is at a relatively higher pressure than other porcine

arteries such as porcine basilar arteries and coronary arteries (Hu et al., 2007; Pandit et al.,

2005; Wang et al., 2006).

The transition from linear to nonlinear behavior of the aorta occurred at 10.93 to 14.53

kPa (82 - 109 mm Hg), which falls within the in vivo pressure range from 10.13 to 15.20

kPa (76 - 114 mm Hg) when the radial compression of the aorta by the surrounding tissue is

assumed to be around 5% of internal pressure (Zhang et al., 2005). Other studies (Danpinid

et al., 2010; Shadwick, 1999) have also suggested that the transition corresponded to normal

physiological conditions.

The circumferential stress-strain relationship differs from the longitudinal stress-strain

relationship. It infers that the mechanical properties of the aorta is anisotropic, which is a

well-known property of the soft tissue reported in many other studies (Fung, 1993; Humphrey,
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2001).

5.9.2 Variation in stiffness

This study supports that the mechanical properties of the aorta depend on location. One

major finding in this study is the circumferential variation in the stiffness of the healthy

thoracic aorta. The posterior region of the aorta was significantly stiffer than the anterior. It

may be related to the bigger motion of the anterior region than the posterior (Goergen et al.,

2007). However, the posterior region was significantly thinner than the anterior, so that the

structural stiffness, which is represented by the pressure-strain elastic modulus, remained

non-significant. This finding suggests that the circumferential distention of the proximal

thoracic aorta may be uniform in vivo even with the significant variations in stiffness of

the aortic tissue in the circumferential direction. However, the validation of this suggestion

requires a better understanding of the effect of the surrounding tissues and the spine on

biomechanics of the aortic wall in vivo.

This study also reveals the longitudinal variation in stiffness of the healthy thoracic aorta.

The stiffness in the distal portion is higher than the proximal portion for the both anterior

and posterior regions. This trend is consistent with previous studies (Purslow, 1983; Zou

and Zhang, 2009).

5.9.3 Heterogeneous composite of the aorta

The arterial wall is a heterogeneous composite consisting mainly of collagen, elastin, and

smooth muscle cells. The amount of these contents varies with locations along the arterial

tree (Fischer and Llaurado, 1966; Halloran et al., 1995; Purslow, 1983) and are responsible

for the mechanical properties of a blood vessel (Lillie and Gosline, 2007; Roach and Song,

1994; Stergiopulos et al., 2001). Many studies have reported that elastin fibers are primarily

responsible for the linear behavior of an artery in the low pressure range (Gundiah et al.,

2007; Shadwick, 1999; Stergiopulos et al., 2001). The influence of elastin on the mechanical
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properties of aortic tissue has been investigated (Gundiah et al., 2007; Lillie and Gosline,

2007; Zou and Zhang, 2009). These previous studies imply that the stiffness of the aortic wall

may be affected by the amount of elastin, the orientation of elastin fibers, and the density

of cross-linking. On the other hand, collagen is recruited in the higher pressure range and

contributes to the nonlinear behavior of arterial tissue (Groenink et al., 1999; Shadwick,

1999). The orientation of collagen fibers and the amount of cross-linking influence the

mechanical response of vascular tissue (Haskett et al., 2010; Holzapfel et al., 2002). Many

previous studies suggest that the microstructure and relative content of each component may

cause the variation in stiffness among the different circumferential regions shown in the this

study.

5.9.4 Relation of heterogeneous mechanical properties with patho-

logical conditions

The mechanical properties of a diseased aorta vary spatially with its pathological condition.

Previous studies (Iliopoulos et al., 2009a; Raghavan et al., 2006; Thubrikar et al., 2001)

suggested nonuniform changes of the aortic wall during the development of aortic diseases,

such as aortic aneurysms. Iliopoulos et al. (2009b) reported a preferential bulging in the

anterior side of the human ascending thoracic aneurysms. Choudhury et al. (2009) showed

that the elastic modulus of the ascending thoracic aorta depended on the circumferential

region as well as the pathological tissue type.

On the other hand, the variation in mechanical properties of the aorta may have an

affection on vascular remodeling and the pathological condition. For example, the progression

of abdominal aortic aneurysms is associated with an increase in circumferential stiffness

(Vande Geest et al., 2006).

Therefore, the mechanical properties of vascular tissue may affect the pathological condi-

tion or vice versus. Previous studies were, however, not enough to make a decisive conclusion

about the relations of heterogeneous biomechanical properties with the development of aortic

74



diseases. It promotes further comparative studies of local mechanical properties of aortic

walls between healthy and diseased samples.

5.9.5 Material parameters

The mechanical behavior of a blood vessel has been characterized with a constitutive model

based on a constrained mixture approach using experimental data. Previous studies have

used many different constitutive models and different measures of strain. Recently, many

adopted constitutive models motivated from arterial structure (Holzapfel et al., 2000; Zulliger

et al., 2004b). One of the structurally motivated models to describe arterial mechanics is

the constitutive model based on a constrained mixture theory. This model suggests that

the mechanical behavior of a blood vessel can be explained by major constituents, that is,

elastin, collagen fibers, and smooth muscles. Parameters for elastin (c1) and collagen (c2)

that we found in this study have larger values compared to those for smooth muscles as

shown in Table 5.1. These results suggest that the elastin and collagen fibers are major

components contributing to the mechanical response of the aorta.

In our study, the mean values of c1 and c2 for the distal thoracic aorta are smaller than

the proximal, respectively. It is in a good agreement with the previous study of Halloran

et al. (1995), which showed that the content of collagen and elastin, respectively, decreases

from proximal to distal portion of the aorta.

For each circumferential region, the mean value of c1 is higher at the proximal portion

than the distal and c2 is higher in the distal portion than the proximal. It implies that the

elastin is more dominant in the proximal portion and the collagen is in the distal. Indeed,

the content of elastin is higher in the proximal portion than the distal, and that of collagen

is higher in the distal (Davidson et al., 1986).

In the comparison of the material parameters between the anterior and posterior regions,

c1 of the anterior is higher than that of the posterior for both proximal and distal portions

of the thoracic aorta, although there was no significant difference in the proximal portion. It
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may be because of the different number of elastin lamella between two circumferential regions.

O’Connell et al. (2008) examined the number of medial lamellae for the rat abdominal aorta,

and a significant difference was found in the anterior and posterior regions .

The smooth muscle contraction affects the stress and strain distribution in arteries

(Rachev and Hayashi, 1999; Zulliger et al., 2004a), and the elastin lamina is much stiffer

than the smooth muscle layer (Matsumoto et al., 2004). In this study, the active tone was

not accounted for and the parameters of smooth muscle, c4 and c5, were found to be very

small. Therefore, the role of smooth muscle in the passive mechanical behavior of the thoracic

aorta was insignificant.

Most of previous studies have assumed that the elastin has isotropic properties. However,

Rezakhaniha et al. (2011) reported recently that the anisotropic properties of elastin provide

better curve fit to characterize the mechanical response of a blood vessel. Hence, there is a

need to study the mechanical properties and behavior of elastin.

5.9.6 Limitation of this study

Although our validation study showed that the errors were negligible, there might be mea-

surement errors caused by the rotation of the specimen when measuring the strain at four

local circumferential regions of the thoracic aorta. The accuracy of the strain measurement

may be enhanced by using multiple cameras simultaneously around the specimen or using a

concave conical mirror (Genovese, 2009).

We found that the values of stress and strain at the distal portion have larger variances

compared to those at the proximal portion, which might attribute to the small number of

specimen from the distal portion. The number of samples also affect the statistical analysis

on significance test. Therefore, we suggest that more experimental test with specimens from

the distal portion can strengthen the statistical analysis presented in this study.

