A CHECK OF THE STRESSES IN THE PRINCIPAL MEMBERS OF THE STATE HIGHWAY BRIDGE AT ROCHESTER. MICH.

THESIS FOR THE DEGREE OF B. S.

Homer McVean

1930

THESIS

cop !!

Strains + atresses. Bridges

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

Civil enjurearny. Bridges + roufe

,

A Check of the Stresses in the Principal Members of the State Highway Bridge at Rochester, Michigan

A Thesis Submitted to

The Faculty of

MICHIGAN STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE

By

Homer McVean

Candidate for the Degree of

Bachelor of Science

THESIS

00%.1

Index to Thesis

Section I

Extracts of the articles from the specifications of the Michigan State Highway Department, used in the check.

Section II

Calculations for the check of the design.

Section III

Discussion of the analysis and check of the design.

Section IV

General discussion and conclusion of the thesis.

Section V

Blue prints in cover.

Extracts of the articles from the specifications of the Michigan State Highway Department used in the check:

5.9 curbs. The width of the curb measured from face of the curb to closest vertical projection or the railing pilaster, of of the superstructure, shall preferably be not less than 1°-6" as a safety some for coessional pedestrians. In no case shall this width be less than 1°-0". The curb height shall preferably be not less than 10 inches and in no case less than 9 inches. Curbs shall be of substantial construction capable of resisting a transverse force of not less than 500 lbs. per lineal foot, applied at top of curb.

5.10 Railings

5.10.1 Railing height. Substantial railings shall be provided along each side of the bridge for the protection of traffic. The top of the railing shall be not less than 5'-0" above top of curb, same height above sidewalks.

5.10.5 Design forces. Railings shall be designed to resist a horizontal force of not less than 150 lbs. per lineal foot, applied at top of the rail, and a vertical force of not less than 160 pounds per lineal foot.

5.14 Crown. Height of crown shall be not less than given by the formula the resist of crown in inches and R = Roadway width in feet. Minimum crown shall be one inch.

Locds

Weight/	ou.	st.	in	lbs
---------	-----	-----	----	-----

Steel 490

Concrete, reinforced 150

Earth 100

System of loading specified on plans.

Pressure from retained material.

Equivalent liquid theory (Hoot)

P = 1 th 2 (11/24)

 $y = h^2 / 3hh_1$ 3 (h/2h)

P = resultant earth pressure per foot length of wall

h = vertical height of wall in feet.

o - A coefficient, taken as .25

h1 - height of surcharge in feet

Section 7 unit Stresses

7.2.1 Structural grade and rivet steel

7.2.1.1 Tension, lbs. per square inch.

axial tension, structural members, not section, 16000

7.211.2 Axial compression, gross section 15000 - 50 L but not to exceed 13.500 lbs.

L - length of member in inches

r - least radius of gyration in inches

7.2.1.3 Bending am extreme fiber

Rolled shapes, built sections and girders

	net section	16,000
pins		24,000
7.2.1.5 Shear		
Girder web, gress section		10,000
Pins and shop driven rivets		12,000
Power driven rivets and bolt	8	10,000

7.2.1.6 Bearing

Pins, steel parts in contact and shop driven rivets 24,000

7.4.1 Assumed Compressive Strengths for structural Grades Portland Cement concrete

Grade	28 day strength
A	2500
В	2000
C	1 500

Grade A. All superstructure concrete

Grade B. Reinforced concrete structures except superstructures calculated as structural beams and slab units, and all exposed concrete of 18" thickness or less.

7.4.4. Colums with axial loading

7.4.4.1 Short columns, h = 12 or less where h = unsupported length; <math>D = 12 least outside diameter without spiral reinforcement.

Columns with longitudinal reinforcement and ties.

Allowable unit stress of total concrete area = .20 flo

9.1.2 Design loads. Preferably, structures shall be proportioned to limit the maximum design load on timber piles to 15 tons per pile.

911.3 Spacing. Footing areas shall be so proportioned that pile spacing shall not be less than 2°-6° center to center. The distance from the center of any pile to the nearest edge of the footing shall be not less than 12 inches. In the design of pile foundations, the effect of eccentric loadings due to earth thrust shall be considered and the pile spacings shall generally be designed so as to require a minimum number of piles. The distribution of the foundation loading shall be computed as follows:

P . Load in tons per lineal foot of footing

Spacing, in feet, for any row of piles

n- 1/5 - Number of piles per foot in any row.

e-Eccentricity of loading

Lewidth of footing in feet

A-Distance in feet from heel of footing to any row of piles.

d Settlement in inches of heel of footing

Le Change in amount of settlement per foot width of focting

d_Settlement in inches of any pile under load

Balcad in tons per pile, to cause a settlement of one inch

p-Loed in tons, on any single pile

plistance, in feet, from heel of footing to locus of the center of gravity of the piles.

Then ded ofca

an (a Am) Poft (oft)

From Which Bd PSna2 -L(e-1)Sna SnSna2 (Sna)2

In Sna - (Sna)2

p = Bd_o ≠ aBk and r-Sta

9.3.9 Counterfort abutments

Counterforts shall preferably be located under or near points of concentrated load. The face walls and the back of the base shall be designed as continuous slabs. For equally spaced counterforts, positive and negative moments of 1/12 w 1² shall be assumed, provided that the end supports for the series of continuous slabs offer suitable restraint; otherwise 1/10 w 1² shall be assumed for positive and negative moments.

The rear of the base slab shall be investigated for diagonal tension and bond stresses at the edge of the counterforts.

The too projection shill be considered as contilever beams fixed at the

edge of the support, and shall be designed for the foundation reaction less the weight of the too.

10.6. Plate Girders

10.6.2 Flange sections. The gross section of the compression flange shall not be less than the gross section of the tension flange. The compression flange shall be stayed against lateral deflection at intervals not exceeding 12 times its width. Flange cover plates shall be equal in thickness, nor have a thickness greater than that of the flange angles.

