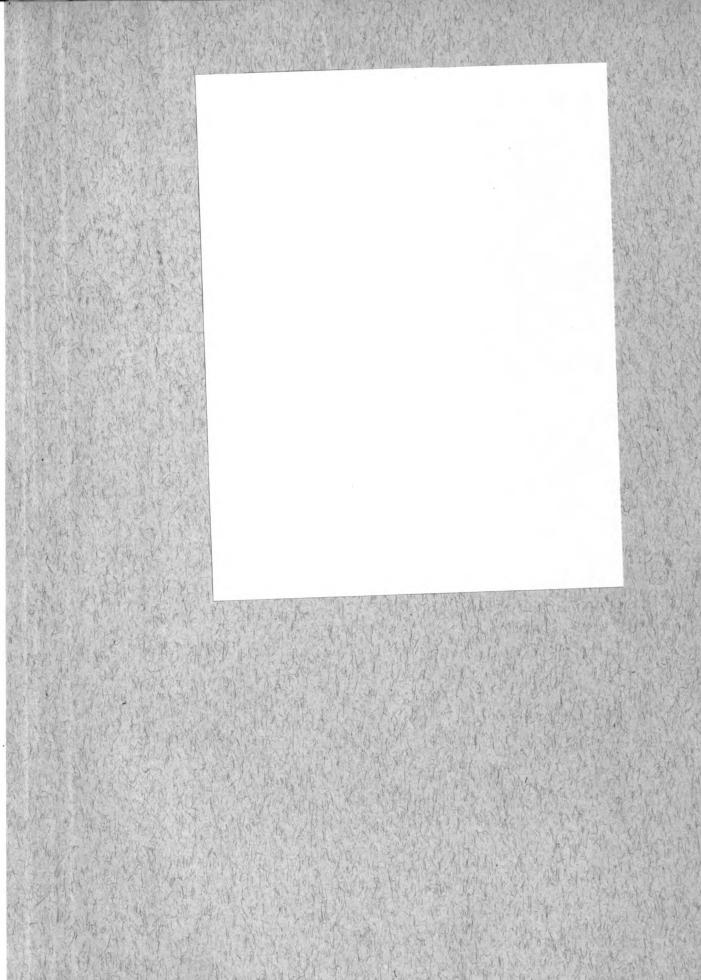


c.2


PREPARATION AND CHARACTERIZATION OF SALTS OF TRIAMINOGUANIDINE

Thesis for the Degree of M. S.
MICHIGAN STATE COLLEGE
John Paul Olatta
1951

THEEL

c, 2

LIBRARY
Michigan State
University

2					
					•

PREPARATION AND CHARACTERIZATION

OF

SALTS OF TRIAMINOGUANIDINE

By

JOHN PAUL OLATTA

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

1951

/s/? 2 (°c)

ACKNOWLEDGMENT

The author respectfully acknowledges the guidance and enthusiasm of Dr. John J. Pitha during the period of research and the preparation of this thesis. Many thanks are extended to the Maval Test Station of China Lake, California, for its financial assistance.

The author is also grateful to his wife for her encouragement and assistance in producing this thesis.

TABLE OF CONTENTS

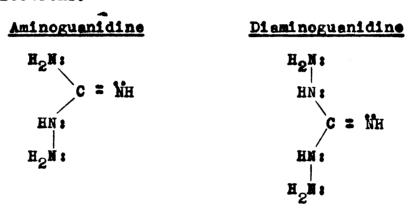
		PAGE
I -	Introduction	1
II -	Preparation of Salts A. Triaminoguanidonium Nitrate B. Triaminoguanidonium Bromide C. Triaminoguanidonium Chloride D. Triaminoguanidonium Sulfate	4 5 6 7
III -	Properties A. Solubility Determinations 1. Experimental Procedure 2. Triaminoguanidonium Halides 3. Triaminoguanidonium Hitrate 4. Hydrasine Sulfate	14 15 17 19
	B. X-Ray Diffraction Studies	21
	C. Study of Di-Acid Saltsl. Preparation2. Neutralisation Curves	23 24
IA -	Discussion	29
	Bibliography	31

INTRODUCTION

I - INTRODUCTION

Current interest in the uses of hydrasine and various other higher nitrogen content compounds has prompted a more detailed study of triaminoguanidine and its salts.

Salts of triaminoguanidine have been prepared by the hydrazinolysis of carbon tetrachloride 1, aminoguanidine 2, isothicurea ethers 5, dichleroformoxime 4, and more recently of guanyl aside 5.


Of these methods, the first has been attempted but never successfully repeated; and the synthesis from dichleroformoxime is somewhat complicated. The remaining syntheses are more or less similar.

The purpose of the research reported herein was to prepare several salts of triaminoguanidine and to study their characteristies.

A study of salts of aminoguanidine⁶ has shown that both mone- and di-acid salts can be prepared, including the bromide, chloride and nitrate. Two different sulfates can also be prepared, a "normal" sulfate and a "bisulfate".

Resent studies of disminoguanidine indicate that di-acid salts can easily be prepared. As with sminoguanidine, two different sulfates were prepared, (DAGH+) 2504 and (DAGH2++) 5045.

An explanation can be given for the above observations by noting the possible structures of these guanidine derivatives and their unshared pairs of electrons.

