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SURFATES ASSOCIAT.D WITH A SPACE CURVE

Introduction

It is the purpose of this paper to discuss socme of
the metric differential properties of a torus.

Let us consider a curve G , a point P on C, a
local trinedron of C at P , and any point Q . The local
trihedron 1s defined by the tangent line, principel normal,
and binormal to C at P, wherein these lines are referred
to as § -, N -, and 'ﬁ -axes in a manner similar to the
X=-, y-, and z-axes of a fixed coBrdinate system. Let T
have cobrdinates (x,y,z) in a fixed system of coBrdinates
and cobrdinates (6,0,0) in the local coBrdinate system of
C at P ; similarly let Q have coBrdinates (X,Y,Z) in a
fixed system and coBrdinates ($ W, %) in the local system
of C at P.

The projection of the line seguent joining P and Q

on the x-axls can be represented analytically in two ways,

proj. PQy = X = X ,

proj. PQy = Sd + md + A



(X,Y,2)
Q (5. %)
¥
k(
X >
= >
4
Y
Fig. |\
Hence
X -x= Sd 4+ qR+ $X.
Similarly
and

Z—-—2 =%y + \\n ¥ tv.

wherein d,(S,x y L,wm,wm }\,/u.)d are the cosines of the
angles made respectively by the tangent line, principal
normal, and binormal to C at P with the lines through P
parallel respectively to the x-, y-, and z-axes; that 1is
they are the direction cosines with respect to the fixed
cobrdinate system.

Hence the equations of transformation between the

fixed coBrdinates (X,Y,Z) of Q and the local coBrdinates



($,%,%) of Q referred to the local cobrdinate system at

P with fixed coordinates (x,y,z) of C are®

(X = % + «f * &y v 2%,
(1) 4Y:- 4 + (53 '\""\V( ‘\')lg ]
z = ¥ > ¥$ + my +v5 -

For example consider a circle C’ of radius Q and
lying in the normal plane with center at the point P on

C . The local cobrdinates ( § w,§) of a point Qon c’

are $
$=o0 ) CI

(2) W= & wu ,
g = G Aw W -+

wherein W 18 the angle from the (§n$ N

principal normal tc the line through % Mo,0,0) J

P and the origin.

The fixed colBrdinates (X,Y,Z) Fig.2

of P are 1

“X= % 4+ al coouw + ANl

(3) Y

z: %+Q“Mu+avMu

~ + GW CLOW ¥ Gpm AmW

*y/., G. Grove, Metric Differential Geometry of Curves and
§grfaces, Notes prepared for use in sichigan sState College,
35, eq. (74). Hereinafter referred to as Grove, Geometry.
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The Torus Defined

If in equations (2) and (3) above C is a circle of
radius b >Q, with G and b both positive and finite,
the locus of the circle C’ is a torus. Let V be the

arc length of the circle (C measured from a fixed point

on C .

(0,0,0)

(0,a,0)

c Fig.3

V( (0, b,0)

For the circle C, the radius of curvature (o is b .
Alsc belnz a plane curve the torsion %? is zero. Grouping
these last restrictions and observations together for

convenience we have

OK A <b <o , (J=b, x = ©°

VvV = wwnc.

P4

(4)



As a matter of notation, it will greatly shorten the
numnber of equations if we represent only the X values;

corresponding values of ¥ and Z are found by permitting
the following permutations:

= _Q__,w) )\—>/u_ Lovr X—*Y)

and
%=y, 8w, x=w  fer X—>Z

Preliminary Computations

Several computations can be made which will prove
useful in discussing some of the proverties of the torus.

By means of the Frenet-Serret formulas*
‘ »
(J

ORI pr= » ¥t P
’ r_ (X 4+ 2),

5 Lo (ka ), W (B A) wee(Ee2)
A' = ,—%." > /U"'= % ) ‘Vle ,-mr'

wherein primes denote differentiation with respect to the
arc length, and the relationships expressed in equations

(3) and (4) we readily find the following partial derivatives

of the coBrdinate X for the torus:

*# L. P. Elsenhart, A Treatise on the Differential Geometry
of Curves and Surfaces, New York, Ginn and Copmpany, 1909,

p. 17, eqe. (50). Hereinafter referred to as Eisenhart,

Qeometrx.




