A MATHEMATICAL TNVESTIGATION OF THE ERECT QF TUBR SPACING, EXCBSS ARR, ANB BRIDCEWAA ANB STACK THMPRKATURH UPON P1P: 97ILL DREIGN

Thasis for the Dagroe of M. S. MCHCAN STATE UNVHRSITY William Vere B'As, Sanders

7961

This is to certify that the

thesis entitled

Abstract

A Mathematical Investigation of the Effect of Tube Spacing, Excess Air, and Bridgewall and Stack Temperatures Upon Pipe Still Design

presented by

William Vere D'A. Saunders

has been accepted towards fulfillment
of the requirements for
M.S._ degree in Chemical Engineering

Date March 14, 1961

ABSTRACT

A MATHEMATICAL INVESTIGATION OF THE EFFECT OF TUBE SPACING, EXCESS AIR, AND BRIDGEWALU AND STACK TEMPERATURES UPON PIPE STIIL DESIGN

by William Vere D'A. Saunders

A mathematical model is presented for use in the design of petroleum furnaces. This model includes the requirements of heat load and pressure drop. A program for the solution of the design equations has been prepared, and solutions were obtained for specific furnace requirements by varying tube spacings, per cent excess air, and bridgewall and exit stack temperatures.

In order to predict pressure drop in the presence of twophase flow an equation similar to the Fanning equation was developed. It is difficult to judge the reliability of this equation because data was not available.

Furnace designs obtained were correlated in terms of the distribution of heat loads to radiant and convection sections, and were plotted as functions of the bridgewall and exit stack temperatures. Radiant heat transfer rates were related to the fraction of the total heat input absorbed in the radiant section. This correlation included the effect of tube spacing.

The principal significance of excess air is its effect on the fraction of total heat input absorbed in the radiant section. At a fixed bridgewall temperature and normal conditions of operation, this fraction can be increased by a factor of approximately 1.5 with a 50 per cent decrease in the excess air.

A MATHEMATICAL INVESTIGATION OF THE EFFECT OF TUBE SPACING, EXCESS AIR, AND BRIDGEWALL AND STACK TEMPERATURES UPON PIPE STILL DESIGN

By

William Vere D'A. Saunders

A THESIS

```
Submitted to
Michigan State University in partial fulfillment of the requirements for the degree of
```

MASTER OF SCIEITCE

Department of Chemical Engineering

ACKNOWLEDGEMENT

The author wishes to express gratitude to Professor J. W. Donnell for his help and guidance during the course of this investigation.

Appreciation is also given to the Computer Laboratory staff, particularly Dr. M. G. Keeney, for their patience and help in making MISTIC available to the author.
Page
Abstract
Acknowledgement ii
List of Figures iv
List of Tables v
List of Appendices vi
Introduction 1
Tube Still Heaters 3
History and Development 3
Development and Selection of Equations 9
Radiation 9
Convection 16
Heat Balances 18
Continuous Balance Vaporization - Per Cent Vaporized 20
Physical Properties of the Crude 21
Calculation of the Density of the Crude
at any Temperature 21
Thermal Conductivity of Petroleum Liquids 22
Pressure Drop Calculations 22
Statement of the Problem 25
Restrictions and Limitations 25
Results of Calculations 27
Discussion of Results 33
Conclusions and Recommendations 40

LIST OF FIGURES

Figure Page
1 Box Type Furnace 7
2 Types of Pipestill Heaters 8
3 Radiation Between a Plane and One Tube Row Paralle1 to the Plane 13
4 Variation in Q_{r} / Q_{c} With Exit Stack Temperature 35
5 Variation in Q_{r} / Q_{c} With Exit Stack Temperature 36
6 Variation in Q_{r} / Q_{c} With Exit Stack Temperature 37
7 Per Cent Excess Air Versus Fraction of Total Heat Absorbed in Radiant Section 38
8 Fraction of Total Heat Absorbed in Radiant Section vs $Q_{t} / \alpha_{c p}$ 39
9 Calculations Flow Around One Tube Increment 48
10a F1ow Diagram-Convection Section 54
10B F1ow Diagram-Convection Section 55
10C F1ow Diagram-Radiant Section 56
10D F1ow Diagram-Radiant Section 57
11 True Boiling Point Curve and Gravity Profile for Crude 67
12 Flash Curve 68

LIST OF TABLES

TablePageI. Mean Length of Radiant Beams in Various Gas Shapes 11
II. Service Requirements of Furnace 28
III. Results of Calculations 29
IV. Results of Calculations 32
V. Polynomials for the Evaluation of ψ 105
VI. Molar Heat Capacities of Flue Gas Components 107

LIST OF APPENDICES

Page
Bib1iography 42
Nomenclature 44
Program Abstract 46
Description of Program 47
Sample Calculations 58
Fixed Point Orders 69
Floating Point Orders 69
Furnace Design Program 72
Polynomials 105

INTRODUCTION

The design of modern petroleum furnaces is tending toward larger and more efficient units, sufficiently flexible to adapt to wide variations in physical characteristics of the charging stock, and more responsive to accurate control of the finished product.

It is the current trend in design practice to increase the ratio of heat receiving surfaces to refractory surfaces and to increase the radiant heat transmission rates. These increases affect the size and duty of the convection section and, unless a suitable distribution of heat is obtained throughout the furnace, uneven heating and inefficient unfts result. There is also a tendency to increase the fraction of vapor discharged from the still to the fractionating tower because increases in efficiency are obtained under these conditions.

It is the purpose of this investigation to study the effect of the tube spacing, percent excess air, and bridgewall and exit stack temperatures and to propose a suitable means of allowing for their effects in the design of tube still heaters.

The successful design of a tube still heater must include the requirements of heat load to the furnace and pressure drop of oil through the tubes. This involves the calculation of (l) flash vaporization data to determine the sensible and latent heat required as well as the fractions of liquid and vapor present in the tubes; (2) suitable heat transfer rates in the radiant and convection sections; (3) the tube length and diameter best suited for the type of still and discharge conditions required.

The mechanisms of heat transfer in combustion chambers are complicated by the phenomenon of radiant heat transmission; as a result, the design of tube still heaters has developed on an empirical basis. Based on the fundamental principle of
radiation postulated in the Stefan-Boltzmann equation, $E_{b}=\delta T^{4}$, and with the aid of certain generalizations, an equation was developed by Lobo and Evans (1),

$$
q=\delta\left[T_{1}^{4}-T_{2}^{4}\right] \alpha A_{c p} \psi
$$

which is extensively used in the design of heaters.
Calculations for pressure drop were made using the Fanning equation, with a correction for added frictional loss caused by continuous vaporization of crude throughout the still tubes.

By arbitrarily dividing the tubes into a number of zones, the problem of obtaining heat balances and pressure drops over these sections can be solved but necessitates an elaborate trial-and-error calculation. These calculations not only involve the simultaneous solution of heat transfer equations, but also the evaluation of sixty third degree and seven fourth degree polynomials. This has been accomplished with the aid of a digital computer. A program for the computer was prepared whereby changes in tube spacing, per cent excess air, and bridgewall and exit stack temperatures could be made in a design.

The results of these calculations have shown that the distribution of total heat loads to both sections of petroleum furnaces is an important factor in determining their design. Various distribution ratios can be obtained by changing the bridgewall and exit stack temperatures and the per cent excess air. However, the choice of a specific ratio can only be made after the economic permissible heat transfer rates have been determined.

One of the most important commercial applications of radiant energy transmission is encountered in petroleum refinery furnaces. These furnaces, or tube still heaters, are extensively used in atmospheric or vacuum crude distillation, high temperature gas processing, and thermal cracking, as well as in various heating, treating, and vaporization services.

History and Development

"The early stills used by the oil-refining industry were of the simplest kind. Holding but a few barrels, they were set directly over a coal or tar-fired furnace. The ascending vapors were condensed in a coil submerged in water with no attempt at fractionating further than the gravity indication of the overhead condensate." (2) The stills were generally potshaped and, owing to their construction, were often called shell stills.

In the early years of the petroleum industry, progress was slow. The only attempts made to improve the design of the shell still were increases in its size, leading later to the "cheese-box" still. "The cheese-box still with its eventual capacities up to 1,000 barrels replaced the shell stills at a number of refineries, starting in the late sixties. These cylindrical stills usually had what was termed a 'vapor chest' connected to the still by vertical pipes. The still had a dome-shaped top and a double curved steel plate bottom. The still was supported by a series of arches." (3)

The increased heat efficiency and capacity of these stills reduced the costs per barrel of throughput in comparison with the earlier shell stills. However, the small effective heating surface and the large volume of charged stock caused them to be very inefficient and to have low rates of heat input.

With the advent of the fractionation art and the introduction of cracking operations, it became necessary to construct heaters that could withstand the hich temperatures and pressures of the
cracking process. These requirements resulted in a continuous operation permitting the greater use of heat exchange and the steady improvement of desion and operating efficiency.

An early attempt at continuous operation involved construction of a battery of shell stills connected in series, with the first still emptying into the second and then in series on to the number of shell units in operation.
"Comparatively successful application of tubular heaters on a small scale for dehydration and refining of emulsified oils led to the gradual adoption of tubular heaters for general refining purposes and eventual substitution for shell heater for large-scale refining operations." (4) The earlier tubular heaters were similar in design to the shell stills, but the stills were displaced by a bank of tubes. This improvement, in some instances, doubled the heat transfer rates from $3000 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{hr}$ with the shell type batch operation to 5000 or $6000 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{hr}$ with the tubular heater.

Increases in heat load to the furnace led to localized heating of the tubes and created zones with excessively high transfer rates of 15,000 to $20,000 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{hr}$, called "hot spots." Coke formation and tube failures occurred at these points. As these furnaces were designed to obtain the major portion of heat transfer by convection, hot spots were attributed to radiation from flames in the fire box. Furnaces were then built with tube banks shielded from the flame by perforated or solid walls to protect the tubes from its radiation. This resulted in a more uniform heat distribution within the furnace, with higher overall heat transfer rates.

It was then discovered that, even with the shield, the tubes first exposed to the combustion products became easily overheated. Unless the gas temperature was reduced below a certain minimum, hot spots would still occur. This reduction of gas temperature was accomplished either by diluting the fuel with excess air and then with recirculated flue gas, or by installing tubes in the combustion chamber to cool the hot gases by absoring radiant energy from the flame, the gases, and the refractory surfaces of the chamber.

The basic construction of most tube-still heaters is similar. Such units almost always consist of a radiant section, where the major portion of the heat supplied to the process stream is by radiation, and a convection section, where the major portion of the heat is supplied by convection from the gaseous combustion products.

Heaters vary widely in shape and size, and are designed to meet various requirements for such variables as charging stock, heat distriiution, thermal efficiency and time-temperature effect. Because thermal decomposition is a rate process, the degree of decomposition is a function of both temperature and time and is descrived as the time-temperature effect.

Petroleum heaters have been divided (5) into three main Groups according to the amount of decomposition obtained.
(l) Heaters used only for heating, with little or no decomposition;
(2) Heaters where, in addition to heating, substantially all of the decomposition desired for the refining process is obtained;
(3) Heaters where only partial decomposition is obtained in the heater, the remainder in the reaction chambers or soaking drums which are usually not heated externally.
Heaters of the first group are employed in operations where no chemical chance is desired in the charged stock, as for nondestructive distillation processes. These heater are designed to obtain a minimum time-temperature effect with a maximum temperature.

Heaters of the second group are used primarily in cracking operations where the decomposition of the stock takes place within the heating coils. These heaters are designed to give maximum time-temperature effect at the highest operating temperature allowable.

Heaters of the third group, used for thermally sensitive residual cracking stocks, must be designed for a time-temperature effect that will permit the highest outlet temperature without excessive decomposition from soaking within the heating coils.

A number of typical furnace arrangements are shown in Figures (1) and (2) to illustrate diagrammatically the arrangement of tubes and the direction of fluid flow in the basic types of tube still heaters.

Figure 1 shows a typical box type furnace fired from the end walls. Radiant tubes cover the side walls, roof, and bridgewall (partition between radiant and convection section) surfaces. The tendency in modern furnace design is to fill the radiant section with cold tube surfaces; to accomplish this tubes may also be placed on the floor surfaces.

In cracking operations, ofl is preheated in the upper and lower rows of the convection bank then passed through the radiant tubes. After reaching an elevated temperature conducive to the cracking process, the oil is passed through a large number of convection section tubes wherein it is maintained at a high temperature for a sufficient time to accomplish the desired degree of cracking.

FIGURE 1

DEVELOPMENT AND SELECTION OF EQUATIONS

Evaluation of the rate of heat transmission to the cold surfaces in tube still heaters is accomplished by considering the extent to which each mechanism of heat transfer influences the overall rate.

Transfer of heat energy liberated by the chemical union of molecules in the flame takes place first in the radiant section to the surrounding tubes primarily by radiation though some convection occurs. As the gaseous products of combustion progress through the convection section, heat transmission is principally caused by the mechanism of forced convection accompanied by small amounts of gas radiation.

Thermal energy transferred within the furnace enclosure must be equated to the change in enthalpy of the entering and exit streams. To accomplish this, the following equations must be obtained: heat transfer by radiation, heat transfer by convection, and heat balances about the oil.

Radiation
Radiation in a combustion chamber originates from three distinct sources (6):
(1) the chemical union of molecules in the flame,
(2) the hot products of combustion, and
(3) the luminosity or soot content of the flame. The magnitude of radiation emitted from the first source is dependent on the composition of the fuel, the maximum temperature attained, and the absorbing characteristics of the flame for its own radiation. However, in muffle furnaces where the flame is shielded from the surfaces of the combustion chamber, heat from this source is transferred to the combustion products by conduction and convection.

Radiation of greatest magnitude originates from the combustion products and is dependent on composition, temperature, and shape
and size of the gas mass. Of the gases comprising the combustion products, carbon dioxide, carbon monoxide, the hydrocarbons, and water vapor are the only ones with emission bands of sufficient energy to merit consideration. Gases with simple symmetrical molecules, such as $\mathrm{N}_{2}, \mathrm{H}_{2}$, and O_{2}, which also comprise the total gas mass, show no absorption bands in the region of importance in radiant heat transmission. Moreover, carbon monoxide and hydrocarbons are present in such small amounts as to be negligible compared with water vapor and carbon dioxide. Finally, the third source of radiation from the flame, its soot content, is dependent on the degree of combustion and the design of the combustion chamber.

Using data obtained from investigations on the infrared spectra of carbon dioxide and water vapor, Hottel (7) has presented charts for use in calculating the quantity of heat transmitted from these gases. He has also shown that the energy emitted from a gas mass to a unit area of bounding surface is a function of the gas and surface temperatures, the absorptivity of the surface, and the product $P L$, where P is the partial pressure in atmospheres of the radiating constituents, and L is the average length of a blanket of flue gas in all directions for each of the points of the bouding surface of the furnace. Values of L for furnaces of various shapes were determined by Hottel and Table I presents a digest of these values for furnace calculations.

Incident radiation is not completely absorbed by its ultimate heat receiving surfaces immediately but is reflected and absorbed in an infinite series of interchanges between source and surface. Consequently, radiant interchange between the surfaces of an enclosure must involve consideration of the view the surfaces have of each other as well as their emitting and absorbing characteristics.

The absorptivities of bodies are generally dependent on the wavelength of incident radiation and also on the factors affecting their emissivities. Absolute values of the emissive power of bodies are not readily obtainable, however, the ratio of the actual emissive power to the black body emissive power,

Mean Length of Radiant Beams in Various Gas Shapes

Dimensional Ratio
(length, width, height in any order)
I_{B}

Rectangular Furnaces

1. 1-1-1 to 1-1-3
$2 / 3^{3} \sqrt{\text { Furnace Volume }}$
$1-2-1$ to $1-2-4$
2. 1-1-4 to 1-1-
3. 1-2-5 to $1-2-8$
4. 1-3-3 to $1-\infty-\infty$

1 x smallest dimension
1.3 x smallest dimension
1.8 x smallest dimension
defined as the emissivity, has been determined for many materials and data are presented in most textbooks of heat transfer. In systems such as furnaces composed of walls and pipes, it becomes difficult to evaluate the manner in which radiant energy falls on these surfaces. The next flux between source and surface occurs by a complex process involving multiple reflection from all surfaces forming the enclosure. The new concept necessary here is F, and has been defined by Hottel (8) as the direct interchange factor, dependent on the angle factors between the refractory surfaces and the surfaces surrounding it, together with the emissivities of the source and sink surfaces.

Since heat receiving surfaces or heat sinks in most industrial furnaces are composed of a multiplicity of tubes disposed over walls, roof, and floor of the combustion chamber, it is necessary to evaluate the effective heat transfer area. The development of Hottel, almost exclusively used in design work, assumes that the heat source is a radiating plane parallel to the tube row. The effectiveness factor, α, is the factor by which the surface of a plane replacing the tube row with assumed emissivity of 1.0 , must be multiplied to obtain the equivalent cold plane surface. For a detailed development of α, reference should be made to Hottel (9). Figure 3 presents values of α for radiation to single rows of tubes with refractory behind them.

In view of the complexity of the problem, numerous investigators have correlated furnace performance by means of empirical and semitheoretical equations. The most acceptable of these, is the semitheoretical equation proposed by Lobo and Evans (1). Using an equation of the Stefan-Boltzman type in correlating data from 85 tests on 19 different petroleum furances, they developed the following equation:

$$
\begin{equation*}
q=\delta\left(T_{g}^{4}-T_{s}^{4}\right) \alpha A_{c p} \psi+h_{c} A_{r}^{\prime}\left(T_{g}-T_{r}\right)+h_{c} A_{c}\left(T_{g}-T_{s}\right) \tag{1}
\end{equation*}
$$

In this equation the direct interchange factor, F, has been replaced by an overall exchange factor, ψ. ψ includes, in addition to direct interchange, the contributions due to multiple reflection at all surfaces as well as such contributions by reradiation from zones at which the net radiant-heat transfer at the wall surface is zero.

Since both the external losses from the furnace and the net heat transferred to the refractory by convection, given by the term $h_{c} A^{\prime}{ }_{r}\left(T_{g}{ }^{-T} T_{r}\right)$, are usually small, the two may be assumed equal without appreciaily affecting the results. Equation (l) may be rewritten

$$
\begin{equation*}
q=\delta\left[T_{g}^{4}-T_{s}^{4}\right]_{\alpha A_{c p}} \downarrow+h_{c} A_{c}\left(T_{g}-T_{s}\right) \tag{2}
\end{equation*}
$$

By making the following assumptions, Lobo and Evans further simplified their equation:

1. The convection coefficient lies normally between 2 and $3 \mathrm{Btu} / \mathrm{hr}$ sq ft - ${ }^{\circ} \mathrm{F}$;
2. In most furnaces A_{c} equals ($2 \alpha_{c p}$) approximately;
3. The overall exchange factor ψ has a value of about 0.57 . Therefore, the terms h_{c} and A_{c} in Equation (2) can be expressed in terms of and ψ, thus:

$$
\frac{h_{c} A_{c}}{\alpha A_{c p} \psi}=\frac{(2)(2)}{(0.57)}=7.0
$$

or

$$
h_{c} A_{c}\left(T_{g}-T_{s}\right)=7\left(\alpha_{c p} \psi\right)\left[T_{g}-T_{s}\right]
$$

Making the substitution in Equation (2),

$$
\begin{equation*}
\frac{q}{\alpha A_{c p}}=\delta\left[T_{g}^{4}-T_{s}^{4}\right]+7\left(T_{g}-T_{s}\right) \tag{3}
\end{equation*}
$$

In the combustion chamber T_{g}, the mean temperature of the hot gases in the furnace and the temperature of the exit gases will undoubtedly differ. However, the assumption of complete mixing in the furnace and that T_{g} could be replaced by the exit gas temperature was justified by satisfactory results. The exact evaluation of ψ is tedious and complicated, however, their development included a plot of ψ versus the ratio $\frac{A_{r}}{\alpha A_{c p}}$ with the flame emissivity as a parameter. Results indicate that the
ψ plot represents an accurate and simple method of simultaneously allowing for the effect of flame emissivity and the amount of refractory surface present.

