MAGNETIC LOSSES IN TRANSMISSION
 LINE TOWERS HAVING A ClOSED MAGNETIC

 PATH SURROUNDING ONE CONOUCTOR

 PATH SURROUNDING ONE CONOUCTOR
 Thesis for the Degree of M. S.
 Elias Morshed Sabbagh
 1928

thesis \rightarrow Elestric lines tyisterise Ficte

- Electrical eypuormy

Hignetic Lasses in transiissian
 LINE TOWERS HAV ING A CLOSED MAGNEMIC
 PAMH SURROUNDING ONE CONDUCTOR.

A Thesis Submitted to

The Fieculty of the

MICHIGAN STATE COLUTEE

By

Elias Morshed Sabbagh

Candidate for the Degree
of
Miaster of Science.

June 1928.

TABLE OF CONTINAS

Introduction 1
Acknowledgment 2
The Problem 3
Apparatus Used 3
The Geometry of the Loop 7
Theoretical Solution 10
Reasons Why Losses in Legs a and b are Unequal 27
Procedure to Obtain Results from the Oscillographic feadings 29
Sample Computation 32
Data and Results 37
Graphs of the Distribution of Loeses on the Legs of the Loop 65
Oscillogram of the Induced Currents on the Three Legs 74
Results from Experiment 75
Deduction of Laws 81
Goneral Formula and Check 84

The loop, line, and exploring coil.

Lany transmission lines have one conductor passing thr ough a closed loop of structural steel. Such is generally the case of lines in hilly countries, or whe three or more transmission line circuits are carried on the same tower stracture due to high cost of right of way, of transposition towers for double circuits, etc.

Up to the present diy it is customary in the design of a line, not to pay any attention to the magnetic losses in the towers, but for the saike of determining the facts we carried out such an investigation. Therefare, it is the purpose of tinis paper to investigate the losses in the loop and derive e formula by which it would be possible to compute the losses due to any current at any distance. although those losses do not amount to a great deal in one single tower, they should be taken into consi deration when the line is long and more perticularly when it is under much load. The amount of magnetic losses then is not negligible.

The losses causing heating in the structure of suostation are similar to the losses in the closed loop of the tower. at some points the heating is mexmum as illustrated at various points of the legs of the loop.

ACMONLLBDGENT

The author desires to express his indebtedness to the Commonwealth Power Corporation of lichickn for furnishing the necessary tower parts, to the Board of Water and Electric Light of the City of Lansing for lending transformers and supplying cables capable of carrying high currents. The author wishes also to express his appreciation to the staff mombers of the Electrical Engineering Department of tro michigan State College for the suggestions and help received from them, and to Wr. F: Mitchell for his collaboration.

HAGNETIC ROSSES IN TRANSMISSION TONERS HAVING

\triangle CLOSED MAGNEM IC PATH SURROUNDING ONE CONDUCTCR

The Problems
Hany transmission lines have one conductor passing through a triangular, rectangular or polygonal closed magnetic path formed by the structural steel of the tower. It is the purpose of this paper to determine the amount of the iron losses in the tower caused by induction. The triangular shaped magetic path was chosen as it is the most commonly used.

Procedures

A triangular shaped loop of structural steel was erected. A three phase transmission circuit was built. One conductor of the line went through the center of the loop, while the two other condactors were on the right and left side. The three conductars were in the same horizontal plane and at the same distance from the steel.

Hany exploring coils of known number of turns were womd around the three legs of the loop at intervals. The induced voltage in each coil was measured and recorded. By this means the fluxes induced in the loop at different points due to deferent currents were calculated. By using Steinmetz and the eddy current formulae the different losses were calculated and graphs plotted.

Apparatus useds
Due to the limitation in the available apparatus many schemes were planned for obtaining enough current in the line and for measuring the
losses. It was first thought that by means of current transformers it would be possible to obtain any desired current in the line. The secondary coils of three transformers were used as primaries, and the primary sides were connected to the line. Although a large amount of current was flowing in the secondaries (used as primaries) of the current transformers not enough current appeared in the line. This scheme was rejected after trying each of the following connections, Delta-Delta, Wye-wye, Delta-Wye, and Wye-Delta. Another set of current transformers was used but satisfactory results were not obtained.
\triangle canstant current transformer core was available in the laboratory. On it were mounted five coils designed to stand 5000 volts when in series. The core has three legs. It was planned to use one coil on each leg and the whole as a three phase transformer. The secondary being formed by winding two turns of the cable around ech leg.

This acheme was tried, about 1000 volts being applied on one coil of the primary. Enough current passed, in secondary line. The 1000 volts were obtained through a step up single phase transformer belonging to the laboratory. Two other similar transformers were necessary. Furthermore, they must be designed to carry 10 amps or their high volt age sides, as it takes 10 amps to energize the three phase coil and give the required current in the line. No transformers were found which could meet the requirements.

It was then found necessary to build a special transformer. The three legged core was used. Forty-five turns of No. 13 cable on each leg constituted the primary coils of the transformer and two turns of the line cable the secondary coils. The connection was mside a Wye-Hye.

To change the current in the line the applied voltage was changed by changing the field of the supply alternator in the laboratory. The speed was always kept constant giving a constant frequency of 60 cycles. The current in the line was measured by a step down current transformer. The free end of the line wes short circuited to give the different high currents.

It was then necessary to find out a mans to measure the voltages induced in the coils. The voltages induced in a one hundred turn coil was estimated not to exceed 1.5 volts. Low A.C. Voltmeters were not available and those found on the maricet did not satisfy the requirements due to their low resistance. Voltmeters with high resistances allowing but a fraction of an ampere to flow in them was necessary, on account of the back ampere-turns which tend to oppose the inducing flux.
A.C. galvanometers or vacuum tube voltmeters could have been used if available.
$\Delta 11$ meters were shielded to protect their coils against the direct effect of magnetic lines around the conductors. Fur thermore, the leads to the measuring instruments were run perpendicularly to the conductors and for more safety, twisted around each other.

An oscillograph was used to measure the induced voltage. The wave on each vibrating element was examined and when found to be sinusoidal was accurately measured. To measure the wave it was included between two boundaries of light projected by the two other elements thus giving twice its maximum value. The distance between the t wo lines was then measured and recorded. The oscillograph was calibrated at different intervals, using the same leads as those used to record the wave.

Thus with the instruents available in the department it was possible to perform the tests and get accurate results.

In regard to the exploring coils, it was first thought possible to use some coils available in tine department. When tried it was found that a large voltage was induced in the coils, much larger than was expected. It was discorered that tinis voltage was largely due to a direct induction fyom the line to the coils. Two similar coils were then used. One was put around a steel leg and the other outside of it. The two were under similar conditions with respect to the line. They were connected so as to oppose each other. The oscillograph was then used to register the difference in voltages, viz, the voltage due to the flux in the iron tower. This was found to be small.

Due to the fact that at different points on each leg the flux varies, it was decided to build very narrow exploring coils so as to give voltages in a narrow piece of steel. on the other hand, due to the direct induction from the line, the exploring coils were wound as thin as possible.

In this test the coils were wound with one hundred turns of very thin wire (B. \& S. No. 27). They were then put around the legs of the loop and given the same shape, viz., they were bound in the contour of the legs. In this manner the influence of the flux from the lines was reduced to a minimum.

By examining the figure
it is clearly seen that the
fluxes in the three legs
were mequal. Further-
more, as will be shown
later, the flux in c
was smaller than either

that in a or b. on the
Other hand, due to the symmetry of the figure, when under balanced load the number of lines in a and b were equal.

From another point it was assumed throughout tnis test that leg a shielded both legs b and c against the magnetic effect of the current Plowing in conductor a and that leg b shielded both legs a and c agsinst the current flowing in b. Thus the flux induced in leg c is due to conductor c only while that in a and b is due to a and c, and b and c respectively. The necessity for using different exploring coils at different points along the legs is seen from the fact that the flux was not uniform in any leg. This will be mathematically proven later.

Consider one leg a and let us study the magnetic effect in a due to current flowing in lines a and c.

CII is perpendicular and bisects the leg. (cy $=1 / 2 C Q)$.
AP is another perpendicular fram a.
If the effect of c alone is considered, the maximum flux would be at point M , according to the formula

$$
I=/ \alpha \frac{12 I}{r} \text { lines per square centimeter }
$$

where r is the distance in centimeters, I the current in amperes, and
ρ^{μ} the permeability.
If the effect of a is considered, maximum flux is at P.
Due to the fact that both fluxes are alding and that R is at same distance from a and c the maximum flux would be at R.

It is to be noted that the flux at PO is largely due to currents in a. Lt 0 the flux is small.

At Q the $f l u x$ is mostly due $t o c$ and is nearly equal to that on the corners of leg c.

That point P does not fall on 0 can be proven as follows:
$\Delta P=C M$, being perpendicular and conductors a and care at the same distance from QO.

We further have for the same reason $C M=C Y=a P=a S$
If P falls at 0 then $20=2 S$. Therefore 20 is perpendicular to YS and QO or in triangle aOS

$$
\begin{aligned}
a S & =a 0 \\
\text { Angle } a S O & =a 0 S=90^{\circ} \quad \text { which is impossible. }
\end{aligned}
$$

Therefore, P cannot fall on 0 , viz. the perpendiculars drewn from the outside conductors do not fall at the joints of the legs.

The value of z in terms of r is found as follows:

$$
\begin{aligned}
\text { QII } & =r \tan 60 \\
& =r \operatorname{VB} \\
& =1.73205 r \\
\text { MR } & =r \tan 30 \\
& =r \sqrt{\frac{1}{3}} \\
& =0.57735 r \\
\mathbb{M P} & =2 \mathrm{NR} \\
& =1.1547 \mathrm{r}
\end{aligned}
$$

$$
\begin{aligned}
Q P & =1.73205 \mathrm{r}+1.547 \mathrm{r} \\
& =\mathbf{r}[2.88675] \\
Z & =\sqrt{(2.88675 \mathrm{r})^{2}+\mathbf{r}^{2}} \\
& =\mathbf{r}[\sqrt{9.333}] \\
& =3.05504 \mathrm{r}
\end{aligned}
$$

To find g in terms of r

$$
\begin{aligned}
& P O=G H-\mathbb{N} \\
& =1.73205 r-1.1547 r \\
& =.57735 \mathrm{r} \\
& \therefore g=\sqrt{\mathrm{r}^{2}+(0.57735 \mathrm{r})^{2}} \\
& =1.1547 \mathrm{r} \\
& \text { oun }=C P=\frac{\sqrt{4 r^{2}}+r^{2}}{3} \\
& =r \sqrt{\frac{7}{3}} \\
& =1.5275 \mathrm{r} \\
& \mathrm{CR}=\mathrm{Ra}=\frac{\mathrm{r}}{\operatorname{Cos} 30} \\
& =1.1547
\end{aligned}
$$

Consider now this
other figure. The
flux at any point along
$X Y$ can be found in
terms of the flux at x
and the angle θ. The

plux at x is

$$
B=\mu \frac{e^{2} I}{r}
$$

-
- - .

At m it is

$$
\begin{aligned}
B_{m} & =\mu \frac{\mu I I}{C m} \\
& =\mu \frac{e^{2} I \cos \theta}{r} \\
& =B_{x} \cos \theta
\end{aligned}
$$

Theoretical solutions
Assume a conductor
carrying a current I abamperes
flowing as shown in the figure.
It is required to know the
magnetic intensity at a point
P outside of that conductor.

To solve this problem consider
an element of length $d x$ at distance in centimeters from P. By Coulomb's
law the effect of that element on a point I centimeters away is

$$
d H=\frac{I d x}{L^{2}} \cos \theta
$$

Therefore the effect of the total wire is

$$
H=J_{-}^{+} \frac{I \operatorname{Cos} \theta}{I^{2}} \mathrm{dx}
$$

assuming the conductor to be very long.
From the figure we have

$$
x=r \tan \theta
$$

Therefore

$$
d x=r \sec ^{2} \theta d \theta
$$

Also

$$
L=\frac{r}{\cos \theta}
$$

Inserting these values in the above expression

$$
H=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{I \cos \theta r \sec ^{2} \theta}{\frac{r^{2}}{\cos ^{2} \theta}} d \theta
$$

This becomes

$$
\begin{aligned}
H & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{I \cos \theta}{r} d \theta \\
H & =\frac{I}{r}[\sin \theta]^{\frac{\pi}{2}} \\
& =\frac{2 I}{r}
\end{aligned}
$$

If I is in amperes

$$
H=\frac{2 I}{r} \text { gausses }
$$

If the point P is in a material having μ permeability

$$
B=\mu \frac{2 I}{I} \text { Iines per square centimeter }
$$

This is one of the fundamental formala applicable here.

