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INTRODUCTION

Transmission phenomena play an important part
in various fields of endeavor. Whether in power,
communications or other applications, the transfer of
energy from one point to another embraces a large
section of Electrical Engineering studles. It i1s the
purpose of this paper to study the transfer phenomenon
of a lumped parameter artificial line. Various types
of circuits exlist for the transmission of signals
ranging from simple transmission lines to complicated
networks of electronic devices. The prime requisite is
to transmit a given signal in a manner whereby it can
be recognized at the receiving end as the same signal

which was placed on the input terminals,

All types of networks can be treated as a
four-point terminal box. The effect of the system
on & given signal can be studled using transient
methods as most signal transmission requires that a
network be 1in a transient state at all times. Response
of a network to the step function and an impulse
function provides a severe test for the system. These
functions can be represented mathematically quite
easily using Fourier methods and shown to contain the

sum of a number of sinusoidal frequencies. The transient



response can be completely specified in terms of steady

state sinusoidal behavior,

The ratio of the input voltage to the output
voltage 1s a complex response function of the formz%%iéﬁf
How this function behaves is the problem to be met.
First, the ratio of voltages 1s to be determined; second,
the varlation of the response function with frequency
is to be analyzed. Ladder networks are adaptable to
this method of treatment, whereas some other transmission
systems cannot be handled easily mathematically. 1In
these networks, the transient effects must be handled

experimentally.



SOLUTION OF CASCADE NETWORKS

The artificial line 1is a number of like four-
terminal networks or sections connected in cascade
arrangement., There are forty sections in the 1line

to be analyzed. This arrangement 1s shown below.
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Each section contains inductance (L) and resistance
(R) in series with capacitance (C) in parallel., This

arrangement is called an H section and 1s represented

below.
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It 1s necessary at this point to define certain
characteristics of the section. Y“ is the admittance



of loop 1. Y,, 1s the admittance of loop 2 and is
equal to the admittance of loop 1 in the symmetrical

case, Y is the mutual admittance between loops.

(I3
Taking a few sections 1n the interior of the line and
extending the analytical results will give the over-all

performance of the line.

L, I L
vt- \ Vk vt !
——— —e— o —e——

Writing the equations for the current at junction k -
- )Ql\é-l - >2¢ V
Ly = X/ VK + Vi Vewt

Rearranging the identities gives the following equation:
)lﬁlvk-l + )/”'VK +x’VK + y”-vk“ =0

(1)

However, due to the symmetrical conditions of each

)/n = )/u

section,

and therefore,

VK + 1)’:/ \/ . Vku (2)
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Considering the voltage in section k, the following

equations can be written from Kirchhoff's Laws:

VIL = zu Ik~| - Zqu
3)
Vlc = Zn IL - i”' l—“"

or =

zul—;»l - zz;‘rk— Z“ Ly + Z/; ‘LLH b

dividing by Z -

— zl/* z 2 - i z - -
-J-L_ - —__z_ J—k -+ _'.— “"4-' - O
‘ Zy !

The symmetrical properties of the section permit the

following equation:

+ ""kc-\

_ z, .
"LL-I _ 2 T, - O 4

For the moment let us consider some of the properties
of four-terminal networks. Input and output currents

are obtained by the relationships

T o= Yk + Vo £y (5)
j:; = )Q E; + >£% E}-

This 1s called the admittance method. The input and

output voltages can be written by a system, as follows:

E.' = Zu:r, + zu—iﬁ- (‘)
== f“]:. + Znal,

>~



This system has lmpedance coefficlents. Using another
system of coefficients called general circult coefficients,
the input voltage and current can be written in terms

of output current and voltage.

E-: ﬁk:__f‘z;_

/

Z C A; - ,ﬁQj:L

/

()

The solution of these equations by the method of deter-
minants will give the following relationships that exist

between the various systems:

Mll - )/ - zt‘L - -
Qs 0 T4
M, Z [
o b A S )

I &1

&
/%.1- - >/ - _Z_”__ _ﬁ_
ar | | &

Since the line sectlions are symmetrical -

A= 4

It can now be shown that the coefficients of the I

(1]

term and the V term in equations 2 and 3 are equi-
valent: 4
Jd &
2 2% 2__..
_&. - 21 &

{.

