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ABSTRACT 

HYPERSPECTRAL IMAGING-BASED SPATIALLY-RESOLVED TECHNIQUE FOR 
ACCURATE MEASUREMENT OF THE OPTICAL PROPERTIES OF HORTICULTRAL 

PRODUCTS  
By 

Haiyan Cen 

Hyperspectral imaging-based spatially-resolved technique is promising for determining the 

optical properties and quality attributes of horticultural and food products. However, 

considerable challenges still exist for accurate determination of spectral absorption and scattering 

properties from intact horticultural products. The objective of this research was, therefore, to 

develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate 

measurement of the optical properties of horticultural products. Monte Carlo (MC) simulations 

and experiments for model samples of known optical properties were performed to optimize the 

inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the 

absorption (µa) and reduced scattering (µs') coefficients from spatially-resolved reflectance 

profiles. The logarithm and integral data transformation and the relative weighting methods were 

found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 

10.7%, and 11.4% for µa, and 6.6%, 7.0%, and 7.1% for µs', respectively. More accurate 

measurements of optical properties were obtained when the light beam was of Gaussian type 

with the diameter of less than 1 mm, and the minimum and maximum source-detector distances 

were 1.5 mm and 10-20 transport mean free paths, respectively.  

An optical property measuring prototype was built based on the optimization results. The 

instrument was used to measure the optical properties, and assess quality/maturity, of 500 

‘Redstar’ peaches and 1039 ‘Golden Delicious’ (GD) and 1040 ‘Delicious’ (RD) apples. A 



separate study was also conducted on confocal laser scanning and scanning electron microscopic 

image analysis and compression test of fruit tissue specimens to measure the structural and 

mechanical properties of GD and ‘Granny Smith’ (GS) apples under accelerated softening at 

high temperature (22 ºC)/high humidity (95%) for up to 30 days. The absorption spectra of peach 

and apple fruit were featured with the absorption peaks of major pigments (i.e., chlorophylls and 

anthocyanin) and water, while the reduced scattering coefficient generally decreased with the 

increase of wavelength. Partial least squares regression resulted in various levels of correlation of 

µa and µs' with the firmness, soluble solids content, and skin and flesh color parameters of 

peaches (r = 0.204-0.855) and apples (r = 0.460-0.885), and the combination of the two optical 

parameters generally gave higher correlations (up to 0.893). The mean value of µa and µs' for 

GD and GS apples for each storage date was positively correlated with acoustic/impact firmness, 

Young’s modulus, and cell parameters (r = 0.585-0.948 for GD and r = 0.292-0.993 for GS).  

A two-layer diffusion model for determining the optical properties of fruit skin and flesh 

was further investigated through solid model samples. The average errors of determining two and 

four optical parameters were 6.8% and 15.3%, respectively, for MC reflectance data. The errors 

of determining the first layer of model samples were approximately 23.0% for µa and 18.4% for 

µs', indicating the difficulty and also potential in applying the two-layer diffusion model for fruit.  

This research has demonstrated the usefulness of hyperspectral imaging-based spatially-

resolved technique for determining the optical properties and maturity/quality of fruits. However, 

further research is needed to reduce measurement variability or error caused by irregular or 

rough surface of fruit and the presence of fruit skin, and apply the technique to other foods and 

biological materials. 



iv 
 

 
This work is dedicated to my husband Dahai Gao and my son Nicholas Jiatong Gao 

  



v 
 

ACKNOWLEDGMENTS 
 

I could not have reached the height in my life without tremendous help and support from the 

others. I sincerely thank my advisor and major professor, Dr. Renfu Lu, for his guidance, 

encouragement, understanding, patience, and friendship throughout my Ph.D. study at Michigan 

State University, which was essential to the completion of this research. I would also like to 

warmly thank my committee members, Dr. Daniel E. Guyer, co-advisor, for his help on my 

course and research work and valuable comments on improvement of my presentation skills, and 

Dr. Randolph Beaudry and Dr. Lalita Udpa for their time and enormously helpful advice on my 

research project. 

My thanks also go to my talented colleagues and friends  Dr. Diwan P. Ariana, Dr. 

Fernando Mendoza, Dr. Akira Mizushima, Mr. Benjamin Bailey, Mr. Irwin Donis Gonzalez, and 

Mr. Ahmed Rady  for their help, support and advice in my Ph.D. project. In particular, I would 

like to acknowledge Dr. Diwan P. Ariana and Mr. Benjamin Bailey for their significant 

contributions to the development of the optical property measuring instrument, and Dr. Fernando 

Mendoza for his help on image analysis. I am also grateful to Dr. Kirk Dolan and Dr. James V. 

Beck for their contributions in solving inverse light transport problems. I especially would like to 

thank Dr. Fred W. Bakker-Arkema, Dr. James F. Steffe, and Dr. Ajit K. Srivastava for their help 

during my Ph.D. study at Michigan State University. I also thank the Department of Biosystems 

and Agricultural Engineering and the College of Agriculture and Natural Resources for 

providing me with a fellowship to complete this dissertation.  

Last but not least, I would like to thank my husband Dahai Gao for his intellectual help, 

moral support, and deep love. My deepest gratitude and love go to my parents, Qingmiao Cen, 



vi 
 

and Meidi Tu, for their dedication and the many years of support during my study. Thanks also 

go to my parents-in-law, Feng Gao and Yang Yang, and my sister, Jie Cen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

TABLE OF CONTENTS 

LIST OF TABLES .........................................................................................................................x 

LIST OF FIGURES .................................................................................................................... xii 

KEY TO SYMBOLS OR ABBREVIATIONS ...................................................................... xviii 

CHAPTER 1  INTRODUCTION ............................................................................................1 

1.1  Background .......................................................................................................................1 
1.2  Objectives ..........................................................................................................................6 

CHAPTER 2  LITERATURE REVIEW ................................................................................7 

2.1  Principles of Light Interaction with Biological Materials .................................................7 
2.1.1  Absorption Coefficient...............................................................................................7 
2.1.2  Scattering Coefficient ................................................................................................9 
2.1.3  Anisotropy Factor ......................................................................................................9 
2.1.4  Reduced Scattering Coefficient ...............................................................................10 
2.1.5  Refractive Index .......................................................................................................11 

2.2  Modeling of Light Transport in Tissues ..........................................................................12 
2.2.1  Radiation Transport Model ......................................................................................12 
2.2.2  Diffusion Model .......................................................................................................14 
2.2.3  Adding-doubling Model...........................................................................................15 
2.2.4  Monte Carlo Simulation ...........................................................................................17 

2.3  Techniques for Measuring Optical Properties of Biological Materials ...........................19 
2.3.1  Time-resolved Technique ........................................................................................19 
2.3.2  Frequency-domain Technique .................................................................................22 
2.3.3  Spatially-resolved Technique ...................................................................................25 

2.4  Approaches to Inverse Problems for Determining Optical Parameters ..........................31 
2.4.1  Sensitivity Analysis .................................................................................................31 
2.4.2  Inverse Algorithm ....................................................................................................32 
2.4.3  Data Transformation and Weighting Methods ........................................................33 

2.5  Nondestructive Techniques for Measurement of Maturity and Quality .........................36 
2.5.1  Maturity and Quality of Fruits .................................................................................36 
2.5.2  Mechanical Techniques ...........................................................................................38 
2.5.3  Optical Techniques ..................................................................................................40 

CHAPTER 3  OPTIMIZATION OF INVERSE ALGORITHM FOR ESTIMATING 
OPTICAL PROPERTIES OF BIOLOGICAL MATERIALS ................................................46 

3.1  Introduction .....................................................................................................................46 
3.2  Forward Problem .............................................................................................................48 

3.2.1  One-layer Diffusion Model for the Steady-state Case .............................................48 
3.2.2  Monte Carlo Simulation ...........................................................................................49 

3.3  Inverse Problem ...............................................................................................................50 
3.3.1  Nonlinear Least Squares Inverse Algorithm ............................................................50 



viii 
 

3.3.2  Data Transformation and Weighting Methods ........................................................51 
3.3.3  Sensitivity Analysis .................................................................................................51 
3.3.4  Statistical Analysis and Model Assessment .............................................................52 

3.4  Simulation Experiments ..................................................................................................53 
3.5  Results and Discussion ....................................................................................................55 

3.5.1  Comparison between the Diffusion Model and Monte Carlo Simulations ..............55 
3.5.2  Sensitivity Coefficients ............................................................................................57 
3.5.3  Estimation of Optical Parameters based on Monte Carlo Simulation Data .............60 
3.5.4  Statistical Analysis ...................................................................................................63 

3.6  Conclusions .....................................................................................................................68 

CHAPTER 4  OPTIMIZATION OF THE HYPERSPECTRAL IMAGING-BASED 
SPATIALLY-RESOLVED SYSTEM ........................................................................................70 

4.1  Introduction .....................................................................................................................70 
4.2  Materials and Methods ....................................................................................................72 

4.2.1  Hyperspectral Imaging-based Spatially-resolved Technique ..................................72 
4.2.2  Model Samples Preparation .....................................................................................75 
4.2.3  Reference Methods ..................................................................................................76 
4.2.4  Optimization of the Light Beam and Source-detector Distance ..............................80 
4.2.5  Assessment for Accuracy, Precision/Reproducibility, and Sensitivity ....................82 

4.3  Results and Discussion ....................................................................................................83 
4.3.1  Accuracy of the Reference Methods ........................................................................83 
4.3.2  Light Beam Characteristics ......................................................................................85 
4.3.3  Source-detector Distance .........................................................................................89 
4.3.4  Accuracy, Precision/Reproducibility, and Sensitivity .............................................94 

4.4  Conclusions ...................................................................................................................100 

CHAPTER 5  DEVELOPMENT OF AN OPTICAL PROPERTY MEASUREMENT 
PROTOTYPE…………… .........................................................................................................101 

5.1  Introduction ...................................................................................................................101 
5.2  System Setup and Software Development ....................................................................102 

5.2.1  Optical Property Analyzer Setup ...........................................................................102 
5.2.2  Optical Property Analyzer Software Development ...............................................105 

5.3  System Calibration and Evaluation ...............................................................................110 

CHAPTER 6  MATURITY/QUALITY ASSESSMENT FOR APPLE AND PEACH 
FRUIT USING OPTICAL PROPERTIES ..............................................................................114 

6.1  Introduction ...................................................................................................................114 
6.2  Materials and Methods ..................................................................................................115 

6.2.1  Fruit Samples .........................................................................................................115 
6.2.2  Optical Properties Measurement ............................................................................116 
6.2.3  Acoustic Measurement...........................................................................................118 
6.2.4  Destructive Maturity/Quality Measurement ..........................................................119 
6.2.5  Data Analysis .........................................................................................................120 

6.3  Results and Discussion ..................................................................................................121 



ix 
 

6.3.1  Statistical Data of Fruit Maturity/Quality ..............................................................121 
6.3.2  Peach Maturity/Quality Evaluation ........................................................................123 
6.3.3  Apple Internal Quality Evaluation .........................................................................131 

6.4  Conclusions ...................................................................................................................135 

CHAPTER 7  RELATIONSHIP BETWEEN THE OPTICAL AND 
MECHANICAL/STRUCTURAL PROPERTIES OF APPLE TISSUE ..............................137 

7.1  Introduction ...................................................................................................................137 
7.2  Materials and Methods ..................................................................................................138 

7.2.1  Apple Samples .......................................................................................................138 
7.2.2  Optical Properties Measurement ............................................................................139 
7.2.3  Acoustic Firmness Measurement and Compression Test for Measuring Mechanical 
Properties .........................................................................................................................139 
7.2.4  Confocal Laser Scanning Microscopy and Scanning Electron Microscopy for 
Microstructural Analysis ..................................................................................................141 
7.2.5  Data Analysis .........................................................................................................142 

7.3  Results and Discussion ..................................................................................................146 
7.3.1  Changes in the Optical Properties of Apples during Storage ................................146 
7.3.2  Changes in Acoustic Firmness and Mechanical Properties during Storage ..........149 
7.3.3  Microstructural Changes in Apple Tissue during Storage .....................................152 
7.3.4  Correlations between Optical Properties and Mechanical/Structural Properties ...159 

7.4  Conclusions ...................................................................................................................162 

CHAPTER 8  DETERMINATION OF THE OPTICAL PROPERTIES OF TWO-
LAYER TURBID MATEIRALS ..............................................................................................164 

8.1  Introduction ...................................................................................................................164 
8.2  Materials and Methods ..................................................................................................165 

8.2.1  Two-layer Diffusion Model ...................................................................................165 
8.2.2  Model Samples Preparation and Measurement ......................................................167 

8.3  Validation of the Two-layer Diffusion Model and Inverse Algorithm .........................168 
8.4  Results and Discussion ..................................................................................................170 

8.4.1  Monte Carlo Simulations of Spatially-resolved Diffuse Reflectance ....................170 
8.4.2  Sensitivity Coefficient Analysis ............................................................................171 
8.4.3  Extraction of Optical Properties from Monte Carlo Simulation Data ...................174 
8.4.4  Optical Properties of Model Samples Measured with Integrating Sphere .............178 
8.4.5  Optical Properties of Model Samples Determined from Hyperspectral Imaging 
Measurements ..................................................................................................................179 

8.5  Conclusions ...................................................................................................................182 

CONCLUSION AND FUTURE RESEARCH ........................................................................184 

BIBLIOGRAPHY ......................................................................................................................189 

 

 



x 
 

LIST OF TABLES 

Table 2.1 Summary of the performance of time-resolved, frequency-domain and spatially-
resolved measurements (TS: time-resolved, FD: frequency-domain, SR: spatially-
resolved, POM: polyoxymethylene). .......................................................................... 29 

Table 3.1 Thirty-six combinations of the absorption (µa) and reduced scattering coefficients (µs') 
and their corresponding transport mean free path ( mfp' ) used in Monte Carlo 

simulations (unit: cm
-1

 for µa & µs', and mm for mfp'). ............................................ 54 

Table 3.2  Statistical results for estimating the optical parameters using the LTDM method. ..... 67 

Table 5.1 Components of the Optical Property Analyzer control software. ............................... 106 

Table 6.1 Statistics of fruit maturity/quality parameters for 500 ‘Redstar’ peaches measured by 
standard methods. ..................................................................................................... 122 

Table 6.2 Statistics of the firmness (i.e., maximum Magness-Taylor force or FM) and soluble 
solids content (SSC) of ‘Golden Delicious’ (GD) and ‘Delicious’ (RD) apples for the 
freshly harvested, after-storage, and combined groups. ........................................... 123 

Table 6.3 Partial least squares (PLS) prediction results of ‘Redstar’ peach maturity/quality 

parameters using absorption coefficient (µa), reduced scattering coefficient (µs') and 

their three combinations (µa & µs', µa × µs', and µeff).* .......................................... 129 

Table 6.4 Firmness prediction results for ‘Golden Delicious’ and ‘Delicious’ apples for the 
freshly harvested, after-storage and combined groups.* .......................................... 132 

Table 6.5 Prediction results for the soluble solids content of ‘Golden Delicious’ and ‘Delicious’ 
apples for the freshly harvested, after-storage and combined groups.* .................... 133 

Table 7.1 Mean and standard error of the cell size/shape parameters for ‘Golden Delicious’ and 
‘Granny Smith’ apple tissues for different storage days.* ........................................ 154 

Table 7.2  Morphological features extracted from the scanning electron microscopic (SEM) 
images acquired at the low resolution for ‘Golden Delicious’ and ‘Granny Smith’ 
apple tissues.* ........................................................................................................... 158 

Table 7.3 Correlations of selected optical parameters with acoustic and impact firmness and 
Young’s modulus for ‘Golden Delicious’ and ‘Granny Smith’ apples.* ................. 160 

Table 7.4 Correlations of optical parameters with the cell size parameters extracted from the 
confocal laser scanning microscopic images of ‘Golden Delicious’ and ‘Granny 
Smith’ apples. ........................................................................................................... 161 



xi 
 

Table 7.5 Correlation of optical parameters with the fractal analysis parameters extracted from 
the scanning electron microscopic images of ‘Golden Delicious’ and ‘Granny Smith’ 
apples. ....................................................................................................................... 161 

Table 8.1 Optical properties of two two-layer model samples at the wavelengths of 535 nm and 
700 nm determined by the integrating sphere and the adding-doubling method (Prahl 
et al., 1993). .............................................................................................................. 179 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

LIST OF FIGURES 

Figure 2.1 Light interaction with matter: (a) absorption, (b) scattering, (c) scattering event with 
anisotropy factor g, and (d) refraction (For interpretation of the references to color in 
this and all other figures, the reader is referred to the electronic version of this 
dissertation). .................................................................................................................. 8 

Figure 2.2 Light incident at an angle v  that is reflected and transmitted by a slab at an angle 'v  in 
the adding-doubling method (Welch and van Gemert, 1995). .................................... 17 

Figure 2.3 Measurement principle of (a) time-resolved and (b) frequency-domain techniques. . 20 

Figure 2.4 Measurement principle for spatially-resolved technique. ........................................... 26 

Figure 2.5 Force/deformation (F/D) curves for cylindrical tissue specimens from firm and soft 
apples under constant strain-rate (0.42 mm/s) compression (Abbott, 1999). ............. 39 

Figure 2.6 Diagram of the whole electromagnetic spectrum (Mohsenin, 1984). ......................... 41 

Figure 2.7 Three different modes for NIR spectroscopic measurements: a) reflectance, b) 
transmittance and c) interactance. ............................................................................... 42 

Figure 3.1 Comparison of the spatially-resolved diffuse reflectance obtained from the diffusion 

model (symbols) and Monte Carlo simulation (solid lines): (a) µs'/ µa = 5, and (b) µs'/ 

µa = 100. ..................................................................................................................... 56 

Figure 3.2 Scaled sensitivity coefficients of the optical parameters [µa = 0.06 cm
-1 & µs' = 4 cm

-

1
 for the left pane of plots (a1, b1, c1, d1), and µa = 0.57 cm

-1
 & µs' = 40 cm

-1
 for the 

right pane of plots (a2, b2, c2, d2)] as functions of the source-detector distance for 
ODM (a1, a2), LTDM (b1, b2), ITDM (c1, c2), and RWDM (d1, d2). Solid curves 

are for R, dash curves for µa and dot curves for µs' (a.u. = arbitrary unit). ................ 58 

Figure 3.3 Relative errors of estimating 29 groups of µa (a) and µs' (b) shown in Table 3.1 by the 
original model, and the data transformation and relative weighting methods: ODM (·), 
LTDM (◦), ITDM (*) and RWDM (∆). ...................................................................... 61 

Figure 3.4 Absolute values of the relative errors of estimating the optical properties (µa = 0.40 

cm
-1

, µs' = 20 cm
-1

) for different noise levels (each noise level includes 10 
replications). Solid circles represent the absorption coefficient, while open circles are 
for the reduced scattering coefficient. ......................................................................... 63 

Figure 3.5 Residual plots for the reflectance data versus source-detector distances from (a) ODM, 

(b) LTDM, (c) ITDM, and (d) RWDM with µa = 0.06 cm
-1 & µs' = 4 cm

-1
 (dot curve) 

and µa = 0.57 cm
-1 & µs' = 40 cm

-1
 (asterisk curve). ................................................. 64 



xiii 
 

Figure 3.6 Residual histograms for the reflectance data from ODM (a), LTDM (b), ITDM (c), 

and RWDM (d) with 1) µa = 0.06 cm
-1 & µs' = 4 cm

-1 for  the left pane of plots (a1, 

b1, c1, d1), and 2) µa = 0.57 cm
-1 & µs' = 40 cm

-1
 for the right pane of plots (a2, b2, 

c2, d2). ........................................................................................................................ 65 

Figure 3.7 3-D plot of sum of squares for (a) group 25 and (b) group 30 using the LTDM method.
..................................................................................................................................... 67 

Figure 4.1 Hyperspectral imaging-based spatially-resolved method: (a) schematic showing the 
major components of the system; (b) top view of multi-line scanning mode for 
acquiring spatially-resolved reflectance profiles. ....................................................... 73 

Figure 4.2 Hyperspectral reflectance image of a liquid model sample: (a) 2-dimensional (2-D) 
display with intensities being indicated by pseudo colors, and (b) original spatially-
resolved reflectance profiles at 570 nm and 700 nm. ................................................. 75 

Figure 4.3 Collimated transmittance measurement for absorption using a miniature fiber optic 
spectrometer. ............................................................................................................... 77 

Figure 4.4 Single integrating sphere configurations for: (a) total diffuse reflectance measurement, 
and (b) total transmittance measurement. ................................................................... 78 

Figure 4.5 Spectra of the absorption coefficient for the three standard solutions measured by the 
transmittance method [asterisks () for standard 0.1, triangles () for standard 0.5, 
and squares () for standard 0.8] and their true vlaues (solid lines). ........................ 84 

Figure 4.6 Average differences of the reduced scattering coefficient for the model samples at 
different concentrations of Intralipid for 500-900 nm obtained from the integrating 
sphere measurement and the empirical equation. ....................................................... 85 

Figure 4.7 Comparison of spatially-resolved reflectance produced by an infinitely small beam, a 
flat beam with diameter of d = 1 mm, and a Gaussian beam with d = 1 and 2 mm. .. 87 

Figure 4.8 Error analysis for different beam sizes: (a) average errors of estimating six sets of 

optical properties with 0.060 ≤ µa ≤ 2.000 cm
-1

 and 4.0 ≤ µs' ≤40.0 cm
-1

, and the 

ratios of µs'/µa = 20 and µs'/µa = 70; and (b) and (c) relative errors for three sets of 

optical properties with increased µa and µs' from A to C with µa = 0.006, 0.029, 0.057 

cm
-1

 and µs' = 0.4, 2.0, 4.0 cm
-1

. ............................................................................... 87 

Figure 4.9 three-dimensional profiles (a and b) and 2-dimensional (c and d) contours of the 
incident light beam at wavelengths of 650 nm and 950 nm, where D1 is the direction 
along the scan line and D2 is perpendicular to the scan line. ..................................... 89 

Figure 4.10 Relative errors of estimating µa (squares) and µs' (asterisks) from the spatially-
resolved reflectance data generated by Monte Carlo simulations when using different 



xiv 
 

minimum and maximum source-detector distances: (a1) and (b1) µa = 0.290 cm
-1

 & 

µs' = 20.0 cm
-1

, and (a2)  and (b2) µa = 0.430 cm
-1

 & µs' = 30.0 cm
-1

. .................... 90 

Figure 4.11 Signal-to-noise ratio measurement of the hyperspectral imaging system: (a) average 
spatially-resolved reflectance profile of 10 measurements of a model sample at 650 
nm, and (b) signal-to-noise ratio of the measurements within 10 mm source-detector 
distance. ...................................................................................................................... 92 

Figure 4.12 Errors of estimating µa = 1.00 cm
-1

 and µs' = 20.0 cm
-1 introduced by different 

spatial resolutions relative to the optical properties obtained for the resolution of 0.01 
mm. ............................................................................................................................. 93 

Figure 4.13 Spectra of absorption and reduced scattering coefficients of three model samples 
with (a) blue dye, (b) green dye, and (c) mixed dye as absorbers measured by the 
hyperspectral imaging and reference methods. ........................................................... 95 

Figure 4.14 Confocal laser scanning microscopy images of Intralipid solutions with (a) blue dye, 
and (b) green dye. ....................................................................................................... 97 

Figure 4.15 Coefficient of variation versus reordered ascending absorption coefficients of a 
model sample at different wavelengths. ...................................................................... 99 

Figure 5.1 Optical Property Analyzer (or OPA) for measuring optical properties and acquiring 
hyperspectral images. ................................................................................................ 102 

Figure 5.2 Schematic of the Optical Property Analyzer (or OPA) for measuring the optical 
properties of biological materials. ............................................................................. 103 

Figure 5.3 Main window of the Optical Property Analyzer software. ........................................ 107 

Figure 5.4 Display window of the Optical Property Analyzer for the image acquisition setup. 108 

Figure 5.5 Display window of the Optical Property Analyzer for optical properties computation.
................................................................................................................................... 109 

Figure 5.6 Display windows of the Optical Property Analyzer for (a) calibration information and 
(b) sample size information. ..................................................................................... 110 

Figure 5.7 Reproducibility of the Optical Property Analyzer for measuring absorption and 
reduced scattering coefficients of a model sample at 555 nm at each measurement day 
with respect to the average value calculated over 5 days. ........................................ 112 

Figure 5.8 Coefficient of variation versus reordered ascending absorption coefficients of a model 
sample at different wavelengths. ............................................................................... 113 

Figure 6.1 Hyperspectral reflectance image and optical property spectra of a peach sample: (a) 2-
D display of the original reflectance image, (b) a raw spectrum extracted for a 



xv 
 

specific scattering distance, (c) a spatially-resolved reflectance profile extracted for a 
selected wavelength, (d) pre-processed or averaged spatially-resolved reflectance 

profile at the selected wavelength, (e) the spectrum of absorption coefficient (µa), and 

(f) the spectrum of reduced scattering coefficient (µs'). ........................................... 117 

Figure 6.2 Spectra of (a) absorption coefficient for three peaches with different skin colors (light 
red, red, dark red), and of (b) reduced scattering coefficient for three peaches at 
different firmness levels (hard, medium, soft). ......................................................... 124 

Figure 6.3 Distributions of (a) absorption (µa) and (b) reduced scattering coefficient (µs') for 500 
‘Redstar’ peaches at four wavelengths (525 nm for anthocyanin, 620 nm for 
chlorophyll-b, 675 nm for chlorophyll-a, and 970 nm for water). ........................... 127 

Figure 6.4 (a) Prediction of Magness-Taylor (MT) firmness (FM) of ‘Redstar’ peaches using 

effective attenuation coefficient (µeff) with partial least squares (PLS) and (b) 

correlation between acoustic data and  MT firmness (FM). ...................................... 130 

Figure 6.5 Spectra of (a) absorption and (b) reduced scattering coefficients for four ‘Golden  
Delicious’ (GD) apples and four ‘Delicious’ (RD) apples. ...................................... 131 

Figure 6.6 Prediction of fruit firmness (a, c) and soluble solids content or SSC (b, d) using the 

best combinations of µa and µs' for the combined group of ‘Golden Delicious’ (GD) 
and ‘Delicious’ (RD) apples. .................................................................................... 134 

Figure 7.1 Experimental procedures for compression test of apple tissue specimens: (a) 
cylindrical specimen taken from the fruit flesh of the apple; (b) cork borer and 
double-blade knife used for cutting tissue specimens; (c) final tissue specimen with 
13.9 × 13 mm (D × L); and (d) compression test setup with the Texture Analyzer. 140 

Figure 7.2 Procedures of image processing for extracting cell parameters. ............................... 143 

Figure 7.3 Mean spectra of 10 apple samples each for the five times of storage: (a1) absorption 
and (a2) reduced scattering coefficients of ‘Golden Delicious’ (GD) apples; and (b1) 
absorption and (b2) reduced scattering coefficients of ‘Granny Smith’ (GS) apples.
................................................................................................................................... 147 

Figure 7.4 Changes in a) acoustic firmness (FI) and impact firmness (IF), and (b) fruit weight, 
for the same 10 fruit each of ‘Golden Delicious’ (GD) and ‘Granny Smith’ (GS) 
measured at five storage times (the vertical bars denote two standard deviations). . 150 

Figure 7.5 Stress/strain curves obtained from the compression test for the flesh specimens of (a) 
five ‘Golden Delicious’ apples and (b) five ‘Granny Smith’ apples, one for each 
storage time. .............................................................................................................. 150 

Figure 7.6 Mean values of Young’s modulus for 10 ‘Golden Delicious’ (GD) (columns with 
capital letters) and ‘Granny Smith’ (columns with small-cap letters) apples for each of 



xvi 
 

the five storage times (columns with different letters for the same cultivar are 
significantly different with p < 0.05). ....................................................................... 151 

Figure 7.7 Confocal laser scanning microscopic images of a cross-section of apple flesh tissue 10 
mm beneath the skin for ‘Golden Delicious’ apple at day 1 (a1) and day 30 (a2), and 
for ‘Granny Smith’ apple at day 1 (b1) and day 30 (b2) (‘→’  denotes the 
connection between cells, and ‘×’ denotes the broken cells). ............................ 152 

Figure 7.8 Scanning electron microscopy images of one cross-section of apple flesh tissue 10 
mm beneath the skin for ‘Golden Delicious’ at day 1 (a1) and day 30 (a2) acquired at 
low resolution for an overview of the cell structures, and at day 1 (b1) and day 30 (b2) 
acquired at high resolution for a more detailed view of the cell-to-cell connection [the 
red lines in (a1) denotes five cell connections counted manually as examples]. ...... 156 

Figure 7.9 Scanning electron microscopy images of one cross-section of apple flesh tissue 10 
mm beneath the skin for ‘Granny Smith’ at day 1 (a1) and day 30 (a2) acquired at low 
resolution for an overview of the cell structures, and at day 1 (b1) and day 30 (b2) 
acquired at high resolution for a more detailed view of the cell-to-cell connection [the 
red lines in (a1) denote five cell connections counted manually as examples]. ....... 157 

Figure 8.1 Comparison of spatially-resolved diffuse reflectance obtained from the two-layer 

diffusion model (symbols) and Monte Carlo simulations (solid lines): (a) µa1/µa2 = 

0.50 and µs1'/µs2' = 0.86 (0.05, 12, 0.10, 14, 1), (b) µa1/µa2 = 6.50 and µs1'/µs2' = 

1.80(2.60, 36, 0.40, 20, 0.5), (c) µa1/µa2 = 0.80 and µs1'/µs2' = 1.58 (0.32, 19, 0.40, 

12, 1), and (d) µa1/µa2 = 2 and µs1'/µs2' = 0.75 (1.00, 15, 0.50, 20, 1). Values in the 

parentheses are µa1, µs1', µa2, µs2', d with the units of cm
-1

 for optical properties and 
mm for the thickness of the first layer. ..................................................................... 171 

Figure 8.2 Scaled sensitivity coefficients as functions of source-detector distances for four 

combinations of optical properties (a) µa1/µa2 = 0.50 and µs1'/µs2' = 0.86 (0.05, 12, 

0.10, 14, 1), (b) µa1/µa2 = 6.50 and µs1'/µs2' = 1.80 (2.60, 36, 0.40, 20, 0.5), (c) 

µa1/µa2 = 0.80 and µs1'/µs2' = 1.58 (0.32, 19, 0.40, 12, 1), and (d) µa1/µa2 = 2 and 

µs1'/µs2' = 0.75 (1.00, 15, 0.50, 20, 1), and the values in the bracket are µa1, µs1', µa2, 

µs2', d with the unit cm
-1

 for optical properties and mm for the thickness of the first 
layer (‘-’, ‘·’, ‘+’, ‘ₒ’, and ‘∆’denote reflectance, and scaled sensitivity coefficients of 

µa1, µs1', µa2, and µs2', respectively). ....................................................................... 172 

Figure 8.3 Scaled sensitivity coefficients as functions of source-detector distances for µa1 = 0.05 

cm
-1

, µs1' = 12 cm
-1

, µa2 = 0.10 cm
-1

, µs2' = 14 cm
-1

, and the thickness of the first 
layer:  (a) d = 0.85 mm, (b) d = 2 mm, (c) d = 4 mm, and (d) d = 6 mm (‘-’, ‘·’, ‘+’, ‘ₒ’, 

and ‘∆’denote reflectance, and scaled sensitivity coefficients of µa1, µs1', µa2, and 

µs2', respectively). ..................................................................................................... 173 



xvii 
 

Figure 8.4 Estimated absorption and reduced scattering coefficients of the first layer from fitting 

the diffusion model to the Monte Carlo simulation data: (a) µa1 varies 0.20 - 1.20 cm
-

1
 with µs1' = 12 cm

-1
, µa2 = 0.50 cm

-1
, µs2' = 11 cm

-1
, and d = 2 mm, and (b) µs1' 

varies 15-45 cm-1 with µa1= 0.10 cm
-1

, µa2 = 0.05 cm
-1

, µs2' = 11 cm
-1

, and d = 2 
mm. ........................................................................................................................... 175 

Figure 8.5 Relative errors of estimating the optical properties of two layers from the Monte Carlo 

diffuse reflectance for four combination sets of optical properties: µa1/µa2 = 0.50 and 

µs1'/µs2' = 0.86 (0.05, 12, 0.10, 14, 1), µa1/µa2 = 6.50 and µs1'/µs2' = 1.80 (2.60, 36, 

0.40, 20, 0.5), µa1/µa2 = 0.80 and µs1'/µs2' = 1.58 (0.32, 19, 0.40, 12, 1), and µa1/µa2 

= 2 and µs1'/µs2' = 0.75 (1.00, 15, 0.50, 20, 1). Values in the parentheses are µa1, µs1', 

µa2, µs2', d with the units of cm
-1

 for optical properties and mm for the thickness of 
the first layer. ............................................................................................................ 177 

Figure 8.6 Absorption and reduced scattering spectra of the homogenous model disk samples 
measured by the integrating sphere. .......................................................................... 178 

Figure 8.7 Comparison of diffuse reflectance from measurements (symbols) and the two-layer 
diffusion model (solid lines) for sample 1 at 535 nm (a) and 700 nm (b), and sample 2 
at 535 nm (c) and at 700 nm (d) (See Table 8.1 for the two samples). ..................... 180 

Figure 8.8 Relative errors of the estimated optical properties for two model samples (denoted as 
S1 and S2) at wavelengths of 535 nm and 700 nm (see Table 8.1 for the optical 
property data for the two model samples). ................................................................ 181 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



xviii 
 

KEY TO SYMBOLS OR ABBREVIATIONS 
 
 

CA Controlled atmosphere  

CCD Charge-coupled device 

CI Confidence interval 

CLSM Confocal laser scanning microscopy 

CV Coefficient of variation 

EM Electromagnetic 

EMCCD Electron multiplying charge-coupled device 

FD Frequency-domain 

F/D Force/deformation 

GD Golden Delicious 

GPGPU General-purpose computing on graphics processing units  

GS Granny Smith 

HISR Hyperspectral imaging-based spatially-resolved  

IAD Inverse adding-doubling 

IF Impact firmness 

IMC Inverse Monte Carlo 



xix 
 

ITDM Integral-transformed diffusion model 

LTDM Logarithm-transformed diffusion model 

MAP Maximum a posteriori 

MC Monte Carlo 

MDI Multiple document interface 

ML Maximum likelihood 

MT Magness-Taylor 

NIRS Near-infrared spectroscopy 

OBF Order-blocking filter  

ODM Original diffusion model 

OLS Ordinary least squares 

OPA Optical Property Analyzer 

PCG Preconditioned conjugate gradients 

PLS Partial least squares 

PRESS Predicted residual error sum of squares  

RD Delicious 

RT Radiation transport 



xx 
 

RWDM Diffusion model with relative weighting 

SDK Software developer kit  

SEM Scanning electron microscopy  

SEP Standard error of prediction 

SNR Signal-to-noise ratio 

SR Spatially-resolved 

SS Sum of squares 

SSC Soluble solids content 

TCSPC Time-correlated single-photon counting 

TR Time-resolved 

A Internal reflection coefficient, or beam area 

a' Transport albedo 

c Light velocity 

C
*
 Chroma 

D Diffusion coefficient, or fractal dimension 

E Young’s modulus 



xxi 
 

f Frequency 

FI acoustic firmness index 

g Anisotropy factor 

h° Hue angle 

I Light intensity 

L
*
, a

*
, and b

*
 CIELAB space 

LVs Latent variables 

J0 Zeroth-order Bessel function 

M Modulation 

m Mass 

mfp' Transport mean free path 

n Refractive index 

P Beam perimeter 

Q Source term in radiation transport equation 

R Reflectance 

r Spatial distance, or correlation coefficient 



xxii 
 

Rd Roundness 

S Isotropic source 

T Transmittance 

θ Scattering angle, or phase angle 

Ω Solid angle 

Φ Fluence rate 

τ' Optical thickness 

σ Standard error, or failure stress 

λ Wavelength 

ε Relative error, or failure strain 

a Absorption coefficient 

s' Reduced scattering coefficient 

s Scattering coefficient 

µt' Total attenuation coefficient 

µeff Effective attenuation coefficient 



1 
 

CHAPTER 1 INTRODUCTION 

1.1 Background 

Quality of fruits and vegetables is characterized by appearance (color, size and/or shape), 

flavor (e.g., sugar content or soluble solids content), texture (e.g., firmness and crispness) and 

aroma. The relative importance of each quality index depends on the commodity and its final use. 