In alternating current if the waves are sinusoidal and time properly chosen the current at any instant may be expressed as

$$
i=I_{\max } \operatorname{Sin} w t
$$

where wis the angular velocity

$$
W=2 \pi f
$$

and t the t ime in seconds.

The instantaneous current i produces a flux Q. Dae to the fact that is varying Q is varying too. In eny material which has a constant permeability the flux wave has the same shape as the current wave. Due to the fact that the flux density in the tower legs is low it can be assumed that the permeability of the steel within the boundaries used is constant and therefore the flux wave is sinusoidal.

Therefore
It was seen that

$$
\begin{aligned}
& Q=Q_{m} \sin W t \\
& Q=\frac{\mu I}{I} A
\end{aligned}
$$

where A is cross section area.

Therefore

$$
a_{m}=\rho \frac{\rho I_{m}}{r} \Delta
$$

$$
{ }_{-}^{-}
$$

and

$$
Q=\mu \frac{\alpha^{2} I_{m} \sin w t}{r} A
$$

In a balanced three phase system the currents are 120° apart.
Assuming the
currents to be
$i_{a}=I_{m} \sin w t$
$i_{b}=I_{m} \sin (w t+120)$
$I_{0}=I_{m} \sin (w t+240)$
Therefore, the general
formulee for the fluxes

due to the three currents are:
and

$$
\begin{aligned}
& Q_{a}=Q_{m} \sin w t=\mu \frac{\rho I_{m} A \sin w t}{r} \\
& Q_{b}=Q_{m} \sin (w t+120)=\mu \frac{\rho I_{m}}{r} \Delta \sin (w t+120) \\
& Q_{c}=Q_{m} \sin (w t+240)=\frac{\mu}{\mu} \frac{2 I_{m}}{r} A \sin (w t+240)
\end{aligned}
$$

First, to find the fluxes at diferent points on leg a viz. at
Q, M, R, P and 0 .
Ob has no effect on leg a because leg b is acting as a shield to log a against current in conductor b.

The flux at o due to current a is

$$
\begin{aligned}
Q_{a-0} & =0 \frac{e^{2} I_{m}}{1.154^{7} r} \sin w t \\
c & =\rho \Lambda
\end{aligned}
$$

where
The flux at 0 due to C is

$$
Q_{c-0}=0 \frac{2^{2} I_{m}}{2 r} \sin (w t+240)
$$

Therefore the total flux at 0 is

$$
\dot{\psi}_{t-0}=Q_{2-0}-Q_{c \rightarrow 0}
$$

$$
Q_{t-0}=C \frac{2 I_{m}}{r}\left[\frac{\sin w t}{1.1547}-\frac{\sin (w t+240)}{2}\right]
$$

Similarly the fluxes at P. R. M and Q are respectively

$$
\begin{aligned}
& Q_{t-P}=C \frac{2 I_{m}}{r}\left[\sin w t-\frac{\sin (w t+240)}{1.5275}\right] \\
& Q_{t-\mathbb{L}}=0 \frac{2 I_{m}}{1.1547 r}[\sin w t-\sin (w t+240)] \\
& Q_{t-I I}=C \frac{2 I_{m}}{r}\left[\frac{\sin w t}{1.5275}-\sin (w t+240)\right] \\
& G_{t-Q}=C \frac{2 I_{m}}{r}\left[\frac{\sin w t}{3.05504}-\sin (w t+240)\right]
\end{aligned}
$$

On the other hand

$$
e=-\pi \frac{d Q}{d t} 10^{-8}
$$

Therefore

$$
\begin{aligned}
\theta_{0} & =-N O \frac{\Omega^{2} I_{m}}{r} 10^{-8} \frac{d}{d t}\left[\frac{\sin w t}{1.1547}-\frac{\sin (w t+240)}{2}\right] \\
& =-N C \frac{2 I_{m}}{r} 10^{-9}\left[\frac{w \cos w t}{1.1547}-\frac{w \cos (w t+240)}{2}\right] \\
& =-Z\left[\frac{\cos w t}{1.1547}-\frac{\cos (w t+240)}{2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
K & =N C \frac{2 I_{m} 10^{-9} w}{r} \\
e_{0} & =-K\left[\frac{\cos w t}{1.1547}-\frac{\cos w t \cos 240-\sin w t \sin 240}{2}\right] \\
& =-K[.866 \cos w t+.25 \cos w t-.433 \sin w t] \\
& =-K[1.116 \cos w t-.433 \sin w t]
\end{aligned}
$$

Its maximum value occurs when

$$
\begin{aligned}
-1.116 \sin w t & =.433 \mathrm{Cos} w t \\
\tan w t & =-.388 \\
w t & =158^{\circ} 45^{\prime} \\
w t & =-21^{\circ} 15^{\prime}
\end{aligned}
$$

Its minimum is then

$$
e_{o m}=-K[1.116 \times .93201+(.433 \times .36244)]
$$

$$
\begin{aligned}
e_{o m} & =-K[1.04012+.156936] \\
& =-1.19705 \mathrm{~K}
\end{aligned}
$$

and its maximum

$$
\begin{aligned}
\Theta_{\text {om }} & =-K[1.116 \times(-.93201)-(.433 \times .36244)] \\
& =+1.19705 K
\end{aligned}
$$

Similarly

$$
\begin{aligned}
e_{P} & =-K\left[\operatorname{Cos} w t-\frac{\operatorname{Cos}(w t+240)}{1.5275}\right] \\
& =-K[\operatorname{Cos} w t+.327233 \operatorname{Cos} w t-.56693 \text { sin wt }] \\
& =-K[1.327 \operatorname{Cos} w t-.566 \sin w t]
\end{aligned}
$$

Its minimum occurs when

$$
\begin{aligned}
\tan w t & =-.42652 \\
w t & =-23^{\circ} 6^{\circ}
\end{aligned}
$$

Its maximum when

$$
w t \neq 156^{\circ} 54^{\circ}
$$

It is then

$$
\begin{aligned}
e_{o m} & =+K[1.327 \times .91982+.566 \times .39234] \\
& =K[1.2206+.22206] \\
& =1.4426 \mathrm{~K} \\
\theta_{B} & =-K[.866 \cos w t+.433 \operatorname{Cos} w t-.75 \sin w t] \\
& =-K[1.299 \operatorname{Cos} w t-.75 \sin w t]
\end{aligned}
$$

It maximum value occurs when

$$
\begin{aligned}
\tan w t & =-.577 \\
w t & =150
\end{aligned}
$$

It is then

$$
\begin{aligned}
\theta_{\text {RII }} & =K[1.299 \times .86603+.75 \times .5] \\
& =[1.1249+.375] \mathrm{K} \\
& =1.5 \mathrm{~K}
\end{aligned}
$$

- .
- $\quad-$

.-
-

\therefore

- -
-
- -

.-
-
-
-
-
-

$$
\begin{aligned}
\mathcal{G}_{\text {K }} & =-\mathbb{R}\left[\frac{\operatorname{Cos} w t}{1.5275}-\cos (w t+240)\right] \\
& =-\mathbb{K}[.6546 \operatorname{Cos} w t+.5 \cos w t-.866 \sin w t] \\
& =-\mathbb{K}[1.1546 \operatorname{Cos} w t-.866 \sin w t]
\end{aligned}
$$

Its maximum is when

$$
\begin{aligned}
\tan w t & =.75 \\
w t & =143^{\circ} 7
\end{aligned}
$$

It is then

$$
\begin{aligned}
\theta_{\operatorname{Mm}} & =K[.5196+.9235] \\
& =K[1.4431] \\
\theta_{Q} & =-K\left[\frac{\cos w t}{13.05504}-\frac{\operatorname{Cos}[w t+240)}{2}\right] \\
& =-K[.3273 \cos w t+.25 \cos w t-.433 \sin w t] \\
& =-K[.5773 \cos w t-.433 \sin w t]
\end{aligned}
$$

It has its maximum value when

$$
\begin{aligned}
\tan w t & =.75 \\
w t & =143^{\circ} 7
\end{aligned}
$$

It is then

$$
\begin{aligned}
\text { eng } & =\mathrm{B}[.5773 \times .79986+.433 \times .60019] \\
& =\mathrm{K}[.4617+.2598] \\
& =.7215 \mathrm{~K}
\end{aligned}
$$

Leg b

$$
Q_{a} \text { has no effect on leg }
$$

' 'b''. The flux at 0^{\prime} due to current
b is
$Q_{b=0}=C \frac{2 I_{m}}{1.1547 r} \sin (w t+120)$
The flux at 0° due to c is
$Q_{0 P 0}=C \frac{e^{2} I_{m}}{2 r} \sin (w t+240)$

Therefore the total flux at O^{\prime} is

$$
\begin{aligned}
& Q_{t-0^{\prime}}=Q_{m-0^{\prime}}-Q_{c-0^{\prime}} \\
& Q_{t-0^{\prime}}=\frac{C \frac{e_{m}}{r}\left[\frac{\sin (w t+120)}{1.1547}-\frac{\sin (w t+240)}{2}\right]}{r}
\end{aligned}
$$

Similarly the flux is at $P^{\prime}, R^{\prime}, M^{\prime}$ and Q are respectively

$$
\begin{aligned}
& Q_{t-P^{\prime}}=\frac{C-2 I_{m}}{r}\left[\sin (w t+120)-\frac{\sin (w t+240)]}{1.5275}\right. \\
& Q_{t-H^{\prime}}=C \frac{{ }^{2} I_{m}}{r 1.1547}[\sin (w t+120)-s \ln (w t+240)] \\
& Q_{t-11^{\prime}}=C \frac{e^{2} I_{m}}{r}\left[\frac{\sin (w t+120)}{1.5275}-\sin (w t+240)\right] \\
& Q_{t-Q}=C-\frac{2 I_{m}}{}\left[\frac{\sin (w t+120)}{3.05504}-\frac{\sin (w t+240)}{2}\right\}
\end{aligned}
$$

Consequent ly

$$
\begin{aligned}
& \theta_{0}=-N C \frac{L_{m}}{r} 10^{-\theta} \frac{d}{d t}\left[\frac{\sin (w t+120)}{1.1547}-\frac{\sin (w t+240)}{2}\right] \\
& =-N C \frac{2 I_{m}}{r} 10^{-9} w\left[\frac{\cos (w t+120)}{1.1547}-\frac{\cos (w t+240)}{2}\right] \\
& =-K[.866 \cos (w t+120)-.5 \cos (w t+240)] \\
& =-K[.866(-.5 \cos w t-.866 \sin w t)-.5(-.5 \cos w t+ \\
& =K[.433 \cos w t+.75 \sin w t-.25 \cos w t+.433 \sin w t] \\
& =K[.183 \cos w t+1.183 \sin w t]
\end{aligned}
$$

It has its meximum when

$$
\begin{aligned}
.183 \sin w t & =1.183 \cos w t \\
\tan w t & =\frac{1.183}{.183} \\
& =6.464 \\
w t & =81^{\circ} 12.6^{\prime}
\end{aligned}
$$

-. - .
-
1 -
-

- -
- 1 -
-

.
-

It is then

$$
\begin{aligned}
\text { A Ino }^{0} & =K[.183 \times .15281+1.183 \times .98825] \\
& =K[.02796+1.16909] \\
& =K[1.19705
\end{aligned}
$$

Sinilarly

$$
\begin{aligned}
& E_{P^{\prime}}=-K\left[\cos (w t+120)-\frac{\cos (w t+240)}{1.5275}\right] \\
&=K\left[.5 \cos w t+.866 \sin w t-\frac{5 \cos w t-.866 \sin w t}{1.5275}\right] \\
&=K[.5 \cos w t+.866 \sin w t-.327233 \cos w t+.56693 \sin w t] \\
&=K[172767 \cos w t+1.33293 \sin w t]
\end{aligned}
$$

It nas its maximum when

$$
\begin{aligned}
.173 \sin w t & =1.3332 \cos w t \\
\tan w t & =7.7151 \\
w t & =82^{\circ} 36^{\circ} .4
\end{aligned}
$$

It is then

$$
\begin{aligned}
\mathrm{E}_{\mathrm{KP}}{ }^{\prime}= & K[.173 \times .12870+1.3329 \times .99168] \\
= & K[.0222651+1.32191] \\
& =K[1.344175] \\
\mathrm{F}_{\mathrm{R}^{\prime}}= & -K[.866 \cos (w t+120)+.433 \mathrm{cos} w t-.75 \sin w t)] \\
= & -K[.866(-.5 \cos w t-.866 \sin w t)+.433 \cos w t-.75 \\
= & K[.433 \cos w t+.75 \sin w t-.433 \cos w t+.75 \sin w t] \\
= & K[1.5 \sin w t]
\end{aligned}
$$