,
AR=%x xalemnmuw + 0N Am w,

—aQ Ade W *+ GA LW \

i(‘_%m*) )

(6) 4

G

L
X, =
e = —6lemnuw - X A w ‘
Ry = B & R ;
Kvv

= %—(\—%mu)

k

Also certaln fundamental coefficients defined as
follows will be used: #*

2
E - Xuty?yzd

F=XX + Y ¥ + 242, ,

G = xs 4 Ys v 22,

H® = 5G — F2 , %%
Xau Yuu Zuu
1
L= Llx, ¥, 2y -
X, Y, 2,

% E. P. Lane, Metric Differential Geometry of Curves and
Surfaces, Chicago, The University of Chicago Press, 1938,
P.74 eq.(3.3). Hereinafter referred to as Lane, Geometry.

#% Lane, Geometry, p. 75 eq. (3.6)
### Grove, GCeometry, p.75 eq.(13Q), with Lene, p. 123.



Xuv Yuv Zuv
1
M= H Xu u -1 ’
Xy Yy Zy

Using the notation suggested at the end of the last section

these relationships become
(

€ = = X2 v F=ZIX X, » G -ZXS ,
(7) { ) n qu\ M < K Xuv L XVV
LW x| W NEY Ik
\ Xv Ky Xv

It will further be noticed by comparing equations
(4) with (7) that HL, HM, and HN are all of the form Q
where
ad + b U +C A Q3+ bW+ C u Gr+ bwn + <

(8) a,d + b d¥rch R +HLmrCu Q¥ + bwn+cv

O
Il

Gy + b % +Cy A °~3(3+\>3“\“'c5/"~ G¥ + byw+C v

But Q can be written in the form of a product, namely

&, b, c « f ¥
Q = a bz c',. .ﬂ ™ \\ ‘
G, \)3 Cj PN /A Y
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However the second determinant of the product#*

Hence
Q, b, c,
(9) Q = o, b, c, | -
3 b, S

e may therefore for eace in computation state the
following introductory
THEORE.l. Any determinant of the form Q expressed in {8)

can be evaluated as a determinant of the coefficients
of o, &L, N,

The evaluation of these Q determinants agrees favorably
with the X value notation already adopted and expressed in
equations (6) and (7). Making use of the introductory
theorem jJjust stated and the relatlionships expressed in
equations (6) and (7), we may derive the following fundamental

coefficients for the torus:

rE=CL" ) = -G \
F= o0 R M= o '

1
(10) ﬁc,-(\-%uw)z, S (e

L H=a(l- {? wnw) .

Lane, Geometry, p. 18.
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Some Properties of the Torus

Theorem 1. The parametric net on the torus is an

orthogonal net.

The parametric net is formed by the families of lines
u = constant and v = constant. The curves u = constant
are the circles whose planes are parallel to the osculating
plane of C e« The curves v = constant are the generating
circles C’.

Proof: A necessary and sufficient condition that the
parametric net on a surface be orthogonal is that F = 0.%

By equations (10), this condition is satisfied for the torus.

U= Constant

g%

V=Constant

# Lane, Geometry, p. 110.
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Theorem 2. The parametric net on the torus con-

stitutes a conjugate net.

Proof: A necessary and sufficient condition that a
parametric net be a conjugate net is that M = O.% By
equations (10), this condition 1is met for the torus.

By definition a net of curves on a surface is a con-
Jugate net in case the tangents of the curves of one family
of the net at the points of each fixed curve of the other
family form a developable surfzce.%:it On the torus, for a
fixed v, the tangents of the curves u = constant form a
circular cylinder. For a fixed u, the tangents of the
curves v = constant form a circular cone which degenerates

to a plane for u =\1-£\ and a circular cylinder for u = Q.