Hottels' charts giving the values of the radiant heat transfer flux due to CO_{2} and water are most conveniently used in calculating the emissivity of the flame. The radiant flux of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} are additive, although a small correction must be included to allow for the influence of one type of molecule with radiation from the other. The flame emissivity is given by the equation:

$$
\begin{equation*}
\epsilon_{g}=\frac{\left(q_{c}+q_{w}\right)_{T_{g}}-\left(q_{c}+q_{w}\right)_{T_{s}}}{\left(q_{b}\right)_{T_{g}}-\left(q_{b}\right)_{T_{s}}} \tag{4}
\end{equation*}
$$

Radiant heat transmission in the convection section is particularly significant to the uppermost tubes or "shield tubes" in the convection bank where the temperature of the gases is still high. In spite of the small beam length, Monrad (10) has shown that radiation may account for 5 to 30 percent of the total heat transfer in the convection section.

Evaluation of the radiant heat coefficient was accomplished by adapting the method of Lobo and Evans and the simplified charts provided by Hottel. The mean length of the radiant beam for exchange between tubes, given in Table I, is based on the center to center spacing $(\phi-\phi)$, and the outside diameter of the tubes $\left(D_{0}\right)$.

$$
\begin{align*}
& I_{B}=0.4[(\phi-\not x)-0.567] D_{0} \tag{5}\\
& q_{r c}=\epsilon_{s}\left[\left(q_{c}+q_{w}\right)_{T_{g}}-\left(q_{c}+q_{w}\right)_{T_{s}}\right] A \frac{(100-\%)}{100} \tag{6}
\end{align*}
$$

since

$$
\begin{align*}
& h_{r}=\frac{q_{r c}}{A \Delta T} \\
& h_{r}=\epsilon_{s} \frac{\left[\left(q_{c}+q_{W}\right)_{T_{g}}-\left(q_{c}+q_{W}\right)_{T_{s}}\right]}{T_{g}-T_{s}} \frac{(100-\not))}{100} \tag{7}
\end{align*}
$$

where the emissivity of the surface ϵ_{s} is assumed to have a value of 0.95. (11)

Heat transfer by convection varies widely with gas velocity and size of gas passage, somewhat with temperature of the gas, and very little with gas composition. Although there are numerous relationships available for obtaining convection coefficients, little work has been done to develop a satisfactory relationship for furnace design work. The empirical equation by Monrad (10) is the only comprehensive formulation of convection transfer rates. For direct convection from the gases he proposes the relationship:

$$
\begin{equation*}
\mathrm{h}_{\mathrm{c}}=\frac{1.6 \mathrm{G}^{2 / 3} \mathrm{~T}^{0.3}}{\mathrm{D}_{\mathrm{O}}^{1 / 3}} \tag{8}
\end{equation*}
$$

The equation applies to any conventional arrangement of the tubes in the convection section. However, the coefficient h_{c} is the pure convection coefficient and it does not include radiation from the hot gases or from the walls. Monrad has made a study of these factors. The first of these is designated as $h_{r g}$ or the coefficient of heat transfer from the gas by radiation. A formula for the evaluation of this coefficient was presented in the previous section on radiation.

In his calculations, Monrad also included a correction for the increased thickness of the gas layer at the top of the tube bank. His assumption was that this radiation could be approximated by that of a plane equal in area to the top tube bank at $\mathrm{PwL}=$ $\mathrm{PcL}=1.0$, between the temperature of the gas above the bank and the temperature of the tube. He reasoned that since radiation had already been calculated for PwL and PcL based on the center to center spacing and the tube diameter (h_{rg}), the added gas radiation would be equivalent to that at the top gas temperature between PcL $=$ PwL $=1.0$ and PcL and PwL based on the center to center spacing and the diameter; consequently, the correction:

$$
h_{r g}^{\prime}=h(\text { at } P L=1)-h_{r g}
$$

This however, appears to be too severe a correction as PL values for the gas layer above the bank could hardly approach a value of unity. Water vapor, the radiating constituent of highest concentration in the gas mass rarely exceeds a partial pressure
of 0.20 atms. Consequently, the average beam length would necessarily have to be greater than 50 feet (for lower concentrations of water vapor) to cause values of $\mathrm{PL}=1.0$. For this reason, it was concluded that sufficiently accurate results would be obtained without including this correction.

The area of the walls surrounding the tubes comprise a fairly large fraction of the tube area. These walls pick up heat from the gases by convection and radiation, and reradiate to the tubes by black body radiation according to Stefans' Law. With the assumption that factors such as reabsorption of heat and the differences in heat transfer coefficients to the wall and tubes are negligible, the following equations were presented:

$$
\begin{aligned}
{\left[h_{c}+h_{r g}\right]\left[T_{g}-T_{w}\right] A_{w} } & = \\
=\left[h_{r b}\right]\left[T_{w}-T_{t}\right] A_{t} & =
\end{aligned}
$$

Therefore the per cent increase in heat absorption by tubes above that received directly:

$$
\begin{equation*}
\frac{h_{r b}\left[T_{w}-T_{t}\right] A_{w} \times 100}{\left[h_{c}+h_{r g}\right]\left[T_{g}-T_{t}\right] A_{t}}=\frac{h_{r b}\left[T_{w}-T_{t}\right] A_{w} \times 100}{\left.A_{t}\left[L h_{c}+h_{r g}\right]\left[T_{g}-T_{w}\right]+\left[h_{c}+h_{r g}\right]\left[T_{w}-T_{t}\right]\right\}} \tag{9}
\end{equation*}
$$

$h_{r b}$ may be approximated by:

$$
\begin{align*}
& h_{r b}=0.00688 \epsilon_{S}\left[\frac{T}{100}\right]^{3} \tag{10}\\
& \epsilon_{s}=0.95 \\
& T=\text { Temperature of the tube surfaces }
\end{align*}
$$

The complete coefficient of heat transfer in the convection section was computed from the preceding items as follows:

$$
\begin{equation*}
h_{u}=\frac{(100+\% \text { wall effect })}{100}\left(h_{c}+h_{r g}\right) \tag{11}
\end{equation*}
$$

In considering radiation from the walls to the individual rows of tubes in the bank, the correction for the wall effect becomes less pronounced as the gases cool on their way to the stack. The wall effect then, will be of most significance to the tubes in the shield section. If a correction is made for the shield section (suppermost rows surrounded by gas at a temperature of $1300^{\circ} \mathrm{F}$ or above) only, it will be necessary to
evaluate the fraction of the wall surface that will "see" the tubes in the section. An approximation was made by assuming that the area of the walls surrounding the shield tubes would be the only surfaces that could see that section.

Corrections for the wall effect and gas radiation were made only for tubes in the shield section, whereas the effect of radiation was neglected in calculations for the film coefficient for the rest of the tubes in the convection bank.

In general, the coefficient of heat transfer on the gas side is controlling; although the resistance of the liquid film may be assumed negligible, approximate values were estimated using a modified Dittus-Boelter (11) equation.

$$
\begin{equation*}
\frac{h_{1} D_{1}}{K}=0.027\left(\frac{D G}{\mu}\right)^{0.8}\left(\frac{C \mu}{K}\right)^{1 / 3}\left(\frac{\mu}{\mu_{W}}\right)^{0.14} \tag{12}
\end{equation*}
$$

Based on the outside pipe diameter, the overall coefficient of heat transfer (U) is given by:

$$
\begin{equation*}
U=\frac{1}{\frac{I}{h}+\frac{D_{0}\left(D_{0}-D_{i}\right)}{K_{m}\left(D_{0}+D_{i}\right)}+\frac{D_{0}}{D_{i} h_{i}}} \tag{13}
\end{equation*}
$$

and the heat flux to the oil evaluated using the following equation:

$$
\begin{equation*}
q_{c}=U\left(\pi D_{o} \Delta L\right)(\Delta t) \tag{14}
\end{equation*}
$$

Heat Balances

The energy balances made throughout these calculations involving the physical properties of the crude oil, can only be fair approximations due to the complex nature of the hydrocarbon mixture. Calculations based on the heat content of the charged stock will involve some error since the difficulty of obtaining the accurate specific heat of the oil, its vapor and its latent heat of vaporization is quite large. The difficulty in estimating external heat losses from the furnace is another source of error.

The liquid heat content of Mid-Continent source crude oils was calculated using the equation obtained by Weir and Eaton (13).

$$
\begin{equation*}
(H-H o)_{L}=(15 d-27)+(0.811-0.465 d) t+0.000290 t^{2} \tag{15}
\end{equation*}
$$

$\mathrm{H}=$ total heat continent above $32^{\circ} \mathrm{F}$.
Ho $=$ heat continent at $32^{\circ} \mathrm{F}$.
$\mathrm{t}=$ temperature ${ }^{\circ} \mathrm{F}$.
$\mathrm{d}=\mathrm{sp} \cdot \mathrm{gr}$. of material at $60^{\circ} \mathrm{F}$.
The heat content of liquids do not vary appreciably with pressure, therefore, Equation (15) was used to calculate the liquid heat content over the entire range of pressures encountered in the pipe still. Like the liquid data, Weir and Eaton found it possible to incorporate the vapor heat content versus temperature relationship in a single recomended equation.

$$
\begin{align*}
&(H-H о)_{v}=(215-87 d)+(0.415-0.104 d) t \\
&+(0.000310-0.000078 d) t^{2} \tag{16}
\end{align*}
$$

It is necessary to include a correction for the variations with pressure. Using the equation of state proposed by Linde to predict PV data, and the constants as obtained by Baklke and Kay (14) an equation for the total heat content of the vapor was developed.

$$
\begin{align*}
& P V=A T-P \frac{(C+E P)}{T^{3}}+P(D+F P) \tag{17}\\
& V=\frac{A T}{P}-\frac{C+E P}{T^{3}}+D+F P \tag{17~b}\\
& T={ }^{\circ} R \\
& V=f t^{3} / l b \\
& P=\# / i n^{2}
\end{align*}
$$

A, C, D, E, and $F=$ constants

$$
d_{H}=C_{p} d T-\left[T\left(\frac{\partial V}{\partial T}\right)_{P}-V\right] d P
$$

Differentiating Equation (17)

$$
\begin{align*}
& P\left(\frac{\partial V}{\partial T}\right)_{P}=A+\frac{3 C P}{T^{4}}+\frac{3 E P^{2}}{T^{4}} \\
& T\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{A T}{P}+\frac{3 C}{T^{3}}+\frac{3 E P}{T^{3}} \tag{b}
\end{align*}
$$

Substituting (b) and (17b) into (a) and simplifying

$$
d_{H}=C_{p} d T-\left[\frac{4 C}{T}+\frac{4 E P}{T^{3}}-D-F P\right] d P
$$

integrating

$$
\begin{equation*}
H-H o=\int_{32}^{T} C_{p} d T+\frac{1}{9331.7}\left[D P+\frac{F^{2}}{2}-\frac{4 C P}{T^{3}}-\frac{2 E P^{2}}{T^{3}}\right] \tag{18}
\end{equation*}
$$

and

$$
\begin{aligned}
\int_{32}^{T} & C_{p} d T=(215-8 T d)+(0.415-0.104 d) t \\
& +(0.000031-0.000078 d) t^{2}
\end{aligned}
$$

The constants, as obtained by Bahlke and Kay are:

$$
A=157
$$

$$
C=7234 \times 10^{7}
$$

$$
D=20
$$

$$
E=102 \times 10^{7}
$$

$$
F=0.52
$$

Energy balances on the gas side were obtained from heat capacity equations for constituent in the combustion product. These equations were summed according to the total moles of each constituent and evaluated as a single equation. These equations are presented in the appendix.

Continuous Equilibrium Vaporization - Per cent Vaporized
In most cases of distillation of such complex mixtures as crude oil, continuous equilibrium vaporization is used. It is then necessary to know the relationship between equilibrium vaporization temperature and per cent vaporized for any given pressure if intelligent design calculations are to be made.

Piromoor and Beiswenger (15) have established a widely used correlation which enables the flash curve of the crude (flash zone temperature versus per cent oil vaporized) to be estimated from the true boiling point curve of the crude. These correlations were later modified by Maxwell (16) and are based upon the empirical facts that:

1. The True Boiling Point curves (TBP) of many commonly encountered crudes and fractions are nearly straight lines between their 70% and 10% vaporized points.
2. There exists a fairly close relationship between the slope of the TBP curve (straight position) and the flash vaporization curve.
3. There exists a relationship between the 50% distillation, TBP temperature and the 50% distillation point of the flash curve.
An example of the use of these relationships is outlined in reference 17. To correct flash curves to other pressure, the flash curve is displaced parallel to itself at a higher or lower temperature (depending on whether the pressure is higher or lower than atmospheric) as determined by the vapor pressure versus temperature chart (Cox Chart). The vapor pressure versus temperature relationship with an atmospheric temperature corresponding to that at the 50% distilled point on the flash curve is chosen.

Physical Properties of the Crude

The physical properties of an oil are found to vary gradually throughout the range of compounds that constitute the oil. The properties such as specific gravity and viscosity are found to be different for each drop or fraction of the material distilled. The rate at which these properties change may be plotted as mid per cent curves; i.e., a plot of the desirable property versus percentage distilled. A mid per cent yeild curve was used to determine the specific gravity at $60^{\circ} \mathrm{F}$ of the crude at its different stages of vaporization. The viscosity was obtained using the relationship obtained by Nelson (18) for the high temperature viscosities of hydrocarbons.

Calculation of the Density of the Crude at any Temperature (19)
It is assumed that the thermal expansion of any sample may be represented by an equation of the form:
$D_{t}=D_{T}+A(t-T)+B(t-T)^{2}$
$D_{t}=$ density at any temperature t.
$D_{T}=$ density at a standard temperature
and A and B are based on the change at $25^{\circ} \mathrm{C}$.
Since the specific gravities of most materials are given at $15.56^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$, this temperature is chosen as standard. Then,

$$
\begin{equation*}
S G_{60}=S G+\left[\alpha_{T}+2 \beta(t-25)\right][t-15.56]+\beta[t-15.56]^{2} \tag{19}
\end{equation*}
$$

converted to degrees Fahrenheit

$$
\begin{equation*}
S G_{60}=S G+\left[\frac{t-60}{1.8}\right] \quad \alpha_{T}+\frac{\beta_{T}}{1.8}[3 t-217] \tag{19a}
\end{equation*}
$$

Values of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ were obtained from charts as functions of the specific gravity of the material.

Thermal Conductivity of Petroleum Liquids (20)

The thermal conductivity of the crude is given by the following equation:

$$
\begin{equation*}
K=\frac{0.813}{12(S . G)}[1-0.0003(t-32)] \tag{20}
\end{equation*}
$$

Pressure Drop Calculations

The problem of calculating pressure drop in tube still heaters cannot be solved by the conventional Fanning equation; since vaporization of the crude with increasing temperatures, results in the presence of two phases, making the equation inapplicable.

Pressure drops encountered in two-phase systems are higher than those resultin; from single phase flow for a number of reasons. The energy change of the phase transition, the frictional energy remaining in the system due to the internal shear at the boundaries of each phase, and the reduced crosssectional area of flow for one fluid produced by the presence of a second fluid all affect the pressure drop. Consideration must also be given to the Hydraulic Energy (PV) of the fluid mass which not only changes with temperature and pressure, but also with the composition of the liquid and vapor phases.

The complex conditions of multiphase flow and the number of variables involved has been the subject to intensive survey, and relationships ($21,22,23$) have been proposed which correlate two-phase flow data. These investigations have been restricted to isothermal conditions and no attempts have been made to propose a correlation for non-isothermal systems in which there is a continuous change of phase. Therefore it was assumed that each section of pipe would behave isothermally at the average volume fractions and physical properties of the crude. The data
of Reid, Reynolds, et al (22) was chosen because their investigations were conducted on pipes of similar diameter to those encountered in tube stills.

By a proper definition of terms, pressure drop calculations for two phase flow could be predicted by a Fanning type equation:.
$\Delta P_{T P}=\frac{2 \phi L G^{2}}{\lambda g_{c} D_{i}}$
$\lambda=$ pseudo density of the two phase mixture.
$\varnothing=$ pressure coefficient analogous to the friction factor of the Fanning equation.

In order to calculate λ, the following assumptions were made:

1. The volume occupied by the liquid plus the volume occupied by the vapor, at any instant, must equal the total volume of the pipe.
2. The linear velocities of vapor and liquid phases are equal.
3. Flow is sufficiently turbulent to cause complete mixing of both phases.
From (2) $\frac{W}{\lambda D_{i}{ }^{2}}=\frac{W_{L}}{P_{L} D_{L}{ }^{2}}=\frac{W_{v}}{P_{v} D_{v}{ }^{2}}$
From (I) $D_{L}{ }^{2}+D_{v}{ }^{2}=D_{i}{ }^{2}$

$$
\frac{W_{L}}{P_{L} D_{L}^{2}}=\frac{W_{v}}{P_{v} D_{v}^{2}} \quad \text { Substituting for } D_{v}
$$

$$
\frac{W_{L} P_{v} D_{1}^{2}}{P_{L} W_{v}+P_{v} W_{L}}=D_{L}^{2}
$$

$$
\frac{W}{\lambda D_{i}^{2}}=\frac{W_{L}}{P_{L}\left[\frac{W_{L} P_{V} D_{i}{ }^{2}}{P_{V} W_{L}+P_{L} W_{V}}\right]}
$$

$$
\lambda=\frac{W_{L} P_{L} P_{V}}{P_{L} W_{V}+P_{V} W_{L}}+\frac{W_{V} P_{L} P_{V}}{P_{L} W_{V}+P_{V} W_{L}}
$$

The liquid volume fraction $(L V F)=\frac{W_{L} P_{V}}{W_{L} P_{V}+W_{V} P_{L}}$

- $24-$

The vapor volume fraction $(V V F)=\frac{W_{V} P_{L}}{W_{L} P_{V}+W_{V} \rho_{L}}$
$\lambda=P_{L}(L V F)+\rho_{V}(V V F)=\operatorname{LVF}\left(\rho_{L}-P_{V}\right)+\rho_{V}$
Since ϕ is an empirical constant it must be obtained from a correlation of two phase data.