This is maximum when

$$
\begin{aligned}
\sin w t & =1 \\
w t & =90
\end{aligned}
$$

It is then

$$
E_{M R^{\prime}}=1.5 \mathrm{~K}
$$

$$
\begin{aligned}
& \theta_{t-1: 1}=-K\left[\frac{\cos (w t+120)-\cos (w t+240)}{1.5275}\right] \\
&=K[.6546(.5 \cos w t+.866 \sin w t)-.5 \cos w t+.866 \\
&\sin w t] \\
&=K[.3273 \cos w t+.5668 \sin w t-.5 \cos w t+.866 \sin w t] \\
&=\mathbb{K}[1.4328 \sin w t-.1727 \cos w t]
\end{aligned}
$$

This is maximum when

$$
\begin{aligned}
1.4328 \cos w t & +.1727 \sin w t=0 \\
\tan w t & =-8.2964 \\
w t & =96^{\circ} 52.4^{\circ}
\end{aligned}
$$

It is then

$$
\begin{aligned}
& e_{m i n}=K[1.4328 \times .99281+.1727 \times .11968] \\
&=K[1.42249+.02066] \\
&=K[1.44315] \\
& E_{\alpha}=-K\left[\frac{\cos (w t+120)}{3.05504}-\frac{\cos (w t+240)}{2}\right] \\
&=K[.3273(.5 \cos w t+.866 \sin w t)+.5(-.5 \cos w t+ \\
&.866 \sin w t)] \\
&=K[.16365 \cos w t+.28344 \sin w t-.25 \cos w t+.433 \sin w t] \\
&=K[-.08635 \cos w t+.71644 \sin w t]
\end{aligned}
$$

This is maximum when

$$
.08635 \sin w t+.71644 \cos w t=0
$$

or

$$
\tan w t=-8.296
$$

$$
w t=96^{\circ} 52.4^{\circ}
$$

Its value is them

$$
\begin{aligned}
E_{\text {mQ }} & =K[.08635 \times .11968+.71644 \times .99281] \\
& =K[.010334+.711288] \\
& =K[.721622]
\end{aligned}
$$

Leg c
The flux at F is
$Q_{C_{-F}}=C \frac{e_{m} I_{m}}{r} \sin (w t+240)$
Therefore the voltage at F is

$$
\begin{aligned}
\theta_{c-F} & =N C \frac{e^{2} I_{m} w \cos (w t+240)}{r} \\
& =-K \cos (w t+240) \\
& =-K[-.5 \cos w t+.866 \sin w t] \\
& =K[.5 \cos w t-.866 \sin w t]
\end{aligned}
$$

It has its maximum value when

$$
\begin{aligned}
-.5 \sin w t & =.866 \cos w t=0 \\
\tan w t & =-1.732 \\
w t & =300
\end{aligned}
$$

It is then

$$
\begin{aligned}
\theta_{\mathrm{m}} & =K[.5 \times .5-(-.866 \times .866)] \\
& =K \\
F O & =r \sqrt{3} \\
& =1.732 \mathrm{r} \\
\mathrm{FE} & =.866 \mathrm{r} \\
\mathrm{CE} & \left.=\nabla_{r^{2}+(.866 \mathrm{r}}\right)^{2} \\
& =r \sqrt{\frac{r}{4}} \\
& =\frac{r}{2} \sqrt{7} \\
& =\frac{r}{2}(2.6457)=1.3228 \mathrm{r} \\
\Theta_{\mathrm{C}-\mathrm{E}} & =\mathrm{K}\left[\frac{5 \cos \mathrm{wt}}{1.3228}-\frac{.866}{1.3228} \sin \mathrm{wt}\right]
\end{aligned}
$$

$=K[.3779$ oos wt - . $6546 \mathrm{sin} w t]$
It has its maximurn : when

$$
w t=300^{\circ}
$$

It is then

$$
\begin{aligned}
\theta_{\mathrm{CE}} & =K[.3779 \times .5+(.6546 \times .866)] \\
& =K[.18895+.56688] \\
& =.75583 \mathrm{~K} \\
\theta_{0} & =K\left[\frac{5 \cos w t}{2}-\frac{.866}{2} \sin w t\right] \\
& =K[.25 \cos w t-.433 \text { sin } w t]
\end{aligned}
$$

It has its maximum when

$$
w t=300
$$

It is then

$$
\begin{aligned}
\Theta_{m-0} & =K[.25 \times .50+.433 \times .866] \\
& =K[.125+.385] \\
& =K[.50] \\
& =.2235 \mathrm{~K}
\end{aligned}
$$

It is to be noticed that there is a phase angle between the different voltaces at different points on the lower halves of legs a and b. This difference in the phase angle on the same leg is very small, being only 15° on legs a and b. The upper halves have the same angle or a very small difference in phase angle. Thts constancy in the angles shows that the flux in the upper halves is almost a pulsating plux, viz. it is largely due to the current in conductor c.

Leg c has no difference in its voltage phase angles at different points. The voltages along c are in phase.

On the other hand, the voltage is proportional to the flux, thus

$$
Q_{m}=D \nabla
$$

Therefore, the fluxes at different points is proportional to their voltages. The fluxes on leg a at $0, P, R, M$ and Q are respectively

$$
\begin{aligned}
& Q_{m o}=D[1.19705 \mathrm{~K}] \\
& Q_{m P}=D[1.4426 \mathrm{~K}] \\
& Q_{\mathrm{mR}}=D[1.5 \mathrm{~K}] \\
& Q_{\mathrm{ma}}=D[1.4431 \mathrm{~K}] \\
& Q_{\mathrm{m}} Q=D[.7215 \mathrm{~K}]
\end{aligned}
$$

where D is a constant depending upon frequency and number of turns. Similarly on leg b the fluxes at $0^{\circ}, P^{0}, R^{\prime}, L^{\prime}$, and Q^{\prime} are respectively

$$
\begin{aligned}
& \varepsilon_{m O^{\prime}}=D[1.19705 \mathrm{~K}] \\
& \varepsilon_{m P^{\prime}}=D[1.34475 \mathrm{~K}] \\
& G_{m R^{\prime}}=D[1.5 \mathrm{~K}] \\
& Q_{m M^{\prime}}=D[1.44315 \mathrm{~K}] \\
& Q_{\mathrm{mg} \mathrm{G}^{\prime}}=D[.7216 \mathrm{~K}]
\end{aligned}
$$

The average Flux on a or b is

$$
\begin{aligned}
C_{m} & =\frac{D K}{S}[1.19705+1.4426+1.5+1.4431+.7215] \\
& =D[1.26085]
\end{aligned}
$$

on leg 0

$$
\begin{aligned}
Q_{m 0} & =D[.2235 \mathrm{~K}] \\
Q_{m E} & =D[.75583 \mathrm{~K}] \\
Q_{m P} & =D[1.000 \mathrm{~K}] \\
Q_{m D} & =D[.75583 \mathrm{~K}] \\
Q_{m 0^{\prime}} & =D[.2235 \mathrm{~K}] \\
Q_{m} & =\frac{D K}{S}[2.95866] \\
& =D[.59173 \mathrm{~K}]
\end{aligned}
$$

Therefore the flux in each of the legs a and b is about
$\frac{1.26085}{.59173}$ times the Plux in c
or

$$
Q_{a}=Q_{b}=2.13 Q_{c}
$$

The hysteresis losses in a and b are $(2.13)^{1.6}$ times those in c, or

$$
\begin{aligned}
P_{h a}=P_{h b} & =(2.13)^{1.6} P_{h c} \\
& =3.3528 P_{h c}
\end{aligned}
$$

The eddy current losses in a and b are each $(2.13)^{2}$ times those in c

$$
\begin{aligned}
P_{e a}=P_{e b} & =(2.13)^{2} P_{e c} \\
& =4.5369 P_{e c}
\end{aligned}
$$

If all the losses were due to hysteresis alone, the total losses in each of the legs a and b would have been

$$
P_{t a}=P_{t b}=3.3528 \mathrm{P}_{\mathrm{hc}}
$$

Viz. the losses in c would then be only $\frac{1}{7.7056}$ of the total losses or about 13\%.

If all the losses were due to eddy current al one, the total losses in each $\operatorname{leg}(a$ and $b)$ would have been

$$
P_{t a}=P_{t b}=4.5369 P_{t c}
$$

Viz. the losses in c would then be $\frac{1}{10.0738}$ of tine total losses or about 10% 。

The actual losses in c are between those two values, viz. between 10 and 13% while from 43 to 45% of the total will be the losses in each of the legs a and b.

Leg c was not shielded by any line. Under present conditions the values of voltages at different points on leg care different from what
-
-
-
-
-
-
was found previously. To calculate these voltages procede as follows:

$$
\begin{aligned}
& \Delta 0=1.1547 \mathrm{r} \\
& S_{0}=.57735 \mathbf{b} \\
& \mathrm{EO}=.866 \\
& C 0=2 r \\
& C B=1.3228 \mathrm{r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left.\dot{\Delta E}=\sqrt{r^{2}+(1.443 r}\right)^{2} \\
& =r V I+2.082249 \\
& =1.755 \mathrm{r} . \\
& \Delta F=\sqrt{r^{2}+(.57735+1.732)^{2} r^{2}} \\
& =r \overline{1+5.331481} \\
& =2.516 \mathrm{r} . \\
& A D=r \sqrt{2+(.57735+2.598)^{2}} \\
& =r \sqrt{1+10.080625} \\
& =3.33 \mathrm{r} . \\
& \Delta O^{\prime}=r \sqrt{1+(.57735+3.464)^{2}} \\
& =r \sqrt{1+16.329681} \\
& =4.163 \mathrm{r} \text {. } \\
& Q_{0}=C\left[\frac{\sin w t}{1.1547}+\frac{\sin (w t+120)}{4.163}+\frac{\sin (w t+240)}{2}\right] \\
& Q_{E}=C\left[\frac{\sin w t}{1.775}+\frac{\sin (w t+120)}{3.33}+\frac{\sin (w t+240)}{1.3228}\right] \\
& Q_{F}=C\left[\frac{\sin w t}{2.516}+\frac{\sin (w t+120)}{2.516}+\sin (w t+240)\right] \\
& C_{D}=C\left[\frac{\sin w t}{3.33}+\frac{\sin (w t+120)}{1.755}+\frac{\sin (w t+240)]}{1.3228}\right] \\
& Q_{0}=C\left[\frac{\sin w t}{4.163}+\frac{\sin (w t+120)}{1.1547}+\frac{\sin (w t+240)}{2}\right]
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& e_{0}=-K\left[\frac{\cos w t}{1.1547}+\frac{\cos (w t+120)}{4.163}+\frac{\cos (w t+240)}{2}\right] \\
&=-K[.866 \cos w t+.2402(\cos w t+120)+.5(\cos w t+240)] \\
&=-K[.866 \cos w t-.2403(.5 \cos w t+.866 \sin w t)-.5 \\
&(.5 \cos w t-.866 \sin w t)] \\
&=-K[.866 \cos w t-.1201 \cos w t-.2080 \sin w t-.25 \cos w t \\
&+.433 \sin w t] \\
&=-K[.4959 \cos w t+.225 \sin w t]
\end{aligned}
$$

It has its maximum value when

$$
\begin{aligned}
.4959 \sin w t & =.225 \cos w t \\
\tan w t & =.45372 \\
w t & =204^{\circ} 24.6^{\prime}
\end{aligned}
$$

It is then

$$
\begin{aligned}
\theta_{o m} & =K[.4959 \times .9106+.225 \times .41326] \\
& =K[.45165+.09298] \\
& =.54463 \mathrm{~K} . \\
e_{\mathrm{E}} & =-K\left[\frac{\cos w t}{1.755}+\frac{\cos (w t+120)}{3.33}+\frac{\cos (w t+240)}{1.3228}\right] \\
& =-K[.5698 \cos w t+.3 \cos (w t+120)+.7559 \cos (w t+240)] \\
& =-K[.5698 \cos w t+.3(-.5 \cos w t-.866 \sin w t)+.7559 \\
& =-K[.5698 \cos w t-.15 \cos w t-.2598 \sin w t-.37795 \cos w t \\
& =-K[.0419 \cos w t+.3948 \sin w t]
\end{aligned}
$$

This is maximum when

$$
\begin{aligned}
.0419 \sin w t & =.3948 \cos w t \\
\tan w t & =9.42243 \\
w t & =263^{\circ} 56.6^{\prime}
\end{aligned}
$$

It is them

$$
\begin{aligned}
& \theta_{E}=K[.0419 \times .1055+.2948 \times .99442] \\
&=K[.00442+.39259] \\
&=.39701 \mathrm{~K} \\
& \theta_{F}=-K\left[\frac{\cos w t}{2.516}+\frac{\cos (w t+120)}{2.516}+\cos (w t+240)\right] \\
&=-K[.3974 \cos w t+.39740-.5 \cos w t-.866 \sin w t)-(.5 \cos \\
&=-K[.3974 \cos w t-.1987 \cos w t-.344148 \sin w t-.5 \cos -1 n \\
&w t+.866 \sin w t] \\
&=K[.3013 \cos w t-.522 \sin w t]
\end{aligned}
$$