%% Z;m -

A
B 8



°or = _Q_Z/y___ _3%2,_ - - 2 a_

Yo Z,

Using this equality, equations 2 and 4 can be written in

the following manners:

\{ - 8&‘/,4 "'\/u-\ = O (ﬁ-«)

=\

- T T = O
"t-\ AA L+ 'Ln\ (& )

The above equations are of the same nature as the
differentlal equations of the uniform line, considering

only the solution to the first approximation.

DE .
T T YE=C

QT v—
e T ¥ LT

The solutions for equations 2a and 4a can therefore
be agsumed to be of the exponential form which is the

solution for the uniform line.

-ky kv
\/t = A'é + A_‘_e

(4)

In this solution Y}y plays the role of a propagation
function per section in the same manner as the propa-

gation function of a line per unit length. Determination
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of Y can be accomplished by substitution of this

solution into equations 2a and 4a.

(Y (L)Y - (k)Y kY
/7,60“)+,4,,é - aaVY +A € + A€ = 0

Combining terms - ky br v

~k Y . i
(A€ :A,Le"r)é 24V + (A€ +A€E )6 = O

Substitution -

téf.a&+ gYBV = O T

Next substituting iIn equation 4a . - vy
~(k)Y  (k-1)Y -(e+)Y Gt

g€ "rg T, +8E +8. =

(€~2a+€ )L =0 (1)

As the voltage and current cannot be zero at all times,

it follows that the coefficients must be zero in equations

10 and 11. v
€ — Qa. + € = O
-r
éY+ € = 2K

This can be transformed into hyperbolic cosine-

Y -¥
MY: €+ € = & \14)

>

The H sectlons can be placed in a T arrangement by
adding the impedance of the lower series arm to the

upper arm,
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2/, %/, A Z/,
Z £,

Cosh Y cen then be evaluated in terms of impedances.

Z i | %y
. Z,
& I &\

Hence,

Cosky = | + B (/3)

Boundary conditions permit the evaluation of the con-

stants A B and B, . Substituting the assumed

l)AI-) '

solution for Vk into equation 3,

-kr E ~tr tr -(ee)Y (v
Aue * Ate Y" }5“(6'6 4-8‘6 ) —ZM_UB,S 1‘8‘6

-ky
The coefficients of the term €& on each side of the

equation must equal each other 1f equation 14 is to hold.

A = Zl\Bl - ZI'LB\ e‘Y = 81 (1\\-k“-ev)

)

(4)



kr
Likewise the coefficlients of the term € on each side

of equation 14 are equal.

\a r
A ~4,8-%.8¢€ = & (2-%,¢)

Then -

A, -r.
_E/ = A zlzé = 5
and - r </5—)
Mooz iz € =R,
31’ 1] v

This is the characteristic impedance of the line, one
being interpeted as the impedance looking into the
sending end and the other looking into the receiving
end of the line. In terms of the parameters of the

T section -

- 2, 1/11" y (1¢)

+
AL

At the boundary of the network, the following conditions

are present:

Eé V, + 1, %

O

QL))

]
<
)
)
1",*‘ 0

At the input to the network, the voltage and current
are given by substituting k equal to zero into equations

9a and 9b.
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Vo'~ /*\1— A’L
To= B+ P

The voltage and current at the end of the line are
obtained by setting k equal to n which is 40 for the

particular structure under consideration.

~nY ny
VW= AE +A_E€

— ~NWY e\r\\’
L,:208¢€¢€ + 8.
Equation 17 can be written -

E% = A\+l\,__+- i‘}(ﬁ,i-e,d Q g)
-ny

y ~-wY AN
o =A< A 2.(8€¢ B, €

Substituting for the constants B' and B% -

r z + %o +.-% —
N s-Z-o )Au_ <§£D-)AL: k.a

ZL - io -nY zbf io nY
- A€ + = 0
( <5 ) ;' Q *o )A‘"e

Using determinental methods for the solution of the
above equations, the values of AI and A, are found
to be: wy
L. +2o) €
4o (Brte) € g
1, O ¢
(1q)
-1y

A% = (*L'io) € E
£o & g
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where /\ 1s the value of the determinant of the
above system of equations. The voltage and current
equations for the kth section can be found in terms
of the reflection coefficlients. Defining the reflec-
tion coefficient ( K% ) at the sending end -

Z, - %

N, = "% "° (>°)
% + 2,
and the reflection coefficient at the receiving end -
ib 'P%o