Reid, Reynolds, et. a1. (23) have shown that for liquid volume fractions above 10 per cent, one follows the relationship:

$$
\begin{equation*}
\Delta P_{T P}=\Delta P_{L}(L V F)^{-1} \tag{23}
\end{equation*}
$$

In this equation the following assumptions are made: (1) single phase friction factor correlating charts are applicable to two phase flow problems; (2) the superficial average densities and velocities can be employed.
ΔP_{L} is the liquid phase pressure drop as calculated from single phase correlations if the liquid were flowing alone in the pipe at the same rate as the two phase flow.

If the assumption is made that $\lambda=\operatorname{LVF}\left(P_{L}\right)$, a comparison of the two Equations (21 and 23) indicates that \varnothing may be approximated by the friction factor of the liquid phase. For Reynolds numbers, Re>2.5 x 10^{6} Perry (24) recommends the following equation for friction factors:

$$
f=0.0014+0.09\left(\frac{\mu}{D G}\right)^{: 27}
$$

Hence

$$
\phi=0.0014+0.09\left(\frac{\mu}{D G}\right)^{0.27} \quad \text { Where } 0.1 \leq L V F \leq 1.0
$$

At liquid volume fractions below 0.1 the vapor can be assumed to behave independently of the liquid. Therefore values of ϕ were approximated from the single phase friction factor correlating charts at vapor Reynolds numbers greater than 2×10^{5}. These values varied from 0.0014 to 0.005 . It was also observed from two phase data that \varnothing decreases as the LVF decreases, and increases as the Reynolds' number of the liquid phase decreases.

In view of this, it was concluded that the following equation could predict sufficiently accurate values of \varnothing at low liquid volume fractions

$$
\begin{equation*}
\varnothing=0.0014+\operatorname{LVF}\left(\frac{\mu}{D G}\right)^{0.27} \quad \text { Where LVF }<0.1 \tag{2Lb}
\end{equation*}
$$

Restrictions and Limitations

This investigation was initiated to study the effect of the variables of per cent excess air, center to center spacing, bridgewall and exit stack temperatures on the design of Petroleum Furnaces.

Based on a semi-theoretical equation proposed by Lobo and Evans for the calculation of heat transfer rates in the radiant section of tube still furnaces, and on an empirical equation developed by Monrad, a series of design equations were written. These equations were solved for different values of the variables and their effect on heat transfer rates and furnace dimensions studied.

The Equation of Lobo and Evans was developed for applications only to already designed or completed furnaces. However, as it was used for the actual design in the investigation, certain assumptions were necessary. These are:

1. View factors to individual tubes can be calculated using the empirical relationship of Lobo and Evans.
2. The mean beam path to the individual tubes can be approximated by the average beam length of the furnace.

The furnaces considered in this investigation were limited to the conventional box-type with the width equal to the height, single rows of tubes in the radiant section and with equal center to center spacing in the convection and radiant sections. Four tubes per row were placed in the convection bank and the length of the furnace arbitrarily fixed and equal to the length of tubes.

Calculations for the inside film coefficient of the tubes were based on the liquid phase only. The errors caused by this approximation are very slight as in most cases the outside film coefficient controls. Errors in the tube temperature calculated from this coefficient do not appreciably affect the heat transfer rates as the difference between the fourth power of the gas and

- 26 -
the surface temperatures are extremely large.
The reliability of the final design is limited by the accuracy of the physical properties data, and the validity of the assumptions used in obtaining the design equations. Perhaps the most severe of these restrictions is that encountered in the approximation of friction factors used in pressure drop calculations.

The results of the calculations are summarized in Tables III and IV. Table II gives the service requirements used in the investigation, as well as the furnace characteristics. The results presented in Table III were obtained without considering pressure drop requirements. Table IV shows the results obtained when the diameters are calculated to satisfy the requirements.

TABLE IIrvice Requirements of Furnaces										
Furnace Group Symbol Unit	$\begin{array}{r} \text { Flow } \\ \mathrm{lb} / \mathrm{hr} \\ \hline \end{array}$	Rate $\mathrm{Bbls} / \mathrm{hr}$	Inlet Temp. ${ }^{\circ} \mathrm{F}$	Exit Temp. ${ }^{\circ} \mathrm{F}$	Inlet Press. Psia	Exit Press. Psia	Tube Spacing Tube Diam.	Tube Length \qquad	Tube Diam. Ft.	Per Cent Excess Air
1	39,262.4	133	410	670	117.7	-	1.5	20	0.41	50
2	39,262.4	133	410	670	117.7	-	2.0	20	0.41	50
3	80,000.0	-	400	750	240.0	-	1.5	25	0.45	50
4	80,000.0	-	400	750	240.0	-	2.0	25	0.45	50
5	80,000.0	-	400	800	240.0	-	1.5	25	0.45	50
6	80,000.0	-	400	800	240.0	50	1.5	25	0.45	25
7	80,000.0	-	400	800	240.0	50	1.5	-	-	-

TABLE III

Bridge Stack Wall Temp. Temp.	Lb. Flue Gas Per Hour	$\begin{gathered} Q_{R} \\ \times 10^{-6} \\ \hline \end{gathered}$	$\begin{gathered} e_{C} \\ \times 10^{-6} \\ \hline \end{gathered}$	$\begin{array}{r} Q_{L} \\ \times 10^{-6} \\ \hline \end{array}$		ditions Press.	Size	Num	ber f bes N_{C}	R_{A}	$\frac{Q_{R}}{Q_{C}}$	$\frac{Q}{\alpha A_{c p} \times 10^{-4}}$
Furnace 1												
8301416.04	13870.7	4.6606	2.4702	4.7980	671.00	63.59	8.123	26	44	0.3907	1.837	3.85
8301494.67	13870.7	4.4495	2.8138	4.7980	675.81	64.29	7.446	22	48	0.3689	1.581	4.6
8301670.77	13870.7	3.4409	3.5929	4.7930	667.82	66.78	5.416	14	56	0.2908	0.958	7.09
9301395.58	14914.5	5.0685	2.1199	5.5997	671.89	72.85	9.477	28	32	0.3963	2.391	4.08
9301554.33	14859.7	4.5095	2.8566	5.5791	678.34	74.43	7.466	20	40	0.3434	1.579	5.43
9301646.57	14717.3	3.7871	3.2630	5.5256	667.22	75.83	5.416	16	44	0.3011	1.161	6.6
10301417.78	15861.6	5.3092	1.8905	6.4296	671.53	79.88	9.477	28	24	0.3895	2.808	4.08
10301495.73	15789.5	4.8882	2.2697	6.4003	670.12	80.78	7.446	24	28	0.3605	2.154	4.74
10301671.58	15596.7	3.9474	3.1170	6.3222	666.95	82.49	5.416	16	36	0.2949	1.266	7.01
Furnace 2												
8301463.61	13870.7	4.4744	2.6777	4.7980	674.52	49.68	8.123	18	68	0.3744	1.671	4.6
8301575.14	13370.7	3.9513	3.1682	4.7980	674.26	44.59	6.318	14	76	0.3316	1.247	5.9
9301426.84	14781.4	4.8026	2.2458	5.5497	668.14	70.19	9.026	20	68	0.3812	2.139	4.37
9301586.82	14781.4	4.0437	3.0129	5.5837	669.32	65.52	6.318	14	74	0.3199	1.342	6.27
10301454.11	15780.3	5.0714	2.0611	6.3966	669.84	80.17	9.026	20	36	0.3749	2.461	4.7
10301558.48	15906.5	4.5847	2.6032	6.4478	672.28	77.74	7.221	16	44	0.3362	1.761	5.93

TABLE III (continued)

Stack Temp.	Bridge Wall Temp.	Lb. Flue Gas Per Hour	$\begin{aligned} & Q_{\mathrm{R}} \\ & \times 10^{-6} \end{aligned}$	$\begin{gathered} Q_{C} \\ \times 10^{-6} \end{gathered}$	$\begin{gathered} Q_{\mathrm{L}} \\ \times 10^{-6} \\ \hline \end{gathered}$	Exit C Temp	itions Press.	Size		$\begin{aligned} & \text { ber } \\ & \text { e } \\ & \text { bes } \\ & \mathrm{N}_{\mathrm{C}} \end{aligned}$	R_{A}	$\frac{Q_{R}}{Q_{C}}$	$\frac{q}{\alpha A_{c p} \times 10^{-4}}$
Furnace 3													
850	1496.59	42648.8	1.2135	8.4268	1.5003	753.20	128.56	14.038	36	64	0.3412	1.44	6.02
950	1494.34	42648.8	1.3495	7.1333	1.6266	753.26	143.96	14.038	40	48	0.3662	1.892	5.63
1050	1506.17	42648.8	1.4798	6.0147	1.7545	755.72	155.85	15.516	42	36	0.3858	2.460	5.56
Furnace 4													
850	1375.82	42648.8	1.3765	6.8074	1.5003	755.93	90.43	19.703	40	84	0.3869	2.022	4.49
850	1481.73	42648.8	1.2404	8.2264	1.5003	757.31	92.77	14.77	30	96	0.3481	1.508	6.0
950	1381.23	42648.8	1.4806	5.6165	1.6266	751.21	128.62	20.668	42	60	0.4036	2.636	4.4
950	1490.65	42648.3	1.3640	7.0836	1.6266	756.43	129.52	15.76	32	72	0.3688	1.926	5.83
1050	1379.5	42648.8	1.6409	4.3152	1.7545	754.83	147.57	22.66	46	40	0.4238	3.803	4.2
1050	1491.65	42648.8	1.4718	5.8139	1.7545	752.0	152.47	16.75	34	52	0.3865	2.529	5.66
1150	1430.67	46931.4	1.6329	4.8174	2.0729	761.05	163.35	18.72	38	36	0.3899	3.39	5.56

TABLE III (continued)

Stack Temp.	$\begin{gathered} \text { Bridge } \\ \text { Wall } \\ \text { Temp. } \\ \hline \end{gathered}$	Lb. Flue Gas Per Hour	$\begin{gathered} Q_{R} \\ \times 10^{-6} \\ \hline \end{gathered}$	$\begin{gathered} Q_{C} \\ \times 10^{-6} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{a}_{\mathrm{L}} \\ \times 10^{-6} \\ \hline \end{gathered}$	Exit Co Temp.	nditions Press.	Size		$\begin{aligned} & \text { ber } \\ & \text { f } \\ & \text { bes } \\ & N_{C} \end{aligned}$	$\mathrm{R}_{\text {A }}$	$\frac{Q_{R}}{Q_{C}}$	$\frac{Q}{\alpha A_{c p} \times 10^{-4}}$
Furnace 5													
850	1386.76	42648.8	1.6368	6.9533	1.5003	808.07	55.81	22.166	60	56	0.4345	2.43	3.94
850	1618.03	42648.8	1.3737	1.0075	1.5003	306.64	108.68	13.3	34	72	0.3539	1.36	6.98
950	1357.10	47655.9	1.7662	5.9169	1.8176	802.60	83.25	23.643	66	40	0.4230	2.99	3.86
950	1570.55	48196.6	1.4614	9.22'73	1.8382	805.80	125.59	14.78	38	56	0.3461	1.58	6.8
1050	1372.12	47655.9	1.9138	4.7119	1.9605	805.89	104.89	23.643	68	28	0.4404	4.06	3.9
1050	1595.98	48196.6	1.5399	8.1738	1.9827	300.50	144.71	14.78	33	44	0.3548	1.88	6.96
Furnace 6													
850	1404.46	36123.8	1.7477	5.9672	1.2397	800.99	86.82	22.166	58	52	0.438	2.93	3.63
850	1465.63	36123.8	1.'1233	6.6423	1.2397	808.61	94.34	19.21	52	56	0.475	2.6	4.15
950	1378.28	36123.8	1.9163	4.6252	1.3443	805.65	96.63	24.38	66	36	0.5148	4.14	3.36
950	1502.51	36123.8	1.7981	6.0090	1.3443	803.16	122.32	19.21	50	44	0.48	2.99	4.45
1050	1355.50	39731.8	2.0178	3.645	1.5951	805.45	104.30	25.86	72	24	0.5073	--	3.28
1050	1472.61	40069.2	1.3609	5.1182	1.6087	803.17	132.95	20.69	54	32	$0.46 \% 4$	-	4.39

TABLE IV

Per Cent Excess Air	Exit Stack Temperature $=850^{\circ} \mathrm{F}$								Number of Tubes$\mathrm{N}_{\mathrm{R}} \quad \mathrm{~N}_{\mathrm{C}}$		Tube Dia. Ft.	R_{A}
	Bridge Wall Temp.	Lb. Flue Gas Per Hour	$\begin{gathered} Q_{R} \\ \times 10^{-7} \end{gathered}$	$\begin{gathered} Q_{C} \\ \times 10^{-7} \end{gathered}$	$\begin{aligned} & Q_{\mathrm{L}} \\ & \times 10^{-7} \\ & \hline \end{aligned}$	Exit Co Temp.	ditions Press.	Size				
Furnace 7												
25	1392.7	36123.8	1.7304	5.8314	1.2397	801.71	51.61	22.166	64	52	0.4128	0.487
25	1462.66	36123.8	1.68906	6.60916	1.2397	805.93	60.86	18.403	54	56	0.4115	0.47
25	1593.9	36123.8	1.56244	8.0838	1.2397	809.07	74.9	14.22	42	64	0.4100	0.433
50	1376.4	42648.7	1.6351	6.8156	1.500	802.38	43.32	22.166	64	56	0.4157	0.428
50	1614.8	42648.7	1.31014	1.00313	1.500	800.15	69.15	12.864	36	72	0.4100	0.344
50	1286.5	42648.7	1.78375	5.6239	1.500	804.35	55.0	22.166	84	43	0.4281	0.464
100	1386.4	64669.5	1.28784	9.87721	2.1508	800.23	61.98	18.003	54	64	0.4184	0.291
100	1266.7	64635.6	1.5427	7.6223	2.1497	798.14	40.0	27.794	76	52	0.4219	0.345
100	1593.4	64635.6	9.3180	1.38224	2.1497	801.44	37.13	10.35	32	80	0.4071	0.209
125	1391.8	83354.9	1.06017	1.2835	2.75988	803.8	54.0	15.89	48	72	0.4191	0.208

The design of tube still heaters should be made by considering distributions of the heat load between both sections of the furnace. When a distribution ratio has been chosen, the design of a petroleum furnace can then be established on a basis of the permissible average radiant heat transfer rate.

The results illustrated in Figures IV and V show the heat distribution ratio to be a function of bridgewall temperature; exit stack temperature; and furnace capacity. These curves include the results obtained using two tube spacings, indicating that the heat distribution ratio is independent of this variable.

Figure VI is presented in order to permit visualizing the effect of excess air on the distribution ratio. At a specific bridgewall temperature a greater percentage of heat can be distributed to the radiant section by decreasing the percentage excess air. Using the bridgewall temperature as a parameter, this effect was correlated in terms of the fraction of the total heat input absorbed in the radiant section, and plotted versus the per cent excess air. These results are shown in Figure VII.

In the preceeding discussion, emphasis is placed upon available distributions of the total heat load between both sections of the furnace without considering the transfer rates per unit area of cold surfaces. It is quite difficult to generalize regarding allowable rates of heat transfer as this would naturally depend upon the rate at which the oil removes heat from the tubes and the maximum temperature to which the tube may be heated without causing corrosion, distortion of the tube, thermal cracking of the crude and coke deposition inside the tubes. It should not be concluded however, that a choice of the maximum allowable rate results in the best furnace design, as this maximum may only be attainable in one section of the furnace. The choice, should be based upon rates in both sections which will yield the lowest total tube surface area.

The results of these calculations indicate that this situation is accompanied by high bridgewall temperatures and small quantities of excess air.

In the interests of economy, it is the current trend to fill the radiant section with cold tube surfaces. Figure VIII gives an indication of the relationship between the cold plane area in the radiant section and the fraction of the total heat input absorbed in this section. These curves show that this fraction, although independent of the tube spacings used, varies with excess air and furnace capacity. These curves are also significant in that they give an indication of the optimum size of the radiant section. For example, if the maximum allowable rate of heat transfer was found to be $20,000 \mathrm{Btu} / \mathrm{ft}^{2}$ for Furnace 1 (illustrated by curve 1 in Figure VIII), then a design could not be made such that the fraction of the total heat absorbed in the radiant section is less than 0.32. Also, if the permissible rate were close to the maximum, for example $18,000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}$ then the resulting small radiant section would be obtained at a loss of economy. This, however, can be avoided by increasing the per cent excess air and thus increasing the fraction absorbed for a specific radiant rate.

Accurate furnace designs can be obtained using mathematical models similar to that employed in these calculations. Although these models are useful in determining the effect of various phenomenon in furnace characteristics, they cannot be used to directly determine optimum designs. In order to obtain the best design for a furnace, models must include economic considerations as well as those factors included in this model.

The factors most significant in determining the ultimate design of furnaces are the distribution of total heat load to the radiant and convection section, and the average heat transfer rates.

The heat distribution ratio of a furnace is dependent upon the per cent excess air and bridgewall and exit stack temperatures. Increases in any of these characteristics will result in a larger distribution ratio.

Average heat transfer rates in the radiant section are almost entirely dependent upon the fraction of the total heat input absorbed in this section and increases as the fraction decreases. This fraction is dependent on the per cent excess air and bridgewall temperatures and will increase as either variable decreases.

The total tube area required for a furnace with a specific duty is usually lowest when the bridgewall temperature is high and the per cent excess air is low.

The number of calculations made throughout this investigation was severely restricted by the size of the computer available and the type of programming employed. Should a similar investigation be attempted, it should be conducted on a larger computer using a faster method of interpretive procramming. It is also recommended that a more accurate method of predicting pressure drop in the presence of two phase flow be obtained.