In each of the above compounds the imino nitrogen would be surrounded by the greatest electron density because of the carbon-nitrogen double bond; therefore, the first proton to become attached to the molecule would probably be held by the imine nitrogen. After this first proton is accepted the resulting ion would still be unsymmetrical with regard to the groups attached to the carbon atom. This condition would favor the addition of another proton giving rise to the di-acid salts and explaining the existence of two different sulfates, $(DAGH^+)_2SO_4^{2}$ and $(DAGH_2^{++})_2SO_4^{-2}$.

By the same reasoning, the behavior of triaminoguanidine can be explained. A possible electronic configuration with the unshared pairs of electrons is shown.

Triaminoguanidine

As in aminoguanidine and diaminoguanidine the first proton would probably become attached to the nitrogen atom with the greatest electron density. In this case it would also be the nitrogen doubly bended to the carbon atom. Once a proton was accepted, there would be three equivalent groups attached to the carbon atom. The electronic charge will then be distributed symmetrically over the molecule and the mono-protonated compound would be very stable. This belief is supported by failure to prepare di-acid salts of triamineguanidine.

PREPARATION OF SALTS

II - PREPARATION OF SALTS

The nitrate, chloride, and bromide salts of triaminoguanidine were prepared according to the method of Pellissari and Gaiter. 2

A - TRIAMINOGUANIDONIUM NITRATE

Twenty-seven grams, (0.2 mole), of aminoguanidonium bicarbonate was suspended in 250 ml. of water. To this was added slowly 12.5 ml. (0.2 mole), of concentrated nitrie acid, then 24 ml. of $\rm W_2H_4\cdot H_2O$ (0.4 mole) as an 85% aqueous solution.

The reaction mixture was heated to boiling for three hours, water being added to maintain a constant volume; it was then evaporated to about one-half its volume on the steam bath. Upon cooling, the solution took on a pink color and long needle-like crystals formed. The material was filtered and washed with ethanol and ether. After concentrating the filtrate and cooling again several times, more of the product could be obtained. The collected fractions were then recrystallised from water, washed with ethanol and

dried in vacuo over porous barium oxide. The material melted at 215° C., with decomposition, in agreement with that of 216° C. reported by Pellissari.

The salt was analyzed for hydrasine content according to the empirical method developed by Keim, Henry and Smith. When using iodate solution as an oxident for the analysis of hydrazine these workers found that it was necessary to apply a correction factor of 3/2.5 in order to explain their experimental data. This factor was used in all hydrasine analyses herein reported except as noted. Calculated for triaminoguanidonium nitrate:

57.36% NoH4

Found: 56.85% N2H4

B - TRIAMINOGUANIDONIUM BROMIDE

The bromide salt of triaminoguanidine was prepared the same way as the nitrate except that hydrobromic acid was used in place of the nitric acid.

Upon scoling the reaction solution the pink solor
was again developed together with similar white,
long needle-like crystals. The product was filtered,
washed with ethanol and dried over barium oxide. The
observed melting point was 225° C., with decomposition,

as compared to 252° C. reported by Pellissari.

This melting point, however, could not be raised appreciably by recrystallisations. Calculated for triaminoguanidonium bromide:

52.0% N2H4

43.19% Br

Found: 52.2% NoH.

45.29% Br

C - TRIAMINOGUANIDONIUM CHLORIDE

The chloride salt of triaminoguanidine was prepared as described above for the nitrate and broade.

The product again was a mass of white, needlelike erystals. After drying, the salt melted with decomposition at 225° C., compared to 251° C. as reported by Pellissari. Recrystallisation did not raise the melting point. Calculated for triaminoguanidonium chloride:

68.6% NoH4

25.23% Cl

Found: 68.2% N2H4

24.99% C1

D - TRIAMINOGUANIDONIUM SULFATE

Following the precedure described above an attempt was made to prepare triaminoguanidonium sulfate.

One-third of a mole of aminoguanidonium bicarbonate was neutralised with one-third mole of sulfuric acid after which was added two-thirds mole of hydrasine hydrate. The reaction mixture was then heated on the steam bath for a few hours. Upon allowing the water to evaporate no crystals of any kind could be obtained, even with cooling. Finally a pink viscous liquid was formed which when cooled with an ice-salt mixture produced a mass of micro crystals which were filtered with difficulty. material was very soluble and sould be recrystallised only from a 50% alcohol-water mixture. The product which still had a pinkish color was found to contain approximately 48% SO4", indicating a compound of probably composition TAG. H2SQ4. The actual yield was very small.

When the preparation was repeated, the thick syrup was again obtained. With the addition of excess sulfuric soid, however, a white crystalline material was formed which was easily crystallized from water. The product was analysed for NoHA, with the value of

29.66% being obtained as an average of several determinations. This value was obtained by using the factor 3/2.5 described in Section II-A.

Sulfate analyses indicated a percentage of 73.84. However, the hydrasine and sulfate content would not fit any theoretical, possible salt. A sample was then analysed for total nitrogen and found to contain 22.2%. The sulfate and nitrogen content indicated a salt of the composition TAG-3H₂SO₄, which would have the following percentage composition:

N₂ 21.4 % N₂H₄ 24.14% 80₄ 72.5 %

If the factor 3/2.5 is not used, the percentage hydrasine is 24.83, in good agreement with the calculated value. The material melted with decomposition at 240° C.