The voltage and current at any section is given by

the equations -
q K—\(.\Y - (W—,C\Y \)

vh-' <l € + iop‘“e

(i.a+ko)(e"‘"—- KRR o€

(y_ u)r - -u.-k.)\")
- 3<

(l}ﬂo)( e"”v ry NY)

where k 1s an integer between zero and n. The output

(ar)

voltage and current is obtained by setting k equal to

nC+]

. FRq ¥ I+ N
\/k. = -—-&i = =
='£3+¥° e”-;q‘e”
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MATRIX SOLUTION OF LAUDER NiTWORKS [(53]

Matrix algebra may be used to a great advantage
in the solution of symmetrical networks thus making the
problem easier, Artificial lines are very adsept to
this method as they consist of a group of symmetrical
sections in cascade. The matrix form of the entire
ladder network 1s -

W

—

— VB-W A QQ‘W .V;,

W

]:o (L (9' T
L7

Raising a matrix to the nt power 1s laborious
if it had to be accomplished by direct matrix multi-
plication when n is a large iﬁteger. This difficulty
can be ove®come using theorems of matrix algebra. 1In
the case of symmetrical sections the network can be
represented -

A @)

—

Coat ¥ 2, 4Lvl~€:

)

n

e Sede ¥ Corh Y

%5
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and -

A QE v - Loab X o Zo N

C, )\9' Mi\‘"w Con Al w

The general voltage and current in the line is obtained
by finding the inverse of the square matrix on the right
of equation 22, 1In matrix form the output of a n section

network 1is -
V) AR
L C O L,
Performing the inversion gives =

‘.Crykjﬂw - £b4L~Ljr““ VD

‘T Sk Tw C s l N ™

v L- *0

‘o
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PROPAGATION FUNCTION CHARACTERISTICS

The propazation constant and characteristic
impedance play an important role in transmission phe-
nomena and their varlations with frequency determine
the fidelity of signal or voltage transmission. Types
of terminations also have effects on the fldelity of
transmission, but these conditions can usually be changed
in such a manner to eliminate thelir contribution to

distortion,

Y 1is complex 1n nature having a real and an

imaginary pert.
Y= A+ %/3

The real part 7N 18 the attenuation function and gives
the amount of energy dissipated while passing through
a unit length of line. The imaginary part /3 is the
phase function per unit length of line, In the case of
an artificial line the unit length is one section which
approximates a given length of actual line. This
particular artificial line approximates a pair of 104
mil’. wires spaced twelve inches apart, having a length
of 6.32 miles. This propazation functlon is of the

general form -

Y=Vi)’
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or'=

A*+J @ = /l/f',c_,w.b{aﬁ/wc) @'é')
Squaring both sides of the equation -
AT BT ) 2R = (PG —hew )y w(RC+L )
Equating the reals and imaginaries -
“%- @Y = P-4l W™
g¢gﬂ = w(I?C +LG)

The expression for attenuation A is-

To

A = L%(L‘RG-LCW") + }/('f‘-ﬁl,"w‘)(c"*c"w")_]

The expression for phase shift /@ is- (2 6)

/6 [_ (AC&)—/?G+ V‘fl"*-bw")(é-ﬁc”\-)]

These expressions for attenuation and phase
shift are very cumbersome but it 1s possible to deter-
mine the effect of frequency variation. However, they
will not give the entire story over a wide range of
frequencles as the parameters R, G, L, and C do not

remain constant,

Experimental data show that resistance variation
with frequency in open wires runs from 250% to 400%
over a frequency range of 500 to 50,000cps. The
exact percentage depends upon the physical character-
istics of the wire. Inductance variation decreases
4% in a frequency range of O to 50,000 cps. Capacitance

which theoretically should not vary a measurable amount
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increases sbout 4% in a frequency range of O to 50,000 cps
Leakage parameter (G) varies the greatest amount; in

a frequency range of 1000 to 50,000 cps, this variation

is 5000%, almost a linear function of frequency. With

good insulation, however the leakage 1is still negligible.[}{}

These same characteristics exist in the artificisal
line as is shown in the table below. The parameter
values are computed from impedance measurements obtained

by bridge methods,

frequency 796 cps 1200 cps 2000
R 5648 N~ 56,9 S 56 47—
L 22,7 wh 2246 wh 23.0 mh
G 1.5 pwho 1.5 pwthe 1led umke
c 042 4 f 042 u <043 u f