10.6.3. Web plates shall be proportioned for both horizontal and vertical shear. Splices in web plates shall be designed to develop the full value of the web plate for both bending and shearing stresses. The thickness of web plates shall not be less than 1/20 \sqrt{D} , where D_distance between flunges in inches.

10.6.7. End Stiffness. Plate girders shall have stiffener angles over end bearings the outstanding legs of which shall be as wide as the flange angles will allow and shall fit tightly against them. These end stiffeners shall be proportioned for bearing on the outstanding legs of the flange angles, no allowance being made for the legs fitted to the fillets of the flange angles.

10.6.8. Intermediate stiffeners angles shall be riveted in pairs to the web of the girder. Intermediate stiffeners shall be spaced at intervals not exceeding:

- (a) 6 foot
- (b) the depth of the web
- (c) The distance given by the formula det (12000-S)

Design of 70° unencased Girders

Dimensions

Web Plate 46x3/8"

Flances, 2 angles 6"x6"x11/16"

Depth of Girder 462"

Check web plate thickness

t should not be less than 1/20 D

t = 1/20 | 46 = .34"; t = 3/8" is 0. X.

Design of Flance

Area required; $A = \frac{11}{5n} = 1/8$ th₁

h1 = depth of web in inches

h - distance between centers of gravity of top and bottom flanges

h1 = 462 - 32 = 43"

A = 933000x12 = 1/8 x 46 x 3/8 = 16.25 = 2.15 = 14.10 sq. in.
16000x43

net area 👱 gross area minus rivet holes

Gross area of angles = 15.56

Gross Area - 15.56 -2x1x3/8 - 14.81 sq. in.

area seguired is 14.10 s. in.

Section Modulus, 70° unencased girders

Required, <u>H = 937000m12 = 700 in³</u> 8 16000

Provided

 $1 = 2 (1/3 \times 3/8 \times (23)^3) \neq 4(26.2) \neq 4(7.78 \times 21.5^2)$

I = 3042 /104.8 /14350 = 17497 in.4

 $\frac{1}{0} = \frac{17497}{23.25} = 755 \text{ in.}^3$ 0. K.

End Stiffeners

4 angles 5 x5 nx /8 x45 1/8

Area of outstanding legs = 7.00 sg. in.

S <u>= 15000 -50 L</u>

Use 12,500 (specifications)

Area required <u>\$ 54.075</u> **\$ 4.33** sq. in. 0. K.

Spacing of intermediate stiffeners s

Specifications

- (a) 6 feat
- (b) The depth of the web
- (c) $d = \frac{1}{40}$ (12000 S) where s = web shear in lbs. per sq. in.

$$3 = \frac{54.075}{46x3/8} = 3140$$

- (b) = 46"
-)b) = $d = 3/8 \times 1/40 (12000-3140) = 88^{\circ}$

The stiffeners are spaced at 36" which is o. k.

Spacing of rivots in flange angles, same as in 70° encased girders.

Design of 70° Encood Girders

Manensions

Wob Plate 46" x2"

2 Flance angles 6"x6"x5/8"

l cover plate 14"x2"

Total depth of girdor = 48"

Gross area Flange 14.22 sq. in.

" Plate 10.50 # "

25.72 " "

Wet area Flance 14.22-4x1x5/8 = 11.72 sq. in.

" Plate 10.50-2x1x3 = 9.00 " "

20.72 " "

Distance between centers of gravity of flanges

h = 48-2(1.73-.53) = 45.6

Area required = 1.344.000 = 12 $= 1/8 \times 46 \times \frac{1}{2} = 17.05 \text{ mg}$. in. 16.000×45.6

Area required is less than not area provided.

Dosign of Stiffeners

2 angles 5x3/3x3/8x45 1/8

2 angles 4x6x3/8x45 1/8

area of outstanding legs - 5.75 sq. in.

aron required <u>= 77950 = 6.24 sq. in.</u>
12500

area required for stiffeners is less than area provided.

Spacing of stiffeners

Specifications same as in 70° girder

Sphoing is 36"

36" spacing 0. K.

Section modulus 70° encase girder

Section Modulus provided

 $1 = 2(1/3 \times \frac{1}{2} \times 12167) \neq 4(24.2) \neq 4(7.11\times21.5^2) \neq 1/12 \times 14(\frac{3}{4})^{\frac{1}{2}} \neq 2(10.5\times23.43^2)$

1 - 4050 \$ 96.8 \$ 13,146 \$.5\$11550 - 28845

$$\frac{1 - 28045}{0} = 1210 \text{ im}^3 \quad 0. \text{ K.}$$

Pitch of rivets in flange engles

70° encased girder

$$P = \frac{1}{(\frac{1}{h})^{\frac{n}{2}} / 2^{\frac{n}{2}}}$$

P = allowable pitch in inches at section under consideration

R = allowable stress on rivet in pounds

h = distance between centers of gravity of flanges in inches

V = maximum external shear on given section in 1bs.

m = load per lineal inch supported directly by flange.

1 rivet in double shear = .6x12000x2 = 14.400

1 rivet in bearing = $\frac{1}{2}$ x 7/8 x 24,000 = 10,500

V = maximum live and doad shear = 77,950

h = 45.6"

$$\frac{1}{12}$$
 $\frac{1}{8}$ $\frac{1$

$$P = \frac{10.500}{(77.950)^{\frac{3}{4}} (1140)^{\frac{12.500}{36}}}^{2}$$

12.500# _ largest wheel load distributed over 3 ft.

This is largest shear, so all spacing is C. K.

All spacing is 6" or less

Design of 65° girders

Dimensions

Web 48" x 3/8"

Flanges 2 \angle s 6 x 6 x 5/8

Gross area of flance /s = 14.22

net area of flonge = 14.22-2x1x5/8 = 12.97 Sq. in.

h = dist. between e.g. of flanges = 66.5 - 2(1.73) = 43.94

Area reqd. = 815000x12 - 1 x 46 x 3 = 14.2 - 2.15 = 12.05 sq. in. 16009x45.04 8

Area of flanges O. K.