After solubility determinations had been completed, a marked similarity was noted between the
percentages found for this salt and those of hydrasine
sulfate. The similarity is shown in the following
table.

^{*} Analysis done by Micro-Tech Laboratories, Skokie, Illinois.

W2H4.H2SO4		TAG-3H2SO4	
N ₂	21.56%	21.40%	
so_	73.85	72.50	
N ₂ H ₄	24.67	24.85 (without factor)	

X-ray diffraction patterns of the two salts were then made. Since they were identical, it can be stated that the salt presumed to be triamino-guanidonium tri-sulfate was actually hydrazine sulfate.

Because the hydrazine sulfate was so easily precipitated on acidification it was reasoned that very little hydrazinolysis had occurred. Accordingly, when the preparation was repeated, instead of heating on a steam bath, the solution was boiled for one hour with ammonia being liberated as usual in large quantities. After concentrating and ecoling, white crystals could be obtained which were filtered and washed with ethanol and ether. This material was analysed for E_2E_4 , and a percentage of 52.7 was obtained, using the factor of 3/2.5. Since the yield was small the preparation was repeated and the crystals obtained were found to contain 52.2% hydrasine. A sulfate analysis of either product indicated 56.36% SO_4^{-2} .

then recrystallised from an approximately 50% alcohol-water mixture. Repetition of the hydrasine and sulfate analyses showed no change in composition. The percentages indicate a compound containing three TAG molecules and two H₂SO₄ molecules or 5TAG·2H₂SO₄. The calculated percentages however are 56.7% N₂H₄ and 57.78% SO₄². Nitrogen analysis showed 46.51% nitrogen. Upon drying a sample over barium exide at 80° C. a less of weight, presumably water, was found to be 6.25%. This latter determination indicates a possible hydrated salt. If the triaminoguanidonium sulfate were hydrated the calculated percentages would be:

Calculated	for 3TAG • 2H2SO4 • 2H2O	Found
$\mathbf{H}_{2}\mathbf{H}_{4}$	52.97%	52.23% (with factor)
804 ²	35.28%	36.3 2
x ⁸	46.28%	46.51
H ₂ 0	6.1 \$	6.25

The presence of triaminoguanidine was verified by treating a sample of the sulfate salt with the calculated amount of barium nitrate. The barium sulfate was removed by filtration and the filtrate evaporated almost to dryness. Upon cooling, long

Analysis done by Micro-Tech Laboratories, Skokie, Illinois.

needle-like erystals were obtained which had the characteristic flammability of the triaminoguani-donium nitrate. The x-ray diffraction pattern of the material was identical with that of the known nitrate selt.

If the aminoguanidine, sulfuric acid, and hydrazine mixture is heated at reflux temperature for eighteen hours a white crystalline material can be isolated which is 51.8% hydrazine, using the factor. This material, however, does not appear to have any sulfate present.

The Schotte method of preparation was then tried, treating S-methyl, isothiourea sulfate with the calculated amount of hydrasine hydrate. The reaction mixture was refluxed for three hours and then evaperated under reduced pressure. Upon cooling, a crystalline material was formed which also gave negative results when tested for the sulfate ion.

Another quantity of the thioures ether was then treated with an excess of hydrasine and the reaction mixture heated only one hour and then concentrated on the steam bath. The material which erystallised out upon cooling was found to contain 51.5% H₂H₄. A portion of this material was

recrystallised from a slowly evaporated water solution. The crystals obtained by this method were found to contain 52.86% hydrasine, with the factor, indicating again the compound STAG-2H₂SO₄·2H₂O. By treating a weighed quantity of this salt with barium nitrate, filtering the barium sulfate, and then evaporating, triaminoguanidonium nitrate was produced. This was again verified by the x-ray diffraction pattern.

From the above series of preparations a number of samples of small yield were obtained. Each sample had at least 52% hydrasine and some detectable sulfate. These preparations were combined and dissolved in a small volume of water and the solution allowed to evaporate slowly. Crystals were formed which could easily be removed, washed and dried. Titration with iodate indicated a percentage hydrasine of 52.34. Further concentration of the filtrate again produced large crystals which contained 52.25% hydrasine.

X-ray diffraction patterns of these recrystallised fractions were identical with the pattern obtained from the first salt of composition $STAG-2H_0SO_4-2H_0O_4$

Triaminoguanidonium sulfate appears to lose its

water of erystallisation when heated to 90-95° C.

The material them decomposed when heated to 145-150° C.

After dehydration a sample of the sulfate salt melted with decomposition in the range of 150-155° C.

Attempts were also made to prepare triaminoguanidonium sulfate, using the double decomposition
reaction of silver sulfate with triaminoguanidonium
bromide. First, a het suspension of silver sulfate
was added to a warm selution of the bromide salt.
There was a violent evolution of gas and the mixture
bubbled over the sides of the beaker. When the
reaction had subsided, evidence could be seen of
silver reduction. After several hours the beaker
was coated with a silver mirror.

