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SURF CES ASSOCIATED WITH A SPACE CURVE

Introduction

It is the purpose of this paper to discuss some of

the metric differential prOperties of a torus.

Let us consider a curve C» , a point ‘P on C. , a

local trihedron of C at ‘P , and any point Q . The local

trihedron is defined by the tangent line, principal normal,

and binormal to C at ‘P , wherein these lines are referred

to as S -, VK": and ‘Q -axes in a manner similar to the

x-, y-, and z-axes of a fixed cobrdinate system. Let 1’

have cobrdinates (x,y,z) in a fixed system of cobrdinates

and codrdinates (6,0,0) in the local cobrdinate system of

C at 1’ ; similarly let G have cobrdinates (X,Y,Z) in a

fixed system and cobrdinates (§,Vr,§) in the local system

of C: at 1? .

The projection of the line segment Joining —P and Q

on the x-axis can be represented analytically in two ways,

prOJ° PQX=~_X-—X ‘

DPOJoPQX= Set + v12 + fk



   
 

 

(X,\(Z)

3r

9‘

Y

F'\<3.\

Hence

._ X’s-x: 3d+n9+ ‘gA

Similarly

and

Z-z—Sx +‘1V‘ “' 4942.

wherein (1,6,3 , Lyn,“ -, Ava)» are the cosines of the

angles made reapectively by the tangent line, principal

normal, and binormal to (I at 1? with the lines through 'P

parallel reapectively to the x-, y-, and z-axes; that is

they are the direction cosines with respect to the fixed

cobrdinate system.

Hence the equations of transformation between the

fixed cobrdinates (X,Y,Z) of (Q and the local cobrdinates



(f,\1,-g) of Q referred to the local codrdinate system at

13 with fixed coordinates (x,y,z) of C are*

X: x+d§+£wl+>.%,

(1) Y: «aw-(BS-xv‘mni-flg »

z: ry+3§ +Mw +11?-

For example consider a circle C” of radius <1 and

lying in the normal plane with center at the point "P on

C . The local cobrdinates ( 30mg) of a point Q on C’

3
are

3:0 )

(2) V13 amu)

§,-= (x AL“ u. .

wherein \L is the angle from the (in!  
principal normal to the line through

13 and the origin.

  The fixed cobrdinates (X,Y,Z) f=i§.z

of W? are 1

Xe.- x+dQcmut+d>xMu ,

(3) Y=A1+a~n¢°W+aeri

'Z = v} -* o.y\ szu.'* dmv Imhnia

 

*V. G. Grove, Metric Differential Geometry of Curves and

Surfaces, Notes prepared for use in lziichiganStateCollege,

p. 35, eq. (74). Hereinafter referred to as Grove, geometry.
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The Torus Defined

If in equations (2) and (3) above (3 is a circle of

radius b>0., with d and b both positive and finite,

the locus of the circle (7 is a torus. Let ‘V be the

arc length of the circle (I measured from a fixed point

on <2 .

(O, 0,0) 

(o,a,o) C

F’i5.3

n 7(O)b)°)

For the circle (L, the radius of curvature (o is b .

Also being a plane curve the torsion #7 is zero. Grouping

these last restrictions and observations together for

convenience we have

O<Q<b<°° , (nab, 7§==o

V=WW¢MC.

)

(4)



As a matter of notation, it will greatly shorten the

number of equations if we represent only the X values;

correSponding values of Y and Z are found by permitting

the folloudng permutations:

Lafl) .Q-fiw’ )\—->/(;. 40" an)

and

754%, .Q—‘rm,>\—+V J{-~H'X"’*Z.

Preliminary Computations

Several computations can be made which will prove

useful in discussing some of the properties of the torus.

By means of the Frenet-Serret formulas*

a_ 2L
(1" _~%_ ) (5’: 3%:— ) 3‘ {a ‘

I ’_._ 5-1. Z ,

(5) 1 =‘<%+$)’ W‘ ‘ (%+T>’ “' (NT)

.A' =: é% > /*’ g z? ’ ‘v’: 2%

wherein primes denote differentiation with reSpect to the

arc length, and the relationships expressed in equations

(3) and (4) we readily find the following partial derivatives

of the cobrdinate X for the torus:

 

* L. P. Eisenhart, A Treatise RE the Differential Geometry

g: Curves and Surfaces, New York, Ginn and Company, 1909,

p. 17, eq._(505. Hereinafter referred to as Eisenhart,

geometry.



