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A

Vichit Sirikul
ABSTRACT

This thesis is a study of a subgraph of a connected
graph known as a cut-set. The cut-set is defined here on
the basis of a segregation of the vertices of a graph into
two, mutually exclusive, non-empty sets. The elements of
the graph, each with a vertex in each vertex set, 1s called
the cut-set. The vertex-segregation definition turns out
to be more useful than the formerly employed one of defin-
ing a cut-set as the set of elements which, on removal,
separate a graph into two parts.

A cut-set matrix is formulated--cne row for each
element in a cut-set. A fundamental cut-set matrix, é?;-,
is defined based on the elements of a tree. The properties
of this matrix, Aé%—, are deduced in terms of reank, cri-
teria for forming, relation to incidence and to circuit
matrices, snd coverage of a graph.

Some interrelations of v-functions and i-functions are

formulated in terms of the fundamental cut-set matrix,z{£L
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GeNERAL AIMS

The purpose of this thesis is to present: (1) Some
characteristics of the cut-set sub-graph of linear graphs;
(2) the properties of the cut-set matrix; and (3) the
relations between the cut-set matrix and the vertex and
circult matrices of the graph. This work has been carried
on from the paper On Topology and Network Theory by Myril
B. Reed and Sundaram Seshu, Proceedings of the University
of Illinols Symposium on Circult Analysis, May 1955. This
thesls 1s based on the assumptions from that work, and in
some parts of this thesls, 1t 1s necessary to abstract
from the Reed-Seshu paper some properties of graphs, vertex
and circult matrices in order to clerify the relation be-

tween them and the cut-set matrix.
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INTRODUCTION

A study ef electrical networks in genersl iz based en
the sssumptiens that the network eonsists of a finite set of
network elements connected in the form ef a graph. The net-
woerk elements esn be classified sceording te their electri-
eal eharscteristics as resistive, 1ndu;t1vo, ¢apacitive and
mutually inductive elements. Vscuum tube, transistor and
ether electriec devices are alsoe econsidered netwerk elements.
Measuring devices sre used te observe the electrical phene-
mena in twe ways of measurement. A series er surrent
measurement 1s used te ebserve the current funetions of the
elements by placing the meter in series with the element.
The parallel er veltage measurement 1s used te ebserve the
veltage funetiens of the elements by plaeing the meter 1in
parsllel with the element.

A Tinite set of interconnested network elements, tege-
ther with their erientatiens, ferms the graph ef the netwerk.
The measurements not enly vary with the types eof elements,
but alse with the geemetrie pattern er the graph fermed by
these elements. The mathematieal relatiens of the funetlien-
al representatiens ef series and parallel measurements fer
a netwerk e¢an be put inte equations as:

! Qu&t) =0

l. Vertex equation

1 Reed and Seshu, On Topolegy and Network Theory, Preceed-
ings of the University of Illinols Symposium en Cireuit
Anslysis, May 1955, pp. 3, 21. '



where (L. 1s the vertex matrix ef the ¢erresponding graph,
&(4-.) is the matrix ef current funetioens eof the ele-
ments of the grsph.
2. Clreuit oquationl B. ?/e ) =o
where B, 1is the eireuit matrix ef the graph,
Ue®) 18 the matrix ef the veltage funetions ef the
elements of the graph.

The vertex and eircuit equations sre known as Kireh-
heff's current and veltage equations. The methed ef
ebtaining solutiens for the network preblem is te ferm the
graph equatiens and solve by mathematleal precedures fer the
unknewn varisbles from the given infermatien. The study ef
esertain tepelegicel echsracteristics of the graph sueh as the
vertex matrix, the e¢ircuit matrix and the eut-set matrix be-
eomes an important part ef this metheod.

The tepeolegleal eharacteristics, derivable frem the
preperties of the vertex and eircult matrieces of the graph
are presented by Reed and Suhu.2 The eut-set subgraph,
firast presented by Futor,3 is examined in this thesis with
the intentieon ef establishing hew effective as a basis eof

netwerk study the sut-set matrix msy be.

1 Reed snd Seshu, op. eit., p. 22.

2 Ipid.

S Fester, R. M., Geometric Clrcuits of Electrie Netwerks,
BSTJ Ne. B-653.