Theorem 3. The asymptotic curves on a torus can

be found by quadratures.

Proof: The curvilinear differential equation of the
asymptotic curves on a surface 1s given by :¥#%
L d? + 2M dwdr + Now' = 0 .
Making use of the relations in equations (10), the differ-
entall equation for the torus 1s

2 Lo W [o¥
(11) —adwt + o (1- & weu)at= o0

* Lane, Geormetry, p. 138 Th. 3.
#%* Tbid., p. 135 Def. 1.
##% Tbid., p. 123 Eq. (4.6).
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from which we find
dan

w
(12) v = X b\I?J; fmu.(b—o.u-au.)‘

Equation (12) can be shown to be an elliptic integral#

by use of the following substitutions:

Let
u= cos™'x ,
then
* dx
V= ¥ bJ =
— 2 bl _ b =t .
\'/‘ * /ﬂa‘—x %)
let
b %t = 3%: sin & ,
then
(1) L6
V= : b Ty aY
— . ¥ .
M"(‘?-\) /\ %’1&\-\-%9) p)
and let
e=T -4 ,
then
T-sin(@42-1) 4
(13) v=Xb cond 2

kY
J1= 5
. Yy 2
g-sdxﬁ?—t) o
For convenience we shall call the curves u = constant

parallels of latitude, and v =constant meridians.

% Harris Hancock, Lectures on the Theory of Elliptic Functions,
New York, John Wiley & sons, 1910, p. 187.
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Theorem 4. The parametric curves are the lines

of curvature.

Proof: The lines of curvature on a surface not a
plane or a sphere are parametric if and only if F = O,
and M = OT That 1is, the lines of curvature are parametric
from equations (10). But the lines of curvature form the
only orthogonal conjugate net on a surfacej@*lt follows
then from Theorems 1 and 2 that the parametric curves
are the lines of curvature.

This theorem follows readily from the differential
equation of the lines of curvature. For any surface this
differential equation 1gi#

(EM — FL)du® + (EN — GL)dudv + (FN — Gul)dv® = 0.
which becomes for the torus by equations (10)
(14) a(1- Eemu) dude =0
The solutions of equation (14) are seen to be u = constant

and v = constant.

Theorem 5. The points \u\)lg are elliptic points;
the polints \u\(f% are hyperbolic points; the

points \u‘=f§ are parabolic points.

r Proof: when the lines of curvature are paraiaetric

on a surface, a condition which is true for the torus by

L

Theorem 4, the principal normal curvatures =— R a
R| E S

point on the surface are given by the formulas#si#

| A N
(15) R, € R, G
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L I CER . N
(15) R, E R, G

By equations (10), the principel normal curvatures for

the torus are

\ \ L Coo W
(16) _—ﬁ = T a ? _Rz_ b—-actnw

The Gaussian curvature K = %"R >0 defines an ellintic
[} a
point, K <0 a hyperbolic point, and K = O a parabolic

point. For the torus
Cod W
(17) K = (b-0ownu)

Recalling that b>a from relationships (4), it is
readily seen that for |u| >’-E , K >0 since the factor
(b- & en w)>0 ; also for |uj<T , K<O: and for

=%, k= o.

It may be recalled that in & region on a surface in
which all points are elliptic, the asymptotic curves are

imaginary; and where al. points are hyperbolic, the

" Lane, Geometry, p. 145 Th. 4.
#%  Tbid, p. 145 Th. 3.

#%#  Tbid, p. 143 Eq. (7.5).

#%:% Tbid, p. 160 Lg. (2.12).
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asymptotic curves are real.%* For the parabolic points,
The curvilinear differential equation of the asymptotic
curves, equation (11), vanishes since du = O, From these

remarks we might add the following corollary to theorem 3:

Corollary: The asymptotic curves are imaginary for

\u\>if{. » and real for \u|< '% .

Theorem 6. The parametric net on the torus is

isothermally orthogonal.