This is maximum when

$$
\begin{aligned}
-.3013 \sin w t & =.522 \cos w t \\
\tan w t & =-\frac{.522}{.3013} \\
\tan w t & =-1.7324 \\
w t & =300
\end{aligned}
$$

It is then

$$
\begin{aligned}
\theta_{\mathrm{Fm}} & =\mathrm{K}[.3013 \times .5+.522 \times .866] \\
& =\mathrm{K}[.15065+.452052] \\
& =K[.600702] \\
& =.600702 \mathrm{~K} \\
\Theta_{D} & =-K\left[\frac{\cos w t}{3.33}+\frac{\cos (w t+120)}{1.755}+\frac{\cos (w t+240)}{1.3228}\right] \\
& =-K[.3 \cos w t+.5698 \cos (w t+120)+.755 \cos (w t+240)] \\
& =-K[.3 \cos w t+.5698(-.5 \cos w t-.866 \sin w t)+.7559 \\
& =-K[.3 \cos w t-.2849 \cos w t-.4934 \sin w t-.37795 \cos \\
& =K[.3629 \cos w t-.1612 \sin w t]
\end{aligned}
$$

It has its maximum value when

$$
-.3629 \sin w t=.1612 \cos w t
$$

-
- -

. ${ }^{-}$

- \square
- -

$\therefore \quad-$

- -
-

-

- -
-

$$
\begin{aligned}
\tan w t & =-.4442 \\
w t & =336^{\circ} 3
\end{aligned}
$$

It is then equal to

$$
\begin{aligned}
& \Theta_{\mathrm{Dm}}=\mathrm{K}[.3629 \times .9139+.1612 \times .40594] \\
&=K[.33165+.07543] \\
&=.40708 \mathrm{~K} \\
& \theta_{0^{\prime}}=-K\left[\frac{\cos w t}{4.163}+\frac{\cos (w t+120)}{1.1547}+\frac{\cos (w t+240)}{2}\right] \\
&=-K[.2402 \cos w t+.866 \cos (w t+120)+.5 \cos (w t+240)] \\
&=-K[.2402 \cos w t+.866(-.5 \cos w t-.866 \sin w t)+.5 \\
&(-.5 \cos w t+.866 \sin w t)] \\
&=-K[.2402 \cos w t-.433 \cos w t-.75 \sin w t-.25 \cos w t \\
&+.433 \sin w t] \\
&=K[.4428 \cos w t+.317 \sin w t]
\end{aligned}
$$

It is maximum when

$$
\begin{aligned}
.4428 \sin w t & =.317 \cos w t \\
\tan w t & =.7158 \\
w t & =35^{\circ} 35.6^{\circ}
\end{aligned}
$$

It is then equal to

$$
\begin{aligned}
\Theta_{\text {OMI }} & =K[.4428 \times .81315 \pm .317 \times .58200] \\
& =K[.36006+.18449] \\
& =.54455 \mathrm{~K}
\end{aligned}
$$

We thus see that under these conditions we have a rotating flux In leg c. The voltages at different points of the legs reach their maxima at different times. Mhis was found to be tme experimentally.

Reasons why losses in legs a and b are unequal.
Although due to summetry the fluxes in legs a and b should be equal, in the test they were found to be unequal. This was due to the fact that the currents were not 120° apart as assumed in the theory. The impedances of the three current transformers were unequal in value and the fluxes in the potential transormer were not exactly 120° apart. To prove this last statement
assume I_{1}, I_{2}, and I_{3} to be the three instantaneous
magnetizing currents, \mathbb{C}_{1}, Q_{2}, and Q_{3} the instantaneous fluxes, $2 R$ the reluctance of each one of the outsi de legs, R that of the inside leg, P and R the reluctances of each part of the joice as shown in the figure.

Therefore

$$
\begin{align*}
& .4 \pi n\left(1_{1}-1_{2}\right)=(2 R+R+P) Q_{1}-R Q_{2} \tag{1}\\
& .4 \pi n\left(1_{3}-1_{2}\right)=(2 R+R+P) Q_{3}-R C_{2} \tag{2}
\end{align*}
$$

and

$$
Q_{1}+\dot{Q}_{2}+Q_{3}=0
$$

By adding $\quad .4 \pi n\left(i_{1}+i_{3}-2 i_{2}\right)=(2 R+R+P)\left(Q_{1}+U_{3}\right)-2 R Q_{2}$ and knowing that

$$
\begin{aligned}
& 1_{1}+1_{2}+1_{3}=0 \\
& 1_{1}+1_{2}=-1_{3}
\end{aligned}
$$

therefore
and by substitution we get

$$
\begin{aligned}
& .4 \pi n\left(-3 i_{2}\right)=(2 R+R+P)\left(-Q_{2}\right)-8 R Q_{2} \\
& .4 \pi n\left(3 i_{2}\right)=Q_{2}(4 R+R+P)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
.4 \pi \mathrm{ni}_{2}=\frac{4 R+R+P}{3} Q_{2} \tag{3}
\end{equation*}
$$

Equation (3) shows that the flux Q_{2} is in phase with the magnetizing current i_{2} in the middle leg.

Substituting (3) in (1) we get

$$
.4 \pi n 1_{1}-\frac{4 R+R+P}{3} \psi_{2}=(R R+R+P) Q_{1}-R Q_{2}
$$

which becomes

$$
\begin{equation*}
\cdot 4 \pi n 1_{1}=(2 R+B+P) Q_{1}+\frac{R+R+P}{3} Q_{2} \tag{4}
\end{equation*}
$$

This clearly shows thet the magnetizing current is not in phase with the plux in leg 1.

By substituting (3) in (2) we similarly get

$$
\cdot 4 \pi n i_{3}=(2 R+R+P) Q_{3}+\frac{R+R+P}{3} Q_{2}
$$

which means tho same thing as for magnetizing current i_{1}. The flux in leg 1 though is lagging the curremt while that in lege is leading.

When the transformer is fully loaded, viz. when the total current input is large compared to the magnetizing current the flux in each leg becomes more in phase with the magnetizing current.

In the case under consideration the load current input in the primary never was more than ten times the magnetizing current. Therefore the secondary voltages never were 120° apart.

To this add the effect of the impedances which produced another phase difference.

Hence the currents were not 120° apart and the fluxes induced in legs and b were not the same.
-

-

Procedure to obtain results from the oscillographic readings:
The oscillograph gave the height of the maximum voltage. The effective value was then computed. The resistance of the oscillographic element and the outside resi stance in series with it was measured. From the voltage applied on the oscillograph and the resistance of the element and the rheostat in series with it the current flowing in the oscillograph and the exploring coll was computed.

The impedance of the coil was next measured. Its direct current resistance was taken. From these two values the reactance of the coil was comput ed.

The drop in voltage in the oscillographic circuit is ohmic. To the value of the voltage across the oscillograph was directly added the Ir drop in the coil and vectorially the ix drop. The total voltage gave the induced voltage in the coil.

Knowing the induced voltage and referring back to the formula for the induced voltage in a transformer the maximum flux was found. Knowing the cross sectional area of the legs the meximum flux density was computed and thence the hysteresis and eddy losses.

To get the average lossev the average flux was used.
It is to be noticed that losses-distance curves were plotted for one set of readings. The areas under the se curves were measured by a planimeter and the average loss taken. This checked very closely with the results of average losses found by using the avorage flux. Formulae used on computation:
a. The impedance of the coil is found by

$$
Z=\frac{\mathbf{E}}{I}
$$

where
Z is impedence in ohms
E the effective voltage (alternating current)

I the effective current (${ }^{(1)}$)
The direct current resistance is

$$
R=\frac{\mathbf{E}}{\mathbf{I}}
$$

where
R is resistance in ohms
E direct durrent voltage in volts
I direct current in amperes
The reactance of the coil is then

$$
X=V \psi^{2}-R^{2} \quad \text { ohms. }
$$

(Many raadings for $E_{\text {alt }}, I_{\text {alt }}$, Edir, and $I_{\text {dir }}$ were taken, The average values of Z and R were taken to compate X_{0})
b. The resistance of the element was found by applying direct current and taking readings of current and voltage.

$$
R_{\theta}=\frac{E}{I}
$$

c. The distance
measured on the oscillograph is twice the maximum value. Half of that distance gives the maximum value. The effective voltage is

$$
\mathrm{E}_{e f f}=.707 \mathrm{E}_{\mathrm{m}}
$$

where

$$
E_{m} \text { denotes the maximum value. }
$$

The total induced voltage is

$$
\mathrm{E}_{t}=\sqrt{(\theta+i r)^{2}+(i x)^{2}}
$$

where
θ is the load voltage in phase with current
1 the current flowing in the circuit
ir the drop across the ohmic resistance of the coil
r the ohmic resistance of coil
ix drop across inductance of coil
x reactance of coil.
d. The masimum can be calculated by the following forwala

$$
\mathrm{E}_{\mathrm{eff}}=4.44 \mathrm{~N} P \mathrm{Q}_{\mathrm{m}} 10^{-\theta} \text { volts }
$$

Therefore

$$
Q_{m}=\frac{E \times 10^{8}}{4.44 \pi l} \text { lines }
$$

where
Qu is maximum flux
E the effective induced voltage
N number of turns in coil
1 frequency in cycles per second.
The flux density is found thas

$$
B_{m}=\frac{G_{m}}{\Delta}
$$

where A is area of cross section in square centimeters
-. The hysteresis loss is computed by means of Steinmetz' empirical Pormala

$$
P_{h}=K_{h} \& B_{m}^{1.6} 10^{-7} \text { watts per square centimeter }
$$

where $\quad K_{h}$ is coefficient of hysteresis

1. The eddy loss is found thus

$$
P_{e}=\frac{q^{2}}{6 P} h^{2} P^{2} B_{m}^{2} 10^{-16} \text { watts per square centimeter }
$$

where
P is resistivity the material
h thickness of the sheet
g. The total losses are the sum of the hysteresis and eddy current

Results and Compatations

2. Resistance and impedsen ce of coil

At 60 cycle frequency the impedance of the exploring coil was found to be

$$
z=7.556 \text { ohms }
$$

Its direct current resistance was

$$
\mathrm{B}=7.220 \mathrm{hms}
$$

Its reactance is then

$$
\begin{aligned}
x & =\sqrt{(7.556)^{2}-V(7.22)^{2}} \\
& =2.24 \text { ohms }
\end{aligned}
$$

b. Resistance of the slement and outside rheostat in series. This was found to be

$$
R=9.5
$$

c. Applied loud voltage.

The Eoltage applied from the coil on the oscillograph gave a deflection of $3 / 8^{\prime \prime}($ lst $8 e t$ of readings on leg a with 360 mp.$)$ With a direct current voltage of 2 volts the deflection was $9 / 8^{\circ}$. The maximum value of voltage was then

$$
E_{m}=\frac{2 \times 8 \times 3}{9 \times 8 \times 2}=.333
$$

Its effective velue was then

$$
\begin{aligned}
E_{e f f} & =.707 \times .333 \\
& =.235 \text { volt }
\end{aligned}
$$

The current flowing in the oscillograph and the coil was therefore

$$
\begin{aligned}
I & =\frac{.235}{9.5} \\
& =.0248 \mathrm{amp} .
\end{aligned}
$$

The ir drop in the resistance of the coil was

$$
\begin{aligned}
\text { ir } & =.0248 \times 7.22 \\
& =.179 \text { volts }
\end{aligned}
$$

The ix drop was

$$
\begin{aligned}
i x & =.0248 \times 2.24 \\
& =.0556
\end{aligned}
$$

The total induced voltage was

$$
\begin{aligned}
E_{t} & =\nabla(.235+.179)^{2}+(.0556)^{2} \\
& =\sqrt{.171396+.003091} \\
& =\nabla .174487 \\
& =.417
\end{aligned}
$$

d. Flux

The maximum flux was therefore

$$
\begin{aligned}
Q_{m} & =\frac{417 \times 10^{8}}{4.44 \times 60 \times 100} \\
& =1565 \mathrm{lines}
\end{aligned}
$$

The area of the cross section being $3 / 8^{\prime \prime}$ or 2.418 sq . cm., the maximum flux density was

$$
\begin{aligned}
B_{m} & =\frac{1565}{2.418} \\
& =648 \text { lines per square centimeter }
\end{aligned}
$$

e. Hysteresis losses

The coefficient of hysteresis for that sample of steel is

$$
K_{h}=.015
$$

The hysteresis loss was therefore

$$
\begin{aligned}
\mathrm{P}_{\mathrm{h}} & =.015 \times 60 \times 648^{1.6} \times 10^{-7} \text { watts per sq. } \mathrm{cm} . \\
& =28.36 \times 10^{-4} \text { watts per sq. cm. }
\end{aligned}
$$

P. Tine eddy current loss

The resistivity of steel at ordinary temperature is

$$
P=19 \text { microhm centimeter }
$$

The eddy current coefficient is therefore

$$
\begin{aligned}
K_{\theta} & =\frac{(3.14)^{2} \times 10^{6}}{6 \times 19} \times(.315)^{2} \\
& =8.61 \times 10^{3}
\end{aligned}
$$

.315 is the thickness of the steel in centimeter being $1 / 8$ of an inch.