I. THE CUT-SET

1, Definition of the cut-set:

First place the vertices of a graph into two arbi-
trary, mutually exclusive, non-empty sets A and B. A cut-
set of the graph 1i1s the set of elements with one vertex in

vertex-set A and the other vertex 1n vertex-set B.

Suppose a graph G has v vertices 1, 2, 3,.¢....V, and
these vertices are placed in two arbitrary mutually exclu-
sive sets: as vertices 1, 2,......k, iIn set A and the re-
maining vertices kel, ke2,.....v-1, v, in set B. The set
of elements e, ey, ®zyecc.e0p, (see Fig. 1) which have one
vertex in set A and the other vertex iIn set B is a cut-set
of the graph, and the elements ©15 €2, ©3,ec00008, aTO the
cut-set elements. The elements with both vertices in only
one set such as e 4, ®nelse -+, 8re not cut-set elements

of this cut-set, but they may be in other cut-sets depending
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en hew the vertices are plesced in the twe srbitrary sets, A
sand B. The number of ways ef ferming twe mutually exelusive,
nen-empty sets of a graph increases very greatly with the
number ef vertiees, v. Therefore, the number ef cut-sets

inersases likewise.

2. The preperties of s sut-set:

Frem consideration ef the nature ef a graph, the fel-

lewing preperties of eut-sets sppear evident:

a. A eut-set of & graph separates the vertices of the
graph inte twe mutually exelusive sets. This pre-
perty fellows frem the definitien.

be A ecut-set element is a path Jelning the twe separ-
ate sets A and B ef vertiees of the graph.

¢. A esut-set eentains at least one element.

d. A connostoi graph eentains at least ene cut-set.

. Neo preper sub-set of a cut-set is a ecut-set.

f. The elements incldent te any vertex 1is a eut-set.

g€+ Every nen-cireuit element 1is a cut-set.

h. 4 circuit.olomoht is not a eut-set.

1. A set of elements whieh separates the grsph inte
twe parts by remeval of that set ef elements is a

cut-set,



3¢ Cut-set erientatioen.

Just as it is necessary te assign sn erienting mark
te elements, paths, and eircuits of a graph, se it is neces-
sary te sssign an erilenting pattern te a cut-set. Either

of the arrews ef Fig. 2 serve this purpese.

4—2

Fig. 2. Cut-set erientatien

Unless etherwise specified, because of 1ts arbitrari-
ness, the ecut-set erienting arrew alignment 1is speecified,
hereafter in this discussien, as poeinting frem the A te
the B set of vertices in the sense ef Fig. 3.

Fig. 3. General cut-set erientation



4. The ecut-set ef the tree.

The fellewing brief listing of the properties ef trees

serves s 8 basls from which te study eut-sets and the

matrices associated with them.

A tree 1s by definitien a connected subgraph of a een-

Reeted graph containing all the vertices of the graph and

eontaining ne eircuit.

1

Seme basic preperties eof trees are:

4-a,
4"b0

4". .

4"‘do

4-9,

4“f .

4"‘0

Every eonnected graph hes at least ene troo.2
An element of a tree is named a branech,

An element of the complement ef a tree is
nsmed & cherd.

Every tree has ene more vertex than brnnohu.3
A sonnected graph of e elements and v vertices
ecentains v-1 branches and e-vtl eherds.4
There exists ene and enly ene path in a tree
between any twe vertices of a tree.4

Eaeh branch specifies a eut-set.®

|

Cerresponds te the "eemplete tree" by Cauer, Theore der

linearen Weshselstremsehaltungen, Aksdemiseche Verlagsgesel-
sehaft, Leipzig, 1941.

Keenig, Theere der endlichen und unendlichen graphen,

Chelsea Publishing Cempany, New Yerk, 1950, p. 52.

Ibid., p. 5S1.
Reed and Seshu, ep, eit., p. 6.

Unpublished elsss notes by Myril B. Reed.



Te illustrate the definitien, ecensider Fig. 4. The
tree is shewn by the selid elements and the ehords by the
dashed elements. Cerrespending te braneh, bi’ the eherds

chl, ehp, ehgz, ch4, chs, with this braneh ferm ene of the

tree sut-sets.