It would seem that prediction of line behavior
is a hopeless proposition with all of these variables
involved. However, an engineering solution can be
obtalned by certaln approximations, and the effect
of various parameters can be determined by deviations
from an ideal case. Most engineering formulation falls
in this catagory. The 1deal conditions for a trans-

mission system are constant attenuation for all
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frequencies and linear variation with frequency for

the phase function,
%= /F6 (22)
G = wlLe
Equation 26 can be put into the following form:
A = JYPe Jfi(¥)
/9 = 4"/225- )‘»(*9
where,ﬁﬁﬂ and /Q(#Q are deviations from the ideal case.
/,N) = 7’2‘(/"}4"*— Vie aOn )4 + ‘5"‘) =

(a8)

4
/.. (4) = ‘/,;'t__"(/- ‘5(—2'4- //+9.(>n‘;u..")¢"+ 1""') -

The terms in the above equations are defined as-
C

J_(/f‘ +/A€

2 AN PC

, VL S4 29)
= LS V'f‘— ¢

gy

v =
% = w
- %
/2

The leskage parameter cannot be neglected at this

point, even though it 1is small, It is quite evident
that a relationship exists between the two error

functions /, (%) and /\-/“‘) . This is shown by letting
/ /
éf =7 (%« - 22)
¥« > /; 1 * f

then-
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Equation 29 can now be written- ,
, ————— —
/1{4) = 'f("'(/)”m—*_/» _;)7_

, €L
fx) = £(Vmegmrg) T

or -
/(,ﬁy) . /[,(ﬂj = <?,)
The value of m for the artificial line is-

, 567 (.0 W-“o“) /(zz,7u6’)(l,s‘m5“
L <%, F
T 2 (Y aanet)ins?) ﬂ

6.7 Loqxxlo“)

T = ’%:2‘
Conditions which give a distortionless line
are -ig = %% e This makes the value of m be one

and the value of n be zero. Also =~

/é («) = /ﬂi/@d = /

The equations for distortionless propagation function
are then obtained by substituting these conditions
into equation 28, It 1s apparent that distortion can
be expected on the artificial line,
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RESPONSE FUNCTION

The response function i1s a variable of fregquency
which is the outgrowth of the ratio of output voltage
to the input voltage. Let us now consider one section
of the artificial 1line which is terminated 1n the
characteristic impedance. The response function of one

section is -
W®) ¥ S e (52)
|} &)

For the distortionless case -

and

The total effect of the line can then be determined
by raising the amplitude function to the n th power

and adding the phase characteristics of the n sections.

o) oIRE —jwwyic (33)
b9

In any system having phase shift, the output signal
may be small for a time, after which 1t increases
rapidly giving rise to a time delay. This delay depends

on the slope of the phase function versus frequency
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curve. )
4 55

For the distortionless line, the time delay 1s constant,

(84)

<y »lie

iy 4o YPAmS o ri0° = /23 X160 prc

The Fourler Transforms are strong tools in chang-

ing functions from frequency to time variables and
reversing the procedure. This enables the manipulation

of such equations as -

V,(2) = A=) V() (25)

which are often used in circults. These transforms are-

-
wT
v(t) = 3,—1;/ € Vi) dw
-

- e (3¢)
vy ST e v ot

o0

Applying these transforms to & pulse function
willl enable the prediction of a particular network,
Pulse response of networks 1is proving to be very sat-
isfactory in determining the transient behavior of the
network. Consider the pulse of width tw applied at
time equal to zero. Since the Fourier Transforms take
in negative values to time, the functlon of positive
time 1s reflected to the left of the origin. This
does not have any physical significance but is necessary

to be able to use this mathematical tool,
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Applying the transform to the pulse of unit magnitude-

Viw) = € _ QMUJ-&\ <3 7)
w)

This transform of the input voltage multiplied by the
response function will give the transform of the output

voltage,

- —wt :
V. (w) = kaew“ p_as Wb, (39)

w

Although in the distortionless line, all frequencles
are transmitted, filter theory shows that a cut off

frequency exists for the artificial lins.

1 a2 L4 ,.,4
< b.48 X s (34)

V(Jz.n:é’ )(.o-l»v.\lu?»b
Beyond this frequency, the amplitude response 1is zero.