The reaction was then run in the cold with the silver sulfate being added to a cold solution of the bromide salt. The slurry was then stirred three hours at the end of which time the precipitate had turned completely black. The mixture was then filtered and upon concentrating and cooling the filtrate a mass of white crystals was obtained. These were found to contain 80% hydrasine, but only 8% sulfate. The x-ray diffraction pattern for this material was identical with that of the original bromide salt. The reaction evidently had taken place to only a slight extent.

PROPERTIES

III - PROPERTIES

A - Solubility Determinations

1. Experimental Procedure

In order to determine the solubilities of the triaminoguanidonium salts, saturated solutions were prepared in all-glass system fitted with a stirrer, thermometer, and an exit port for withdrawal of samples and the addition of water, as needed. All joints were ground glass.

The solubility samples were suspended in a water bath maintained at constant temperature, with-in 0.20 C., by a mercury regulator switch and an electronic relay.

After sufficient time for equilibrium to be attained, at least three hours at the desired temperature, a sample of the saturated solution was withdrawn, placed in a tared 100 ml. volumetric flask and weighed. In all cases excess solute was present.

After diluting to the mark, aliquots were analysed for either anion or eation centent. From the data thus obtained, the solubility of the salt was easily calculated and expressed as grams of salt per 100 g. of solvent.

In determining the solubilities of these salts the aliquots were analyzed for halide content.

Analysis for N₂H₄ was not done in order to eliminate using the factor described in Section II-A. Titrations using silver nitrate and an absorption indicator were not successful in that a definite end-point could not be observed. The Mohr titration was then tried but the triaminoguanidine was evidently oxidised by the dichromate ion and again no end-point could be obtained. In the Volhard method, the sample solution slowly became colored long before the end-point.

The method finally used to determine the anion concentration, from which the solubilities were calculated, was a potentiemetric precipitation titration, using a Cenco line-operated pH meter, with a platimum and a silver, silver-chloride electrode. Potential measurements were taken in the usual manner, titrating with silver nitrate.solution. Plots were then made of AE/ml in order to get the well known, maximum differential curve. The silver nitrate solution which was used had been previously standardized against C.P. sodium chloride, using the potentiometric method.

The results are listed in Tables I and II, and graphically in Figure I.

TABLE I Solubility of triaminoguanidonium bromide in water

•	Temperature C ⁰	Grams of TAG·HBr per 100 g. water
	16.0	4.37
	21.7	5.51
	30.1	7.63
	39.7	10.74
	45.5	15.48
	80.0	15.48
	57.0	19.50
	61.8	22.79

TABLE II
Solubility of triaminoguanidonium chloride in water

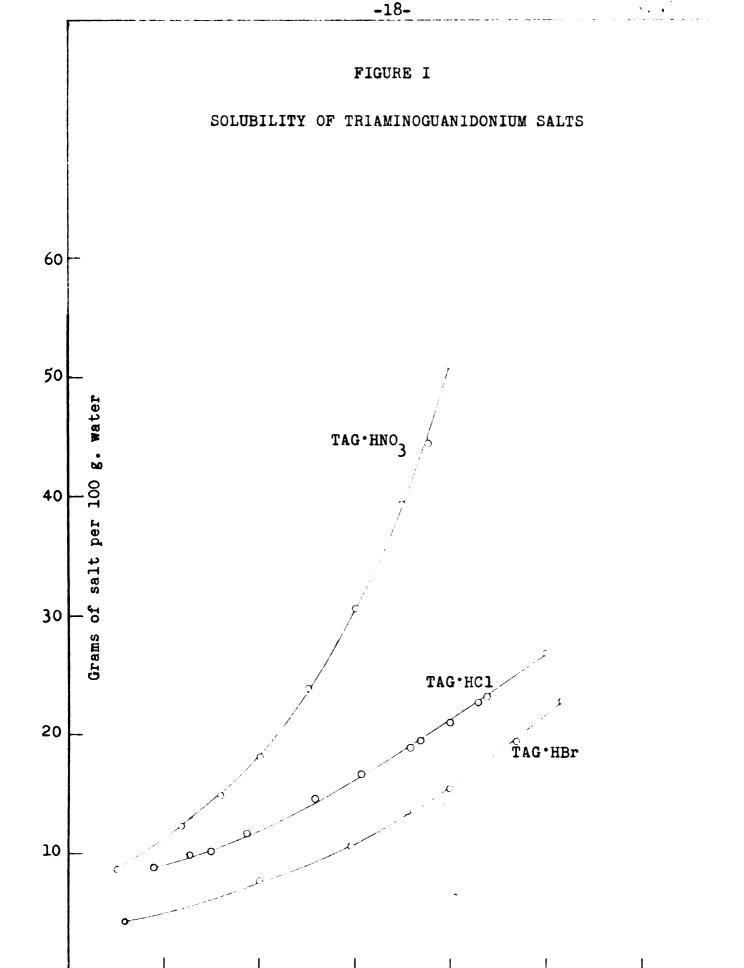
Temperature C ⁰	Grams of TAG·HCl per 100 g. water	
19.0	8.8	
22.8	9.87	
25.0	10.10	
28.9	11.69	
36.0	14.53	
40.7	16.61	
46.0	18.87	
47.0	19.56	
50.0	21.06	
53.0	22.71	
53.8	23.23	
60.0	96.84	

•

•

3. Triaminoguanidonium nitrate

In determining the solubility of the nitrate salt, the aliquots were analysed for hydrazine content according to the method described in Section II-A. The potassium iodate solution was prepared from C.P. potassium iodate and standardised against hydrazine sulfate which had been doubly recrystallised. The results are shown in Table III and Figure I.