 

‘()k = 1. *‘(LQ.QD°\L -+ <1)\ néw.-,

)§.= —.QJl;aL~ u. i- d)\ QDQLL ,

x,= iii-"Timed .

(6) {Xm‘= “fiQQmm-O~>\A3w~u ,

X..= 3,—in ,

(X..= 39(“t‘w0 

Also certain fundamental coefficients defined as

follows will be used: *

2
..Xu + XS 4 zfi ,{

‘
1

F = xuxv + Yqu + zuzv ,

2
G = Xv-+ Y3 + 23 ,

H2 = as ~ F2 , **

qu Yuu Zuu

l

XV Yv ZV

  

 

* E. P. Lane, Metric Differential Geometry pf Curves and

Surfaces, Chicago, The University of Chicago Press, 1939,

p.75 eq.(3.3). Hereinafter referred to as Lane, Geometry.

** Lane, Geometry, p. 75 sq. (3.6)

*** Grove, geometry, p.75 eq.(13®), with Lane, p. 123.



XUV YUV Zuv

1

M = H Xu Y1). -'u a

X. Y. 2..  

  
Using the notation suggested at the end of the last section

these relationships become

E=ZX: a F=quxv ) G'ZXV‘ 3

(7) _|_ quk _ _\_ xu" ‘ va

\, = H xW > M‘ H Xi . N " K Xu

XV Xv xv

It will further be noticed by comparing equations

(4) with (7) that HL, HM, and HN are all of the form Q

where

cm + bfl. +C,>\ (1‘6” by. + W“ 6.3+ bm + 6.0

d,oL + b,9+c,>~ eqp + hang/u. CLJ + Vow-icy

m(8) Q

(.134 +539+C3>x c.3(3+\,3\m+C3/u “33"".3“+c39

 
But Q can be written in the form of a product, namely

C». b, c:I CL (5 Y

Q 2: 1 b1 Q3. R N“ M .

Q3 ‘33 C5 >\ la V
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However the second determinant of the product“

  
Hence

0., b, c,

(9) Q = 0., b, c, .

a be C's   
We may therefore for ease in computation state the

following introductory

THEOREM. Any determinant of the form Q expressed in 18)

can be evaluated as a determinant of the coefficients

of dw.l,)\.

The evaluation of these Q determinants agreesfavorably

with the X value notation already adOpted and expressed in

equations (6) and (7). Making use of the introductory

theorem Just stated and the relationships expressed in

equations (6) and (7), we may derive the following fundamental

coefficients for the torus:

E: 0.1 , =-Q. \

F: o , M=O ‘

lO

( ) 6" (\..£-_. mu)2 ) '-' as)“ (\- flew-am) ,

 

Lane, Geometry, p. 18.
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Some PrOperties of the Torus

Theorem 1. The parametric net on the torus is an

orthogonal net.

The parametric net is formed by the families of lines

u.= constant and v = constant. The curves u.= constant

are the circles whose planes are parallel to the osculating

plane of C.. The curves v = constant are the generating

circles C].

Proof: A necessary and sufficient condition that the

parametric net on a surface be orthogonal is that F = 0.“

By equations (10), this condition is satisfied for the torus.

 

   

 

   Fig.4. V= Constant

 

 

; Lane, Geometry, p. 116.
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Theorem 2. The parametric net on the torus con-

stitutes a conjugate net.

Proof: A necessary and sufficient condition that a

parametric net be a conjugate net is that M = O.* By

equations (10), this condition is met for the torus.

By definition a net of curves on a surface is a con-

Jugate net in case the tangents of the curves of one family

of the net at the points of each fixed curve of the other

family form a developable surface.** On the torus, for a

fixed v, the tangents of the curves u = constant form a

circular cylinder. For a fixed u, the tangents of the

curves v = constant form a circular cone which degenerates

to a plane for u =‘q-a and a circular cylinder for u = 0.

Theorem 3. The asymptotic curves on a torus can

be found by quadratures.