Fig. 4. Shews a sut-set ¢y of the tree.

Because of the fundamental shsracter fer this thesis
of the statement that eaeh braneh speeifies a sut-set, the
fellewing brief review witheut preef ef the idess invelved
is given. 1In the first place: The vertices eof a connootod
graph may be plassed in twe mutuslly execlusive, nen-empty
sets A and B serresponding te eaeh branch by:

(a) Plaeing in vertex set A all vertises whieh have a
path-in-tree te ene of the vertices eof the braneh,
nene eof these paths-in-tree are te eontain the
braneh;

(b) Plasing in vertex set B all ether vertices eof the

tree.



As a consequence of this lest given property of a
branch: each branch deflines a cut-set. It 1s specified
here that the orienting mark of a branch specifies the
orlentation of the cut-set, i.e., the orienting arrow for
the cut-set (Fig. 3) 1is aligned with the orienting arrow
of the defining branch.

Some properties of the cut-sets of a tres

Some properties of the cut-sets of a tree which are
useful for the following developments are:
l. A cut-set of a tres contains one and only one
tree branch, all other elements of the cut-set
as a consequence ere chords.1
2. A tree contains v-1 branches and so specifies
v-1l cut-sets.

3. A branch of a tree is a cut-set of a graph which
is the tree 1itself.

1 Unpublished class notes of Myril B. Reed, Michigan State
University.



II. THE CUT-SET MATRIX

l. The cut-set metrix of the graph.

A matrix ean be formed, corresponding to each cut-set
or ecollectien of cut-sets, sas fellows:

Definitien: The cut-set matrix rea,—:[Cij] is the
restangular array centalning e rews one cerresponding te
eash sut-set ef the graph sand e c¢elumns cerresponding te e
elements of the graph. The entries o¢f the matrix sre defined
by:

I 1 If the element °, is in the cut-set ¢, and
the erientatien eof the element seineides
with that ef the cut-set.

'1J== -1 If the element o is in the eut-set ¢; and
the erientation ef the element and ef the
cut-sst are epposite.

€1 =0 If the element e, is net in the eut-set ¢,.

The shape of the eut-set matrix ef the graph will be

n x e, where n is the number ef cut-sets:

Columns = element ef graph

rews = 4all pessible cut-
'ea. = sets of the graph
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2. The tree cut-set matrix.

A tree cut-set matrix,AS%-, mey be formed by consider-
ing only the v-1 rows of& which correspond to the tree.

Theorem 1l: The tree cut-set matrix,‘l?r, of the graph
containing v vertices has the rank of v-1l.

Proof: ©Since there are v-1 rows in any matrix, AE},
corresponding to a v-vertex e-element connected graph, &y is
(v-1) x e. Hence, the rank ofAE;'matrix can not exceed v-1l.

Order the rows and columns of the tree cut-set matrix
ALy such that the first v-1 columns (right to left) and the
rows (top to bottom) correspond to the same ordering of the
defining branches. The cut-set orientation 1s the same as
the branch orientation which defines the cut-set. The first
square sub-matrix of ,e,- of v-1 rows and columns has the
diegonal entries, cq;, CopseeseeCyy equal to ¢1 and all
other entries zero. The leading (v-1)x(v-1) sub-matrix of
A7 matrix can thus always be made the square unit matrix of

rank v-1, 1.e.,

bggpches chords
bl b2 b3 o-ooobv_l l .1 L]] cece 8 4
cl rl 0 0 oo 000 0 ' X X oo 00 x
{
cz 0 1 0 ® o0 0 0 o . o0 00
'ef- 03 0 0 l es oo 0 : eeee X
L) e . . ee s e . ] . 0 eeoe o
'
cv..l L.O 0 0 ee e o0 1 X X oo e x‘
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Therefore, the rank of tree cut-set matrix will not be less

than v-1,.
Then, the rank of the tree cut-set matrix £ 1s v-1.

Corollery 1:1: Removal of any one of the tree cut-

sets reduces the rank cf the matrix,,4f}, by one.