Many factors such as growing condition, maturity at harvest, and postharvest handling, storage, 

and transportation can directly or indirectly affect the quality of fresh produce. With the 

increasing demand for all year-round supply of high quality fruits and vegetables in both 

domestic and export markets, it is critical that producers supply fresh horticultural products with 

desired quality attributes in order to assure consumer satisfaction and confidence. As such, the 

horticultural industry is highly interested in adopting new, cost effective objective methods and 

techniques for analyzing and monitoring fruit and vegetable quality. Conventional methods for 

quality measurement of horticultural products include Magness-Taylor (MT) firmness test and 

Brix refractometry for sugar content (or soluble solids content). These techniques are destructive 

and only can test a few product pieces, and they are not suitable for sorting and grading each 

piece of fruits and vegetables. Over years, many nondestructive methods have been developed 

for quality evaluation of food and agricultural products. Among the many types of 

nondestructive sensing techniques (i.e., optical, mechanical, and electrical), optical techniques 

are particularly useful because they are rapid, nondestructive, cost effective, and generally safe to 

use. Abundant literature is available on optical methods and technologies for nondestructive 

quality measurement of horticultural products. However, few studies have been reported about 
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light propagation in plant materials, and of the determination of optical properties of horticultural 

products, which are critical for developing effective optical sensing techniques.  

Optical techniques, like imaging and near-infrared spectroscopy (NIRS), are widely used for 

nondestructive quality assessment of agricultural and food products (Abbott et al., 1997; Blasco 

et al., 2003; McGlone et al., 2003). Imaging or machine vision is mainly used to inspect the 

external features of product items. NIRS, on the other hand, has been applied for internal quality 

evaluation of agricultural and food products as well as nonfood materials. NIRS measurement 

provides approximate quantification of absorption properties of the sample (Dahm and Dahm, 

2001), but it does not separate absorption properties from scattering properties, which could limit 

its capability in predicting such quality attributes as fruit firmness. Biological materials like fruits 

are optically inhomogeneous, and thus light will be attenuated in the fruit through absorption and 

scattering, which are affected by the structural and compositional characteristics of the tissue. 

Therefore, it would be advantageous and/or desirable to measure both absorption and scattering 

properties.  

Light propagation in turbid media is characterized by the absorption coefficient (a) and the 

reduced scattering coefficient (s') (Tuchin, 2000). Light absorption is mainly related to the 

chemical compositions of the medium, while scattering is influenced by the structural properties 

(density, particle size, and cellular structures). Changes in the chemical composition and physical 

structures are accompanied with the changes in the quality of fruit and vegetables (Lu et al., 2009; 

Qin and Lu, 2008). Hence, quantification of the absorption and scattering properties can greatly 

expand our understanding of light interaction with biological materials and enable us to assess 

the physiological state, properties or characteristics, and thus quality of agricultural and food 

products.  
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The propagation of light in a medium can be described by radiation transport theory, which 

is also known as the Boltzmann equation. When scattering is dominant over absorption (i.e, 

s'a), the radiation transport equation may be simplified by diffusion approximation 

(Durduran et al., 1997; Ishimaru, 1978). The diffusion equation has been widely used for 

modeling light propagation in single-layer or homogeneous and multi-layer turbid media. With 

appropriate boundary conditions and known optical parameters, direct solutions to the diffusion 

equation, referred to as forward problems, can provide quantitative description of light 

propagation in the turbid medium. Conversely, the diffusion equation can be used to estimate the 

absorption and reduced scattering coefficients of media for specific boundary conditions, which 

is called inverse problems. In solving inverse problems, we often resort to numerical methods 

(e.g., Monte Carlo, asymptotic approximation, and finite element) because they are able to deal 

with complex boundary conditions (Gonzalez-Rodriguez and Kim, 2008; Schweiger and Arridge, 

1997; Seo et al., 2007). However, these methods are computationally intensive. For this reason, 

analytical solutions to the diffusion equation, coupled with a proper inverse algorithm, are 

preferred in determining the optical properties of turbid materials, which is also referred to as 

parameter estimation problems. Inverse light transport problems are much more complicated 

than forward problems, and sometimes they are ill-posed, especially for the two-layer diffusion 

model, in which four or five parameters (a and s' for each layer plus the thickness of the first 

layer) need to be estimated. Therefore, in order to have accurate estimation of optical properties, 

it is important to understand the intrinsic properties of the diffusion model, evaluate the 

feasibility of estimating all parameters and the uniqueness and stability of the solution, and 

consequently develop a reliable inverse algorithm.   
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Based on the radiation transport theory or diffusion approximation, several advanced optical 

techniques, which mainly include time-resolved (TR), frequency-domain (FD), and spatially-

resolved (SR), have been developed for measuring the optical properties of biological materials. 

These techniques have attracted considerable attention in the biomedical field for such 

applications as disease diagnosis, photodynamic therapy, and noninvasive monitoring (Bykov et 

al., 2006; Welzel et al., 2004; Wilson and Patterson, 2008). However, only limited research has 

been reported on measuring the optical properties of agricultural and food products using these 

techniques (Anderson et al., 2007; Cubeddu et al., 2001a; Lu et al., 2009; Qin and Lu, 2008). 

Time-resolved and frequency-domain techniques require sophisticated instrumentation, and they 

currently are still expensive and inconvenient or time consuming in measurement with limited 

wavelength range selections. In comparison, the spatially-resolved technique is less expensive, 

easier to use, and faster in measurement. It is, thus, more viable for agricultural and food 

applications. Spatially-resolved technique is commonly implemented in one of the two sensing 

configurations, i.e., multiple fiber arrays connected to spectrometers and non-contact reflectance 

imagery (Doornbos et al., 1999; Pilz et al., 2008). The former needs good contact between the 

detecting probes and the measured medium, which may not be desirable for food and agricultural 

products because of the safety and sanitation requirements. Most research using the non-contact 

sensing configuration can only provide optical property information at single or several 

wavelengths.  

In spite of great progress in instrumentation and theories over the past decade, we still lack a 

reliable and convenient method for accurate measurement of the optical properties of biological 

materials in general and food and agricultural products in particular. No commercial instruments 

based on the spatially-resolved spectroscopic principle are currently available. Over the past 
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decade, hyperspectral imaging has emerged as a powerful technique for quality and safety 

inspection of food and agricultural products (Lu and Chen, 1998; Lu and Peng, 2006; Nicolai et 

al., 2006; Park et al., 2002). Hyperspectral imaging combines conventional imaging and 

spectroscopy techniques to acquire spatial and spectral information simultaneously, and it is thus 

ideally suited for measuring spatially-resolved diffuse reflectance profiles for a broad spectral 

region. In light of those advantages, our laboratory recently developed a hyperspectral imaging-

based spatially-resolved technique for measuring the spectra of optical properties of biological 

materials. Studies by Qin et al. (2007) showed that the technique is promising for optical 

characterization of food and agricultural products. However, limitations in application of this 

new technique were observed in our previous studies, and several critical issues need to be 

addressed before the technique is suitable for practical applications. These issues include the 

development of a robust light propagation model and inverse algorithm, optimization of the 

optical design of light beam and source-detector distance in the hyperspectral imaging-based 

spatially-resolved system, and the establishment of standard procedures for evaluating the 

instrument capability. Moreover, cost and convenience in use of this advanced optical technique 

in food and agriculture are also of great concern. Therefore, it is highly desirable to develop an 

instrument integrated with robust and user-friendly algorithms, which is capable of automatically 

acquiring and processing hyperspectral scattering image data to extract the optical absorption and 

scattering properties. In short, optical characterization of the fundamental absorption and 

scattering properties will provide opportunities in the development of new sensing technologies 

for nondestructive quality evaluation of horticultural and food products. 
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1.2 Objectives 

This research was aimed at developing a hyperspectral imaging-based spatially-resolved 

technique for accurate and reliable measurement of the optical properties of horticultural and 

food products and for maturity/quality assessment of peach and apple. The specific objectives 

were to:  

(1)  Develop an improved inverse algorithm, based on a single-layer diffusion model, for 

extracting the absorption and reduced scattering coefficients from the hyperspectral reflectance 

profiles, and optimize the algorithm using Monte Carlo simulation and statistical analysis; 

(2)  Evaluate and optimize the design of light beam and source-detector distance so as to 

achieve accurate acquisition of spatially-resolved spectral scattering profiles for determination of 

the optical properties; 

(3)  Develop, test and evaluate an optical property measuring prototype, with integration of 

image acquisition and processing programs and the optimized inverse algorithm and optical 

designs, for automatic measurement of the optical properties of horticultural and food products; 

(4)  Measure absorption and reduced scattering spectra of peaches and apples for assessing 

fruit maturity and/or quality; 

(5)  Correlate the spectral absorption and scattering properties of apple tissues to the micro-

structural and mechanical characteristics, as affected by postharvest storage;  

(6)  Investigate the feasibility of applying a two-layer diffusion model for determining the 

optical properties of fruit skin and flesh through solid model samples of known properties. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Principles of Light Interaction with Biological Materials 

Light interaction with turbid biological materials is characterized by the fundamental optical 

properties of absorption, scattering and refraction, which are defined by the absorption 

coefficient, reduced scattering coefficient, and refractive index. These optical properties are 

present in the radiation transport equation governing light propagation through biological tissues. 

The definitions of these optical parameters are presented in the following subsections. 

2.1.1 Absorption Coefficient 

Absorption coefficient (µa) quantifies the conversion of light energy into other forms of 

energy such as heat, electricity, or chemical energy. Absorption or the decrease in the amount of 

electromagnetic radiation is proportional to the incident light intensity and the distance over 

which the absorption takes place in an absorbing-only medium [Figure 2.1(a)]. According to the 

Beer-Lambert law, it can be expressed in the following equation: 

 0 exp( )  aI I d                                                         (2.1) 

where I is the intensity of the transmitted light, I0 is the incident light intensity, d is the thickness 

of the material in mm or cm, corresponding to the units of µa in mm
-1

 or cm
-1

.  

Light absorption is mainly related to the chemical composition of the material. A 

relationship between the absorption and the chemical composition may be established, which 

could be used to evaluate quality, ripeness, and damage of agricultural and food products. 

Chemical bonds of the biological materials absorb light energy at specific wavelengths. The 

major absorbers for many horticultural products in the visible wavelength range of 400-770 nm 
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are pigments including chlorophylls, carotenoids, anthocyanin, lycopene and other color 

compounds, while water, fats, carbohydrates and proteins usually have absorption bands in the 

near-infrared wavelength region of 770-2,500 nm. Qin and Lu (2008) showed that as tomato fruit 

ripened from the green (unripe) to red (ripe) stage, their chlorophylls content decreased 

significantly. As a result, the absorption coefficient at 675 nm also decreased dramatically. An 

absorption peak due to water occurs to the µa spectrum of fruit at the wavelength of 975 nm 

(Nicolai et al., 2008; Valero et al., 2004).  

 
Figure 2.1 Light interaction with matter: (a) absorption, (b) scattering, (c) scattering event with 
anisotropy factor g, and (d) refraction (For interpretation of the references to color in this and all 
other figures, the reader is referred to the electronic version of this dissertation). 
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2.1.2 Scattering Coefficient 

Scattering (µs) is a physical process that takes place when light interacts with scattering 

media, and the travelling path of the photons is no longer direct as shown in Figure 2.1(b). µs 

quantifies the probability of photon scattering unit path length, and is the inverse of the average 

distance that light travels among scattering events. Similar to absorption, scattering can be 

described by the non-scattered transmitted intensity I, incident intensity I0, and the thickness of 

the medium with the form identical to equation (2.1). 

0 exp( )  sI I d                                                        (2.2) 

where µs represents a probability per unit length of a photon being scattered, which has the same 

units as µa in mm
-1 or cm

-1
.  

Light scattering in the tissue depends on many variables including the size of scattering 

particles, the wavelength of the light, and the variation of the refractive indices of the various 

tissue components. In agricultural products, scattering is closely related to the cellular structures 

and characteristics, and therefore it could provide useful information about their condition or 

quality. 

2.1.3 Anisotropy Factor 

Anisotropy factor is defined as a measure of the amount of photons retained in the forward 

direction after a single scattering event. When a photon is scattered by a particle, its trajectory is 

deflected by scattering angle θ as shown in Figure 2.1 (c). It has been proved that the Henyey-

Greenstein function can be used to describe the probability density function for scattering, and it 

is given by (Tuchin, 2000) 
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2

2 3/2
1

( )
2(1 2 cos )




 
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p

g g



                                              (2.3) 

where g is called anisotropy factor, and it is dimensionless, which is the expected value of cosine 

of the scattering angle θ 

0
cos ( )cos 2 sin  g p d


                                          (2.4) 

The scattering phase function p(θ) is usually determined from goniophotometric measurements 

in relatively thin tissue samples (Tuchin et al., 1994). The value of g varies in the range from 0 to 

1 with g = 0 for isotropic scattering and g = 1 for the total forward scattering. For most biological 

tissues, g 0.70 0.99   in the visible and near-infrared region (Vo-Dinh, 2003). 

2.1.4 Reduced Scattering Coefficient 

The reduced scattering coefficient (µs') is a property incorporating the scattering coefficient 

(µs) and anisotropy factor ( g ), which is expressed as follows (Graaff et al., 1993): 

' (1 ) s s g                                                             (2.5) 

It is used to describe the diffusion of photons in a random walk with the step size of 1/ µs' (mm 

or cm), where each step involves isotropic scattering. In many biological materials, scattering is 

dominant during a light transport process, which is known as the diffusion regime. Because the 

photons encounter many scattering events in small steps before an absorption event takes place, 

the total scattering could be considered as isotropic. Hence the exact value of the anisotropy 

factor is no longer needed for the description of light propagation in the tissues. As a result, µa 

and µs' are the only optical parameters in the diffusion regime, which is common when visible 
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and near-infrared light propagates through biological tissues. Other relevant optical parameters 

can be derived from µa and µs', which include total attenuation coefficient (µt'), effective 

attenuation coefficient (µeff), transport mean free path ( mfp' ), and transport albedo ( 'a )  

' ' t a s                                                                (2.6) 

 1/ 23 ( ') eff a a s                                                       (2.7) 

1' ( ') a smfp                                                            (2.8) 

' '/ ( ') s a sa                                                             (2.9) 

Values of the reduced scattering coefficient for some biological materials have been 

reported in the literature. For instance, the µs' spectrum of fruit tissues in the visible and near-

infrared region is relatively flat compared with the µa spectrum (Cubeddu et al., 2001a; Qin and 

Lu, 2008). Empirical equations for determining µs' values of Intralipid, a scattering material 

commonly used for creating model samples, in the wavelength range of 400-1,100 nm have been 

derived by van Staveren et al. (1991).    

2.1.5 Refractive Index  

Determination of the optical properties requires knowledge of the refractive index of the 

sample and the medium surrounding the sample. The refractive index is a measure of light 

refraction at the boundary between two materials [Figure 2.1(d)], and is governed by Snell’s law  

1 1 2 2sin sinn n                                                         (2.10) 

where n1 and n2 are the refractive indices of the media, and θ1 and θ2 are the incident light angle 

and refraction angle for the transmitted light. 
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Since biological tissues are heterogeneous in composition, the refractive indices are different 

for different parts of a biological cell. It is common that only the average value of refractive 

index for the tissue is calculated, which is defined by the refractive indices of the scattering 

center and ground matter, and their volume fraction of the scatters (Tuchin, 2000). In studying 

light propagation in biological tissues, the overall refractive index of 1.35 is often used and it is 

considered constant in the visible and near-infrared region (Haskell et al., 1994). 

2.2  Modeling of Light Transport in Tissues 

Light propagation in tissues can be described by the electromagnetic (EM) theory, i.e., 

Maxwell’s equation. However, it is not feasible to directly use the EM theory for describing light 

interaction with biological tissues, because of the complexity of cellular constituents and 

physical structures of biological tissues. When light is incident upon the surface of the tissue, it 

may be reflected, absorbed, scattered or transmitted, and the relative contribution of each 

phenomenon depends on the optical properties of the tissue. For biological materials, several 

simple approaches like the Kubelka-Munk model have been employed to describe these 

phenomena (Budiastra et al., 1998). However, they are only valid in several particular situations 

and cannot be generalized to most cases of practical interest. Mathematical models derived from 

the radiation transport equation include diffusion approximation, adding-doubling, and Monte 

Carlo simulation, which have been successfully used for modeling light transport in tissues and, 

hence, are reviewed in this section. 

2.2.1 Radiation Transport Model 

The radiation transport (RT) equation is based on the assumption that only the flow of 

energy through the medium is considered, and migrating particles do not interact with each other. 
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In the case of tissue optics, the particles are photons (i.e., probability electromagnetic wave 

packets) interacting with cells structures. The RT equation can be derived by considering the 

radiant energy balance in a small volume of tissue. It is a balance equation related to the change 

of energy radiance in time and in energy flow, loss due to the absorption and scattering, and gain 

due to scattering sources and radiation sources. The time-dependent RT equation is given by 

(Ishimaru, 1978) 

4

ˆ1 ( , , )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( ) ( , , ) ( , ', ) ( ') ' ( , , )


      

 
r

r r r ra s s
L s t

L s t s L s t L s t p s s d Q s t
c t 

      (2.11) 

where ˆ( , , )L r s t  is the radiance with the unit of W/(m
2
sr), which represents the energy transfer 

per unit time per unit solid angle   in direction ŝ  through a unit area at position r  and time t , 

sr  is in the unit of solid angle,  ŝ  is a unit vector pointing in the direction of interest, ˆ ˆ( ')p s s  is 

the phase function, which equals the probability distribution of the scattering angle from ŝ  to ˆ 's , 

ˆ( , , )Q s tr  is the source term that represents power injected into a unit solid angle centered on the 

direction ŝ  in a unit volume at r , and c = (3×10
8
)/n (m/s) is the velocity of light in the medium, 

where n is the refractive index of the medium. 

Although the RT equation has been successfully applied in various fields for the light 

propagation in absorbing/scattering media, the derivation of direct analytical solutions for 

equation (2.11) for many practical problems is difficult. Therefore, further approximations or 

numerical methods are needed for specific cases. A number of approximate and stochastic 

models of photon transport derived from the RT equation have been developed, of which 

diffusion model, adding-doubling, and Monte Carlo simulation are the most widely used.  
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2.2.2 Diffusion Model 

Diffusion approximation to the RT equation is the most widely used model to describe the 

light propagation in biological materials. It assumes that scattering is dominant (i.e., µs' » µa) and 

the source-detector distance is greater than the transport mean free path that defines the distance 

traveled before the direction of light propagation is randomized (Dogariu and Ellis, 2010). An 

additional assumption is that the source term ˆ( , , )Q s tr  is isotropic with an equal probability of 

scattering in all solid angles combined with a net flux. With these conditions, the RT equation is 

approximated to the diffusion equation given by (Haskell et al., 1994) 

21 ( , )
( , ) ( , ) ( , )


     


r

r r ra
t

D t t S t
c t

                                   (2.12)  

where 
4

ˆ( , ) ( , , )  r rt L s t d


 is the fluence rate, 1[3( ')]a sD      is the diffusion 

coefficient, and 
4

ˆ( , ) ( , , ) r rS t Q s t d


 represents an isotropic source. 

It has been confirmed that the diffusion theory is accurate for describing photon migration in 

infinite, homogeneous turbid media. For studying biological materials, techniques based on the 

diffusion theory have been developed, which include time-resolved (TR), frequency-domain 

(FD), and spatial-resolved (SR) techniques. TR method uses a short pulse laser to illuminate the 

sample and then collects the time-delayed remitted light at a specific distance from the source, 

FD employs a sinusoidally modulated source to measure the phase and modulation, and SR 

technique adopts a continuous-wave point light beam incident on the sample surface with the 

remitted light collected at different source-detector distances. Different forms of the diffusion 

equation for TR, FD, and SR have been derived (Welch and van Gemert, 1995), and details for 

these measurement techniques are presented in Section 2.3.  
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Several analytical solutions derived from the diffusion equation for the homogenous media 

of particular geometries (e.g., semi-infinite, slab, cylindrical, and spherical geometries) are 

available (Farrell et al., 1992; Welch and van Gemert, 1995). Solutions for inhomogeneous and 

irregular samples are usually obtained using numerical methods (e.g., Monte Carlo, finite 

element, and finite difference). Moreover, solutions in analytical form for multilayer media with 

certain geometries have also been derived (Kienle et al., 1998b; Swartling et al., 2003b). These 

solutions provide an effective means for modeling light propagation in turbid media of specific 

geometries under given boundary conditions, and they could be used to extract the optical 

properties of biological materials by means of inverse algorithm. 

2.2.3 Adding-doubling Model 

As a purely numerical method, the adding-doubling method provides another way to solve 

the RT equation with high accuracy and flexibility in modeling any medium with mismatched 

boundary conditions and anisotropic scattering. The inverse adding-doubling method has 

advantages for measuring the optical properties, because the only values needed are the 

reflectance and transmittance of the medium. The following assumptions are given for this 

modeling approach: no time-dependence of light distribution, homogenous optical properties for 

tissue layers, an infinite plane-parallel slab of samples, uniform illumination of collimated or 

diffuse light, internal reflection at boundaries governed by Fresnel’s law, and unpolarized light 

(Prahl et al., 1993).  

In the adding-doubling method, the reflectance function R( , ')v v  and transmittance function 

T( , ')v v  are defined as the radiance reflected or transmitted by the slab in direction 'v  for light 

incident from the v  direction (Figure 2.2). Based on the numerical integration of functions with 
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quadrature, the total reflectance and total transmittance for the diffuse irradiance can be 

expressed (Welch and van Gemert, 1995) 

1 1

0 0
( , ')2 2 ' 'dR R v v vdv v dv                                                   (2.13) 

1 1

0 0
( , ')2 2 ' 'dT T v v vdv v dv                                                    (2.14) 

Then, the transport albedo 'a  and transport optical thickness '  may be calculated by 
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where a' = µs'/(µa+µs'), τ' = d(µa+µs'), and d is the physical thickness of the slab. Thus, the two 

parameters, i.e., the absorption coefficient µa and the reduced scattering coefficient µs', can be 

determined for a combination of Rd and Td using equations (2.13) through (2.16). The 

procedures for implementing the adding-doubling method are as follows: 1) guess a set of optical 

properties, 2) calculate the reflectance and transmittance using equations (2.13) and (2.14), 3) 

compare the calculated values with the measured reflectance and transmittance, and 4) repeat 

until the calculated values and measured values are matched.  
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( , ')R v v

( , ')T v v

v

 

Figure 2.2 Light incident at an angle v  that is reflected and transmitted by a slab at an angle 'v  in 
the adding-doubling method (Welch and van Gemert, 1995). 

The total reflectance and the total transmittance are usually measured using integrating 

spheres. The results obtained from the adding-doubling method are accurate for a wide range of 

optical properties but at the cost of increased computational time. Therefore, it is mostly used as 

a standard method for measuring the optical properties of biological materials (Lualdi et al., 2001; 

Saeys et al., 2008). 

2.2.4 Monte Carlo Simulation 

Another powerful tool for modeling light transport in tissues is the Monte Carlo (MC) 

simulation method. MC simulation is a stochastic numerical method in which the expected value 

of a certain random variable is equivalent to the value of a physical quantity to be determined 

(Wang et al., 1995a). MC simulation offers a flexible and accurate approach for quantifying the 

optical features of light transport that are difficult to measure directly. It can be simply 

implemented, and has the ability to handle any complex geometries and multilayer media. 

However, the method is statistical in nature and requires computing the propagation of a large 

quantity of photons. Therefore, significant computational time is needed to achieve required 

precision and resolution. 
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The motivation for MC simulations is to predict radiant energy transport in tissues, while 

ignoring such features as phase and polarization. In MC simulation of light propagation, a photon 

is launched into the turbid medium, and it then propagates in the medium described by the 

optical properties (i.e., µa, µs, g, and n) of the investigated material. The photon transported in 

the medium is traced step by step, which is expressed as probability distributions to describe the 

step size of photon movement between the sites of photon-tissue interaction, and the angles of 

deflection in a photon’s trajectory when a scattering event occurs (Wang et al., 1995a). The 

simulation of light propagation is then achieved by tracking millions of photons, which can score 

multiple physical quantities simultaneously. 

Since MC simulation for the light distribution approaches an exact solution of the RT 

equation as the number of photons increases, it is also considered a standard method for 

describing light propagation in tissues. Forward and inverse MC models have been used to 

analyze the diffuse reflectance and extract the optical properties of biological materials. Public 

MC simulation programs known as ‘MCML’ and ‘CONV’ developed by Wang et al. (1995a) 

have been widely employed in the biomedical field for the study of light transport in tissues. 

Several methods to accelerate the MC simulation of photon migration in turbid media were 

proposed for slab geometries and inhomogeneous media. Alerstam et al. (2008) found that 

general-purpose computing on graphics processing units (GPGPU) can dramatically increase the 

speed of MC simulations. Zolek et al. (2008) corrected the calculation of polar deflection angle 

to improve the MC simulations of light transport in tissue.  

Other numerical approaches, such as finite difference, MC diffusion hybrid model, finite 

element, and asymptotic approximation (Alexandrakis et al., 2000; Cui and Ostrander, 1992; 

Deulin and L'Huillier, 2006; Seo et al., 2007), have also been used to model light propagation in 
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turbid media. Although those numerical methods are generally considered more accurate than the 

diffusion approximation model, they suffer the main drawback of computational complexity with 

long computational time, especially for solving the inverse problems to obtain the optical 

properties of biological materials by iterative fitting methods. 

2.3 Techniques for Measuring Optical Properties of Biological Materials 

Various techniques have been developed for measuring the absorption and scattering 

properties of biological materials. Because of the obvious advantages of noninvasive or 

nondestructive measurements, determination of the optical properties of biological materials 

based on diffuse reflectance measurements has significant potential in food and agriculture. The 

section reviews optical techniques along with their solutions to the diffusion model, and these 

techniques may be divided into three main categories: time-resolved (TR) (Patterson et al., 1989), 

frequency-domain (FD) (Patterson et al., 1991), and spatially-resolved (SR) (Groenhuis et al., 

1983b). The TR, FD, and SR techniques described in this section are for both single-layer and 

two-layer biological materials with a semi-infinite geometry. 

2.3.1 Time-resolved Technique 

Time-resolved technique is based on measurement of the attenuation, broadening and delay 

of a short light pulse, caused by the absorption and scattering events during photon propagation 

in highly scattering media. Photon movement in a turbid medium is complicated due to the 

strong effect of light scattering at different wavelengths. Photons reflected or transmitted across 

the medium may have transported along many different paths within the medium. In a scattering 

dominant medium, a photon traveling path can be quite tortuous and may escape from the 

medium within several centimeters from the injection point. The photon moves in random 
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directions with respect to its trajectory at injection and continues a random walk within the tissue 

until it escapes at the tissue surface or is absorbed. Because the pathlength that a photon has 

taken within the tissue is proportional to the time, time-resolved technique seeks to use the 

pathlength information implied by the time of escape to specify the optical properties of tissue 

traveled by the photons [Figure 2.3(a)].  
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Figure 2.3 Measurement principle of (a) time-resolved and (b) frequency-domain techniques. 

Photon propagation measurements in the time domain depend on the ability to extract 

photon information encoded in the temporal distribution of the re-emitted light, following the 

injection of a short monochromatic pulse in a diffusive medium. Thus, temporal resolution and 

high sensitivity become two critical factors in designing a time-resolved system (Cubeddu et al., 

2000). Temporal resolution is mainly affected by the width of the light pulse and by the response 

of the detection apparatus, and the power of the injected light pulse should be fixed at 

appropriate values to avoid possible damage or injury to the sample when considering the 

sensitivity. The safety regulations for the biological tissues give the maximum permissible value 

of 2 mW/mm
2
 for laser pulses in the wavelength range of 600-1,000 nm. For most time-resolved 

systems, photons are recorded using the time-correlated single-photon counting (TCSPC) 

Light source

Detected light

Light source 

Detected light 

Time Time

(a) (b)
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technique within a short time period at a specified distance from the beam incident point 

(O'Connor and Philip, 1984). 

The diffusion model for the time-resolved signals has been developed, which describes light 

propagation in its time distribution and allows the quantification of optical coefficients µa and 

µs'. Consider a homogenous, semi-infinite turbid medium, the time-resolved reflectance function 

is given by (Patterson et al., 1989) 

2 2
3/2 1 5/2

1
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R r t Dc t ct

Dct


  


 
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
  

            
(2.17) 

where 1[3( ')]a sD      is the diffusion constant, and c is the velocity of light in the turbid 

medium. The term µac represents the absorption of the light, and the other terms are due to the 

early spreading of the light in the tissue, such as t
-5/2 dominates the early dynamic of the 

reflectance signals.  

Kienle et al. (1998a), using the Fourier transform approach, derived an analytical solution 

from the diffusion equation using proper boundary conditions for a two-layer medium that has 

the first layer of thickness d and the semi-infinite second layer. It is assumed that the thickness of 

the first layer is larger than one transport mean free path [d > (µa1+µs1')
-1

]. The time-domain 

reflectance R2-layer(r, t) for the two-layer medium can be obtained by calculation of the real and 

imaginary parts of the reflectance in the frequency domain R2-layer(r, f), as detailed in the 

following section, at many frequencies and by fast Fourier transform of these data. 

As a novel nondestructive method, applications of time-resolved technique have been 

extensively reported in biomedical research for measuring the optical properties of human tissues 
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(Chernomordik et al., 2002; Kacprzak et al., 2007; Svensson et al., 2005). Its applications for 

fruits were also reported in several studies. Cubeddu et al. (2001b) developed a time-resolved 

spectroscopic measurement system based on the TCSPC technique to measure the optical 

properties of peaches, kiwifruit and apples. Nicolai et al. (2008) used the same system to predict 

soluble solids content and firmness of pear, although no satisfactory calibration models could be 

established between the optical properties from TR measurements and quality attributes.  

2.3.2 Frequency-domain Technique 

Frequency-domain is another well-recognized technique for quantitatively measuring the 

optical properties of biological tissues, which could provide information equivalent to that 

obtained in the time domain. In the frequency domain, the propagation and measurement of light 

are accomplished through sinusoidally modulated sources. The photon flux at the detector will 

also be sinusoidal in time but the oscillation will be delayed in time relative to the source and 

reduced in amplitude relative to the average flux [Figure 2.3(b)]. In this case, the measured 

quantities are the phase angle between the detected and source signals and the amplitude of the 

oscillation relative to the DC level (Welch and van Gemert, 1995). The signal measured at the 

frequency-domain and time-domain can be transformed reciprocally by the Fourier transform 

(Arridge et al., 1992). However, in practice, there are specific advantages for frequency-domain 

technique compared to the time-resolved measurement, such as cheaper and simpler 

instrumentation, easier correction for instrument response, real-time measurement of phase and 

modulation, and capability for characterizing an entire spectrum from the measurement at a 

single frequency. 
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The optical parameters (µa & µs') could be obtained from the diffusion model based on the 

frequency-domain measurement of the modulation ( M ) and the phase angle. Patterson et al. 

(1991) derived the analytical solutions for the modulation and phase by the Fourier transform of 

equation (2.17) for a homogenous and semi-infinite medium, which are given as follows 
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For the fixed values of distance r and modulation frequency f, optical parameters µa and µs' 

can be obtained graphically or using more accurate numerical methods to solve equations (2.18) 

and (2.19). The choice of the optimum frequency is very important, which depends on the optical 

properties of the measured materials.  

A solution to the frequency-domain for a two-layer medium was derived with the phase 

angle θ2-layer(r, f) and modulation M2-layer(r, f) calculated based on frequency-domain 

reflectance R2-layer(r, f), which is given by (Kienle et al., 1998a) 
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C1 and C2 in equation (2.26) are two constants (see details in Chapter 3). Equation (2.27) is the 

fluence rate ( , , )i r z f  in layer i , J0 is the zeroth-order Bessel function, and ( , , )i z f s  is the 

fluence rate of each layer obtained from solving diffusion equations in the frequency domain by 

Fourier transformation. 

In applications, the frequency-domain technique can be generally classified into ‘multi-

distance’ and ‘multi-frequency’ categories.  The former acquires reflected light signals at several 

different tissue locations, and the latter employs a single source-detector position with multiple 

source modulation frequencies (Madsen et al., 1994; Tromberg et al., 1997). The light source 

such as lamps and lasers used in the frequency-domain is usually modulated by electro-optic and 

acousto-optic modulators, and the modulated beam will therefore contain higher harmonics, 

which is related to the selection of a detection method. Detectors to be used in frequency-domain 

technique require a bandwidth encompassing the desired modulation frequency. In summary, 

avalanche photodiodes offer the best frequency response followed by microchannel plate 

photomultipliers (MCP-PMTs) and conventional PMTs, which have been widely used in 
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biomedical applications (Coquoz et al., 2001; Spichtig et al., 2009; Welch and van Gemert, 

1995). The early frequency-domain instrument was developed for measuring the decays of 

fluorescence intensity from the flexible molecules in proteins (Lakowicz et al., 1989). It has been 

also successfully applied to in vitro spectroscopy studies of turbid media for medical diagnosis 

(Banos et al., 2007; Tromberg et al., 2000; Tromberg et al., 1996). 