The eddy current loss is therefore

$$
\begin{aligned}
P_{\theta} & =8.61 \times 10^{3} \times(60)^{2} \times(648)^{2} \times 10^{-16} \\
& =13.0 \times 10^{-4} \text { watts per sq. cm. }
\end{aligned}
$$

g. The total loss per square centimeter is

$$
\begin{aligned}
P_{t} & =(28.36+13) 10^{-4} \\
& =41.36 \times 10^{-4} \text { watts per sq. cm. }
\end{aligned}
$$

Measurement of the Impedance of Coil

Frequency 60 oycle. Direct Current

I	E	2 ohn	I	V	R orm
. 58	7.57	7.57	. 4	2.92	7.3
. 68	4.75	7.54	. 66	4.8	7.27
. 69	5.22	7.56	. 6	3.6	7.2
. 8	6.05	7.56	. 3	2.15	7.16
. 88	6.65	7.55	. 23	1.65	7.17
	Average	7.556			7.22
	$x=2.24$				

Resistance of element and resistance

I	V	B ohm
.1	.95	9.5
.2	1.94	9.7
.31	2.9	9.35
.396	3.75	9.46
.5	4.73	9.46
	Average	9.5

Direct Current Resistance of Coil

V	4	Res Coil		Average
2.92	. 4	7.31		
4.6	. 66	7.27)		
)		
3.6	. 5	7.21	Coil	7.22
2.15	. 3	7.161		
		1		
1.65	. 23	7.171		
. 95	. 1	9.51		
1.94	. 2	9.71		
2.9	. 31	9.35)	Set	9.5
3.75	. 396	9.46)		
4.73	. 5	$9.46)$		

DASH

Phase lugle
$a-b=60^{\circ}$
$a-c=30^{\circ}$

It was noticed that there was a phase
difference in the fluxes at different points on c, which amounts to around 60° between 1 and 2, 2 and 3. There was a very little angle between 2 and 3 on a and 1 and 3 on b, but no angle between 1 and 2 on a and 2 and 3 on b.
\square

DATA

DATA

						$\left(e^{\prime}\right)^{2}$			
\bullet	I	Ir	$(0+I r)$	IX	$(I X)^{2}$	$(\theta+I r)^{2}$	$0^{2}+I X^{2}$	θ_{6}	0
. 235	.0248	.179	. 414	. 0556	.003091	.171396	.274487	.417	1565
. 431	. 0454	.327	.758	.101	.010010	. 574564	. 584574	.764	2870
. 510	.0537	. 388	.898	.120	. 014400	. 806404	. 820804	.906	3410
.195	.0205	.148	.343	.0459	.002106	.117648	.119756	.346	1300
-353	.0372	.268	.621	.0834	.006955	.385641	. 392597	.626	2355
.431	.0454	.327	.758	.101	.010010	.574564	.584574	.764	2870
.157	.0165	.119	. 276	. 0369	.0013616	.076176	.077538	.278	1045
. 274	.0288	. 208	. 482	. 0627	.0039312.	. 232324	. 236255	. 486	1825
.333	.0351	. 253	.586	.0787	.0061436	.343396	. 349590	. 591	2220
. 274	. 0288	. 208	. 482	.0645	. 0041602	. 232324	. 236484	. 486	1825
.510	. 0537	.888	. 898	.120	.014400	. 806404	. 820804	.906	3410
.628	.0661	. 477	1.105	.148	.0219041	1.221025	1.2429291	1.114	4190

$$
I=\frac{\theta}{r_{\theta}} \quad \begin{aligned}
e & =\theta \cdot m, f_{0} \text { recorded by oscillograph } \\
r_{\theta} & =\text { resistance of element and outside resistance }=9.5
\end{aligned}
$$

Total $\cdot=\sqrt{T}+1 r)^{2}+(1 x)^{2}$
$r=7.22$
$x=2.24$
dara

mammen	Bm	$108 \mathrm{~B}_{\mathrm{m}}$		$\mathrm{B}_{\mathrm{m}} 1.6$	$\begin{gathered} 10^{-4} \\ \text { hys.loss } \end{gathered}$	$B_{\text {m }}^{2}$	Edd.L.	Total Lo
1565	648	2.81158	4.498528	31517	28.36	419904	18.0	41386
2870	1190	3.07555	4.92088	83347	75.01	1416100	43.9	118.91
5410	1410	3.14922	5.038752	109450	98.50	1988100	61.6	160.10
AV.	1080	3.03743	4.859888	72450	65.20	1166400	36.2	101.4
1500	538	2.73078	4.369248	23400	21.06	289444	8.99	30.05
2355	975	2.98900	4.7824	60590	54.53	950625	29.5	84.03
2870	1190	3.07555	4.92088	83347	75.01	1416100	43.9	118.91
$\Delta \nabla^{*}$	901	2.95472	4.72755	53400	48.06	811801	25.05	73.11

1045	433	2.63649	4.218384	16535	14.88	187489	5.82	20.70
1825	755	2.87795	4.60472	40250	36.22	570025	17.7	53.92
2220	920	2.96379	4.742064	55254	49.72	846400	26.25	75.97
$4 \mathbf{V .}_{4}$	702	2.84634	4.554144	35850	32.26	492804	15.3	47.56

| 1825 | 755 | 2.87795 | 4.60472 | 40250 | 36.22 | 570025 | 17.7 | 53.92 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3410 | 1410 | 3.14922 | 5.038752 | 109450 | 98.50 | 1988100 | 61.6 | 160.10 |
| 4190 | 1740 | 3.24055 | 5.18588 | 153060 | 136.75 | 3027600 | 93.9 | 230.65 |
| $4 \mathbf{H .}_{6}$ | 1300 | 3.11394 | 4.982324 | 96020 | 86.41 | 1690000 | 52.4 | 136.81 |

DATA

Data

b

0	B_{m}	$108 \mathrm{Bm}_{10}$	$1.6 \operatorname{logh}_{\text {m }}$	B_{m}	$\begin{gathered} 10^{-4} \text { W } \\ \text { hys.Lose } \end{gathered}$	$\mathrm{B}_{\text {m }}^{2}$	$\begin{aligned} & \text { Ed. } 1 \text {. } \\ & 10^{-4} \end{aligned}$	$\begin{gathered} \text { otal Los } \\ \nabla^{-4} \end{gathered}$
3350	1390	3.14301	5.028816	106875	96.16	1932100	59.9	156.06
3410	1410	3.14922	5.038752	109450	98.50	1416100	43.9	142.40
2100	870	2.93952	4.703232	50496	45.44	756900	23.5	68.94
Ar.	1233	3.0910	4.9456	88200	79.38	1519289	47.2	126.58

2480	1050	3.01284	4.820544	66152	59.53	1060900	32.9	92.43
2620	1080	3.03342	4.853472	71364	64.22	1166400	36.2	100.42
1825	755	2.87795	4.60472	40250	36.22	570025	17.7	53.92
AV.	955	2.9800	4.768	58600	52.74	912025	28.22	80.96

2100	870	2.93952	4.705232	50496	45.44	756900	23.5	68.94
2100	870	2.93952	4.703232	50496	45.44	756900	23.5	68.94
1300	538	2.73078	4.369248	23400	21.06	289444	8.97	30.03
4\%.	759	2.8802	4.60832	40600	36.54	576081	17.87	54.41

4960	2060	3.31387	5.302192	200530	180.47	4243600	131.5	311.97
4190	1740	3.24055	5.18488	153060	137.75	3027600	94.7	232.45
2100	870	2.93952	4.703232	50496	45.44	756900	23.5	68.94
AV.	1556	2.1920	5.1072	128000	115.2	2420000	75.0	190.20

DAPA

c

\bullet	I	IR	$\begin{gathered} \bullet^{\bullet} \\ \mathrm{IR}^{2}+0 \end{gathered}$	IX	$(\mathrm{IX})^{2}$	$\left(0^{\circ}\right)^{2}$	E^{2}	Induced E	${ }^{\circ} \mathrm{m}$
. 195	. 0205	. 148	. 343	. 0460	. 002116	. 117649	. 119765	. 346	1300
. 235	. 0248	. 179	. 414	. 0556	. 003091	. 171396	. 174487	. 417	1565
.157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
. 157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
. 198	. 0205	. 148	. 343	. 0460	. 002116	. 117649	. 119765	. 346	1300
.117	. 0123	. 088	. 205	. 0275	. 000756	. 042025	. 042781	. 206	775
. 117	. 0123	. 088	. 205	. 0275	. 000756	. 042025	. 042781	. 206	775
. 157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
.117	. 0123	. 088	. 205	. 0275	. 000756	.042025	. 042781	. 206	775
. 195	. 0205	. 148	. 343	. 0460	.002116	. 117649	. 119765	. 346	1300
. 274	. 0288	. 208	. 482	. 0645	. 004160	. 232324	. 236484	. 486	1825
. 157	. 0165	. 119	. 276	. 0370	.001369	. 076176	. 077545	. 278	1045

DATA

0

| 1045 | 433 | 2.63649 | 4.218384 | 16535 | 14.88 | 187489 | 5.82 | 20.70 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1300 | 538 | 2.73078 | 4.369248 | 23400 | 21.06 | 289444 | 8.97 | 30.03 |
| 775 | 320 | 2.50515 | 4.00824 | 10192 | 9.17 | 102400 | 3.82 | 12.99 |
| AV. | 430 | 2.6335 | 4.2136 | 16353 | 14.71, | 184900 | 5.74 | 20.45 |

775	320	2.50515	4.00824	10192	9.17	102400	3.82	12.99
1045	433	2.63649	4.218384	16535	14.88	187489	5.82	20.70
775	320	2.50515	4.00824	10192	9.17	102400	3.82	12.99
47.	357	2.5527	4.08432	12142	10.92	127449	3.96	14.88

1300	538	2.73078	4.369248	23400	21.06	289444	8.97	30.03
1825	755	2.87795	4.60472	40250	36.22	570025	17.7	53.92
1045	433	2.63649	4.218384	16535	14.88	187489	5.82	20.70
18.	575	2.7597	4.41552	26030	23.42	330625	10.22	33.64

Data

Sumery of Results

$$
\mathrm{L}=19.5^{\circ}
$$

 Hys. 38.50 Edd. 19.67 Total 58.17
$\begin{array}{llllllllll}14.08 & 5.82 & 20.7 & 45.44 & 23.5 & 68.94 & 9.17 & 3.82 & 12.99 & I_{2}=235\end{array}$ $\begin{array}{llllllllll}36.22 & 17.7 & 53.92 & 45.44 & 23.5 & 68.94 & 14.88 & 5.82 & 20.70 & I_{b}=240\end{array}$ $49.72 \quad 26.25 \quad 75.97 \quad 21.06 \quad 8.97 \quad 30.03 \quad 9.17 \quad 3.82 \quad 12.99 \quad I_{0}=228$ $\begin{array}{llllllllll}32.26 & 15.3 & 47.56 & 36.54 & 17.87 & 54.41 & 10.92 & 3.96 & 14.88 & \Delta v .\end{array}$ Hys. 26.57 Edd. 12.38 Total 38.95
$\begin{array}{lllllllllll}36.22 & 17.7 & 53.92 & 180.47 & 131.5 & 311.97 & 21.06 & 8.97 & 30.03 & I_{2}=440\end{array}$ $\begin{array}{llllllllll}98.50 & 61.7 & 160.10 & 137.75 & 94.7 & 232.45 & 36.22 & 17.7 & 53.92 & I_{b}=430\end{array}$ $\begin{array}{llllllllll}186.75 & 93.9 & 230.65 & 45.44 & 23.5 & 68.94 & 14.88 & 5.82 & 20.70 & I_{0}=440\end{array}$ $86.41 \begin{array}{lllllllll} & 52.4 & 136.81 & 115.2 & 75.0 & 190.2 & 2342 & 10.22 & 33.64\end{array}$ AT. Hys. 75.01 Edd. 45.87 Total 120.88