Another shortcoming of this study is that the histology of the aortic wall was not fully

examined to validate the prediction based on the mixture theory-based constitutive model
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for the spatial variation in the mechanical properties of the thoracic aorta. The histologi-

cal and microstructural features, such as the number of elastin lamellae, may correlate to

the circumferential variation, and further investigation will be needed to understand the

heterogeneity of the thoracic aorta in this study.
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Fig. 5.11: Comparison of the mean circumferential Cauchy stress of the proximal thoracic
aorta aat the transmural pressure of 12.00 kPa for each longitudinal stretch ratio (ΛZ).
Asterisk represents the significant difference (*: p<0.05, **: p<0.01, ***: p<0.005)
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Fig. 5.12: Comparison of the mean circumferential stiffness of the proximal thoracic aorta
among the four circumferential regions at the transmural pressure of 12.00 kPa for each
longitudinal stretch ratio (ΛZ).
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Fig. 5.13: Comparison of the mean pressure-strain elastic modulus of the proximal thoracic
aorta at the transmural pressure of 12.00 kPa for each longitudinal stretch ratio (ΛZ).
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Fig. 5.14: Comparison of the mean stretch at the anterior and posterior regions of the
proximal and distal portions of the thoracic aorta at the transmural pressure of 12.00 kPa
for each longitudinal stretch ratio (ΛZ).
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Fig. 5.15: Comparison of the mean circumferential stress at the anterior and posterior regions
of the proximal and distal portions of the thoracic aorta at the transmural pressure of 12.00
kPa for each longitudinal stretch ratio (ΛZ).
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Fig. 5.16: Comparison of the mean circumferential stiffness at the anterior and posterior
regions of the proximal and distal portions of the thoracic aorta at the transmural pressure
of 12.00 kPa for each longitudinal stretch ratio (ΛZ).
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Fig. 5.17: Comparison of the mean pressure-strain elastic modulus at the anterior and pos-
terior regions of the proximal and distal portions of the thoracic aorta at the transmural
pressure of 12.00 kPa for each longitudinal stretch ratio (ΛZ).
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Fig. 5.18: A representative stress-stretch plot. Stress was calculated by using experimentally
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cally predicted data
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Fig. 5.19: Comparison of the mean and standard deviation of material parameter c1 (a) and
c2 (b) among the four circumferential regions for the proximal thoracic aorta.
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Fig. 5.20: Comparison of the mean and standard deviation of material parameter c1 (a) and
c2 (b) between the proximal and distal portions of the thoracic aorta.
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Chapter 6

CONCLUSION

The majority of computational studies of vascular adaptation have been performed based

on the assumption of the homogeneous mechanical properties of a blood vessel. Although

a few studies reported the regional heterogeneity in the mechanical properties of the aorta

along the aortic tree, the circumferential variation has not been taken into account (Guo

and Kassab, 2004; Sokolis, 2007). Recently the local mechanical properties of healthy and

diseased ascending thoracic aortas were studied using uniaxial or biaxial tests, but there

is little experimental data, based on author’s knowledge, to quantify the circumferential

variation in mechanical properties of a healthy thoracic aorta. Hence, in this study, the

circumferential variation in stiffness of the porcine descending thoracic aorta was experi-

mentally investigated. In order to characterize the local mechanical properties of the aorta,

an ex vivo extension-inflation apparatus with a stereo vision system was developed, which

allowed us to measure the 3D deformation of a blood vessel, and a stress-strain analysis

method using 3D experimental data was developed as well. Then, the material parameters

were estimated by the parameter estimation method using a constitutive model based on

the constraint mixture theory.

The experimental results of this study indicated a nonuniform distribution of stretch

and stress in a local region and nonuniform thickness of aortic wall along the circumference.
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The stress-stretch response during the inflation test depends on the local region. These

results showed that there was the variation in the stiffness, defined as the tangent of stress-

stretch response, among the four circumferential regions and two longitudinal portions. In

addition, material parameters showed that there was no significant difference between two

circumferential regions (the anterior and posterior regions) for the both proximal and distal

portions of the aorta, but that there was a significant difference between two longitudinal

portions (the proximal and the distal portions) for the anterior and posterior region of the

aorta.

One major finding of this study was that the posterior region of the porcine thoracic

aorta was significantly stiffer than the anterior, that is, the circumferential variation in the

mechanical properties of the aorta. Interestingly, however, there was no significant difference

in the pressure-strain elastic modulus for the proximal thoracic aorta. Another finding was

that the distal portion of the porcine thoracic aorta was significantly stiffer than the proximal

portions. It shows the longitudinal variation in the mechanical behavior of the thoracic aorta.

The parameter estimation based on the mixture theory-based constitutive model suggests

that the proximal thoracic aorta exhibited elastin-dominant mechanical behavior and the

distal thoracic aorta exhibits the collagen-dominant mechanical behavior. It may cause the

longitudinal variation in the mechanical behavior.

Finally, it is suggested that the experimental method and analysis presented in this study

can be used in the study of vascular biomechanics. The consistent spatial variations in the

mechanical properties of the thoracic aorta increase our understanding of vascular remodeling

and adaptation during the progression of vascular diseases or vice versa, and will eventually

help to improve clinical treatments and interventions of vascular disease.
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Appendix A

Methods

A.1 Camera matrix

In general, points in world is expressed in terms of the world coordinate frame. Two coor-

dinate frames between world and camera one may be related via rotation and translation.

Under the pinhole camera model (See Fig. 2.4), a point in the world, X = (X, Y, Z)T , is

mapped to the point on the image plane, xcam = (x, y)T in terms of the camera coordinate

frame. For the central projective camera, it is a linear mapping between homogenous vectors

of world and image points. In the image coordinate (fX/Z, fY/Z, f)T , where f is the focal

length, the last coordinate of the image point can be ignored. Then,





fX

fY

Z





=




f 0 0 0

0 f 0 0

0 0 1 0








X

Y

Z

1





(A.1)

In practical, the origin in image plane is not at the principal point, (px, py)T which is the

point where the line from the camera center perpendicular to the image plane meets the

image plane. Then a point Xcam is mapped to the point (fXc/Zc + px, fY c/Zc + py)T on
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Fig. A.1: Schematics of a world point and its corresponding image point

the image plane.



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fX + Zpx
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Z


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

=




f 0 px 0
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(A.2)

In general, the camera matrix is determined via three steps. In first step, points (x, y, z)

in the camera reference can be obtained the rotation and translation of 3D world points

(X,Y, Z) via





X ′

Y ′

Z ′

1


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
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


RT t

0T 1





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

X
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Z

1





(A.3)

where, RT and t represent the rotation matrix and the translation vector, respectively, from

the world reference coordinate to the camera reference coordinate.

Next, projection of the points onto the image plane at (xcam, ycam) is written as
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(A.4)

where, f is the focal length.

Lastly, the mapping from points (xcam, ycam) on the image plane to the pixel coordinates

in an image is



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x
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(A.5)

where, αx and αy are scaling in x and y directions, respectively, (x0, y0) is the principal point
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in the image plane (Fig. A.2). This 3 × 3 matrix is called as camera calibration matrix,


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
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(A.6)

In homogeneous coordinates, scaling factors 1
f are irrelevant so that it can be discard. A

single camera is characterized by 4 internal camera parameters and 6 external camera pa-

rameters (3 translations and 3 rotations).