Proof: The curvilinear differential equation of the

asymptotic curves on a surface is given by:***

LOLAAI +2Md-d~4r+Nd~Ar"=O .

Making use of the relations in equations (10), the differ-

entail equation for the torus is

 

(ll) -O.ob.~2' -\- 00;“. <\——g’b—Qmu)o(”‘=o

)

 

* Lane, Geormetry, p. 138 Th. 3.

** Ibid., p. 135 Def. 1.

“*4“. Ibido, p. 123 qu (406).
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from which we find

d».

(12) V -'-"- i hr; 0 Jaau‘b_o.mu)‘

 

Equation (12) can be shown to be an elliptic integra1*

by use of the following substitutions:

 

 

 

 

 

 

 

Let

u.= cosZ‘x ,

then

x

V" ,_ b I ‘dnc

/ - 1‘ b1 -— b I‘ .

‘ 7‘ /Ha‘ -(‘L R) )

let

)c- £i. :: f%fsin 9 ,

then

M-|<1&I_‘

v " b T ) d9= + 1. ‘ .

M"(‘-b&--\) ‘/‘—2?;1§l+lu.m9)z )

and let

9 a %} — ¢ I

then

__s;“‘(lo.x_ ') &¢

(13) v = i b 4 ETV/|_.§L1 cc:
. q z

11!-5m"(1_:-‘) a.

For convenience we shall call the curves u = constant

parallels of latitude, and v =constant meridians.

 

* Harris Hancock, Lectures on the Theory of Elliptic Functions,
  

New York, John W'iley & sons,1910, p. 187.



12.

Theorem 4. The parametric curves are the lines

of curvature.

Proof: The lines of curvature on a surface not a

plane or a sphere are parametric if and only if F = O,

and M'= Of That is, the lines of curvature are parametric

from equations (10). But the lines of curvature form the

9351 orthogonal conjugate net on a surfacejb*It follows

then from Theorems 1 and 2 that the parametric curves

are the lines of curvature.

This theorem follows readily from the differential

equation of the lines of curvature. For any surface this

differential equation is***

(EM — FL)du2 + (EN — GL)dudv + (FN .. GivI)dv2 = c.

which becomes for the torus by equations (10)

(14) d(\-%—mu) MM=O

The solutions of equation (14) are seen to be u = constant

and v = constant.

Theorem 5. The points \u\ >51: are elliptic points;

the points \u\<f% are hyperbolic points; the

points \u‘=f§ are parabolic points.

P Proof: When the lines of curvature are parametric

on a surface, a condition which is true for the torus by

Theorem 4, the principal normal curvatures 3%, 7%" at a

i I.

point on the surface are given by the formulas****

J_ .J. - .EL .

(15) 11’5’ ‘R'G
L
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l-L , J— _ 13L .

(15) “R, E “R, 6

By equations (10), the principal normal curvatures for

the torus are

‘ _.L _\__ C03“

(16) a; '= (L ' 1R: b'-<Ltanu.

\

 

The Gaussian curvature K 2‘: J‘RH‘R )0 defines an elliptic

point, K <0 a hyperbolic point, and K =0 a parabolic

point. For the torus

Caexa

(17) K2.- (Lib-attack)

 

Recalling that. b>a.from relationships (4), it is

readily seen that for \u(>3§ , K >0 since the factor

(b- (3%“- )>0 ; also 1'01" |u|<1§ , K<O: and for

\U\=£ K = o .

It may be recalled that in a region on a surface in

which all points are elliptic, the asymptotic curves are

imaginary; and where all points are hyperbolic, the

 

* Lane, Geometry, p. 145 Th. 4.

** Ibid, p. 145 Th. 3.

ea* Ibid, p. 143 Eq. (7-5)~

**%* Ibid, p. 160 En. (2-12)-
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asymptotic curves are real.* For the parabolic points,

The curvilinear differential equation of the asymptotic

curves, equation (11), vanishes since du - O. From these

remarks we might add the following corollary to theorem 3:

Corollary: The asymptotic curves are imaginary for

(u\>‘12|:. , and real for \u\< 1;: .

Theorem 6. The parametric net on the torus is

isothermally orthogonal.