Stiffeners same as 70° girdors

Pitch of rivets 6"

Design of 50° Girders

Dimensions

Web 46" x 3/8"

Flanges 2 / 6 x 4 x 3/8"

Gross area of flenge 1s = 7.22 sq. in.

Not area of flance = $7.22 - 2 \times 1 \times 3/8 = 6.47$ sq. in.

h - distance between c. g. of rlanges - 46.5 - 2(.94) - 44.62

Aroa req. $= 500.000 \times 12 - 1 \times 46 \times 3 = 6.25$ sq. in. 16,000 x 44.62 8

Area is 0. K.

Stiffeners are of same dimensions and spacing as on 70° girders

Pitch of flame rivets 6"

Section modulus of 65° girders

Required: $\frac{14}{3} = \frac{815000}{16000} = 610 \text{ in.}^3$

Provided

I A 3042 / 96.8 / 13,146 = 16285 in.

 $\frac{1}{0} = \frac{16285}{23.25} = 705 \text{ in.}^3 \text{ 0. K.}$

Section modulus of 50° girders

Required 500,000 = 375 in. 3

Provided

 $1 = 3042 \neq 4(4.9) \neq 4(3.61 = 22.31^2) = 3042 \neq 19.6 \neq 7200 = 10242 in.4$

 $\frac{1 = 10262}{0} = 440 \text{ in.}^3$ 0. K.

Design of box girder C7

Dimensions

2 web plates 72" x 3/8

2 flance angles 8" x 8" x 5/8"

2 plates 8" x 2"

Gross area Flange

Not area

19.22 - 2 x 1 x 5/8

17.97

8.00 -2 x 1 x ½

7.00

24.97 in²

Area required

$$\frac{2.663.000 \times 12}{16.000 \times 87.2}$$
 = 1/3 x 72 x 6/8 = 29.30 = 6.75 = 23.05 in.²

Area provided is sufficient

Section Modulus

Required
$$N = 2.663.000 \times 12 = 1995 \text{ in.}^3$$

Provided

Dimensions of G7 came as those of GG, so section modulus required is 2340 in.

Design of bom girder G9

Dimensione and area of Flange

2 web plates 72" x 3/8"

2 flanges angles 8" x 8" x 2"

2 plates 8 x 2

Gross area flance

net area

22.88 - 2 x 1 x 3

21.38 in²

8.00 = 2 x 1 x 2

4 7.00

28.38 in²

Thickness of web plate not less than 1/20 D : $t=1/20/72 = .425^{\circ}$ 6/8" 0. K.

Design of flance

$$h = \frac{2(77.8 \times 33.97 \neq 27.2 \times 32.25)}{21.6 \neq 77.8} = 67.2^{n}$$

h1 = 72"

Area of flange required

 $A = 3.042.000 \times 12$ = 1/8 x 72 x 6/8 = 27.12 " which is sufficient 16000 x 67.2

Section modulus box girder G9

Required $M = 3042000 \times 12 = 2280 \text{ in}^3$ 3 16000

Provided

 $I = 4(1/3 \times 3/8 \times 36^3) \neq 4(69.7) \neq 4(11.44 \times 33.97^2) \neq (1/12 \times \frac{1}{2} \times 6^3) 4$ $\neq (4 \times 32.25^2)$

I = 23328 \$ 278.8 \$ 52600 \$ 16640 \$85 = 92932 in.4

 $\frac{1 - 02032}{36.25} = 2570 \text{ in.}^3$ O.K.

Stiffeners

2 angles 6 x 3 x 2 -area of outstanding legs = 6 inches

71° long

▼ = 16000 = 120 d/t

<u>557000</u> <u>=</u> 16000 <u>=</u> 120 d/t 71=3/8

13200 - 16000 x 3/8 - 2300 x 3/8 - 9"
120 120

Spaced 9 inches or 18" on each of the two web plates.

This checks with the design

Number of rivets in hitch is for Box Girders

These are spaced the same in all of the Box Girders. Therefore, if the pitch is 0. K. for the one bearing the largest load, the rest which carry less must be 0. K. as bearing controls in each case and the web Pl. thickness is the same for each -3/6°.

1 7/8" rivet in amble shear = .6 x 2 x 12000 = 14,400

1 7/8° rivet in shear = 7/8 x 24000 x 3/8 = 7.875

P = F this checks closely with the design

Design of web splice box girder G. 9 #1

4 plates, 18" x 3/8" x 56"

rivets spaced 12 at 4" 1 3 b" = 14 rivets

net area of splice pls.

 $4(3/8 \times 56 - 14 \times 5/8 \times 11 - 63.00 \text{ sq. in.}$

net area of web plote = 72" x 2 x 3/8" = 54 sq. in.

The area of splice plates is greater than web, therefore the splice place are sufficient for shear.

Bonding moment splice plates can carry.

$$\text{li} = \frac{16000}{6} = \frac{16000}{6} = 4(5/8) = (56)^{\frac{2}{3}} = 9.250.000 \text{ in lbs.}$$

Bending moment web plates can carry

$$K = 6/8 \times 72 \times 16000 \times 67.2 = 7.250,000 in 1bs.$$

Splice plates can carry more bending moment than web plates, so are sufficient for bending moment.

Check of rivets in web splice #1

1 rivet double shear = 14,400 # sq. in.

1 rivet bearing = 3/8 x 1 x 24000 = 9000# sq. in.

Bearing governs

Chear web can take

 $72 \times 2 \times 3/8 \times 10000 = 540,000$

6 rows rivets 2 14 - 82 rivets

vertical stress = 540000 = 6,580 lbs.

Horisontal stress = $\sqrt{9000^2 - 6.580^2}$ = 6050 lbs.