Therefore a finite projective pinhole camera is expressed in terms of a linear mapping of

homogeneous coordinates as xcam = PX, where P = KR[I| t] is the camera matrix with

11 degrees of freedom. That is, P can be as


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(A.7)

where a scaling factor s = P31X + P32Y + P33Z. Then, all image points yield 2n × 11

matrix in the form of u = Ab and pseudo-inverse method can be applied to find a vector

b. The camera matrix is determined by the known measurement of calibration jig. At least

6 pairs of image points and world points of the jig are required. Then equation (5) can be

rewritten as
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
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(A.8)

where n is the number of points. Pseudo Inverse Method (Least Squares Estimation) is

employed to find the optimized unknown affine camera matrix parameters Pij .
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Appendix B

Analysis

B.1 Derivatives of the parameters for the curvature

B.1.1 Reference Configuration

In the reference configuration, S = S(S), Θ = Θ(Θ) and R ≈ R̂(S, Θ) = R̂(S(S), Θ(Θ)) =

R̂(S, Θ), where

R̂ =
n∑

k=1

δkPk(S, Θ) (B.1)

The first derivatives of X and Y with respect to S and Θ are

∂X

∂S
≈ ∂R̂

∂S
cos Θ (B.2)

∂X

∂Θ
≈ ∂R̂

∂Θ
cos Θ + R̂

∂cos Θ

∂Θ
(B.3)

∂Y

∂S
≈ ∂R̂

∂S
sin Θ (B.4)

∂Y

∂Θ
≈ ∂R̂

∂Θ
sin Θ + R̂

∂sin Θ

∂Θ
(B.5)

∂Z

∂S
=

∂S

∂S
(B.6)
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∂Z

∂Θ
=

∂S

∂Θ
(B.7)

where,

∂R̂

∂S
=

n∑

k=1

δk
∂Pk(S, Θ)

∂S
(B.8)

∂R̂

∂Θ
=

n∑
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δk
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∂Θ
(B.9)

∂cos Θ

∂Θ
=

∂cos Θ

∂Θ

∂Θ

∂Θ
(B.10)

∂sin Θ

∂Θ
=

∂sin Θ

∂Θ

∂Θ

∂Θ
(B.11)

∂cos Θ

∂Θ
= − sin Θ (B.12)

∂sin Θ

∂Θ
= cos Θ (B.13)

∂Θ

∂Θ
=

Θmax −Θmin

2
(B.14)

∂S

∂S
=

Smax − Smin

2
(B.15)

∂S

∂Θ
= 0 (B.16)

The second derivatives of X and Y with respect to S and Θ are

∂2X

∂S
2 =

∂2R̂

∂S
2 cos Θ (B.17)

∂2X

∂Θ
2 =

∂2R̂

∂Θ
2 cos Θ + 2

(
∂R̂

∂Θ

∂cos Θ

∂Θ

)
+ R̂

∂2 cos Θ

∂Θ
2 (B.18)

∂2X

∂S∂Θ
=

∂2R

∂S∂Θ
cos Θ +

∂R

∂S

∂cos Θ

∂Θ
(B.19)

∂2Y

∂S
2 =

∂2R̂

∂S
2 sin Θ (B.20)
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∂2Y

∂Θ
2 =

∂2R̂

∂Θ
2 sin Θ + 2

(
∂R̂

∂Θ

∂sin Θ

∂Θ

)
+ R̂

∂2 sin Θ

∂Θ
2 (B.21)

∂2Y

∂S∂Θ
=

∂2R

∂S∂Θ
sin Θ +

∂R

∂S

∂sin Θ

∂Θ
(B.22)

∂2Z

∂S
2 =

∂2S

∂S
2 (B.23)

∂2Z

∂Θ
2 =

∂2S

∂Θ
2 (B.24)

∂2Z

∂S∂Θ
=

∂2S

∂S∂Θ
(B.25)

where,

∂2R

∂S
2 =

n∑

k=1

δk
∂2Pk(S, Θ)

∂S
2 (B.26)

∂2R

∂Θ
2 =

n∑

k=1

δk
∂2Pk(S, Θ)

∂Θ
2 (B.27)

∂2R

∂S∂Θ
=

n∑

k=1

δk
∂2Pk(S, Θ)

∂S∂Θ
(B.28)

∂2 cos Θ

∂Θ
2 =

∂cos Θ

∂Θ

(
∂Θ

∂Θ

)2
+

∂cos Θ

∂Θ

(
∂2Θ

∂Θ
2

)
(B.29)

∂2 sin Θ

∂Θ
2 =

∂sin Θ

∂Θ

(
∂Θ

∂Θ

)2
+

∂sin Θ

∂Θ

(
∂2Θ

∂Θ
2

)
(B.30)

∂Θ

∂Θ
= 0 (B.31)

∂2S

∂S
2 = 0 (B.32)

∂2S

∂Θ
2 = 0 (B.33)

∂2S

∂S∂Θ
= 0 (B.34)
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B.1.2 Current Configuration

The polar coordinate (r, θ, s) will be converted to the cartesian coordinate (x, y, z)

x = r cos θ ≈ r̂
(
s, θ

)
cos θ̂

(
S, Θ

)
(B.35)

y = r sin θ ≈ r̂
(
s, θ

)
sin θ̂

(
S, Θ

)
(B.36)

z = s ≈ ŝ
(
S, Θ

)
(B.37)

where,

ŝ =
n∑

k=1

αkPk

(
S, Θ

)
(B.38)

θ̂ =
n∑

k=1

βkPk

(
S, Θ

)
(B.39)

r̂ =
n∑

k=1

γkPk

(
s, θ

)
(B.40)

The first forms of the surface are

∂x

∂S
=

∂r̂

∂S
cos θ̂ + r̂

∂cos θ̂

∂S
(B.41)

∂x

∂Θ
=

∂r̂

∂Θ
cos θ̂ + r̂

∂cos θ̂

∂Θ
(B.42)

∂y

∂S
=

∂r̂

∂S
sin θ̂ + r̂

∂sin θ̂

∂S
(B.43)

∂y

∂Θ
=

∂r̂

∂Θ
sin θ̂ + r̂

∂sin θ̂

∂Θ
(B.44)

∂z

∂S
≈ ∂ŝ

∂S
(B.45)

∂z

∂Θ
≈ ∂ŝ

∂Θ
(B.46)
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where,

∂r̂

∂S
=

∂r̂

∂s

∂s

∂ŝ

∂ŝ

∂S
+

∂r̂

∂θ

∂θ

∂θ̂

∂θ̂

∂S
(B.47)

∂r̂

∂Θ
=

∂r̂

∂s

∂s

∂ŝ

∂ŝ

∂Θ
+

∂r̂

∂θ

∂θ

∂θ̂

∂θ̂

∂Θ
(B.48)

∂sin θ̂

∂S
=

∂sin θ̂

∂θ̂

∂θ̂

∂S
(B.49)

∂sin θ̂

∂Θ
=

∂sin θ̂

∂θ̂

∂θ̂

∂Θ
(B.50)

∂cos θ̂

∂S
=

∂cos θ̂

∂θ̂

∂θ̂

∂S
(B.51)

∂cos θ̂

∂Θ
=

∂cos θ̂

∂θ̂

∂θ̂

∂Θ
(B.52)

∂ŝ

∂S
=

n∑

k=1

αk
∂Pk

(
S, Θ

)

∂S
(B.53)

∂ŝ

∂Θ
=

n∑

k=1

αk
∂Pk

(
S, Θ

)

∂Θ
(B.54)

∂θ̂

∂S
=

n∑

k=1

βk
∂Pk

(
S, Θ

)

∂S
(B.55)

∂θ̂

∂Θ
=

n∑

k=1

βk
∂Pk

(
S, Θ

)

∂Θ
(B.56)

and where,

∂s

∂ŝ
=

2

ŝmax − ŝmin
(B.57)

∂θ

∂θ̂
=

2

θ̂max − θ̂min

(B.58)

∂r̂

∂s
=

n∑

k=1

γk
∂Pk

(
s, θ

)

∂s
(B.59)

∂r̂

∂θ
=

n∑

k=1

γk
∂Pk

(
s, θ

)

∂θ
(B.60)
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∂cos θ̂

∂θ̂
= − sin θ̂ (B.61)

∂sin θ̂

∂θ̂
= cos θ̂ (B.62)

The second forms of the surface are

∂2x

∂S
2 =

∂2r̂

∂S
2 cos θ̂ + 2

(
∂r̂

∂S

∂cos θ̂

∂S

)
+ r̂

∂2 cos θ̂

∂S
2 (B.63)

∂2x

∂Θ
2 =

∂2r̂

∂Θ
2 cos θ̂ + 2

(
∂r̂

∂Θ

∂cos θ̂

∂Θ

)
+ r̂

∂2 cos θ̂

∂Θ
2 (B.64)

∂2x

∂S∂Θ
=

∂2r̂

∂S∂Θ
cos θ̂ +

∂r̂

∂Θ

∂cos θ̂

∂S
+

∂r̂

∂S

∂cos θ̂

∂Θ
+ r̂

∂2 cos θ̂

∂S∂Θ
(B.65)