Proof: Necessary and sufficient conditions that a

parametric net be isothermally orthogonal are**

— __ £5.) = o
(18) '- " O : Md‘ (“Q03 6- u.v

From equations (10), F = 0, also it will be observed that

E E )
— = C 4 r '— = °
G a fun tion of u only , hence {in} 6 W 0

Theorem 7. The torus is an isothermic surface.

Proof: By definition an isothermic surface is a

surface on which the lines of curvature form an iso-

thermally orthogonal net.*** Theorem 7 follows immedi-

ately from the statements of theorems 4 and 6.

 

* Lane, Geometry, p.162.

** Ibid., p. 120 Eq. (3.21).

*** Ibid., p. 145 Ex. 6.
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Theorem 8. The parametric net onfa torus is iso—

thermally conjugate.

Proof: Necessary and sufficient conditions that the

parametric net be isothermally conjugate are“

1 H— M «Lo-3. L“ =0
(9) -O ) va

From equations (10) we see readily that M 2'0, and that

L _ h -
since N —a function of u only ’ (9”? W )u-v - o .

Theorem 9. The minimal Curves on the torus can be

found by quadratures.

Proof: The curvilinear differential equation for the

minimal curves on a surface 18*“

EMI +2FMOLU+GM1=O.

By equations (10), the differential equation for the torus

 

becomes

1 l (L 1 2.

(20) com +(\—-5-u.u.) at .0,

from which we obtain

u.

b I

= i a. o O

(21) V k a b-acmu.

Performing the indicated integration we find that

(22) V: i 0.sz i ta..." ”1"": M“

V 5 -CL b<un u. - o.
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It is seen that the minimal curves on the torus are

imaginary, which is true of all real surfaces. It may

also be remarked that minimal curves on a surface are

geodesics.***

If the sum of the principal normal curvatures is

zero, the surface is a minimal surface.**** By equations

(16) we have

 

‘ _\__ .- 2o.o.nu.—b .

(23) Ta" + R; - aflb—mmu)

If Unuu= 53;, then

\ J. _
:fi: + .R —. O

A minimal surface is characterized by the following

equation*****

EN + 2PM + GL = o.

By equations (10), the equation above becomes for the

torus

(24) a(\- OT'D-cmwxggi WW‘|)= O.

 

Lane, gagmetry, p. 141 Eq. (6-15)-

us Ibid,, p. 110 Eq. (2.4).

*** Ibid,, p. 150 Ex. 7.

**a* Eisenhart, Geometry, p. 129; where mean curvature

s**** Lane, Geometgy, p. 163 Eq. (3-3)-
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If G.= o , the torus degenerates to the generating circle

in the osculating plane. If the second factor is set equal

to zero, then Cath=-g%;which is impossible by relations

(4); that is b>C~which would make mu>\ for this factor.

The third factor equated to zero yields

.._b__.

Thus we have the following

Theorem 10. In the neighborhood for those points for

which Cmu=i€3 the torus resembles a minimal sur-

face.

The torus could never be a minimal surface, since the

only surface of revolution not a plane that is a minimal

surface is the catenoid.“

If we take the partial derivatives of the functions

E, F, and G defined in equations (10), we find that

E == F' = E = F; = G; = o ,
\A- U. V

2r

(J) Cy“: 2(\—%muX%-MUL) -

Hence the Christoffel three-index symbols of the second

kind for the first fundamental form**

r“ = ,—_‘-——.(c-Ej + Fla-zen) . P: = 1‘H.(-FEu—EE,+2€FL)
\i H

I \ I

r e fi.(GEv-F6u) . r“ =l—H=.(ee,—FEV),
‘1 \1

 

P‘ = {b.K-FGY*GG.,+ZGFV), ['11
11 11

I .—

If” (E e, + FG-ulerV,

 

* Lane, Geometry, p. 165 Ex. 8.

** Ibld., P.132 Eq. (5.4).
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become

‘ _ i -1‘ _ _ G,“

P“ _ O ‘ Pu = O ’ ‘33 - 2E )

<26) . G

Pii : C) ’ Pi: ='— if' ) r‘:a=: 0 °

Assuming the parameter along a geodesic curve on the

torus to be u, the curvilinear differential equation of

the geodesics is“

,3

o
v" =“P; “(211,: 'P.‘.)v' +1211; "’ P11, )V'l-i- F‘z'lv

which becomes by equations (26)

(27) QCL -_- 3.55:. 9&1: _. ithly.

am 5 out 2E am

In order to find solutions for equation (27$ we shall

use the following substitutions:

Let

95.!