APPENDIXES

1. Lobo, W. E. and J. E. Evans, Trans. Am. Inst. Chem. Eng., 35, 5 (1939).
2. Bell, H. S., American Petroleum Refining, p. 141, D. Van Nostrand Company, Inc., New York, 1945.
3. Petroleum Panorama, 1859 to 1959, 011 and Gas J.; 1959.
4. Dunstan, A. E., Science of Petroleum, 3, p. 2223, Oxford University press, London, 1938.
5. Ibid, p. 2228.
6. Wilson, D. W., W. E. Lobo, and H. C. Hottel, Ind. Eng. Chem., 24, 486 (1932).
7. Hottel, H. C., Trans. Am. Inst. Chem. Eng., 19, 173 (1927).
8. McAdams, W. H., Heat Transmission, 3rd ed., p. 63, McGrawHill Book Company, Inc., New York, 1954.
9. Hottel, H. C., Trans. Am. Soc. Mec. Eng., 53, 265 (1931).
10. Monrad, C. C., Ind. Eng. Chem., 24, 505 (1932).
11. Kern, D. Q., Process Heat Transfer, p. 708, McGraw-Hill Book Company, Inc., New York, 1950.
12. Ibid, p. 103.
13. Weir, H. M. and G. L. Eaton, Ind. Eng. Chem., 24, 211 (1932).
14. Bahlke, W. H. and W. B. Kay, Ind. Eng. Chem., 24, 291 (1932).
15. Piromoor, R. S. and Beisnenger, A.P. I. Bulletin, 10, No. 2 (1929).
16. Maxwell, J. B., Trans. Am. Inst. Chem. Eng., 37, 59 (1941).
17. Nelson, W. L., Petroleum Refinery Fngineering, p. 113, McGraw-Hill Book Company, Inc., New York, 1958.
18. Ibid, p. 180.
19. Density and Thermal Expansion of American Petroleum Oils, U. S. Bureau of Standards, Technologic Papers, No. 77; 1916.
20. Thermal Properties of Petroleum Products, U. S. Bureau of Standards, M1ss. Publications, No. 97; 1929.
21. Lockhart, R. W. and R. C. Martinelli, Chem. Eng. Progr., 45, 39 (1949).
22. Reid, R. C., A. B. Reynolds, A. J. Diglio, I. Spiewalk, and C. H. Klepstein, Am. Inst. Chem. Eng. J., 3, 3 (1957). 23. Chenoweth, J. M. and M. W. Martin, Pet. Ref., 10, 51 (1955). 24. Perry, J. H., Chemical Engineers' Handbook, 3rd ed., p. 383, McGraw-Hill Book Company, Inc., New York, 1950.
23. Donnell, J. W., and C. M. Cooper, Unpublished Notes.
24. McCulloch, C. E., Oil and Gas, 5, 93 (1934).

$$
\begin{aligned}
& A_{c}=\text { total outside tube area, } f t^{2} \text {. } \\
& A_{R}=\text { effective refractory area, } f t^{2} \text {. } \\
& A_{R}^{\prime}=\text { actual refractory area, } \mathrm{ft}^{2} \text {. } \\
& A_{T}=\text { total wall area, } \mathrm{ft}^{2} \text {. } \\
& A_{c p}=\text { area of plane replacing tubes, } \mathrm{ft}^{2} \text {. } \\
& C_{p}=\text { heat capacity, Btu/lb }{ }^{\circ} \mathrm{F} \text {. } \\
& \text { D }=\text { pipe diameter, ft. } \\
& D^{\prime}=\text { pipe diameter, ins. } \\
& D_{L}=\text { equivalent diameter of liquid phase. } \\
& D_{V}=\text { equivalent diameter of vapor phase. } \\
& \mathrm{d}=\text { fraction distilled. } \\
& E_{b}=\text { black body emissive power, Btu/hr ft }{ }^{2} \text {. } \\
& F=\text { geometric factor. } \\
& \psi=\text { overall exchange factor. } \\
& f \quad=\text { Fanning friction factor. } \\
& G=\text { superficial mass velocity, } l b / h r \mathrm{ft}^{2} \text {. } \\
& \mathrm{H}=\text { enthalpy, Btu/lb. } \\
& \Delta H=\text { heat absorbed by crude per node, Btu/lb. } \\
& h_{c}=\text { pure convection coefficient, Btu/hr ft }{ }^{2}{ }^{\circ} \mathrm{F} \text {. } \\
& \mathrm{h}_{\mathrm{r}}=\text { radiant coefficient, } \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \text {. } \\
& K^{r}=\text { thermal conductivity of crude, Btu/hr } \mathrm{ft}^{2}{ }^{\circ} \mathrm{F} / \mathrm{ft} \text {. } \\
& K_{m}=\text { thermal conductivity of tube, Btu/hr } \mathrm{ft}^{2}{ }^{\circ} \mathrm{F} / \mathrm{ft} \text {. } \\
& L_{B}=\text { mean length of radiant beam, ft. } \\
& \mathrm{L}=\text { length of radiant section, ft. } \\
& \Delta L=\text { length of tube node, ft. } \\
& \mathrm{P}=\text { pressure, } \mathrm{lb} / \mathrm{in}^{2} \\
& \mathrm{P}_{\mathrm{CO}_{2}}=\text { partial pressure of } \mathrm{CO}_{2} \text {, ats. } \\
& \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\text { partial pressure of } \mathrm{H}_{2} \mathrm{O} \text {, aims. } \\
& \mathrm{q}=\text { heat transferred to the oil, Btu/hr. } \\
& \text { S.G = specific gravity. } \\
& T=\text { temperature, }{ }^{\circ} \mathrm{R} \text {. } \\
& \mathrm{t}=\text { temperature, }{ }^{\circ} \mathrm{F} \text {. }
\end{aligned}
$$

$u=$ overall heat transfer coefficient, Btu/hr ft ${ }^{2}{ }^{\circ} \mathrm{F}$.
$\mathrm{W}=$ mass flow rate, $\mathrm{lb} / \mathrm{hr}$.
$\mathrm{Z}=$ height of furnace, ft.
$\alpha=$ factor by which $A_{c p}$ must be reduced to obtain effective cold surface, $\alpha A_{c p}$ (effective tube area).
$\boldsymbol{\epsilon}_{\mathrm{G}}=$ gas emissivity.
$\varnothing=$ pressure drop coefficient.
$\mu=$ viscosity, lb/ft hr.
$\lambda \quad=$ pseudo density of two phase mixture.
$\not \subset-\phi=$ center to center spacing of the tubes.
$\delta=$ Stefan-Boetzmann constant, $0.173 \times 10^{-8} \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{R}^{4}$ $\rho=$ density, $l b / \mathrm{ft}^{3}$.

Subscripts

b = black body.
$\mathrm{c}=$ convection.
$g=$ gas.
1 = inside.
$\mathrm{m}=$ arithmetic average.
o = outside.
$r=$ radiation.
s $=$ surface.
$\mathrm{w}=\mathrm{wall}$.
1 = inlet.
2 = exit.

PROGRAM ABSTRACT

TITLE: Pipe Still Heater Design.
AUTHOR: William V. Saunders.

DESCRIPTION

The program calculates the dimensions, number of tubes and their diameter in the radiant and convection sections of the furnace. The method used includes the correlations of Lobo and Evans for the evaluation of radiant heat transfer rates and those of Monrad for calculating convection coefficients. COMPUTER

MISTIC, 1024 cathode-ray tube memory locations, perforated tape input and output.

PROGRAM LANGUAGE
Fixed point and floating point coding.
RUNNING TIME
Six to ten hours depending on the accuracy of initial estimates of the guessed quantities.

COMMENIS
The engineer can have the calculation stop after any of the two sections: radiant section, convection section. Program has been successfuly used over : forty times in designing furnaces.

AVAILABILITTY

A manual for the description of the codes used in this program is available in the Computer Laboratory library at Michigan State University. This program is available from the Computer Library in the Chemical Fngineering Department.

DESCRIPTION OF PROGRAM

Description

To handle the lengthy calculations involved in designing the tube-still furnace, a procedure was developed for use with a small sized digital computer. The machine routine is such that a choice of tube length, flow rate of crude stock, center-to-center spacing of the tubes, percentage excess air, and bridgewall and exit stack temperatures may be varied in considering the different designs.

The furnace may be calculated in any increment of tube length desired; however, as the computer routine used was an extremely slow one, it was necessary to shorten the calculations as much as possible in order to have expediency of calculation time. Such being the case, an increment of four tube lengths was chosen in the convection section and two tube lengths in the radiant section.

The flow of calculations around a tube increment is shown in Figure 9. At the inlet of the tube, the temperature, pressure and liquid volume fraction, ($t, T, P, L V F$) is known from the previous tube, or if the first calculation from the inlet conditions to the furnace. The inlet conditions (t_{2} and P_{2}) are guessed and their arithmetic averages computed. Based on these average values, new values of t_{2} and P_{2} are calculated.

The calculated values of the outlet temperature and pressure are compared with the assumed values. If the difference between calculated and assumed values are not within tolerance, new values for the exit conditions are chosen and the procedure repeated until the outlet values are within tolerance. These values are then used for the next tube.

When the gas temperature above the tube reaches a certain maximum, which is set as the highest allowable bridgewall temperature, calculations for the convection section are stopped and calculations for the radiant section commences. When the exit temperature and pressure from a tube increment compares

RADIATM NODE
with the desired discharge conditions, the dimensions of the furnace are calculated from the number of tubes in this section and compared with the assumed dimensions. If the discharge conditions do not check within tolerance a new diameter is assumed and all calculations repeated. Calculations within the radiant section are repeated when the assumed dimensions do not compare with those calculated.

Finally a heat balance is made about the furnace and the fuel rate modified until the heat liberated equals the heat absorbed plus the heat lost from the furnace.

Method of Fitting Equations to Data

The numerous charts necessary to the solution of this problem had to be programmed so that they could be interpreted by the computer. The most convenient and accurate method of doing this is by fitting the curve to polynomials.

Polynomials were obtained by reading a set of points from each curve and by fitting these points to a polynomial of the form

$$
F_{(X)}=1 / 2 \sum_{s=0}^{n-1} A_{s} X^{s}
$$

The criterion of excellence for each polynomial was that the sum of the squares of the deviations

$$
\begin{aligned}
& M= \sum_{i=0}^{n-1}\left[F\left(x_{1}\right) \cdot f_{\left(x_{1}\right)}\right]^{2} A_{W}\left(x_{i}\right) \\
& f_{\left(x_{1}\right)}=\text { points from the curve }
\end{aligned}
$$

Should be a minimum with respect to arbitrary variations of the coefficients A_{s}.

Two library routines, K_{3} and L7S, were available for the evaluation of these polynomials. The constants, as obtained for the curves used in these calculations are presented in Table 5.

MACHINE REQUIREMENTIS

The automatic computer used for the furance calculations was MISTIC, a binary, fractional, single address computer with a word length of 40 bits , a memory of 1024 words, and which puts
two instructions in a word.
MISTIC like most digital computers is composed of five units: input, memory or storage, control, arithmetic, and output.

Input
This unit includes as an input medium a 5-level perforated Teletype paper tape by which the problem is communicated to the computer, and as an input device a photo-electric reader which is able to pull the tape past a light. The light shines through the holes activating a photo-sensitive surface which converts the spots to electrical impulsec, equivalent to the number represented by the coded character on tape. These impulses are sent directly to an assembly register.

Memory

The numbers received by the assembly register are sent under the control of the computer to memory. The memory is an electronic device composed of 40 vacuum tubes. On the face, or gird, of each tube 1024 spots can be stored. Each spot is assigned a certain address or location, and corresponds to a binary digit from every word. Each tube represents a different binary digit, that is, a power of two (referred to as a bit) to comprise a total of 40 bits , or one word.

Information stored in memory usually consists of a series of instructions (a program), directing the machine to execute certain operations and a set of data on which these operations are performed.

Arithmetic

The instructions and data held by memory are used both by the arithmetic and control sections. The arithmetic section is that section of the computer in which mathematical and logical operations are performed. These operations include: addition, subtraction, multiplication, division, and the comparison of two quantities and are associated with three 40 bit registers and an adder. These are the A register (accumulator), the Q register (quotient), the R register and the adder. In an addition, A holds one of the terms and the result, Q holds the quotient
of a division and has no additive properties. The adder is a register on which the number in A is added to the number in R. Control

The control section of the computer directs every operation executed by the computer. MISTIC stores the program provided by the operator in memory, and before any operation can be executed it must be summoned from memory by the control section. This section is comprised of an instruction register (IR) which holds the instruction currently being executed by control and a control counter which holds the address of the next instruction pair to be sent to IR.

Output
When the result of a calculation has been obtained which must be transferred to the operator, it is sent to the output section. The output section is simflar to input in that electrical impuses are converted to a suitable code and translated by an electro-magnetic devise and presented to the reader on tape. Teletypewriters are available and are used for printing on paper the symbols represented by the punched tape.

Subroutines

MISTIC operates in binary, and in view of this, special attention must be given to the location of the decimal or binary points of numbers before every arithmetic operation. Its arithmetic unit necessitates the binary point to be fixed so that any number X used in computation must be in the range $-1 \leq X<l$. It is necessary then, that each number at every stage of a calculation be scaled within the capacity of the Machine. Many problems encountered in engineering calculations involve numbers of various magnitudes making scaling an additional inconvenient complexity. For these calculations floating point routines may be used. These routines represent numbers as $x=a \times 10^{b}$ and store a and b. Thus they can represent numbers in the range of $10^{-63} \leq \mathrm{x}<10^{63}$. The floating point routine used in the preparation of this program was a standard library routine designated as A1.

Running Time and Accuracy

The running time for a complete computation cannot be predicted exactly as this would depend on the accuracy of the initial estimates of the guessed quantities and the number of increments chosen. The running time necessary for an increment of tube length to converge was approximately three minutes and that for a complete computation averaged to about five hours. A conservative estimate of the time required to perform a complete computation by hand, would be 110 hours. The accuracy for each arithmetic operation is set by that of the Al Routine which provides an answer to at most nine decimal digits. However, the elaborate trial and error computation involved necessitated a choice of limits-of-convergence which resulted in an accuracy within 0.8 per cent of the correct answer for the exit temperature and 1.5 per cent for the exit pressure for each tube increment.

Error Stops

During the necessarily lengthy calculation periods, the operator was kept informed of progress and possible errors by special features included in the program. At the end of each calculation cycle, print outs showed; (1) dimensions of the furnace, (2) difference between the desired and calculated pressure drops and also tube diameter, and (3) number of tubes in the radiant section and the fuel rate. Obvious errors in any of these values could easily be detected however, the less obvious mistakes could only be detected in the final answers.

Abstract

Diagrammatic Flow Chart The backbone of the automatic computation system consists of two separate but complementary computer programs for the solution of the design problem. The first program treats the convection section as an independent unit and makes calculations around tube increments until the gas temperature above an increment reaches a certain maximum. This maximum is set by the bridgewall temperature desired in the radiant section. The second program utilizes this temperature and the exit conditions from the convection section to solve the problem of furnace dimensions, number of tubes required, tube diameter and also the heat balance about the furnace.

The calculation procedure is diagramed in Figure 10. With the exception of the preliminary calculations (box l), each step in the diagram corresponds to a series of calculations listed in the smaple problem given on the following pages. In order to shorten machine running time as much as possible certain quantities were evaluated at the beginning of the program to avoid repetition during any cycle for which these values do not change. These are the preliminary calculations and include the evaluation of $1.6 \mathrm{G}^{1 / 3} / D_{0}^{\prime}{ }_{0}^{(2 / 3)}$ from the convection coefficient, Equation (8); the mean beam path of the gases between banks of tubes, Equation (5) and the ratio A_{W} / A_{t}.

FIIMRE 10A. Flow Dia ram. Curvection Section.

The following computations serve to illustrate the flow of calculations around a tube node in the convection and radiant sections. It should be clearly understood that this illustration represents only a small fraction of the computations necessary to complete a solution of the furnace design problem.

Furnace data:
Inlet temperature $=400{ }^{\circ} \mathrm{F}$.
Inlet pressure $=240 \mathrm{lb} / \mathrm{in}^{2}$.
Stack temperature $=870{ }^{\circ} \mathrm{F}$.
Tube spacing $=1.5$ tube diameters.
Fuel $-\mathrm{CH}_{4}$ fired with 50% excess air.
Crude data:
Flow rate $=80,000 \mathrm{lb} / \mathrm{hr}$.
API gravity $=35.7$
True boiling point and mid-gravity curves are presented in Figure 11. From the true boiling point curve, a flash curve is drawn at $238 \mathrm{lb} / \mathrm{in}^{2}$ and is shown in Figure 12.
Calculations
Tube increment $=100 \mathrm{ft}$.
(2) Assume:

Exit temperature $=409.517^{\circ} \mathrm{F}$.
Exit pressure $=236.29{ }^{\circ} \mathrm{F}$.
Tube diameter (inside) $=0.41 \mathrm{ft}$.

$$
\therefore t_{m}=404.76{ }^{\circ} \mathrm{F} ; \mathrm{P}_{\mathrm{m}}=238.15 \mathrm{lb} / \mathrm{in}^{2}
$$

(3) Calculate per cent vaporized:

$$
d=\frac{t-t(b)}{100 m} \quad \text { (equation for the flash curve) }
$$

$t_{(b)}=t_{(p)}-50 m$
${ }^{t}(p)$ is the vapor pressure-temperature equation for a hydrocarbon with an atmospheric boiling point corresponding to the 50% point of the flash curve.

$$
t_{(p)}=426.58+3.2 \mathrm{P}-0.0113 \mathrm{P}^{2}+15.4 \times 10^{-6 \mathrm{P} 3}
$$

Solving for $t_{(p)}$ at $p=238.15 \mathrm{lb} / \mathrm{in}^{2}, t_{(p)}=759.74{ }^{\circ} \mathrm{F}$ $\therefore t_{(b)}=379.74 \mathrm{~F}$. Since $t_{(b)}<404.76$, vaporization has occurred. $d=(404.76-379.74) \div(100)(7.6)=0.033$ This result can also be obtained by reading the fraction distilled from the flash curve Figure 12.
(6) Calculate the liquid volume fraction (L.V.F.):

$$
\begin{aligned}
& \text { L.V.F. }=\frac{W_{L}}{W_{L}+\frac{W_{V} \rho_{L}}{\rho_{v}}} \\
& {\left[\frac{W_{L}}{\rho_{L}}\right]^{W_{c}} 60^{\circ} \mathrm{F}} \\
& {\left[\frac{\rho_{c}}{\rho_{c}}\right] 60{ }^{\circ} \mathrm{F}} \\
& W_{c}=80,0001 \mathrm{lb} / \mathrm{hr} \\
& (\mathrm{SG})_{c}=0.8474
\end{aligned}
$$

The specific gravity of the liquid can be obtained from the midgravity curve (Figure 11), or from the following polynomial at d $=0.033$.