∂2y

∂S
2 =

∂2r̂

∂S
2 sin θ̂ + 2

(
∂r̂

∂S

∂sin θ̂

∂S

)
+ r̂

∂2 sin θ̂

∂S
2 (B.66)

∂2y

∂Θ
2 =

∂2r̂

∂Θ
2 sin θ̂ + 2

(
∂r̂

∂Θ

∂sin θ̂

∂Θ

)
+ r̂

∂2 sin θ̂

∂Θ
2 (B.67)

∂2y

∂S∂Θ
=

∂2r̂

∂S∂Θ
sin θ̂ +

∂r̂

∂Θ

∂sin θ̂

∂S
+

∂r̂

∂S

∂sin θ̂

∂Θ
+ r̂

∂2 sin θ̂

∂S∂Θ
(B.68)

∂2z

∂S
2 ≈

∂2ŝ

∂S
2 (B.69)

∂2z

∂Θ
2 ≈

∂2ŝ

∂Θ
2 (B.70)

∂2z

∂S∂Θ
≈ ∂2ŝ

∂S∂Θ
(B.71)

Equations in the second forms are

∂2r̂

∂S
2 =

∂2r̂

∂s2

(
∂s

∂ŝ

)2 (
∂ŝ

∂S

)2
+

∂r̂

∂s

∂2s

∂ŝ2

(
∂ŝ

∂S

)2
+

∂r̂

∂s

∂s

∂ŝ

∂2ŝ

∂S
2

+
∂2r̂

∂θ
2

(
∂θ

∂θ̂

)2 (
∂θ̂

∂S

)2

+
∂r̂

∂θ

∂2θ

∂θ̂2

(
∂θ̂

∂S

)2

+
∂r̂

∂θ

∂θ

∂θ̂

∂2θ̂

∂S
2 (B.72)
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∂2r̂

∂Θ
2 =

∂2r̂

∂s2

(
∂s

∂ŝ

)2 (
∂ŝ

∂Θ

)2
+

∂r̂

∂s

∂2s

∂ŝ2

(
∂ŝ

∂Θ

)2
+

∂r̂

∂s

∂s

∂ŝ

∂2ŝ

∂Θ
2

+
∂2r̂

∂θ
2

(
∂θ

∂θ̂

)2 (
∂θ̂

∂Θ

)2

+
∂r̂

∂θ

∂2θ

∂θ̂2

(
∂θ̂

∂Θ

)2

+
∂r̂

∂θ

∂θ

∂θ̂

∂2θ̂

∂Θ
2 (B.73)

∂2r̂

∂S∂Θ
=

∂2r̂

∂s2

(
∂s

∂ŝ

)2 ∂ŝ

∂S

∂s

∂Θ
+

∂r̂

∂s

∂2s

∂ŝ2
∂ŝ

∂S

∂s

∂Θ
+

∂r̂

∂s

∂s

∂ŝ

∂2ŝ

∂S∂Θ

+
∂2r̂

∂θ
2

(
∂θ

∂θ̂

)2
∂θ̂

∂S

∂θ

∂Θ
+

∂r̂

∂θ

∂2θ

∂θ̂2
∂θ̂

∂S

∂θ

∂Θ
+

∂r̂

∂θ

∂θ

∂θ̂

∂2θ̂

∂S∂Θ
(B.74)

∂2 cos θ̂

∂S
2 =

∂2 cos θ̂

∂θ̂2

(
∂θ̂

∂S

)2

+
∂cos θ̂

∂θ̂

∂2θ̂

∂S
2 (B.75)

∂2 cos θ̂

∂Θ
2 =

∂2 cos θ̂

∂θ̂2

(
∂θ̂

∂Θ

)2

+
∂cos θ̂

∂θ̂

∂2θ̂

∂Θ
2 (B.76)

∂2 cos θ̂

∂S∂Θ
=

∂2 cos θ̂

∂θ̂2
∂θ̂

∂S

∂θ̂

∂Θ
+

∂cos θ̂

∂θ̂

∂2θ̂

∂S∂Θ
(B.77)

∂2 sin θ̂

∂S
2 =

∂

∂S

(
∂sin θ̂

∂S

)
=

∂2 sin θ̂

∂θ̂2

(
∂θ̂

∂S

)2

+
∂sin θ̂

∂θ̂

∂2θ̂

∂S
2 (B.78)

∂2 sin θ̂

∂Θ
2 =

∂2 sin θ̂

∂θ̂2

(
∂θ̂

∂Θ

)2

+
∂sin θ̂

∂θ̂

∂2θ̂

∂Θ
2 (B.79)

∂2 sin θ̂

∂S∂Θ
=

∂2 sin θ̂

∂θ̂2
∂θ̂

∂S

∂θ̂

∂Θ
+

∂sin θ̂

∂θ̂

∂2θ̂

∂S∂Θ
(B.80)

where,

∂2ŝ

∂S
2 =

n∑

k=1

αk
∂2Pk

(
S, Θ

)

∂S
2 (B.81)

∂2ŝ

∂Θ
2 =

n∑

k=1

αk
∂2Pk

(
S, Θ

)

∂Θ
2 (B.82)

∂2ŝ

∂S∂Θ
=

n∑

k=1

αk
∂2Pk

(
S, Θ

)

∂S∂Θ
(B.83)
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∂2θ̂

∂S
2 =

n∑

k=1

βk
∂2Pk

(
S, Θ

)

∂S
2 (B.84)

∂2θ̂

∂Θ
2 =

n∑

k=1

βk
∂2Pk

(
S, Θ

)

∂Θ
2 (B.85)

∂2θ̂

∂S∂Θ
=

n∑

k=1

βk
∂2Pk

(
S, Θ

)

∂S∂Θ
(B.86)

∂2r̂

∂s2 =
n∑

k=1

γk
∂2Pk

(
s, θ

)

∂s2 (B.87)

∂2r̂

∂θ
2 =

n∑

k=1

γk
∂2Pk

(
s, θ

)

∂θ
2 (B.88)

∂2r̂

∂s∂θ
=

n∑

k=1

γk
∂2Pk

(
s, θ

)

∂s∂θ
(B.89)

∂2s

∂ŝ2 = 0 (B.90)

∂2θ

∂θ̂2
= 0 (B.91)

∂2 cos θ̂

∂θ̂2
=

∂

∂θ̂

(
∂cos θ̂

∂θ̂

)
=

∂

∂θ̂

(
− sin θ̂

)
= − cos θ̂ (B.92)

∂2 sin θ̂

∂θ̂2
=

∂

∂θ̂

(
∂sin θ̂

∂θ̂

)
=

∂

∂θ̂

(
cos θ̂

)
= − sin θ̂ (B.93)

B.2 Gaussian quadrature

Gaussian quadrature rule is an approximation of the integral of a function and it is usually

represented by a sum of a weight and a function at specified points within the domain of

integration. It yields an exact result for polynomials by a suitable choice of the points xi

and weights wi for i = 1, ..., n. The integration domain for the rule is conventionally taken
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as [-1, 1], so the rule is stated as

∫ 1

−1
f(x)dx ≈

n∑

i=1
wif(xi). (B.94)

An integral over an arbitrary interval [a, b] should be changed into an integral over [-1, 1] to

apply the Gaussian quadrature rule. This change of interval can be done as the following:

∫ b

a
f(x)dx =

b− a

2

∫ 1

−1
f(

b− a

2
x +

b + a

2
)dx (B.95)

After applying the Gaussian quadrature rule, the following approximation can be

∫ b

a
f(x)dx ≈ b− a

2

n∑

i=1
wif

(
b− a

2
xi +

b + a

2

)
. (B.96)

For example, the total cross-sectional area of the vessel ring can be divided by constant

finite domains. ∫ 2π

0
h(θ)r(θ)dθ =

Ne∑

i=1

∫ b

a
h(θ)r(θ)dθ (B.97)

where Ne is total number of finite intervals over the domain and a and b are the starting

and ending position of each finite interval. In this case, total domain length is L0 = 2π,

each finite domain length is L = 2π/Ne, then a = (j− 1)L and b = jL for jth finite domain.