The transformation integral then becomes:

suIRG “Jc' . {
2l Juw(t-§
VL(*):: ;E J/' 2 w, é_tu d)

L w

(78]
-UJ‘

--.rg“g/“’c *?)

v,“ (t) = € i"@,w(f-td) A':«.(ut' +5 (1;*-\0 (t-ﬁ)%wtlﬁow

T
<w,



The second term of the integrand is an odd function
and the first term is an even function. When the
integration 1s performed, the odd functions drop out
so they can be immediately eliminsted. The first term
can be‘zewritten -

T [P letart)- ity 1)

then- - r\ w -k@ v ‘
€ " Ry,.‘dw “J(f-ép‘f,) €_ f QA,{M_,(.«J -é_ﬁdsﬁb
Vle)= = = Ae-T = w

=R |~ 41)
.é€ _ . (
v‘)\(t) = ‘?— L&. U"’e (f-tcl-#ﬁ‘) - S;. wc(’é' .{J ‘{’)-5
Cut off frequency plays an important role in
fidelity of transmission, As the width of the pulse

is decreased, the fidelity of transmission increases.,

Reflectlions caused by terminations other than
the characteristic impedance will give rise to greater
echos. The response function 1s more complex in nature
and great difficulty 1s encountered in solving the
equation, In terms of the reflection coefficiemts,

the response function at the k section is =

- = (3-k)¥
K %43, €= nyp e (#2)

!

2 Hl(“’) 6Jé
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ERROR INTRODUCED IN LUMP LINS

The question arises as to the extent of the
error introduced by lumping line parameters and over
what range of frequencles the artificial line will
approximate an actual line. Let us first consider
the propagation function. In the actual line -

YL = & }/(/ff-./wb)(é‘wwc) (+43)
where [/ 1is the length of the line. The propagation

function of the artificial line 1s given by the product
of the number cf sections in cascade and the proragation

per section.

R
“

| .
YA = dw smde | 2 (#4)
4z,
The series and shunt lmpedances of the symmetrical

H section take the form-

L~ L (prywh)

. KM

L. L (:é;*ﬁﬁudc) ( )
Z =

3
The value of Z can be determined by substitution
¢Zy
— YA
oz / /e - _—

4Z
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hence-

[ - “'Xl
Fw ~ 2w AW'L‘R (#7)

Using the series expansion for

ve < yelimh@) s 2 &) - J
¥g : veL1+d ) #%)

The error in the proragation function is-

j; < -j (—:_é = “(:“ —é)b(f./-JwL‘X@*ch‘) (‘7(9)

The characteristic impedance of the actual line is-
4 w b -
7 - S i (50)
© GryrC
For a symmetrical section the characteristic impedance
is-

!
-Y Z ~/
11(,’ Z.Zt)//'/'m é)
Substituting equation 46 for
i v4 > -
- 2,V /1* G%) &)
Using the binomial expansion for the radical-

: ZO[:“'J-(%,) -2 4”“' J
Z;*~ Z, 1+ 4 )

The error in the characteristic ilmpedance is-

L= L) HE) (RromiXenme) (54)




The error in the characteristic impedance 1is
of opposite sign and 1s three times the error in the
propagation function. For a given frequency the error
is proportional to the length squared and inversely
proportional to the number of sections squared. As
the number of sections 1s increased for a given length
the error approaches zero. The limiting case where

n is infinite is the smooth 1line.

Considering a given length and number of sections,
the error increases with frequency. At high frequenciles,
the resistance and conductance are negligible, hence
the error increases as the square of the frequency.

The opposite sign of the errors indicates that some
compensation exists; however, the highest essential
frequency to be passed will determine the number of

sections to be used, allowing a certain limit of error.

The error introduced at the highest frequency
passed can be easily calculated., At 10,000 cps the
resistance and leakage terms are small enough to be

neglected. The error in the characteristic impedance
is - ke
L2 F(4) wwe -
283 o X iz o) <'S")
.L( )[mrx/o/ (zzu(/o o424/

< 187
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The characteristic impedance is approximately 690 ohms
for a wide range of frequencies in the audlo range.
Hence the percentage error for the artificlal line is-

___{_;F_‘—?—. /900 = 317/70’

690
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TRANSIZNT SOLUTION OF A TRANSMISSION LINE

Methods of transient solution vary depending on
the type of input voltage function. In general the
Laplacian and Fourler transforms are superior to other
methods of attack. However in the case of the unit
step function, the results of Laplacian transforms
lead to the Heavliside expansion theorem in the eval-
uation of the inverse of the Laplace. Since it 1is
desired to compare the transient solution of the
artificlial to the actual transmission line, the opera-

tional methods of Heaviside will suffice.