Proof: Necessary and sufficient conditions that a

parametric net be l1sothermally orthogonal are#**
- E) =0 .
(18) F=o, ot (%35),

From equations (10), F = 0, also it will be observed that

E E )

= = funct f 11y = = .
§ = a function of u only, hence (,Q.c} /., =°
Theorem 7. The torus 1s an isothermic surface.

Proof: By definition an isothermic surface is a
surface on which the lines of curvature form an iso-
thermally orthogonal net,¥###* Theorem 7 follows immedi-

ately from the statements of theorems 4 and 6.

* Lane, Geometry, p.162.
#% Ibld., p. 120 Zq. (3.21).

##% Tbid., p. 145 Ex. 6.



15.

Theorem 8. The parametric net on-a torus 1is iso-

thermally conjugate.

Proof: Necessary and sufficient conditions that the

parametric net be 1sothermally conjugate are#

(19) <o, oamd (Lg ), =0

From equations (10) we see readily that M = 0, and that

L _ L -
since X =a function of u only R (Qg} Tf)uv' o.

Theorem 9. The minimal curves on uhe torus can be

found by quadratures.

Proof: The curvilinear differentisal equation for the

minimal curves on a surface lg##

E dunr +2F dcdwr + Gdu® = 0.

By eaquations (10), the differential equation for the torus

becomes

2 3 x k%
(20) o' dut + (I- & wow) d* =0,
from which we obtain

[V
P —

= * o .

(21) v “Jo b-awmw

Performing the indicated integration we find that

(22) - abi . ! /bt_o:-' foon U )
VBI—G. bem w — &
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It 1s seen that the minimal curves on the torus are
imaginary, which is true of all real surfaces. It may
also be remarked that minimal curves on a surface are

geodesics, %k

If the sum of the principal normal curvatures is
zero, the surface is o minimsl surface.¥%###%* By equations

(16) we have

(23) R T R = )
R, R, ac(b-acmw)
If wnuw= 32, then
o4 L =
R, + R, o

A minimal surface 1s characterized by the following
equatlion#*u#sik
EN + 2FM + GL = O.
By equations (10), the equation above becomes for the

torus

(24) o (\-— %; cnz\»)(ggh e W —l) = 0.

Lane, Geometry, p. 141 Eq. (6.15).
sot Ibid., p. 110 Eq. (2.4).
P Ibid., p. 150 Ex. 7.

#%%% [Elgenhart, Geometry, p. 129; where mean curvature

#xwit* [ane, Geometry, p. 163 Eq. (3.3).
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If a =0, the torus degenerates to the generating circle
in the osculating plane. If the second factor 1s set equal
to zero, then W= g%,which is impossible by relations
(4); that is b>a which would make < w>\ for this factor.

The third factor equated to zero ylelds

= —P_

Thus we have the following

Theorem 10 In the nelghborhood for those points for
which uw=2-\g-, the torus resembles a minimal sur-

face.

The torus could never be a minimal surface, since the
only surface of revolution not a plane that is a minimel

surface is the catenoid.¥*

If we take the partlal derivatives of the functions

E, F, and G defined in equations (10), we find that

E,= F.= E,= F,= G, =0 ,

W “w

(25)
5 G

- & Q. AL .
2 (\ = e w X n Au~.u)
Hence the Christoffel three-index symbols of the second

kind for the first fundamental form##%

2 \

r‘\‘l = 7.|—\'\"(G-E\~ +FEV—2FF\~) 4 P\\ T W

M = m(GE, -F6&,) > r* = ;n(E6 -FE),

12 2

(-FE, -EE, +2EF)

\ \

M = Iye -Fe,-G6,+26F), =

22

2—'H-._ (E6, +FG_-1FF)

% Lane, Geometry, p. 165 Ex. 8.
##% Tbid., P.132 Eq. (5.4).
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become
o 1 Al _ G,
r‘“ = O f‘u = O ) \za = ‘TE >
(26) . c
rln =0, r‘\: =7 ?‘ > r‘:a = O -

Assuming the perameter along a geodesic curve on the

torus to be u, the curvilinear differential equation of

the geodesics is#%

2 1 S 3
v'oe - -2l sl YD VAR C 1 AN Mol IV + 0, v
which becomes by equations (26)
AV _ 26, dv _ Guw (dv )P
(27) Au? G dux 2E (M)

In order to find solutions for equation (273 we shall
use the following substitutions:

Let
oav
b= duw °?
then equation (27) becomes

-3 -
S2eT SE v a s

= G
ol )
let now

-2

P =%

and then we obtain

™ - G
i

This last equation has the solution

G +5EC .