TABLE III
Solubility of triaminoguanidonium nitrate in water

Temperature C ⁰	Grams of TAG-HNO3 per 100 g. water	
15.1	8.65	
21.8	12.34	
25.9	14.8	
80.1	18.13	
35.1	23.92	
40.0	30.66	
45.0	39.43	
47.6	44.61	
50.0	50.98	

.

•

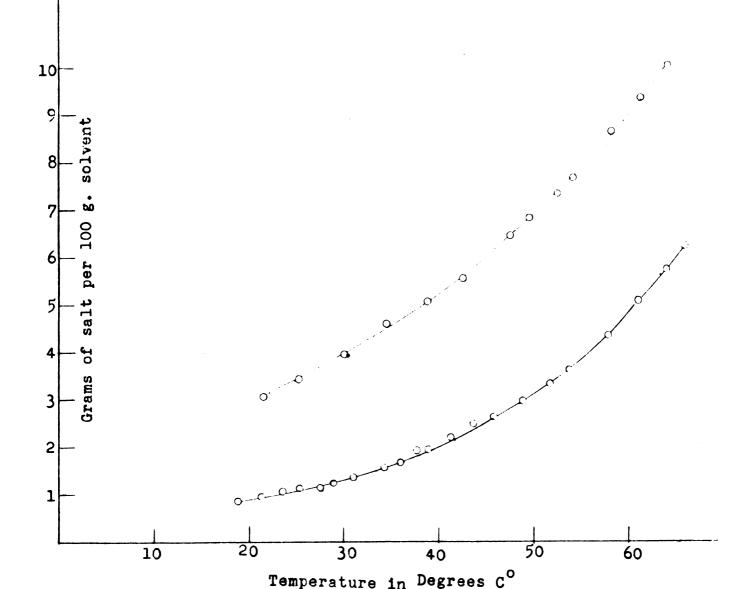
•

0

4. Hydrasine Sulfate

As mentioned in Section II-D, the solubility of a salt believed to be triaminoguanidonium sulfate was determined for water and 1.008 normal sulfurie acid solution. This salt was proven to be hydrazine sulfate. The solubility data was recalculated on this basis with the results being listed in Table IV and shown graphically in Figure II.

The solubilities of hydrasine sulfate in water agree with those reported in the literature. 10


TABLE IV
Solubilities of Hydrasine Sulfate

Tempera- ture Co	Grams per 100 g H ₂ O	Tempera- ture C ^O	Grams per 100 g acid
21.50	3.06	18.80	. 0.87
25.1	3.42	21.3	0.92
30.1	3.94	23.5	1.06
34.5	4.60	27.5	1.11
38.9	5. 08	28 .8	1.21
42.5	5.57	51.0	1.35
47.5	6.49	34.3	1.55
49.5	6.83	36.0	1.69
52.5	7.38	37.7	1.90
54.1	. 7. 68	58.8	1.95
58.3	8.67	41.3	2.20
61.2	9.39	43.6	2.50
64.0	10.04	45.7	2.62
		48.8	2.99
		51.6	5.52
		53.7	3.61
		57. 9	4.84
		61.0	5.08
		64.0	5.74
		65.9	6.22

FIGURE II

SOLUBILITY OF HYDRAZINE SULFATE

Upper Curve - Water
Lower Curve - 1.008 N H₂SO₄

B - X-ray Diffraction Studies

For purposes of identification, x-ray diffraction patterns of the powdered salts were made. Because of the complex nature of the patterns no attempt was made to determine the specific structures of the products. The diagrams were used only for comparative purposes.

The patterns were made on a North American Philips instrument, using Cu, K_{∞} radiation and a Ni filter. Cameras of a 114.59 mm. diameter were used. Exposure times were four hours each, using 35,000 volts and 15 milliamps.

The ten most prominent lines together with their relative intensities are listed in the following tables for each salt. The "d" distance for the Bragg equation was determined from a previously prepared graph.

TABLE V
TRIANINOGUANIDONIUM NITRATE

"d"
7.16
6.4 4
5.52
4.17
3.78
3,30
3.09
2.98
2.88
2.74

• . • . •

TABLE VI

TRIAMINOGUANIDONIUM CHLORIDE TAG·HCl

"d"
6.62
5.16
4.48
3.72
3.24
3.13
2.90
2.40
2.80
1.88

TABLE VII

TRIAMINOGUANIDONIUM BROMIDE TAG·HBr

Intensity	"a"
V. 8.	4.58
s.	4.06
W.	3.36
8.	3.16
V.S.	2.96
x.	2.45
8.	2.36
V. W.	2.31
W.	1.78
W.	1.64

TABLE VIII

TRIAMINOGUANIDONIUM SULFATE 5TAG-2H2SO4-2H2O

Intensity	"a"
n.	8.54
W.	5.64
13. 41. ●	5.28
W.	5.05
8.	4.75
M.	4.56
w.	4.40
W.	4.18
8.	3.66
V. S.	3,27

C - Study of Di-Acid Salts

Since di-scid salts of aminoguanidine and diaminoguanidine can be prepared it was assumed that multi-protonated salts of triaminoguanidine could also be prepared.