Proof: This can be easily seen by removing any one
tree cut-set, the number of rows of @, will be reduced from
v-1 to v-2, and the rank of the matrix will not exceed and
will not be less than v-2. Hence, the rank of the €,

matrix 1s reduced by one.

3. Relation between AQL-and AZu matrices.
1

The circult matrix associated with each graph con-
tains one row corresponding to each possible circuit and one
column corresponding to sach element of the graph. The k1
entry of the circult metrix is 1 if element oc 1s in the
circult c, with the same orientation, -1 if the element oc(
is in the circuit ¢, With the opposite orientation, and 0 ir

the element ocg 1s not in the circult c,.

Lemma 1.2: An even number and only an even number of
elements of any cut-set are contained in any circult. See

Flg. 5. These elements occur in palirs.

1
Reed and Seshu, op. cit., p. 11.



Ger Gsa

Fig. 5. Circuilt formed by cut-set elements

Proof: Consider the forming of the sequential label-
ing which defines a circuit.1 Any vertex of the circuit may
be taken as the starting point of the labeling. Consider a
vertex in the A set. Incorporating any one cut-set element
into the circuit introduces a vertex of the B set into the
circuit. A second cut-set element must then be contained in
the circuilt in order that it be possible to complete the
defining labeling, 1.e., include another, or the starting
vertex, of the A set in the circuit. The foregoing pattern
is general. The cut-set elements contained in circuits
occur in pairs. Hence, the lemma.

A fundamental relation exists between the cut-zet
matrix, &, , and the circuit matrix, G. , in the form indi-
cated by the following theorem.

Logg§ 2,2: If the columns of Ku end Ga are arrenged
corresponding to the same element ordering snd if X is any

column of g&, then a, X=o

1 Reed and Seshu, op. cit., p. 5.
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Proof: For a connected graph G, write the circuit
matrix Bq_ and the cut-set matrix Zawith columns correspond-
ing to the same order of elements of the graph. Consider an
arbitrary column of BZ. » X, corresponding to the 1i-circuit.
The J row of 6a corresponds to the element o< also the rth

row of ©€ecorresponds to rth

cut-set of the graph G.
(1) If the element o 1s not in the cut-set c. the
entry rj = 0, then
(a) If the element o< is also not in the
i-circuit, the entry X4 = 0, therefore,
rj +x4 =0x0 = 0
(b) If the element <y is in the i-circuilt, the
entry x; will be non-zero and equal to xl,
80 Cpy ¢ x3 =0 x (1) = 0
(2) If the element < is in the cut-set c,, the entry
Cpy of £ will be non-zero and equal to #1, then
(a) If the element <} is not in the i-circuit,
the entry x; 1is zero, and
Cry e Xym= (1) X0 = O
(b) If the element <j is in the 1i-circuit, the
entry x4y will be non-zero and equal to zl.
Of the preceding four conditions, l-a, 1-b, 2-a, and
2-b, only 2-b introduces other than zero into the product.
According to Lemma 1.2, the elements of a graph common

to a circuit and a cut-set occur in pairs. It is sufficient
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therefore to consider all possible cases for one palr of

elements. The following tabulation exhibits the four

possible element, cut-set and circuit combinations:

g k k
r cut-set: € * * £

J eclircuit:
(1) (+1)+(£1)(-1)=0 (21)(+1)}+ (+1)(¢1)=0

e e
K ®
1 k _{__Tk
r cut-get: A 1l ¥ F
j circult: -1 -1 -1 +1

GL (D) +(2D)(-1)=0 (F1)(-1)+(s1)E1)=0

The theorem, therefore, follows.
Theorem 2: If the columns of aand & are arranged

corresponding to the same element order and @£ and 44 are

the transposes of 4 and &, then

& fli =o
8o €5 =0
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Proof Since ,&X-o from Lemma 1.2 where X 1s any

column of BZ, at once

»éa. IgL =0
Pd
then [ @, Ba] = BaBa=0
Corollary 1.2: There exists a linear relaticnship
among the columns of the matrix B«.which corresponds to the
elements of the cut-set.

Proof: Since E‘,Z/so , for y any column Of/ea., the

columns of 84, are linearly related.

4. Rank of the cut-set matrix /&of connected graph.

The rank of the cut-set matrix e of ths graph can be
found as follows:

Lemma 1.3: The rank of the cut-set matrix &, of a
connected graph 1s at least v-1.