P 3 du- ’

then equation (27) becomes

-3 _g_

~2~° awev =%
let now

~1.

P ='} )

and then we obtain

wt 3 E

 

G-

This last equation has the solution

_ GS+SEC -

’3’ SEG“ ’

where C is an arbitrary constant.

 

Lane, Geometry, p. 147 Eq. (8.4).
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Retracing our substitutions, equation (27) may be

written

(28) A. - i C’ w;

SE 1/6-5 +sec

Theorem 11. The geodesic curves on the torus can

be found by quadratures.

Proof: In view of the above discussion, the geodesic

curves v, which are solutions of equation (28) are

u. (rtobu.

(29) V: t’VSEJI/GS‘1'SEE‘ .

 

 

It has been remarked already (under Theorem 9) that

the minimal curves on a surface are geodesics. Hence

the curves

 

V = .:___£fllh__. -\ 51TCL Ag”.u. )

(22) “ha-Ql' bmu-a’

are solutions of equation (29).

Maps on the Plans

The element of arc length is represented by*

oLs‘= EobUL} + lFoutow + Go‘du’l)

which becomes by equations (10) for the torus

(30) as‘ -—-. eta...“ +(I- %~e~m~)‘ael.

 

* Grove, Gegmetry, p. 69 Eq. (119).
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If we make a transformation 3 a 3(u) and V = v,

wherein

__ ab
(31) M = b-qmu, d“ )

the square of the differential of arc length equation (30)

 

becomes

(32) 45‘ =<\— -°‘-’b- mu)1<fl‘+otfi‘) .

From the transformation equation (31) we obtain

ab _ 55-0." mu.

(33) U = tam'
bt—oj' bonus-Q.

 

 

Finally if we let 3 - y and V = T we may state the

 

following

1 ‘L ~

Theorem 13. The transformation y : -—EJL—-to " b"“-A~*“-

b“_o'1
bWW'Q-

and x = v represents a conformal mapping of the

torus on the xy-plane, wherein the parallels of

latitude map into lines parallel to the x-axis

and the meridians map into lines parallel to the

y-axis.

Proof: A transformation between two surfaces is con-

formal if and only if the minimal curves on the two surfaces

correspond.“

For a plane, the minimal curves are given by the

differential equation

(34) Mt + OLA-(t '-"- O .

The minimal curves for the xy-plane are thus
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(35) x-tvq-

But from the transformation eXpressed in theorem 13, the

minimal curves on the xy-plane are

«Hf-a. ml... u-. ab _,

(36> 7" = * 04—M—W W...
 

Finally comparing expression (36) with equation (22), we

see that by the given transformation the minimal curves on

the torus and the plane are identical.

Also by observing the expression for the transforma-

tion it is readily seen that for u =constant, y = constant;

and for v = constant, x - constant.

  

 

'E o

’1
6

V8 C.<)V\3"v““.t

1 1‘.) 1%

3

p i “i 3

1 I

e

Y

(La- Consul-“t

, F‘33.511

 

* Lane, Geometry, p. 193 Th. 2.
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41

“:11

Z

:31

“ 3

uzf-E
‘b “ “biz-:01.

b‘G- 1(_}_22_¢)

0 fl 1 E’ X.

c, 3

Fig.55b

For some other possible mappings of the torus on the

xy-plane, we recall that the transformation x = x(u,v),

y = y(u,v), between a surface referred to parameters u, v

and the xy—plane is an equiareal map of the surface upon

the xy-plane in case the functions x, y are solutions of

one or the other of the two partial differential equations*

(37) Xqu - xvyu = :t H .

Using this relationship and those of equations (10) we

have for the torus

(38) xw‘iv‘l‘v’ifii “(“tmrl

Let x = v, and y = f(u), and choosfihg the negative

sign before H; then equation (38) becomes

(39) .o.(\- fimw) - 5M)-

Hence

<40) {my = aku- ewe).

 

* Lane, Geometry, p. 203 Th. 2.
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£5

b

represents an equiareal mapping of the torus on

Theorem 15. The transformation x = v, y (1(1L-' Ibgau)

the xy-plane.