1. Preparation

The procedure for the preparation was the same as previously described in Section II-A, except that an extra mole of the desired acid was added. The material subsequently obtained by evaporation and cooling was very similar to the mono-acid salts. For quick identification, x-ray diffraction patterns were made. The patterns of the supposed di-acid salts were in each case identical with those of the mono-acid salts.

During an investigation of arsenic-organic compounds, August Albert in Germany reported the preparation of materials containing a C²O group, not in
a ring, by condensation with compounds containing
several hydrasine groups. One of these compounds was
reportedly triaminoguanidonium dinitrate. No reference, however, is made to the preparation of the
triaminoguanidine salt.

2. Neutralisation Curves

Tenth-molar solutions of the mono-acid and supposedly di-acid salts of triaminoguanidine were prepared. Ten milliliter samples in 100 ml. of water were then titrated with 0.0891 N. NaOH solution. The changes in pH were followed by a line-operated Cenco Titration pH Neter, using a saturated calomel and glass electrode. These changes were plotted as usual and from the plot of pH versus volume of alkali it is evident that the mono-acid salts had no titratable proton. It is also evident that the di-acid salts were actually mono-acid.

Ten milliliters of tenth-molar triaminoguanidonium sulfate were also diluted with 100 ml. of
water and then titrated with 0.1 M sodium hydroxide.
The resulting curve has the appearance of a buffering
action. This might be expected since the triaminoguanidonium ion TAGH2⁺⁺ would act as a weak acid.

FIGURE III

TITRATION CURVES OF TRIAMINOGUANIDONIUM NITRATES

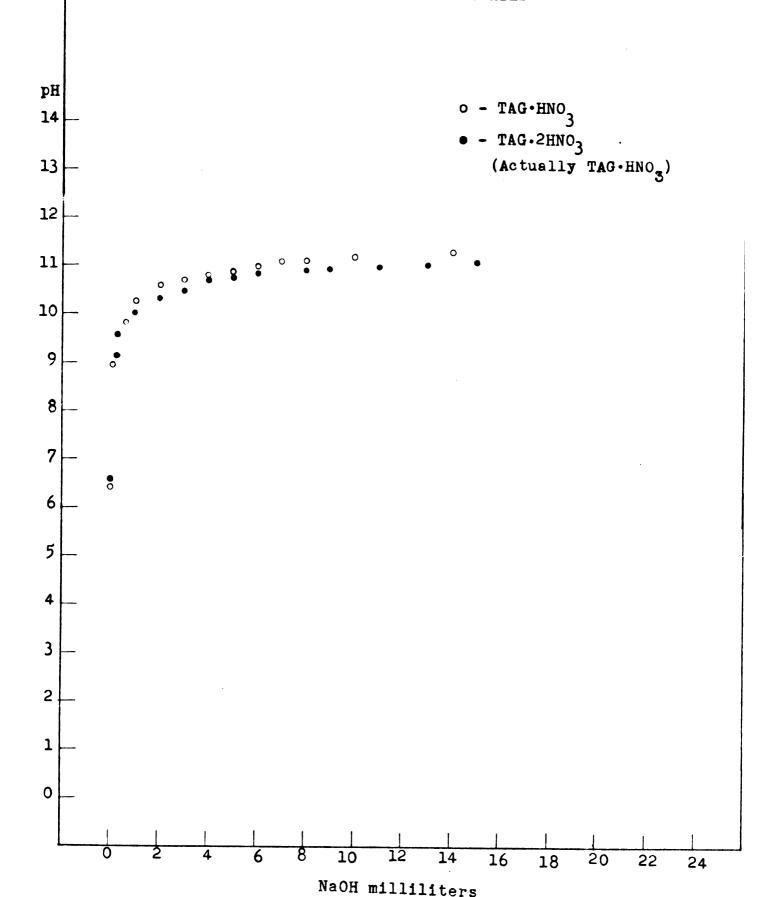
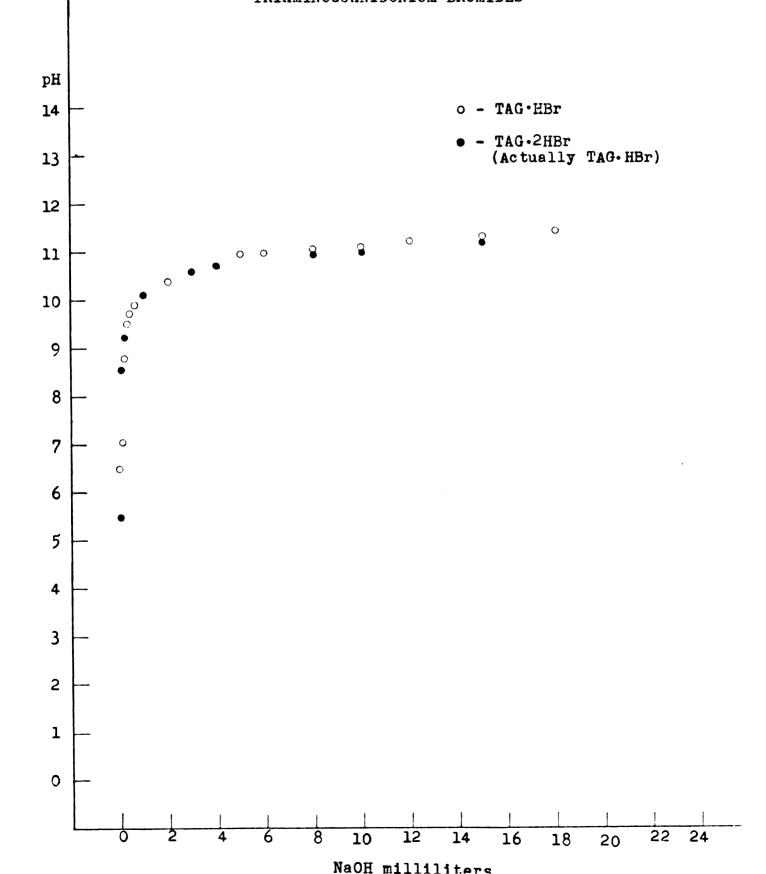