2.3.3 Spatially-resolved Technique 

Spatially-resolved technique was first proposed by Reynolds et al. (1976) for understanding 

light propagation in the turbid media. Later, Langerholc (1982) and Marquet et al. (1995) 

suggested that spatially-resolved measurement could be used to determine the optical properties 

of biological tissues. In this method, a small continuous-wave light beam perpendicularly 

illuminates the sample’s surface, and the remitted light is measured at different distances from 

the light source (Figure 2.4). The optical coefficients µa and µs' of biological materials can then 

be extracted from the measured spatially-resolved reflectance profiles using an appropriate 

analytical solution of the diffusion equation coupled with an inverse algorithm. 
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Figure 2.4 Measurement principle for spatially-resolved technique. 

For the case of steady-state spatially-resolved reflectance for a homogeneous semi-infinite 

turbid medium, Farrell et al. (1992) derived an analytical solution from the diffusion equation 

using the extrapolated boundary conditions, at which the fluence is forced to zero by introducing 

a negative ‘image source’. The diffuse reflectance from the medium is calculated as the current 

across the boundary, and it is originated from a single isotropic point source located at a depth of 

one transport mean free path in the medium. The final expression of the reflectance R1-layer at 

the surface of the semi-infinite turbid medium is  
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where r is the source-detector distance, ' '/ ( ')s a sa      is the transport albedo, 
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observation point at the interface to the isotropic source and the image source, -1
0 ( ')a sz    , 

2bz AD , and 0.2190A   for 1.35n   is the internal reflection coefficient related to the 

relative index of the tissue-air interface n, which can be calculated from an empirical equation 

developed by Groenhuis et al. (1983a). 

Later, Kienle et al. (1997) proposed an improved analytical solution by expressing the 

reflectance as the integral of the radiance over the backward hemisphere based on the study of 

Haskell et al. (1994). In this case, the radiance can be expressed as the sum of isotropic fluence 

rate and the flux. The details of Kienle’s single-layer model are presented in Chapter 3.  

For a two-layer medium in the spatially-resolved condition, Kienle et al. (1998b) solved the 

diffusion equation under the same conditions as that for time-resolved and frequency-domain 

methods. The Kienle’s two-layer diffusion model is detailed in Chapter 8. 

  In practice, spatially-resolved measurement employs a point light source or narrow 

collimated beam of the constant intensity and multiple detectors at different source-detector 

distances. Optical fiber arrays and non-contact reflectance imagery are two commonly used 

sensing configurations in spatially-resolved measurement systems (Doornbos et al., 1999; 

Fabbri et al., 2003; Jones and Yamada, 1998; Pilz et al., 2008). The former requires multiple 

spectrometers or a single imaging spectrometer to measure diffuse reflectance at different 

distances from the light incident point. Optical properties at multiple wavelengths or over a 

specific spectral region can be obtained using this method. Yet the measurements need good 

contact between the detecting probes and the sample, which may not be suitable for agricultural 

and food products. The second method usually uses a CCD (charge-coupled device) camera to 

acquire diffuse reflectance from the scattering medium generated by a point light beam. The 

measurement can be achieved without contacting the investigated medium, which is particularly 
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advantageous for food and agricultural products because of the safety and sanitation 

requirements. However, most research on non-contact reflectance imagery mode can only 

provide optical property information at single or several wavelengths.  

Compared with time-resolved and frequency-domain methods, the spatially-resolved 

technique has advantages of being relatively easier to use and less expensive in instrumentation 

for food and agricultural applications. Moreover, it is faster in measurement in the range of 

millisecond for a broad spectral region versus in seconds at single wavelengths with the time-

resolved method (Cubeddu et al., 2001a; Qin and Lu, 2006). However, all these techniques still 

face considerable challenges in achieving accurate measurement of the optical properties due to 

experimental difficulties and complex mathematical modeling. Reported results on the measured 

optical properties of biological tissues are still not satisfactory, as shown in Table 2.1. Pifferi et 

al. (2007) used time-resolved method to measure the optical properties of Intralipid, and obtained 

the maximum error of 27% at 730 nm compared with the result obtained by the standard method. 

Spichtig et al. (2009) reported the results of measuring silicone-based model samples with errors 

of 10% for µa and 31% for µs' at 690 nm and 830 nm using a frequency-domain method. Pilz et 

al.’s (2008) results demonstrated 10% accuracy of µa and 5% of µs' for measuring tissue model 

samples using spatially-resolved technique at one single wavelength of 633 nm. Also, Pifferi et 

al. (2005) applied a general protocol for assessing several optical methods for determining 

optical properties, and they reported significant differences from different instruments in 

measuring the same model samples with the maximum discrepancy of 32% for µa and 41% for 

µs'. While improved accuracies of determining µa and µs' were reported in several recent studies 

(Martelli and Zaccanti, 2007; Xu and Patterson, 2006), large differences are present for the same 
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model samples from these studies. Moreover, most reported studies (Table 2.1) only tested a few 

model samples with a relatively small range of µa and µs' values for a narrow spectral region.  

Table 2.1 Summary of the performance of time-resolved, frequency-domain and spatially-
resolved measurements (TS: time-resolved, FD: frequency-domain, SR: spatially-resolved, POM: 
polyoxymethylene). 

Method Reference Wavelength Sample Results 
TS Andersson-

Engels et al. 
(1993) 

450-660 nm Porcine muscle Measured optical 
properties of tissue over 
the visible spectral range  
 

Swartling et 
al. (2003a) 

660 and 785 
nm 

Solid tissue model 
samples 

µa=0.05-0.3 cm
-1

 

µs'=9-20 cm
-1

 

Absolute differences of 
less than 0.05 cm-1 for 

µa, and 10% difference 

for µs' 
 

Svensson et 
al. (2005) 

660, 786, 
916 and 974 
nm 

Breast tissue 

Average µa of 

0.04 cm
-1 and µs' 

of 8 cm
-1 

 

Variations below 40% 

for µa and 20% for µs' 
 

Pifferi et al. 
(2007) 

550-600 
nm, and 
610-700 nm 

Intralipid 

µa =0.01-0.07  

cm
-1

 

µs'=6-8 cm
-1 

 

Maximum error of 27% 
at 730 nm with the 
median error of 7% over 

the whole range of µa 

FD Tromberg et 
al. (1997) 

674, 811, 
849, and 
957 nm 

Human breast 
tissue 

µa =0.02-0.16  

cm
-1

 

µs'=7-11 cm
-1 

 

Detected physiological 
changes in breast tissue  
 

Coquoz et al. 
(2001) 

674, 811, 
and 849 nm 

Liquid model 
samples 

µa =0.04-0.4 cm
-1

 

µs'=0.2-0.9 cm
-1 

 

Errors of 10-15% for µa, 

and 5-10% for µs' 

Xu and 
Patterson   

750 nm Five Intralipid-
Indian ink model  

Errors in µa of 1-27%,  



30 
 

Table 2.1 (cont’d) 

 (2006)  samples µs'/µa=1-
10 

µs'=20 cm
-1 

 

and µs' of 3-42% 

 Spichtig et 
al. (2009) 

690 and 830 
nm 

Silicone-based 
model samples 

µa = 0.10-0.15  

cm
-1

, µs'= 4-11 

cm
-1 

 

Errors in µa of 10% and 

µs' of 31%  

SR Bays et al. 
(1996) 

514 , and 
630 nm 

POM samples 
Human esophagus 

µeff = 0-6 cm
-1

, 

µs'=0.2-14 cm
-1 

 

Errors of 21% and 32% 

for µeff and µs' 
 

Doornbos et 
al. (1999) 

600-900 nm Liquid and solid 
model samples 
in vivo tissue 

µa =0-1.5 cm
-1

 

µs'=5-20 cm
-1 

 

40% error of µa for the 
model sample  

Qin et al. 
(2006) 

530-900 nm Intralipid-dye 
model samples 

µa =0-0.8 cm
-1

 

µs'=2.2-23.2 cm
-1 

 

Errors in µa of 16% and 

µs' of 11% 

Martelli and 
Zaccanti  
(2007) 

750 nm Intralipid-Indian 
ink model samples 

µa and µs' with standard 
deviation <2% , and no 
validation 
 

Pilz et al. 
(2008) 

633 nm Tissue model 
samples 

µa =0.03-1.0 cm
-1

 

µs'=5-20 cm
-1

 

Errors in µa of 10% and 

µs' of 5%  
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2.4 Approaches to Inverse Problems for Determining Optical Parameters 

Direct solutions to the diffusion equation, or numerical methods like Monte Carlo simulation 

for quantitative description of light propagation in the turbid medium, are referred to as forward 

problems. The corresponding inverse problems, also called inverse radiation transport problems, 

deal with estimating the optical properties of turbid media using the reflectance data obtained 

from the experimental measurement. While forward problems can be solved accurately because 

there often exists a unique solution based on complete description of a physical system, inverse 

problems are more complicated and may be difficult to solve because it is challenging to find at 

least one model system that is consistent with the observed data with unique model parameters. 

Therefore, in determining optical properties of biological materials, a suitable inverse algorithm 

should be developed, and information involving measurement data uncertainty, model efficiency, 

parameter characteristics, and curve fitting errors should be analyzed. 

2.4.1 Sensitivity Analysis 

Sensitivity analysis determines how a result (or the dependent variable) changes when 

parameters that affect the result are changed. It is performed by calculating sensitivity 

coefficients, which are the first derivatives of the dependent variable with respect to the 

parameters (Beck and Arnold, 1977). Sensitivity coefficients describe the response of the change 

of the dependent variable to perturbations in the values of the parameters, and show the 

relationship between the dependent variable and the parameters. Sensitivity coefficients can help 

us determine if unique solutions for estimating all optical parameters exist, and/or identify those 

parameters that can be estimated when it is not possible to uniquely estimate all parameters from 

the measurements (Beck and Arnold, 1977; Taktak et al., 1993). They can be calculated by   
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R
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                                                              (2.29) 

where β  represents optical parameters µa or µs'. Sensitivity coefficients of parameters can be 

computed by multiple methods, such as finite different, complex step, differentiation of 

analytical solutions, and sampling methods.  

In many applications such as design/analysis studies, sensitivity analysis provides important 

information for characterization of the changes of a result with parameter variations, 

optimization and parameter estimation with gradient-based techniques, optimal experiment 

design, and uncertainty analysis (Blackwell, 2009). Thus, it is important and useful to conduct 

sensitivity analysis in the study of inverse light transport problems.   

2.4.2 Inverse Algorithm 

Algorithms for solving inverse problems or parameter estimations have been developed with 

the advances of mathematics, statistics and computer technologies. Regression or curve fitting is 

the most used inverse method, which can be divided into linear and nonlinear. In the linear 

regression, the most commonly used methods are ordinary least squares (OLS), maximum 

likelihood (ML), and maximum a posteriori (MAP) (Beck and Arnold, 1977). Estimating optical 

properties from the diffusion model is considered a nonlinear regression problem, which can be 

solved using nonlinear least squares method by minimizing the general sum of squares (SS) 

function when the dependent variable is nonlinear in terms of the parameters. The extreme found 

for the sum of squares functions when the model is linear in the parameters can be proved to be 

the correct one and the unique minimum point exists. However, it is difficult to assure for the 

nonlinear cases since there may be more than one extremum. Therefore, it is recommended that 

contours or profiles of sum of squares be plotted in the region in which the solution is expected. 
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Another possibility is to start the iteration procedure with different sets of initial parameter 

values. 

All methods for nonlinear least squares optimization are iterative. From a starting point 0x , 

the method produces a series of vectors 1 2 3, , , ...x x x , which converges to *x , a local minimum 

for the given function. Most methods have measures to enforce the descending condition 

1( ) ( )k kF x F x                                                              (2.30)  

It prevents convergence to a maximizer and also makes it less possible that it converges towards 

a saddle point by using descent methods such as the steepest descent, conjugate gradient, line 

search, and trust region and damped methods (Tarantola, 2005). The Newton’s, Gauss-Newton 

and Levenberg-Marquardt methods are the most used to achieve optimization (Levenberg, 1944; 

Marquardt, 1963; Wilkinson, 1961). The Newton’s method provides a general framework for the 

least squares problems. However, the convergence is very slow or even fails if the hypothesis of 

quadratic convergence is not satisfied. The Gauss-Newton method is a very efficient method 

based on the first derivatives of the components of the vector function. It normally only has 

linear convergence, and it can give quadratic convergence in special cases. Considerable research 

has shown that it gives quite good performance in many applications (Aigner and Juttler, 2009; 

Baltagi, 1996; Dastidar, 2006). The Levenberg-Marquardt method is a modification of the 

Gauss-Newton method, which is a good choice for small to medium sized nonlinear least squares 

problems. 

2.4.3 Data Transformation and Weighting Methods 

Before an inverse algorithm is implemented, data pre-check or pre-process is usually 

developed to analyze nonlinear data. Data transformation is a powerful method for analyzing 
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nonlinear regression models by linear approximation or changing data properties to obtain better 

estimations. In statistics, data transformation refers to the linear or nonlinear transformation of a 

mathematical function that each data point iy  is replaced with the transformed value ( )Ti iy f y . 

The linear transformed data (such as dividing, multiplying all Y values by a constant or 

subtracting a constant from all Y values) can be analyzed with linear regression, but the nature of 

the best-fit curve will not be changed. Nonlinear transformation (such as converting Y values to 

their logarithms, square roots, integrals, derivative, or reciprocals) will change the relative 

position of data points from the curve and produce a different curve to minimize the sum-of-

squares. It is usually applied when the raw data does not meet the statistical assumptions or the 

data range is at several orders of magnitude (Motulsky and Christopoulos, 2004). For the 

spatially-resolved diffuse reflectance profile, the reflectance data (dependent variable: Y) 

decreases dramatically along the source-detector distance (independent variable: X), and the 

statistical assumptions that the Gaussian distribution of errors of the Y-data and constant 

variance of errors along the X-axis are violated when nonlinear regression is applied. Therefore, 

nonlinear data transformation to the Y-data could be useful to make the scatter more Gaussian. 

The logarithm function converts the multiplicative pattern (proportional-variance) to an additive 

pattern (constant-variance), and the integral function transforms instantaneous data to 

accumulated data, which alters the relationship between the independent variable and the 

dependent variable, and could make the experimental data meet the assumptions. The 

implementations of the logarithm and integral transformation methods for the experimental data 

and Kienle’s model for single-layer turbid media are given below as an example. In the 

logarithm transformation, the natural logarithm of diffusion equation (3.4) (see Chapter 3), called 

logarithm-transformed diffusion model (LTDM), is given as 
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1 ,log 1( ) log ( )layer layerR r R r                                                   (2.31) 

The integral of diffusion equation, defined as the integral-transformed diffusion model 

(ITDM), is calculated by (Gobin et al., 1999) 

   1 ,int 1 1 0 2 00
( ) ( ) ( , ) ( , ') ( , ) ( , ')

r
layer layerR r R d C f r z f r z C g r z g r z             (2.32)            

where 

0' 2 bz z z                                                                  (2.33) 

 2 2 1/21
( , ) exp( ) exp ( )

4 eff eff
eff

f r z z r z
D

 
 

                                    (2.34)  

 2 2 1/2 2 2 1/21
( , ) exp( ) ( ) exp ( )

4 eff effg r z z z r z r z 


                          (2.35)                

If the scatter of Y data is Gaussian and the variance of the scatter is the same at all values of 

X, then the correct parameters can be found by least squares estimates without any data 

transformation. However, in some cases, the variance of the scatter often increases as Y 

increases. With this type of data, the least squares method is inappropriate because it tends to 

give undue weight to points with large Y values on the sum-of-squares value and ignores points 

with small Y values. To overcome this problem, a proper weighting method can also be applied 

in the nonlinear regression. One common method is the relative weighting which is defined as 

minimizing the sum-of-squares of the relative distances of the data from the curve 

(
2

( - ) /obs pred obsY Y Y   , where obsY  is the experimental data, and predY  is the predicted 
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reflectance from the diffusion model). Other weighting methods, such as Poisson weighting 

(weighting by 1 / obsY ) and weighting by observed variability, are also used in nonlinear 

regression (Motulsky and Christopoulos, 2004).  

2.5  Nondestructive Techniques for Measurement of Maturity and Quality 

Quality of fruits and vegetables is of primary concern to growers, packers or processors, and 

retailers throughout the production, postharvest handling and processing, and marketing steps. It 

is a subjective judgment related to the learned criteria for each consumer. With the advent of 

instrumentation and computers, a large number of sensing techniques and devices to measure 

quality or quality-related attributes have been developed. Traditionally, quality detection of fruits 

and vegetables is achieved using destructive techniques based on the chemical and mechanical 

properties, like refractometry for soluble solids content (SSC) and mechanical force/deformation 

techniques (e.g., Magness-Taylor test) for firmness measurement. Destructive techniques are 

confined to testing a small batch of samples. Nondestructive sensing techniques, on the other 

hand, have the potential for rapid and nondestructive quality evaluation, sorting and grading of 

individual product items. The increasing demands for all-year-round supply of high quality fresh 

produce by retailers are driving the development of new sensing technologies for quality 

evaluation of horticultural products.  

2.5.1 Maturity and Quality of Fruits   

It is difficult to establish one single maturity index due to the complexity of physiological 

and/or biochemical processes taking place in fruit during growth and ripening as well as further 

complication by such factors as variety or cultivar, geographic location, season, and climate 

condition. Hence a combination of indices is commonly used to assess the maturity of fruit, 
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which include ground color changes, firmness, soluble solids content, titratable acidity, ethylene 

production, and starch content. In addition, the maturity stage at which fruits should be harvested 

depends, to a great extent, on the final use of the products. For instance, if fruit are to be sold for 

fresh eating immediately after harvest, they may be allowed to ripen fully on the tree. However, 

if fruit are to be kept in storage for a long time period, they should be picked prior to full 

maturity or ripeness in order to prolong the postharvest life and minimize physiological disorders 

or quality decay during storage.  

Fruit quality is determined by the maturity of the fruit at harvest. It can be characterized by 

appearance (color, size and/or shape), flavor, texture and aroma. A definition of quality used in 

postharvest quality evaluation was given by Kramer and Twigg (1970): “the composite of those 

characteristics that differentiate individual units of a product, and have significance in 

determining the degree of acceptability of that unit by the buyer.” The specific quality 

requirements for horticultural products also depend on the end use and cultivar. Minimum 

quality standards have been established for fruits in many countries, and they can be divided into 

external and internal (Wills et al., 2004). The external standards, characterized by appearance 

(color, size, shape, and/or surface defect), are one of the key factors for consumers in purchase of 

fresh fruit. Many fruits undergo color changes as part of the ripening process. In some cases, 

color is a strong indicator of eating quality and shelf life. Internal quality is dependent on the 

properties, physical structures, and chemical compositions (e.g., firmness and SSC), which are 

directly related to the texture and flavor of fruits. And it is critical in the repeat purchase of a 

particular product or cultivar.  

Ripening causes changes in the composition and cellular structures of fruit and thus the 

eating quality. The sweetness taste development is the result of increased gluconeogenesis, 
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hydrolysis of polysaccharides, and decreased acidity. Softness of fruit is due to the loss of 

firmness in texture caused by cell wall depolymerization and an increase in solubility of the 

middle lamella. Thus, cellular characteristics such as cell wall strength, cell turgor, number of 

cells and their shape and size, and intercellular spaces have a significant effect on the texture of 

the fruit, which is, in turn, directly related to the mechanical properties of fruit tissue. 

Mechanical properties of fruit tissue are influenced by ripening stage and water status, and also 

determine the susceptibility of fruit to mechanical damage during harvest, transport, and 

postharvest storage and handling. Thus, better understanding of the structural and mechanical 

properties of fruit tissue is needed in the development of new or improved techniques for fruit 

quality evaluation and monitoring, and better processing operations for the food industry.  

2.5.2 Mechanical Techniques 

Most nondestructive mechanical techniques measure elastic properties (e.g., modulus of 

elasticity or Young’s modulus) at very small deformations, which are related to the texture (e.g., 

firmness) of fruits and vegetables. Modulus of elasticity measures the capacity of the material to 

take elastic deformation, and  it is the stress/strain ratio, which can be determined from the slope 

of the compressive force/deformation curve for cylindrical tissue specimens or whole fruit at 

small levels of deformation prior to rupture  (Figure 2.5) (Abbott, 1999).  
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Figure 2.5 Force/deformation (F/D) curves for cylindrical tissue specimens from firm and soft 
apples under constant strain-rate (0.42 mm/s) compression (Abbott, 1999). 

Both sonic and ultrasonic vibration techniques have been applied for evaluating fruit 

firmness. Ultrasonic waves can be reflected, transmitted, refracted or diffracted as they interact 

with the fruit, which are directly related to the mechanical properties and geometry (i.e., size and 

shape) of the fruit. Recent advances in ultrasonic technology for monitoring the quality of fruits 

and vegetables have been reviewed by Mizrach (2008). The technique has been used for 

measuring firmness and mealiness in some fruits, and different ultrasonic sources are needed for 

different fruits in order to achieve good penetration (Bechar et al., 2005; Galili et al., 1993; Kim 

et al., 2004; Mizrach et al., 2003). Sonic vibration method, on the other hand, measures 

vibrational responses of fruit to sonic signals (i.e., impulse or sinusoidal) in the audible 

frequency range for up to a few thousand Hz. Sonic firmness is calculated based on the mass of 

the fruit and the first or second resonance frequency (Langenakens et al., 1997), depending on 
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the measurement configuration. The technique has been used for fruit firmness or stiffness 

measurement (Chen and Debaerdemaeker, 1993; De Belie et al., 2000; Diezma-Iglesias et al., 

2004; Wang et al., 2006). Low-mass impact method provides another means for determining 

fruit firmness, and the technique currently is commercially available for online sorting and 

grading of fruit (De Ketelaere et al., 2006; Diezma-Lglesias et al., 2006).  

Although numerous nondestructive mechanical methods have been reported, they are often 

slow in measurement and difficult to implement for online applications. Moreover, these 

mechanical methods are only limited to firmness evaluation. Therefore, new sensors that are 

more reliable and faster and able to measure multiple quality attributes are needed to improve 

industry profitability and meet the increasing demands from the consumer for better and more 

consistent fresh products. 

2.5.3 Optical Techniques 

 The electromagnetic spectrum from the shortest to longest wavelengths includes Gamma 

rays, X-rays, ultraviolet, visible, infrared and radio waves (Figure 2.6). Optical techniques based 

on the electromagnetic radiation for a specific spectral range have been developed for 

nondestructive quality measurement of fruits and vegetables because of the rich information 

obtained from light interaction with materials. For fruits and vegetables, the most useful spectral 

regions are visible (400-770 nm) and near-infrared (770-2500 nm), while other spectral regions 

such as ultraviolet and X-rays have also been found useful. Visible/near-infrared spectroscopic 

and imaging techniques are most popularly used in postharvest quality inspection. 
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Figure 2.6 Diagram of the whole electromagnetic spectrum (Mohsenin, 1984). 

Color is the basis for sorting many products into commercial grades, which is directly 

related to pigments (e.g., chlorophylls, carotenoids, and anthocyanins) in the products, and can 

be measured in the visible range. Near-infrared (NIR) spectroscopy is well suitable for the 

determination of chemical compositions. The NIR region involves the responses of the molecular 

bonds O-H, C-H, C-O and N-H. These bonds are subject to vibrational energy changes when 

irradiated by NIR frequencies, and two vibration patterns exist in these bonds including stretch 

vibration and bent vibration. The energy absorption of organic molecules in the NIR region 

occurs when molecules vibrate or are translated into an absorption spectrum (Cen and He, 2007; 

Williams and Norris, 2001). Chemical constituents, such as ethanol, water, sugars (glucose and 

fructose), organic acids (citric, lactic, tartaric and malic acids), phenolic compounds and 

oxidation in fruits and vegetables, either in combination or alone, have strong influences on the 
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quality evaluation of fruits and vegetables. In practice, NIR measurement can be classified into 

three different modes: reflectance, transmittance and interactance (Figure 2.7). Transmittance 

measurement is often applied for liquid samples, such as fruit juice, using glass or quartz 

chamber with different sizes, while diffuse reflectance or interactance measurement is popular 

for solid samples such as fruits (Abbott et al., 1997; Lu et al., 2000; McGlone et al., 2003). Over 

the past two decades, considerable research has been reported on NIR technique for 

nondestructive determination of firmness, soluble solids content, acidity, maturity, dry matter, 

moisture and other characteristics of fruits and vegetables, including apple, pear, cherry, melon, 

tomato, cucumber, potato, etc. (Carlomagno et al., 2004; Lammertyn et al., 1998; Pedro and 

Ferreira, 2005; Sirisomboon et al., 2007). 

(a) 

 

(b) 

 
Figure 2.7 Three different modes for NIR spectroscopic measurements: a) reflectance, b) 
transmittance and c) interactance. 
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Figure 2.7 (cont’d) 

                                       (c) 

 

Imaging techniques are widely used for classification or sorting of agricultural products 

based on the recognition of shape, size, surface defect, and color (Brosnan and Sun, 2004; Chao 

et al., 1999; Chinchuluun et al., 2009; Singh and Delwiche, 1994). Conventional imaging (e.g., 

monochrome and color camera) is based on the analysis of spatial information, acquired by a 

digital imaging device, from the object, which is effective when quality attributes of a product 

are related to its extrinsic characteristics. Recently, multispectral and hyperspectral imaging 

techniques have been used for quality evaluation of horticultural and food products. 

Multispectral imaging usually generates a set of images at fewer than 10 discrete wavelengths, 

which can be obtained either by positioning a bandpass filter in front of a monochrome camera 

(Park et al., 2004), or by capturing a series of spectral image using an acousto-optic tunable filter 

or a liquid crystal tunable filter (Peng and Lu, 2006; Tran, 2000). Hyperspectral imaging 

combines conventional spectroscopy and imaging techniques to acquire both spectral and spatial 

information from an object simultaneously, enabling us to analyze product properties or 

characteristics more reliably and completely than existing imaging and spectroscopic techniques. 

The technique may be implemented by acquiring a sequence of narrow-band spectral images or 
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capturing scan line images with a full spectral range to create 3-D spatial-spectral data or 

hypercubes (Bernhardt, 1995; Park et al., 2002). Many studies on multispectral imaging (Blasco 

et al., 2009; Lu and Peng, 2007; Park and Chen, 1994) and hyperspectral imaging (ElMasry et al., 

2007; Lawrence et al., 2003; Lu, 2003) have been reported on quality and safety inspection of 

food and agricultural products. 

Besides spectroscopic and imaging techniques for the visible and NIR region, other optical 

techniques have also been developed for quality inspection of agricultural and food products, 

such as X-ray (Brecht et al., 1991; Haff et al., 2006; Schatzki et al., 1997), fluorescence and 

delayed light emission (Abbott and Massie, 1985; Gunasekaran, 1990; Kolb et al., 2006; Noh 

and Lu, 2007; Seiden et al., 1996), magnetic resonance and magnetic resonance imaging 

(Barreiro et al., 2000; Kim et al., 1999; Koizumi et al., 2009). Techniques based on 

electrochemistry, such as electronic nose and electronic tongue (Buratti et al., 2006; Infante et al., 

2008; Rudnitskaya et al., 2006; Zoltan et al., 2008), are used for measuring the concentration of 

volatiles of fruits or vegetables to evaluate the ripeness.  

Optical techniques are advantageous for nondestructive maturity and quality measurement 

of horticultural products since they are generally nondestructive or noninvasive, fast, and more 

easy to implement for offline and online applications. However, spectroscopic techniques such as 

NIR mostly rely on statistical methods to establish empirical relationships between experimental 

data and chemical compositions, while most imaging techniques are mainly restricted to 

quantifying the physical or surface characteristics of the samples. Due to inadequate 

understanding of, and technical challenges in measuring, light transfer in biological materials, 

many optical techniques still are of empirical nature in measurement, and thus cannot provide 

accurate, complete information about the optical characteristics or properties of food products. 
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Consequently, they have not been able to accurately measure fruit quality or establish reliable, 

robust relationships or models for predicting the quality of fruit. 
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CHAPTER 3 OPTIMIZATION OF INVERSE ALGORITHM FOR ESTIMATING 

OPTICAL PROPERTIES OF BIOLOGICAL MATERIALS 

3.1 Introduction 

When light scattering is dominant, the radiation transport equation can be simplified to a 

diffusion approximation equation (Ishimaru, 1978). Direct solutions to the diffusion equation 

coupled with appropriate boundary conditions, referred to as forward problems, provide a 

quantitative description of light transport in the medium. The corresponding inverse problems, 

also called inverse radiation transport problems, deal with estimating the optical properties of 

turbid media.  

Different approaches and methods have been developed for determining or measuring the 

optical properties of turbid media. They may be divided into three groups: direct, empirical and 

inverse (Cheong et al., 1990). Direct methods, such as the Beer-Lambert law for measuring 

collimated light transmission, are based on some fundamental concepts and rules without using 

any models to obtain optical parameters from measurements. The methods are conceptually 

simple, but they can be used only for samples of simple geometry (e.g., thin slabs). Empirical 

methods, on the other hand, obtain optical properties from the measured transmittance and 

reflectance using mathematical models that are based on simplifications and restrictive boundary 

conditions [e.g., Kubelka-Munk theory (Edstrom, 2004)]. As a result, empirical methods lack 

accuracy and generality, and they are only suitable for samples of specific geometry. Unlike 

direct and empirical methods, inverse methods determine optical properties by solving the 

radiation transport equation coupled with appropriate boundary conditions and an inverse 

algorithm. Inverse methods are of great interest to researchers because they are applicable to a 

wide range of intact turbid materials with minimal or no sample preparation. Inverse methods 
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may be implemented using diffusion theory, inverse Monte Carlo (IMC) simulation, and inverse 

adding-doubling (IAD). Being purely numerical, IMC and IAD achieve relatively high accuracy 

by describing the light propagation more rigorously using the radiation transport equation 

(Palmer and Ramanujam, 2007; Prahl et al., 1993). But they suffer the main drawback of 

computational complexity with long computational time. In this work, a diffusion model was 

chosen because it is more efficient and accurate for describing the radiation transport in turbid 

media, needs less computational time, and is particularly useful for nondestructive measurement. 

For the case of steady-state spatially-resolved reflectance for a homogeneous semi-infinite turbid 

medium, Kienle’s model was used in this study (Kienle et al., 1996). 

Because of the complexity of the analytical solution and potential experimental 

difficulties/errors in measuring diffuse reflectance profiles from the medium, there exist 

considerable difficulties in accurate estimation of the optical parameters from spatially-resolved 

diffuse reflectance. In this work, the optical parameter estimation is formulated as a nonlinear 

least squares optimization problem, which is based on several important assumptions (i.e., 

constant variance errors, uncorrelated errors, and the Gaussian distribution of errors). The results 

will not be valid if these assumptions are violated and the data are not presented in appropriate 

format. Proper data transformation and weighting methods should be considered when some of 

the assumptions are violated. Moreover, to improve the accuracy of the parameter estimation, the 

inverse algorithm and the experimental design need to be optimized and the information 

involving measurement uncertainty, model efficiency, curve fitting errors, and parameter 

characteristics should be acquired and analyzed.  

Therefore, the overall objective of this part of the research was to optimize the inverse 

diffusion theory algorithm and instrumental measurement for accurate estimation of the 
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absorption and reduced scattering coefficients from spatially-resolved diffuse reflectance data. 

The specific objectives of this research were to: a) examine different data transformation and 

weighting methods for nonlinear least squares estimates; b) perform sensitivity analysis to 

determine an appropriate data transformation and/or weighting method to improve the inverse 

algorithm for estimating the optical properties of turbid media; and c) assess the robustness of 

the diffusion model and the inverse algorithm using statistical analysis. 

3.2 Forward Problem 

3.2.1 One-layer Diffusion Model for the Steady-state Case 

Consider a semi-infinite turbid medium which is impinged upon perpendicularly by an 

infinitely small light beam. Under steady-state condition, the diffusion equation (2.12) can be 

rewritten as 

2 ( ) ( ) ( )aD S     r r r                                                  (3.1) 

where ( , , )x y zr , 1 / [3( ')]a sD     is the diffusion constant, and ( )S r  is the isotropic 

scattering source. The solution of the fluence rate at the surface (z = 0) using the extrapolated 

boundary in which the fluence rate is forced to be zero is given by (Farrell et al., 1992) 
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 for the extrapolated boundary condition. Reff is the effective reflection 
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coefficient, which is equal to 0.4498 for the refractive index n = 1.35 (Haskell et al., 1994). The 

diffuse reflectance calculated as the flux across the boundary is expressed by  
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The final solution for the steady-state spatially-resolved diffuse reflectance for a single-layer 

material derived by Kienle and Patterson (1997) is given below 

1 1 2( ) ( , 0) ( )layer fluxR r C r z C R r                                             (3.4) 
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determined by the relative refractive index mismatch at the tissue-air interface, in which ( )fresR   

is the Fresnel reflection coefficient for a photon with an incident angle   relative to the normal 

to the boundary, and   is the solid angle. Details on these parameters can be found in the 

literature (Haskell et al., 1994). For a refractive index n = 1.35, a typical value for many 

biological materials (Mourant et al., 1997), C1 and C2 are equal to 0.1277 and 0.3269, 

respectively. Hence, the diffuse reflectance R(r) at the surface of the turbid medium is a function 

of the source-detector distance (r) as well as two unknown optical parameters of the medium. 

3.2.2 Monte Carlo Simulation 

For accurate estimation of the optical parameters of turbid media, the diffusion model and 

inverse algorithm were validated by MC simulations. The MC simulation assumes that an 

infinitely narrow photon beam is normally incident on the surface of the medium, which is 

considered infinitely wide compared to the spatial extent of photon distribution. For a 
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homogenous medium, the light transport is determined by its refractive index (n), absorption 

coefficient (µa), and reduced scattering coefficient (µs').  