Dita

$\begin{array}{lllllllllllllll}I_{a} & I_{b} & I_{0} & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4\end{array}$

$$
\begin{array}{rlrl}
B-O=180 & L & =24^{\prime \prime} & I=\frac{1200 \times 60}{1200}=60 \\
& R=9 &
\end{array}
$$

$$
s=60 \quad s=1200
$$

$3153203103 / 16 \quad 5 / 16 \quad 1 / 2 \quad 9 / 16 \quad 9 / 16 \quad 19 / 32 \quad 1 / 2 \quad 9 / 32 \quad 5 / 32 \quad 9 / 32 \quad 7 / 32 \quad 5 / 32$

$$
s=1200
$$

DATA

max.	eff.	max.	eff.	max.	eff.	$I_{\text {a }}$	I_{b}	I_{0}	
. 277	. 195	. 776	. 548	. 194	. 137				
. 444	. 314	. 776	. 548	. 388	. 274	470	475	475	$f=60$
. 722	. 510	. 611	. 431	. 333	. 235				$L=24{ }^{\circ}$
. 776	. 548	. 333	. 235	. 222	. 157				
. 194	. 137	. 611	. 431	. 166	. 117				
. 333	. 235	. 611	. 431	. 277	. 195	365	363	365	$1=60$
. 537	. 372	. 500	. 353	. 277	. 195				
.611	. 431	. 277	. 195	. 166	. 117				
. 166	. 117	. 500	. 353	. 138	. 097				
. 277	. 195	. 527	. 372	. 500	. 353	315	320	310	$1=60$
. 444	. 314	. 444	. 314	. 194	.137				
. 500	. 853	. 250	.177	.138	. 097				

DATA

-	I	IR	$\stackrel{\theta^{0}}{\theta+I R}$	IX	$(\mathrm{IX})^{2}$	$\left(\theta^{\circ}\right)^{2}$	Induced E^{2}	E	0_{m}
. 195	. 0205	. 148	. 343	. 0460	. 002116	. 117649	. 119765	. 346	1300
. 314	. 0331	. 239	. 553	. 0741	. 005506	. 305809	. 311315	. 558	2100
. 510	. 0537	. 388	. 898	. 120	. 014400	. 806404	. 820804	. 906	3410
. 548	. 0577	. 417	. 965	. 1291	. 016641	. 931225	. 947866	. 973	3660
. 137	. 0144	. 104	. 241	. 0323	. 001043	. 058081	. 059124	. 243	915
. 235	. 0248	. 179	. 414	. 0556	. 003091	. 171396	. 174487	. 417	1565
. 372	. 0392	. 283	. 655	. 0879	. 007726	. 429025	. 436751	. 660	2480
. 431	. 0454	. 327	. 758	. 101	. 010010	. 574564	. 584574	. 764	2870
.117	. 0123	. 088	. 205	. 0275	.000756	. 042025	. 042781	. 206	775
. 195	. 0205	. 148	. 343	. 0460	.002116	. 117649	. 119765	. 346	1300
. 314	. 0331	. 239	. 553	. 0742	. 005506	. 305809	. 311315	. 558	2100
. 353	. 0372	. 268	. 621	. 0834	. 006956	. 388641	. 392597	. 626	2355

DATA

0 m	$\mathrm{B}_{\text {m }}$	108 Bm	$1.610 g B_{m}$	$B_{B_{m}}^{1.6}$	10^{-4}	$\mathrm{B}_{\text {m }}^{2}$	$\begin{gathered} \text { Ed. } \\ 10^{-4} \end{gathered}$	Total Lo 10^{-4}
1300	538	2.73078	4.369248	23400	21.06	289444	8.97	30.03
2100	870	2.93952	4.703232	50496	45.44	756900	23.5	68.94
3410	1410	3.14922	5.038752	109450	98.50	1988100	61.6	160.10
3660	1520	3.18184	5.090944	123230	110.90	2310400	71.6	182.50
$\Delta \nabla^{\circ}$	1084	3.0350	4.8560	71800	64.62	1178000	36.5	101.12

| 915 | 378 | 2.57749 | 4.123984 | 13305 | 11.97 | 142884 | 4.43 | 16.40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1568 | 648 | 2.81158 | 4.498528 | 31517 | 28.36 | 419904 | 13.0 | 41.36 |
| 2480 | 1030 | 3.01284 | 4.820544 | 66152 | 59.53 | 1060900 | 32.9 | 92.43 |
| 2870 | 1190 | 3.07555 | 4.92088 | 83347 | 75.01 | 1416100 | 43.9 | 118.91 |
| $\Delta \nabla_{0}$ | 811 | 2.9090 | 4.6544 | 45125 | 40.61 | 657721 | 20.4 | 61.01 |

| 775 | 320 | 2.50515 | 4.00824 | 10192 | 9.17 | 102400 | 3.82 | 12.99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1200 | 538 | 2.73078 | 4.369248 | 23400 | 21.06 | 289444 | 8.97 | 30.03 |
| 2100 | 870 | 2.93952 | 4.703232 | 50496 | 45.44 | 756900 | 23.5 | 68.94 |
| 2355 | 975 | 2.98900 | 4.7824 | 60590 | 54.53 | 950625 | 29.5 | 84.03 |
| 4∇. | 676 | 2.7604 | 4.41664 | 26100 | 23.49 | 456976 | 14.12 | 37.61 |

data

b

-	I	18	$\stackrel{\theta^{0}}{\mathrm{IR}^{\prime}+\boldsymbol{\theta}}$	IX	$(\mathrm{IX})^{2}$	$\left(0^{\circ}\right)^{2}$	$\left(L_{t}\right)^{2}$	adu	*
. 548	. 0577	. 417	. 965	. 129	. 016641	. 931225	. 947866	. 973	3660
. 548	. 0577	. 417	. 965	. 129	. 016641	. 931225	. 947866	. 973	3660
. 431	. 0454	.327	. 758	. 101	. 010010	. 574564	. 584574	. 764	2870
. 235	. 0248	. 179	. 414	. 0556	.003091	. 171396	. 174487	. 417	1565

| .431 | .0248 | .178 | .609 | .0556 | .003091 | .370881 | .373972 | .611 | 2300 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .431 | .0248 | .178 | .609 | .0556 | .003091 | .370881. | .373972 | .611 | 2300 |
| .353 | .0372 | .268 | .621 | .0834 | .006956 | .385641 | .392597 | .626 | 2355 |
| .195 | .0205 | .148 | .343 | .0460 | .002116 | .117649 | .119765 | .346 | 1300 |

.353 . 0372 . 268 . 621 . 0834 . 006956 . 385641 . 392597 . 626 2355
.372 . 0392 . 283 . 655 . 0879 . 007726 . 429025 . 436751 . 6602480
.314 . 0331 . 239 . 553 . 0742 . 005506 . 305809 . 311315 . 558 2100
.177 . 0186 . 134 . 311 . 0417 . 001738 . 096721 . 098459 . 313175

DATA

b

On	$\mathrm{B}_{\text {m }}$	$\underline{10 g} \mathrm{Bm}_{\mathrm{m}}$	$1.6108 \mathrm{Bm}_{\text {m }}$	$B_{B_{n}}^{1.6}$	$\begin{gathered} 10^{-4} \\ \text { Hys.L. } \end{gathered}$	$\mathrm{B}_{\text {m }}^{2}$	$\begin{gathered} \text { Ed. } \mathrm{I} \\ 10^{-4} \end{gathered}$	Total Lossem 10^{-4}
3660	1510	3.17898	5.090944	123230	110.90	2280100	71.6	182.50
3660	1510	3.17898	5.090944	123230	110.90	2280100	71.6	182.50
2870	1190	3.07555	4.92088	83347	75.01	1416100	43.9	118.91
1865	770	2.88649	4.518384	41532	37.37	592900	18.4	55.77
$\Delta{ }^{\text {d }}$.	1245	3.0952	4.95232	89600	80.64	55000	48.1	128.74

2300	950	2.97772	4.764352	58123	52.31	902500	28.0	80.31
2300	950	2.97772	4.764352	58123	52.81	902500	28.0	80.31
2355	975	2.98800	4.7824	60590	54.53	950625	29.5	84.03
1300	538	2.73078	4.369248	23400	21.06	289444	8.97	30.03
$\Delta \nabla$.	853	2.9309	4.68944	48910	44.01	727609	22.59	66.60

2355	975	2.98900	4.7824	60590	54.53	950625	29.5	84.03
2480	1020	3.01284	4.820544	66152	59.53	1060900	32.9	92.45
2100	870	2.93952	4.703232	50496	45.44	756900	23.5	68.94
1175	486	2.68664	4.298624	19888	17.89	236196	7.33	25.22
AV.	840	2.9243	4.67888	47730	42.95	705600	21.85	64.8

DATA

c

-	I	IR	$\stackrel{e^{\prime}}{\mathrm{IR}+\theta}$	IX	$(I x)^{2}$	$\left(\theta^{0}\right)^{2}$	Induced (B)	E	0 m
. 137	. 0144	.104	. 241	. 0323	. 001043	. 058081	. 059124	. 243	915
. 274	. 0288	. 208	. 482	. 0645	. 004160	. 232324	. 236484	. 486	1825
. 235	. 0248	. 179	. 414	. 0556	. 003091	. 171396	.174487	. 417	1565
.157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
. 117	. 0123	. 088	. 205	. 0275	. 000756	. 042025	. 042781	. 206	775
. 195	. 0205	. 148	. 343	. 0460	.002116	. 117649	.119765	. 346	1300
. 198	. 0205	. 148	. 343	. 0460	. 002116	. 117649	.119765	. 346	1300
.117	.0123	. 088	. 205	. 0275	.000756	. 042025	. 042781	. 206	775
. 098	. 0103	. 0744	. 172	.0231	. 000533	.029584	. 030117	. 173	650
. 353	. 0372	. 268	. 621	. 0834	. 006956	. 365641	. 392597	. 626	2355
.137	. 0144	. 104	. 241	. 0323	.001043	. 058081	. 059124	. 243	915
. 098	. 0103	. 0744	. 172	. 0231	.000533	. 029584	. 030117	. 173	650

DANA

c

0 m	$\mathrm{Bm}_{\text {m }}$	$\log \mathrm{B}_{\mathrm{m}}$	$1.6108 \mathrm{~B}_{\text {m }}$	$\mathrm{B}_{\mathrm{m}}^{1.6}$	10^{-4} Hys.工.	B_{m}^{2}	$\begin{aligned} & 10^{-4} \\ & \text { Ed.L. } \end{aligned}$	$\begin{aligned} & \text { Total Losses } \\ & 10^{-4}{ }^{-4} \end{aligned}$
915	379	2.57864	4.123984	13305	11.97	143641	4.43	16.40
1825	755	2.87795	4.60472	40250	36.22	570025	17.7	53.92
1565	648	2.81158	4.498528	31517	28.36	419904	13.0	41.36
1045	433	2.63649	4.218384	16535	14.88	187489	5.82	20.70
Av.	554	2.7435	4.3896	24525	22.07	306916	9.52	31.57

775	312	2.49415	4.00824	10192	9.17	97344	3.82	12.99
1300	538	2.73078	4.369248	23400	21.06	289444	8.97	30.08
1300	538	2.73078	4.369248	23400	21.06	289444	8.97	30.03
775	312	2.49415	4.00824	10192	9.17	97344	3.82	12.99
AV.	425	2.6284	4.20544	16046	14.44	180625	5.60	20.04

650	269	2.42975	3.8876	7720	6.94	72361	2.24	9.18
2355	975	2.98900	4.7824	60590	54.53	950625	29.46	83.99
915	379	2.57864	4.123984	13305	11.97	143641	4.43	16.40
650	269	2.42975	5.8876	7720	6.94	72361	2.24	9.18
$\Delta \nabla_{0}$	473	2.6749	4.27984	19045	17.14	223729	6.94	24.08

DATA

Sumary of Result 8

$$
L=24^{\circ \prime}
$$

Hys. 27.86 Add. 14.30 Total 42.16 Average losses per cu. cm. of tower

DATA

$I_{1}=26.5$	sp. 1200
Res. 9	$\mathcal{1}=60$

$L=26.5$	sp. 1200
Res. 9	$I=60$

Data

I2	I_{b}	I_{0}		a		b		c	
				max.	eff.	max.	eff.	max.	-1f.
			1	. 166	.117	. 333	. 235	. 138	. 097
			2	. 194	. 137	. 388	. 274	. 166	. 117
285	285	285	8	. 277	. 195	. 388	. 274	. 222	. 157
			4	. 388	. 274	. 250	. 177	.138	. 097
			5.	. 333	. 235	. 166	. 117	. 111	. 078
			1	. 138	. 097	. 500	. 353	. 138	. 097
			2	. 222	.157	. 500	. 353	. 222	. 157
350	350	350	3	. 333	. 235	. 444	. 314	. 277	. 195
			4	. 472	. 333	. 277	. 195	. 194	. 137
			5	. 388	. 274	. 222	. 157	.158	. 097
			1	. 222	. 157	. 611	. 431	.166	. 117
			2	2333	. 235	. 666	. 470	. 305	. 215
445	445	450	3	. 500	. 353	. 611	. 431	. 305	. 215
			4	. 666	. 470	.388	. 274	. 222	. 157
			5	. 500	. 353	. 277	. 195	. 138	. 097
	L $=$. 5							
	$1=$								