FIGURE IV

TITRATION CURVES OF TRIAMINOGUANIDONIUM BROMIDES

TITRATION CURVES OF TRIAMINOGUANIDONIUM CHLORIDES

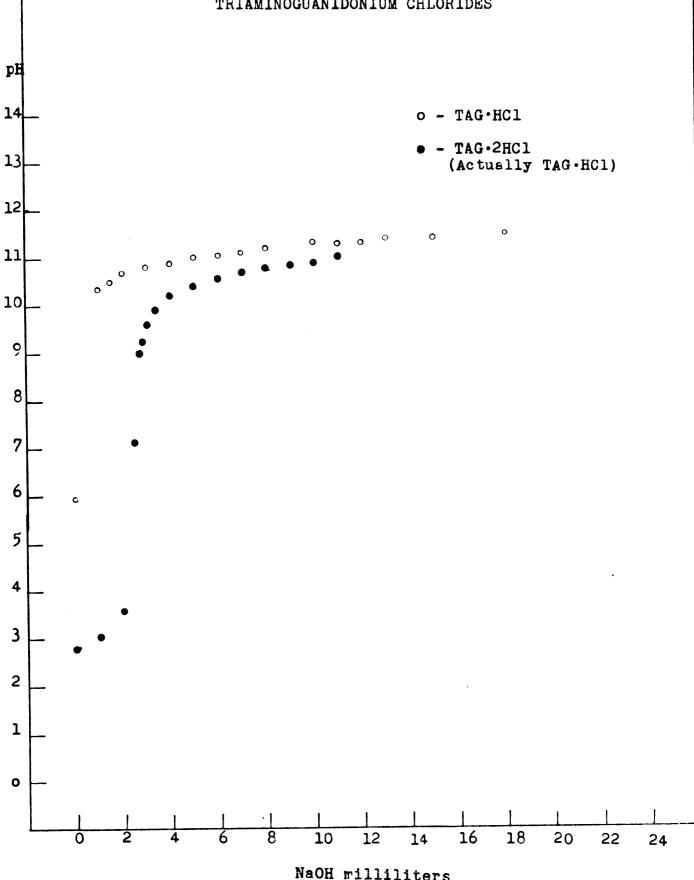
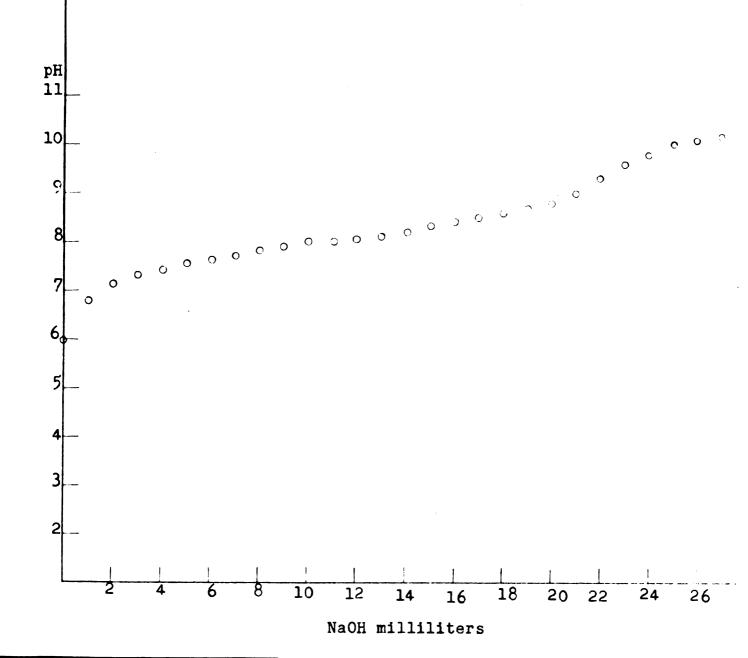



FIGURE VI

TITRATION CURVE OF TRIAMINOGUANIDONIUM SULFATE

DISCUSSION

IV - DISCUSSION

The nitrate, chloride and bromide salts of triaminoguanidine can be easily prepared by the hydrasinolysis of aminoguanidine. These salts are stable in water or acid solutions. Only the monoprotonated salts could be prepared and titrations with base indicate that the salts do not act as "acids" in water solution.