Proof: The transformation (40) satisfies the partial

differential equation (38); therefore the transformation

expressed in the theorem represents an equiareal map of

the torus on the xy-plane.

This transformation also maps the meridians into lines

parallel to the y-axis and the parallels of latitude into

lines parallel to the x-axis.

 

 

  
 

    

fl 9

2 'fi

uzT‘l’ ‘

:n’

3 l

I l
o 1 l S

4 ’%b I

2‘ / “I.

//

// //“ g5

/ / 1

O // x 1

’ 0 3gb ¥b

The map on the xy-plane extends from x.= O to x 24Tb

and y = 0 to y = 21rd.

is represented on the plane by the area of the rectangle

Thus the surface area of the torus
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which has for its dimensions 21.. and awe , or Mf‘ab.

Comparing this method of finding the surface area of

the torus with the method of the calculas, the advantage

of the equiareal map just described is seen.

Let the torus be

generated by revolving

the circle

2 6 2

8.U

(X—b)2 + y

about the y-axis.

Then the total

surface S is ex-

pressed

(

(41) 8:: 23V

9

wherein x = b + a cos 9,

zr

S = 2’WJ(b + 3. cos G)a d9

0

therefore

=0

 

 

 

S: 4’lT‘ob.

 

A1

a.

9

(bxfi

Fig} 1

9=2Ar

X.

and ds a d9 .

21

arexb9.+ a sin e] ,

Another equiareal map may be found as follows:

let y g u and x a v§(u),

(42) O.( |_

then equation (38) becomes

W“) = X'v

It should be noticed from equations (10) that Xv is

a function of u only;

x = vf(u), or by equations (10)

(43) x: Qv(\_

xv = f(u)

G.

b

has as a solution

em).
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This map is not as convenient a representation as

the other equiareal map already discussed as seen

 

 

  
 

    

pictorially.

8 fl
0

“2‘ a

fig

3

I

3’ w '1

o X-
o v-1§

‘4 Fig.8a. F‘s-8b

For the entire surface, the map appears as follows:

 

 

 

 
 

 

’rWfi

W l I i

i l l

, i

\ !\ J' ,‘\
l ‘I ‘

j V . 1
K I I l

O 1 l R I
 

q-(b 1TQbU‘3fimq) I
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For this equiareal map the x ranges in value from

zero to Z’ITatb (i- %’-Cm‘1) , and y from zero to 211’. As

a check, the area under the curve

(44) 1': Z’iTCLbKi-G‘? CAI-34x1) i

represents the area of the torus.

2‘1" 117

Q o

._ __9.__ = - “M

A - Jo I’WQ.(\ b £40641)d.~\ 2WQb\_“1 b 140)

therefore

A: 41716.1)

The Normal Congruence

Let us now g

choose a line nor-

mal to the circle

in the normal -’->-

I

plane C. with cofi

6rdinates of a

point on the line  
 

(_)_{_,_Y_,§) and having ’ (Zita) f

direction cosines

A, B, and C. Let

D be the distance C.

from the point

Ff 9. 9

(X,Y,Z) to the

point (22.1.2) .
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Hence we have

(45) _)$=X-\-DA

and similar expressions for i, and 7

The direction cosines of the normal to a curve are

given by the relationships*

J\ -3: = )

(46) A:-T-\_ . 13- H . C

I
;

 

I

wherein

J‘=A1u_%y—A1v3u ’

and J2 and J3 are similar eXpressions using the notation

at the top of page 5.

Combining the relationships eXpressed in equations (3)

with those in equations (45) and (46), with some algebraic

simplification we have as a result

(47) A:((3M‘UW)MKL+(F/u
-(5V)mu)

and similar expressions for B and C by permitting

and (Sea. PM. wwwflrem Haw-‘33.
(340k, X—rp >/"’—,>‘ ’ V—*/0~, M41, M9M3A—bc.

But in the determinant

  

0L (33'

1 MM =\,

>\ #12

each element is equal to its own cofactor.** Hence,

(48) A -.. )(Itbm\1 +-.K QDGKL -

 
* Lane, Geometry, p. 79 Eq. (4.8), and p. 64 Eq. (1.4).