6050 (1.5 2 /6.5 2 /10.5 2 /14.5 2 /18.5 2 /......54.5 2)2 = 3,330,000

Resistance of one row of rivets

7.250.000 2 \$ 3 row rivets is sufficient 3.530.000

Design of web splice G9, #2 splice

4 plates 18" x 3/8" x 52"

Rivets spaced, 8 at 5" 2 at 42" 11 rivets

met area of splice plates

4(3/0x52-11x5/3 x1) = 61.62 sq. in.

net area of wob plate = 2(69) x 3/8 = 52. sq. in.

net area of s lice plate is sufficient

Bonding moment splice pl tes can carry

 $16000 \times 4/3/8) \times (52)^2 \times \frac{3}{4} = 8,200000 \text{ in 1hs.}$

Bending moment web plates can carry

 $\frac{1}{6} = \frac{6}{8} = 69 = 16000 = 64.2 = 6,650000 in lbs.$

Splice plates sufficient to carry bending moment

Chack of rivets in web splice #2

6 rows @ 11 = 66

shear web plates can carry

69 x 2 x 3/8 x 10000 = 520000 lbs.

520000d = 7860 lbs.

Horizontal stress _____ 90002_78602 __ 4.400 lbs.

 $4.400 \left(11^{2} 46^{2} 411^{2} 416^{3} 421^{2} 426^{2} 431^{2} 436^{3} 411^{2} 446^{2} 451.5^{2}\right) = 1750000$

Resistance one row of rivets

6.650.000 4 5005 sufficient 1750,000

Web splices in all box girders are the same.

Dimonsions of box girder G8

2 web plates 72" x 3/3"

2 flango angles 9" x 9" x 5/9"

2 plates 8" x 2"

area of flanges

£7038

not

19,22

17.97

8.00

7.00

27.22 sq. in.

24.97 sq. in.

area required

A <u>- 2.821.000</u> - 6.75 <u>-</u> 24.68 sq. in.

Area of flower is 0. K.

Section modulus box girder 68

Required:

 $\frac{H}{3} = \frac{2.821.000}{16,000} \times 12 = 2120 \text{ in}^3$

Provided

 $I = 4(1/3 \times 3/8 \times 36^3) \neq 4(50.4) \neq 4(9.61 \times 34.03^2) \neq (\frac{1}{12} \times 5^3) 4/4(4x32.25^2)$

1 = 23328 \$237.6 \$44500\$85\$16640 = 84780 in.4

 $\frac{1}{0} = \frac{84780}{36.25} = 2340 \text{ in}^3 \text{ O. K.}$

Stiffeners and pitch of rivets same as GO

Design of box girder (2

Dimensions

2 web plates 72" x 3/8"

Flange angles 8" x 8" x 5/8

Gress area flange angles

net area

19.22 sq. in

17.97 sq. in.

Area required

.

· .

-

 $A = 2.127.000 \times 12 = 6.75 = 16.70 \text{ mg. in.}$ 16000×63.04

Area o. k.

Specing of stiffeners for G7

6 x 33 x 3 angles

▼ = 16000 - 120 d/t

 $\frac{223000}{71 \times 3/8} = 16000 = 120 \text{ D/t}$

 $D = \frac{16000 - 8.800 \times 3/8 - 22.5^{\circ}}{120}$

Stillfamors spaced 45" on each plate which check with design

Rivet spaning same as G8

Design of Girder G1

Dimensions

2 web plates 72" x 3"

4 flangs engles on x 8" x 2"

area of flonge

Gross ores 2 Ls

not area

22.88 sq. in.

21,38 sq. in.

Arca required

 $\Lambda = 2.423.000 \times 12 = 26.75-6.75 = 20.00 \text{ mg. in.}$ 16000×67.94

Section modelns G1

Required

 $H = 2.423.000 \times 12 = 1020 \text{ in}^3$

Provided

1 = 4 (1/3 = 3 = 3 = 4 (69.7) 4 (69.7) 4 (11.4 = 3.97 = 23328 \$278.8 \$52600 = 76207 11.4

 $\frac{1}{0} = \frac{76207}{36.25} = 2110 \text{ in}^3 = 0. \text{ K.}$

Section Modulus G 2

Required M = 2,127,000 x 12 = 1595 in³

Provided I = $4(1/3 \times 3/8 \times 36^3)$ 4(5.98) 419.61) (34.03^2)

1 = 25325 \$237.6 \$44500 = 68065 in.

 $I = 68065 = 18.75 \text{ in.}^3$ 0. K. 36.25

No rivets to connect hitch Ls to webs of girders

70° encased, maximum shear 77,950

unit stress, field driven rivots

Thear - 10 2000 # sq. in.

Dearing = 20,000 # sq. in.

1 7/8" fivet, doubleshear = .6 x 10000 x 2 = 12,000#

1/7/6" rivet bearing = Y/6 x 4 x 20000 = 8750# per sq. in.

bearing docidos

77.950 = 9 -12 provided 0. K. 8750

To fasten hitch is to box girder

Single shoar = 6000 3 por sq. in.

77050 - 13 provided 0. K. 6000

This girder has largest shear. All others have same number of rivots in hitch \underline{I} s, therefore, they must be 0. K. also.

Flanges stoyed by disphrams at distances not to exceed 12 times the width of flange.

Width of flungo = 16"

12 x 16/12 = 16 ft. Widn is greater than design, therefore is eafe.

Unit stress in piers

Piers 1-6-7-0-13

Specifications

Columns where $h/D \neq 12^{\circ}$, with longitudinal reinforcement and ties. Allowable unit stress on total soncrete area is .20 fs.

Class B concrete fo = 2000 lbs. per sq. in.

Dimensions of pier 4° x 5° x 31.6°

h/2 =31.6/4 = 7.9

fc1 = .30 x 2000 = 400 lbs. por sq. in.

total lood _9\$50950 \$ 54075) _ 945225 lbs.

Each pier talms <u>945225</u> <u>=</u> 477,600 lbs.