DATA

\bullet	I	IR	$\begin{array}{r} e^{\prime} \\ \operatorname{IR}+e \end{array}$	IX	$(\mathrm{IX})^{2}$	Induced			
						$\left(\theta^{\circ}\right)^{2}$	E^{2}	E	m
. 117	. 0123	. 088	. 205	. 0275	. 000756	. 042025	. 042781	. 206	775
. 137	. 0144	. 104	. 241	. 0323	. 001043	. 058081	. 059124	. 243	915
. 195	. 0205	. 148	. 343	. 0460	. 002116	. 117649	. 119765	. 346	1300
. 274	. 0288	. 208	. 482	. 0645	. 004160	. 232324	. 236484	. 486	1825
. 235	. 0248	. 179	. 414	. 0556	. 003091	. 171396	. 174487	. 417	1565
. 098	. 0103	. 0744	. 172	. 0231	. 000533	. 029584	. 030117	. 173	650
. 157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
. 235	. 0248	. 179	. 414	. 0556	. 003091	. 171396	. 174487	. 417	1565
. 333	. 0351	. 253	. 586	. 0787	. 006194	. 343396	. 349590	. 591	2220
. 274	. 0288	. 208	. 482	. 0646	. 004160	. 232324	. 236484	. 486	1825
. 157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
. 235	. 0248	.179	. 414	. 0556	.003091	. 171396	. 174487	. 417	1565
. 353	. 0372	. 268	. 621	. 0834	. 006956	. 385641	. 392597	. 626	2355
. 470	. 0495	. 357	.827	.1110	. 012321	. 683929	. 696250	. 834	3185
. 353	. 0372	. 268	. 621	. 0834	. 006956	. 385641	. 392597	. 417	1565

DATA

a

$0{ }^{\text {m }}$	$\mathrm{Bm}_{\text {m }}$	$\log \mathrm{B}_{\mathrm{m}}$	$1.6 \mathrm{log}_{\text {m }}$	${ }_{B_{m}}^{1.6}$	$\begin{aligned} & 10^{-4} \\ & \text { Hy.L. } \end{aligned}$	B_{m}^{2}	Ed.I. 10^{-4}	Otal Losses $10^{-4} w$
775	312	2.49415	4.00324	10192	9.17	97344	3.82	12.99
915	379	2.57864	4.123984	13305	11.97	143641	4.43	16.40
1300	538	2.73078	4.369248	23400	21.06	289444	8.97	30.03
1825	755	2.87795	4.60472	40250	36.22	570025	17.7	53.92
1565	648	2.81158	4.498528	31517	28.36	419904	13.0	41.36
AT.	526	2.7210	4.3536	22570	20.3	276676	8.57	28.87
650	269	2.34044	3.8876	7720	6.94	72361	2.24	9.18
1045	433	2.63649	4.218384	16535	14.88	187489	5.82	20.70
1565	648	2.81158	4.498528	31517	28.36	419904	13.0	41.36
2220	920	2.96379	4.742064	55254	49.72	846400	26.25	75.97
1825	755	2.87795	4.60472	40250	36.22	570025	17.7	53.92
$\Delta \nabla$.	605	2.7818	4.45088	28240	25.41	366025	11.35	36.76
1045	433	2.63649	4.218384	16535	14.88	187489	5.82	20.70
1565	648	2.81158	4.498528	31517	28.36	419904	13.0	41.36
2355	975	2.98900	4.7824	60590	54.53	950625	29.5	84.03
3135	1300	3.11394	4.982304	96010	86.40	1690000	52.4	138.80
1565	648	2.81158	4.498528	31517	28.36	419904	13.0	41.36
- $\mathbf{V}^{\text {. }}$	800	2.9031	4.64496	44150	39.73	640000	19.85	59.58

Data

b

0	I	IR	$\begin{gathered} \theta^{\prime} \\ \text { IR }+\boldsymbol{\theta} \end{gathered}$	IT	$(I x)^{2}$	$\left(0^{\cdot}\right)^{2}$	Induced E^{2}	E	0_{m}
. 235	. 0248	.179	.414	. 0556	.003091	.171396	.174487	. 417	1565
.274	.0288	.208	. 482	.0645	.004160	. 232324	. 236484	. 486	1825
. 274	. 0288	.208	. 482	. 0645	.004160	. 232324	. 236489	.486	1825
.177	.0186	.134	. 311	.0417	.001738	.096721	.098459	.313	1175
.117	.0123	. 088	. 205	.0275	.000756	.042025	.042781	.206	775
.353	.0372	. 268	.621	.0834	.006956	.385641	.392597	.626	2355
.353	.0372	. 268	.621	.0834	.006956	.385641	. 392597	.626	2355
.314	.0331	. 239	. 553	.0742	.005506	. 305809	.311315	. 558	2100
.195	.0205	.148	. 343	.0460	.002116	.117649	.119765	. 346	1300
.157	.0165	.119	. 276	.0370	.001369	.076176	.077545	. 278	1045
. 431	.0454	.327	.758	.101	.010010	. 574564	. 584574	. 764	2875
.470	.0495	.357	. 827	.111	.012321	.683929	.696250	. 834	3135
.431	.0454	.327	.758	.101	.010010	. 574564	. 584574	.764	2875
.274	.0288	. 208	. 482	.0645	.004160	. 232324	. 236484	. 486	1825
. 195	.0205	.148	.343	.0460	.002116	.117649	.119765	.346	1300

DATA

b

${ }^{\text {cm}}$	B_{m}	$\log \mathrm{B}_{\mathrm{m}}$	$1.6 \mathrm{log}_{\text {m }}$	$\mathrm{B}_{\mathrm{m}}^{1.6}$	$\begin{aligned} & 10^{-4} \\ & \text { Hy. L. } \end{aligned}$	$\mathrm{B}_{\mathrm{m}}^{2}$	Ed.L. 10^{-4}	otal 10^{-4}
1565	648	2.81158	4.498528	31517	28.36	419904	13.0	41.36
1825	755	2.87795	4.60472	40250	36.22	570025	17.7	53.92
1825	755	2.87795	4.60472	40250	36.22	236196	17.7	53.92
1175	486	2.68664	4.298664	$19888{ }^{\circ}$	17.89	236196	7.33	25.22
775	320	2.49415	4.00824	10192	9.17	102400	3.82	12.99
Av.	593	2.7731	4.43696	27340	24.60	351649	10.9	35.50

| 2355 | 975 | 2.98900 | 4.7824 | 60590 | 54.53 | 950625 | 29.5 | 84.03 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2355 | 975 | 2.98900 | 4.7824 | 60590 | 54.53 | 950625 | 29.5 | 84.03 |
| 2100 | 870 | 2.93952 | 4.803232 | 50496 | 45.44 | 756900 | 23.5 | 68.94 |
| 1300 | 538 | 2.73078 | 4.369248 | 23400 | 21.06 | 289444 | 8.97 | 30.03 |
| 1045 | 433 | 2.63649 | 4.218384 | 16535 | 14.88 | 187489 | 5.82 | 20.70 |
| 4V. | 758 | 2.8797 | 4.60752 | 40500 | 36.45 | 574564 | 17.8 | 54.25 |

| 2870 | 1190 | 3.07555 | 4.92088 | 83347 | 75.01 | 1416100 | 43.9 | 118.91 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3135 | 1300 | 3.88649 | 4.982304 | 96010 | 86.40 | 1690000 | 52.4 | 138.80 |
| 2870 | 1190 | 3.07555 | 4.92088 | 83347 | 75.01 | 1416100 | 43.9 | 118.91 |
| 1825 | 755 | 2.87795 | 4.60472 | 40250 | 36.22 | 570025 | 17.7 | 53.92 |
| 1300 | 538 | 2.73078 | 4.369248 | 23400 | 21.06 | 289444 | 8.97 | 30.03 |
| $1 \nabla_{0}$ | 994 | 2.9974 | 4.79584 | 62500 | 56.25 | 988036 | 30.65 | 86.90 |

Data

c

e	I	IR	$\begin{gathered} \theta^{\prime} \\ \theta+\text { In } \end{gathered}$	IX	$(I X)^{2}$	$\left(\theta^{\circ}\right)^{2}$	E^{2}	Induced E	θ_{m}
. 098	. 0103	. 0744	. 172	. 0231	. 000533	. 029584	. 030117	. 173	650
. 117	. 0123	. 088	. 205	. 0275	. 000756	. 042025	. 042781	. 206	775
. 157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
. 098	. 0103	. 0744	. 172	. 0231	. 000533	. 029584	. 030117	.173	650
. 078	. 0082	. 0592	. 137	. 0183	. 000334	. 018769	.019103	. 139	523
. 098	. 0103	. 0744	. 172	. 0231	. 000533	. 029584	. 030117	. 173	650
. 157	.0165	. 119	. 276	. 0370	. 001369	. 076176	. 077545	. 278	1045
. 195	. 0205	. 148	. 343	. 0460	. 002116	. 117649	.119765	. 346	1300
.137	. 0144	. 104	. 241	. 0323	. 001043	. 058081	. 059124	. 243	915
. 098	. 0103	. 0744	. 172	. 0231	. 000533	. 029584	. 030117	. 173	650
.117	. 0123	. 088	. 205	. 0275	.000756	. 042025	. 042781	. 206	775
. 215	. 0226	.155	.370	. 0506	. 002560	. 136900	. 139460	. 373	1400
. 215	. 0226	. 155	.370	. 0506	. 002560	.136900	. 39460	. 373	1400
. 157	. 0165	. 119	. 276	. 0370	. 001369	. 076176	.077545	.278	1045
. 098	. 0103	. 0744	. 172	. 0231	. 000533	. 029584	. 030117	.173	650

DATA

C

4	$\mathrm{B}_{\text {m }}$	$\log \mathrm{Bm}_{\text {m }}$	1.6108 B	$B_{m}^{1.6}$	$\begin{aligned} & 10^{-4} \\ & \text { Hy.L. } \end{aligned}$	$\mathrm{B}_{\text {m }}^{2}$	Ed.L. 10^{-4}	Total 10 $10^{-4} \mathrm{w}$
650	269	2.42975	3.8876	7720	6.94	72361	2.24	9.18
775	312	2.49415	4.00824	10192	9.17	97344	3.82	12.99
1045	433	2.63649	4.218384	16535	14.88	187489	5.82	20.70
650	269	2.42975	3.8876	7720	6.94	72361	2.24	9.18
523	216	2.33445	3.73512	5434	4.89	46656	1.44	6.38
AV.	300	2.4771	3.96336	9190	8.27	90000	2.79	11.06

| 650 | 269 | 2.42975 | 3.8876 | 7720 | 6.94 | 72361 | 2.24 | 9.18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1045 | 433 | 2.63649 | 4.218384 | 16535 | 14.88 | 187489 | 5.82 | 20.70 |
| 1300 | 538 | 2.73078 | 4.369248 | 23400 | 21.06 | 289444 | 8.97 | 30.03 |
| 915 | 378 | 2.57864 | 4.123984 | 13305 | 11.97 | 143641 | 4.43 | 16.40 |
| 650 | 269 | 2.42975 | 3.8876 | 7720 | 6.94 | 72361 | 2.24 | 9.18 |
| AV. | 377 | 2.5763 | 4.12208 | 13243 | 11.91 | 142129 | 4.41 | 16.32 |

| 775 | 312 | 2.49415 | 4.00824 | 10192 | 9.17 | 97344 | 3.82 | 12.99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1400 | 580 | 2.76343 | 4.421488 | 26392 | 23.75 | 336400 | 10.04 | 33.79 |
| 1400 | 580 | 2.76343 | 4.421488 | 26392 | 23.75 | 336400 | 10.04 | 33.79 |
| 1045 | 433 | 2.63649 | 4.218384 | 16535 | 14.88 | 187489 | 5.82 | 20.70 |
| 650 | 269 | 2.42975 | 3.8876 | 7720 | 6.94 | 72361 | 2.24 | 9.18 |
| Δv_{0} | 435 | 2.6385 | 4.2216 | 16656 | 14.99 | 189225 | 5.87 | .20 .86 |