(AT ’

where C 1s an arbitrary constant.

Lane, Geometry, p. 147 Eq. (8.4).
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Retracing our substitutions, equatiocn (27) may be

written

(28) _dv G o

Vs /& +sec

Theorem 11l. The geodesic curves on the torus can

be found by quadratures.

Proof: 1In view of the above discussion, the geodesic
curves v, which are solutions of equation (28) are
“ & dn

(29) V= % AN5E J‘/GS_._ SEC‘ )

It has been remarked already (under Theorem 9) that
the minimal curves on a surface are geodecsics. Hence

the curves

abu - b*-a" Acww
(22) v= T —— )
Yor-ct beom w-a

are solutions of equation (29).
Maps on the Plane

The element of arc length is represented by*
ds¥ = Edu’ + 2Fdundw + Gow'
which becomes by equations (10) for the torus

(30) ds* = atow® +(I- Femw)at.

* Grove, Geometry, p. 69 Eq. (119).
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If we make a trancformation U = u(u) and v = v,
wherein
GY
T = e VTS
(31) dan b-acoyw >

the square of the differential of arc length equation (30)

becomes
(32) as” -—(\— %—, Mu)l(m‘-\.w‘,‘) .

From the transformation equation (31) we obtain

L ab o b*-o' Amuw
(33) \~ b‘-of b ws W — &

Finally if we let U =y and Vv = X we may state the

following
LS L S
Theorem 13. The transformation ¥y =.___&lL_ -1 b -a nanw
bt_o_t bm\-&‘-&

and x = v represents a conformal mapping of the
torus on the xy-plane, wherein the parallels of
latlitude map into lines parallel to the x-axis
and the meridians map into lines parallel to the

y-axis.

Proof: A transformation between two surfaces is con-
formal if and only if the minimal curves on the two surfaces
correspond.¥

For a plane, the minimal curves are given by the
differential equation
(34) dx* 4+ oy = O .

The minimal curves for the xy-plane are thus
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(35) Zo=E iy

But from the transformation expressed in theorem 13, the

minimal curves on the xy-plane are

I e aae

. =i
(36) Caatall i s R

Finally comparing expression (36) with equation (22), we
see that by the given transformation the minimal curves on
the torus and the plane are identical.

Also by observing the expression for the transforma-

tion it is readily seen that for u =constant, y = constant;

and for v = constant, x = constant.

£

[¢]

=}

y= constant

o

u = Con s'tﬁ-'\'t

F'33.5¢L

* Lane, Geometry, p. 193 Th. 2.
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&ﬂ
w=T
= S!
“=3
='I b tw“ Vbl_al
w=1 (S LF)
2( e -a)
o = T a X
[ 3 2

Figq.5b

For some other possible mappings of the torus on the
xy-plane, we recall that the transformation x = x(u,v),
y = y(u,v), between a surface referred to parameters u, v
and the xy-plane 1is an equiareal map of the surface upon
the xy-plane 1n case the functions x, y are solutlons of
one or the other of the two partial differential equations*
(37) XYy = XY, = H .
Using this relationship and those of equations (10) we

have for the torus

50 SR TR

Let x =v, and y = f(u), and choosinsg the negative

sign before H; then equation (38) becomes
(39) .Q(\- %Q-:nu.) - 5'(0,) .

Hence

(40) fw) = a(u=- & admw).

* Lane, Geometry, p. 203 Th. 2.
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Theorem 15. The transformation x =v, y = a( w - -%-Mu.)

represents an equlareal mapping of the torus on
the xy-plane.