A publicly available MC simulation program for light propagation in biological materials 

was used (Wang et al., 1995b). The low-noise reflectance generated by MC simulation provided 

an ideal measurement without introducing experimental uncertainties. Several groups of 

absorption and reduced scattering coefficients that are similar to the optical properties of fruits 

were selected.  

3.3 Inverse Problem 

3.3.1 Nonlinear Least Squares Inverse Algorithm  

To extract the optical properties from the spatially-resolved diffuse reflectance for a turbid 

medium, a suitable inverse algorithm should be selected. Equation (3.4) shows that the two 

optical parameters may be estimated based on the measured reflectance when no a priori 

information related to these parameters is given.  

Nonlinear least squares method was used to find the minimum of the sum-of-squares of the 

difference between the true reflectance and predicted reflectance values with estimated 

parameters. A large-scale algorithm such as a subspace trust-region method based on the interior-

reflective Newton approach was selected to achieve the algorithm optimization (Thomas and Li, 

1994). It is defined by minimizing a quadratic function subject only to an ellipsoidal constraint, 

and is globally and locally quadratically convergent. The interior-reflective Newton approach 

can generate iterates in the strictly feasible region by using a new affine scaling transformation, 

and the speed of convergence is accelerated by following a reflective line search technique. A 

preconditioned conjugate gradients (PCG) method was used to produce an approximate solution 
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to a large linear system in each iteration (Thomas and Li, 1994). The upper bandwidth of 

preconditioner for PCG was 2, which was determined by the preliminary implementation of the 

algorithm to achieve a better quality step towards the solution and also by consideration of the 

number of PCG iterations to reduce the computational time. The inverse algorithm for parameter 

estimations was implemented using the Toolbox function ‘lsqcurvefit’ in Matlab 7.5 (The 

MathWorks, Inc., Natick, MA). 

3.3.2 Data Transformation and Weighting Methods 

In this study, two data transformation methods including logarithm and integral 

transformation for the experimental data and the diffusion model were used before the curve 

fitting process. In addition, the diffusion model with relative weighting (RWDM) was also used 

for the nonlinear least squares curve fitting to extract the optical properties, and the results were 

compared with those obtained from the data transformation methods with absolute weighting 

[  2obs predR R ] . The details of LTDM, ITDM, and RWDM are presented in Section 2.4.3. 

3.3.3 Sensitivity Analysis 

To better understand how the changes in the reflectance profiles of the diffusion model are 

attributed to the changes in the optical parameters, sensitivity analysis was performed before the 

inverse algorithm was implemented. The sensitivity coefficients for the original diffusion model 

(ODM), LTDM, ITDM, and RWDM were calculated by equations (3.5)-(3.8), which were 

derived from equation (2.29). 

 _ori
R

X  






                                                                   (3.5) 
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log_
log( )R

X  






                                                            (3.6) 

int
int_

R
X  







                                                               (3.7) 

_RW
R

X
R 






                                                               (3.8) 

The sensitivity coefficients defined in equations (3.5)-(3.8) have the same unit as the dependent 

variable and can be readily compared for different parameters. In these equations, the sensitivity 

coefficients are expressed in absolute values in order to facilitate the comparison of different 

parameters. In this study, sensitivity coefficients were first calculated for the absorption and 

reduced scattering coefficients using the finite difference method. They were examined against 

the Monte Carlo simulation data to determine if it is possible to estimate individual optical 

parameters before an inverse algorithm was developed.  

3.3.4 Statistical Analysis and Model Assessment 

Statistical analysis was conducted to interpret the results of parameter estimation. It 

systematically considers the characteristics of the model and algorithm. Several statistical 

parameters used for assessing the mathematical model and analyzing the curve-fitting results are 

listed in this section. The equations given below are based on the ODM. Corresponding 

equations for the transformed models can be derived easily from these given equations. To 

compare the estimated optical parameters by fitting the MC simulation data to the diffusion 

model with the true values, the relative errors are calculated by 

ˆ
100%t

t

 



                                                                 (3.9) 
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where ̂  is the estimated value for optical parameter a̂  or sˆ ' , and βt is the true value of  µa  or 

µs'. 

The residual for reflectance is given by 

, ,i obs i pred ires R R                                                        (3.10) 

The sum-of-squares for the n data points are minimized by the nonlinear least squares 

regression to obtain the estimated values of µa and µs'.  

2

1

n

i
i

SS res


                                                            (3.11) 

The variance-covariance matrix gives the information about the standard error   of the 

parameters. The vector of   is the square root of the corresponding diagonal of the symmetric 

parameter 

1 2([ ] )Tdiag J J s
                                               (3.12) 

where '[ , ]
a s     , in which 

a  and 's  are the standard errors of µa and µs', 

predJ R   is the estimated Jacobian, and 2 1
s SS

n p



 is the mean squared residual with p  

parameters.   

To compute the confidence intervals (CIs) for the two parameters, the ‘NLPARCI’ (beta, 

residuals, Jacobian) function in Matlab was used. 

3.4 Simulation Experiments 

To validate the diffusion model and the inverse algorithm by using MC simulations, the 

medium was considered to be turbid and semi-infinite. Absorption and reduced scattering 
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coefficients are two input parameters for the MC simulation model, and their values determine 

the simulation results. Thirty-six different combinations of µa and µs' and their transport mean 

free path [1mfp' = (µa+µs')
-1

] were selected (Table 3.1), which span a large range of values: 

0.04  µa 8 cm
-1

, 4 µs' 40 cm
-1 and 5 µs'/ µa 100 . These values were chosen based on 

the published data for the optical properties of fruit and other food products (Budiastra et al., 

1998; Cubeddu et al., 2001b; Qin and Lu, 2008). For groups 5, 6 and 12, MC simulations gave 

zero reflectance at large source-detector distances due to large values for µa and µs'. Therefore, 

these three groups are not included in the following discussion. The refractive index of the 

medium was assumed to be 1.35, similar to that of fruit (Mourant et al., 1997), and the refractive 

index for the medium above was 1.0, equal to that for the air. A total of 3×10
6
 photons and 0.1 

mm spatial resolution of both radial distance and depth were used to produce the reflectance for 

the spatial distance of 0.1- 10 mm. The MC generated diffuse reflectance profiles were then 

fitted by the inverse algorithm for the diffusion model to deduce the optical properties of the 

media. MC simulations introduced small stochastic variability in the calculated reflectance for 

any given set of optical properties; in this study the average variability was 0.8-3.1%, generated 

from five simulations for each set of optical properties. 

Table 3.1 Thirty-six combinations of the absorption (µa) and reduced scattering coefficients (µs') 
and their corresponding transport mean free path ( mfp' ) used in Monte Carlo simulations (unit: 

cm
-1 for µa & µs', and mm for mfp'). 

Group no. 
µa µs' mfp' 

Group no.
µa µs' mfp' 

µs'/ µa = 5  µs'/ µa = 50 
1 0.80  4 2.08 19 0.08  4 2.45 
2 1.40  7 1.19 20 0.14  7 1.40 
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Table 3.1 (cont’d) 

3 2.00 10 0.83 21 0.20 10 0.98 
4 4.00 20 0.42 22 0.40 20 0.49 

*5 6.00 30 0.28 23 0.60 30 0.33 
*6 8.00 40 0.21 24 0.80 40 0.25 

 µs'/ µa = 10  µs'/ µa = 70 

7 0.40  4 2.27 25 0.06  4 2.46 
8 0.70  7 1.30 26 0.10  7 1.41 
9 1.00 10 0.91 27 0.14 10 0.99 

10 2.00 20 0.45 28 0.29 20 0.49 
11 3.00 30 0.30 29 0.43 30 0.33 

*12 4.00 40 0.23 30 0.57 40 0.25 

 µs'/ µa = 20  µs'/ µa = 100 

13 0.20  4 2.38 31 0.04  4 2.48 
14 0.35  7 1.36 32 0.07  7 1.41 
15 0.50 10 0.95 33 0.10 10 0.99 
16 1.00 20 0.48 34 0.20 20 0.50 
17 1.50 30 0.32 35 0.30 30 0.33 
18 2.00 40 0.24 36 0.40 40 0.25 

* These groups were excluded in the data analysis.  

3.5 Results and Discussion  

3.5.1 Comparison between the Diffusion Model and Monte Carlo Simulations 

Figure 3.1 shows the spatially-resolved diffuse reflectance calculated from the diffusion 

model and MC simulations for the two sets of optical properties with µs'/ µa = 5 and µs'/ µa = 

100. Overall, the reflectance profiles calculated from the diffusion model well match those from 

MC simulations, except for small distances close to the light source, where relatively large 

differences are observed. However, the differences of reflectance are affected by the ratio of µs'/ 

µa. The average differences for groups 1-4 with µs'/ µa = 5, groups 7-11 with µs'/ µa = 10, and 

groups 13-36 with 20  µs'/ µa 100  are 18.1%, 10.8%, and 4.3%, respectively, for the source-



56 
 

detector distances of greater than 1.5 mm. With relatively large values for µs'/ µa (i.e., ≥10) the 

differences between the diffusion model and MC simulations become smaller, which can be 

explained by the scattering dominated condition for the diffusion model. Hence the optical 

properties with 10  µs'/ µa 100  (a total of 29 groups in Table 3.1) were used in the parameter 

estimation. Larger deviations for reflectance are observed in Figure 3.1 when the detector is 

close to the light source (less than one transport mean free path), because the diffusion 

approximation is not valid in this situation. These results indicate that overall the diffusion model 

accurately quantifies light propagation in the turbid media. 

(a) 

 
(b) 

 

Figure 3.1 Comparison of the spatially-resolved diffuse reflectance obtained from the diffusion 

model (symbols) and Monte Carlo simulation (solid lines): (a) µs'/ µa = 5, and (b) µs'/ µa = 100.  
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3.5.2  Sensitivity Coefficients 

The sensitivity coefficients for the absorption and reduced scattering coefficients for the 

ODM, LTDM, ITDM, and RWDM were calculated as functions of the source-detector distance 

(ranging between 1 mfp' and 10 mm) for the corresponding transformed diffuse reflectance 

profiles [equations (3.5)-(3.8)]. Figure 3.2 shows the sensitivity coefficients as well as the diffuse 

reflectance for two sets of optical properties with µa = 0.06 cm
-1

, µs' = 4 cm
-1

, and µa = 0.57 cm
-

1
, µs' = 40 cm

-1
. In all of the four models, the magnitudes of the reduced scattering sensitivity 

coefficients are generally closer to those of the corresponding values of R. Moreover, the shapes 

of the two sensitivity coefficients are quite different. These observations show that values for the 

sensitivity coefficient of µs' are ‘large’ (i.e. on the order of R) and uncorrelated to those for the 

sensitivity coefficient of µa (different shapes), which are desirable conditions for estimating µs' 

in all four models with the exception of the sensitivity coefficients of µs' at the distance larger 

than 3 mm in Figure 3.2(a2). Furthermore, in general, the sensitivity coefficients for µs' are 

closer to the values of reflectance R at small source-detector distances than those at far source-

detector distances, while the situation is different for the sensitivity coefficient of µa. This is 

because under the scattering dominant condition (µs'µa), diffuse reflectance close to and far 

from the incident point of the light source does not have equal sensitivity to the optical properties 

of the medium. Overall, signals close to the source depend strongly on the reduced scattering 

property, whereas those far from the source exhibit large dependence on the absorption effect. 

This information is useful for determination of the minimum and maximum source-detector 
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distances for the curve fitting, and also provides a guide for the selection of appropriate data 

transformation and weighting methods. 

(a1) (a2) 

 
(b1) (b2) 

Figure 3.2 Scaled sensitivity coefficients of the optical parameters [µa = 0.06 cm
-1 

& µs' = 4 cm
-

1
 for the left pane of plots (a1, b1, c1, d1), and µa = 0.57 cm

-1
 & µs' = 40 cm

-1
 for the right pane 

of plots (a2, b2, c2, d2)] as functions of the source-detector distance for ODM (a1, a2), LTDM 

(b1, b2), ITDM (c1, c2), and RWDM (d1, d2). Solid curves are for R, dash curves for µa and dot 

curves for µs' (a.u. = arbitrary unit). 
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Figure 3.2 (cont’d) 

 
(c1) 

 
(c2) 

(d1) 

 

 
(d2) 

 

Values of the sensitivity coefficient for µa are relatively smaller compared with those for  µs' 

due to much smaller values of µa than those of µs', especially for the ODM Figure 3.2a. However, 

with the use of the data transformation or relative weighting methods, values for the sensitivity 

coefficient of absorption have increased, as shown in Figure 3.2b, 3.2c, and 3.2d. This means 
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larger in magnitude than those of the absorption sensitivity coefficient, µs', on average, would be 

estimated more accurately than µa for the diffusion model. 

3.5.3 Estimation of Optical Parameters based on Monte Carlo Simulation Data 

Figure 3.3 shows the relative errors of estimating the absorption and reduced scattering 

coefficients of the turbid media by fitting ODM, LTDM, ITDM, and RWDM to the MC 

simulation data with the true values of optical properties shown in Table 3.1. The same fitting 

range with 1.5 mm minimum source-detector distance and 10 mm maximum source-detector 

distance for each group was used, which covered 86 detector positions with the resolution of 0.1 

mm. The average relative errors for the 29 sets of optical properties extracted from ODM, 

LTDM, ITDM, and RWDM are 16.8%, 10.4%, 10.7%, and 11.4% for µa, respectively, and 8.1%, 

6.6%, 7.0%, and 7.1% for µs', respectively. Better estimations of µs' were obtained, which are in 

agreement with the sensitivity analysis. The patterns of the relative errors in estimating µa and 

µs' obtained from these models are similar for the 29 simulation groups. Larger errors of µa for 

ODM appear in the groups with the largest and smallest mfp'  for the same ratios of µs'/ µa, with 

the exception of µs'/ µa = 5. This is probably because the preselected 1.5 mm minimum source-

detector distance is too small for those groups with large mfp'  compared with the optimal 

position of 1-2 mfp' , and because the diffusion theory is unable to account for the nondiffuse 

component of the reflectance that is encountered for these small source-detector separations. 

Relatively large errors of estimating µs' with ODM were also obtained for those groups with the 

small value of mfp'  [Figure 3.3(b)], due to the removal of the reflectance data close to the light 
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source. Therefore, it is important to select an optimal source-detector distance range in the 

experimental design and curve fitting process. It is also observed in Figure 3.3 that the error 

curves of µa and µs' are strikingly symmetric, which indicates that they are highly correlated. 

Hence when one of the parameters is overestimated, the other is likely to be underestimated in 

the nonlinear least squares. 

(a) 

 
 

(b) 

 

Figure 3.3 Relative errors of estimating 29 groups of µa (a) and µs' (b) shown in Table 3.1 by the 
original model, and the data transformation and relative weighting methods: ODM (·), LTDM (◦), 
ITDM (*) and RWDM (∆). 

 The errors of estimating µa and µs' dramatically decrease when the data transformation and 
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raw data gives the best results with the smallest average errors of estimating the two optical 

parameters. However, the data transformation and weighting methods do not yield smaller errors 

for group 11 (µa = 3.00 cm
-1

, µs' = 30 cm
-1

) and group 18 (µa = 2.00 cm
-1

, µs' = 40 cm
-1

), when 

compared with those obtained using the original model. For these two cases, large values for the 

absorption and reduced scattering coefficients do not allow photons to travel farther away from 

the incident beam, resulting in extremely small reflectance at large source-detector distances. 

With small reflectance, the variability from MC simulations rapidly increases at large distances, 

which is further magnified when the data transformation and weighting methods are 

implemented. This suggests that it is also important to consider the signal-to-noise ratio (SNR) of 

the measured data used for the parameter estimation.   

To investigate the effect of the SNR of the experimental data on the parameters estimation, 

we examined the optical parameters extracted from the LTDM-generated diffuse reflectance data 

added with different levels of noise. Figure 3.4 shows absolute values of the relative errors of 

estimating µa = 0.40 cm
-1 and µs' = 20 cm

-1 under different noise levels. The error of estimating 

the optical parameters increases linearly with the noise level. If the maximum acceptable error is 

5% in the parameters estimation, the noise level should be controlled to less than 5%. The errors 

of estimating µa are consistently higher than those of estimating µs' at different noise levels, 

which is consistent with the sensitivity analysis that µs' can be estimated more accurately. As the 

noise level increases, uncertainties in the MC simulation results also increase, which is clearly 

manifested by an unusually high estimation error at the noise level of 14% (Figure 3.4). Similar 

results and patterns were also obtained for the other groups of optical properties shown in Table 

3.1.  
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Figure 3.4 Absolute values of the relative errors of estimating the optical properties (µa = 0.40 

cm
-1

, µs' = 20 cm
-1

) for different noise levels (each noise level includes 10 replications). Solid 
circles represent the absorption coefficient, while open circles are for the reduced scattering 
coefficient.  
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for each group, and the numbers of runs from ODM and ITDM are considerably smaller than 

86 / 2 43 , while the numbers of runs from LTDM and RWDM are close to the expected 

numbers of runs. Similar numbers of runs were obtained for other cases. It indicates that the 

residuals in ODM and ITDM are highly correlated, which violates the assumption of 

uncorrelated errors. Hence it is not appropriate to select the original model or integral 

transformation for the parameters estimation. The frequencies of residuals for groups 25 and 30 

from ODM, LTDM, ITDM, and RWDM are shown in Figure 3.6. The distributions of the 

residuals approximately follow a normal distribution except for the one shown in Figure 3.6(c2). 

Further examination of the distributions of residuals was conducted for other groups of optical 

parameters; they follow similar patterns as shown in Figure 3.6: normal distributions are always 

observed for LTDM and RWDM, while this normal distribution assumption is violated by using 

ODM and ITDM in several cases. Hence, it can be concluded that the logarithm transformation 

and relative weighting methods are more suitable and reliable for accurate estimation of the 

absorption and reduced scattering coefficients of turbid media.  

(a) (b) 

 

Figure 3.5 Residual plots for the reflectance data versus source-detector distances from (a) ODM, 

(b) LTDM, (c) ITDM, and (d) RWDM with µa = 0.06 cm
-1 & µs' = 4 cm

-1
 (dot curve) and µa = 

0.57 cm
-1 & µs' = 40 cm

-1
 (asterisk curve). 
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Figure 3.5 (cont’d) 

(c) (d) 

 

(a1) (a2) 

(b1) (b2) 

Figure 3.6 Residual histograms for the reflectance data from ODM (a), LTDM (b), ITDM (c), 

and RWDM (d) with 1) µa = 0.06 cm
-1 & µs' = 4 cm

-1
 for  the left pane of plots (a1, b1, c1, d1), 

and 2) µa = 0.57 cm
-1 & µs' = 40 cm

-1
 for the right pane of plots (a2, b2, c2, d2). 
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Figure 3.6 (cont’d) 

(c1) (c2) 

(d1) (d2) 
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surfaces of both plots are shallower along the µa-axis than along the µs'-axis, resulting in the 

standard errors and confidence intervals for µa to be larger than those for µs', which are 

consistent with the results shown in Table 3.2. Better convergence can be obtained if the curve 

shows steeper changes along both µa-axis and µs'-axis. 

Table 3.2  Statistical results for estimating the optical parameters using the LTDM method. 

Group 
no. 

parameter True value 

(cm
-1

) 

Estimated  

value (cm
-1

) 

Standard 

Error (cm
-1

) 

Relative  
Error (%) 

95% asymptotic  
confidence interval

25 µa 0.06 0.07 0.015 16.7 [0.069, 0.072] 

µs'  4.0   3.8   0.23 - 5.0 [3.77, 3.81] 

30 µa 0.57 0.59 0.129   3.5 [0.560, 0.616] 

µs' 40.0 38.8   6.60 - 3.0 [37.34, 40.02] 

 

(a) 

Figure 3.7 3-D plot of sum of squares for (a) group 25 and (b) group 30 using the LTDM method. 
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Figure 3.7 (cont’d) 

(b) 

 
 

3.6 Conclusions 

In this research, an inverse algorithm combined with data transformation and weighting 

methods was applied in solving the inverse radiation transport problem for estimating the optical 

properties of biological materials. The results for the estimation of µa and µs' from the Monte 

Carlo generated reflectance data show that the minimum and maximum source-detector distances 

and signal-to-noise ratio should be considered in order to obtain sufficient and accurate 

information to uniquely determine µa and µs'. Sensitivity analysis demonstrates that the reduced 

scattering coefficient can be estimated more accurately than the absorption coefficient, which is 

also validated by the simulation results. The logarithm and integral transformation of the original 

data and the relative weighting method greatly improve the estimations of the two optical 

parameters with the relative errors of 10.4%, 10.7%, and 11.4% for µa, and 6.6%, 7.0% and 7.1% 
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for µs', which are much smaller than those obtained from the original diffusion model. Further 

statistical analysis shows that the logarithm transformation and relative weighting methods can 

improve the inverse algorithm to obtain more reliable estimations of the two optical parameters.  

The present work on parameter estimation, combined with statistical analysis, provides an 

appropriate means and guide in quantifying estimation errors for the optical properties. It 

suggests that attention should be paid on studying the characteristics and complexity of a 

mathematical model when it is used in an inverse algorithm for estimating their parameters. The 

methods proposed in this work should help us better interpret light propagation in biological 

materials and more accurately determine the relevant optical properties. 
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CHAPTER 4   OPTIMIZATION OF THE HYPERSPECTRAL IMAGING-BASED 

SPATIALLY-RESOLVED SYSTEM 

4.1 Introduction 

Measurement of the optical properties of biological materials can be achieved using either 

direct or indirect methods. Direct methods (e.g., total transmittance and reflectance) are easy to 

carry out, but they are destructive or invasive. In contrast, indirect methods can be performed on 

intact samples nondestructively but need sophisticated instrumentation and complex 

mathematical models. Therefore, recent research has been focused on indirect methods, 

including time-resolved (TR), frequency-domain (FD), and spatially-resolved (SR). Based on 

radiation transfer theory, these indirect methods allow noninvasive or nondestructive 

measurement of the optical properties from intact biological samples. While TR and FD 

techniques have been extensively researched in the biomedical area, they may not be most 

suitable for food and agriculture because of expensive instrumentation, slow speed in 

measurement, and the requirement of good contact between the sample and detector. In 

comparison, spatially-resolved technique is less expensive in instrumentation, and it is easier to 

use and faster in measurement. The technique is, thus, potentially more viable for food and 

agriculture applications.  

A hyperspectral imaging-based spatially-resolved technique was recently developed in our 

lab to measure the optical properties of biological materials for a broad spectral range (i.e., 500-

1,000 nm) simultaneously (Cen and Lu, 2009; Qin and Lu, 2007). While the technique is 

promising for optical characterization of food and agricultural products, several critical issues 

need to be resolved. First, a reference method is needed to provide true values of the optical 

properties of samples, against which the hyperspectral imaging system can be evaluated and 
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validated. This would require model samples with known optical properties for a specific range 

of values. Several reference methods including transmittance, integrating sphere and empirical 

equation have been reported (Prahl et al., 1993; van Staveren et al., 1991); however, they have 

not been accepted as ‘standard’. Therefore, it is necessary to test and cross-validate these 

methods in order to provide accurate and reliable references for the optical system. Second, the 

hyperspectral imaging system needs to be such designed that it fully meets the requirements of 

the diffusion theory that governs light transfer in turbid biological materials. The hyperspectral 

imaging-based spatially-resolved system uses a continuous-wave point light beam to illuminate 

the sample. The shape and size of the beam can directly affect measurement accuracies. It is 

therefore important to examine and optimize the light beam. Third, an appropriate source-

detector distance is critical for accurate estimate of the optical properties. Additionally, 

optimization of the inverse algorithm for the diffusion theory model is equally important in 

extracting the optical parameters from the reflectance profiles, which has been described in 

Chapter 3.  

This research was therefore aimed at addressing key technical issues in the development of 

the hyperspectral imaging-based spatially-resolved technique, so that it can provide accurate and 

reliable measurement of the optical properties of food and agricultural products. The specific 

objectives were to: a) evaluate and cross-validate three reference methods (i.e., transmittance, 

integrating sphere, and empirical equation) for determining the true values of optical properties 

of model samples, so as to establish a standard procedure of evaluating the hyperspectral 

imaging system; b) optimize the design of the light beam and source-detector distance in the 

hyperspectral imaging system, using Monte Carlo (MC) simulation and experiments for model 

samples, to improve the measurement of the absorption and reduced scattering coefficients; and c) 
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assess the performance of the hyperspectral imaging system in terms of accuracy, 

precision/reproducibility, and sensitivity.  

4.2 Materials and Methods 

4.2.1 Hyperspectral Imaging-based Spatially-resolved Technique 

In the spatially-resolved method, a small continuous-wave light beam perpendicularly 

illuminates the sample’s surface, and the remitted light is measured at different distances from 

the light source to obtain a spatially-resolved reflectance profile (see Figure 2.4). 

A laboratory hyperspectral imaging system in line scan mode used for acquiring spatially-

resolved diffuse reflectance profiles from a sample is schematically shown in Figure 4.1(a). The 

system mainly consisted of a high performance 512×512 pixel camera with a back-thinned 

illuminated CCD detector (Model C4880-21-24A, Hamamatsu Photonics Systems, Bridgewater, 

NJ, USA) covering the wavelengths of 200-1,100 nm, an imaging spectrograph (ImSpector V10, 

Spectral Imaging Ltd., Oulu, Finland) covering the wavelength region of 400-1,000 nm, a zoom 

lens with the focal length of 11-110 (10×) mm (Zoom 7000, Navitar Inc., Rochester, NY, USA), 

a quartz tungsten halogen light source (Oriel Instruments, Stratford, CT, USA) with a feedback 

controller, an optical fiber coupled with a focusing lens for delivering a small beam to the sample, 

and a computer installed with a frame grabber board for controlling the camera and acquiring 

images. The hyperspectral imaging technique, combining imaging and spectroscopy methods, 

acquires both spectral and spatial information simultaneously, and it is, therefore, ideally suitable 

for measuring spatially-resolved diffuse reflectance profiles for a broad wavelength region. To 

improve the repeatability of measurements, 10 line scans were taken from each sample for every 

1 mm horizontal displacement over a range of 9 mm as the sample was moving at the 
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predetermined velocity during the image acquisition [Figure 4.1(b)]. The sample movement and 

positioning were controlled by the two motorized stages, and the distance between the sample 

and the lens was 243 mm. Spectral and spatial calibrations and nonuniform instrument response 

corrections for the hyperspectral imaging system were performed by following the procedure 

described in the literature (Lu and Chen, 1998; Qin and Lu, 2007). 

 

Figure 4.1 Hyperspectral imaging-based spatially-resolved method: (a) schematic showing the 
major components of the system; (b) top view of multi-line scanning mode for acquiring 
spatially-resolved reflectance profiles. 

 

 

 

 

 

(a) 
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Figure 4.1 (cont’d) 

 

Figure 4.2(a) shows a typical hyperspectral reflectance image for a liquid model sample 

made up of Intralipid fat emulsion as scatterers and blue dye as absorbers (see more details in 

Section 4.2.2). Each horizontal line taken from the image represents one spatially-resolved 

reflectance profile at a specific wavelength, as shown in Figure 4.2(b). Hence the reflectance 

image which had a calculated spectral resolution of 4.55 nm by the spectral calibration, in effect, 

consisted of more than 100 spatially-resolved reflectance profiles for the wavelengths of 500-

1,000 nm. Since the spatially-resolved reflectance profiles were symmetric to the light incident 

point, the two sides were averaged in the extraction of optical properties. Each spatially-resolved 

reflectance profile was then fitted by the diffusion model with the inverse algorithm, from which 

the spectra of absorption and reduced scattering coefficients for 500-1,000 nm were obtained.  
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(a) (b) 

Figure 4.2 Hyperspectral reflectance image of a liquid model sample: (a) 2-dimensional (2-D) 
display with intensities being indicated by pseudo colors, and (b) original spatially-resolved 
reflectance profiles at 570 nm and 700 nm. 

4.2.2 Model Samples Preparation 

To optimize and evaluate the hyperspectral imaging system, 12 liquid model samples were 

created with two different dyes (Direct Blue 71 and Naphthol Green B, Sigma-Aldrich Inc., St. 

Louis, MO, USA) and their mixture as absorbers and fat emulsion (Intralipid-20%, Sigma-

Aldrich Inc., St. Louis, MO, USA) as scatters for different concentration levels. The three dye 

absorbers were used in the model samples to allow fine adjustment of the absorption coefficient 

and comprehensive investigation of the accuracy for estimating µa over the entire spectral region 

of 500-1,000 nm because each dye had high absorption for a specific wavelength range. For each 

absorber, aqueous absorbing stock solution with the concentration of 1 mg/mL was first prepared, 

and it was then added to 250 mL distilled water followed by adding different volumes of 

Intralipid (10-50 mL) into the absorbing solutions to form the model samples with specified 

values of µa and µs'. The ranges of µa and µs' values for these model samples were 0.0-0.934 

cm
-1

 and 7.0-39.9 cm
-1

, respectively, at the wavelength range of 500-1,000 nm.  
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The model samples were first measured using the hyperspectral imaging system [Figure 

4.1(a)]. Each sample was scanned in a 600 mL cylindrical beaker with 80 mm diameter and the 

solution height of approximately 50 mm, which can be considered semi-infinite. Prior to imaging 

acquisition, the liquid model samples were gently stirred by a magnetic stirrer until the absorbers 

and scatters were distributed homogenously. The beaker containing the liquid model sample was 

placed on a flat platform fixed on the motorized stage, and the images were then acquired after 

the solution was stable. After the imaging, confocal laser scanning microscopy (CLSM) images 

of these model samples were acquired for gaining an insight of the distribution and interaction of 

the dye and Intralipid particles in the solution. This is because when the dye and Intralipid were 

mixed, the two components could interact with each other, which might in turn affect the 

stability of its mixture and thus of the optical properties (Ren et al., 2007). Finally, the true 

optical properties of these model samples were measured using the reference methods discussed 

below. 

4.2.3 Reference Methods 

The true values of µa and µs' of the model samples were needed to validate the hyperspectral 

imaging system. However, in the real situation, it is impossible to obtain true µa and µs' of the 

model samples. Therefore, nominal true values (or reference values) were derived as reliable 

estimates of the true values by using three commonly used methods, and evaluation and cross-

validation of these methods were performed.  

A collimated transmittance method was first employed for the standard absorption 

measurement using a miniature fiber optic spectrometer (USB4000-VIS-NIR, Ocean Optics, 

Dunedin, FL, USA) with a 10-mm pathlength quartz cuvette sitting in a cuvette holder (Figure 
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4.3). The true values of µa at the wavelengths of 500-1,000 nm were calculated by the Beer-

Lambert law  

ln s d
a

r d

I I

I I



 


                                                         (4.1) 

where Is is the sample intensity, Id is the dark intensity, and Ir is the reference intensity (empty 

cuvette). The accuracy of the transmittance measurement was experimentally quantified by 

testing In-Spec® certified UV and visible standards (Standard 0.10, 0.5, 0.8, and Background 

solution, GFS Chemicals, Inc., Columbus, OH, USA) with known µa at selected wavelengths 

provided by the manufacturer. 

 

Figure 4.3 Collimated transmittance measurement for absorption using a miniature fiber optic 
spectrometer. 

For each absorber, eight concentration levels of pure absorbing solutions with the absorption 

coefficient varied from 0.0 to 1.800 cm
-1 for the wavelength range of 500-1,000 nm were made 

for transmittance measurements, which covered the range of µa for the model samples. The 

linear relationship between the absorption coefficient and the concentration of each absorber was 
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established at each wavelength, and the absorption coefficient was then derived based on the 

concentration of the absorber in the model samples.  

A 152.4 mm diameter integrating sphere (RT-060-SF, Labsphere, Inc., North Sutton, NH, 

USA) with a 12.7 mm diameter detector port and a 25.4 mm sample port was used for collecting 

the total transmittance and reflectance to estimate true values of the absorption and reduced 

scattering coefficients of the model samples (Figure 4.4). The sphere was coated with 

Spectraflect
®

 diffuse reflectance materials with 98% reflectance at 500-1,000 nm. A quartz 

tungsten halogen light source was used and the light received from the sample port of the 

integrating sphere by a 400 µm diameter fiber was delivered to the miniature fiber optic 

spectrometer, the same one used in the collimated transmittance measurement (Figure 4.3). Each 

model sample held in a 2 mm pathlength cuvette was placed in the sample holder. For measuring 

total diffuse reflectance [Figure 4.4(a)], the sample was placed at the sample port and the light 

beam was arranged at the beam entrance port. For total transmittance measurements [Figure 

4.4(b)], the sample was placed at the sample port with other ports covered by the standard masks, 

and all light transmitted through the sample was collected by the detector. The same beam size 

was used for both reflectance and transmittance measurements to ensure measurement accuracy.  

(a)                                                                                (b)      

 

Figure 4.4 Single integrating sphere configurations for: (a) total diffuse reflectance measurement, 
and (b) total transmittance measurement. 
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After completion of the total transmittance and reflectance measurements, an inverse 

adding-doubling algorithm developed by Prahl et al. (1993) was used to calculate µa and µs' 

values of the model samples based on the total reflectance and transmittance. Prahl et al. (1993) 

reported that the accuracy of the integrating sphere with the adding-doubling algorithm for 

determining the optical properties (µa & µs') was 2-3% for most reflectance and transmittance 

values. However, a 1% variation in the reflectance and transmittance values would result in 

errors of 0.4% for µs' and 17% for µa. This suggests that the integrating sphere method could be 

problematic in estimating µa. 

For estimating the µs' of Intralipid scatterers, an empirical equation derived by van Staveren 

et al. (van Staveren et al., 1991) is widely used, which has been experimentally proved to have 

accuracies better than 6% in the wavelength range of 400-1,100 nm. Therefore, µs' values 

obtained from the integrating sphere were also compared with those from the empirical equation 

given below 

1.4 2.4' (928 160 ) %s C                                                    (4.2) 

where µs' is in cm
-1

,   is the wavelength in µm, and C% is the percent Intralipid concentration. 

For easy comparison of the results obtained from the hyperspectral imaging system and the three 

reference methods, the absorption and reduced scattering coefficients are denoted as µa
∆

 & µs'
∆

 

for the hyperspectral imaging system, µa
*
 & µs'

*
 for the integrating sphere, µa

o
 for the 

transmittance measurement, and µs'
o
 for the empirical equation. 
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4.2.4 Optimization of the Light Beam and Source-detector Distance 

To achieve accurate measurement of the optical properties, optimization of the hyperspectral 

imaging system was performed for two key factors, i.e., light beam and source-detector distance. 