$$
\alpha_{T}=0.00122+0.00276(\mathrm{SG})_{\mathrm{L}}^{0}-0.0079(\mathrm{SG})_{\mathrm{L}}^{0^{2}}+0.0046(\mathrm{SG})_{\mathrm{L}}^{0^{3}}
$$

$$
\beta_{\mathrm{T}}=1.92307 \times 10^{-6}(\mathrm{SG})_{\mathrm{L}}^{0}-1.5538 \times 10^{-6}
$$

$$
(\mathrm{SG})_{\mathrm{L}}^{\mathrm{O}}=0.63
$$

$$
\therefore \rho_{L}=(S G)_{L} 62.4=29.95
$$

$$
L V F=\frac{W_{L} \rho_{L}}{W_{L} \rho_{V}+W_{V} \rho_{L}}
$$

$$
\therefore L V F=0.018
$$

Calculate $\Delta \mathrm{H}$:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{L}}= & 15(\mathrm{SG})_{\mathrm{L}}-26+\left[0.811-0.465(\mathrm{SG})_{\mathrm{L}}\right]_{\mathrm{t}}=0.00029 \mathrm{t}^{2} . \\
\mathrm{H}_{\mathrm{V}}= & {\left[215-87(\mathrm{SG})_{\mathrm{L}}\right]+\left[0.415-0.104(\mathrm{SG})_{L}\right] t+} \\
& {\left[3.1-0.78(\mathrm{SG})_{L}\right] \mathrm{t}^{2} \times 10^{-4}+\frac{1}{9331.7}\{ }
\end{aligned}
$$

$$
\begin{aligned}
& (S G)_{L}=0.599+0.965 d-1.487 d^{2}+1.017 d^{3}=0.63 \\
& \therefore W_{L}=57,450 \mathrm{lb} / \mathrm{hr} \quad \mathrm{~W}_{\mathrm{V}}=22,550 \mathrm{lb} / \mathrm{hr} \\
& \rho_{V}=\frac{1}{V}=1728 /\left\{\frac{157 T}{P}-\frac{1}{T^{3}}[7234+102 P] \times 10^{7}+0.52 P+20\right\} \\
& T=864.76{ }^{\circ} \mathrm{R} \quad \mathrm{P}=238.15 \mathrm{lb} / \mathrm{in}^{2} \therefore \rho_{\mathrm{V}}=2.6 \mathrm{lb} / \mathrm{ft}^{3} \\
& (S G)_{L}=(S G)_{L}^{o}+\left(\frac{60-t}{1.8}\right)\left\{\alpha_{T}+\frac{\beta_{T}}{1.8}[3 t-217]\right\}
\end{aligned}
$$

$$
\left.\left[20.47 \mathrm{P}+0.258 \mathrm{P}^{2}-\frac{\mathrm{P}}{\mathrm{~T}^{3}}(28.970+203.4 \mathrm{P}) \times 10^{7}\right]\right\}
$$

$$
\Delta H=\left[W_{L} H_{L}+W_{V} H_{V}\right]_{2}-\left[W_{L} H_{L}+W_{V} H_{V}\right]_{I}
$$

$$
t_{1}=400^{\circ} \mathrm{F} ; \quad P_{1}=240 \mathrm{lb} / \mathrm{in}^{2} ; \quad \mathrm{t}_{2}=409.517^{\circ} \mathrm{F} ; \quad P_{2}=236.29^{\circ} \mathrm{F} .
$$

$$
\Delta \mathrm{H}=5.35 \times 10^{5} \mathrm{Btu} / \mathrm{hr} .
$$

(7) Calculate ${ }_{T} \mathrm{~T}_{\mathrm{g}} \cdot$ (Gas temperature above node)
$\Delta H=\int_{T_{1}}^{T_{1}{ }^{g}} C_{p} d T$
$C_{p}=1.9 \times 10^{4}+1.7 \mathrm{~T}-9.12 \times 10^{-5} \mathrm{~T}^{2} \quad$ Btu $/{ }^{\circ} \mathrm{R}$
$5.35 \times 10^{5}=1.9 \times 10^{4}\left[T_{2}-1330\right]+0.85\left[\mathrm{~T}_{2}{ }^{2}-(1330)^{2}\right]$
$-3.04 \times 10^{-5}\left[\mathrm{~T}_{2}^{3}-(1330)^{3}\right]$
Newton's method is used to obtain the $\mathrm{n}^{\text {th }}$ approximation of T_{2},

$$
T_{n}=T_{n-1}-\frac{f(T)}{f^{\prime}(T)} \quad \text { where } f(T)=\int_{T_{1}}^{T_{2}} C_{p} d T-\Delta H
$$

Following this procedure, \mathbb{T}_{2} is solved for by trial and error.

$$
\mathrm{T}_{2}=923^{\circ} \mathrm{F} .
$$

(9) Calculate $q(=U A \Delta t)$

$$
\begin{aligned}
& A=\pi D_{0} \Delta L ; \mathrm{It}^{2} ; \quad \Delta t=[t g-t m] \\
& I / U=\frac{I}{h u}+\frac{D_{0}\left(D_{0}-D_{i}\right)}{\left(D_{0}+D_{i}\right) K_{m}}+\frac{D_{0}}{D_{i} h_{i}}
\end{aligned}
$$

Km , the thermal conductivity of the tube, is assumed independent of temperature. $\mathrm{Km}=26 \mathrm{Btu} / \mathrm{ft}^{2}{ }^{\circ} \mathrm{F} / \mathrm{ft}$.
$\therefore h u=\frac{1.6 \mathrm{G}^{2 / 3 \mathrm{Tg}} 0.3}{\mathrm{D}_{\mathrm{o}}^{1 / 3}}$
$G=$ (gas flow rate) $/$ (minimum cross sectional area)

$$
\begin{aligned}
& =8.34 \times 10^{4} / \mathrm{LD}(\phi-\phi-1) 3600 \quad \mathrm{lb} / \mathrm{ft}^{2} \mathrm{sec} . \\
& \mathrm{D}_{\mathrm{o}}^{\prime}=\mathrm{D}_{\mathrm{o}} / 12 ; \quad \mathrm{Tg}=(923+870) / 2+460=1356.5^{\circ} \mathrm{R} .
\end{aligned}
$$

$\therefore \mathrm{hu}=7.8 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$.

$$
\frac{h_{i} D_{i}}{K_{L}}=0.023\left(\frac{D_{G}}{\mu}\right)_{L}^{0.8}\left(\frac{\left.C_{p}\right)^{\mu}}{K}\right)_{L}^{1 / 3}
$$

$$
\begin{aligned}
& K_{L}=\frac{0.813}{12(S G)}[1-0.003(t-32)]=0.095 \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \\
& \mathrm{ft}^{\circ} \mathrm{F} / \mathrm{ft} \\
& \mathrm{C}_{\mathrm{p}}=\frac{\Delta H}{\Delta t}=0.75 \mathrm{Btu} / \mathrm{lb}{ }^{\circ} \mathrm{F} .
\end{aligned}
$$

$\mu_{\mathrm{K}}($ kinematic viscosity $)=5.995-0.023 t+3.93 \times 10^{-4} t^{2}-2.32 \times 10^{-6} t^{3}$ $\mu=\mu_{K}(S G)(2.42)=1.0 T \mathrm{lb} / \mathrm{ft} \mathrm{hr}$.

Solving:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{i}}=806.9 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2}{ }^{\circ} \mathrm{F} \\
& \mathrm{u}=7.66 \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \\
& \mathrm{ft}^{2} \mathrm{~F} . \\
& \mathrm{q}=7.66(\pi)(0.466)(100)[896.5-404.76] \\
& \mathrm{q}=5.5 \times 10^{5} \mathrm{Btu} / \mathrm{hr} .
\end{aligned}
$$

Since q and ΔH are approximately equal, the assumed t_{2} is correct. However, if $q \neq \Delta H$, within tolerance, another value of t_{2} would be calculated using the following relationship:

$$
t_{2}^{1}=t_{2}+(q-\Delta H)\left(t_{2}-t_{1}\right) /(\Delta H)
$$

and all calculations repeated.
(16) Calculate ΔP.

$$
\begin{aligned}
& \Delta P=\frac{2 \phi \Delta L G_{G}^{2}}{\lambda q_{c} D_{i}(144)} \\
& \lambda=L V F\left(\rho_{L}-\rho_{V}\right)+\rho_{V_{0}}=0.18(29.95-2.6)+2.6=7.52 \mathrm{lb} / \mathrm{ft}^{3} \\
& \varnothing=0.0014+0.09\left(\frac{\mu}{D G}\right)_{L}=0.0049 \\
& \Delta L=100+\text { equivalent length of } 4 \text { return bends }=220 \mathrm{ft} .
\end{aligned}
$$

Solving
$\Delta P=4.2 \mathrm{lb} / \mathrm{in}^{2}$
Since $P_{2}+\Delta P \doteq P_{1}$ the assumed pressure is correct.
For $P_{2}+\Delta P \neq P_{1}$ repeat calculations using
$P_{2}^{l}=P_{1}+\Delta P$.
(10) Shield Section

For tube nodes in the shield section
$h_{u}=\frac{(100+\% \text { wall effect })}{100}\left(h_{c}+h r g\right) \quad B t u / h r t^{2}{ }^{\circ} \mathrm{F}$.

$$
h_{c}=\frac{1.6 \mathrm{G}^{2 / 3} \mathrm{Tg}^{0.3}}{\mathrm{D}_{\mathrm{o}}^{1 / 3}}
$$

$$
\operatorname{hrg}=\epsilon_{\mathrm{S}}\left[\frac{\left(\mathrm{q}_{\mathrm{c}}+\mathrm{q}_{\mathrm{w}}\right)_{\mathrm{Tg}}-\left(\mathrm{q}_{\mathrm{c}}^{\left.-6 q_{W}\right)_{\mathrm{Ts}}}\right.}{(\mathrm{Tg}-\mathrm{Ts})}\right] \frac{(100-\%)}{100}
$$

\% wall effect $=\frac{\text { hrb } \times \text { Aw } \times 100}{\text { Lhc }+\mathrm{hrg}=\mathrm{hrb} \text {]At }}$
$\mathrm{hrb}=0.00688 \epsilon_{\mathrm{S}}\left[\frac{\mathrm{T}}{100}\right]^{3}$ and $\epsilon_{\mathrm{S}}=0.95$
This necessitates a trial and error solution since the tube surface temperature, t_{s}, is unknown. A solution is obtained by approximating h_{u} and calculating t_{s}.

$$
\begin{aligned}
& t_{s}=t_{m}+\Delta t_{s} \\
& \Delta t_{s}=\left[\frac{D_{0} / D i n i+D_{0}\left(D_{0}-D_{i}\right) /\left(D_{0}+D_{i}\right) K m}{1 / h_{u}+D_{0} / D i h i+D_{0}\left(D_{0}-D_{i}\right) /\left(D_{0}+D_{i}\right) K m}\right] \Delta t \\
& \Delta t=t g-t m
\end{aligned}
$$

From t_{s}, h_{u} is calculated and compared with the assumed value. If their difference is small, the calculated h_{u} is used as the correct value. If their difference is not negligible, another value of h_{u} is assumed and the process repeated.

When a tube node has converged, the calculated values of t_{2} and P_{2} are used as inlet conditions to the adjacent node and calculations repeated until Tg is within the temperature range assigned to the bridgewall temperature. At this point, calculations for the radiant section begin.

The method of evaluating exit conditions from tube increments in the radiant section is similar to that employed in the convection section. However, q, previously the heat transferred by convection, must be replaced by q_{r}, the heat transferred to the oil by radiation. The evaluation of q_{r} is illustrated in the following example.

Length of tube $=25 \mathrm{ft}$.
Length of node $=50 \mathrm{ft}$.
Bridgewall temperature $=1391.34^{\circ} \mathrm{F}$.
Inlet temperature $=797.83^{\circ} \mathrm{F}$
Inlet pressure $=51.35 \mathrm{lb} / \mathrm{in}^{2}$
Per cent excess air $=125 \%$.
(1) Assume:

Dimension of radiant section $=16 \times 16 \times 25 \mathrm{ft}$.

Exit temperature $=303.85^{\circ} \mathrm{F}$.
Exit pressure $=53.99 \mathrm{lb} / \mathrm{in}^{2}$.
(2) Calculate (previously illustrated).
$\%$ vaporized $=79.42 \%$.

$$
\begin{aligned}
& \rho_{\mathrm{L}}=34.086 \mathrm{lb} / \mathrm{ft}^{3} . \\
& \rho_{\mathrm{V}}=0.497 \mathrm{lb} / \mathrm{ft}^{3} . \\
& \mathrm{W}_{\mathrm{V}}=6.187 \times 10^{4} \mathrm{lb} / \mathrm{hr} . \\
& \mathrm{W}_{\mathrm{L}}=1.822 \times 10^{4} \mathrm{lb} / \mathrm{hr} . \\
& \mathrm{LVF}=0.00429 \\
& \Delta H=4.0839 \times 10^{5} \mathrm{Btu} / \mathrm{hr} . \\
& \mathrm{K}_{\mathrm{L}}=0.0556 \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \\
& \mathrm{H}_{\mathrm{L}}=0.48 \mathrm{lb} / \mathrm{ft} . \\
& \mathrm{C}_{\mathrm{p}}=0.83 \mathrm{hru} . \\
& \mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{F} .
\end{aligned}
$$

(3) Calculate t_{s}

$$
\begin{aligned}
& \Delta H=u \pi D_{0} \Delta I[t s-t m] \\
& I / u=1 / \mathrm{hi}+D_{0}\left(D_{0}-D_{1}\right) /\left(D_{0}+D_{1}\right) \mathrm{Km} \\
& \frac{h i D 1}{K_{L}}=0.023\left(\frac{D G}{\mu}\right)_{L} .8 \frac{\left(C_{p \mu}\right)^{1 / 3}}{K} \\
& D_{0}=0.46 \mathrm{ft} \cdot ; \quad D_{i}=0.42 \mathrm{ft} .
\end{aligned}
$$

Solving $\mathrm{t}_{\mathrm{s}}=815{ }^{\circ} \mathrm{F}$.
(4) Calculate q_{r}

$$
\begin{aligned}
& q_{r}=\alpha A_{c p} \psi\left\{0.173 \times 10^{8}\left[\mathrm{Tg}^{4}-\mathrm{Ts}^{4}\right]+7[\mathrm{Tg}-\mathrm{Ts}]\right\} \\
& \mathrm{I}_{B}=2 / 3[25 \times 16 \times 16]^{1 / 2}=12.28 \mathrm{ft} . \\
& \mathrm{P}_{\mathrm{CO}}=0.0466 \mathrm{atms} . \quad \mathrm{P}_{\mathrm{H}_{2}} \mathrm{O}=0.0892 \mathrm{atms} . \\
& \mathrm{P}_{\mathrm{L}}\left(\mathrm{CO}_{2}\right)=0.5493 ; \mathrm{PL}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.099 \mathrm{~atm} \cdot \mathrm{ft} .
\end{aligned}
$$

A tube spacing of 1.5 tube diameters corresponds to

$$
\begin{aligned}
& \alpha=0.97 \quad \text { (Figure 3) } \\
& \therefore \alpha A_{c p}=\alpha \quad \mathrm{L} \not \not \notin \mathrm{D}_{\mathrm{o}}=33.5 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\epsilon_{G}=\left[\left(q_{c}+\frac{\left.\left.q_{w}\right)_{T g}-\left(q_{c}+q_{w}\right)_{T s}\right]\left[\frac{100-q_{0}}{100}\right] \quad \mathrm{Btu} / \mathrm{hr} .}{\left(q_{b}\right)_{\mathrm{Tg}}\left(q_{\mathrm{b}}\right)_{\mathrm{Ts}} .}\right.\right.
$$

To obtain q_{c} and q_{w} at their respective PL values, it is necessary to interpolate between two polynomials. The following interpolation formula is used.

$$
f(x)=f\left(x_{1}\right)+\frac{P-P_{1}}{P_{2}-P_{1}}\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]
$$

$P_{1}<P<P_{2}$ and $f\left(x_{2}\right)>f\left(x_{1}\right)$.
$P=$ desired parameter (PL value), $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ are the polynomials corresponding to parameters P_{1} and P_{2} respectively.

Emission due to CO_{2} molecules:
$2 q_{c}($ at $P L=0.4)=4823.29-12.153 t+0.0097198 t^{2}-7.351 \times 10^{-5} t^{3}$
$2 q_{c}($ at $P L=0.6)=7588-18.258 t+0.013484 t^{2}-1.1916 \times 10^{-4} t^{3}$
Emission due to $\mathrm{H}_{2} \mathrm{O}$ molecules:
$2 \mathrm{q}_{\mathrm{w}}\left(\right.$ at PL =1.0) $=622.9-1.6958 \mathrm{t}+0.0043397 \mathrm{t}^{2}+1.848 \times 10^{-4} \mathrm{t}^{3}$
$2 q_{W}($ at PL =1.25 $)=2283.7+5.2497 t-0.000627 t^{2}+3.4113 \times 10^{-4} t^{3}$
Black body radiation:
$2 q_{b}=-5926+27.632 t-0.03172 t^{2}+2.550 \times 10^{-3} t^{3}$
Polynomials are also available for the percent correction.
These polynomials are identified by the parameter $S=P_{c L}+P_{w L}$, and evaluated as functions of $R=\mathrm{CO}_{2} /\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right)$.
Interpolation is again necessary.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{cL}}+\mathrm{P}_{\mathrm{WL}}=1.648 \\
& \mathrm{R}=\mathrm{CO}_{2}=0.334 \\
& \mathrm{CO}_{2}+{ }_{\mathrm{H}_{2} \mathrm{O}}= \\
& 2(\%),(\text { at } \mathrm{S}=1)_{4}=2.5018+49.2874 \mathrm{R}-92.454 \mathrm{R}^{2}+102.165 \mathrm{R}^{3}- \\
& \quad 52.9670 \mathrm{R}^{4} \\
& 2(\%),(\text { at } \mathrm{S}=2.0)=4.232+51.983 \mathrm{R}-101.885 \mathrm{R}^{2}+111.444 \mathrm{R}^{3}- \\
& \quad 54.630 \mathrm{R}^{4}
\end{aligned}
$$

Solving for ϵ_{G} :

$$
\epsilon_{\mathrm{G}}=0.394 .
$$

$A_{R} / \alpha A_{c p}=\frac{2 Z(Z+2 L)}{\alpha L(2 Z+f)}-1$
If tubes are placed on the Bridge wall, $f=2 / 3 Z$. If not, $f=0$. The first iteration through the radiant section is made
with $f=0$. After convergence to the correct discharge temperature, f is calculated from the number of tubes in this section. The magnitude of f determines whether tubes should be placed on the bridge wall.

$$
A_{R} / \alpha A_{c p}=\frac{2 \times 16[16+2 \times 25]}{0.97 \times 25[2 \times 16+0]}-1=1.72
$$

$2 \psi,\left(\right.$ at $\left.\epsilon_{G}=0.38\right)=0.7336+0.3505\left(\frac{A_{R}}{\alpha A_{c p}}\right)-0.0495\left(\frac{A_{R}}{\alpha A_{c p}}\right)^{2}+$ $0.0024\left(\frac{A_{R}}{\alpha A_{c p}}\right)^{3}$
$2 \psi,\left(\right.$ at $\left.\epsilon_{G}=0.40\right)=0.7671+0.3792\left(\frac{A_{R}}{\alpha A_{c p}}\right)-0.06246\left(\frac{A_{R}}{\alpha A_{c p}}\right)^{2}+$ $0.0037\left(\frac{A_{R}}{\alpha A_{c p}}\right)^{3}$

Solving

$$
\begin{aligned}
& \psi=0.6152 . \\
& \mathrm{q}_{\mathrm{r}}=(33.5)(0.6152)\left\{0.173 \times 10^{-8}\left[(1851.4)^{4}-(1275)^{4}\right]+\right. \\
& 7[1851.4-1275]\}=4.22 \times 10^{5} \mathrm{Btu} / \mathrm{hr} . \\
& \text { Since } \mathrm{q}_{\mathrm{r}} \doteq \Delta \mathrm{H}, \mathrm{t}_{2} \text { will not be recalculated. Calculations for }
\end{aligned}
$$

ΔP are similar to those performed in the convection section. Calculations are repeated until the exit temperature, t_{2}, from a tube node is equal to the desired discharge temperature from the still.
(12) Check furnace dimensions:
$N_{a}=$ number of tubes calculated from assumed dimensions

$$
N_{a}=\frac{2 Z+f}{\& \notin D_{0}}=\frac{(2)(16)}{(15)(0.46)}=46 \text { tubes. }
$$

In this example, 48 tubes were counted in the radiant section. Since $N_{a}=48$, the assumed dimension Z is approximately correct and will not be recalculated. If $N_{a} \neq 48, N_{a}$ in the above equation would be replaced by 48 and Z calculated. This Z could be used during the next iteration through the radiant section.