Weight of pier = 5 x 4 x 31.5 x 150 = 96.000#

Voight of box girler = 22,800

Weight of low girder telms by one pier = 11,400#

Motal load _ 585,000 lbs.

re P/bd = 505,000 = 205 lbs. per sq. in. 20x1/34

This is low, but the bridge was designed for a 40 ft. readway, so these of me are sufficiently large to take car: of future widening.

This is for pier No. 7 where 70° - 65° girders meet. Piers 1-6-8-13 are same size 200 of less height, carrying smaller loads, so they are 0. K. for unit strasses

Death of base

Dimensions 12.5° x 12.5° x 2.5°

Each base has total bearing of 585,000# $f(12.5)^2(2.5)(150) = 590,800 #$ This lead is carried by 25 pilow

530,800/25 = 23632 lbs. = 11.3 Tons per pile

Bonding moment of base

H = W/2 (a/1.20)02

W = 590.800 = 3500 lbs. per sq. ft.

 $M = \frac{3800}{2}$ (4.25 \neq 1.2 (4.25) 4.25² = 320000 ft. lbs.

320000 x 12 = 3,840,000 in. 1bs.

or 11 = 3800/2 (5/1.2(3.75) 3.75² = 254,000

 $254,000 \times 12 = 2,848,000 inch 15s.$

Shear

 $V = \pi (1^2 - (a/2)^2) = 3800 (12.5^2 - (4.25 + 5)^2) = V = 258.000 lbs.$

 $v = \frac{250,000}{4(4.25 \pm 5)(.875)12(30)}$ = 23 lbs. per sq. in.

40% por sq. in. is possible so this will care for future widening.

As <u>M = 3.840.000</u> = 9.13 sq. in.

16-1° square bers provided or 2.848.000 __6.8 sq. in. 16000x.875x30

14-1" sq. burn provided this way.

Unit bond stress on bors

 $\overline{y} = \overline{y(30.4c^2)} = 51.60(4.25\overline{x}4.25^2) = 75\% \text{sq. in.}$

 $\frac{3160((3.75 \times 5) \cancel{4}3.75^2) - 3160 \times 33}{16(4).075(30)} = 62 \# \text{ sq. in.}$

Check of pile loads of slubments load; 70° unenessed girders, maximum shear = 54,075 lbs.

Spacing of girders 49-59

Weight per linear ft. = 54075/4.4 12300

Weight of vertical wall = 150x1.5x14.6 3280

woight of base = 2 x 10 x 1.50 3000

weight of earth = 5.5 x 100 x 20.5

surcharge = 25000/10 2500

32,355 lbs.

P = load per lineal ft. in tons = 16.2 tons

Total surchargo = 6 4.5 = 10.5

Potal h of earth = 14.5 /10.5 = 25

13750⁴

W₂ 2x10x150 = 3000

32330 lbs.

 $x = 13750x7.25 \neq 15580 \times 3.75 \neq 3000 \times 5 = 5.35$

 $y = 16.6^2 \angle 3(16.6)(10.5) = 6.69 \text{ rt.}$ $3(16.6 \angle 1)$

P = \(\frac{1}{2} (25) (57.6) (16.) = 7802 1bs.

32.330 = 7802: x = 1.60

x₀ = 160 - (5.35 - 5.00) = 1.25 hats base directly under vertical wall

Pile load, south abutrent

how Ho.	S	n	a	na	na ²
1	5	. 200	1.60	. 200	.2. 000
2	3.7 5	•67	4 •60	1.068	4.072
3	2.5	- 400	6.59	2.600	16.900
4	2.5	<u>-400</u>	9.00	3.600	32-400
Summario	iii	1.237		7.468	53.372

$$L = 10$$
; $e = 1.25/10 = .125$; $P = 16.2$ tons; $r = 7.468 = 5.9$?

$$P = 53.572.410(.5 + .125) \times 7.468)$$
 $P = .564P$

Bir = $\frac{(10(.5 - 123) \times 1.267) - 7.468}{(1.267 \times 53.572) - (7.468)^2}$ \times P = .038P \frac{21}{21} = (.564 - (1x.038))16.2 = 9.75 tong

P2 = (.564 /4x.038)) 13.2 = 11.6 tons

Pg = [.564 /(6.5x.038)) 16.2 = 13.14 tons

 $P_4 = (.564 \neq (9x.039))16.2 = 14.67$ tons

Vertical wall of abutment

Total suruharge 4 10.5

he 10.5 \$14.6 = 25.1

Bass = 2*

height of curtain wall = 14.6

P = wh at any point w = 25; h = 25

P = 25 x 25 = 525 at top of footing

P - 25 x 10.5 - 262 at top of wall

 $= 625(3.5)^2 = 4500$ lbs. per ft. of width

d = /4500 = 6"

As = pbd = .0107 x 12 x 6 = 177 sq. in per ft. of width

hars placed 6" on centers is sufficient

Leagth of steel for negative moment

 $x = ft_0 = \frac{16000 \times 3}{4x60} = 37.5$ "

38" is provided

Eond and shear

T - 640 x 4.25 - 2720 1DE.

u = 2720 (12)(2.306)(15)(.957) = 38 lbs. por sq. in.

v = 2720 = 20 lbs. per sq. in. (12)(.857)

Check vertical wall for load from girders

Load por foot free garders 12,300#

wb. of one fool of wall 3.280

Wotel wt. per lineal ft. 15,580 lbs.

Compression is well per aguars in.

15580 = 72 lbs. per sq. in. 1.5 x 12 x 12

This is very safe.

Outer Cantilover

 $P_1 = \frac{33330}{10} (1 \neq \frac{311.25}{10}) = 5350 \#$

P2 = 32530 (1-6x1.25) = 808#

Fat outer edge of vertical wall

 $\frac{x^4}{4340}$ 7/10; $x^4 = 5090$; P = 3330 \neq 000 = 4200#

Downward pressure

3 x 2 x 150 = 900 lbc.

Moment = 900 x 12 x 1.5 = 16200" in. 1bs.