In order to use Gaussian quadrants, the finite domain length can be converted to [-1 1].

Therefore, ∫ b

a
f(x)dx =

b− a

2

∫ 1

−1
f

(
b + a

2
+

b− a

2
t

)
dt (B.98)

Using the Gaussian quadrants, the integral can be expressed by a summation of function of

Gaussian points and weights. The integration part can be

∫ 1

−1
f(t)dt =

Ng∑

j=1
wjf(tj)dt (B.99)
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where Ng is total number of Gaussian points. equation (B.97) can be rewritten as

∫ 2π

0
h(θ)r(θ)dθ =

Ne∑

i=1

Ng∑

j=1
wj

(
b− a

2

){
h

(
b + a

2
+

b− a

2
θj

)
r

(
b + a

2
+

b− a

2
θj

)}
dθ

(B.100)

Some low-order Gaussian points and weights are listed below.

Number of points, n Points, xi Weights, wi

1 0 2

2 ±1/
√

3 1

3
0 8/9

±√15/5 5/9
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Appendix C

Results

C.1 Information of the aorta sample

In this study, we tested 7 proximal thoracic aortas and 4 distal thoracic aortas were tested.

For the convenience of displaying the results, we name each sample and tabulate their infor-

mation in Table C.1.

Table C.1: Information of all aorta samples

Sample Longitudinal portion Circumferential region Histology
No. (Prox/Dis) (A/L/P/R) sample
1 Prox A, L, P, R No
2 Prox A, L, P, R Yes
3 Prox A, L, P, R Yes
4 Prox A, L, P, R Yes
5 Prox A, L, P, R Yes
6 Prox A, L, P, R Yes
7 Prox A, L, P, R Yes
8 Dis A, L, P, R No
9 Dis A, P (L, R for Λ=1.35, 1.40) No
10 Dis A, P Yes
11 Dis A, P Yes

106



C.2 Stress-stretch plots
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Fig. C.1: Stress-stretch plots for the proximal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 for sample 1
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Fig. C.2: Stress-stretch plots for the proximal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 for sample 2
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Fig. C.3: Stress-stretch plots for the proximal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 for sample 3
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Fig. C.4: Stress-stretch plots for the proximal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 for sample 4
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Fig. C.5: Stress-stretch plots for the proximal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 for sample 5

111



0.9 1.1 1.3
0

100

200

300

Circumferential Stretch

C
irc

um
fe

re
nt

ia
l S

tr
es

s 
(k

P
a)

0.9 1.1 1.3

80

130

180

Circumferential Stretch

Lo
ng

itu
di

na
l S

tr
es

s 
(k

P
a)

 

 

A
L
P
R

0.9 1.1 1.3
0

100

200

300

Circumferential Stretch

C
irc

um
fe

re
nt

ia
l S

tr
es

s 
(k

P
a)

0.9 1.1 1.3

80

130

180

Circumferential Stretch

Lo
ng

itu
di

na
l S

tr
es

s 
(k

P
a)

0.9 1.1 1.3
0

100

200

300

Circumferential Stretch

C
irc

um
fe

re
nt

ia
l S

tr
es

s 
(k

P
a)

0.9 1.1 1.3

80

130

180

Circumferential Stretch

Lo
ng

itu
di

na
l S

tr
es

s 
(k

P
a)

Fig. C.6: Stress-stretch plots for the proximal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 for sample 6
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Fig. C.7: Stress-stretch plots for the proximal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 for sample 7
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Fig. C.8: Stress-stretch plots for the distal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 sample 8
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Fig. C.9: Stress-stretch plots for the distal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 sample 9
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Fig. C.10: Stress-stretch plots for the distal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 sample 10
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Fig. C.11: Stress-stretch plots for the distal thoracic aorta at a fixed stretch ratio of 1.35,
1.40, and 1.45 sample 11
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C.3 Stretch, stress, and stiffness

Table C.2: The mean and the standard deviation of the circumferential stretch of the thoracic
aorta at the transmural pressure of 8.00 kPa (60 mm Hg), 12.00 kPa (90 mm Hg), and 16.00
kPa (120 mm Hg) for each proximal circumferential region

Λ=1.35 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 1.10 ± 0.04 1.20 ± 0.06 1.29 ± 0.08

Left lateral 1.11 ± 0.02 1.22 ± 0.03 1.30 ± 0.03
Posterior 1.12 ± 0.03 1.22 ± 0.05 1.29 ± 0.06

Right lateral 1.10 ± 0.02 1.21 ± 0.04 1.29 ± 0.05
Λ=1.40 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 1.09 ± 0.04 1.19 ± 0.07 1.28 ± 0.08

Left lateral 1.10 ± 0.02 1.21 ± 0.03 1.28 ± 0.03
Posterior 1.11 ± 0.03 1.22 ± 0.05 1.28 ± 0.06

Right lateral 1.10 ± 0.02 1.20 ± 0.04 1.28 ± 0.05
Λ=1.45 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 1.07 ± 0.05 1.17 ± 0.07 1.25 ± 0.08

Left lateral 1.09 ± 0.02 1.20 ± 0.03 1.27 ± 0.03
Posterior 1.11 ± 0.04 1.21 ± 0.05 1.28 ± 0.06

Right lateral 1.09 ± 0.02 1.19 ± 0.04 1.27 ± 0.05

(a) The proximal thoracic aorta

Λ=1.35 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 1.12 ± 0.07 1.23 ± 0.10 1.31 ± 0.11
Posterior 1.13 ± 0.06 1.22 ± 0.09 1.27 ± 0.10
Λ=1.40 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 1.11 ± 0.08 1.21 ± 0.11 1.28 ± 0.11
Posterior 1.12 ± 0.06 1.20 ± 0.08 1.25 ± 0.09
Λ=1.45 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 1.09 ± 0.09 1.20 ± 0.11 1.27 ± 0.12
Posterior 1.11 ± 0.06 1.20 ± 0.09 1.25 ± 0.10

(b) The left and right lateral regions

118



Table C.3: The mean and the standard deviation of the circumferential stress of the thoracic
aorta at the transmural pressure of 8.00 kPa, 12.00 kPa, and 16.00 kPa for each proximal
circumferential region (unit: kPa)

Λ=1.35 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 45 ± 8 82 ± 16 126 ± 25

Left lateral 55 ± 8 100 ± 16 154 ± 22
Posterior 63 ± 9 113 ± 17 172 ± 29

Right lateral 52 ± 9 96 ± 17 146 ± 29
Λ=1.40 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 46 ± 8 83 ± 16 128 ± 25

Left lateral 56 ± 9 102 ± 15 155 ± 24
Posterior 64 ± 9 116 ± 19 176 ± 30

Right lateral 53 ± 8 97 ± 16 150 ± 26
Λ=1.45 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 46 ± 9 84 ± 17 130 ± 27

Left lateral 53 ± 8 104 ± 17 158 ± 25
Posterior 67 ± 10 120 ± 21 181 ± 34

Right lateral 54 ± 8 99 ± 18 152 ± 27

(a) The proximal thoracic aorta

Λ=1.35 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 52 ± 11 95 ± 20 146 ± 31
Posterior 79 ± 9 142 ± 15 204 ± 26
Λ=1.40 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 54 ± 10 97 ± 19 146 ± 29
Posterior 80 ± 9 141 ± 15 203 ± 21
Λ=1.45 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 54 ± 10 97 ± 19 148 ± 30
Posterior 82 ± 10 148 ± 24 215 ± 32

(b) The distal thoracic aorta
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Table C.4: The mean and the standard deviation of the circumferential stiffness of the
thoracic aorta at the transmural pressure of 8.00 kPa, 12.00 kPa, and 16.00 kPa for each
proximal circumferential region (unit: kPa)

Λ=1.35 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 310 ± 47 416 ± 104 671 ± 185