** Eisenhart, Geometry, p. 13 Eq. (40).
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Therefore we have combining equations (48)

with equations (45) and (3),

But for D any constant value, the surfaces for which the

cobrdinates of a movable point are (y,y,;) and (X,Y,Z)

reSpectively are related by

x = x - At

where t is a constant. We may recall that the parametric

equations of a surface S parallel to a surface S can be

written in the form §I=’x — At, y = y - Bt, E : z - Ct

in which t is the constant algebraic distance from a point

P(x,y,z) of S to the correSponding point §(§,y,§) of S and

A, B, C are the direction cosines of the normal of S at P.*

From equations (49), the surface for which a point

P(§,X,;) is represented is seen also to be a torus since

it is of the form of equations (6). We may now state the

following

Theorem 16. A surface parallel to a torus is also

a torus.

An interesting geometrical interpretation for the

principal radii of normal curvature may be develOped.

Let us construct a line in the normal plane perpen-

dicular to the osculating plane at a distance b from

 

* Lane, Geometry, p. 208 Th. 1.
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(x,y,z), that is the polar line. Also for any angle u,

construct the normal to the surface of the torus and ex—

tend it to meet the polar line. The normal line also

passes through the center of the local cobrdinate system,

that is through the point (x,y,z). To show this we make

use of equations (49); comparing the definition of the

torus, equations (6) we see that

X = x + aA ,

or

X-XrlLl—L E...

A B ' —
+8“ pi

l
l

 

(

which is the equation of a line with direction cosines

A, B, and 0 through the point (x,y,z). Call the line seg-

ment on the polar line intercepted by the principal normal

and the normal line T; and the line segment on the normal

line intercepted by the torus and the polar line Q.

S

 
 

 

Q

0.

Wm.)

rr .. 3 3

b

Fig.10 
’l/
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From the figure, T is given by

T = b tan u .

Squaring, and making use of trigonometric relationships

 

 

we have

T2.: betan2u = b2(seceu — l)

= ‘02 —b2

coseu

(50) 2313-3005311 5,2 ::h2 .

(cos... +

Also by the Pythagorean TYmeorm we see the folloadng re-

lationship:

)2_b2 .
(51) T =(C-ii—a

Equating equations (50) and (51)

 -— Wfi.<.bG‘cu‘L” -+ 0-)2 = (CQi- o31-

we see that

_ E>-<Lcu:u.

(52) Q - Gnu.

 

Now comparing equation (52) and our figure with equations

(16) we have '

Q=Rz and a=—R‘.

The last relationship with our construction gives us

a means of constructing the principal radii of normal cur-

vature for all u except ]u\= 5-": , at which points R1 is

undefined.
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F'i3.|l 
y\/

Loxodromes on the Torus

CorreSponding to the loxodromes on the sphere, we

may ask the question what are the equations of the curves

which cross the meridians of the torus at a constant angle?

If we let 9 be the constant angle, then“

)

\

( ) Cst9= EE;QGE\fiEd-dun-+[:Kduwiu}-rous,du) +<;au:au3]

53

M93-dsts‘KWWI-M\M) )
 

wherein ds and ds are elements of arc length eXpressed

as preceding equation (30).

 

Lane, Geometry, p. 116 Eq. (3.4).
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If the curve C‘ is the u-curve at the point P, then

vk= constant or dv‘z O; that is v‘corresponds to the

meridians. Using this restriction, the angle 9 may also

be defined by the equation“

' Hdvu

<54) “ahead—Hr.”
 

Using the relations of equations (10), equation (54)

becomes for the torus

 

(55) WSW?- M,

which has for a solution

_ - b‘-“
(56) vMB Ww' “M“ +C.

bCJJ'OKA—CL

 

 

These curves are of the form av - ¢ wherein a is a

constant and ¢ an angle which varies, and thus Spiral about

the torus.

The equation of the loxodromes (56) may be written

in the form

o.b _ _

(57) VMO: m‘ hm“ o. *C.
1

b ‘0' b-o.¢mau

 

 

It is seen that there is no restriction on the angle

b‘unxa-Q.

b-—CLCAQLL

other than a>-1)which is certainly true for all a and b

Qno”‘ 

by relations (4).

 

Eisenhart, Geometry, p. 76 Eq. (24).
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