Pressure up = (4000 x 3 x 3/2 / 1450 x 1/2 x 3 x 3 x 2/3 112 = 279000 in 1bs.

Resulting moment = 279000 - 16200 = 262,800

$$d = \sqrt{\frac{252.800}{146.9 \times 12}}$$
 = 12.2 in.

$$V = 5350 4 1200 \times 3 = 900 = 13,775 lbs. total shear$$

Assuming 🚊 .90 for the depth to satisfy shearing stress

$$\frac{3 - 13.775}{12 \times 40 \times .90}$$

For this depth bend will govern steel 5 inch spacing of 🏞 bars

$$u = \frac{13775}{(12)(2.36)(.903)(32)^2}$$
 84 lbs. eq. in.

rs =
$$252.800$$
 = 6.000 lbs. sq. in. (.0041)(.903)(13)(33)²

$$\frac{fi}{4n} = \frac{6000 \times 5}{4} = 14$$
 inches

Imper floor slab

Resultant downward pressure on outer one foot strip.

The upward pressure = 800 4 1284 = 1042

weight of earth = 2000

weight of footing = 300

Thiform load on and strip = 2600 - 1042 = 1600#

$$H = 1600 \times (9.5)^2 = 11600 \text{ ft. 1bs.}$$

Dopth of slab is controlled by shear.

The total shear at the edge of the counterfort is (16.00)4.25 = 6800 lbs. por linear ft.

 $\frac{d - 6000}{(12)(.90)(50)} = 21^n$ total thickness = 24 which checks with design

dine and specing of bottom rods

4s = (.0014)(12)(24) = .403 sq. in.

🖓 square spaced at 🗗 is sufficient which is used in design

Rods of some size used over supports

Hoad will control

3020136 - (801(12)(2)(.90)(24) - 6800

This checks with design

Spacing of rods increases for each one ft. strip the decrease in lodd =

5650-800 - 465 Ina.

at 1 feat from end the unit load is 1600-700-900

spacing - 16)(1600) - 10" Which chests

and spacing 65 bottom rods = (6)(1600) = 10 0. KL

Counterfort

Total force transmitted to counterfort is P = 1(14.6) (25) (35.1) = 6400 lbs.

 $y = (14.6)^2 \neq 3(14.6)(10.5) = 6.4 \text{ ft.}$ 3(35.3)

Total P = 6400 x 10 = 64000

 $H = 64000 \times 3.4 \times 12 = 4,900,000 in lbs.$

mo .ont ama scales 4.85

 $K = \frac{H}{bd^2} = \frac{4.900.000}{(18)(4.65)^2(12)^6} = 81$

P = .0056 (tuble 6)

4-1" square bars used

As = .0056 x 9.85 x 12 x 18 = 5.9 sq. in.

2 hard one stopped at 7 ft.

2 - 3 x (7.6) (25) (28.1) = 11704

 $y = \frac{(7.6)^2}{3(28.1)} = 3.53$

H = 1170 x 3.03 x 12 = 495,000 in 1bs.

Moment arm sireles 3 ft

K = 425000 = .0001 required
18 x 9 x 144

5 rods carried through

_ 4/19.22.2 _ .0082 provided

Horizontal rada to the counterfort to vertical wall

at top of footing shear -th (25) (25 (815)-5300 lbs.

gr im round bars used

required number in a foot of hei ht = 5300 - 1.7 2 per foot used. (.196)(16000)

at 41 feet above feeting

w = 36 x 20.5 x 815 = 3400 lbs.

me. bars per feet = 3400 = 1.1

2 at 14" sproing used

Times roke are in pairs such hooked around outer horizontal reinforcing bars to obtain such according band

Vertical bars to tid counterforts to base

Sheer on outer feet = 1600 x 8.5 = 12,800 on succeeding 1 ft. strips ten-

sion is lessened by 5550-800 (8.5) = 3900 lbs.

[* lars used at 12 14. 12,800-12(5900) = 6950#

Yo. rods por ft. = 6950 = 2.2 2 rods used

At 21 ft. V = 12,800 - 21 (3900) = 3050

no. reds per ft. = 3050 = 1.3

2 at 15° used

factor of safety for everturning

5.36/1.30 = 3.4

Tactor of safety for sliding

7000 - 1.75

Dosign of wing walls

Dimonsions

Height of wall 8 ft.

II. ichmess 121

Angle of sandie 200

Codo - 2' thick

outer contilever = 21-37

In dary spiced 6"

114 2200 x can 500 = 1300 lbs.

note at 2.371

H = 1300 x 2.67 = 5060 rt, Tap.

å <u>- 5030</u> <u>-</u> 5.9

2 = .0107

AS 20107 x 10 x 5.9 & .757 sq. in required

I'm kers spaced at 6" provides .88 sq. in. per ft.

Design of floor slabs

gr eq. burs top and bottom spaced 5"

Districe from compression surface to center b

bottom steel = 75 inches

M _ 212: W = 915000 x 10 = 1930# par re.

wt. of girder = 200 Ths. per ft.

w = 1930-200 = 1730 per limear ft.

clour distance between girders_4*-5* = 16* = 5*-1*

w for lft strip of pavement = w = 1730 = 562 lbs.

Considering each strip as a 1 ft. beam partly continuous

$$m_{\text{W}}^{12}$$
: $m = 562 \times (39)^2 = 7700 \text{ lb. ir.}$

$$P = K = 92.8$$
 .00573

K = 92.8 (Table 6)

As = .00573 x 12 x 7.5 = .52 sq. in. per sq. ft.

🕍 square bars spaced 5' 🚾 .6 sq. in. per sq. ft.