Left lateral 359 ± 33 523 ± 99 1065 ± 255
Posterior 420 ± 58 634 ± 91 1246 ± 136

Right lateral 347 ± 50 489 ± 82 964 ± 117
Λ=1.40 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 310 ± 47 416 ± 104 724 ± 175

Left lateral 360 ± 33 523 ± 99 1118 ± 230
Posterior 420 ± 58 634 ± 91 1304 ± 188

Right lateral 347 ± 51 487 ± 82 1043 ± 124
Λ=1.45 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 321 ± 51 441 ± 84 765 ± 177

Left lateral 370 ± 42 552 ± 98 1140 ± 195
Posterior 436 ± 57 674 ± 67 1394 ± 344

Right lateral 362 ± 54 535 ± 87 1109 ± 153

(a) The proximal thoracic aorta

Λ=1.35 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 348 ± 61 468 ± 70 989 ± 418
Posterior 525 ± 84 1012 ± 346 2151 ± 444
Λ=1.40 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 332 ± 38 513 ± 23 945 ± 416
Posterior 592 ± 100 1018 ± 245 1842 ± 188
Λ=1.45 8.00 kPa 12.00 kPa 16.00 kPa
Anterior 345 ± 54 516 ± 69 1039 ± 394
Posterior 563 ± 95 1085 ± 244 1925 ± 768

(b) The distal thoracic aorta
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Table C.5: The mean and the standard deviation of the pressure-strain elastic modulus of the
proximal and distal portions of the thoracic aorta for each proximal circumferential region
(unit: kPa)

Λ=1.35 Proximal Distal
Anterior 52 ± 19 56 ± 8

Left lateral 56 ± 10 -
Posterior 62 ± 14 89 ± 28

Right lateral 54 ± 9 -
Λ=1.40 Proximal Distal
Anterior 52 ± 19 56 ± 8

Left lateral 56 ± 10 -
Posterior 62 ± 14 89 ± 28

Right lateral 54 ± 9 -
Λ=1.45 Proximal Distal
Anterior 52 ± 19 56 ± 8

Left lateral 56 ± 10 -
Posterior 62 ± 14 89 ± 28

Right lateral 54 ± 9 -
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C.4 Material parameters

Table C.6: Material parameters for the sample 1

Parameters \ Regions Anterior Left lateral Posterior Right lateral

c1 (kPa) 3.49 ×102 2.73 ×102 3.79 ×102 2.49 ×102

c2 (kPa) 9.11 ×101 1.64 ×102 2.62 ×101 1.01 ×102

c3 5.79 9.57 28.56 17.64

c4 (Pa) 2.37 ×10−8 1.11 ×10−15 8.29 ×10−8 7.69 ×10−8

c5 1.67 ×10−7 2.00 ×10−16 1.54 ×10−6 1.47
Ge

1 1.19 1.35 1.30 1.30
Ge

2 1.12 1.07 1.11 1.17
Gc

h 1.11 1.09 1.09 1.08
Gm

h 1.10 1.10 1.10 1.10

α(◦) 20.14 10.00 28.80 35.83

Table C.7: Material parameters for the sample 2

Parameters \ Regions Anterior Left lateral Posterior Right lateral

c1(kPa) 2.85 ×102 2.79 ×102 2.96 ×102 3.23 ×102

c2(kPa) 2.04 ×102 3.02 ×102 2.72 ×102 2.39 ×102

c3 9.89 8.02 10.68 7.56

c4(Pa) 2.81 ×10−7 9.54 ×10−13 2.47 ×10−8 5.42 ×10−9

c5 4.78 ×10−6 1.80 ×10−3 4.79 ×10−5 14.38
Ge

1 1.17 1.28 1.22 1.24
Ge

2 1.21 1.15 1.20 1.14
Gc

h 1.09 1.09 1.09 1.10
Gm

h 1.10 1.10 1.10 1.10

α(◦) 38.99 26.23 39.73 25.42
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Table C.8: Material parameters for the sample 3

Parameters \ Regions Anterior Left lateral Posterior Right lateral

c1(kPa) 4.97 ×102 5.34 ×102 5.54 ×102 4.65 ×102

c2(kPa) 1.13 ×102 5.89 ×101 1.42 ×102 1.78 ×102

c3 3.44 3.074 2.93 1.75

c4(Pa) 1.74 ×10−10 2.62 ×10−10 2.98 ×10−10 1.09 ×10−9

c5 2.92 ×10−10 5.24 ×10−8 0.045 9.31 ×10−5

Ge
1 1.09 1.06 1.13 1.14

Ge
2 1.24 1.23 1.20 1.24

Gc
h 1.08 1.09 1.09 1.09

Gm
h 1.10 1.10 1.10 1.10

α(◦) 30.44 43.88 40.12 33.75

Table C.9: Material parameters for the sample 4

Parameters \ Regions Anterior Left lateral Posterior Right lateral

c1 (kPa) 4.24 ×102 3.97 ×102 3.02 ×102 4.32 ×102

c2 (kPa) 5.10 ×101 1.85 ×102 3.06 ×102 9.60 ×101

c3 0.72 1.13 1.19 2.09

c4 (Pa) 1.44 ×10−11 9.68 ×10−11 1.59 ×10−10 7.86 ×10−10

c5 1.12 ×10−9 1.39 0.04 0.15
Ge

1 1.05 1.07 1.13 1.09
Ge

2 1.20 1.16 1.17 1.18
Gc

h 1.08 1.09 1.09 1.09
Gm

h 1.10 1.10 1.10 1.10

α(◦) 27.52 27.18 26.90 34.57

Table C.10: Material parameters for the sample 5

Parameters \ Regions Anterior Left lateral Posterior Right lateral

c1 (kPa) 4.87 ×102 3.34 ×102 2.60 ×102 2.98 ×102

c2 (kPa) 1.80 ×102 3.64 ×102 2.89 ×102 2.88 ×102

c3 0.12 0.49 4.50 4.79

c4 (Pa) 2.69 ×10−10 9.34 ×10−10 1.01 ×10−6 1.31 ×10−9

c5 4.99 ×10−7 2.16 ×10−10 2.80 ×10−7 1.48 ×10−7

Ge
1 1.12 1.18 1.23 1.19

Ge
2 1.15 1.14 1.21 1.17

Gc
h 1.08 1.09 1.08 1.09

Gm
h 1.10 1.10 1.10 1.10

α(◦) 20.89 15.65 42.12 28.77
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Table C.11: Material parameters for the sample 6

Parameters \ Regions Anterior Left lateral Posterior Right lateral

c1 (kPa) 3.96 ×102 3.49 ×102 2.83 ×102 3.36 ×102

c2 (kPa) 1.98 ×102 3.06 ×102 3.96 ×102 2.63 ×102

c3 2.57 2.12 1.80 4.20

c4 (Pa) 6.06 ×10−10 4.81 ×10−10 3.39 ×10−10 7.88 ×10−8

c5 1.53×10−8 4.92×10−12 9.12×10−8 3.18 ×10−7

Ge
1 1.11 1.18 1.28 1.22

Ge
2 1.14 1.06 1.03 1.10

Gc
h 1.10 1.11 1.09 1.08

Gm
h 1.10 1.10 1.10 1.10

α(◦) 19.58 15.60 10.34 24.48

Table C.12: Material parameters for the sample 7

Parameters \ Regions Anterior Left lateral Posterior Right lateral

c1 (kPa) 3.73 ×102 3.18 ×102 3.32 ×102 3.15 ×102

c2 (kPa) 1.98 ×102 2.04 ×102 2.03 ×102 2.15 ×102

c3 0.84 4.28 4.68 2.82

c4 (Pa) 9.57 ×10−11 3.02 ×10−9 1.51 ×10−5 6.10 ×10−10

c5 1.53 ×10−10 0.027883 1.98 ×10−6 6.21 ×10−6

Ge
1 1.17 1.23 1.23 1.23

Ge
2 1.21 1.18 1.18 1.18

Gc
h 1.09 1.11 1.09 1.12

Gm
h 1.10 1.10 1.10 1.10

α(◦) 31.19 32.74 42.98 27.18

Table C.13: Material parameters for the sample 8

Parameters \ Regions Anterior Posterior

c1 (kPa) 2.98 ×102 3.22 ×102

c2 (kPa) 1.31 ×102 1.99 ×102

c3 3.01 2.20

c4 (Pa) 1.76 ×10−9 1.17 ×10−9

c5 1.43 ×10−7 1.80 ×10−4

Ge
1 1.1 1.24

Ge
2 1.20 1.17

Gc
h 1.07 1.11

Gm
h 1.10 1.10

α(◦) 30.09 50.00
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Table C.14: Material parameters for the sample 9