In the experimental setup, a finite size beam was used to illuminate the sample, which deviates 

from the solution of the diffusion model that was derived for an infinitely small beam. Therefore, 

the effect of the incident beam on the determination of the optical properties was investigated 

based on MC simulation, which offers a flexible and accurate approach for quantifying the 

optical features of light transport that are difficult to measure experimentally.  

In the simulation experiment, a semi-infinite medium was described by its refractive index 

(n), absorption coefficient (µa) and reduced scattering coefficient (µs'). The spatially-resolved 

reflectance generated by MC simulation for an infinitely small photon beam was first convolved 

for the finite size beam using the programs ‘MCML’ and ‘CONV’ developed by Wang et al. 

(1997, 1995b). Two specific beams, i.e., Gaussian and circularly flat, were investigated. 

Meanwhile, the error of estimating µa and µs' caused by the finite size Gaussian beam with the 

diameter of 0.1 ≤ d ≤ 2 mm was quantified. Six sets of µa and µs' with the ranges of 0.060 ≤ µa ≤ 

2.000 cm
-1 

and 4.0 ≤ µs' ≤ 40.0 cm
-1

 and with the ratios of µs'/µa = 20 and µs'/µa = 70 were 

investigated.  

In conjunction with the MC simulations, actual beam profiles for the hyperspectral imaging 

system were measured and characterized. This was accomplished by moving and imaging the 

beam for every 0.12 mm distance (determined by the width of scan line) in the direction 

perpendicular to the scan line. Twelve 512×512 pixel images were acquired with the resolution 

of 0.1 mm along the scan line direction, and the 3-D beam profiles were then reconstructed from 
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these images at each wavelength, from which the beam profile type (i.e., Gaussian and flat) and 

beam circularity were determined. The circularity of the beam was calculated based on the 

roundness (Rd), which is given by 

24 /Rd A P                                                                (4.3) 

where A and P are the beam area and perimeter, respectively, and Rd = 1 for circle. 

 Accurate information on the source-detector distance, including minimum source-detector 

distance (rmin), maximum source-detector distance (rmax) and spatial resolution, is required for 

determining the range of the spatially-resolved reflectance profile. MC simulation experiments 

were first conducted to investigate the effects of the minimum and maximum source-detector 

distances on estimating 29 sets of µa and µs' with 0.040 ≤ µa ≤ 3.000 cm
-1 and 4.0 ≤ µs' ≤ 40.0  

cm
-1

. In experimental measurements, signal-to-noise ratio (SNR) should be considered when 

determining the optimal maximum source-detector distance since SNR varies at different 

radiation locations and decreases with the decreasing signal. Ten images from a model sample 

were acquired at the same location. The mean profile divided by the standard deviation of the 

CCD count at each wavelength was considered as an estimate of SNR.  

Sufficient data points for the spatially-resolved reflectance profile are needed to obtain good 

estimates of µa and µs'. Hence the effect of spatial resolution on calculating the optical 

coefficients was also examined. The reflectance profile with the resolution of 0.01 mm for µa = 

1.000 cm
-1 and µs' = 20.0 cm

-1
 was firstly obtained from the diffusion model. Seven new 

reflectance profiles with the spatial resolution ranging from 0.07 mm to 0.25 mm were then 

derived from the original profile by integration of the light intensity over the area covered 
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between the two adjacent data points divided by the corresponding spatial resolution. These 

seven profiles were fitted by the diffusion model to obtain the estimated µa and µs', and they 

were then compared with the true values of µa and µs' obtained from the reflectance profile with 

the resolution of 0.01 mm. 

4.2.5 Assessment for Accuracy, Precision/Reproducibility, and Sensitivity 

Assessment of the performance of the system is an important step to determine its validity, 

reliability, and robustness. The hyperspectral imaging system was evaluated for accuracy, 

precision/reproducibility, and sensitivity. The accuracy of a measurement is defined as the 

closeness of agreement between the measured values and the nominal true values of parameter  

(αmeas & αtrue) such as µa and µs' obtained from the reference methods under optimal 

experimental conditions. Accuracy can be quantified by the relative error of the measurement, 

given in equation (4.4) 

100%meas true

true

 





                                                         (4.4) 

Accuracy is important for the absolute measurement, i.e., for simulating light transport and 

deriving the physiological information about the biological tissue.  

Precision/reproducibility is a term frequently used to characterize the random error and 

describe the system consistency of measurement over a long time period. It quantifies how the 

system is self-consistent over different times, and it is particularly important for a long time 

experiment like fruit quality monitoring during postharvest. Repetition of the measurement on 

the same model samples under the same experiment conditions over a period of four days was 
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performed. The precision of the system was evaluated by calculating the coefficient of variation 

(CV) with respect to the average values calculated over the entire experiment.  

Sensitivity is described by the minimum detectable value under an acceptable noise level, 

and it determines the detection limit. Clearly, the noise level is affected by the signal intensities 

and detection efficiencies, and thus the sensitivity of the system depends on the amount of signal 

acquired at each measurement point. Sensitivity analysis is especially important in measuring 

biological materials with small values of absorption coefficient. The analysis was performed on a 

blue dye model sample which had minimal levels of the absorption coefficient for the 

wavelengths of 500-1,000 nm. 

4.3 Results and Discussion 

4.3.1 Accuracy of the Reference Methods  

Figure 4.5 shows the measured absorption spectra of the three standard solutions by 

transmittance as well as the true absorption values provided by the manufacturer. The average 

error of µa by the transmittance measurement was 3% at 500-850 nm, and less than 5% at 850-

900 nm with the minimum detectable value of 0.050 cm
-1

. The performance of the method for 

measuring µa above 900 nm was not evaluated because the true absorption values of these 

standard solutions were not available. However, it was found that the water absorption at 970 nm 

measured by the transmittance method was 0.414 cm
-1

, which is within 1.4% of the reported data 

(Hale and Querry, 1973). Hence, it was concluded that the transmittance method gave accurate 

measurement of the absorption coefficient with errors less than 5%, and it was therefore 

appropriate for determining µa of the model samples. 
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Figure 4.5 Spectra of the absorption coefficient for the three standard solutions measured by the 
transmittance method [asterisks () for standard 0.1, triangles () for standard 0.5, and squares 
() for standard 0.8] and their true vlaues (solid lines). 

Integrating sphere measurements of µs' for the 12 model samples were compared with the 

calculated values from the empirical equation. It was found that the empirical equation, on 

average, overestimated µs' measured with the integrating sphere method by 9% for the 

wavelengths of 500-900 nm when the Intralipid concentration ranged between 0.8% and 3.2%. 

However, at low Intralipid concentrations (i.e., <1.2%), the measured values of µs' from the 

integrating sphere matched well the calculated values from the empirical equation with the 

differences being less than 4.5% (Figure 4.6). As the concentration of the Intralipid increased, 

the measured value deviated more from the calculated value. This may be because the 

relationship between the reduced scattering coefficient and the particle concentration at high 

density Intralipid solutions was no longer linear, as reported by Giusto et al. (2003) and Zaccanti 

et al. (2003). The empirical equation was derived based on the linear relationship between µs' 

and the particle concentration. In addition, variation in batches of Intralipid might have also 
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existed, which, in turn, could have introduced errors in calculating µs' values. In view of these 

results, it was concluded that the integrating sphere method would give more accurate 

measurement of µs' than the empirical equation for a wider range of µs', and it was therefore used 

to determine the true µs' of the model samples. 

 

Figure 4.6 Average differences of the reduced scattering coefficient for the model samples at 
different concentrations of Intralipid for 500-900 nm obtained from the integrating sphere 
measurement and the empirical equation. 

4.3.2 Light Beam Characteristics 

Since a Gaussian beam, like most optical beams, does not have sharp physical edges, the 

beam size is usually determined between the two points that contain a selected percentage of the 

‘useful’ energy. In this study, the size of Gaussian beam was defined by the 1/e
2
 diameter, where 

the beam’s power is at 13.5% of the maximum height. Figure 4.7 shows the spatially-resolved 

reflectance profiles obtained for an infinitely small beam and flat and Gaussian beams of 

different sizes through Monte Carlo simulations. The Gaussian beam and the flat beam nearly 
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gave the same results for the same beam diameter of d = 1 mm. Finite circular beams with 

different sizes generated reflectance similar to that produced by the infinitely small beam when 

the source-detector distance was larger than the beam size (r > d). The average errors of 

estimating six sets of µa and µs' from the reflectance generated by the Gaussian beam of different 

sizes are presented in Figure 4.8(a). The error produced by the finite beams relative to the 

infinitely small beam was less than 1% for the beam size of less than 0.5 mm; it increased 

linearly with the beam size larger than 0.5 mm. Generally, a 1-mm light beam introduces around 

5% error of estimating µa and µs' compared to the infinitely small beam. These results suggest 

that the beam in the system should be less than 1 mm in size in order to control the error to 

within 5%. The error introduced by a finite beam was also influenced by the value of the optical 

properties, as shown in Figure 4.8(b) and (c). The error curves are relatively flat for small values 

of  µa and µs', which indicates that beam size had less effect on the smaller µa and µs' than on 

large µa and µs'.  
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Figure 4.7 Comparison of spatially-resolved reflectance produced by an infinitely small beam, a 
flat beam with diameter of d = 1 mm, and a Gaussian beam with d = 1 and 2 mm. 

(a) 

 

Figure 4.8 Error analysis for different beam sizes: (a) average errors of estimating six sets of 

optical properties with 0.060 ≤ µa ≤ 2.000 cm
-1 and 4.0 ≤ µs' ≤40.0 cm

-1
, and the ratios of µs'/µa 

= 20 and µs'/µa = 70; and (b) and (c) relative errors for three sets of optical properties with 

increased µa and µs' from A to C with µa = 0.006, 0.029, 0.057 cm
-1 and µs' = 0.4, 2.0, 4.0 cm

-1
.  
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Figure 4.8 (cont’d) 

(b) (c) 

Simulation results for the light beam showed that it is necessary to understand beam 

characteristics (i.e., beam profile, shape, and size) in the experimental measurements. Figure 4.9 

gives an example of the measured 3-D beam profiles and 2-D contours at the wavelengths of 650 

nm and 950 nm. The beam at the visible and short near-infrared region had a good Gaussian 

distribution and its shape was circular with the roundness Rd = 0.986 ( 1 ). Based on the 

commonly accepted method for defining the size of Gaussian beam, the beam size in the current 

setup was 0.83 mm, which would have contributed to less than 4% error in estimating µa and µs' 

based on the simulation experiments. Although a smaller beam is preferred, other factors such as 

light intensity or throughput and measurement repeatability also need to be considered in the 

optical design.  
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(a) (b) 

(c) (d) 

Figure 4.9 three-dimensional profiles (a and b) and 2-dimensional (c and d) contours of the 
incident light beam at wavelengths of 650 nm and 950 nm, where D1 is the direction along the 
scan line and D2 is perpendicular to the scan line. 

4.3.3  Source-detector Distance  

Two examples of the relative errors between the true (values selected for Monte Carlo 
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-1
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-1

 at different ranges of the source-detector distance are shown in Figure 4.10. For 
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both µa and µs' [Figure 4.10(a1) and (a2)]. Values of the absorption coefficient were 

systematically underestimated, while those of the reduced scattering coefficient were 

overestimated. These results may indicate the failure of the diffusion model which does not 

account for the nondiffusive component of the reflectance at these small source-detector 

distances. As the minimum source-detector distance was increased, the errors decreased, 

reaching minimum for rmin 0.5 mm (1 mfp', i.e., transport mean free path) to 2 mm (4 mfp') [1 

mfp' = (µa+µs')
-1

], depending on the values of µa and µs'. For the minimum source-detector 

distance from 2 to 4 mm, the errors were relative stable. Also, the symmetrical curves of the 

relative errors of µa and µs' indicated that these errors were highly correlated. Patterns similar to 

Figure 4.10 were obtained for a wide range of the optical parameters.  

   

Figure 4.10 Relative errors of estimating µa (squares) and µs' (asterisks) from the spatially-
resolved reflectance data generated by Monte Carlo simulations when using different minimum 

and maximum source-detector distances: (a1) and (b1) µa = 0.290 cm
-1

 & µs' = 20.0 cm
-1

, and 

(a2)  and (b2) µa = 0.430 cm
-1

 & µs' = 30.0 cm
-1

. 
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Figure 4.10 (cont’d) 

   

The optimal minimum source-detector distance of rmin  1-4 mfp' found in this study is 

different from the study of Nichols et al. (1997) (0.75-1 mfp') but is consistent with the finding 

of Farrell et al. (1992) that the minimum source-detector distance should be larger than 1 mfp'. 

However, in practice, there is no a priori information about the exact values of µa and µs' over a 

specified wavelength range, and thus it is difficult to determine the optimal minimum source-

detector distance based on these loose criteria. But considering the average errors of 29 sets of  

µa and µs' that were investigated in the simulation experiments, the smallest average estimated 

errors of µa and µs' were obtained when rmin = 1.5 mm. Experimentally, the minimum source-

detector distance should also be larger than the incident beam size (rmin > 0.83 mm). Hence, the 

1.5 mm minimum source-detector distance selected in the system was considered optimal.  

Similar error patterns were found for the maximum source-detector distance, as shown in 

Figure 4.10(b1) and (b2). With rmax changing from 4 mm to 10 mm, the error varies between 
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varied with the values of µa and µs', approximately between 10-20 mfp', which is also in 

agreement with Nichols et al. (1997) and Pham et al. (2000). Hence, the maximum source-

detector distance should be optimized to obtain accurate estimates of µa and µs'. In practice, the 

optimal maximum source-detector distance may be largely determined by the SNR. As shown in 

Figure 4.11, to control the minimum SNR of 20 (corresponding to 5% of the variation 

coefficient), the signal level should be greater than 150 CCD counts at 650 nm with the 

maximum source-detector distance around 7.7 mm. A similar threshold of the signal level was 

obtained at other wavelengths with 150±12 CCD counts, while the maximum source-detector 

distance varied at different wavelengths for this signal level. Therefore, the threshold of 150 

CCD counts (SNR = 20) was used in the curve fitting to determine the maximum source-detector 

distance at each wavelength. 

 

Figure 4.11 Signal-to-noise ratio measurement of the hyperspectral imaging system: (a) average 
spatially-resolved reflectance profile of 10 measurements of a model sample at 650 nm, and (b) 
signal-to-noise ratio of the measurements within 10 mm source-detector distance.  
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Figure 4.11 (cont’d) 

 

 

Further, the change of spatial resolution from 0.07 mm to 0.25 mm introduced an 

insignificant error of 0.53% for µa and 0.36% for µs' relative to the optical properties obtained 

for the resolution of 0.01 mm, as shown in Figure 4.12. In the system setup, the highest spatial 

resolution that the imaging sensor can achieve was 0.1 mm without binning. To reduce 

measurement time and also enhance the signal-to-noise ratio, the 0.2 mm spatial resolution with 

2×2 binning was selected in our measurements since high resolution is not critical in this case.  

 

Figure 4.12 Errors of estimating µa = 1.00 cm
-1 and µs' = 20.0 cm

-1 
introduced by different 

spatial resolutions relative to the optical properties obtained for the resolution of 0.01 mm. 
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4.3.4 Accuracy, Precision/Reproducibility, and Sensitivity 

Figure 4.13 shows the measured absorption and reduced scattering spectra for three model 

samples over 500-1,000 nm, determined by the hyperspectral imaging system and the reference 

methods. As can be seen from the plots on the left pane of Figure 4.13 (i.e., a1, b1 and c1), the 

shape of the absorption spectra for the three dyes obtained by transmittance, integrating sphere 

and hyperspectral imaging system was similar. They all showed a blue dye absorption peak at 

585 nm [Figure 4.13(a1)], green dye absorption peak at 714 nm [Figure 4.13(b1)], mixed dye 

absorption peak around 600 nm [Figure 4.13(c1)], and water absorption at 970 nm in all three 

plots. However, the µa values measured by the integrating sphere (µa
*
) were far off compared 

with those from transmittance (µa°) and hyperspectral imaging (µa
∆

). Similar results were 

reported by Saeys et al. (2008) when they compared the integrating sphere measurement with the 

time-resolved method. It could be due to the fact that light losses at the sample edge are not 

accounted for in the integrating sphere measurement, and also, µa is very sensitive to the 

measured reflectance and transmittance according to Prahl et al. (1993) and Chen et al. (2006). 

Hence, the accuracy of hyperspectral imaging measurements for µa was evaluated against the 

transmittance method. The average errors of µa were calculated at 530-700 nm for the blue dye, 

600-850 nm for the green dye, and 530-800 nm for the mixed dye, because the transmittance 

method was unable to measure µa at very small levels for some wavelengths. Overall, the 

average error of estimating µa for all model samples was 23% at 530-850 nm, and 16%, 26% and 

26% for samples with blue, green, and mixed dyes, respectively. For the three model samples 

with small amount of blue dye, the absorption caused by the blue dye was almost zero at 750 nm, 
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and thus the absorption at 750 nm for these samples was mainly attributed to the water. The 

reported results show that water absorption at 750 nm is between 0.0247 to 0.0286 cm
-1 (Prahl, 

1998), and our result of µa = 0.0275 ± 0.0006 cm
-1 falls in this range and is only 1% different 

compared with the recent report from Martelli et al. (2007) with µa = 0.0278 cm
-1

.  

(a1) (a2) 

 

 (b1) (b2) 

Figure 4.13 Spectra of absorption and reduced scattering coefficients of three model samples 
with (a) blue dye, (b) green dye, and (c) mixed dye as absorbers measured by the hyperspectral 
imaging and reference methods.  
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Figure 4.13 (cont’d) 

(c1) (c2) 
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the focusing lens in the near-infrared region, which needs to be confirmed in further research. 

Therefore, the absorption above 900 nm was not used in calculating the accuracy.  

(a) (b) 

   

Figure 4.14 Confocal laser scanning microscopy images of Intralipid solutions with (a) blue dye, 
and (b) green dye. 

The spectra of µs' presented in Figure 4.13(a2), (b2) and (c2) show that the measured values 

(µs'
∆

) matched well with those obtained from the integrating sphere measurement (µs'
*
) at 500-

900 nm, and lower than those calculated from the empirical equation (µs'°). The average error of 

estimating µs' was 7% at 500-900 nm compared with the integrating sphere measurement. The 

divergence of µs' above 900 nm appeared between the integrating sphere method and the 

wavelength-dependent exponential decay function of µs'. It is difficult to know which method is 

more accurate for determining µs' at the wavelength above 900 nm because no published paper 

reported the µs' values of Intralipid in these wavelengths. However, this wavelength-dependent 
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exponential decay function of µs' could be violated with the variation of the refractive index at 

long wavelengths according to the study of Mourant et al. (1997). 

When comparing our measurement accuracy with other techniques or other spatially-

resolved methods, one should notice the differences of experimental conditions, model samples 

and wavelength ranges. Bays et al. (1996) reported 32% accuracy of µs' at 633 nm for 

polyoxymethlene model samples by using a spatially-resolved reflectometry. Pifferi et al. (2005) 

applied a general protocol for assessing several optical methods for determining optical 

properties, and they reported large differences from different instruments in measuring the same 

model samples with the maximum discrepancies of 32% for µa at 970 nm and 41% for µs' at 820 

nm. Spichtig et al. (2009) used the frequency-domain technique to measure the optical properties 

of Intralipid model samples with accuracies being less than 10% for µa and 31% for µs' at eight 

wavelengths. While covering a wider wavelength range of optical properties, the hyperspectral 

imaging-based spatially-resolved method has achieved superior results for measuring µa and µs', 

compared with these reported studies that were only conducted at single or several wavelengths.  

The system precision or reproducibility was calculated by repeated measurements of a blue 

dye model sample at four different days under the same experimental conditions with a 30 min 

warm-up time and the same level of source power and acquisition time. The coefficient of 

variation (or CV) in the absorption peak at 585 nm was 2.4% for µa and 3.8% for µs' with the 

maximum discrepancies of 4.9% and 6.3%, respectively. However, the model sample could have 

undergone some small changes over the four days, thus inducing some variations in the optical 
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properties of the tested sample. Hence the system has demonstrated good reproducibility and 

consistency over a prolonged time period.    

Ten measurements were performed on a model sample made up with the blue dye as the 

absorber because its minimum absorption coefficient was almost zero for the wavelengths of 

700-900 nm. The result of the sensitivity test on µa is presented in Figure 4.15, with the CV of µa 

for the 10 measurements being plotted as a function of µa for different wavelengths. The 

minimum detectable value of µa was around 0.0082 cm
-1

 for a noise level of 10%. The 

sensitivity of measuring µs', as determined by the CV values, was always less than 4% because 

µs' was much larger than µa for the investigated range of 7.0 ≤ µs' ≤ 40.0 cm
-1

.  

 

Figure 4.15 Coefficient of variation versus reordered ascending absorption coefficients of a 
model sample at different wavelengths.  

0 0.02 0.04 0.06 0.08 0.1 0.12
10

0

10
1

10
2

10
3

a
 (cm -1)

C
oe

ff
ic

ie
nt

 o
f 

va
ria

tio
n 

of
  

a (
%

)



100 
 

4.4 Conclusions 

This research examined critical factors in the development of a hyperspectral imaging-based 

spatially-resolved technique (i.e., methods for providing reference measures of the optical 

properties, light beam and source-detector distance, etc.) for determining the absorption and 

reduced scattering coefficients of biological materials over the wavelengths of 500-1,000 nm. 

Monte Carlo simulations, coupled with experiments for model samples, demonstrated that to 

achieve the best performance for the hyperspectral imaging system, the light beam should be of 

circular shape and Gaussian type with the diameter of less than 1 mm, the optimal minimum 

source-detector distance should be about 1.5 mm, and the optimal maximum source-detector 

distance should be equivalent to 10-20 mfp' or determined by the minimum signal-to-noise ratio 

of 20 (or 150 CCD counts for the system). Under these optimal conditions, the hyperspectral 

imaging system achieved average accuracies of 23% for the absorption coefficient at 530-850 

nm and 7% for the reduced scattering coefficient at 500-900 nm, when it was evaluated using the 

model samples against the transmittance and integrating sphere methods. These results are better 

than, or similar to, those obtained with other spatially-resolved sensing configurations, and 

frequency-domain and time-resolved techniques for single or several wavelengths. The system 

also had good reproducibility and sensitivity with the minimum detectable µa value of 0.0082 

cm
-1

. The research provided a systematic guide for optimizing and evaluating the optical system 

and offered solutions to improve accuracy in measuring the absorption and reduced scattering 

coefficients, which will be valuable for nondestructive quality evaluation of food and agricultural 

products. 
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CHAPTER 5   DEVELOPMENT OF AN OPTICAL PROPERTY MEASUREMENT 

PROTOTYPE 

5.1 Introduction 

A general-purpose bench-top optical property measurement prototype, which is named 

‘Optical Property Analyzer’ (or OPA, as shown in Figure 5.1), was designed and built for optical 

property measurement and hyperspectral image acquisition. The OPA was developed based on 

the concept of hyperspectral imaging-based spatially-resolved technology and the optimization 

studies on the inverse algorithm and optical designs presented in Chapters 3 and 4.  

Several important factors were considered in designing and assembling the OPA. First, it 

should be a stand-alone portable instrument incorporating the optimal optical designs, which is 

easy to use and relatively low in cost. Second, it should be able to measure the optical properties 

of turbid foods and biological materials for the visible and short-wave near-infrared region of 

500-1,000 nm since rich information related to the quality attributes of food and agricultural 

products can be obtained from this wavelength window. Third, the prototype should be such 

designed that it can accommodate different sizes of samples whose effect on measurement of the 

optical absorption and scattering properties would be minimized or eliminated. Fourth, the OPA 

should also have full functions for acquiring and preprocessing hyperspectral images, which 

would expand the scope of use for the instrument and thus reduce overall costs for the user. 

Finally, it is important to develop integrated software for the OPA to control the hardware 

including camera, light source and linear stage, and also be able to perform real-time data 

processing and analysis for optical properties computation. Based on these considerations, the 

first version of the OPA was designed and built.  



102 
 

 

Figure 5.1 Optical Property Analyzer (or OPA) for measuring optical properties and acquiring 
hyperspectral images. 

5.2 System Setup and Software Development 

5.2.1 Optical Property Analyzer Setup 

The hardware of the OPA includes three main parts: imaging, illumination, and sample 

positioning as shown in Figure 5.2. The software for hardware control, imaging acquisition, and 

data processing and analysis was developed using Microsoft Visual C#. Details of the hardware 

and software in the OPA prototype are discussed in this section. 
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Figure 5.2 Schematic of the Optical Property Analyzer (or OPA) for measuring the optical 
properties of biological materials. 

The imaging unit consists of a high performance 14-bit electron-multiplying CCD (EMCCD) 

camera (Luca
EM

 R604, ANDOR
TM

 Technology, South Windsor, Connecticut, USA), an 

enhanced imaging spectrograph attached to the camera (ImSpector V10E, Spectral Imaging Ltd., 

Oulu, Finland) and a prime lens. Two different prime lenses are used alternatively to meet the 

different field of view requirements for two types of measurement; one is for optical properties 

measurement (Xenoplan 1.9/35, Schneider Optics, Hauppauge, NY, USA), and the other for 

hyperspectral image acquisition (Cinegon 1.4/12, Schneider Optics, Hauppauge, NY, USA). The 

EMCCD camera covers the wavelength range from 400 nm to 1,000 nm with the peak quantum 

efficiency of 65% at 600 nm. It can operate with the EM gain off for conventional CCD 

operation under strong illumination conditions, and with the EM gain on when the illumination 

intensity is low. It utilizes a monochrome megapixel frame transfer EMCCD sensor with 

1,004×1,002 pixels of 8×8 µm, and is thermoelectrically cooled down to -20 °C. The sensor has 
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an active pixel well depth of 30,000 electrons, a gain register pixel well depth of 80,000 e
-
, a 

system readout noise of 18 e
-
 and less than 1 e

-
 for typical use and electron multiplication, 

respectively. The imaging spectrograph attached to the camera covers the wavelength range of 

400-1,000 nm. The ImSpector Enhanced imaging spectrograph V10E is based on the principle of 

transmission diffraction grating in a prism-grating-prism configuration which provides high 

diffraction efficiency and good spectral linearity. The imaging spectrograph has a greater spatial 

image width, high resolution (small spot size), low smile and keystone distortions at subpixel 

level (smile <1.5 µm, keystone <1 µm), and high throughput with telecentric input. The imaging 

spectrograph has the slit width of 30 µm and slit length of 14.2 mm with the optical resolution of 

2.8 nm. Based on the grating equation, different wavelengths can be diffracted to the same place 

on the detector surface. Therefore, an order-blocking filter (OBF) is installed between the 

imaging spectrograph and the camera close to the detector sensor to prevent the second-order 

below 500 nm from overlapping with the long wavelength range of 800-1,000 nm. 

Two illumination systems including a point light source and a line light source are used in 

the OPA for optical properties measurement and hyperspectral image acquisition, respectively. 

Only the point light source is shown in Figure 5.2 since this study was focused on optical 

properties measurement. A tungsten halogen light bulb with the output of 20 watts and the 

variation of 0.5% (HL-2000-HP, Ocean Optics, Dunedin, FL, USA) is connected to a DC 

regulated controller chips (PT6204N, 12V, Texas Instruments Inc., Dallas, Texas, USA), to 

provide point light, which covers a broad wavelength range of 360-2,000 nm with a cooling fan 

installed to keep the light source from overheating, thus maintaining its stability. A specially 

designed optical fiber coupled with a focusing lens is used to deliver a circular beam with the 

diameter of 1 mm at the focal point. The incident beam is arranged 1.5 mm away from the 
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scanning line with the angle of 15° with respect to the vertical axis, and it is parallel to the 

scanning line, which allows to maintain the constant source-scanning line distance, thus 

eliminating or minimizing errors in acquiring spatially-resolved reflectance that would be caused 

by the sample position’s variation.  

The sample positioning unit is composed of a motorized linear horizontal stage (Twintrac, 

TSZ8020, US23T22104-8LS, US Automation, Laguna Hills, CA, USA) with the maximum 

linear speed of 203 mm/sec, the maximum dynamic loading of 91 kg and a positioning accuracy 

of 0.0006 mm/mm, a manually adjustable vertical stage and a sample holder for positioning 

samples to the predetermined position. The stage motor (US23T22104-8LS, US Automation, 

Laguna Hills, CA, USA) is connected to the bi-polar stepper motor driver (SideStep, Probotix, 

Peoria, IL, USA).  

The light source controller and the motor controller are connected to a microcontroller board 

based on the ATmega168 (Arduino Duemilanove, Arduino, open-source electronics prototyping 

platform), which is, in turn, connected to a Windows-based computer with a USB cable. A 

specially developed software program in Arduino programming code is uploaded to the 

microcontroller to accept serial commands from the host application software installed in the 

computer to control stage movement and the light sources. The EMCCD camera is connected to 

the computer through another USB cable. The application software controls the camera operation 

by using Software Developer Kit (SDK) provided by the camera's manufacture.  

5.2.2 Optical Property Analyzer Software Development 

The OPA software contains three components, including main program, optical property 

computation program, and microcontroller program, which were developed in three different 

environments, as shown in Table 5.1. The main program was developed using Microsoft Visual 
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Studio and written in C#.NET language. The graphical user interface uses Multiple Document 

Interface (MDI) style. It uses a third party external library to plot chart (PlotLab, a freeware 

downloaded from http://www.mitov.com/html/plotlab.html) and also an SDK library 

(Atmcd32cs.dll, library for C#) provided by Andor Corporation, the camera manufacturer. 

Table 5.1 Components of the Optical Property Analyzer control software. 

Component Development Environment Function 
Main program  Microsoft Visual Studio 

(C# language)  
Multiple-Document Interface 
(MDI) container to call dialogs 
and functions; 
interact with other components 
to perform tasks (image 
acquisition, motor control, 
illumination control, and optical 
property computations) 
 

Optical property 
computation program 

MATLAB Perform optical property 
computation 
 

Microcontroller 
program 

Arduino (C language) Control linear stage; 
 control light sources 

 

The OPA control software is designed for the system control (light source, camera and 

stage), image acquisition, and optical property computation. The main window of the optical 

property analyzer software is shown in Figure 5.3, which consists of File, Edit, View, 

Acquisition, Tool, Windows, and Help menu, and each menu contains submenu related to a 

particular task. File, Edit, and View menus are used to open, save, view and simply edit existing 

images (images with .bil extension). 
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Figure 5.3 Main window of the Optical Property Analyzer software. 

Figure 5.4 shows the window for setting parameters related to the camera, stage, illumination 

and image saving functions for the optical properties measurement. This display window is 

obtained by Control menu in Acquisition menu. Before images are acquired from samples, the 

camera dark current images are collected first by clicking ‘Background’, ‘Back Sub’ in 

Acquisition will be enabled, and the background image is then subtracted from the sample 

images. Auto Increment mode can be used in the experiment, which saves images in multiband 

format (ENVI format) with the given File Name and automatically adds sample number. 



108 
 

 

Figure 5.4 Display window of the Optical Property Analyzer for the image acquisition setup. 

A user-friendly interface for calculating the spectra of absorption and reduced scattering 

coefficients was also developed in the software, which includes two diffusion models and 

corresponding inverse algorithms, preselected parameters, and data pre-processing methods 

(Figure 5.5). After all parameters in the left column of ‘Optical Properties Computation Dialog’ 

are set up, image files, output directory and output file name are defined in the right column of 
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the dialog, and optical properties computations can be triggered with a processing message 

window by clicking ‘Compute OP’.  In addition, the software has Calibration and Diameter 

menus as shown in Figure 5.6 for storing the spectral and spatial calibration information, and 

sample size information, which can be recalled during the optical properties computation.   

 

Figure 5.5 Display window of the Optical Property Analyzer for optical properties computation. 
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(a) (b) 

Figure 5.6 Display windows of the Optical Property Analyzer for (a) calibration information and 
(b) sample size information. 

5.3 System Calibration and Evaluation 

To accurately measure spatially-resolved diffuse reflectance profiles from a sample, the 

Optical Property Analyzer was calibrated spectrally and spatially by following the procedure 

described in Lu and Chen (1998). Spectral calibrations were performed using a xenon lamp 

(model 6033, Newport, Irvine, CA, USA), a mercury-argon lamp (model 6035, Newport, Irvine, 

CA, USA) and a laser at 905 nm (model PM15/4586, Power Technology Inc., Little Rock, AR, 

USA). Spatial calibrations were achieved using a telecentricity target with a series of parallel 

lines (model 58404, Edmund Optics Inc., Barrington, NJ, USA). Finally, the OPA acquired two-

dimensional (2-D) spatially-resolved reflectance images with a spectral resolution of 3.1 

nm/pixel in the vertical direction and a spatial resolution of 0.2 mm/pixel in the horizontal 

direction.    
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The performance of the OPA was also evaluated for accuracy, stability, precision/ 

reproducibility, and sensitivity by using the homogenous liquid model samples described in 

Section 4.2.2 and following the same procedures presented in Section 4.2.5 of Chapter 4. The 

average estimated error for all model samples was 24% for µa and 7% for µs'. Figure 5.7 shows 

the system reproducibility (or precision), and the coefficient of variation (or CV) in the 

absorption peak at 555 nm was less than 10% for µa, and less than 4% for µs'. It has to be 

mentioned that the absolute values of µa were very small, thus causing the relatively large error 

of estimating µa compared with that of µs'. The main error sources for estimating µa and µs' 

could have come from the light beam, source-detector distance, and inverse algorithm, according 

to the optimization studies of the inverse algorithm and optical designs described in Chapters 3 

and 4. Additionally, the result of the sensitivity measurement on µa is presented in Figure 5.8. 

The minimum detectable value of µa was 0.0117 cm
-1

. The sensitivity of µs', as determined by 

the CV values, was always less than 3% because µs' was much larger than µa for the investigated 

range of 7.0 ≤ µs' ≤ 39.9 cm
-1

. These results showed that the Optical Property Analyzer has 

achieved acceptable accuracies for measuring the absorption and reduced scattering coefficients, 

which are either comparable to or superior to other reported studies using time-resolved, 

frequency-domain, or other types of spatially-resolved instruments based on the discussion in 

Section 4.3.4 of Chapter 4. 
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Figure 5.7 Reproducibility of the Optical Property Analyzer for measuring absorption and 
reduced scattering coefficients of a model sample at 555 nm at each measurement day with 
respect to the average value calculated over 5 days. 
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Figure 5.8 Coefficient of variation versus reordered ascending absorption coefficients of a model 
sample at different wavelengths. 
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CHAPTER 6   MATURITY/QUALITY ASSESSMENT FOR APPLE AND PEACH 

FRUIT USING OPTICAL PROPERTIES 

6.1 Introduction 

Fruit quality represents a combination of the attributes and properties that give them value in 

terms of consumer’s satisfaction. Maturity determines the final quality of harvested fruit and how 

fruit should be handled and marketed after harvest. The maturity/quality of fresh fruit is 

determined by multiple indices including firmness, sugar (or soluble solids content), starch level, 

and titratable acidity, as well as external appearance characteristics such as skin and flesh color 

(Crisosto, 1994). Firmness directly influences the texture, shelf life and consumer acceptance. 