DATA

Summary of Results

$$
L=26.5^{\prime \prime}
$$

	2		c						
W_{h}	W_{e}	W_{t}	W_{h}	W_{0}	W_{t}	W_{h}	W_{e}	W_{t}	
$10^{-4} w$	10^{-4}	$10^{-4} w$							
9.17	3.82	12.99	28.36	13.0	41.36	6.94	.2 .24	9.18	
11.97	4.43	16.40	36.22	17.7	53.92	9.17	3.82	12.99	$I_{2}=285$
21.06	8.97	30.03	36.22	17.7	53.92	14.88	5.82	20.70	$I_{b}=285$
36.22	17.7	53.92	17.89	7.33	25.22	6.94	2.24	9.18	$I_{c}=285$
28.36	13.0	41.36	9.17	3.82	12.99	4.89	1.44	6.33	
20.3	8.57	28.87	24.60	10.9	35.50	8.27	2.79	11.06	$A \nabla_{0}$

Hys. 17.72 Edd. 7.42 Total 25.14 Average losses per cu. cm. of tower

6.94	2.24	9.18	54.53	29.5	84.03	6.94	2.24	9.18	
14.88	5.82	20.70	54.53	29.5	84.03	14.88	5.82	20.70	$I_{8}=350$
28.36	13.0	41.36	45.44	23.5	68.94	21.06	8.97	30.03	$I_{b}=350$
49.72	26.25	75.97	21.06	8.97	30.03	11.97	4.43	16.40	$I_{c}=350$
36.22	17.7	53.92	14.88	5.82	20.70	6.94	2.24	8.18	
25.41	11.35	36.76	36.45	17.8	54.25	11.91	4.41	16.32	ΔV_{0}

Hys. 24.59 Edd. 11.19 Total 35.78 Average losses per cu. cm. of tower

14.88	5.82	20.70	75.01	43.9	118.91	9.17	3.82	12.99	
28.36	13.0	41.36	86.40	52.4	138.80	23.75	10.04	33.79	$I_{\Omega}=445$
54.53	29.5	84.03	75.01	43.9	118.91	23.75	10.04	33.79	$I_{b}=445$
86.40	52.4	138.80	36.22	17.7	53.92	14.88	5.82	20.70	$I_{c}=445$
28.36	13.0	41.36	21.06	8.97	30.03	6.94	2.24	9.18	
39.73	19.85	59.58	56.25	30.65	86.90	14.99	5.87	20.86	$A \nabla_{0}$

The following curves are loss distance curves. They siow the distribution of losses at various points alons the less.

The area under each curve was measured and when divided by the length it gave the same losses as obtained by computation winen using the average flux.

Hysteresis Loss on Leg A
Hilliwatts per CC. avo to alffarant currents

An oscillogram of the induced currents on the three legs.

Results from experiment
$\left(\frac{360}{(230)}\right)^{n}=\frac{86}{38.95}$
$n(2.556303-2.361728)=1.934498-1.591065$ $.194575 \mathrm{n}=.343433$
$n=1.765$
$\frac{(440)^{n}}{(360)}=\frac{120}{86}$
n $(2.643453-2.556303)=2.082785-1.934498$ $.087150 n=.148287$ $n=1.701$
$\left.\frac{(440}{(230}\right)^{n}=\frac{120}{38.95}$
$n(2.643453-2.361728)=2.082785-1.591065$ $.281725 n=.491720$ $n=1.745$
$\frac{(475)^{n}}{(360)}=\frac{81}{49}$
n $(2.676694-2.556303)=1.908485-1.690196$ $.120391 n=.218289$ $n=1.813$
$\frac{(475)^{n}}{(320)}=\frac{81}{42}$
n $(2.676694-2.507856)=1.908485-1.623249$ $.168838 n=.285236$ $n=1.689$

Average $\mathrm{n}=(1.765+1.701+1.745+1.313+1.689) 1 / 5$
$=1.742$

Reducing losses to same currents at different distances

$$
\begin{aligned}
& 1.742(\log 360-\log 285)=\log 86-\log x \\
& 1.742(2.556303-2.454845)=1.934498-\log x \\
& 1.742(.101458)=1.934498-\log x \\
& .176740=1.934498-\log x \\
& \log x=1.757758 \\
& x=57.247 \\
& 1.742(\log 360-\log 200)=\log 86-\log 2 \\
& 1.742(2.556303-2.301030)=1.934498-\log x \\
& 1.742(.255273)=1.934498-\log x \\
& .444685=1.934498-\log x \\
& \log x=1.489813 \\
& x=30.89 \\
& 1.742(\log 360-\log 285)=\log 49.22-\log x \\
& 1.742(2.556303-2.454845)=1.692142-\log x \\
& 176740=1.692142-\log x \\
& 10 g=1.515402 \\
& x=32.76 \\
& 1.742(\log 360-\log 200)=\log 49.22-\log x \\
& .444685=1.692142-\log x \\
& 10=1.247457 \\
& 17.67 \\
& 10
\end{aligned}
$$

-
-

\square

$$
\begin{aligned}
1.742(\log 440-\log 360) & =\log x-\log 49.22 \\
1.742(2.643453-2.556303) & =\log x-1.692142 \\
1.742(.087150) & =\log x-1.692142 \\
.151815 & =10 g x-1.692142 \\
\log x & =1.843957 \\
x & =69.81 \\
1.742(\log 360-\log 285) & =\log x-\log 25.14 \\
.176740 & =\log x-1.400365 \\
\log x & =1.577105 \\
x & =37.77 \\
1.742(\log 360-\log 200) & =1.577105-\log x \\
.444685 & =1.577105-\log x \\
\log x & =1.132420 \\
x & =13.56 \\
10 g x & =1.728920 \\
x & =53.57
\end{aligned}
$$

The combination of those results are shown in the following table.
-
.

- -
-
-
-

Reducing to Four Different Currents

I	Dis- tance	Losses $10^{-4} w$	Dis- tance	Losses 10^{-4}	Dis- tance	Losses $10^{-4} w$
360	19.5	86	24	49.22	26.5	37.77
285	19.5	57.24	24	32.76	26.5	25.14
200	19.5	30.89	24	17.67	26.5	13.56
440	19.5	120.88	24	69.81	26.5	53.57

Four different currents were chosen in such a manner that the losses due to one of these currents are known at one distance while those due to the other are known for some other distance. By using the formula

$$
\left(\frac{\left.I_{1}\right)^{1.742}}{\left.I_{2}\right)}=\frac{I_{1}}{I_{2}}\right.
$$

the losses for the various currents were found at different distances.

From the Table we get

$$
\begin{aligned}
& \frac{(19.5)^{x}}{(24)}=\frac{49.22}{86} \\
& x(\log 24-\log 19.5)=\log 86-\log 49.22 \\
& x(1.380211-1.290035)=1.934498-1.692142 \\
& .090186 x=2.42356 \\
& x=2.687 \\
& \frac{(19.5)^{x}}{24)}=\frac{17.67}{30.89} \\
& .090180 x=1.247237-1.489818 \\
& .090186 x=.242581 \\
& x=2.689 \\
& \left.\frac{(19.5)^{x}}{24}\right)^{32.76} \frac{37.24}{5} \\
& .090186 x=1.757758-1.515402 \\
& .090186 x=.242356 \\
& x=2.687 \\
& \left(\frac{19.5}{(26.5)}=\frac{37.77}{86}\right. \\
& x[1.423246-1.290035]=1.934498-1.577105 \\
& .133211 x=.357393 \\
& x=2.683 \\
& \frac{(19.5)^{x}}{(26.5)}=\frac{25.14}{57.24} \\
& .133211 x=1.757758-1.400365 \\
& .133211 x=.357393 \\
& x=2.683
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{19.5)^{x}}{(26.5)}\right. & =\frac{13.56}{30.89} \\
.133211 x & =1.489813-1.1324 \approx 0 \\
.133211 x & =.35739 \\
x & =2.683 \\
\frac{13.56}{17.67}= & \left(\frac{24}{(26.5)}\right)^{x} \\
1.247457-1.132420 & =(1.423246-1.380211) x \\
.115037 & =.043035 \\
x & =2.673
\end{aligned}
$$

Fron the preceding results it is seen that x has a constant value. Therefore $x=(2.687+2.689+2.687+2.683+2.683+2.673) \frac{1}{6}$ $x=2.683$
\square
-
.
-

Deduction of laws
From results it is seen that for a constant distance

$$
\begin{equation*}
\left(\frac{I_{1}}{I_{2}}\right)^{m}=\frac{I_{2}}{I_{2}} \tag{1}
\end{equation*}
$$

or more exactly

$$
\begin{equation*}
\left(\frac{I_{1}}{\left(I_{2}\right.}\right)^{1.742}=\frac{I_{1}}{L_{2}} \tag{2}
\end{equation*}
$$

and for a constant current

$$
\begin{equation*}
\left(\frac{D_{1}}{D_{2}}\right)^{x}=\frac{L_{2}}{I_{1}} \tag{3}
\end{equation*}
$$

or more exactly

$$
\begin{equation*}
\left(\frac{D_{1}}{D_{2}}\right)^{2.683}=\frac{L_{2}}{L_{1}} \tag{4}
\end{equation*}
$$

Laws (2) and (4) give the relation between currents, distances,
and losses

Thus

$$
\begin{equation*}
\left(\frac{D_{1}}{D_{2}}\right)^{x}=\left(\frac{I_{2}}{I_{1}}\right)^{n} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
D_{2}^{x} I_{2}^{n}=D_{1}^{x} I_{1}^{n} \tag{6}
\end{equation*}
$$

showing that the same loss is obtained when current I_{1} becomes I_{2} if D_{1} becomes D_{2}. The value of D_{2} is found from (5) or (6).

From the deduced laws let us find the losses dus to a unit current at a unit distance. First find losses at distance $19.5^{\prime \prime}$ due to unit current.

From (2)

$$
\begin{aligned}
& \left(\frac{I_{1}}{I_{2}}\right)^{1.742}=\frac{I_{1}}{L_{2}} \\
& \left(\frac{1}{200}\right)^{1.742}=\frac{x}{30.89 \times 10^{-4}} \\
& 109200=2.301030 \\
& 1.742100200=4.008394 \\
& (200)^{1.742}=101.48 \\
& \frac{1}{10148}=\frac{x}{30.8910^{-4}} \\
& x=3.04510^{-7}
\end{aligned}
$$

Then find losses at aistace of 1 inch
From (4)

$$
\begin{aligned}
& \left(\frac{19.5}{1}\right)^{2.683}=\frac{x}{3.04510^{-7}} \\
& \log 19.5=1.290035 \\
& 2.683 \log 19.5=3.461163 \\
& (19.5)^{2.683}=2891.8 \\
& 2891.8=\frac{x}{3.04510^{-7}} \\
& x=8.80553110^{-4} \\
& \left(\frac{1}{360}\right)^{1.742}=\frac{x}{86} \\
& \log 360=2.556303 \\
& 1.742 \log 360=4.453079 \\
& (360)^{1.742}=28384
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{28384} & =\frac{x}{86} \\
x & =3.029 \quad 10^{-7}
\end{aligned}
$$

Then at 1 inch distance it is

$$
\begin{aligned}
&\left(\frac{(19.5}{1}\right)^{2.683}=\frac{x}{3.02910^{-7}} \\
& 2891.8=\frac{x}{3.029 \times 10^{-7}} \\
& x=8.75910^{-4} \\
&\left(\frac{1}{285}\right)^{1.742}=\frac{x}{57.2410^{-4}} \\
& \log 285=2.454845 \\
& 1.742 \log 285=4.276339 \\
&(285)^{1.742}=18895 \\
& \frac{1}{18895}=\frac{x}{57.2410} \\
& x=3.029
\end{aligned}
$$

Then at 1 inch distance it is

$$
\begin{aligned}
\left(\frac{19.5}{1}\right)^{2.683} & =\frac{x}{3.02910^{-7}} \\
x & =8.75910^{-4}
\end{aligned}
$$

Whe average x is then 8.759×10^{-4}

Therefore, if it is desired to find the losses due to a current I, D inches from the tower use the following formula

$$
I_{T}=8.75910^{-4} \frac{(I)^{1.742}}{(D)^{2} .683}
$$

As a check assume $\quad I=440$
$D=24^{n}$
$L_{T}=8.75910^{-4} \frac{(440)^{1.742}}{(24)^{2} .683}$
$\log 440=2.643453$
$1.742 \log 440=4.604895$
$(440)^{1.742}=40262$
$\log 24=1.380211$
$2.68310324=3.703106$
$(24)^{2.683}=5047.8$
$I_{T T}=8.75910^{-4} \frac{40262}{5047.8}$
$=8.759 \times 7.97 \times 10^{-4}$
$=69.80 \times 10^{-4}$ as checked with 69.81×10^{-4}

ROOM UŞ ONLY
-
-