Same size and spacing of bars take care of negative moment

Shoar test

Crown

$$C = \frac{R^2}{533} = \frac{(28)^2}{533} = 1.42$$
 inches

This is above minimum

check design pertains to a bridge which is located on South Main Street, Rochester, Michigan. It is in reality a grade crossing, as it carries the roadway over First Street, the Grand Trunk Railway, Clinton River, and South Street. It is steel deck girder type, with spans as follows: 4-70°, 2-65°, 8-50°, 28° roadway and 1-5° sidewalk, with provision for future widening to a 40° roadway and 2-5° sidewalks. One 70° span is ever the 3. T. R. R. and those girders are encased. The Detroit United Railway runs close beside the bridge, and the bridge abutments are wide emough to take care of this. They are of counterfort construction, and rest on 15 ton piles, as do the piers.

fine to medium coarse, and contain a large percentage of clay. Beneath this layer of sand and at an average elevation of 153° is a layer of very hard sandy clay in which the clay predominates.

The plans were drawnin the latter part of 1926, and the bridge built in 1927. The plans used in this thesis were obtained from the Michigan State Highway Department at Lansing, as were the specifications used in the computations made in checking the stresses. O. A. Melick was the Bridge Engineer

The loading used in the design of this bridge is shown in the loading diagram, also the moments and shears which are used with this loading. These values were figured by the State Highway Department. The complete plans do not accompany this thesis. The loading diagram, tabulated shears and moments, and drawings showing details of the steel girders are included. Also drawings showing dimensions of abutment.

and general plan of bridge. All steel girders, piers, pile loads, abutments, wing walls, and floor of bridge have been calculated and checked.

Each of these members and the stresses in the composing materials will
be thoroughly discussed in the following report. The discussion will
follow the check calculations as well as possible.

The floor design was sheeked first, and the stresses checked very closely with the specifications. The reinforcement was considered as running only one way, and the floor was figured as a partly continuous beam. The reinforcement which ran parallel with the girders was for the purpose of holding the bars in place. Emparsion joints were provided. The 70 foot encased girders were checked next. It is a built up girder, and it checked closely, in every way.

The pitch of the flange angle rivets was found to be catisfactory, and as this is the maxious spacing of 6", it governs the pitch of the flange angle rivets of all the girders, as this one carries the largest load.

The 70° unencoded girders were next checked, and were found to be satisfactory. The stiffener spacing is the same on all the girders, so a check on the first is in reality a check on them all as far as the stiffeners are concerned.

The 65° and 50° girders were all so found to be correct as to design.

The deck girders were connected to box girders which rested on the piers. The hitch angle rivets were checked and were found to be satisfactory.

The box girders are built up of two webs and filled with concrete.

These girders are heavier than needed for the load they now carry, but were

made so in anticipation of future widening. They are designed for a 50° roadway. The check was made for a load of this size, and the check proved that they were correctly designed. Box girder G9 was checked first. This girder carried the heaviest load, and it checked slosely with the requirements. The flange angle rivet pitch was uneven, but this was necessary in order to place the stiffeners. By check for pitch of the rivets was about the actual average pitch.

Box girder & 8 was checked, and the provided Section modulus was found ample. The pitch of the rivets and the stiffener area and spacing was the same as & 0. Box girder & 7 is identical with & 8 with a smaller load. Likewise Girders & 1 and & 2 were checked and found to be satisfactory.

The design of the piers were checked next. The unit stress in the reinforced concrete was found to be only 205 lbs. per square inch. while 400 lbs. is allowable. The entra strength is no do bt provided to take care of future widening, as these piers are probably designed for a forty foot readway.

The design of the base was checked and was found to be understressed, but will not be when the readway is widened. The pile loads were checked, and they are sufficient for future widening.

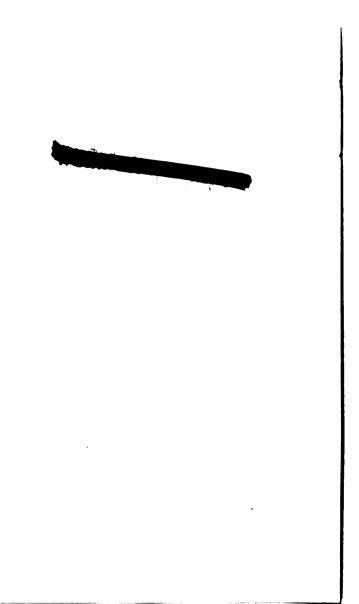
The check of the south abutment followed. Only one abutment was checked as they are both the same. This checked quite closely in most ways, except for a few things. There seemed to be a slight excess of steel in the vertical wall, and the base did not seem to be quite thick enough for vertical shear. However, these variations were slight. The stresses in the inner floor and in the counterforts checked very closely. There was an ample factor of safety both for everturning and for sliding. The short retaining wall at the ends of the abutment was checked next.

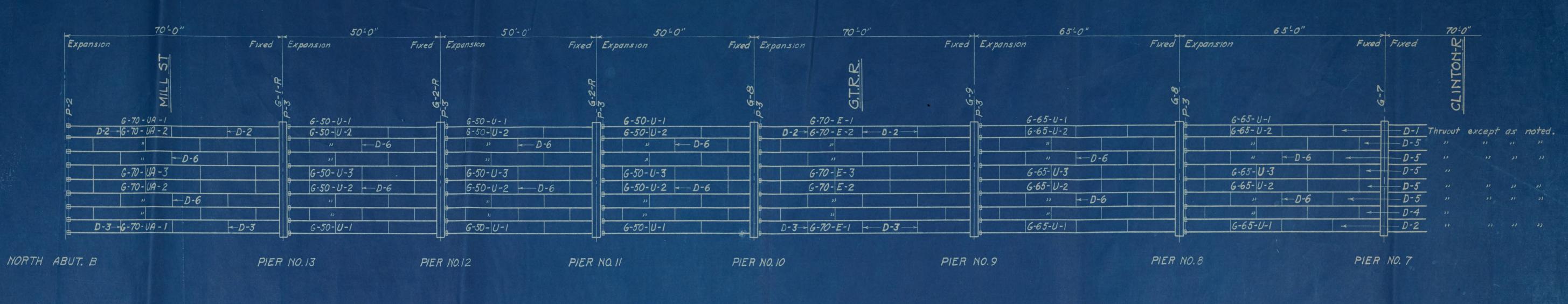
This afforded an opportunity to use Rankin's formula for inclined earth back of the wall. The stress were found to be well within the allowable limits.