Soluble solids content (SSC) and acidity determine the flavor of the fruit, while changes in the 

skin/flesh color during fruit ripening are mainly related to the breakdown of chlorophylls and the 

increase of other pigments. Methods commonly used for maturity/quality measurement include 

Magness-Taylor (MT) firmness tester, Brix refractometry for SSC, and titratable methods for 

acidity. These methods are destructive, time consuming and prone to operational error, and only 

can test a small percentage of products. Therefore, nondestructive sensing techniques are needed 

for analyzing and monitoring fruit maturity/quality.  

Nondestructive assessment of maturity/quality of fresh products like apple is challenging 

because their properties and characteristics can vary greatly within each fruit and between 

cultivars and are also affected by environmental factors, postharvest storage condition, etc. A 

number of nondestructive techniques based on measurement of the optical, mechanical, and 

electrical properties have been developed to evaluate fruit maturity/quality. In this study, an 

advanced optical technique for measuring absorption and scattering properties was used for 

assessing the quality of apple and peach fruit. Absorption is mainly related to the chemical 
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compositions of the sample, while scattering is influenced by the structural properties. Therefore, 

separate quantification of absorption and scattering properties could provide a new means for 

assessing fruit internal quality. 

The objective of this research was therefore to determine the absorption and reduced 

scattering coefficient spectra of peach and apple fruit using hyperspectral imaging-based 

spatially-resolved (HISR) technique, and to assess the maturity/quality of the fruit with the 

measured optical properties.  

6.2 Materials and Methods 

6.2.1 Fruit Samples 

To determine fruit maturity/quality using the optical properties, peaches and apples 

harvested from the experimental orchard of Michigan State University’s Clarksville Horticultural 

Experiment Station in Clarksville, Michigan were used. Samples were selected such that they 

had large variations in the maturity/quality parameters to be measured. 

Five hundred ‘Redstar’ peaches were hand harvested at three different dates within one 

week in 2010. Tests for these fruit were conducted in the same harvest day. ‘Golden Delicious’ 

(GD) and ‘Delicious’ (RD) apples were harvested once a week during six consecutive weeks for 

the harvest season of 2010. Eighty apples for each cultivar were tested one day after each harvest, 

and the remaining apples were kept in refrigerated air storage at 0°C. Tests for the stored apples 

were begun one week after the last harvest for up to six weeks. A total of 1,039 GD and 1,040 

RD apples were used in the experiment. Optical properties and maturity/quality indices were 

measured from the fruit samples using the OPA and standard destructive methods respectively. 



116 
 

All laboratory measurements for peaches and apples were performed after the samples had 

reached room temperature (~ 24°C). 

6.2.2 Optical Properties Measurement 

The OPA was used to measure the optical properties of peaches and apples (Figure 5.1). 

Binning operations of 4×4 were carried out during the image acquisitions to reduce the exposure 

time of 500 ms for each scan, which resulted in hyperspectral scattering images of 251×250 

pixels from the 1004×1002 EMCCD camera. Each sample was first moved to the pre-determined 

height via the vertical stage, and it then began to move horizontally by the horizontal stage in 

synchronization with image acquisitions by the imaging system. To improve the repeatability of 

measurements, 10 scans were taken from each peach sample for every 1 mm horizontal 

displacement increment for a total of 9 mm distance during the image acquisition at the 

predetermined speed. The motorized stage was operated in the ‘go-stop’ mode, so that the fruit 

sample remained stationary during the image acquisition. From the peach study, large variation 

among the scans for individual samples was observed. Therefore, for the apple experiment, 19 

scans were acquired from each apple sample for every 0.5 mm horizontal displacement over a 9 

mm distance in order to further reduce the variation.  

Figure 6.1 shows a typical hyperspectral reflectance image for a peach fruit sample. A raw 

reflectance spectrum obtained by taking a vertical line at the center spatial position is presented 

in Figure 6.1(b), which had an absorption valley around 675 nm due to the presence of 

chlorophyll-a in the fruit. Other absorption valleys were primarily caused by the spectral 

response of the optical system, which would be eliminated through the normalization and 

nonlinear curve-fitting process. Each horizontal line taken from the image represents one 
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spatially-resolved reflectance profile at a specific wavelength [Figure 6.1(c)], and hence the 

entire image, in effect, consisted of ninety-eight spatially-resolved reflectance profiles for the 

wavelengths of 515-1,000 nm with the interval of 5 nm. Similar images were obtained for the 

apple fruit; there were 101 reflectance profiles for GD apples extracted from the scattering 

images for 500-1,000 nm and 98 for RD apples for 515-1,000 nm.  

(a) (b) 

 
(c) 

 
(d) 

Figure 6.1 Hyperspectral reflectance image and optical property spectra of a peach sample: (a) 2-
D display of the original reflectance image, (b) a raw spectrum extracted for a specific scattering 
distance, (c) a spatially-resolved reflectance profile extracted for a selected wavelength, (d) pre-
processed or averaged spatially-resolved reflectance profile at the selected wavelength, (e) the 

spectrum of absorption coefficient (µa), and (f) the spectrum of reduced scattering coefficient 

(µs'). 
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Figure 6.1 (cont’d) 

(e) 

 

(f) 

 

The acquired hyperspectral reflectance images were then analyzed to obtain µa and µs' 

spectra. Since the spatially-resolved reflectance profiles were symmetric to the light incident 

point, the two sides were averaged in the extraction of optical properties [Figure 6.1(d)]. 

Smoothing and normalization using the peak value for each profile were also applied to the 

averaged profiles to reduce the noise and avoid the need for absolute reflectance measurement. 

Each pre-processed spatially-resolved reflectance profile for every wavelength was then fitted by 

the Kienle diffusion model [equation (3.4)] using the least squares inverse algorithm presented in 

Chapter 3, from which the spectra of absorption and reduced scattering coefficients were 

obtained. The final µa and µs' spectra were determined by averaging the spectra of optical 

parameters from 10 or 19 images for each peach (or apple) sample, which are shown in Figure 

6.1(e) and (f).  

6.2.3 Acoustic Measurement 

Since it was the first time that the OPA was used to assess peach maturity/quality, acoustic 

firmness measurements were also performed after the optical measurement and before the 
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destructive measurements for each peach sample to compare with the measurements from the 

OPA. A commercial desktop acoustic firmness sensor (AFS, AWETA, Nootdorp, Netherlands) 

was used in this study. The acoustic firmness sensor detects the vibration pattern of the acoustic 

wave travelling across the fruit generated by gently tapping the fruit by a plastic probe, which is 

related to the overall firmness of the fruit. The acoustic firmness index (FI = f
2
m

2/3
/10

6
, where f 

is the first resonance frequency and m is the mass of the fruit) was obtained from each 

measurement. For each sample, three replicated measurements were performed at the same 

imaging area. Only average values were recorded for further analysis. 

6.2.4 Destructive Maturity/Quality Measurement 

Peach maturity/quality measurements included firmness, SSC and skin and fresh color, 

whereas only firmness and SSC were measured for the apple fruit, by using standard destructive 

methods. The firmness of peaches and apples was measured from the same imaging area after 

removal of the fruit skin, using a Texture Analyzer (Model TA.XT2i, Stable Micro Systems, Inc., 

Surrey, UK) equipped with an 11-mm Magness-Taylor (MT) probe at a loading speed of 2 mm/s. 

Force/displacement curves were recorded for a penetration depth of 9 mm, and the following 

parameters were then determined from the curves: maximum force (FM in N), the area under the 

force/displacement curve corresponding to maximum force (AM in mm
2
), and slope 

(force/deformation, SM in N/mm) measured between the point of initial contact and the point 

corresponding to maximum force. Soluble solids content (SSC in °Brix) was determined from 

the juice of the fruit samples using a hand-held digital refractometer (Model PR-101, ATAGO 

CO, Tokyo, Japan). A chroma meter (CR-400, Konica Minolta Sensing, Inc., Japan) was used 
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for color readings of the peach skin and flesh with the CIELAB color space (L
*
, a

*
, and b

*
). L

*
 

is a measure of lightness on a scale from 0 to 100, and can be easily explained. However, a
*
 and 

b
* are merely coordinates and difficult to interpret separately (McGuire, 1992). Therefore, they 

were converted to hue angle [h°, arc tan (b
*
/a

*
)] and chroma (C

*
, *2 *2a b ). Hue angle is a 

more appropriate measure of color. The color goes from red to bluish/green with the hue angle 

from 0° to 180°. Chroma is the degree of departure from gray to white towards the pure hue 

color or pure chromatic color (McGuire, 1992).  

6.2.5 Data Analysis 

Statistical methods were applied for assessment of the peach and apple maturity/quality 

using the optical data. For the peach study, simple linear regression analyses were first 

performed on the relationship among the fruit maturity/quality parameters (firmness, SSC, and 

skin and flesh color). Prediction models for peach firmness, SSC and color parameters based on 

spectra of the absorption and reduced scattering coefficients and their three combinations (i.e., µa, 

µs', µa&µs', µa×µs', µeff = [3µa(µa+µs')]
1/2

, where µa&µs' refers to the combination of the two 

coefficient spectra in sequence, µa×µs' is the multiplication of the two coefficients, and µeff is 

the effective attenuation coefficient which defines the ability of light to penetrate the tissue) were 

developed using partial least squares (PLS). Simple regressions were performed between the MT 

firmness and acoustic/impact data. The 500 peach samples were first sorted in ascending order 

for firmness (FM, AM, and SM), SSC, and skin and flesh color (L
*
, h°, and C

*
), respectively, and 

they were then divided into two groups with 75% for the calibration set and 25% for the 
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validation set. A four-fold cross-validation strategy by repeating the above subsampling 

procedure for four times was used to ensure all the samples in the dataset were eventually used 

for both calibration and validation. With this sampling technique and large data size for 

modeling, the effect caused by the sample selection on the calibration and validation results 

could be reduced or eliminated. The same modeling method and sampling technique were also 

used for the prediction of apple firmness and SSC. 

Partial least squares (PLS) regression is a bilinear modeling method where the original 

independent information is projected onto a small number of latent variables (LVs) to simplify 

the relationship between independent and dependent variables for prediction with the smallest 

number of LVs. A leave-one-out cross-validation method was applied on the calibration set to 

determine the optimal number of LVs based on the predicted residual error sum of squares 

(PRESS) value, which could avoid the overfitting problem. The calibration models were then 

evaluated for the validation set of samples using the statistical parameters, including standard 

error of prediction (SEP) calculated as the standard deviation of the prediction residuals, and 

correlation coefficient (r) between the predicted and the measured values of fruit maturity/quality 

parameters.  

6.3 Results and Discussion 

6.3.1 Statistical Data of Fruit Maturity/Quality  

The statistical data of peach firmness, SSC, and skin and flesh color for all tested samples 

are summarized in Table 6.1. The MT firmness distribution of the tested peaches, as measured by 

each of the three extracted parameters, was relatively uniform. While the SSC of the samples had 

a narrow range from 6.7 to 13.0 °Brix, with the mean of 10.0 °Brix and the standard deviation of 
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1.1 °Brix. Skin color variations in terms of lightness, hue angle, and chroma for the samples 

were greater than those for the fruit flesh.  

Table 6.1 Statistics of fruit maturity/quality parameters for 500 ‘Redstar’ peaches measured by 
standard methods. 

Maturity/quality 
parameter 

Mean 
Standard 
deviation 

Maximum Minimum

Magness-
Taylor 
firmness 

Maximum 
force, FM (N) 

  42.4 26.2 109.9   3.7 

Area, AM 
(mm2) 

146.8 70.8 355.4 11.4 

Slope, SM 
(N/mm) 

    9.2   4.2   20.7   0.8 

      
Sugar 
content 

Soluble 
solids 
content, SSC 
(°Brix) 
 

  10.0   1.1   13.0   6.7 

Skin color Lightness, L*   24.4   7.8   45.1   7.9 
Hue angle, 
h° 

  25.1   2.9   41.4 18.0 

Chroma, C*   19.7   7.8   45.5   7.5 
      
Flesh 
color 

Lightness, L*   49.4   5.5   57.4 16.2 
Hue angle, 
h° 

  24.4   2.2   32.5 17.0 

Chroma, C*   55.2   6.2   66.3 16.6 
 

Table 6.2 shows the statistical data of fruit firmness and SSC for the two apple cultivars for 

three test groups (freshly harvested, after storage, and combined). The firmness of GD and RD 

apples decreased with storage time, whose mean values changed from 78.6 N and 79.7 N for the 

freshly harvested group to 48.4 N and 57.0 N for the after-storage group, respectively. The mean 

values of SSC, however, only changed slightly with storage time.  
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Table 6.2 Statistics of the firmness (i.e., maximum Magness-Taylor force or FM) and soluble 
solids content (SSC) of ‘Golden Delicious’ (GD) and ‘Delicious’ (RD) apples for the freshly 
harvested, after-storage, and combined groups. 

 Freshly harvested After-storage Combined 
Firmness 
(N) 

SSC 
(°Brix) 

Firmness 
(N) 

SSC 
(°Brix) 

Firmness 
(N) 

SSC 
(°Brix) 

GD Mean   78.6 12.9 48.4 13.6   62.3 13.3 
Standard deviation     8.3   1.1   8.8   1.3   17.3   1.3 
Maximum 105.1 16.9 76.4 17.9 105.1 17.9 
Minimum   50.2 10.1 29.4   9.7   29.4   9.7 
Total samples    479  560  1039 

     
RD Mean   79.7 11.4 57.0 13.3   67.5 12.4 

Standard deviation   13.4   1.3 13.9   1.0   17.7   1.5 
Maximum 114.2 15.2 92.8 17.0 114.2 17.0 
Minimum   32.2   8.6 16.8   9.7   16.8   8.6 
Total samples    480  560  1040 

 

6.3.2 Peach Maturity/Quality Evaluation 

6.3.2.1 Absorption and Scattering Spectra of Peach Fruit  

Figure 6.2 shows the absorption and reduced scattering coefficients spectra of peach fruit 

with different skin colors (h° = 23.7, 21.9, and 20.4) and firmness levels (FM = 72, 47, and 21 N) 

for the spectral region of 515-1,000 nm. The µa spectra of the three peaches with different skin 

colors had two prominent peaks around 675 nm and 970 nm, which were caused by the 

absorption of chlorophyll-a and water in the fruit tissue, respectively [Figure 6.2(a)]. Values of 

the absorption coefficient for 720-850 nm were relatively small and consistent, compared with 

the rest of the spectral region. Since the color of peaches at different maturity stages varies 

greatly due to the changes of major pigments (i.e., chlorophyll and anthocyanin), the absorption 

spectrum for the dark red peach presented another peak around 525 nm due to the large amount 

of anthocyanin. For the peaches with light red and red colors, smaller absorption peaks from 
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chlorophyll-b were also observed around 620 nm. In addition, it was found that the absorption 

peak around 675 nm decreased with the increase of absorption at 525 nm, as the value of hue 

angle decreased with the fruit color that changed from light red to dark red (Figure 6.2). This is 

because during the fruit ripening, the chlorophyll content of peaches is expected to decrease, 

while anthocyanin is produced and then becomes the dominant pigment. Large changes in the 

pattern of the absorption spectra demonstrate that the absorption properties can be useful for 

evaluating the maturity/quality of peach fruit.  

(a) 

 
 (b) 

Figure 6.2 Spectra of (a) absorption coefficient for three peaches with different skin colors (light 
red, red, dark red), and of (b) reduced scattering coefficient for three peaches at different 
firmness levels (hard, medium, soft). 

550 600 650 700 750 800 850 900 950 1000
0

0.1

0.2

0.3

0.4

0.5

Wavelength (nm)       

 a
 (

cm
 -1

)

 

 

Peach (light red, ho =23.7)

Peach (red, ho =21.9)

Peach (dark red, ho =20.4)

550 600 650 700 750 800 850 900 950 1000
5

10

15

20

Wavelength (nm)      

 s
 (

cm
 -1

)

 

 
Peach (hard, 72N)

Peach (medium, 47N)

Peach (soft, 21N)



125 
 

Compared to the absorption spectra, the reduced scattering coefficient spectra were 

relatively flat, with few features, for the spectral region of 515-1,000 nm [Figure 6.2(b)]. For 

most of the tested samples, their µs' values decreased steadily with the increasing wavelength. 

This pattern of changes is consistent with Mie scattering theory and other reported studies that 

scattering is wavelength-dependent (Keener et al., 2007; Michels et al., 2008). Considerable 

variations in the µs' spectra exist for different firmness levels. Hard peaches had consistently 

higher µs' values than the softer ones throughout the entire wavelength range. The softening of 

fruit is primarily due to the loss of firmness in texture caused by cell wall depolymerization and 

an increase in solubility of the middle lamella, leading to cell separations. Eventually, the 

scattering particles’ density in the fruit tissue would decrease during the softening process. 

Moreover, the particle size can also change due to the solubilization of pectic substances. These 

physical properties are related to the ability of the scattering particles in the fruit tissue to scatter 

light, according to the empirical equation (µs' = aλ
-b

) for describing the relationship between µs' 

and wavelength λ, in which a is proportional to the density of the scattering particles, and b 

depends on the particle size (Mourant et al., 1997). For a few very soft peaches (with MT 

firmness below 16 N), an opposite trend was observed for the scattering spectra that the µs' value 

increased with the increasing wavelength. Dramatic drops of the µs' value for soft fruit could 

have invalidated the scattering-dominant assumption and, thus, the diffusion model, which could, 

in turn, have resulted in erroneous µs' and µa spectra. This issue warrants further investigation. 

The optical properties of fruits measured using different techniques have been reported; 

however the reported values of µa and µs' are quite different even for fruit of the same variety or 
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cultivar. When comparing the results from different studies, one should notice different 

experimental setups, fruit conditions (i.e., maturity level, postharvest storage, etc.), and other 

factors such as measurement techniques, each of which could affect the optical properties 

measurement. To roughly compare the results of this study with other studies, the distributions of 

µa and µs' values for all tested samples at four wavelengths (525 nm for anthocyanin, 620 nm for 

chlorophyll-b, 675 nm for chlorophyll-a, and 970 nm for water) are plotted in Figure 6.3. The µa 

values for most of the samples at 525 nm, 620 nm, 675 nm, and 970 nm were 0.030 cm
-1 with 

the range of 0.002-0.550 cm
-1

, 0.090 cm
-1 with the range of 0.005-0.464 cm

-1
, 0.090 cm

-1 with 

the range of 0.0003-0.375 cm
-1

, and 0.450 cm
-1 with the range of 0.108-1.144 cm

-1
, 

respectively. Large variations of µa values existed due to different maturity levels of the tested 

fruit. However, the µa values for most of the tested peach fruit at the four wavelengths obtained 

from this study are comparable with those of stone fruit from other reported studies. Cubeddu et 

al. (2001a) showed µa values of one peach fruit ranging approximately from 0.020 to 0.450 cm
-1 

at 650-1,000 nm, with 0.085 cm
-1 at 675 nm and 0.45 cm

-1 at 970 nm. Tijskens et al. (2007) 

reported µa values of several groups of nectarines at the commercial harvest stage for 670 nm 

with the range from 0.05 to 0.35 cm
-1

. The variations of µs' values for all tested samples were 

relatively consistent at the four wavelengths ranging approximately from 3 cm
-1 to 23 cm

-1
, and 

the µs' values for most of the samples were around 11 cm
-1

, which are different from the µs' of 

~20-24 cm
-1 at 700 nm for a peach fruit reported by Cubeddu et al. (2001a).  
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Figure 6.3 Distributions of (a) absorption (µa) and (b) reduced scattering coefficient (µs') for 500 
‘Redstar’ peaches at four wavelengths (525 nm for anthocyanin, 620 nm for chlorophyll-b, 675 
nm for chlorophyll-a, and 970 nm for water). 

6.3.2.2 Prediction of Peach Maturity/Quality 

The PLS prediction results of ‘Redstar’ peach firmness, SSC, and skin and flesh color using 

µa, µs' and their combinations (µa & µs', µa × µs' and µeff) are shown in Table 6.3. Individual µa 

and µs' spectra showed correlations with various maturity/quality parameters with values of the 

correlation coefficient (r) varying from 0.420 to 0.855 for µa and from 0.204 to 0.840 for µs'. In 

most cases, prediction results obtained from µa spectra were better than those from µs' spectra, 

which is similar to that for apples reported by Qin et al. (2009). However, the PLS prediction 

models developed for µs' are simpler with fewer factors and faster computation, compared to 

those for µa. The physiological process of fruit ripening is accompanied with simultaneous 

changes in the chemical compositions, which are related to µa, and the cellulosic structures, 

which influence µs'. Hence the combinations of µa and µs' (µa&µs', µa×µs', and µeff) could yield 
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better predictions of peach maturity/quality attributes. As shown in Table 6.3, using the 

combined data of µa and µs' generally improved prediction results with r = 0.724 (SEP = 18.13 N) 

for firmness parameter FM, r = 0.458 (SEP = 0.96 °Brix) for SSC, r = 0.893 (SEP = 3.54) for the 

skin color parameter L
*
, and r = 0.722 (SEP = 3.32) for the flesh color L

*
. It was observed that 

most of the improved results were obtained using the effective attenuation coefficient (µeff), 

which is reciprocal of light penetration depth, and describes how easily a medium can be 

penetrated by the light. Hence, it seems reasonable to have obtained better predictions for the 

peach maturity/quality parameters using the µeff values (except for AM and SSC). The PLS 

results for prediction of peach firmness, SSC, skin and flesh color demonstrated that the optical 

properties are useful for assessing multiple peach maturity/quality attributes simultaneously.  
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Table 6.3 Partial least squares (PLS) prediction results of ‘Redstar’ peach maturity/quality parameters using absorption coefficient 

(µa), reduced scattering coefficient (µs') and their three combinations (µa & µs', µa × µs', and µeff).* 

Maturity/
quality 

µa µs' µa & µs' µa × µs' µeff 
Fact. r SEP Fact. r SEP Fact. r SEP Fact. r SEP Fact. r SEP 

Firmness                

FM 10 0.713 18.47 6 0.494 10 12 0.720 18.38 11 0.722 18.43 10 0.724 18.13 

AM 10 0.547 59.90 5 0.383   9 11 0.582 58.51   8 0.570 59.07   9 0.553 59.92 

SM 14 0.665   3.23 6 0.559 14 11 0.711   3.05 12 0.685   3.13 14 0.712   3.01 
                
Soluble solids content 
SSC 15 0.420   0.99 5 0.315 13 12 0.458   0.96 14 0.451   0.96 13 0.419   0.99 
                
Skin color 

L
*
 13 0.855   4.07 6 0.837 13 15 0.884   3.65 14 0.881   3.70 13 0.893   3.54 

h° 16 0.717   2.82 6 0.795 13 16 0.765   2.58 16 0.738   2.70 13 0.778   2.50 

C
*
 14 0.847   4.19 6 0.840 13 13 0.883   3.66 13 0.882   3.69 13 0.886   3.63 

                
Flesh color 

L
*
 16 0.660   3.62 6 0.630 21 15 0.674   3.63 18 0.711   3.40 21 0.722   3.32 

h°   8 0.457   1.99 4 0.204   6 10 0.433   2.03   7 0.447   1.99   6 0.462   1.98 

C
*
 25 0.580   5.33 6 0.575 20 10 0.640   4.87 19 0.640   4.86 20 0.645   4.84 

* See Table 6.1 for the explanation of individual maturity/quality parameters and SEP = standard error of prediction.
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Further analysis showed that firmness predictions (r = 0.724 and SEP = 18.13 N) by µeff 

based on the PLS model were better than those obtained using the acoustic method with r = 

0.639 (Figure 6.4). These results suggest that there is good potential of using HISR technique for 

peach firmness assessment. Further research for other peach cultivars is needed to determine the 

accuracy and reliability of the new technique for firmness measurement.  

The prediction results for the three flesh color parameters were poorer than those for the skin 

color (r = 0.722, 0.462, and 0.645 for L
*
, h°, and C

*
, with the corresponding SEP = 3.32, 1.98, 

and 4.84, respectively). The presence of fruit skin and smaller variations in flesh lightness, hue 

angle and chroma compared with the fruit skin for the test samples (Table 6.1) could be the 

possible reasons for lower correlations for flesh color prediction. For SSC, the prediction results 

were not as good as those for firmness and color. Previous studies for apple quality assessment 

using optical properties also showed poorer SSC predictions than firmness predictions (Qin et al., 

2009).  

Figure 6.4 (a) Prediction of Magness-Taylor (MT) firmness (FM) of ‘Redstar’ peaches using 

effective attenuation coefficient (µeff) with partial least squares (PLS) and (b) correlation 

between acoustic data and  MT firmness (FM).  
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6.3.3 Apple Internal Quality Evaluation 

6.3.3.1 Absorption and Scattering Spectra of Apple Fruit 

Typical absorption and reduced scattering coefficient spectra for the two apple cultivars for 

the spectral region of 500-1,000 nm for GD and 515-1,000 nm for RD are shown in Figure 6.5. 

The absorption spectra of apples showed a pattern similar to that of peach fruit in Figure 6.2. The 

µa spectra had two prominent peaks around 675 nm and 970 nm, which were caused by the 

absorption of chlorophyll-a and water in the fruit tissue, respectively [Figure 6.5(a)]. Since 

chlorophyll in the apple tissue decreased during the fruit ripening, the values of µa at 675 nm for 

all samples ranged from 0.028 cm
-1 to 0.841 cm

-1
 for GD and from 0.041 cm

-1 to 0.762 cm
-1

 for 

RD. Similar to those of peaches, the µs' spectra of apples were also relatively flat with fewer 

features [Figure 6.5(b)]. For most of the tested samples, their µs' values decreased steadily with 

the increasing wavelength. The µs' values ranged between 7-20 cm
-1 for GD and 4-26 cm

-1 for 

RD, which are at least one order in magnitude greater than the µa values.  

 

Figure 6.5 Spectra of (a) absorption and (b) reduced scattering coefficients for four ‘Golden  
Delicious’ (GD) apples and four ‘Delicious’ (RD) apples. 
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6.3.3.2 Prediction of Apple Firmness and Soluble Solids Content 

Table 6.4 presents prediction results for the firmness of GD and RD apples using µa and µs', 

and their combinations (µa&µs', µa×µs', and µeff) for the freshly harvested, after-storage and 

combined groups. Likewise, the SSC prediction results using the optical properties for each 

group are summarized in Table 6.5. Both µa and µs' for each cultivar were correlated with the 

apple firmness and SSC. Firmness prediction results obtained from the µa spectra (r = 0.687-

0.885 for GD, and r = 0.744-0.844 for RD) were better than those from the µs' spectra (r = 0.630-

0.793 for GD, and r = 0.702-0.768 for RD) for each of the three sample groups. This was also 

true for the SSC evaluation. Fewer factors were used in the PLS prediction models with µs', 

because its spectra had fewer features. Using the three combinations of µa and µs' generally 

improved the prediction of apple firmness and SSC. With the best combination of µa and µs', the 

correlations for the firmness of RD and GD apples for the three test groups were 0.692-0.892 and 

0.788-0.863, respectively, and they were 0.741-0.791 and 0.536-0.842 for SSC, respectively. 

Table 6.4 Firmness prediction results for ‘Golden Delicious’ and ‘Delicious’ apples for the 
freshly harvested, after-storage and combined groups.* 

Optical parameter Golden Delicious  Delicious 
Factors r SEP  Factors r SEP  

Freshly 
harvested 

µa 16 0.687   6.10  20 0.785   8.43 

µs'   6 0.630   6.49    7 0.764   8.68 

µa&µs' 12 0.651   6.37  18 0.809   7.91 

µa×µs' 17 0.692   6.06  19 0.813   7.83 
 µeff 16 0.687 6.10  22 0.822 7.67 

After-
storage 

µa 17 0.726 6.11  25 0.744 9.36 

µs' 7 0.689 6.44  7 0.702 9.90 
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Table 6.4 (cont’d) 

 µa&µs' 14 0.712 6.24  17 0.788 8.57 

µa×µs' 17 0.734 6.02  20 0.765 9.00 

µeff 18 0.730 6.07  29 0.762 9.10 

Combined µa 34 0.885 8.14  34 0.844 9.56 

µs' 9 0.793 10.60  9 0.768 11.35 

µa&µs' 38 0.881 8.29  19 0.852 9.31 

µa×µs' 39 0.892 7.89  35 0.857 9.12 

µeff 33 0.884 8.16  38 0.863 8.94 
* SEP = standard error of prediction. 

Table 6.5 Prediction results for the soluble solids content of ‘Golden Delicious’ and ‘Delicious’ 
apples for the freshly harvested, after-storage and combined groups.* 

Optical parameter Golden Delicious  Delicious 
Factors r SEP  Factors r SEP 

Freshly 
harvest 

µa 16 0.787 0.70  17 0.823 0.76 

µs'   6 0.489 0.99    7 0.784 0.84 

µa&µs' 12 0.781 0.70  17 0.842 0.73 

µa×µs' 17 0.791 0.69  20 0.816 0.78 

µeff 16 0.777 0.72  22 0.821 0.77 

After-
storage 

µa 18 0.713 0.95  14 0.533 0.88 

µs'   7 0.561 1.12    6 0.460 0.92 

µa&µs' 14 0.741 0.92  13 0.518 0.89 

µa×µs' 18 0.732 0.93  11 0.502 0.90 

µeff 19 0.726 0.94  18 0.536 0.87 

Combined µa 20 0.760 0.84  23 0.812 0.88 

µs'   8 0.544 1.09    8 0.750 0.99 

µa&µs' 16 0.768 0.83  19 0.825 0.85 

µa×µs' 23 0.778 0.82  21 0.804 0.89 

µeff 22 0.773 0.83  27 0.805 0.89 

*SEP = standard error of prediction. 

For the freshly harvested and after-storage groups, the correlations were relatively low 

because of smaller firmness variations for each group (Table 6.2). However, when the data from 
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these two groups were pooled, improved correlations for the firmness prediction of both cultivars 

were obtained, although the SEP values increased slightly due to larger firmness variations in the 

combined group. For SSC, the best predictions were achieved for the freshly harvested group 

with r = 0.791 (SEP = 0.69 °Brix) for GD and r = 0.842 (SEP = 0.73 °Brix) for RD. Comparable 

results were obtained for the combined group because the SSC in the apple fruit did not change 

significantly during storage. Figure 6.6 shows the firmness and SSC predictions for GD and RD 

apples obtained with the best combination of µa and µs' for the combined group. Better 

predictions of firmness for GD and RD apples with the correlation of 0.892 and 0.863, 

respectively, were obtained than for SSC predictions with r = 0.778 and 0.825. These results are 

better than, or comparable with, other reported studies using hyperspectral scattering technique 

(Mendoza et al., 2010; Qin et al., 2009). 

Figure 6.6 Prediction of fruit firmness (a, c) and soluble solids content or SSC (b, d) using the 

best combinations of µa and µs' for the combined group of ‘Golden Delicious’ (GD) and 
‘Delicious’ (RD) apples. 

 

 

 

20

40

60

80

100

20 40 60 80 100

P
re

di
ct

ed
 f

ir
m

ne
ss

 (
N

)

Actual firmness (N)

(a)

GD

R = 0.892
SEP = 7.89 N

8

10

12

14

16

8 10 12 14 16

P
re

di
ct

ed
 S

S
C

 (
°B

ri
x)

Actual SSC (°Brix)

(b)

GD

R = 0.778
SEP = 0.82 °Brix



135 
 

Figure 6.6 (cont’d) 

  

6.4 Conclusions 

The spectra of absorption and reduced scattering coefficients for ‘Redstar’ peaches for the 

spectral region of 515-1,000 nm, ‘Golden Delicious’ apples for 500-1,000 nm, and ‘Delicious’ 

apples for 515-1,000 nm were measured using the Optical Property Analyzer. Significant 

changes in the absorption and reduced scattering spectra were observed for peaches with 

different levels of maturity. The absorption spectra were shaped by major pigments (i.e., 

chlorophyll and anthocyanin) and water in the fruit, while the reduced scattering spectra 

decreased in value during the fruit softening. Similar absorption and scattering features were also 

found for the apple samples. 

Both µa and µs' were correlated with the peach firmness, SSC, and skin and flesh color and 

with the apple firmness and SSC; however, better correlations were obtained using the 

absorption spectra than using the scattering spectra. The combinations of µa and µs' (i.e., µa&µs', 
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*
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0.724 (SEP = 18.13 N), 0.458 (SEP = 0.96 °Brix), 0.893 (SEP = 3.54), and 0.722 (SEP = 3.32), 

respectively. For the apple study, the best firmness prediction was obtained with r = 0.892 (SEP 

= 7.89 N) for GD and r = 0.863 (SEP = 8.94 N) for RD. For SSC evaluation, better results were 

achieved for the freshly harvested group with r = 0.791 (SEP = 0.69 °Brix) for GD and r = 0.842 

(SEP = 0.73 °Brix) for RD. These two studies demonstrated that the hyperspectral imaging-based 

spatially-resolved technique is useful for measuring the optical properties of fruit, and it provides 

a new means of assessing fruit maturity/quality. 
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CHAPTER 7   RELATIONSHIP BETWEEN THE OPTICAL AND 

MECHANICAL/STRUCTURAL PROPERTIES OF APPLE TISSUE 

7.1 Introduction 

The texture of fresh fruit depends on variety, maturity, climate condition during growth, and 

postharvest storage condition, and it is largely determined by the structural and mechanical 

properties of fruit tissue. The softening and its resultant change in the texture of apples during 

the ripening mainly results from cell wall depolymerization and the dissolving of the middle 

lamella (Wood et al., 2009). Accompanied with the tissue softening and the weakened adhesion 

between cells are changes in the cell wall strength, cell turgor and the number, size, and shape of 

intercellular spaces, which, in turn, affect the fruit firmness or rigidity. It is thus critical to 

understand how the structural and/or mechanical properties of cells and their changes affect the 

textural properties and ultimately the quality of fruit in storage. 