The solution of the wave equation for the trans-

mission line is - E'°3

r¥ -7 ¥
A€ +4 €

V$:
A ¥ A e‘wj
Ly= g [A‘e “

where the constants are evaluated by boundary conditions
of the line terminations. These equations can also
be written in terms of the parameters of the line,

Using the following notations-

]
vV e

a-= *Jf:

2L



- G

b= C

/ = a--f—b
o~ = a-=-5b

The general transmission e%ations then become-
V2 4, el +A- €

Uy
~TX
I*L A-V' //’f-ﬂ«. (’4 - A € <° 6&)

where-

Y= Jv: }/(,ai-/’)k-

Considering the boundary of the line terminated in

a short circult:

Wty ot ¥=o0
Ve 0 ot t= L

Hence the equations of voltage and current at point

‘% from the transmitter when the unit step voltage

is applied bec‘j)me: * e Y(2-4)
Vy = T k¥ 2 )
V. P+>b GA-V&-Y(l"" j
1\4 ‘L—vl: P+ 2a s YL

Solving these equations with Heavisides expansion formula

which is - pt
(— (o) )/{P) &
(%) /’ FEY
The determinental solution of -

36@)“9’ MYQ

Ly®

is- Y£ =J AT
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- JA—I'R% 1 - -
! A ’v-V(fw-/O)-—f

solving for p -

L VIR N,

(ptp) = o= AT ¥
Pr - Y
fuz -2l
: "/'i-’./@,t
Next taking the derivative of Z(p)
DEp) _  aptyl L4
B K,
- c,.,Lr
= % (prp)
7
For \Jz.o , the first term of the expansion is -
) prke 2R @)l A9
16 © ek VS anb £L

Substituting these equations in the expansion formula

the developed solution for the voltage at point x is-

2V, Awlw((ﬁA) Z j i aT(1- ¥ )€ #Ce £yt
'J \%’ -—Jﬁ [/a J/ﬂ‘_)—— Coa (LT J—iTr'

which can be simplified to-

Ly ke ) Ty i A (0, s ad om gt
\/7"\/8 ForwyIEly < Z2°C i\
/gt 173 )
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This 1is the complete smlution for the voltage.
The first term gives the steady state condition and
the summation term glves the transient state. The
summation extends for all integral values of‘A_ from

zero to infinity.

The current expression can be obtained in the

same manner and 1is-
J Y kAN 26V T S era AL
\é ke LR L = £
{5/’“:/‘*»** LlnFE Camfpt
o 7% (o

Applying the condition of negligible conductance

()

or leakage, the above equations can be reduced to-

\%5<]..JE> . °ﬁi<zf’?tjf“*§%;£(izdexgtjzg_a7dtt)
g (o o)
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TRANSIENT SOLUTION OF AN ARTIFICIAL LINE

The general equations applicable to any artificial °

line are - ESJ \/: e (- Y
¢, =

F 2y pida X ik WX (6 £)

However, the input and output are the most considered
formulas, For the artificial line of negligible leak-

age, the serlies and shunt Impedances take the form-

Z\ 2 L“o'l' Q
X
1,_= CP
and- (b(")

Y = |+'T_CP<“P+R§

The detcsrminental solution is-

Ap) = 2, sk Y ik T O

hence
PAV SR S
or- e -
X - J L"- /4. - '/ 2'1‘3
T ==
then-

solving for P
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P = -—a—% ? }’?\‘c‘——ﬂ,c (/- eneL )
24

= - a * ,jrh¢»hd“f§ﬂ‘ —av
W

Taking the derivative of 2%]0)

D2(p) .
-—:§;~ . 7»21_4&u1~\ et s ;%%
However,
s \5%% - 2%%;‘*)': kq‘o-k-tﬁ?CL
then- ¢
22p) _ ez, (rep +L Re) CabwY
©

-‘-.-"'—L—’( +oo) Cra AT
P F )

As p approaches zero, the value of tal-X approaches
one. The series expansion for
x‘\-
sk 1+ 5 -~ - - =~
substitution for Y* gives =
kX = | + L (nepr+Eop)

and-

HE) ~ A, piake Y sihny = T

V=0
Substituting into the expansion formula

Vo, 7 -<f

=“-R +V nk{f‘"‘o")c“(‘r)