Parameters \ Regions Anterior Posterior

c1 (kPa) 5.99 ×102 1.79 ×102

c2 (kPa) 8.42 ×101 8.33 ×102

c3 1.21 1.58

c4 (Pa) 3.55 ×10−8 4.70 ×10−10

c5 1.56 ×10−5 8.56 ×10−10

Ge
1 1.02 1.18

Ge
2 1.25 1.20

Gc
h 1.10 1.11

Gm
h 1.10 1.10

α(◦) 23.62 23.81

Table C.15: Material parameters for the sample 10

Parameters \ Regions Anterior Posterior

c1 (kPa) 3.13 ×102 3.06 ×102

c2 (kPa) 2.41 ×102 4.40 ×102

c3 1.32 3.40

c4 (Pa) 2.45 ×10−14 3.93 ×10−9

c5 9.29 ×10−11 1.11 ×10−16

Ge
1 1.20 1.37

Ge
2 1.20 1.05

Gc
h 1.10 1.08

Gm
h 1.10 1.10

α(◦) 29.97 17.51

Table C.16: Material parameters for the sample 11

Parameters \ Regions Anterior Posterior

c1 (kPa) 4.45 ×102 2.82 ×102

c2 (kPa) 2.14 ×102 3.94 ×102

c3 1.12 7.64

c4 (Pa) 4.03 ×10−10 4.05 ×10−10

c5 6.50 ×10−9 2.00 ×10−5

Ge
1 1.06 1.25

Ge
2 1.20 1.17

Gc
h 1.09 1.10

Gm
h 1.10 1.10

α(◦) 18.47 28.71

125



BIBLIOGRAPHY

126



Bibliography

American-Heart-Association, 2011. Heart disease and stroke statistics - 2011 update: A
report from the American heart association. Circulation Journal of the American Heart
Association 123, e18–e209.

Angouras, D., Sokolis, D.P., Dosios, T., Kostomitsopoulos, N., Boudoulas, H., Skalkeas, G.,
Karayannacos, P.E., 2000. Effect of impaired vasa vasorum flow on the structure and
mechanics of the thoracic aorta: Implications for the pathogenesis of aortic dissection.
European Journal of Cardio-Thoracic Surgery 17, 468–473.

Avril, S., Badel, P., Duprey, A., 2010. Anisotropic and hyperelastic identification of in
vitro human arteries from full-field optical measurements. Journal of Biomechanics 43,
2978–2985.

Baek, S., Rajagopal, K., Humphrey, J., 2006. A theoretical model of enlarging intracranial
fusiform aneurysms. Journal of Biomechanical Engineering 128, 142–149.

Blondel, W.C.P.M., Didelon, J., Maurice, G., Carteaux, J.P., Wang, X., Stoltz, J.F., 2001.
Investigation of 3-D mechanical properties of blood vessels using a new in vitro tests
system: Results on sheep common carotid arteries. IEEE Transactions on Biomedical
Engineering 48, 442–451.

Cannon, C.P., O’Gara, P.T., 2006. Critical pathways in cardiovascular medicine. Lippincott
Williams & Wilkins. second edition.

Carew, T.E., Vaishnav, R.N., Patel, D.J., 1968. Compressibility of the arterial wall. Circu-
lation Research 23, 61–68.

Choi, G., Cheng, C., Wilson, N., Taylor, C., 2009. Methods for quantifying three-dimensional
deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design
of stents and stent grafts. Annals of biomedical engineering 37, 14–33.

Choudhury, N., Bouchot, O., Rouleau, L., Tremblay, D., Cartier, R., Butany, J., Mongrain,
R., Leask, R.L., 2009. Local mechanical and structural properties of healthy and diseased
human ascending aorta tissue. Cardiovascular Pathology 18, 83–91.

Chuong, C., Fung, Y., 1983. Three-dimensional stress distribution in arteries. Journal of
biomechanical engineering 105, 268–274.

127



Chuong, C.J., Fung, Y.C., 1986. On residual stresses in arteries. Journal of Biomechanical
Engineering 108, 189–192.

Danpinid, A., Luo, J., Vappou, J., Terdtoon, P., Konofagou, E.E., 2010. In vivo characteri-
zation of the aortic wall stress-strain relationship. Ultrasonics 50, 654–665.

Davidson, J., Hill, K., Alford, J., 1986. Developmental changes in collagen and elastin
biosynthesis in the porcine aorta* 1. Developmental Biology 118, 103–111.

Draney, M.T., Arko, F.R., Alley, M.T., Markl, M., Herfkens, R.J., Pelc, N.J., Zarins, C.K.,
Taylor, C.A., 2004. Quantification of vessel wall motion and cyclic strain using cine phase
contrast MRI: In vivo validation in the porcine aorta. Magnetic Resonance in Medicine
52, 286–295.

Draney, M.T., Herfkens, R.J., Hughes, T.J.R., Pelc, N.J., Wedding, K.L., Zarins, C.K.,
Taylor, C.A., 2002. Quantification of vessel wall cyclic strain using cine phase contrast
magnetic resonance imaging. Annals of Biomedical Engineering 30, 1033–1045.

Everett, W.N., Shih, P., Humphrey, J.D., 2005. A bi-plane video-based system for studying
the mechanics of arterial bifurcations. Experimental Mechanics 45, 377–382.

Feigl, E.O., Peterson, L.H., Jones, A.W., 1963. Mechanical and chemical properties of
arteries in experimental hypertension. Journal of Clinical Investigation 42, 1640–1647.

Fischer, G., Llaurado, J., 1966. Collagen and elastin content in canine arteries selected from
functionally different vascular beds. Circulation Research 19, 394–399.

Fung, Y., 1993. Biomechanics: Mechanical Properties of Living Tissues. Springer. second
edition.

Fung, Y., Fronek, K., Patitucci, P., 1979. Pseudoelasticity of arteries and the choice of
its mathematical expression. American Journal of Physiology - Heart and Circulatory
Physiology 237, H620–H631.

Genovese, K., 2009. A video-optical system for time-resolved whole-body measurement on
vascular segments. Optics and Lasers in Engineering 47, 995–1008.

Goergen, C., Johnson, B., Greve, J., Taylor, C., Zarins, C., 2007. Increased anterior abdom-
inal aortic wall motion: possible role in aneurysm pathogenesis and design of endovascular
devices. Journal of Endovascular Therapy 14, 574–584.

Groenink, M., Langerak, S.E., Vanbavel, E., van der Wall, E.E., Mulder, B.J.M., van der
Wal, A.C., Spaan, J.A.E., 1999. The influence of aging and aortic stiffness on permanent
dilation and breaking stress of the thoracic descending aorta. Cardiovascular Research 43,
471–480.

Gundiah, N., Ratcliffe, M.B., Pruitt, L.A., 2007. Determination of strain energy function for
arterial elastin: experiments using histology and mechanical tests. Journal of Biomechanics
40, 586–594.

128



Guo, X., Kassab, G.S., 2004. Distribution of stress and strain along the porcine aorta and
coronary arterial tree. American Journal of Physiology - Heart and Circulatory Physiology
286, H2361–H2368.

Guo, X., Lanir, Y., Kassab, G.S., 2007. Effect of osmolarity on the zero-stress state and
mechanical properties of aorta. American Journal of Physiology - Heart and Circulatory
Physiology 293, H2328–H2334.

Guo, X., Lu, X., Kassab, G.S., 2005. Transmural strain distribution in the blood vessel wall.
American Journal of Physiology- Heart and Circulatory Physiology 288, H881–H886.