Considerable studies have been reported on the relationship between fruit quality and 

physiological changes. Both destructive and nondestructive techniques that are based on quasi-

static, impact, vibration, and acoustic principles have been used for measuring the mechanical 

and/or textural properties (e.g., firmness and strength or elasticity) of fruit. Electron microscopy 

was also utilized to evaluate the structural changes of fruit during ripening and storage, and to 

examine or quantify the physiological activities in the fruit. While it is well known that the 

optical absorption and scattering properties are related to the composition and cellular structure 

of fruit tissue, no research has been attempted to elucidate and quantify their interrelationships. 

Better understanding of these relationships can help us develop better techniques for fruit quality 

inspection, monitoring and control.  
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The research reported in this chapter was therefore aimed at gaining a fundamental, 

quantitative understanding of the relationships between the optical and mechanical/structural 

properties of apple fruit. The specific objectives of the research were to: 1) measure the 

absorption and reduced scattering coefficient spectra and the mechanical and structural 

properties of apple tissues for ‘Golden Delicious’ and ‘Granny Smith’ cultivars over time during 

high temperature/high humidity storage, and 2) relate the optical measurements to the elastic 

modulus (Young’s modulus) of flesh tissues and cell structures, including cell size/shape and 

morphological characteristics.  

7.2    Materials and Methods 

7.2.1 Apple Samples 

Two apple cultivars, ‘Golden Delicious’ (GD) and ‘Granny Smith’ (GS), were chosen in this 

study. The apples were harvested at the commercial maturity stage in 2010 from the 

experimental orchards of Michigan State University’s Horticultural Teaching and Research 

Center in Holt, MI and Clarksville Horticultural Experiment Station in Clarksville, MI. GD 

apples were harvested three weeks earlier, and they were kept in a controlled atmosphere (CA) 

environment (2% O2 and 3% CO2 at 0 °C), until after GS apples were received. The test apples 

were visually inspected to ensure they were absent of damage or blemishes, and they were of 

relatively uniform in size with the equatorial diameter of 73-78 mm for GD and 77-85 mm for 

GS. The apples were randomly grouped into five groups of 10 fruit each for each cultivar. They 

were kept at ~ 22 °C and ~ 95% relative humidity for 1, 8, 15, 22, and 30 days, respectively, to 

accelerate the changes in fruit quality and condition.  
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For each storage time, one group of apples was taken out from the storage. Measurements 

were first performed of the optical properties of all apple fruit. Thereafter, compression tests (see 

the following subsection for details) were conducted for each apple sample. Finally, microscopic 

image analyses of fruit tissue specimens were performed. Because of the extensive time needed, 

and the difficulty, in preparing tissue specimens for micro-structural analysis, only three 

specimens for each group of 10 apple samples were prepared for confocal laser scanning 

microscopy (CLSM) and two specimens for scanning electron microscopy (SEM).  

To monitor the apple firmness and weight change with storage time, another subset of 10 

intact fruit samples for each cultivar were kept in the same storage condition for up to 30 days. 

Acoustic firmness and optical properties measurements were taken for these samples at each of 

the five test dates.  

7.2.2 Optical Properties Measurement 

The Optical Property Analyzer (OPA) (see Chapter 5) was used to measure the spectral 

absorption and reduced scattering coefficients of GD and GS apples for the spectral region of 

500-1,000 nm, following the procedure described in Section 6.2.2 of Chapter 6. Mean spectra of 

absorption and reduced scattering coefficients were calculated for the 10 fruit of each group for 

each storage time. 

7.2.3 Acoustic Firmness Measurement and Compression Test for Measuring Mechanical 

Properties 

The commercial desktop firmness sensing system (AFS, AWETA, Nootdorp, Netherlands), 

described in Chapter 6, was used to monitor the apple firmness and weight change during storage. 

The fruit was gently tapped by a plastic rod in the instrument. Four parameters, including the 
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mass of the fruit (m), first resonance frequency (f), the acoustic firmness index (FI=f
2
m

2/3
/10

6
), 

and impact firmness (IF), were obtained from each measurement. For each sample, three 

replicate measurements were performed at the same equatorial location where the optical 

property measurements had been performed earlier. Only the average values were recorded for 

further analysis. 

Compression tests were conducted following the optical properties and acoustic 

measurements. The test apples were first cut into two halves parallel to the longitudinal axis as 

shown in Figure 7.1(a). Cylindrical specimens of 13.9 mm in diameter and 13 mm in length were 

then taken from the fruit flesh of one apple half 5 mm beneath the skin, using a cork borer and a 

double-blade knife [Figure 7.1(b) and (c)]. The specimen size was determined based on the 

literature (Abbott and Lu, 1996) and preliminary study of the effect of specimen size on the 

mechanical properties measurement. Each flesh specimen was compressed between two parallel 

plates using a Texture Analyzer (Model TA.XT2i, Stable Micro Systems, Inc., Surrey, UK) at a 

loading speed of 0.42 mm/s [Figure 7.1(d)]. Force/displacement curves were recorded for up to 4 

mm of displacement; and failure stress (σ), failure strain (ε), and Young’s modulus (or apparent 

modulus of elasticity, E) were then calculated from these curves.  

  

Figure 7.1 Experimental procedures for compression test of apple tissue specimens: (a) 
cylindrical specimen taken from the fruit flesh of the apple; (b) cork borer and double-blade 
knife used for cutting tissue specimens; (c) final tissue specimen with 13.9 × 13 mm (D × L); and 
(d) compression test setup with the Texture Analyzer.   

(a) (b)

13 mm 

13.9 mm 

5 mm 
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Figure 7.1 (cont’d) 

  

7.2.4 Confocal Laser Scanning Microscopy and Scanning Electron Microscopy for 

Microstructural Analysis 

Confocal laser scanning microscopy (CLSM, Olympus FluoView 1000 LSM, Olympus 

America Inc., Center Valley, PA, USA) and scanning electron microscopy (SEM, JEOL 6400V, 

Japan Electron Optics Laboratories, Tokyo, Japan) were conducted on the apple tissue specimens 

to quantify their microstructural changes for different storage times ranging from 1 to 30 days. 

CLSM enables us to view a single layer of cells from the tissue and reduces noise from adjacent 

layers of cells, and it was used for quantitative analysis of apple tissues for cell information (e.g. 

cell size and shape parameters). SEM allows surface examination to obtain cellular 

characteristics at higher resolutions. 

For CLSM, tissue specimens from the outer cortex of apples about 10 mm away from the 

skin were cut by a cork borer with a diameter of 13.9 mm, using the same sampling procedure as 

shown in Figure 7.1(a) for the compression test except for the sampling location or depth. A 

razor blade was then used to obtain cylindrical specimens of 1 mm thickness. Thereafter, the 

specimens were soaked with 0.1% Cango Red (Sigma-Aldrich Co. LLC, St. Louis, MO) for 10 

min and then were washed by water several times prior to CLSM imaging. 

(d)(c) 
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For SEM, tissue specimens with the same dimensions as those for CLSM were cut from the 

fruit. The specimen preparation procedure was according to that described by Kim et al. (1990). 

The specimens were first fixed for 2 h in 2% glutaraldehyde/0.1M phosphate buffer at 0°C. The 

fixed specimens were then washed with 0.1M phosphate buffer for at least 30 min at 0°C, and 

post-fixed in 1% phosphate buffered osmium tetroxide (OsO4) solution for 1 h at 0°C. After 

another wash with phosphate buffer, they were dehydrated with a series of ethanol 

concentrations for various time periods as follows: 40% (5 min), 50% (5 min), 60% (5 min), 70% 

(15 min), 80% (10 min), 90% (15 min), and 100% (three times for 10 min each). The fixed and 

dehydrated specimens were quench-cooled in nitrogen slush under vacuum within the 

preparation chamber of the SEM (< 210°C). Each specimen was fractured using a movable 

blade, sublimated for 15 min at -90°C, and coated by gold/palladium. The specimens were then 

viewed by the SEM with 10 kV accelerating voltage at < 130°C. In order to obtain more 

comprehensive information on the cellular structure change during storage, SEM images were 

acquired at two different resolutions (magnifications of 50× and 1500×). 

7.2.5 Data Analysis 

To quantify the optical property changes of apple tissue with storage time and their 

relationship with the mechanical/structural properties, image analysis and statistical analysis 

were carried out using Matlab programs. Analysis of variance with the storage time was first 

applied to the mean values of optical properties, acoustic firmness data, and compression test 

data for each storage time. Young’s modulus calculated as the gradient of the initial linear slope 

between 5.8% and 9.8% strain from the stress/strain curves obtained by the compression test was 
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used for characterizing the mechanical properties of fruit tissues and for understanding the 

structural changes in apples during storage. 

 Cell morphological parameters including area, equivalent diameter, major and minor length, 

perimeter, elongation (major length/minor length) and roundness (4 × π × area/perimeter
2
) were 

extracted from the CLSM images of apple tissues. Six images acquired from three specimens 

(two images for two locations from each specimen) for each cultivar were quantified using image 

segmentations to obtain average cell parameters for each storage time. Analysis of variance 

(ANOVA) and least significant difference (LSD) test were conducted to evaluate the cell 

changes among the storage days. The procedures of image processing are shown in Figure 7.2. 

First, the original images were preprocessed by converting the RGB images into binary images. 

Second, morphological operations on the binary images were implemented using the function 

‘bwmorph’ in Matlab Imaging Processing Toolbox by bridging unconnected pixels, removing 

spur pixels, and performing dilation using the structuring element ‘ones (3)’. Third, the 

watershed transformation was performed on the images after the morphological operations, and 

morphological structuring elements were created. Finally, the segmented cells were labeled, and 

their morphological parameters were calculated using Matlab function ‘regionprops’. 

Original 

 

Preprocessed Clean-bridge 

 

Figure 7.2 Procedures of image processing for extracting cell parameters. 
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Figure 7.2 (cont’d) 
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The SEM images of apple tissues acquired at the low resolution were analyzed to further 

quantify their microstructure using histogram probability and fractal analysis methods. The 

histogram of an image is a graphic description of the distribution of the gray levels, which are the 

gray level values versus the number of pixels at that value. It provides information related to the 

nature and characteristics of the image. Statistical-based histogram features including energy and 

entropy were extracted from the SEM images, where the histogram is used as a model of the 

probability distribution of the gray levels. The energy describes the distribution of the gray levels 

of an image and is defined as (Umbaugh, 2005). 

 
1

2

0

( )
n

g

energy p g



                                                          (7.1) 

where 
( )

( )
N g

p g
M

   is the first-order histogram probability, in which M is the pixel number in 

the image, N(g) is the pixel number at gray level g, and n is the total number of gray levels. The 

entropy tells us how many bits we need to code the image data, and is given by 
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 
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


                                                 (7.2) 

The value of entropy increases when the pixel values in the image are distributed among more 

number of different gray levels. A complex image has higher entropy than a simple image, and 

the energy tends to vary inversely.  

Fractal analysis was used for description and quantification of surface topographies, 

providing texture information of the SEM image. Three parameters were extracted from the 

fractal analysis, which are fractal dimension at low scale (D) related to the surface roughness, the 

minimum elemental cell (dmin) related to the cell size, and the periodical region (dper) at high 

scale related to the distance between cells. The procedure to compute the fractal dimension (D) 

and parameters dper and dmin are based on the variogram of the intensity pixels in grayscale 

images and the method was proposed and successfully used in scanning electron microscopy 

images by Bonetto and Ladaga (1998), Bianchi and Bonetto (2001) and Quevedo et al. (2002). 

The variogram method has been detailed by Bianchi and Bonetto (2001) as follows. It calculates 

the fractal dimension from the V variance of the grey level distribution of the image 

corresponding to the studied surface sample  

2HV z s                                                            (7.3) 

where the angle brackets <> denote the expectation value, Δzi is the difference of the gray level 

between two different positions in the image for a step i of length s measured in pixels. H value 

can be obtained by means of the graph slope in logarithmic scale from V versus s, which is 

related to the fractal dimension D by 

3D H                                                                (7.4) 
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The variogram presents a fractal behavior at a certain scale and simultaneously it produces 

minimums at other scales. Such minimums result from the presence of a periodical structure in 

the gray levels. This periodic region is described as a spectrum of space frequencies represented 

by “k wave vectors”. kxi and kyi can be obtained by projecting the “ki wave vector” on the pair of 

orthogonal coordinate axes, and therefore 

2 2 2
x yk k k                                                             (7.5) 

The periodic region parameter is then defined as 

2 2

2
per

x y

d
k k




    
                                                       (7.6) 

The parameter dper is a measurement of the average diameter between the nearest elementary 

cells of enough statistic weight so as to produce periods. The parameter dmin is the intersection 

between the fractal and periodic zones that explains the highest value of the smallest cell size of 

enough statistic weight. These three parameters (D, dmin, and dper) extracted from fractal 

analysis have provided good characterization of image texture (Bonetto and Ladaga, 1998). 

Finally, general linear regression analysis was performed on correlating acoustic firmness, 

Young’s modulus and cell structural parameters to the optical properties of apple fruit. 

7.3 Results and Discussion 

7.3.1 Changes in the Optical Properties of Apples during Storage 

Figure 7.3 shows the mean absorption (µa) and reduced scattering coefficients (µs') spectra 

over 500-1,000 nm for 10 apples each of GD and GS for each test date. While the general 
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patterns of µa and µs' spectra for GD and GS apples were similar, their absolute values were 

different. 

Figure 7.3 Mean spectra of 10 apple samples each for the five times of storage: (a1) absorption 
and (a2) reduced scattering coefficients of ‘Golden Delicious’ (GD) apples; and (b1) absorption 
and (b2) reduced scattering coefficients of ‘Granny Smith’ (GS) apples.  

There were two prominent peaks around 675 nm and 970 nm for the µa spectra of both GD 

and GS apples, which were caused by the absorption of chlorophyll-a and water in the fruit 

tissue, respectively. There were also small chlorophyll-b absorption peaks around 620 nm and 

water absorption peaks around 750 nm. Other absorption peaks were also observed in the µa 

spectra of GD and GS apples around 525 nm due to the presence of anthocyanin in the apple 
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skin. Moreover, the absorption peak around 675 nm for GD apples decreased consistently with 

storage time; the average value of µa changed from 0.324 cm
-1 to 0.103 cm

-1
 over 30 days of 

storage, and dramatic decreases of µa values took place after eight days of storage. On the other 

hand, absorption around 525 nm increased slightly over time, with the mean values of µa 

changing from 0.179 cm
-1

 to 0.207 cm
-1

 during the 30 days of storage. This is because during 

storage, the chlorophyll content of GD apples was expected to decrease as the apple skin color 

changed from green to yellow and more anthocyanin was produced, which then became the 

dominant pigment. Similar changes also happened to the absorption spectra for GS apples. 

However, the decrease of µa values around 675 nm from 0.248 cm
-1 to 0.235 cm

-1
 for GS apples 

was much smaller than that for GD apples, whereas the increase of µa values around 525 nm 

from 0.150 cm
-1

 to 0.306 cm
-1

 was much greater than that for GD apples. Overall, the change in 

absorption for the spectral region of 750-1,000 nm was much smaller during the entire storage 

period, compared to that for the visible spectral region of 500-750 nm. 

Compared to the absorption spectra, the reduced scattering coefficient spectra exhibited a 

different pattern for the spectral region of 500-1,000 nm [Figure 7.3(a2) and (b2)]. The µs' 

spectra were relatively flat, with few features. For most of the tested fruit samples of both 

cultivars, their µs' values decreased steadily with the increasing wavelength throughout the 

spectral region of 500-1,000 nm. Like the absorption coefficient, the reduced scattering 

coefficient also exhibited a consistent pattern of change during storage and its values for the 

fresh apples (i.e., day 1) were considerably higher than those for the stored apples for all other 
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test dates, except for GS for the region of 900 nm or higher due to the large variation of GS 

apples with small change of their µs' values. The maximum value for the mean reduced 

scattering coefficient for the entire wavelength range decreased with storage time consistently 

from 13.4 cm
-1 to 11.4 cm

-1 
for GD and from 12.4 cm

-1 to 10.0 cm
-1 for GS over 30 days of 

storage.  

7.3.2 Changes in Acoustic Firmness and Mechanical Properties during Storage 

Acoustic and impact firmness (e.g., FI and IF) for both cultivars decreased steadily with 

storage time [Figure 7.4(a)]. FI and IF decreased by 42.3% and 21.2% for GD, and 16.9% and 

6.7% for GS, respectively, over the storage period of 30 days. GS apples had a lower rate of loss 

in firmness during the storage. The weight change of apples due to water loss can affect the 

mechanical and microstructural properties of the fruit. Figure 7.4(b) shows that there were 3.1% 

and 1.9% decreases in the average weight of GD and GS apples, respectively, but the decreases 

were not statistically significant. 
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Figure 7.4 Changes in a) acoustic firmness (FI) and impact firmness (IF), and (b) fruit weight, 
for the same 10 fruit each of ‘Golden Delicious’ (GD) and ‘Granny Smith’ (GS) measured at five 
storage times (the vertical bars denote two standard deviations). 

The stress/strain curves for a GD apple and a GS apple measured for each of the five storage 

times are shown in Figure 7.5. For both cultivars, the stress/strain curve at day 1 had a sharp 

peak at the yield point with a sudden drop in the failure stress because the flesh tissue was still 

crispy or crunchy. As the storage time increased, the stress/strain curve became smoother, and it 

did not show a prominent yield point at days 8-30 for GD and at days 15-30 for GS.  

 

Figure 7.5 Stress/strain curves obtained from the compression test for the flesh specimens of (a) 
five ‘Golden Delicious’ apples and (b) five ‘Granny Smith’ apples, one for each storage time. 
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Figure 7.6 shows the mean values and statistical differences of Young’s modulus for GD 

and GS apples at five storage times. GS apples had significantly higher values of Young’s 

modulus compared with GD apples, which was in agreement with the relative values of acoustic 

firmness measurements for the two cultivars (Figure 7.4). The mean value of Young’s modulus 

decreased by 45.6% for GD and 34.2% for GS within 30 days of storage. This indicated that the 

rigidity of the cellular structures had decreased significantly over 30 days of storage time, and 

thus the fruit became soft at the end of storage. A dramatic decrease (significant at the 0.05 level) 

in Young’s modulus for GD apples occurred between day 1 and day 8, while a significant 

decrease in Young’s modulus for GS apples was only observed for day 22 and 30.    

  

Figure 7.6 Mean values of Young’s modulus for 10 ‘Golden Delicious’ (GD) (columns with 
capital letters) and ‘Granny Smith’ (columns with small-cap letters) apples for each of the five 
storage times (columns with different letters for the same cultivar are significantly different with 
p < 0.05). 
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7.3.3 Microstructural Changes in Apple Tissue during Storage 

‘Golden Delicious’ apples are crispy, whereas GS fruit are firm, crunchy and juicy. These 

textural differences are related to the different cellular structures of the two cultivars. The CLSM 

images showed that the cells of GS tissues [Figure 7.7(b1)] were more rounded compared with 

those of GD tissues [Figure 7.7(a1)]. Closer contact between the cells of GS tissues was 

observed, while there was more space between the cells of GD tissues. Weaknesses at the cell 

conjunction may indicate less firmness or mealiness of the texture. During the storage, the cell-

to-cell adhesion was reduced and cell separation along the middle lamella increased. More 

broken cells were observed for both cultivars at day 30, as shown in Figure 7.7 (a2) and (b2).   

(a1) (a2) 

Figure 7.7 Confocal laser scanning microscopic images of a cross-section of apple flesh tissue 10 
mm beneath the skin for ‘Golden Delicious’ apple at day 1 (a1) and day 30 (a2), and for ‘Granny 
Smith’ apple at day 1 (b1) and day 30 (b2) (‘→’ denotes the connection between cells, and ‘×’ 
denotes the broken cells).  

 

 

 

100 µm 
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Figure 7.7 (cont’d) 

(b1) 

 

(b2) 

Table 7.1 summarizes the cell morphological parameters for GD and GS apple tissue 

specimens, extracted from the CLSM images. The average cell area of GD apples (19.0-15.7 

×10
3
 µm

2 for day 1-30) was smaller than the average cell area of GS (28.3-22.2 ×10
3
 µm

2 for 

day 1-30). The same trend was observed for the equivalent diameter, major and minor length, 

and perimeter. The cell size of both cultivars decreased with storage time from day 1 to day 30. 

While significant differences in each of the cell size parameters for the two cultivars were found 

between day 1 and day 30, differences between two adjacent test days were not always 

significant. For the shape-related parameters (i.e., elongation and roundness), no consistent trend 

with the storage time was found for the two cultivars. During the storage, the breakdown of 

pectin in the weak intercellular lamella and the water redistribution in the cells and cellular space 

would have caused changes in the cell size and shape. But the cell shape change was difficult to 

quantify based on the two-dimensional CLSM images, since the cell deformation could have 

happened in all directions. 

100 µm 
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Table 7.1 Mean and standard error of the cell size/shape parameters for ‘Golden Delicious’ and ‘Granny Smith’ apple tissues for 
different storage days.* 

Storage day Cell size parameters Cell shape parameters 
Area  
(µm2) 

Equiv. diameter 
(µm) 

Major length 
 (µm) 

Minor length
(µm) 

Perimeter  
(µm) 

RSE of  
area (%)

Elongation Roundness 

Golden Delicious        
Day 1 18990±698

a
 150.2±2.9

a 181.7±3.5
a 129.8±2.8

a 545.2±10.4
a 1.60 1.438±0.037

ab 0.766±0.0061
ab

Day 8 17677±658
ac

 143.7±2.9
ac 175.6±3.6

a 123.3±2.6
ac 524.3±10.5

ac 1.486±0.035
ab 0.754±0.0060

ab

Day 15 16939±550
bc

 141.9±2.5
bc 173.4±3.2

a 121.0±2.3
bc 515.2±9.2

bc 1.426±0.032
ab 0.763±0.0053

a 

Day 22 16478±613
bc

 139.2±2.7
bc 174.4±3.6

a 116.5±2.5
bc 510.9±10.1

bce 1.527±0.044
a
 0.757±0.0060

b 

Day 30 15670±527
b
 135.5±2.6

b 161.6±3.0
b 117.8±2.4

bc 485.1±9.1
de 1.420±0.028

b 0.773±0.0054
ab

Granny Smith        
Day 1 28332±1120

a 184.3±3.8
a
 223.0±4.7

a
 157.6±3.6

a 705.0±15.5
a 1.92 1.408±0.033

a 0.765±0.0064
a 

Day 8 24292±1098
b 167.8±4.1

b 200.9±5.0
b 144.9±3.8

b 603.7±14.7
b 1.396±0.023

a 0.774±0.0059
a 

Day 15 21648±930
b 158.2±3.6

b 192.7±4.6
b 134.7±3.2

c 570.0±13.0
b 1.470±0.036

a 0.777±0.0062
a 

Day 22 23645±991
b 166.0±3.8

b 197.6±4.5
b 144.8±3.7

bc 595.1±13.5
b 1.429±0.054

a 0.778±0.0087
a 

Day 30 22181±910
b 161.9±3.6

b 188.0±4.2
b 143.4±3.4

bc 576.0±12.7
b 1.346±0.020

b 0.789±0.0040
a 

Values in the same column with different letters are significantly different at the 95% confidence interval (p<0.05); 

Standard error = standard deviation / cel l number ;  

RSE (relative standard error) = standard error/mean  100%.
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To further quantify the changes of tissue cells during the storage, the cell connections, 

denoted by the red lines in Figure 7.8(a1), were manually counted and measured for each 

scanning electron microscopic (SEM) image acquired at the low resolution for day 1 and day 30. 

The average connection length and standard error (standard deviation divided by the number of 

the cell connection) had decreased approximately from 87.80 ± 1.02 µm to 62.39 ± 0.52 µm for 

GD apples, and from 99.03 ± 0.71 µm to 78.29 ± 1.11 µm for GS apples for 30 days of storage. 

The high-resolution SEM images of GD and GS apples for 1 and 30 days of storage have 

presented significant differences in the cellular structures, as shown  in Figure 7.8(b1)-(b2) and 

Figure 7.9(b1)-(b2). For both cultivars, cell separation in the middle lamella was observed after 

30 days of storage, which was associated with pectin solubilization and the subsequent reduction 

in the connection between cells. This was also consistent with the changes observed from the 

CLSM images. At day 1, the cells of GD had a smoother external surface with some exudates 

[Figure 7.8(b1)], which indicated that the cell structure degradation might have begun. For day 

30, more exudates were observed on the surface of cell walls [Figure 7.8(b2)]. Similar changes 

were also found in the cells of GS specimens. The cellular materials had appeared to be pulled 

away in the cells of GS even at day 1 [Figure 7.9(b1)]. Although attention was paid to the initial 

selection of fruit with the same level of maturity for both cultivars, it was still difficult to achieve 

this by visual inspection of the external appearance of each fruit. Therefore, image textural 

analysis was performed on the low-resolution SEM images to obtain quantitative information for 

the cellular structures.  
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a1 a2 

 
(b1) 

 
(b2) 

Figure 7.8 Scanning electron microscopy images of one cross-section of apple flesh tissue 10 
mm beneath the skin for ‘Golden Delicious’ at day 1 (a1) and day 30 (a2) acquired at low 
resolution for an overview of the cell structures, and at day 1 (b1) and day 30 (b2) acquired at 
high resolution for a more detailed view of the cell-to-cell connection [the red lines in (a1) 
denotes five cell connections counted manually as examples]. 

 

 

 

 

20 µm 20 µm
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(a1) (a2) 

 
(b1) 

 
(b2) 

Figure 7.9 Scanning electron microscopy images of one cross-section of apple flesh tissue 10 
mm beneath the skin for ‘Granny Smith’ at day 1 (a1) and day 30 (a2) acquired at low resolution 
for an overview of the cell structures, and at day 1 (b1) and day 30 (b2) acquired at high 
resolution for a more detailed view of the cell-to-cell connection [the red lines in (a1) denote five 
cell connections counted manually as examples]. 

Table 7.2 shows the morphological features obtained from the SEM images of apple tissues. 

The energy and entropy changes for the two cultivars were not consistent over the storage time, 

and so was the change in fractal dimension D. There were differences in the microstructural 

characteristics, cell topology and physiological activity during storage as well as the level of 

maturity at harvest for GD and GS apples. These differences have thus resulted in different 

20 µm 20 µm

500 µm 500 µm 
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morphological features, as described by their kinetic changes. A general tendency of decrease in 

dmin and increase in dper during storage was observed. A greater value of dmin or dper 

corresponds to a larger cell size or a longer distance between cells. Since only two specimens 

were used for each cultivar for each storage time in SEM imaging, no statistical test could be 

done for the five storage times. Compared with the cell size parameters obtained from the CLSM 

images, the change pattern for the morphological features extracted from the SEM images for 

different storage times was not apparent. It has to mention that only the intact cells in the CLSM 

images were segmented for extracting the cell size parameters; whereas for the analysis of SEM 

images, the entire images including both intact cells and void structures (i.e., pores or broken 

cells) were considered, which would have posed more difficulty for the differentiation and 

characterization of morphological features from the SEM images. Further, large variations in the 

SEM images were observed because of the small imaging area. It is, therefore, suggested that 

more specimens for the same apple fruit should be considered in future experiment in order to 

better assess the biological changes of apple fruit during storage.  

Table 7.2  Morphological features extracted from the scanning electron microscopic (SEM) 
images acquired at the low resolution for ‘Golden Delicious’ and ‘Granny Smith’ apple tissues.* 

Storage day First order histogram probability Fractal analysis parameters 
 Energy Entropy D dmin (pixel) dper (pixel) 

Golden Delicious 
Day  1 20352 4.942 2.589 40.68 159.4 
Day  8 17048 5.188 2.579 35.44 162.2 
Day 15 18098 5.300 2.571 29.77 164.8 
Day 22 17415 4.974 2.546 31.38 161.4 
Day 30 16800 5.276 2.561 33.51 173.7 
Granny Smith  
Day  1 15607 5.084 2.577 40.00 169.5 
Day  8 15936 5.239 2.622 42.09 182.3 
Day 15 13975 5.216 2.581 38.73 173.7 
Day 22 16998 5.283 2.608 42.60 168.4 
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Table 7.2 (cont’d) 

Day 30 18832 5.310 2.578 39.50 189.1 

*D is the fractal dimension at low scale, dmin is the parameter of the minimum elemental cell, 

and dper is the parameter of the periodical region at high scale.  

7.3.4 Correlations between Optical Properties and Mechanical/Structural Properties 

Table 7.3 shows correlation coefficients for the four optical parameters (µa, 675 nm, µs', 675 

nm, aµs' and bµs') with the acoustic and impact firmness (FI and IF) and Young’s modulus (E) for 

GD and GS apples, where µa, 675 nm and µs', 675 nm represent the absorption and reduced 

scattering coefficients at the wavelength of 675 nm, which is related to the chlorophyll 

absorption, and aµs' and bµs' are the parameters related to the µs' spectra (i.e., µs' = aµs'λ
-bµs'

, 

where λ is the wavelength in nm). Optical parameter µa, 675 nm was highly correlated with the 

acoustic and impact firmness (r=0.870 and 0.918, respectively) for GD; however, the correlations 

for GS were much lower (r=0.334 and 0.421 respectively). Scattering parameter µs', 675 nm 

generally had better correlation with acoustic and impact firmness for both cultivars (r=0.903-

0.993). Both µa, 675 nm and µs', 675 nm had much lower correlations with Young’s modulus for 

the two cultivars, although better correlations were obtained for GD than for GS (Table 7.3), 

which could have been due to the relatively small change of chlorophyll in GS apples during the 

storage. It should also be noted that the measurement of Young’s modulus was subject to error 

due to variations in the dimension and shape, and sampling position of tissue specimens, whereas 

acoustic measurements were taken for the entire fruit and, thus, were more consistent. 
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Table 7.3 Correlations of selected optical parameters with acoustic and impact firmness and 
Young’s modulus for ‘Golden Delicious’ and ‘Granny Smith’ apples.* 

Optical  
parameters 

Golden Delicious Granny Smith 
FI IF E FI IF E 

µa, 675 nm 0.870 0.918 0.585 0.334 0.421 0.292 

µs', 675 nm 0.903 0.932 0.766 0.993 0.992 0.694 

aµs' 0.948 0.939 0.947 0.902 0.941 0.584 

bµs' 0.924 0.938 0.804 0.974 0.974 0.620 

*µa, 675 nm and µs', 675 nm are absorption and reduced scattering coefficients at 675 nm, and aµs' 

and bµs' are the parameters related to the µs' spectra (µs' = aµs'λ
- bµs'

, where λ is the wavelength 
in nm); FI and IF are the acoustic firmness index and impact firmness index, respectively, and E 
is Young’s modulus. 

Since aµs' and bµs' are the two parameters in the wavelength-dependent exponential function 

for quantifying the entire µs' spectra, they should be more useful to characterize the main 

features of µs' spectra, compared with using single wavelengths. As expected, higher correlations 

between these two optical parameters and acoustic/impact firmness (r=0.902-0.974) were 

obtained. Likewise, better correlations of aµs' and bµs' with the Young’s modulus were also 

obtained, compared with µa, 675 nm and µs', 675 nm for GD, and compared with µa, 675 nm for 

GS.     

Correlations between the optical properties including transport mean free path (mfp) and 

tissue structural parameters (i.e., cell size parameters from CLSM images and fractal analysis 

parameters from SEM images) are shown in Table 7.4 and Table 7.5. The transport mean free 

path [or mfp = 1/(µa+µs')] represents the average path distance by moving photons between 

successive interactions with the fruit tissue. There were positive correlations between the optical 

parameters (i.e., µa, 675 nm, µs', 675 nm, aµs' and bµs', mfp) and cell size parameters (i.e., area, 
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equivalent diameter, major length, minor length and perimeter) for both cultivars. Values of the 

five optical parameters decreased with storage time, as the cell size decreased due to the 

disintegration and/or separation of cells. Better correlations (r = 0.843-0.955) were obtained 

between µa, 675 nm and cell size parameters for GD apples, which could have been attributed to 

the larger change in the absorption coefficient at 675 nm from day 1 to day 30, compared with 

GS apples. For GS apples, aµs' had better correlation (r = 0.876-0.906) with cell size parameters 

among the five optical parameters.  

Table 7.4 Correlations of optical parameters with the cell size parameters extracted from the 
confocal laser scanning microscopic images of ‘Golden Delicious’ and ‘Granny Smith’ apples. 

Optical  
parameter 

Area  Equivalent 
diameter 

Major length 
 

Minor length 
 

Perimeter
 

Golden Delicious 

µa, 675 nm 0.934 0.941 0.912 0.843 0.955 

µs', 675 nm 0.777 0.657 0.845 0.686 0.842 

aµs' 0.767 0.774 0.670 0.754 0.730 

bµs' 0.660 0.657 0.627 0.600 0.646 

mfp'675nm 0.830 0.872 0.890 0.728 0.891 
 
Granny Smith 

µa, 675 nm 0.630 0.607 0.593 0.613 0.547 

µs', 675 nm 0.581 0.572 0.716 0.372 0.681 

aµs' 0.903 0.906 0.891 0.876 0.902 

bµs' 0.850 0.845 0.796 0.861 0.796 

mfp'675nm 0.704 0.690 0.826 0.499 0.779 

Table 7.5 Correlation of optical parameters with the fractal analysis parameters extracted from 
the scanning electron microscopic images of ‘Golden Delicious’ and ‘Granny Smith’ apples. 

Optical parameter 
Golden Delicious Granny Smith 

dmin dper dmin dper 

µa, 675 nm 0.512 -0.820 0.740 -0.706 
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Table 7.5 (cont’d) 

µs', 675 nm 0.276 -0.755 0.517 -0.556 

aµs' 0.821 -0.572 0.244 -0.689 

bµs' 0.770 -0.582 0.549 -0.612 
 

The four optical parameters (not including mfp) were positively correlated with dmin,but 

were negatively correlated with dper (Table 7.5). dmin decreased with storage time due to the 

change of the cell size, while dper increased as a result of the rupture and clustering of cells, 

causing separation between the cell structures. These microstructural changes were primarily 

responsible for changes in the optical properties. However, correlations between the optical 

parameters and fractal analysis parameters from the SEM images were relatively low due to the 

high variability in the SEM images and fewer specimens used for each test date. Hence in further 

research, more specimens with greater physiological variations should be considered in order to 

more accurately quantify the relationship between the optical and microstrucultural parameters. 