The difficulties and reactions encountered in preparing triaminoguanidonium sulfate were described in Section II-D. These difficulties require some explanation. The sulfate salt finally isolated had the composition STAG·2H₂SO₄·2H₂O; if a solution of this material is acidified with sulfuric acid hydrasine sulfate is formed and precipitates in white crystals which are easily filtered. Evaporation and cooling of the filtrate produces a crystalline material which can be identified as aminoguanidonium sulfate. This reaction might be expressed as an equilibrium as shown below:

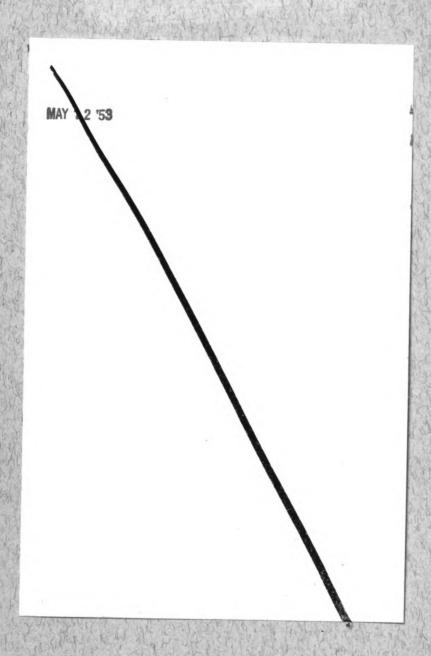
$$2AGH_{2}SO_{4} + 4H_{2}H_{4} = 2(TAG H_{2}SO_{4}) + 4NH_{5}$$

$$- 1|$$

$$(TAG)_{2} H_{2}SO_{4} + H_{2}SO_{4}$$

Thus crystallization of an equimolar mixture of the two different salts would produce a material which upon analysis would agree with a compound of composition STAG.2H2SO4.2H2O. Addition of base would then favor formation of the compound (TAG)2H2SO4, liberating in the process one mole of sulfuric acid. A solution of the salt STAG.2H2SO4.2H2O would then be expected to be acidic and this is actually the case. A hundredth-molar solution has a pH of six and titration with base (sodium hydroxide) indicates neutralisation at a molar ratio of two moles base/one mole salt, as would also be expected. The low melting point of the triaminoguanidonium sulfate also indicates that the material is probably not a pure compound.

The pH of a triaminoguanidonium sulfate solution can be considered as due to the following dissociation:


$$TAGH_2^{++} \Longrightarrow TAGH^+ + H^+$$

Choosing three different points on the titration curve and applying the buffer equation, $H^+ = \frac{C_a}{C_a} K_a$, gives the following results for apparent K_a and pK_a of this dissociation:

K _a	pK _a
2.1 x 10 ⁻⁸ 2.0 x 10 ⁻⁸	8.3 2 8.3 0
2.4 x 10-8	8.38

BIBLIOGRAPHY

- 1. Stolle, R., Ber. 37, 3548 (1904).
- 2. Pellizzari, G., and Gaiter, A., Gazz. chim. ital. 44, II, 78 (1914).
- Schotte, H., German Patent 501,389 (1926);
 Chem. Abstract 24 4524.
- 4. Prandtl, W., and Dollfus, W., Ber. 65 754 (1932).
- O'Connor, T.E., Horgan, K., and Reilly, J.,
 J. Appl. Chem. 1, 91, (1951).
- Pitha, J.J., Hughes, Jr., H., and Smith,
 G.B.L., J. Am. Chem. Soc. 70, 2823 (1948).
- 7. Unpublished results by Pitha, J.J., and Olatta, J.P.
- 8. Keim, G., Henry, R.A., and Smith, G.B.L., J. Am. Chem. Soc. 72, 4944 (1950).
- 9. Albert, A., Chem. Zentr. II, 1384 (1928) Chem.
 Abstract, 22, 41291.
- 10. Sommer, F., and Weise, K., Z. anorg, allgem. Chem. 94 51, (1916).

ABSTRACT OF A THESIS

by

JOHN P. OLATIA

*PREFARATION AND CHARACTERIZATION OF EALTS OF TRIADINGGARIDINE"

Current interest in the uses of hydrazine and other high nitrogen content compounds has prompted a more detailed study of the salts of triaminoguanidine. The purpose of the research was to prepare several salts of triaminoguanidine and study their characteristics.

The chloride, bromide, nitrate and sulfate salts were prepared by the hydrazinolysis of the corresponding smine-guanidine salts. Triaminoguenidonium sulfate was also prepared by the hydrazinolysis of S-methyl isothioures sulfate.

Solubility determinations as a function of temperature were made of the nitrate, chloride and bromide salts in water. The solubility of hydrazine sulfate was determined, both in water and in one normal sulfuric acid.

For purposes of identification, powder x-ray diffraction patterns were made of the salts. The ten most prominent lines of each pattern are listed with their relative intensities and corresponding "d" distances for the Bragg equation.

attempts were made to prepare di-acid salts of triamine-guanidine. X-ray diffraction studies and titrations with slkali show that only the mono-acid salts can easily be prepared.

From the reactions and properties of triaminoguanidonium sulfate it was deduced that the salt isolated
was actually an equimolar mixture of two different compounds which form an equilibrium in neutral water
solution.

. •

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03169 2282