Calculate f.

$$
f=48(\phi \not k) D_{0}-2 Z
$$

(a) If $f<L / 2$, tubes are not placed in the bridge wall, consequently f is set equal to zero.
(b) If $f>L / 2$, tubes are placed in the bridge wall and f is set equal to $2 / 3 Z$. Since $f=48(1.5)(0.46)-32=-3.2<L / 2$, the initial assumption, $f=0$, is correct. Calculations will not be repeated. When case (b) exists, the iteration is repeated using $\mathrm{z}=3 / 8\left[\mathrm{~N}_{\mathrm{c}} \notin \notin \mathrm{D}_{\mathrm{o}}\right] . \mathrm{N}_{\mathrm{c}}=$ number of tubes counted in the radiant section.
(15) Heat balance:

In this example
heat absorbed in the radiant section $=1.06017 \times 10^{7} \mathrm{Btu} / \mathrm{hr}$. heat absorbed in the convection section $=1.2835 \times 10^{7} \mathrm{Btu} / \mathrm{hr}$. total heat lost $=2.75988 \times 10^{7} \mathrm{Btu} / \mathrm{hr}$. total heat liberated $=5.10355 \times 10^{7} \mathrm{Btu} / \mathrm{hr}$.
From the flow rate of the fuel and its net heating value (584.2 Btu/lb. gas) ($83354.9 \mathrm{lb} . / \mathrm{hr}$.) $=4.85 \times 10^{7} \mathrm{Btu} / \mathrm{hr}$. Since the total heat liberated as calculated from the heat balance and the net heating value of the fuel are almost equal, it will not be necessary to repeat the calculations. (18) Tube diameter:

Finally, P_{2} is compared with the desired discharge pressure. If their difference is not within tolerance another tube diameter is assumed and all calculations repeated. The assumption is made using the relationship:
$D 1_{n}=D 1_{n-1}\left[\frac{\Delta P_{c}}{\Delta P_{a}}\right]^{1 / 5}$
$\Delta P_{c}=$ calculated pressure drop after $n-1^{\text {th }}$ iterations
$\Delta P_{a}=$ desired pressure drop
$D 1_{n}=$ diameter assumed for the $n^{\text {th }}$ iteration
$D 1_{n-1}=$ diameter previously used.

FIGURE 12

FIXED POINT ORDERS

ORDER
L5 n
50 n
L4 n
LO n
75 n
40 n
S5
22 n
32 n
26 n
36 n
F5 n

OPERATION
Transfer contents of location n to A. Transfer contents of location n to Q. Add contents of n to A . Subtract contents of n from A . Multiply Q by contents of n. Transfer contents of A to n . Transfer contents of Q to A . Transfer control to right order at location n. If contents of $A \geq 0$, execute 22 . Transfer control to left order at location n. If contents of $A \geq 0$, execute 26 .

Transfer contents of n to A and increase the address digits at the right side by 1.

FLOATING POINT ORDERS:
Let F be the floating decimal number in the floating accumulator and let $F(n)$ be the floating decimal number in location n.
$\underline{O R D E R}$
OPERATION
80 n
81 n
82 n

83 n

84 n
85 n
Replace F by $F-F(n)$
Replace F by $-F(n)$
Transfer control to the right hand interpactive order in n if $\mathrm{F} \geq 0$

Transfer control to the left hand interpactive order in n if $\mathrm{F} \geq 0$

Replace F by $F+F_{(n)}$
Replace F by $F_{(n)}$

86 n	Replace F by $F / F_{(n)}$
87 n	Replace F by $F \times F(n)$
880	Replace F by one number read from the input tape punched as sign, any number of decimal digits, sign, and two decimal digits to represent the exponent.
89 n	Punch or print F as a sign, n decimal digits, sign, two decimal digits to represent the exponent and two spaces.
8 K n	Replace F by n if $\mathrm{O} \leq \mathrm{n}<200$
8 Sn	Replace $F_{(n)}$ by F
8 Nm	Replace F by $/ F /-/ F_{(n)} /$
8 J n	Transfer control to the fixed point order at the left side of location n
8 F n	Give a carriage return and line feed and arrange to print a block of numbers having n columns.

If the first function digit of a floating point order is $0,1, \ldots 7$, it refers to one of a set of control registers, or b-registers in the floating decimal routine which are similarly numbered. These are used to count the number of passages through loops and for increasing the addresses of these orders on successive passages. These addresses are increased only if the function digit of the order corresponds to that of the control register currently used.

ORDER LIST WITH b $\not \neq 8$

The index Cb is used for counting purposes to determine the number of passages through a loop. The index gb is used for advancing the address of floating point orders.
b2 n
b3 n
b4 n
b5 n
b6 n
b7 n
bk n
bS n
bN n
bL n

Replace gb, Cb by $\mathrm{gb}+1, \mathrm{Cb}+1$ Then transfer control to the right hand (if b2 n) or left hand floating point (if b3 n) order in n if $\mathrm{Cb}+1<0$. This transfer is used at the end of the 10op.

Replace F by $F+F(n+g b)$
Replace F by $F(n+g b)$
Replace F by $F / F(n+g b)$
Replace F by $F \times F(n+g b)$
Replace gb, Cb by $\mathrm{O},-\mathrm{n}$. This floating point order is used for preparing L cycle around loop n times

Replace $F(n+g b)$ by F
Replace F by $F-F(n+g b)$
Replace gb, Cb by $\mathrm{gb}+\mathrm{n}, \mathrm{Cb}$. This order is used when one wishes to change addresses by some increment other than +1 in a loop. If one places bL 1022 in a loop, the effect will be to decrease addresses by two on each passage.

FURNACE DESIGN PROGRAM

Program Outline

CONTENTS
Specifies Floating Accumulator
Specifies Al routine
Specifies A3 routine
Specifies SA3 (Natura1 Log) routine
Specifies SA2 (Exponential) routine
Specifies routine to calculate physical properties
Specifies routine which selects correct polynomials to be used in evaluating $\boldsymbol{\psi}$
Specifies location of data
Specifies location of generated data
Specifies location of data

Specifies location of routine to calculate $\boldsymbol{\epsilon}_{\boldsymbol{G}}$ Specifies location of routine to calculate ΔP Temporary storages

Convection section routine
Radiant section routine
Continuation of radiant section routine
Subroutine to calculate physical properties
Subroutine to select correct polynomials
Data
Data (depending on type crude)
Data (generated)
Polynomials for ψ
Routine to calculate $\boldsymbol{\epsilon}_{G}$

LOCATION	CONTENTS
$679-704$	Routine to calculate $\triangle P$
$705-738$	Storages for selected polynomials and their parameters
$739-743$	Answer storages
739	Counter for shield section
740	Number of rows in convection section
741	Heat absorbed in convection section
742	Heat absorbed in radiant section
743	Number of tubes in radiant section
744	Heat lost from furnace

PROGRAM		
O03K		Directive Specifying Location Routines
O0F 00745F		Floating accumulator
O0F 00830F		A1
OOF 00773F		A3
OOF 00800F		SA3
OOF 00747F		SA2
OOF 00271F		Calculate physical properties
OOF 00380F		Select correct polynomials
O0F 00509F		Data
OOF 00547F		Data
OOF 00450F		Data
OOF 00651F		
O0F 00665F		Calculate ©G
OOF 00679F		Calculate $\triangle P$
LOCATION	ORDER	NOTES
O020K		
0	$\begin{array}{ll} 22 & \mathrm{~L} \\ 50 & \mathrm{~L} \end{array}$	
1	$\begin{array}{ll} 26 & S 4 \\ \text { OK } & 45 F \end{array}$	Read in and store constants for This routine is later overread
2	$\begin{array}{lc} 88 & F \\ \text { OS } & 590 F \end{array}$	
3	$\begin{array}{ll} 03 & 2 \mathrm{~L} \\ 8 \mathbf{J} & 999 \mathrm{~F} \end{array}$	Transfer control to continue reading and storing program.
00555K		
0	$\begin{array}{ll} 22 & \mathrm{~L} \\ 50 & \mathrm{~L} \end{array}$	

LOCATION	ORDER		NOTES
1	26	S4	
	OK	23F	Read in and store constants
2	88	F	
	OS	100F	
3	03	2 L	
	OK	59F	
4	88	F	
	OS	SN	
5	03	4 L	
	OK	38F	
6	88	F	
	OS	SK	
7	03	6L	
	8K	1F	
8	8K	1F	
	83	20F	Transfer control to location 20
	24	555N	Start executing program at location 555
0020K			Program for the Convection Section
0	85	52SN	Preliminary calculations
	87	SK	
1	84	53SN	
	85	SS	
2	OK	5 F	
	05	1SK	
3	OS	1SS	
	02	2 L	
4	OK	2F	
	85	45SN	Calculate PL of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ for the convection bank
5	87	SS	
	07	21SK	
6	OS	28SS	
	02	4.	
7	8 J	8L	
	8J	8L	

LOCATION		DER	NOTES
8	$\begin{aligned} & 41 \\ & F 5 \end{aligned}$	$\begin{array}{r} 739 \mathrm{~F} \\ 8 \mathrm{~L} \end{array}$	Entrance to subroutine to select correct polynomials for ϵ_{G}
9	$\begin{aligned} & 24 \\ & \mathrm{OK} \end{aligned}$	$\begin{aligned} & 59 \\ & 4 F \end{aligned}$	Transfer control to subroutine
10	$\begin{aligned} & 8 \mathrm{~K} \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{gathered} F \\ 19 \mathrm{SK} \end{gathered}$	
11	$\begin{aligned} & 87 \\ & 04 \end{aligned}$	$\begin{array}{r} 3 \mathrm{SK} \\ 16 \mathrm{SK} \end{array}$	
12	$\begin{aligned} & 03 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{array}{r} 11 \mathrm{~L} \\ 744 \mathrm{~F} \end{array}$	
13	$\begin{aligned} & 8 \mathrm{~K} \\ & 8 \mathrm{~S} \end{aligned}$	$\underset{ }{F} \underset{ }{F}$	
14	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 6 \mathrm{SK} \\ & 1 \mathrm{SN} \end{aligned}$	
15	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{array}{r} \mathrm{SS} \\ 7 \mathrm{SK} \end{array}$	
16	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{gathered} 5 \mathrm{~F} \\ 15 \mathrm{SK} \end{gathered}$	
17	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	$\begin{gathered} 5 \mathrm{~F} \\ \mathrm{SN} \end{gathered}$	
18	$\begin{aligned} & 8 \mathrm{~S} \\ & 87 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 5 \mathrm{~F} \end{aligned}$	
19	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	$\begin{array}{r} S S \\ 36 S N \end{array}$	
20	$\begin{aligned} & 8 \mathrm{~J} \\ & 86 \end{aligned}$	$\begin{aligned} & \text { S6 } \\ & 3 \mathrm{SN} \end{aligned}$	
21	$\begin{aligned} & 8 \mathrm{~J} \\ & 87 \end{aligned}$	$\begin{aligned} & S 7 \\ & 4 S N \end{aligned}$	
22	$\begin{aligned} & 8 \mathrm{~S} \\ & 8 \mathrm{~K} \end{aligned}$	$\begin{gathered} 15 F \\ 1 F \end{gathered}$	
23	$\begin{aligned} & 8 K \\ & 84 \end{aligned}$	$\begin{gathered} 1 \mathrm{~F} \\ 14 \mathrm{SK} \end{gathered}$	
24	$\begin{aligned} & 86 \\ & 87 \end{aligned}$	$\begin{aligned} & 14 \mathrm{SK} \\ & 6 \mathrm{SK} \end{aligned}$	
25	$\begin{aligned} & 86 \\ & 8 S \end{aligned}$	$\begin{aligned} & 41 \mathrm{SN} \\ & 32 \mathrm{SS} \end{aligned}$	

LOCATION	ORDER		NOTES
26	$\begin{aligned} & 85 \\ & 84 \end{aligned}$	$\begin{aligned} & 4 S S \\ & 5 S S \end{aligned}$	Assume P_{2}
27	$\begin{aligned} & 86 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 2 S N \\ & 8 S S \end{aligned}$	Store P_{m}
28	$\begin{aligned} & 85 \\ & 84 \end{aligned}$	$\begin{aligned} & \text { 1SS } \\ & \text { 2SS } \end{aligned}$	Assume T_{2}
29	$\begin{aligned} & 86 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 2 \mathrm{Sn} \\ & 7 \mathrm{SS} \end{aligned}$	Store t_{m}
30	$\begin{aligned} & \mathrm{OK} \\ & 8 \mathrm{~K} \end{aligned}$	$\frac{4 F}{F}$	
31	$\begin{aligned} & 8 \mathrm{~S} \\ & 87 \end{aligned}$	$\begin{array}{r} 19 S K \\ 3 S S \end{array}$	
32	$\begin{aligned} & 04 \\ & 02 \end{aligned}$	$\begin{aligned} & \text { 16SK } \\ & \text { 31L } \end{aligned}$	
33	$\begin{aligned} & 8 \mathrm{~S} \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~F} \\ & 34 \mathrm{~L} \end{aligned}$	Entrance to subroutine to calculate physical properties
34	$\begin{aligned} & 22 \\ & \text { F5 } \end{aligned}$	$\begin{aligned} & 34 L \\ & 34 L \end{aligned}$	
35	$\begin{aligned} & 26 \\ & 85 \end{aligned}$	$\begin{gathered} \mathrm{S} 8 \\ 21 \mathrm{SS} \end{gathered}$	Transfer control to this subroutine Calculate temp. of flue gases above nth tube (T_{g})
36	$\begin{aligned} & 84 \\ & 85 \end{aligned}$	$\begin{gathered} 17 \mathrm{~F} \\ 5 \mathrm{~F} \end{gathered}$	
37	$\begin{aligned} & 81 \\ & 85 \end{aligned}$	$\begin{gathered} 5 \mathrm{~F} \\ 19 \mathrm{SK} \end{gathered}$	
38	$\begin{aligned} & \mathrm{OK} \\ & 1 \mathrm{~K} \end{aligned}$	$\begin{gathered} 3 F \\ F \end{gathered}$	
39	$\begin{aligned} & 05 \\ & 17 \end{aligned}$	$\begin{array}{r} 16 \mathrm{SK} \\ 3 \mathrm{SN} \end{array}$	
40	$\begin{aligned} & \text { OS } \\ & 1 L \end{aligned}$	$\begin{gathered} 8 \mathrm{~F} \\ 1 \mathrm{Q} 23 \mathrm{~F} \end{gathered}$	
41	$\begin{aligned} & \mathrm{OB} \\ & \mathrm{OK} \end{aligned}$	$\begin{array}{r} 39 \mathrm{~L} \\ 3 \mathrm{~F} \end{array}$	
42	$\begin{aligned} & 8 \mathrm{~K} \\ & 87 \end{aligned}$	$\begin{array}{r} F \\ 205 \mathrm{~K} \end{array}$	Assume T_{g}
43	$\begin{aligned} & 04 \\ & 02 \end{aligned}$	$\begin{array}{r} 8 \mathrm{~F} \\ 42 \mathrm{~L} \end{array}$	

LOCATION		ER	NOTES
$山$	$\begin{aligned} & 8 \mathrm{~S} \\ & \mathrm{OK} \end{aligned}$	$\begin{aligned} & 5 F \\ & 4 F \end{aligned}$	
45	$\begin{aligned} & 8 \mathrm{~K} \\ & 87 \end{aligned}$	$\underset{205 \mathrm{~F}}{\mathrm{~F}}$	
46	$\begin{aligned} & 04 \\ & 02 \end{aligned}$	$\begin{aligned} & 16 \mathrm{SK} \\ & 45 \mathrm{~L} \end{aligned}$	
47	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{gathered} 6 \mathrm{~F} \\ 24 \mathrm{SN} \end{gathered}$	
48	$\begin{aligned} & 8 \mathrm{~N} \\ & 82 \end{aligned}$	$\begin{gathered} 6 \mathrm{~F} \\ 52 \mathrm{~L} \end{gathered}$	Is this the correct temperature? Yes: Transfer control to 52L No: Modify T
49	$\begin{aligned} & 85 \\ & 86 \end{aligned}$	$\begin{aligned} & 6 F \\ & 5 F \end{aligned}$	
50	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{gathered} 5 \mathrm{~F} \\ 20 \mathrm{~K} \end{gathered}$	
51	$\begin{aligned} & 80 \\ & 85 \end{aligned}$	$\begin{gathered} 5 \mathrm{~F} \\ 20 \mathrm{~K} \end{gathered}$	
52	$\begin{aligned} & 82 \\ & 85 \end{aligned}$	$\underset{20 \mathrm{SK}}{41 \mathrm{~L}}$	$\begin{aligned} & \text { Repeat calculations using new } T_{g} \\ & \text { Calculate } h_{c} \end{aligned}$
53	$\begin{aligned} & 84 \\ & 86 \end{aligned}$	$\begin{aligned} & 3 S S \\ & 2 S N \end{aligned}$	
54	$\begin{aligned} & 8 \mathrm{~S} \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{gathered} 26 s s \\ \text { S6 } \end{gathered}$	
55	$\begin{aligned} & 87 \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{gathered} 4 \mathrm{SN} \\ \mathrm{S7} \end{gathered}$	
56	$\begin{aligned} & 87 \\ & 85 \end{aligned}$	$\begin{aligned} & 15 \mathrm{~F} \\ & 27 S S \end{aligned}$	
57	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 26 S \mathrm{~S} \\ & 10 \mathrm{~N} \end{aligned}$	
58	$\begin{aligned} & 8 S \\ & 80 \end{aligned}$	$\begin{array}{r} 31 \mathrm{SS} \\ 1009 \mathrm{~F} \end{array}$	Is this a shield tube?
59	$\begin{aligned} & 82 \\ & 8 \mathrm{~K} \end{aligned}$	$\begin{array}{r} 64 \mathrm{~L} \\ 1 \mathrm{~L} \end{array}$	Yes: Transfer control to 64L No: Continue at 100L without including calculations for a shield tube
60	$\begin{aligned} & 83 \\ & 85 \end{aligned}$	$\begin{array}{r} 120 \mathrm{~F} \\ 4 \mathrm{SS} \end{array}$	These orders are used in the radiant section $P_{1}-P_{x} \geq 0 ?$
61	$\begin{aligned} & 80 \\ & 84 \end{aligned}$	$\begin{aligned} & 1002 \mathrm{~F} \\ & 1008 \mathrm{~F} \end{aligned}$	

LOCATION	ORDER		NOTES
62	83	250F	Yes: Continue calculations for another node
	89	4 F	No: Point out their difference and also the tube diameter. Then change the tube
63	85	SK	diameter and repeat all calculations.
	89	4F	
64	83	645F	Go to 645 to change diameter.
	84	1 F	Calculations for shield tubes begin
65	84	739F	Increment counter for shield tubes
	85	739F	
66	85	SS	Calculate $\mathrm{T}_{\text {s }}$
	84	SK	
67	87	2LSK	
	85	5 F	.
68	85	SS	
	80	SK	
69	87	SS	
	86	5 F	
70	8 S	5 F	
	85	SS	
71	86	SK	
	86	25SS	
72	84	5 F	
	85	5 F	-
73	8K	1 F	
	86	23SK	Assume h_{u}
74	84	5 F	
	8 S	6F	
75	85	31SS	
	80	7SS	
76	87	5 F	
	86	6F	
77	84	7SS	
	8S	30SS	
78	85	31SS	
	80	30SS	