7.4 Conclusions 

This research, for the first time, provided quantitative information on how the optical 

absorption and scattering properties were related to the elastic properties and the cellular 

structure of apples stored in a high temperature (~22 C)/high humidity (95%) environment. The 

µa value at 675 nm for both ‘Golden Delicious’ and ‘Granny Smith’ cultivars decreased 

consistently over 30 days of storage due to the decrease in chlorophyll-a, while the µa value 

increased around 525 nm, likely resulting from the increase in anthocyanin during the fruit 

storage. The reduced scattering coefficient of apple fruit also exhibited a consistent pattern of 
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change during storage; its value for the fresh apples was considerably higher than that for the 

stored apples for all test dates. The changes or decreases in the optical properties were 

accompanied with decreases in the acoustic/impact firmness, Young’s modulus, and cell size 

parameters with storage time. These changes were directly related to changes in the cellular 

structures/properties, primarily caused by the degradation of pectin and decrease in the molecular 

weight distribution of hemicelluloses (Harker et al., 1997). The optical parameters (i.e., µa, 675 

nm, µs', 675 nm, aµs', bµs', and mfp) had various degrees of correlation  with acoustic/impact 

firmness, Young’s modulus, and cell morphological parameters for both cultivars. These findings 

suggest the potential of using optical properties to study or monitor the mechanical properties 

and microstructural changes of apples during storage and/or in the softening or ripening process. 
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CHAPTER 8 DETERMINATION OF THE OPTICAL PROPERTIES OF TWO-LAYER 

TURBID MATEIRALS 

8.1 Introduction 

Previous studies have shown that hyperspectral imaging-based spatially-resolved technique 

is useful for determining the optical properties of fruits and food products that are approximately 

homogeneous. It is, however, desirable to consider fruit to be composed of two homogenous 

layers of skin and flesh in order to better quantify light propagation in the fruit and more 

accurately assess fruit quality attributes.  

Light transfer in two-layer media is more complex than in homogeneous media. Hence, 

determination of the optical properties of two-layer media entails great challenges both 

mathematically and experimentally. A two-layer diffusion model has four (or five) property 

parameters (i.e., µa and µs' of each layer, plus the unknown thickness of the first layer). 

Parameter estimation accuracy, computational time, and model efficiency must be considered in 

the development of an inverse algorithm for layered media. Several studies have provided 

analytical solutions to the diffusion equations for layered media (Alexandrakis et al., 2001; 

Hollmann and Wang, 2007; Kienle et al., 1998b; Schmitt et al., 1990). Numerical methods (e.g., 

Monte Carlo, asymptotic approximation, and finite element) have also been used to extract 

optical properties from the diffusion models (Gonzalez-Rodriguez and Kim, 2008; Schweiger 

and Arridge, 1997; Seo et al., 2007). Kienle et al. (1998b) derived an analytical form of the two-

layer diffusion model, which enables fast forward computation and inverse algorithm 

implementation to estimate the optical properties. The increased number of free parameters in the 

two-layer model can dramatically increase computational time, exacerbate the process of 



165 

estimating the optical parameters, and/or cause convergence problems for the inverse algorithm. 

It is thus important to understand the intrinsic properties of the diffusion model and evaluate the 

feasibility of estimating all parameters simultaneously prior to implementing an inverse 

algorithm.  

Therefore, the overall objective of this research was to explore the feasibility of determining 

the optical properties of the surface layer (skin) and subsurface layer (flesh) for those fruits and 

food products that can be modeled as two-layer homogeneous media. The specific objectives 

were to: 1) perform sensitivity coefficient analysis and develop an inverse algorithm for a two-

layer diffusion model to estimate the optical properties of each homogeneous layer; 2) create 

solid model samples and measure their optical properties using an integrating sphere method; 

and 3) validate the diffusion model and the inverse algorithm using Monte Carlo simulations and 

experimental data acquired from the model samples using hyperspectral imaging-based spatially-

resolved technique.  

8.2 Materials and Methods 

8.2.1 Two-layer Diffusion Model 

Consider a two-layer turbid medium which is impinged upon perpendicularly by an 

infinitely small light beam. The thickness of the first layer (d) is assumed to be larger than one 

transport mean free path of the first layer [ 0 1 11/ ( ')a sz    , in which µa1 and µs1' are 

absorption and reduced scattering coefficients of the first layer]. Under steady-state condition, 

the fluence rate, defined as the irradiance that is incident from all solid angles onto a small 

sphere in a two-layer turbid medium, is given by (Kienle et al., 1998b)   

 2
1 1 1 1 0( ) ( ) , , 0aD x y z z z d         r r                               (8.1) 
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2
2 2 2 2( ) ( ) 0aD d z     r r                                 (8.2) 

where i  is the fluence rate of layer i , and 1 / [3( ')]i ai siD     is the diffusion constant. 

Equations (8.1) and (8.2) can be converted to ordinary differential equations using a two-

dimensional Fourier transform (1998b). The following boundary conditions are applied for 

obtaining solutions for the fluence rates [ ( , )i z s ] of each layer on the frequency domain 

(Haskell et al., 1994; Kienle et al., 1998b): the same refractive index for the first layer and 

second layer, the zero fluence rate at the extrapolated boundary, a finite photon fluence rate as 

z   , and the continuity of fluence rate at the boundary between the first and second layer.  

After the differential equations in the frequency domain are solved, the two-dimensional 

inverse Fourier transform is implemented to obtain the following fluence solution on the 

Cartesian coordinate system: 

 
 

 1 2 1 2 02 0

1 1
( , ) ( , ) exp ( , ) ( )

22
i i ir z z s i s x s y ds ds z s sJ sr ds 



  

 
              (8.3)                  

where 2 2 1/2( )r x y  , and 0J  is the zeroth-order Bessel function. This inverse transform is 

achieved by numerically evaluating the integral using an adaptive Gauss-Kronrod quadrature 

(Shampine, 2008). Spatially-resolved diffuse reflectance R(r) is obtained from the integration of 

radiance over the solid angle accepted by the fiber. Then, the final solution of the two-layer 

diffusion model is given as (Kienle et al., 1998b) 

   2 1 1 2 1 1
0

( ) , 0 ,layer
z

R r C r z C D r z
z




    


                             (8.4) 

The details related to the parameters C1 and C2 can be found in Chapter 3. Based on equation 

(8.4), the diffuse reflectance R(r) at the surface of the two-layer turbid medium is a function of 

the source-detector distance (r) as well as five unknown optical parameters of the two layers and 
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the thickness of the first layer (µa1, µs1', µa2, µs2', and d, where µa2 and µs2' are absorption and 

reduced scattering coefficients of the second layer). Researchers have used the two-layer model 

[equation (8.4)] to model photon propagation in turbid media under steady-state conditions 

(Hollmann and Wang, 2007; Kienle et al., 1998b; Tseng et al., 2008). 

8.2.2 Model Samples Preparation and Measurement  

To investigate the feasibility of the two-layer diffusion model and test the performance of 

the hyperspectral imaging system for measuring the optical properties of two-layer materials, the 

two-layer model samples were created, which were made up of two-component room-

temperature-vulcanizing silicone (part A + part B, ELASTOSIL®RT 604, Wacker Chemie AG, 

Munich, Germany) as the host, aluminum oxide particles (Al2O3, Duke Scientific, Fremont, 

California, USA) as scattering materials, and blue dye (Direct Blue 71, Sigma-Aldrich, St. Louis, 

MO, USA) as absorbers. The stock solution of blue dye was prepared in ethanol with the 

concentration of 0.6 mg/L. The solution of the absorber was mixed with 360 g part A of silicone 

with a stirrer and heated gently for several hours to remove the ethanol. The scattering materials 

were dispersed in 40 g part B of silicone and put in the sonicator for several minutes to break up 

large particles. Then, these components were mixed together and the bubbles produced in the 

process of mixing were removed in the vacuum chamber. Two silicone mixtures were made by 

adding different absorbing stock solutions (34 mL and 27 mL) and scattering materials (8 g and 5 

g). Two cylindrical model samples with a diameter (D) of 81 mm and a height (h) of 57 mm and 

two disk samples of 81 mm diameter and a height of 2.64 mm and 3.29 mm respectively were 

created by pouring the mixtures into the plastic cylindrical and disk modes. One disk sample 

corresponded to one cylindrical sample with the same optical properties. Finally, the two-layer 
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model samples were obtained by attaching a disk sample with different optical properties onto a 

cylindrical sample. These two model samples would satisfy the assumption for the two-layer 

diffusion model with a limited thickness of the first layer and semi-infinite second layer. 

An integrating sphere system, which has been used as a standard method for measuring the  

optical properties of solid turbid samples in many reported studies (Prahl et al., 1993; Saeys et al., 

2008),  was used to obtain reference values of the absorption and reduced scattering coefficients 

for each layer of the two model samples. Total diffuse reflectance and transmittance 

measurements were performed on the two model disk samples of 3.29 mm and 2.64 mm thick, 

respectively, using the same configurations shown in Figure 4.4 in Chapter 4. An inverse adding-

doubling algorithm was used to calculate the scattering and absorption coefficients of the model 

samples based on the total reflectance and transmittance. A detailed description of the method 

can be found in Prahl et al. (1993). 

8.3 Validation of the Two-layer Diffusion Model and Inverse Algorithm 

Like the single-layer diffusion model described in Chapter 3, the sensitivity analysis was 

also performed, and sensitivity coefficients were first calculated for each of the four optical 

parameters (i.e., the absorption and reduced scattering coefficients for each layer) by the 

following equations, which were derived from equation (2.29): 

ai ai
ai

R
R 







                                                                 (8.5) 

' '
'si si

si

R
R 







                                                               (8.6) 

where  µai and µsi' are the absorption and reduced scattering coefficients of layer i. 
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For accurate determination of the optical properties of fruit and food samples, the diffusion 

model and the inverse algorithm were then validated by Monte Carlo simulations. A publicly 

available MC simulation program for multi-layered media was used (Wang et al., 1995b). The 

low-noise reflectance generated by MC simulation provided an ideal measurement without 

experimental uncertainties. A total of 3×10
6
 photons were used to produce the reflectance for a 

spatial distance of 0.1-10 mm at 0.1 mm spatial resolution for both radial distance and depth. 

Four different combinations of µa1, µs1', µa2, and µs2' were selected, which span a large range of 

values: 0.05 ≤ µa ≤ 2.60 cm
-1 and 12 ≤ µs' ≤ 36 cm

-1
. These values were selected based on the 

published data for fruit skin and flesh (Budiastra et al., 1998; Saeys et al., 2008). The diffusion 

model was first compared with MC simulation for generating spatially-resolved reflectance 

profiles for a two-layer medium with the selected values for the four optical parameters. Then, 

the MC generated reflectance profiles were fitted by the inverse algorithm of the two-layer 

diffusion model, from which the optical properties for each layer were determined. MC 

simulations of light propagation in a two-layer turbid medium introduced small stochastic 

variability in the calculated reflectance for any given set of optical properties. The resulting 

variability was less than 1.7% in 20 simulations for each set of optical properties.  

The diffusion model and inverse algorithm were further validated with experimental data 

obtained from the two-layer model samples using the laboratory hyperspectral imaging system 

(Figure 4.1), following the same procedures for liquid model samples described in Section 4.2.1. 

The time required for each scan of the two-layer mode sample was 100-200 ms. Two cases were 

considered: 1) only two unknown optical parameters for one of the two layers with known 

optical properties for the other layer, and 2) four unknown optical properties for both layers. 
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Finally, the optical properties of the model samples estimated by the inverse algorithm were 

compared with those measured using the integrating sphere method. 

8.4 Results and Discussion 

8.4.1 Monte Carlo Simulations of Spatially-resolved Diffuse Reflectance 

Figure 8.1 compared diffuse reflectance from the two-layer diffusion model and MC 

simulations for the four sets of optical properties (µa1/µa2 = 0.50 and µs1'/µs2' = 0.86, µa1/µa2 = 

6.50 and µs1'/µs2' = 1.80, µa1/µa2 = 0.80 and µs1'/µs2' = 1.58, µa1/µa2 = 2 and µs1'/µs2' = 0.75). 

The reflectance profiles calculated from the diffusion equation matched those from the MC 

simulations. The differences for the given values of optical properties used in Figure 8.1(a), (c) 

and (d) were less than 6% for source-detector distances greater than 1.5 mm. For case 2 with 

µa1/µa2 = 6.50 and µs1'/µs2' = 1.80 [Figure 8.1(b)], the average difference was 12%, greater than 

those for the other three cases. This was likely due to low levels of diffuse reflectance resulting 

from high absorption of both layers. Larger deviations of reflectance were observed when the 

detector was close to the light source (less than one transport mean free path), because the 

diffusion approximation is not valid in this situation. These results indicate that overall the 

diffusion model accurately quantifies light propagation in two-layer turbid media. 
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Figure 8.1 Comparison of spatially-resolved diffuse reflectance obtained from the two-layer 

diffusion model (symbols) and Monte Carlo simulations (solid lines): (a) µa1/µa2 = 0.50 and 

µs1'/µs2' = 0.86 (0.05, 12, 0.10, 14, 1), (b) µa1/µa2 = 6.50 and µs1'/µs2' = 1.80(2.60, 36, 0.40, 20, 

0.5), (c) µa1/µa2 = 0.80 and µs1'/µs2' = 1.58 (0.32, 19, 0.40, 12, 1), and (d) µa1/µa2 = 2 and 

µs1'/µs2' = 0.75 (1.00, 15, 0.50, 20, 1). Values in the parentheses are µa1, µs1', µa2, µs2', d with 

the units of cm
-1 for optical properties and mm for the thickness of the first layer. 

8.4.2 Sensitivity Coefficient Analysis 

The scaled sensitivity coefficients for the absorption and reduced scattering coefficients of 

the two layers were calculated as functions of the source-detector distance for the corresponding 

diffuse reflectance profiles (Figure 8.2). For the four combinations of optical properties 

discussed in this study, the magnitudes of the reduced scattering sensitivity coefficients are 
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almost equal to those of R, while the sensitivity coefficients of absorption are relatively smaller, 

especially in Figure 8.2(a) because of the small values of the selected absorption coefficients in 

this case. For the other three combinations, the sensitivity coefficients of absorption are still on 

the same order of R at the large source-detector distances. Also it is noted that the shapes of the 

four sensitivity coefficients are quite different. These observations show that the four sensitivity 

coefficients of µa1, µs1', µa2, and µs2' are ‘large’ (i.e., on the order of R) and uncorrelated 

(different shapes), which are desirable conditions for estimating these parameters. Since the 

reduced scattering sensitivity coefficients are larger in magnitude than the absorption sensitivity 

coefficients in Figure 8.2, on average µsi' should be estimated more accurately than µai for such 

model. 

 

Figure 8.2 Scaled sensitivity coefficients as functions of source-detector distances for four 

combinations of optical properties (a) µa1/µa2 = 0.50 and µs1'/µs2' = 0.86 (0.05, 12, 0.10, 14, 1), 

(b) µa1/µa2 = 6.50 and µs1'/µs2' = 1.80 (2.60, 36, 0.40, 20, 0.5), (c) µa1/µa2 = 0.80 and µs1'/µs2' = 

1.58 (0.32, 19, 0.40, 12, 1), and (d) µa1/µa2 = 2 and µs1'/µs2' = 0.75 (1.00, 15, 0.50, 20, 1), and 

the values in the bracket are µa1, µs1', µa2, µs2', d with the unit cm
-1 for optical properties and 

mm for the thickness of the first layer (‘-’, ‘·’, ‘+’, ‘ₒ’, and ‘∆’denote reflectance, and scaled 

sensitivity coefficients of µa1, µs1', µa2, and µs2', respectively). 
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Figure 8.2 (cont’d) 

   

The effect of the thickness of the first layer on the sensitivity coefficients of optical 

properties is presented in Figure 8.3 for four different thicknesses of the first layer with the same 

optical properties. Values for the four sensitivity coefficients vary with the thickness (d) that 

changes from 0.85 mm to 6 mm. For the thin thickness of the first layer, it is easy to estimate 

optical properties of the second layer. While for the larger d, it is more difficult to obtain 

accurate estimations of optical properties of the second layer due to small sensitivity coefficients 

for µa2 and µs2'. This may be explained by the fact that only a small number of photons 

propagating through the second layer are remitted when the first layer is relatively thick. 

 

Figure 8.3 Scaled sensitivity coefficients as functions of source-detector distances for µa1 = 0.05 

cm
-1

, µs1' = 12 cm
-1

, µa2 = 0.10 cm
-1

, µs2' = 14 cm
-1

, and the thickness of the first layer:  (a) d = 
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0.85 mm, (b) d = 2 mm, (c) d = 4 mm, and (d) d = 6 mm (‘-’, ‘·’, ‘+’, ‘ₒ’, and ‘∆’denote 

reflectance, and scaled sensitivity coefficients of µa1, µs1', µa2, and µs2', respectively). 

Figure 8.3 (cont’d) 

 

8.4.3 Extraction of Optical Properties from Monte Carlo Simulation Data 

When the optical properties of the second layer and the thickness of the first layer are treated 

as known, the inverse algorithm gives almost zero errors in estimating absorption and reduced 

scattering coefficients for the first layer from the noiseless reflectance data produced by the 

diffusion model. These results indicate that it is possible to accurately estimate two optical 

parameters in the diffusion model using nonlinear least squares method.  

Figure 8.4 shows the estimated absorption and reduced scattering coefficients of the first 

layer from the two-layer diffusion model fitted to the MC data that has a noise level of 2%. For 

case 1 [Figure 8.4(a)], the actual value of µa1 varies between 0.20 to 1.20 cm
-1 with µs1' = 12 

cm
-1

, µa2 = 0.50 cm
-1

, µs2' = 11 cm
-1

, and d = 2 mm. The average errors of estimating µa1 and 

µs1' are 4.2% and 4.1% compared with the true values. While for case 2 [Figure 8.4(b)], µs1' 

changes in the range of 15-45 cm
-1 with the fixed values of µa1, µa2, µs2' and L. The average 
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errors are 12.7% for µa1 and 5.8% for µs1'. The optical parameters of the second layer were also 

estimated with the optical parameters and the thickness of the first layer being treated as known. 

For the same combination of the optical parameters as in case 1, the average errors are 10.0% for 

µa2, and 9.3% for µs2', higher than those for case 1. The statistic uncertainty of MC simulations 

reduces the accuracy of the inverse algorithm for parameter estimations compared with the 

fitting results using the noiseless diffusion model-generated data. 

(a) 

 

Figure 8.4 Estimated absorption and reduced scattering coefficients of the first layer from fitting 

the diffusion model to the Monte Carlo simulation data: (a) µa1 varies 0.20 - 1.20 cm
-1 with µs1' 

= 12 cm
-1

, µa2 = 0.50 cm
-1

, µs2' = 11 cm
-1

, and d = 2 mm, and (b) µs1' varies 15-45 cm
-1 with 

µa1= 0.10 cm
-1

, µa2 = 0.05 cm
-1

, µs2' = 11 cm
-1

, and d = 2 mm. 
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Figure 8.4 (cont’d) 

(b) 

 

The four optical parameters of µa1, µs1', µa2, µs2'  were also estimated simultaneously with 

the known d, and the same four sets of optical properties (µa1/µa2 = 0.50 and µs1'/µs2' = 0.86, 

µa1/µa2 = 6.50 and µs1'/µs2' = 1.80, µa1/µa2 = 0.80 and µs1'/µs2' = 1.58, µa1/µa2 = 2 and 

µs1'/µs2' = 0.75) shown in Figure 8.1 were used. The average errors of estimating µa1, µs1', µa2, 

and µs2' from the reflectance generated by the diffusion model are 1.4%, 0.01%, 0.4% and 0.1%, 

respectively, which shows that the inverse algorithm can accurately estimate four parameters 

based on the noiseless data. Mean and maximum errors in the estimated absorption and reduced 

scattering coefficients of both layers from the MC generated reflectance are presented in Figure 

8.5. The mean errors for estimating the first layer’s optical properties are 14.5% and 8.1% for the 

absorption and reduced scattering coefficients, respectively. For the second layer, the mean 
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errors are 29.3% and 9.1% for the absorption and reduced scattering coefficients, respectively. 

The relatively smaller errors are obtained for the optical parameters of the first layer compared 

with those in the second layer, and the errors of estimating the reduced scattering coefficients are 

smaller than those for the absorption coefficients. The maximum error for µa2 reaches 40%, two 

to four times greater than that for the other three parameters. The relative scales of the estimation 

errors for the four optical parameters are in agreement with the findings from the sensitivity 

analysis. Comparison of the results for estimation of two and four parameters demonstrates that 

the errors increased with the number of parameters to be estimated in the two-layer model. Also, 

to obtain a good estimation, the signal-to-noise ratio must be considered in the measurement of 

the reflectance.  

 

Figure 8.5 Relative errors of estimating the optical properties of two layers from the Monte Carlo 

diffuse reflectance for four combination sets of optical properties: µa1/µa2 = 0.50 and µs1'/µs2' = 
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0.86 (0.05, 12, 0.10, 14, 1), µa1/µa2 = 6.50 and µs1'/µs2' = 1.80 (2.60, 36, 0.40, 20, 0.5), µa1/µa2 

= 0.80 and µs1'/µs2' = 1.58 (0.32, 19, 0.40, 12, 1), and µa1/µa2 = 2 and µs1'/µs2' = 0.75 (1.00, 15, 

0.50, 20, 1). Values in the parentheses are µa1, µs1', µa2, µs2', d with the units of cm
-1 for optical 

properties and mm for the thickness of the first layer. 

8.4.4 Optical Properties of Model Samples Measured with Integrating Sphere 

Values of the absorption and reduced scattering coefficients for the two model disk samples 

measured using the integrating sphere at wavelengths of 500-1,000 nm are shown in Figure 8.6. 

Light absorption by the blue dye absorber is observed at 535 nm for both samples. The 

absorption peak around 910 nm was caused by the silicone. The reduced scattering spectra are 

relatively flat compared with the absorption spectra of the model samples. The standard method 

has good repeatability of measuring the model samples, whose variation coefficients for the 

absorption and reduced scattering coefficients from four replicated measurements are 2.4% and 

2.3%, respectively. The optical properties of the two-layer model samples at 535 nm and 700 nm 

are listed in Table 8.1; they were used as the true optical values when compared with those 

obtained from the spatially-resolved technique with the inverse algorithm. 

(a) 

Figure 8.6 Absorption and reduced scattering spectra of the homogenous model disk samples 
measured by the integrating sphere. 
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Figure 8.6 (cont’d) 

(b) 

 

Table 8.1 Optical properties of two two-layer model samples at the wavelengths of 535 nm and 
700 nm determined by the integrating sphere and the adding-doubling method (Prahl et al., 1993).  

Model 
sample 

Wavelength 
(nm) 

µa1 

(cm
-1) 

µs1' 

(cm
-1) 

µa2 

(cm
-1) 

µs2' 

(cm
-1) 

d 
(mm) 

Sample 1 535 0.51 12.97 0.45   8.08 2.64 
700 0.18 11.72 0.13   7.29 

Table 8.1 (cont’d) 

Sample 2 535 0.45   8.08 0.51 12.97 3.29 
700 0.13   7.29 0.18 11.72 

 

8.4.5 Optical Properties of Model Samples Determined from Hyperspectral Imaging 

Measurements 

Figure 8.7 shows the measured reflectance profiles of the two two-layer model samples at 

wavelengths of 535 nm and 700 nm, and also the theoretical profiles calculated from the two-

layer diffusion model using the optical parameters given in Table 8.1. These two particular 

wavelengths were selected in this study because they represented the lower and upper range of 

values for the absorption and scattering coefficients for the model samples over the spectral 

range of 500-1,000 nm (Figure 8.6). Hence the estimation errors for the two wavelengths should 
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be representative for the other wavelengths. Because the diffuse reflectance profiles from the 

experiment and the diffusion model were not on the same scale, the profiles were normalized at a 

distance of 1.5 mm. As shown in Figure 8.7, the experimental measurements covering the 

source-detector distance from 1.5 mm to 10 mm are in good agreement with the theoretical 

predictions. However, differences between the measurements and predictions become larger at 

distances close to the source due to the violation of diffusion theory assumptions. 

(a)                                                                         (b) 

(c)                                                                        (d) 

Figure 8.7 Comparison of diffuse reflectance from measurements (symbols) and the two-layer 
diffusion model (solid lines) for sample 1 at 535 nm (a) and 700 nm (b), and sample 2 at 535 nm 
(c) and at 700 nm (d) (See Table 8.1 for the two samples). 

Figure 8.8 shows estimated values for the absorption and reduced scattering coefficients of 

the first layer when the optical properties of the second layer and the thickness of the first layer 
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are considered as known parameters. The errors of estimating µa1 and µs1' of the model samples 

are 11.3-23.0% and 3.8-18.4%, respectively. Overall, relatively small values of the optical 

coefficients produce larger errors in the estimation of the optical properties (values of µa1 and 

µs1' at 700 nm are less than those at 500 nm). While the results are worse than those obtained 

from the MC simulations, they are better than those reported by Kienel et al. (1998b) for two-

layer turbid media with the errors in µa of 6-24% and in µs' of 0-88%.  

 

Figure 8.8 Relative errors of the estimated optical properties for two model samples (denoted as 
S1 and S2) at wavelengths of 535 nm and 700 nm (see Table 8.1 for the optical property data for 
the two model samples). 

    When the optical properties of the second layer are considered as only unknown and those 

of the first or upper layer are treated as known, the inverse algorithm does not give reasonable 

estimates. This may have been attributed to the effect of the relatively thick first layer (2.64 mm 
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and 3.29 mm). These results suggest that the two-layer model coupled with the hyperspectral 

imaging technique can be used to obtain the optical properties of fruit skin with the thickness 

similar to those studied in this research. However, further study is needed to determine if the 

method is also suitable for thin-skin fruit like apple. Unsatisfactory results for estimating the 

optical properties of the lower or second layer for the model samples suggest that further 

improvements in the method are needed in order to measure the optical properties of both fruit 

skin and flesh simultaneously.   

8.5 Conclusions 

This research has demonstrated a methodology for determining the optical properties of two-

layer turbid materials, using a steady-state diffusion model for spatially-resolved reflectance 

acquired by a hyperspectral imaging system. The diffusion model accurately described light 

propagation in two-layer turbid media. Accurate estimations for two and four parameters were 

achieved based on the noiseless data from the diffusion model. The inverse algorithm also gave 

good estimates of two unknown optical parameters of the first layer or the second layer for MC 

generated reflectance data, with errors of 8.5% for µa1 and 5.0% for µs1', 10.0% for µa2 and 9.3% 

for µs2'. The errors, however, were greater in estimating four optical parameters. Experimental 

validation with the model samples showed larger errors (11.3-23.0% for µa1 and 3.8-18.4% for 

µs1') in estimating the optical properties of the first layer.  

Satisfactory results can be achieved when two unknown parameters for the first or upper 

layer are to be determined. While the results for determining the two optical parameters of the 

second or lower layer of the model samples are still unsatisfactory, Monte Carlo simulations for 
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ideal samples suggest that it is possible to accurately estimate the optical properties of both 

layers simultaneously. Hence further study should be focused on improving the reflectance 

measurement by the hyperspectral imaging system and the inverse algorithm. To accurately 

evaluate the diffusion model for determining the optical properties of two-layer samples, it is 

important that standard model samples with known optical properties be made available for 

calibrating or validating the inverse algorithm. Efforts should also be made to reduce the 

computational complexity and time for estimating the four optical parameters plus the thickness 

of the first layer simultaneously. 
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CONCLUSION AND FUTURE RESEARCH 

This dissertation research has made significant progress in the development of new methods 

and techniques for optical characterization and nondestructive quality evaluation of horticultural 

products. A hyperspectral imaging-based spatially-resolved technique, along with a bench-top 

optical property measuring prototype, was developed, through optimization of the inverse 

algorithm and optical designs, to accurately and reliably measure the optical absorption and 

scattering properties of horticultural and food products. The instrument was used for measuring 

the optical properties of apple and peach and for assessing their maturity/quality attributes. 

Moreover, research was conducted in quantification of the relationships of the optical properties 

with the mechanical properties and microstructural characteristics of apples that were subject to 

accelerated softening in a high temperature (~22 ºC)/high humidity (95%) environment. Further 

study was also carried out to evaluate the feasibility of determining the optical properties of two-

layer media representing fruit skin and flesh. The following major conclusions were drawn from 

the research: 

(1) An inverse algorithm for estimating the absorption and reduced scattering coefficients from 

spatially-resolved reflectance profiles based on a single-layer diffusion model was developed 

and optimized by using data transformation and weighting methods. The logarithm and 

integral transformation of the original data and the relative weighting method greatly 

improved the estimations of the two optical parameters with the relative errors of 10.4%, 

10.7%, and 11.4% for µa, and 6.6%, 7.0% and 7.1% for µs' for liquid model samples made 

up of dye and intralipid, which were much smaller than those obtained from the original 

diffusion model. Further statistical analysis showed that the logarithm transformation and 
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relative weighting methods improved the inverse algorithm for more reliable estimation of 

the two optical parameters.  

(2) Main optical design factors, including light beam and source-detector distance, in the 

development of hyperspectral imaging-based spatially-resolved technique were examined 

and optimized through Monte Carlo (MC) simulation and experimental studies. To achieve 

the best performance of the system, the light beam should be of circular shape and Gaussian 

type with the diameter of less than 1 mm, the optimal minimum source-detector distance 

should be about 1.5 mm, and the optimal maximum source-detector distance should be 

equivalent to 10-20 mfp' or determined by the minimum signal-to-noise ratio of 20 (or 150 

CCD counts for the system used in this research).  

(3) A new multi-purpose Optical Property Analyzer (OPA) prototype was designed and 

constructed, based on the optimization studies, for optical characterization and hyperspectral 

imaging of biological materials for the spectral region of 500-1,000 nm. Software 

incorporating two popular diffusion models (Farrell et al., 1992; Kienle and Patterson, 1997) 

with the corresponding inverse algorithms was developed for the system control and 

automatic imaging acquisition and optical properties computation. The OPA was extensively 

tested and evaluated for measurement accuracy, precision/reproducibility, and sensitivity 

using liquid model samples with known optical properties. The test results showed that the 

OPA has achieved acceptable accuracies for the absorption and reduced scattering 

coefficients, which are either comparable or superior to other reported studies using more 

sophisticated time-resolved, frequency-domain, or other types of spatially-resolved 

instruments. 
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(4) Spectra of the absorption and reduced scattering coefficients for one cultivar of peach and 

two cultivars of apple were determined for the spectral region of 500-1,000 nm using the 

Optical Property Analyzer. The absorption spectra of fruit were shaped by major pigments 

(i.e., chlorophyll and anthocyamin) and water in the fruit tissue, while the reduced scattering 

spectra decreased steadily with the increasing wavelength for most of the fruit samples. The 

best prediction results for peach fruit were obtained with the combinations of absorption and 

scattering spectra, with values of the correlation coefficient (r) for Magness-Talyor firmness, 

soluble solids content (SSC), the skin color parameter (L
*
) and the flesh color parameter (L

*
) 

being 0.724 (SEP = 18.13 N), 0.458 (SEP = 0.96 °Brix), 0.893 (SEP = 3.54), and 0.722 (SEP 

= 3.32), respectively. For the apple study, the best firmness prediction was obtained with r = 

0.892 (SEP = 7.89 N) for ‘Golden Delicious’ (GD) and r = 0.863 (SEP = 8.94 N) for 

‘Delicious’ (RD). The best result for SSC was achieved for the freshly harvested group with r 

= 0.791 (SEP = 0.69 °Brix) for GD and r = 0.842 (SEP = 0.73 °Brix) for RD. It demonstrated 

that measurement of optical properties provides a new means for quantifying the quality of 

fruit. 

(5) The absorption and reduced scattering coefficients, acoustic/impact firmness, Young’s 

modulus, and cell size for GD and ‘Granny Smith’ apples all decreased with time when they 

were subject to accelerated softening at high temperature(~22 C)/high humidity (95%). The 

decreases were caused by changes in the cellular structure and properties, primarily resulting 

from the degradation of pectin and decrease on the molecular weight distribution of 

hemicelluloses (Harker et al., 1997). Various correlations for the optical parameters with 

acoustic/impact firmness, Young’s modulus, and cell size and morphological parameters 

were found. These findings suggest the potential of using optical properties to study or 
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monitor changes in the mechanical properties and physiological condition of apple fruit 

during storage or in the softening process. 

(6) The inverse algorithm of the two-layer diffusion model gave good estimates of two unknown 

optical parameters of the first layer or the second layer for MC generated reflectance data, 

with errors of 8.5% for µa1 and 5.0% for µs1' for the first or top layer, and 10.0% for µa2 and 

9.3% for µs2' for the second or substrate layer. The errors, however, were considerably 

greater in estimating the four optical parameters. Experimental validation with the solid 

model samples showed larger errors (11.3-23.0% for µa1 and 3.8-18.4% for µs1') in 

estimating the optical properties of the first layer.   

The results and findings from this research provide a fundamental understanding of optical 

characterization of biological materials, and a systematic guide in designing spatially-resolved 

optical systems for nondestructive quality measurement of horticultural and food products. The 

new optical property measuring instrument developed in this research can have applications for a 

wide range of food and biological materials. The following are recommendations for future work: 

(1) It is much more difficult to tackle inverse light transport problems than forward problems. 

Therefore, attention should be paid to studying the characteristics and complexity of the 

diffusion model when it is used in an inverse algorithm for estimating optical parameters. 

This research was based on the diffusion model with several assumptions (i.e., scattering-

dominant, isotropic source, and source-detector distance greater than one transport mean free 

path). Further work is needed to extend the diffusion model to different biological materials 

and expand its scope of application. 
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(2) Although the optical system and algorithm of the OPA has been carefully evaluated and 

optimized using the model samples, other factors such as roughness and possible geometric 

irregularities on the surface of fruit should be studied for their effect on the optical properties 

measurement and on maturity/quality assessment of fruit. 

(3) This research has shown that the optical properties were correlated with the cell size and 

cellular structures of fruit tissue. To better quantify the interaction of light with plant tissue, it 

would be useful to consider a multi-scale approach (Kienle et al., 2007) for describing the 

light propagation in different volumes of biological tissue at macroscopic and microscopic 

scales, respectively. 

(4) Based on the preliminary study of the two-layer diffusion model for determining optical 

properties of fruit skin and flesh, further efforts should be made to develop light propagation 

models and optical techniques for measuring the optical properties of heterogeneous or multi-

layer biological materials, as well as to reduce the computational complexity and time for 

estimating the absorption and reduced scattering coefficients. 

(5) The OPA is a general-purpose optical instrument designed for measuring a wide range of 

biological materials. To expand its application to other areas and other agricultural and food 

products, the OPA should be further evaluated for its stability, accuracy, and measurement 

limit.  
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