Proof: The transformation (40) satisfies the partial
differential equation (38); therefore the transformation
expressed in the theorem represents an equlareal map of
the torus on the xy-plane.

This transformation also maps the meridians into lines

parallel to the y-axis and the parallels of latitude into

lines parallel to the x-axis.

11

wiy

o)

ol

b T,
Fig.6a Fig.6b

The map on the xy-plane extends from x = O to x = 21b
and y =0 to y =2Ta., Thus the surface area of the torus

1s represented on the plane by the area of the rectangle
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which has for i1ts dimensions 27a and 2TWb , or 4T ab.
Comparing this method of finding the surface area of
the torus with the method of the calculas, the advantage
of the equlareal map Jjust described 1s seen.
Let the torus be M
generated by revolving | _~—
the circle o

2 4 8.2 (7]

Ir

(x-b)% + y

about the y-axis.

Then the total

surface S 18 ex-

Fig. T
pressed
( 6=21
(41) S = 2JT‘I x ds
=0

wherein x = b 4+ a cos 8, and ds = a de .

v 2w

S = QWYJ(b + a cos 6)a d6 = 21h3b9 + a sin 9] )

o -]

therefore

S= 4M ab.
Another equiareal map may be found as foliows:

let y =u and x = v§(u), then equation (38) becomes

(42) Q(|-2b~_mu)=x.v

It should be noticed from equations (10) that X, 1s
a function of u only; Xy = F(u) has as a solution
x = vi(u), or by equations (10)

(43) xX = &V(\—%‘Mu)'
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This map is not as convenient a representation as

the other equlareal map already discussed as seen

pictorially.
5 “
o)
I T
ab
3 ————
[
g - —
o X
0, v="—r§k
" Fig. 8a Fig.8b

For the entire surface, the map appears as follows:

‘1'\\' |
[ ’ | |
| | I

[

I’Irab(l-——mﬂ) x

F’fﬁ 8 C

NN
) S
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For this equiarezl map the x ranges in value from
zero to 2Mab (V-%fcubw) , and y from zero to 2T As
a check, the area under the curve

(44) x=2Wab(l-$ wey) ,

represents the area of the torus.

W
ZTro.b\ﬂ - %""‘Mﬂk )
o

aT
= - &
A —Jo 1'“'0..(\ bmﬂ)o\ﬂ
therefore

A= 4'“’:G.b

The Normal Congruence

Let us now g
choose a line nor-
mal to the circle
in the normal —*-»Z
/
plane C with cow
Brdinates of a (%X,Y,2

point on the line

(X,¥,Z2) and having , EPRY 5
direction cosines

A, B, and C. Let

D be the distance C

from the point
Fig.9
(X,Y,Z2) to the

point (X,Y,Z).
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Hence we have
(45) X=X+Da,
and simllar expressions for Y, and Z.
The direction cosines of the normal to a curve are

given by the relationships#

J\ _:’L = 3 >
(46) A=t B= o C

X

wherein

J\ = ﬂw%v_ﬂ"g‘* 2

and J, and J3 are similar expressions using the notation
at the top of page 5.

Combining the relationships expressed in equations (3)
with those in equations (45) and (46), with some algebraic

simplification we have as a result
(47) A=((3“‘XW)/§-;M\& +(b’/u.—($1))u-au.)
and similar expressions for B and C by permitting

and

B>y, ¥, sm=v V=X, Mn, n> . AD

P

B>, ¥ =03 ,/.A.")\ , V——r/u.., w2, “—»M',A"C-

But in the determinant
o G ¥
L ™ =\,
Nooopm Y

each element 1s equal to its own cofactor.®# [ience,

(48) A= ANrbwu + L emu

* Lane, Geometry, p. 79 Eq. (4.8), and p. 64 Eq. (1l.4).
*% Eisenhart, Geometry, p. 13 Eq. (40).
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Therefore we have combining equations (48)

with equations (45) and (3),
(49) X = % +(D+AA N dtmw + Lo ) -

But for D any constant value, the surfaces for which the
codrdinates of a movable point are (X,Y,Z) and (X,Y,Z)
respectively are related by
X =X — At

where t 18 a constant. ¥%e may recall that the parametric
equations of a surface S parallel to a surface S can be
written in the form X = x —- At, y=y - Bt, 2z =12 — Gt
in which t 1s the constant algebraic distance from a polnt
P(x,y,2) of S to the corresponding point P(x,y,z) of S and
A, B, C are the direction cosines of the normal of S at P.*