LOCATION	ORDER		NOTES
79	8S	16 F	
	8J	80L	Entrance to subroutine to evaluate
80	22	80L	$\left[\left(q_{C}+q_{W}\right)_{T_{g}}-\left(q_{c}+q_{W}\right)_{T_{S}}\right]\left[\frac{100-\%}{100}\right]$
	F5	80L	
81	26	SF	Transfer control to subroutine
	85	10F	Evaluate h_{rg}
82	86	16F	
	87	46SN	
83	8 S	13F	
	8K	100F	Evaluate h_{rb}
84	85	5 F	
	85	30SS	
85	84	10SN	
	86	5 F	
86	8 S	6F	
	87	6F	Evaluate percent wall correction
87	87	6F	
	87	46SN	
88	87	47SN	
	85	6 F	
89	84	13F	
	84	27SS	
90	8 S	7 F	
	85	6F	
91	87	32SS	
	86	7 F	
92	84	1SN	
	8 S	8 F	
93	85	13F	
	84	27SS	
94	87	8F	
	8S	34SS	
95	80	23SK	Is the $h^{\text {a }}$ assumed equal to $h^{\text {calculated }}$
	8S	5 F	
96	85	39SN	
	8 N	5 F	

LOCATION	ORDER		NOTES
97	83	99L	Yes: Transfer control to 99L
	85	34SS	No: Modify h_{u}
98	8 S	23SK	
	83	66L	repeat calculations using new h_{u}
99	85	34SS	
	85	27SS	$27 S S=h$ if $^{\text {th }}$ tube is not a shield tube
100	85	SS	
	84	SK	27SS = (wall correction) ($h_{c}+h_{r g}$) if n tube is a shield tube ${ }^{\text {rg }}$
101	87	24SK	
	8 S	5 F	
102	85	SS	Calculations for \mathbf{U}
	80	SK	
103	87	SS	
	86	5 F	
104	8 S	5 F	
	85	SS	
105	86	SK	
	86	25SS	
106	84	5 F	
	8S	5 F	
107	8K	1F	
	86	27SS	
108	84	5 F	
	8 S	5 F	
109	8K	1F	
	86	5 F	
110	8 S	35SS	
	87	SS	Calculate $\mathrm{q}=u \mathrm{~A}$ (t
111	87	7SK	
	87	41SN	
112	8 S	5 F	
	85	31SS	
113	80	7SS	
	87	5 F	
114	8 S	5 F	
	80	21SS	Does q $=\Delta H ?$

LOCATION	ORDER		NOTES
115	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 1004 \mathrm{~F} \end{aligned}$	
116	$\begin{aligned} & 8 N \\ & 83 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 126 \mathrm{~L} \end{aligned}$	Yes: continue at 126L No: modify t_{2}
117	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 2 S S \\ & 1 S S \end{aligned}$	
118	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 21 \mathrm{SS} \end{aligned}$	
119	$\begin{aligned} & 84 \\ & 8 S \end{aligned}$	$\begin{aligned} & 2 S S \\ & 2 S S \end{aligned}$	
120	$\begin{aligned} & 8 \mathrm{~K} \\ & 84 \end{aligned}$	$\begin{aligned} & 1 \mathrm{~F} \\ & 40 S S \end{aligned}$	If t_{2} does not converge after the $7^{\text {th }}$ iteration use last calculated value of t_{2} as the correct value
121	$\begin{aligned} & 8 \mathrm{~S} \\ & 80 \end{aligned}$	$\begin{aligned} & \text { LOSS } \\ & 1008 \mathrm{~F} \end{aligned}$	
122	$\begin{aligned} & 83 \\ & 85 \end{aligned}$	$\begin{aligned} & 126 \mathrm{~L} \\ & 22 \mathrm{SN} \end{aligned}$	No convergence after $7^{\text {th }}$ iteration, proceed 126 L
123	$\begin{aligned} & 80 \\ & 83 \end{aligned}$	$\begin{aligned} & 739 \mathrm{~F} \\ & 48 \mathrm{~F} \end{aligned}$	Was this a shield tube? No: repeat calculations using modified t_{2} Yes: reset counter
124	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 739 \mathrm{~F} \\ & 1 \mathrm{SN} \end{aligned}$	
125	$\begin{aligned} & 8 \mathrm{~S} \\ & 83 \end{aligned}$	$\begin{aligned} & 739 \mathrm{~F} \\ & 48 \mathrm{~F} \end{aligned}$	Repeat calculations using modified t_{2}
126	$\begin{aligned} & 85 \\ & 86 \end{aligned}$	$\begin{aligned} & 7 \mathrm{SK} \\ & 14 \mathrm{SK} \end{aligned}$	
127	$\begin{aligned} & 8 S \\ & 85 \end{aligned}$	$\begin{aligned} & 38 \mathrm{SS} \\ & 14 \mathrm{SK} \end{aligned}$	
128	$\begin{aligned} & 8 \mathrm{~S} \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 39 S S \\ & 3 F \end{aligned}$	Reset counter for number of iterations $t_{0} t_{2}$
129	$\begin{aligned} & \text { JO } \\ & \text { F5 } \end{aligned}$	$\begin{aligned} & \text { 130L } \\ & \text { 139L } \end{aligned}$	
130	$\begin{aligned} & 26 \\ & 85 \end{aligned}$	$\begin{aligned} & \text { SL } \\ & \text { 20SK } \end{aligned}$	Transfer control to subroutine to calculate ΔP at this point the tube node has converged
131	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{aligned} & \text { 3SS } \\ & 9 S S \end{aligned}$	Make a summation of the $\Delta \mathrm{Hn}^{\prime} \mathrm{s}$
132	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{aligned} & 36 \mathrm{SS} \\ & 21 \mathrm{SS} \end{aligned}$	

LOCATION	ORDER	
133	84	741F
	85	741 F
134	8K	1F
	84	740F
135	85	740 F
	85	6 NN
136	80	739 F
	83	26L
137	8K	2 F
	8S	39SS

Make a summation of the number of rows (n 's)

Was this the last tube in the shield section?

No: repeat calculations for another tube Yes: Proceed to the radiant section.

| 003 K | |
| ---: | ---: | ---: |
| 0 | 41 $40 S S$
 26 $149 F$ |

Reset counter for the number of iterations of t_{2} to zero.

Program For the Radiant Section
00158 K
0
$\begin{array}{ll}85 & \text { 2OSK } \\ 80 & \text { IOSN }\end{array}$
$1 \quad 8 \mathrm{~S} \quad 31 \mathrm{SS}$
85 1SS

Assume Z, and calculate L_{B}
$8 \quad 87$ 1000F 8J S6
$98635 N$

Store t_{1} as the cross-over temperature

Store P_{1} as the cross-over pressure

Set counter for ΔH_{R} and $n_{R}=0$
Store T_{g} as the bridgewall temperature

LOCATION	ORDER		NOTES
10	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 2 S N \\ & 3 S N \end{aligned}$	
11	$\begin{aligned} & 8 S \\ & 87 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 21 \mathrm{SK} \end{aligned}$	Calculate PL of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the radiant section
12	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{aligned} & 28 \mathrm{SS} \\ & 5 \mathrm{~F} \end{aligned}$	
13	$\begin{aligned} & 87 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 22SK } \\ & \text { 29SS } \end{aligned}$	
14	$\begin{aligned} & 8 \mathrm{~K} \\ & 87 \end{aligned}$	$\begin{aligned} & 2 F \\ & 1000 \mathrm{~F} \end{aligned}$	Calculate $A_{R} / \alpha A_{c p}$ for the radiant section
15	$\begin{aligned} & 8 \mathrm{~S} \\ & 84 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 42 \mathrm{SN} \end{aligned}$	
16	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{aligned} & 38 \mathrm{SS} \\ & 1001 \mathrm{~F} \end{aligned}$	
17	$\begin{aligned} & 8 \mathrm{~S} \\ & 8 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 6 F \\ & 2 F \end{aligned}$	
18	$\begin{aligned} & 87 \\ & 84 \end{aligned}$	$\begin{aligned} & 38 \mathrm{SS} \\ & 1000 \mathrm{~F} \end{aligned}$	
19	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 6 \mathrm{~F} \end{aligned}$	
20	$\begin{aligned} & 80 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 1 \mathrm{SN} \\ & 32 \mathrm{SS} \end{aligned}$	
21	$\begin{aligned} & 85 \\ & 87 \end{aligned}$	$\begin{aligned} & \text { 38SS } \\ & 39 S S \end{aligned}$	Calculate $\alpha A_{c p}$ per node
22	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{aligned} & 1001 F \\ & \mathrm{SS} \end{aligned}$	
23	$\begin{aligned} & 87 \\ & 85 \end{aligned}$	$\begin{aligned} & 6 S K \\ & 41 S S \end{aligned}$	
24	$\begin{aligned} & 85 \\ & 84 \end{aligned}$	$\begin{aligned} & \mathrm{SS} \\ & \mathrm{SK} \end{aligned}$	
25	$\begin{aligned} & 87 \\ & 8 S \end{aligned}$	$\begin{aligned} & 24 \mathrm{SK} \\ & 5 \mathrm{~F} \end{aligned}$	
26	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	SS	
27	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & \mathrm{SS} \\ & 5 \mathrm{~F} \end{aligned}$	

LOCATION ORDERNOTES6487 32SSO4 710F
65 L $1 F$13 64L
66 2S 8 F 23 63L
67 $80 \quad 8 \mathrm{~F}$ 8S 7F
68 85 719F $80 \quad 718 \mathrm{~F}$
69 8S 5F81 718F
70 86 5F 87 7F
$\begin{array}{lll}71 & 84 & 8 F\end{array}$ 8S 33SS Store ψ
00230K

0	$\begin{aligned} & 2 K \\ & 25 \end{aligned}$	$\begin{aligned} & 2 F \\ & 30 S S \end{aligned}$	Evaluate q_{r}
1	$\begin{aligned} & 84 \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 10 \mathrm{SN} \\ & \mathrm{~S} 6 \end{aligned}$	
2	$\begin{aligned} & 87 \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { 4OSN } \\ & 57 \end{aligned}$	
3	$2 S$ 22	$\begin{aligned} & 5 \mathrm{~F} \\ & \mathrm{~L} \end{aligned}$	
4	$\begin{aligned} & 80 \\ & 87 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 1018 \mathrm{~F} \end{aligned}$	
5	$\begin{aligned} & 8 S \\ & 85 \end{aligned}$	$\begin{aligned} & 6 F \\ & 31 S S \end{aligned}$	
6	$\begin{aligned} & 80 \\ & 87 \end{aligned}$	$\begin{aligned} & 30 S S \\ & 1008 \mathrm{~F} \end{aligned}$	
7	$\begin{aligned} & 84 \\ & 87 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 33 S S \end{aligned}$	

LOCATION	ORDER		NOTES
8	$\begin{aligned} & 87 \\ & 80 \end{aligned}$	$\begin{aligned} & 41 \mathrm{SN} \\ & 215 S \end{aligned}$	Is $\mathrm{q}_{\mathrm{r}}=\Delta H ?$
9	$\begin{aligned} & 8 S \\ & 85 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 1004 \mathrm{~F} \end{aligned}$	
10	$\begin{aligned} & 8 \mathrm{~N} \\ & 82 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 14 \mathrm{~L} \end{aligned}$	Yes: proceed to 14L NO: modify t_{2}
11	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 2 \mathrm{SS} \\ & 1 \mathrm{SS} \end{aligned}$	
12	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 21 \mathrm{SS} \end{aligned}$	
13	$\begin{aligned} & 84 \\ & 8 S \end{aligned}$	$\begin{aligned} & 2 S S \\ & 2 S S \end{aligned}$	
14	$\begin{aligned} & 82 \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 190 \mathrm{~F} \\ & \hline \end{aligned}$	Repeat calculations using new t_{2}
15	$\begin{aligned} & \text { JO } \\ & \text { L5 } \end{aligned}$	$\begin{aligned} & 16 \mathrm{~L} \\ & 15 \mathrm{~L} \end{aligned}$	
16	$\begin{aligned} & 26 \\ & 8 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { SL } \\ & 2 \mathrm{~F} \end{aligned}$	Calculate ΔP At this point the tube node has converged.
17	$\begin{aligned} & 84 \\ & 85 \end{aligned}$	$\begin{aligned} & 743 \mathrm{~F} \\ & 743 \mathrm{~F} \end{aligned}$	Make a summation of $\mathrm{n}_{\mathrm{R}}{ }^{\prime} \mathrm{s}$
18	$\begin{aligned} & 85 \\ & 84 \end{aligned}$	$\begin{aligned} & 742 \mathrm{~F} \\ & 21 \mathrm{SS} \end{aligned}$	Make a summation of the $\Delta H_{R}{ }^{\text {'s }}$
19	$\begin{aligned} & 8 S \\ & 82 \end{aligned}$	$\begin{aligned} & 742 F \\ & 80 F \end{aligned}$	Transfer control to location 80
20	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 1003 F \\ & 1 \mathrm{SS} \end{aligned}$	is $t_{x}-t_{2}>0$
21	$\begin{aligned} & 82 \\ & 8 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 188 \mathrm{~F} \\ & 2 \mathrm{~F} \end{aligned}$	Yes: Repeat calculations for another node No: Stop calculating nodes and test for convergence of furnace
22	$\begin{aligned} & 87 \\ & 8 S \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~F} \\ & 5 \mathrm{~F} \end{aligned}$	
23	$\begin{aligned} & 85 \\ & 87 \end{aligned}$	$\begin{aligned} & 743 \mathrm{~F} \\ & 6 \mathrm{SK} \end{aligned}$	
24	$\begin{aligned} & 87 \\ & 8 S \end{aligned}$	$\begin{aligned} & \text { SS } \\ & 9 F \end{aligned}$	
25	$\begin{aligned} & 80 \\ & 87 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 2 \mathrm{SN} \end{aligned}$	$\begin{array}{lll} \text { If } & 2 f-d L<0 & \text { use } f=0 \\ & 2 f-d L>0 & \text { use } f=2 / 3 Z \end{array}$

LOCATION ORDER NOTES
26 80 38SS83 30L
27
8 S 42SS
Use $f=0$
28
85 9F86 2SN
29 8S 9F82 33L
30 85 9F Use $f=2 / 3 Z$
31 86 42SN87 44SN8S 9F
32 87 2SN86 3SN
33 8S \quad 42SS85 1000FDoes Z assumed $=Z$ calculated?
34 80 9F$8 \mathrm{~N} \quad 42 \mathrm{SN}$
$35 \quad 82 \quad 639 F$85 741FNo: proceed to location 639
Yes: Is the assumed flue gas flow ratecorrect?
36 $84 \quad 742 F$84 744F
37 86 100LF8S 12F
38 86 15SK80 1SN
39 $8 \mathrm{~S} \quad 5 \mathrm{~F}$8K 1F
40 83635 F
83 635FContinue these calculations at 63500635 K085 39SN$8 \mathrm{~N} \quad 5 \mathrm{~F}$1
82 6L
$8 \mathrm{~F} \quad 2 \mathrm{~F}$
Yes: Continue at 641No: print out N_{R} last calculated andflue gas flow rate last used

LOCATION	ORDER	
2	$\begin{aligned} & 85 \\ & 89 \end{aligned}$	$\begin{aligned} & 743 F \\ & 3 F \end{aligned}$
3	$\begin{aligned} & 85 \\ & 89 \end{aligned}$	$\begin{aligned} & 12 F \\ & 6 F \end{aligned}$
4	$\begin{aligned} & 83 \\ & 85 \end{aligned}$	$\begin{aligned} & 3 S J \\ & 9 F \end{aligned}$
5	$\begin{aligned} & 8 S \\ & 89 \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~F} \\ & 5 \mathrm{~F} \end{aligned}$
00641K		
0	$\begin{aligned} & 82 \\ & 85 \end{aligned}$	$\begin{aligned} & 161 F \\ & 4 S S \end{aligned}$
1	$\begin{aligned} & 80 \\ & 89 \end{aligned}$	$\begin{aligned} & 1002 F \\ & 3 F \end{aligned}$
2	$\begin{aligned} & 8 S \\ & 85 \end{aligned}$	5 F $1008 \mathrm{~F}$
3	$\begin{aligned} & 8 \mathrm{~N} \\ & 82 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 8 \mathrm{~L} \end{aligned}$
4	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 14 S K \\ & 4 S S \end{aligned}$
5	$\begin{aligned} & 86 \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1005 \mathrm{~F} \\ & \mathrm{~S} 6 \end{aligned}$
6	$\begin{aligned} & 86 \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1006 \mathrm{~F} \\ & \mathrm{~S} 7 \end{aligned}$
7	$\begin{aligned} & 87 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { SK } \\ & \text { SK } \end{aligned}$
8	$\begin{aligned} & 82 \\ & 85 \end{aligned}$	$\begin{aligned} & 7 \mathrm{SJ} \\ & 1000 \mathrm{~F} \end{aligned}$
9	$\begin{aligned} & 89 \\ & \text { OK } \end{aligned}$	$\begin{aligned} & 8 \mathrm{~F} \\ & 6 \mathrm{~F} \end{aligned}$
10	$\begin{aligned} & 05 \\ & 89 \end{aligned}$	$\begin{aligned} & 739 F \\ & 8 F \end{aligned}$
11	$\begin{aligned} & 03 \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~L} \\ & 12 \mathrm{~L} \end{aligned}$
12	$\begin{aligned} & \mathrm{OF} \\ & \mathrm{OF} \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$

NOTES

Proceed to modify flue gas flow rate Modify Z

Print out modified Z

00641 K

Using new diameter, repeat all calculations. First, reset all counters to zero at 7SJ.

Furnace design complete. Print out answers.