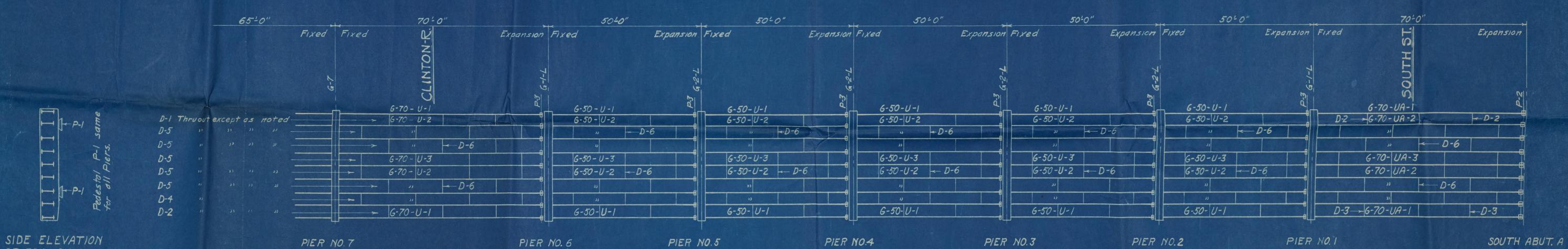
The pile loads were checked for the piles beneath the base of the abutment and were found to check very closely. The allowable load was 15 tons per pile. The check showed that the heaviest load taken by any pile was taken by the ones in the outside row, and was 14 2/3 tons. This was a very good result.

The design of the reilings and curbs are according to the specifications of the Highery Department with the exception that the curb on
the side of the read opposite the sidewalk is only nine inches from the
railing, whereas the specifications say it must not be closer than 12 inches.

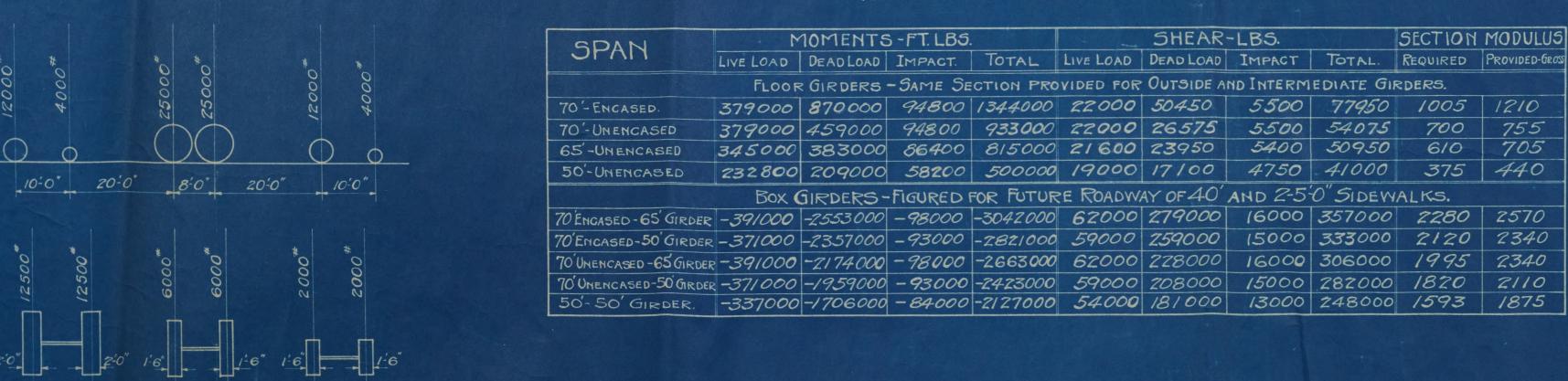
The grown of the readway is couract.


The railings are standard, the design being according to specifications for bridges built by the Hichigan State Highway Department


General Discussion of Thosis


In checking the design of this structure, the work afforded an excellent study of steel girder design, reinforced concrete piers, counterforted rotaining walls, and pile loads. The design of a bridge requires many phases of civil engineering. Also this thesis gave me valuable practise in the reading and interpreting blueprints.

I chose this subject because of the fact that it involved a number of problems which are important to an Engineer. Also I wanted to discover for myself how the theories and formulas we have been using in our dtudies would work out when applied to an actual structure. It has been very pleasing to me to see how closely my calculations have checked with the actual design of the bridge. It gives one more confidence in the knowledge he has gained in the classroom.


7. 1 - 1 TY

TABULATION OF MOMENTS AND SHEARS FOR FLOOR GIRDERS AND BOX GIRDERS.

OF BOX GIRDER

7:0"

Main Load

One Axle

6:0

Truck Load

Front Axle.

Truck Load

Rear Axle.

-LOADING DIAGRAM-

NOTE:See Sheets No. 15 to 23 inclusive for details of Floor
GIRDERS, BOXGIRDERS, PEDESTALS, BEARING SHOES, STIRRUP CASTINGS,
BOLTS, & NUTS.

MICHIGAN STATE HIGHWAY DEPARTMENT

SEC.14 , T 3 N , R II E AVON TWP. OAKLAND COUTH ST. CROSSING OVER FIRST ST, G.T.R.R., CLINTON RIVER AND SOUTH ST.

ERECTION DIAGRAM

4-70;-2-65;8-50' STEEL DECK GIRDER SPANS, 28'ROADWAY, 1-5' SIDEWALK
PROVISION FOR 40' ROADWAY & 2-5'SIDEWALKS
1-40' SPAN, 24'-ROADWAY, 1-5' SIDEWALK, CROSSING CLINTON RIVER
Approved
Chief Graftsman
Approved
Engineer of Design
Approved
Bridge Engineer

SHEET No. 14 of 44

X10f63-2+21