From equations (49), the surface for which a point
P(X,Y,Z) 1s represented is seen also to be a torus since
it is of the form of equations (6). e may now state the

following

Theorem 16. A surface parallel to a torus is also

a torus.

An interesting geometrical interpretation for tue
principal radiil of normal curvature may be developed.
Let us construct a line in the normal plane perpen-

dicular to the osculating plane at a distance b from

* Lane, Geometry, p. 208 Th. 1.
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(x,y,z), that is the poler line. Also for any angle u,
construct the normal to the surface of the torus and ex-
tend 1t to meet the polar line. The normal line also
passes through the center of the local co8rainate systen,
tnat is through the voint (x,y,z). To show this we nake
use of equations (49); comparing the definition of the
torus, equations (6) we see that

X=x+*aA ,
or

X=—x_Y—Yy Z 2

A B C

+a )

which 1s the equation of =2 1ine with direction cosines

A, B, and C throuzgh the point (x,y,z). Call the line seg-
ment on the polar line intercepted by the principsal normal
and the normal 1line T; and the line segment on the normal

line intercepted by the torus and tuhe poler line Q.

5

Q
a
(%4,3)
T w A\
b
Fig. 10

n/
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From the figure, T 1s given by
T=D>b tan u .

Squaring, and meking use cof trigonometric relstionships

we have
T2 = bgtangu = b2(se02u -1)
b2 2
= — = b
cos“u
(50) =(b—a cos u a2 = p2
K cos u t

Also by the Pythagorean Theorem we see the following re-
lationship:

(51) T o
Equating equations (50) and (51)

2 _ 2 .

— b & b-awnw _\_Q)" =(Q+ o) = b

Coryw
we gsee that
_ b-awnu
(52) Q - Cod W

Now comparing equation (52) and our figure with equations
(16) we have |
Q,=Rz anc a=—R‘.
The last relationship with our construction gives us
a means of constructing the principal radil of normeal cur-
vature for all u except |ul= T, at which points R, is

undefined.
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Fig- Il

N/

Loxodromes on the Torus

Corresponding to the loxodromes on the sphere, we
may ask the question what are the equations of the curves
which cross the meridians of the torus at a constent angle?
If we let © be the constent angle, then¥
\
cn B = ;—s—d?‘\-EdAuo\M"\'F(deAf‘ ﬁ‘o\.u‘cﬂu)‘\'(rd#o\u‘] ,

(53)

Mga_o\SHdS‘(dMM.—d“‘M) )

whereln ds and ds are eleuments of arc length expressed

as preceding equation (30).

Lane, Geometry, p. 116 Eq. (3.4).
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If the curve C, is the u-curve at the point P, then

v, = constant or dv‘= 0; that 1s v\corresponds to the
meridians. Using this restriction, the angle © may also

be defined by the equation#%
. < H dw
(54) om B = T F oo

Using the relations of equations (10), equation (54)

becomes for the torus

(55) LA B o = < SVURN

which has for a solution

_ %% . aWe-at a
(56) vme-mwl A Axn 4+ C .

b oo -

These curves are of the form av = g wherein a is a
constant and g an angle which varies, and thus spiral about
the torus.

The equation of the loxodromes (56) may be written

in the form

ab _ -
(57) Ve 8 = o bmuze ¢

b—- o coow

It is seen that there 1s no restrictiocn on the ansle

b e w—a
h—-—oa W
other than G2>-p which 1s certainly true for &ll a and b

Con~ !

by relations (4).

Eisenhart, Geometry, p. 76 Ekq. (24).
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