LOCATION	ORD			NOTES
13	$\begin{aligned} & 86 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 15 \mathrm{SK} \\ & 10 \mathrm{~F} \end{aligned}$	(3SJ)	Modify gas flow rate
14	$\begin{aligned} & \mathrm{OK} \\ & 05 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~F} \\ & 16 \mathrm{SK} \end{aligned}$		
15	$\begin{aligned} & 87 \\ & 0 S \end{aligned}$	$\begin{aligned} & 10 F \\ & 16 S K \end{aligned}$		
16	$\begin{aligned} & 02 \\ & 85 \end{aligned}$	$\begin{aligned} & 14 \mathrm{~L} \\ & 12 F \end{aligned}$		
17	85	$\begin{aligned} & 15 S K \\ & 6 \mathrm{~F} \end{aligned}$		Set all counters to zero
18	$\begin{aligned} & \text { 8K } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & F \\ & 739 F \end{aligned}$		
19	$\begin{aligned} & 03 \\ & 83 \end{aligned}$	$\begin{aligned} & 18 \mathrm{~L} \\ & 20 \mathrm{~F} \end{aligned}$		Repeat all calculations from beginning
00271K				Subroutine for Physical Properties
0	$\begin{aligned} & 42 \\ & 50 \end{aligned}$	$\begin{aligned} & 106 \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$		
1	26	S4		
	OK	4F		Calculate percent vaporization
2	$\begin{aligned} & 8 \mathrm{~K} \\ & 87 \end{aligned}$	$\begin{aligned} & \text { F } \\ & S S \end{aligned}$		
3	$\begin{aligned} & 04 \\ & 02 \end{aligned}$	$\begin{aligned} & 26 \mathrm{SK} \\ & 2 \mathrm{~L} \end{aligned}$		
4	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 8 \mathrm{SK} \end{aligned}$		
5	$\begin{aligned} & 87 \\ & 8 S \end{aligned}$	$\begin{aligned} & 5 S N \\ & 6 \mathrm{~F} \end{aligned}$		
6	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 6 \mathrm{~F} \end{aligned}$		
7	$\begin{aligned} & 80 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 7 \mathrm{SS} \\ & 5 \mathrm{~F} \end{aligned}$		Was there any vaporization in this node?
8	$\begin{aligned} & 83 \\ & 81 \end{aligned}$	$\begin{aligned} & 107 \mathrm{~L} \\ & 5 \mathrm{~F} \end{aligned}$		No: Go to 107L. and pick up previously calculated percent Yes: Is the amount of vapor negligible?

LOCATION ORDER 9
86
86 6 F 2SNNOTES
10 8S 9SS
85 9SK
11 80 9SS
$12 \begin{array}{lll}12 & \mathrm{OK} & \mathrm{LF} \\ & 8 \mathrm{~K} & \mathrm{~F}\end{array}$

13	87	$9 S S$
	04	$30 S K$

Yes: Set percent vaporized $=0$No: Evaluate the specific gravity asa function of the percent vaporized.Set percent vaporized $=0$
Calculate the density of the crude at t_{m}8S 10SS

17	85	$10 S S$
	87	$11 S K$

18 84 12SK86 6SN
19 8S 5 F85 7SS
20 87 3SN
80 7SN
21 $87 \quad 5 \mathrm{~F}$
22 $\begin{array}{ll}\mathrm{OK} & \mathrm{LF} \\ 8 \mathrm{~K} & \mathrm{~F}\end{array}$
23 $\begin{array}{ll}87 & 10 S S \\ 04 & 48 S N\end{array}$
24 03
84 23L84 5F
25 8S 85 $5 F$85 8SN
2680 7SS 86 6SN

LOCATION ORDER NOTES
63 8K F17 1SS
64 $04 \quad 8 \mathrm{~F}$ 02 63L65 1S 18SS
1262 L
66 OK 2F85 30SN
67
07 4SS
84 29SN
68 07 4SS $8 \mathrm{~S} \quad 6 \mathrm{~F}$
69 85 32SN
07 4SS
$70 \quad 84 \quad 315 N$ 07 4SS
$\begin{array}{lll}71 & 87 & \text { 17SN }\end{array}$
8S 7F
72 $\begin{array}{ll}05 & \text { 1SS } \\ 84 & \text { 1OSN }\end{array}$
73 $8 \mathrm{~S} \quad 8 \mathrm{~F}$$85 \quad 7 \mathrm{~F}$
74 $86 \quad 8 \mathrm{~F}$86 8F
75 $86 \quad 8 \mathrm{~F}$ 8S 9F
76 85 6F 80 9F
77 86 33SN04 18SS
78 OS 18SS 02 66L
79 85 7SS
80 37SN
80 87 34SN 8S 6FCalculate the thermal conductivity of thecrude.

Calculate the thermal conductivity of the crude.

LOCATION			NOTES
81	$\begin{aligned} & 8 \mathrm{~K} \\ & 80 \end{aligned}$	$\begin{aligned} & 1 F \\ & 6 F \end{aligned}$	
82	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 35 \mathrm{SN} \\ & 36 \mathrm{SN} \end{aligned}$	
83	$\begin{aligned} & 86 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 10SS } \\ & \text { 20SS } \end{aligned}$	
84	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 17 S S \\ & 16 S S \end{aligned}$	Calculate ΔH
85	$\begin{aligned} & 87 \\ & 8 S \end{aligned}$	$\begin{aligned} & 12 S S \\ & 6 \mathrm{~F} \end{aligned}$	
86	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 19 \mathrm{SS} \\ & 18 \mathrm{SS} \end{aligned}$	
87	$\begin{aligned} & 87 \\ & 84 \end{aligned}$	$\begin{aligned} & 13 S S \\ & 6 \mathrm{~F} \end{aligned}$	
88	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{aligned} & \text { 21SS } \\ & \text { 2SS } \end{aligned}$	
89	$\begin{aligned} & 80 \\ & 85 \end{aligned}$	$\begin{aligned} & 1 S S \\ & 6 \mathrm{~F} \end{aligned}$	
90	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 17 S S \\ & 16 S S \end{aligned}$	
91	$\begin{aligned} & 86 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~F} \\ & 22 \mathrm{SS} \end{aligned}$	
92	$\begin{aligned} & \mathrm{OK} \\ & 8 \mathrm{~K} \end{aligned}$	$\frac{\underset{F}{4 F}}{}$	Calculate the viscosity of the vapor
93	$\begin{aligned} & 87 \\ & 04 \end{aligned}$	$\begin{aligned} & 7 S S \\ & 34 S K \end{aligned}$	
94	$\begin{aligned} & 03 \\ & 87 \end{aligned}$	$\begin{aligned} & \text { 93L } \\ & \text { 11SS } \end{aligned}$	
95	$\begin{aligned} & 86 \\ & 87 \end{aligned}$	$\begin{aligned} & 9 S N \\ & 38 \mathrm{SN} \end{aligned}$	
96	$\begin{aligned} & 8 \mathrm{~S} \\ & 85 \end{aligned}$	$\begin{aligned} & 23 S S \\ & 4 O S N \end{aligned}$	Calculate $\left(R_{e}\right)_{L}$
97	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 12 \mathrm{SS} \\ & 41 \mathrm{SN} \end{aligned}$	
98	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	$\begin{aligned} & \text { SK } \\ & 23 S S \end{aligned}$	

LOCATION	ORD		NOTES
23	8 S	6 F	
	80	5 F	
24	86	6 F	
	8S	738 F	
25	8J	4. 2 F	Transfer to 442
	8K	$1 F$	
26	8K	1 F	
	82	[] F	
00408K			
0	42	12 L	
	50	L	
1	26	S4	
	8J	446F	Transfer control to 446
2	85	707F	Is $\mathrm{PL}_{\mathrm{m}}-\mathrm{PL}>0$?
	80	706F	
3	82	5 L	Yes: Proceed to 5L
	8 S	708F	No: Store difference and proceed to 421
4	8J	421F	
	8K	1 F	
5	82	$1 \mathrm{~L}$	Read in and check another polynomial
	8J	$429 \mathrm{~F}$	Transfer to 429
6	8 J	448 F	Transfer to 448
	85	58 SN	Was this the last polynomial in the set?
7	80	70.5 F	
	82	9 L	Yes: Use the two polynomials in memory No: Proceed to 436
8	8 J	436F	
	8K	1 F	
9	83	6L	
	85	708F	Interpolate between the PL values available.
10	84	706F	
	80	707F	
11	86	708F	
	8S	709F	
12	8K	1 F	
	82	[] F	Transfer control to 385

$\xrightarrow[\text { LOCATION }]{\underline{0044 O K}}$

0	$F 5$	$5 L$
	40	$5 L$
1	26	$29 S 4$

2 L5 5L LOLL
$3 \quad 40 \quad 5 \mathrm{~L}$ 26 29S4

4
OOF
$001 F$
5
OOF
$004 F$
6
81 LOF
$40 \quad 707 F$
$7 \quad 22$ 7L $26 \quad 2954$

881 40F
$40 \quad 705 \mathrm{~F}$
9
22 9L
$26 \quad 2934$

00421 K
$0 \quad 22 L$
15 6L
$1 \quad 42 \quad 2 \mathrm{~L}$ 41 7L
$281 \quad 40 \mathrm{~F}$ 40 710F

3 F5 2L 42 2L

4
F5 7L 4071
$510 \quad 445 \mathrm{~F}$
36 29S4

6
26 2L 0 710F

Prepare to operate on $4^{\text {th }}$ degree polynomials

Reset to operate on $3^{\text {rd }}$ degree polynomials

Read a sexadecimal character from tape (representing a value of PL) and store in 707

Transfer control to the order following last 8 J order executed
Read in and store the next PL on tape

Proceed to order following the last 8J order executed

Read in and store a polynomial

Proceed to last 8 J order executed

LOCATION	ORDER		NOTES
7	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	
8	$\begin{aligned} & L 5 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { 9L } \\ & \text { 10L } \end{aligned}$	Read in and atore polynomial associated with PL last checked
9	$\begin{aligned} & 41 \\ & \text { LO } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~L} \\ & 715 \mathrm{~F} \end{aligned}$	
10	$\begin{aligned} & 81 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 F \\ & 715 \mathrm{~F} \end{aligned}$	
11	$\begin{aligned} & F 5 \\ & 42 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~L} \\ & 10 \mathrm{~L} \end{aligned}$	
12	$\begin{aligned} & F 5 \\ & 40 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~L} \\ & 7 \mathrm{~L} \end{aligned}$	
13	$\begin{aligned} & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 445 \mathrm{~F} \\ & 29 S 4 \end{aligned}$	Proceed to order following 8J order last executed
14	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~L} \\ & 10 \mathrm{~L} \end{aligned}$	
15	$\begin{aligned} & 41 \\ & 81 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~L} \\ & 40 \mathrm{~F} \end{aligned}$	Read in and dump a polynomial
16	$\begin{aligned} & \text { F5 } \\ & 40 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~L} \\ & 7 \mathrm{~L} \end{aligned}$	
17	$\begin{aligned} & \text { LO } \\ & 36 \end{aligned}$	$\begin{aligned} & 445 \mathrm{~F} \\ & 29 S 4 \end{aligned}$	Transfer to order following the last 8J order executed
18	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 15 \mathrm{~L} \\ & 15 \mathrm{~L} \end{aligned}$	
00665 K		Subr	Evaluate Polynomials for and to interpolate between them
0	$\begin{aligned} & 42 \\ & 50 \end{aligned}$	${ }_{\mathrm{L}}^{13 \mathrm{~L}}$	
1	$\begin{aligned} & 26 \\ & \text { OK } \end{aligned}$	$\begin{aligned} & \mathrm{S}_{4} \\ & 2 \mathrm{~F} \end{aligned}$	
2	$\begin{aligned} & 1 \mathrm{~K} \\ & 2 \mathrm{~K} \end{aligned}$	$\begin{aligned} & F \\ & 2 F \end{aligned}$	
3	$\begin{aligned} & 3 K \\ & 4 K \end{aligned}$	$\begin{aligned} & 2 F \\ & 4 F \end{aligned}$	
4	$\begin{aligned} & 8 \mathrm{~K} \\ & 07 \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { 30SS } \end{aligned}$	

LOCATION	ORDER		NOTES
5	14	720F	
	1L	1 F	
6	42	4 L	
	3 S	5 F	
7	32	3L	
	80	5 F	
8	26	736F	
	84	5 F	
9	2 S	8F	
	23	3L	
10	84	8F	
	OS	10F	
11	03	2 L	
	80	10F	
12	87	738F	
	8S	10F	
13			
	82	$\left[\begin{array}{ll} 10 \end{array}\right.$	
00679K			Subroutine to Evaluate ΔP
0	46	22L	
	50	L	
1	26	S4	
	85	24SS	
2	8 J	S6	
	87	1014F	
3	8 J	S7	
	8S	5 F	
4	85	15SS	
	80	1015F	
5	83	19F	
	85	15SS	
6		5 F	
	84	1016F	
7	87	37SN	
	87	13SK	

```
\begin{tabular}{|c|c|}
\hline LOCATION & ORDER \\
\hline 8 & 87 13SK \\
\hline & OK 5F \\
\hline
\end{tabular}
986 SK
        O3 9L
    10 86 1017F
        8S 5F
    11 85 11SS
        80 14SS
    12 87 15SS
        84 14SS
    13 8S 6F
        85 1011F
    14 87 SK
        84 38SS
    15 87 39SS
    87 5F
    16 86 6F
        84 5SS
        Does }\mp@subsup{P}{2}{}\mathrm{ assumed = P P calculated?
    17 80 4SS
        8S 10F
    18 8N 39SN
        82 22L
    19 85 5SS
        8S 4SS
    20 
    21 84 LOSN
        8S 2SS
    22 82 [ ]F
    85 5SS
    23 80 10F
        8S 5SS
    24 84 4SS
        86 2SN
    25 8S 8SS
        82 1S8
                                No: Modify }\mp@subsup{P}{2}{}\mathrm{ and repeat calculations
                                    Yes: Replace P P by P
                                    Replace th by }\mp@subsup{t}{2}{
                                    Transfer control to program
```

LOCATION	ORDER		NOTES
0019K			
0	85 83	$\begin{aligned} & 1015 \mathrm{~F} \\ & 685 \mathrm{~F} \end{aligned}$	

Table 5. Polynomials for the Evaluation of ψ

Per cent Correction:

Parameter $=\quad \mathrm{PL}$	a	b	c	d	e
0.01	0.3857	4.3900	20.1857	-33.8957	9.7907
0.25	0.3558	21.9324	-16.2491	5.5128	-8.6094
0.5	4.5758	7.3524	18.9710	-19.1826	-6.4339
0.75	1.0423	51.7054	-98.6457	106.2914	-53.2739
1.0	2.5018	49.2875	-92.4543	102.1649	-52.9669
1.5	3.2912	55.1680	-109.9346	120.0117	-58.3493
2.0	4.2321	51.9834	-101.8847	111.4446	-54.6296

Radiation due to Carbon Dioxide:

```
2E=a-bt +ct2 - dt }\mp@subsup{}{}{3
```

Parameter

Parameter $=\mathrm{PL}_{\mathrm{CO}}$	a	b	$\mathrm{c} \times 10^{3}$	$\mathrm{~d} \times 10^{7}$
0.001	51.7010	0.1513	0.2078	-0.2919
0.002	54.0670	0.1802	0.3150	0.3364
0.003	211.8020	0.5723	0.6414	0.7937
0.004	173.6900	0.6191	0.8155	1.0992
0.005	30.0980	0.3734	0.7349	0.8113
0.006	35.6890	1.0696	1.2016	1.4618
0.008	252.8100	0.9766	1.2920	1.4689
0.01	651.9700	1.9534	2.0423	2.6610
0.015	754.5600	2.2446	2.3347	2.7522
0.02	1278.9000	3.5058	3.2896	4.2098
0.03	1503.5400	4.1913	3.9372	5.0236
0.04	1103.5000	3.3869	3.5666	3.7936
0.06	1346.5700	4.1166	4.2543	4.3270
0.08	668.4400	2.5749	3.2179	1.4470
0.10	1817.8000	5.3986	5.3289	5.2498
0.15	3927.0900	10.0878	8.3592	9.5874
0.20	3990.4400	10.2342	8.4211	8.1694
0.30	5781.0000	14.3987	1.1211	11.8823
0.40	4823.2900	12.1531	9.7198	7.3506
0.6	7588.0000	18.2576	13.4843	11.9161
1.00	6246.9900	16.0636	12.7290	8.7444
2.00	8057.2900	19.8252	15.1587	9.2603
4.00	6090.0000	16.0543	13.1966	1.7166

Radiation Due to Water Vapor:

```
2E =a - bt + ct 2 - dt 3
```

Parameter
$=\mathrm{PL}_{\mathrm{H}_{2} \mathrm{O}}$
a
b
c $\times 10^{3}$
d $\times 10^{7}$

0.01	55.5228	0.1204	0.2066	0.0937
0.015	-110.9520	-0.2520	0.0261	-0.4142
0.02	25.6710	0.0940	0.3523	0.1163
0.025	321.7550	0.7316	0.7960	0.7295
0.03	265.0900	0.6268	0.8141	0.6336
0.04	229.8430	0.5751	0.8985	0.5156
0.05	430.1100	1.0786	1.3918	1.1563
0.06	25.3160	0.2532	1.0233	0.1046
0.08	288.6660	0.7717	1.3913	0.3541
0.10	139.8600	0.3633	1.2072	-1.1428
0.15	537.3800	1.3519	2.2078	0.6104
0.20	1908.1100	4.3802	4.4417	1.7536
0.25	8.4300	0.3724	2.2078	-3.4239
0.30	1196.2760	3.1741	4.4304	-0.5380
0.40	453.3800	1.1607	3.0303	-0.6590
0.50	-90.2000	-0.0144	2.5594	-9.9998
0.60	631.0400	1.9334	4.1433	-9.2052
0.80	2025.3000	4.6138	5.8862	-11.4342
1.00	622.9000	1.6958	4.3397	-18.4798
1.25	-2283.7000	5.2497	-0.6273	-34.1129
1.50	1408.0000	0.0252	3.8746	-31.9589
2.00	5548.0000	10.9464	8.7011	-32.9599
3.00	1362.3000	-0.3637	-0.5046	-64.4918

B1ack Body Radiation:

$$
2 E_{B}=-5926.00+27.6324 t-31.7241 t^{2}+255.0130 t^{3}
$$

Overa11 Exchange Factor:
$2 \psi=a+b R-c R^{2}+d R^{3} ; \quad R=A_{R} / a A_{c P}$

Parameter $=$	a	b	$\mathrm{c} \times 10^{2}$	$\mathrm{~d} \times 10^{4}$
0.2	0.3875	0.3009	0.3655	0.1787
0.22	0.3934	0.3569	0.5188	0.2995
0.24	0.4655	0.3292	0.4177	0.2023
0.26	0.4981	0.3467	0.4726	0.2480
0.28	0.5460	0.3480	0.4765	0.2437
0.30	0.5827	0.3634	0.5380	0.2990
0.32	0.6170	0.3740	0.5750	0.32811
0.34	0.6583	0.3651	0.5726	0.3038
0.36	0.6830	0.3818	0.6028	0.3486

Table 5 (cont.)

Parameter $=$	a	b	$\mathrm{c} \times 10^{2}$	$\mathrm{~d} \times 10^{4}$
0.38	0.7336	0.3505	0.4950	0.2447
0.40	0.7671	0.3791	0.6236	0.3728
0.45	0.8699	0.3668	0.6148	0.3657
0.50	0.9567	0.3472	0.5738	0.3290
0.55	1.0559	0.3379	0.6076	0.3765
0.60	1.1404	0.3245	0.6003	0.3765
0.65	1.2232	0.3068	0.5993	0.3929
0.70	1.2863	0.2976	0.6122	0.4172

Table 6. Molar Heat Capacities of Flue Gas Components $C_{P}=a+b T+c T^{2} ; \quad T=O K$

Compound	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$
Oxygen	6.0954	3.2533	-1.0171
Carbon dioxide	6.3930	10.100	-3.405
Water vapor	7.219	2.374	0.267
Nitrogen	6.4492	1.4125	-0.0807

Rovia las cum