Halloran, B., Davis, V., McManus, B., Lynch, T., Baxter, B., 1995. Localization of aortic
disease is associated with intrinsic differences in aortic structure. Journal of Surgical
Research 59, 17–22.

Han, H.C., Fung, Y.C., 1995. Longitudinal strain of canine and porcine aortas. Journal of
Biomechanics 28, 637–641.

Haskett, D., Johnson, G., Zhou, A., Utzinger, U., Vande Geest, J., 2010. Microstructural and
biomechanical alterations of the human aorta as a function of age and location. Biome-
chanics and Modeling in Mechanobiology 9, 725–736.

He, C.M., Roach, M.R., 1994. The composition and mechanical properties of abdominal
aortic aneurysms. Journal of vascular surgery 20, 6–13.

Holzapfel, G., Weizsacker, H., 1998. Biomechanical behavior of the arterial wall and its
numerical characterization. Computers in Biology and Medicine 28, 377–392.

Holzapfel, G.A., Gasser, T.C., Ogden, R.W., 2000. A new constitutive framework for arterial
wall mechanics and a comparative study of material models. Journal of elasticity 61, 1–48.

Holzapfel, G.A., Gasser, T.C., Stadler, M., 2002. A structural model for the viscoelastic
behavior of arterial walls: Continuum formulation and finite element analysis. European
Journal of Mechanics-A/Solids 21, 441–463.

Hsu, F.P.K., Liu, A.M.C., Downs, J., Rigamonti, D., Humphrey, J.D., 1995. A triplane
video-based experimental system for studying axisymmetrically inflated biomembranes.
IEEE Transactions on Biomedical Engineering 42, 442–450.

Hu, J.J., Fossum, T.W., Miller, M.W., Xu, H., Liu, J.C., Humphrey, J.D., 2007. Biome-
chanics of the porcine basilar artery in hypertension. Annals of Biomedical Engineering
35, 19–29.

Huang, Y., Guo, X., Kassab, G.S., 2006. Axial nonuniformity of geometric and mechanical
properties of mouse aorta is increased during postnatal growth. American Journal of
Physiology- Heart and Circulatory Physiology 290, H657–H664.

Humphrey, J., 1995. Mechanics of the arterial wall: review and directions. Critical Reviews
in Biomedical Engineering 23, 1–162.

129



Humphrey, J., Rajagopal, K., 2002. A constrained mixture model for growth and remodeling
of soft tissues. Mathematical Models and Methods in Applied Sciences 12, 407–430.

Humphrey, J.D., 2001. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer,
New York.

Humphrey, J.D., 2008. Vascular adaptation and mechanical homeostasis at tissue, cellular,
and sub-cellular levels. Cell Biochemistry and Biophysics 50, 53–78.

Humphrey, J.D., Kang, T., Sakarda, P., Anjanappa, M., 1993. Computer-aided vascular
experimentation: A new electromechanical test system. Annals of Biomedical Engineering
21, 33–43.

Iliopoulos, D.C., Deveja, R.P., Kritharis, E.P., Perrea, D., Sionis, G.D., Toutouzas, K.,
Stefanadis, C., Sokolis, D.P., 2009a. Regional and directional variations in the mechanical
properties of ascending thoracic aortic aneurysms. Medical Engineering & Physics 31, 1–9.

Iliopoulos, D.C., Kritharis, E.P., Giagini, A.T., Papadodima, S.A., Sokolis, D.P., 2009b.
Ascending thoracic aortic aneurysms are associated with compositional remodeling and
vessel stiffening but not weakening in age-matched subjects. The Journal of Thoracic and
Cardiovascular Surgery 137, 101–109.

Isselbacher, E., 2005. Thoracic and abdominal aortic aneurysms. Circulation 111, 816–828.

Lally, C., Reid, A.J., Prendergast, P.J., 2004. Elastic behavior of porcine coronary artery
tissue under uniaxial and equibiaxial tension. Annals of Biomedical Engineering 32, 1355–
1364.

Langewouters, G.J., Wesseling, K.H., Goedhard, W.J.A., 1984. The static elastic properties
of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model.
Journal of Biomechanics 17, 425–435.

Lillie, M.A., Gosline, J.M., 2007. Mechanical properties of elastin along the thoracic aorta
in the pig. Journal of Biomechanics 40, 2214–2221.

Matsumoto, T., Goto, T., Furukawa, T., Sato, M., 2004. Residual stress and strain in the
lamellar unit of the porcine aorta: experiment and analysis. Journal of biomechanics 37,
807–815.

Menashi, S., Campa, J., Greenhalgh, R., Powell, J., 1987. Collagen in abdominal aortic
aneurysm: typing, content, and degradation. Journal of vascular surgery: official pub-
lication, the Society for Vascular Surgery [and] International Society for Cardiovascular
Surgery, North American Chapter 6, 578–582.

O’Connell, M.K., Murthy, S., Phan, S., Xu, C., Buchanan, J.A., Spilker, R., Dalman, R.L.,
Zarins, C.K., Denk, W., Taylor, C.A., 2008. The three-dimensional micro-and nanostruc-
ture of the aortic medial lamellar unit measured using 3D confocal and electron microscopy
imaging. Matrix Biology 27, 171–181.

130



Okamoto, R.J., Wagenseil, J.E., DeLong, W.R., Peterson, S.J., Kouchoukos, N.T., Sundt III,
T.M., 2002. Mechanical properties of dilated human ascending aorta. Annals of Biomedical
Engineering 30, 624–635.

Pandit, A., Lu, X., Wang, C., Kassab, G.S., 2005. Biaxial elastic material properties of
porcine coronary media and adventitia. American Journal of Physiology - Heart and
Circulatory Physiology 288, H2581–H2587.

Participants, T.U.K.S.A.T., 2002. Long-term outcomes of immediate repair compared with
surveillance of small abdominal aortic aneurysms. New England Journal of Medicine 346,
1445–1452.

Patel, D., Janicki, J., Carew, T., 1969. Static anisotropic elastic properties of the aorta in
living dogs. Circulation Research 25, 765–779.

Peterson, L.H., Jensen, R.E., Parnell, J., 1960. Mechanical properties of arteries in vivo.
Circulation Research 8, 622–639.

van Prehn, J., van Herwaarden, J., Vincken, K., Verhagen, H., Moll, F., Bartels, L., 2009a.
Asymmetric aortic expansion of the aneurysm neck: Analysis and visualization of shape
changes with electrocardiogram-gated magnetic resonance imaging. Journal of Vascular
Surgery 49, 1395–1402.

van Prehn, J., Vincken, K.L., Sprinkhuizen, S.M., Viergever, M.A., van Keulen, J.W., van
Herwaarden, J.A., Moll, F.L., Bartels, L.W., 2009b. Aortic pulsatile distention in young
healthy volunteers is asymmetric: Analysis with ECG-gated MRI. European Journal of
Vascular and Endovascular Surgery 37, 168–174.

Purslow, P., 1983. Positional variations in fracture toughness, stiffness and strength of
descending thoracic pig aorta. Journal of Biomechanics 16, 947–953.

Rachev, A., Hayashi, K., 1999. Theoretical study of the effects of vascular smooth muscle
contraction on strain and stress distributions in arteries. Annals of biomedical engineering
27, 459–468.

Raghavan, M.L., Kratzberg, J., Castro de Tolosa, E.M., Hanaoka, M.M., Walker, P., da Silva,
E.S., 2006. Regional distribution of wall thickness and failure properties of human abdom-
inal aortic aneurysm. Journal of biomechanics 39, 3010–3016.

Rezakhaniha, R., Fonck, E., Genoud, C., Stergiopulos, N., 2011. Role of elastin anisotropy
in structural strain energy functions of arterial tissue. Biomechanics and Modeling in
Mechanobiology 10, 599–611.

Rhodin, J.A.G., 1980. Architecture of the vessel wall. In: Comprehensive Physiology .

Roach, M.R., Song, S.H., 1994. Variations in strength of the porcine aorta as a function
of location. Clinical and Investigative Medicine. Médecine clinique et experimentale 17,
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