. v, v AT Lé
-’-

T == —_— -
= %R ek Calar) | 402 4E -

[ 2
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The frequency of the damped transient oscillation is-

[«‘) =~ V#V' “'Z- a>

If 3 1s very large
s AT > AT

2 2w
then the current takes the form of-

L = aéfi —————:—*“""_
'Ao
The summation on A is from zero to infinity. This

t-

equation is of the same form as that of the uniform
line. Hence in all transient solutions, the artifi-
cial 1line approximates the uniform line 1f the number

of sections 1is large.
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RESPONSE FUNCTION MEASUREMENTS

The response function,..a complex quantity
relating the input voltage to the output voltage, is

readlly obtained by measuring the amplitude and phase

shift. The amplitude response function of the artificial

line was obtained by using an audio oscillator as a
voltage source and making output voltage measurements

with a vacuum tube voltmeter,

A DuMont type 274 cathode ray oscilloscope

was used to determine the phase shift,
RO

A
zs
Z.
0n
»
T

(

R [T

Cincurt ‘de« (Phuc S)uff MCASure mcu‘ts

If two voltages of the same frequency are placed
on the vertical and horizontal plates of the cathode
ray tube, the resultant pattern on the screen will be
a stralght line if the two waves are in phase or 180
degrees out of phase, When a phase shift of 90 or
270 exists an ellipse will appear on the screen having
its major axlis in a vertical position. The angle

of the major axls determines the phase shift. E'll
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Voltage Measurements

Line Termination - 690 ohms resistance
Frequency v, Vo Vu /Vo
500 cps 10 v 1.5 v 15
1000 cps 10 1.9 19
2000 cps 10 2.1 o2l
3000 cps 10 1.4 14
4000 cps 10 1.7 17

5000 cns 10 1.2 .12
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Voltage Measurements

Line Termination - 1400 ohms resistance

Frequency Vv, v, V/ Vg |
500 cps 10 v l.6 v 16
1000 10 2.0 «<20
2000 10 3.0 « 30
2500 10 2.2 22
3000 10 l.4 ol4
3500 10 1.8 .18
4000 10 32 32
4500 10 2.4 24

5000 10 1.5 «15
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Phase Measurements

Liné Termination - 690 ohms resistance

Frequency Phase Shift
1000 cps 25T
2000 S0 T
3000 _ «401r
4000 J157

5000 1.257
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Phase Measurements

Line Termination 1400 ohms resistance

Frequency Phase Shift
1000 cps 40 T
2000 8 T
3000 4 W
4000 8 T

5000 1,2 T
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The amplitude response function with the line
terminated in the characteristic impedance exhibits
distortion in that 1t oscillates about a mean line
at approximately 0.19. This 1s expected in that the
ratiog does not equal the ratio % which is a
necessity if transmission of a signal 1s to be perfectly
distortionless. The fact that these curves indicate
the exlstence of echos 1s shown by comparing the curves
of the two terminations. With the termination of twice
the characteristic impedance, the amplitude function
deviates farther from a straight line as the termination
causes greater reflection which will give rise to more
echos., It would be possible to eliminate this distortion

if a means for varying the inductance in each section

of the line exlsted,

The phase function dld not show as great an
oscillation dafference in the two terminations as the
terminations contained no reactive components in thelir
Impedances. However, phase dilstortion is also present

in the line.
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The output of an impressed pulse function can
now be computed with the use of equation 41. The
mean amplitude for the frequency range of 1000 to
5000 cps 1is taken from the curves to be about 0.19.
The general tendency for the curve 1s to decrease
slightly but a flat respohse assumption will not
introduce toogreat an error. Tables for the Si C%)

function make plotting the response possible.
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CONCLUSION

Although experimental results of transient
behavior have not been obtalned in photographic
form, the sinusoidal behavior of networks present
the best method of determining pulse and step function
responses. In order that fidellty of transmission
can be observed, more equipment is needed. A multi-
trace oscilloscope with provisions for micro-second
timing 1s a necessity for thorough studles of transient
behavior, Time delays and variations of pulse widths
on fidelity can only be observed when both input
'and output can be viewed simultqmeously. Equipmznt
of this natpre would be a great asset but it would

also mean a large investment,

Various photographs have been obtained of trans-
mission phenomena with respect to given types of re-
sponse function curves and the results will apply to
the response curves for the M. S. C. Artificial Line.

This artificial line 1s well sulted for the demonstra-

tion of transmission line theory.
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