Prpof: BEvery connected graph has a tree and the cut-
set of this tree is a sub-set of all cut-sets of the graph.
Therefore, the tree cut-set matrix & is a sub-metrix of the
cut-set matrix &. Since er has the rank of v-1 by
Theorem 1, the rank of the cut-set matrixééa.m not less
than v-1l.

Lemma 2.3: The rank of the cut-set matrix “aof a

connected graph can not exceed v-l.
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Proof: Let ry represent the rank of Ba, r, represent
the rank ofzéﬁi, and e the number of columns of Ba and rows
’d -
of £&,4. If, as shown by Theorem 2, B Li=o then!

-~
rbﬁr —

c
or Fre = o - Ty
Bu‘l:,2 rp = e - v +1
hence r. = v-1

and so the Lemma.

Theorem 3: The rank of the cut-set matrix 4% of a
connected graph is v-1l.

Proof: This theorem follows from Lemma 1.3 and Lemma
2.3 above. For the rank of 4&; cannot exceed nor be less
than v-1, hence it is v-1.

Theorem 4: Every set of v-1 cut-sets such that the
matrix € of these cut-sets has a rank of v-1 includes every
element of the graph.

Proof: Let the v-1 rows of £ be brought to the first
(v-1) row position of &€, end rearrange the columns so as to
make the leading square sub-matrix of order v-1 non-singular.
This is certainly possibls because &€ has a rank of v-1.

It is sufficient to show that a column ofiza in which

the entries of the first v-1 rows are zeros will not exist

1 Hohn, Franz E., Linear Transformations and Matrices,
University of Illinois, class notes.

2 Reed and Seshu, op. cit., p. 14.
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unless all entries of this column are zeros. This proposi-
tion may be proved by contradiction. Assume that thefe
exists a kP column of ¢ such that the entries of this
column in the first v-1 rows are zeros but all other entries
of this column ere not zero. The k' column will not be one
of the first v-1 columns since the leading v-1 square matrix
is non-singular. The k*P column may be interchanged with
the v'P column. Now, there 1s a non-zero entry of this

th row where r is grester than v-l. The rth

th

column in the r
may be interchanged with v row. Then, the leading square
sub-metrix of & of order v becomes non-singular. Hence,
4 has a rank of at least v which contradicts theorem 3
above that ®g has a rank v-1. |
Therefore, a non-zero column of ¥ with zero entries
in the first v-1 rows will not exist unless all entries of
this column are zeros. Hence, every cut-set element appears

in the first v-1 rows of ®& which is the proposition of the

theorem.
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S5, Criterla for choosing v-1 cut-sets to establish a cut-
set matrix of renk v-l,

The number of cut-sets for any graph may be very large
and in all but the simplest graphs the cut-set pattern lis
complex. The set of cut-sets, from which €, a matrix of v-1
rows and of rank v-1, may be established cen be specified by

any one of the following criteria:

Criterion 1: Form the tree cut-sets according to
section I, paragraph 4. The tree cut-set matrix & of the
graph has a rank of v-1 by theorem 1 eand the cut-set matrix

€r of rank v-1 covers ell elements of the graph by theorem 4.

Example 1: A connected graph G contains 5 vertices
Vi, Vg, V3, V4, Vg and 9 elements ej, 85y 835 04, ©5, 85, O,
eg, and eg. Choose as a tree the v-1 =4 elements, e;, ey,

o,, and o4 shown in Fig. 6.

Fig. 6. Four tree cut-sets of graph G.
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The cut-set: c; contains branch e; and chords eg, eg
¢o contains branch eg and chords es, eg, eg, ©g
¢z contalns branch e3 and chords eg, €7, eg, 6g
¢4 contains branch e4 and chords eq, g
By choosing the cut-set orientation to coincide with
that of the defining branch and placing the columns corres-
ponding to the branches in the leading positions, the cut-set
matrix ©rof the graph of Fig. 6 becomes

branches chords

—

ral___em%eseqeaeg
[}

c; |1 o o oit1 o o 0 1
]

cc o 1 o o {1 1 o 1 1
e = '

ez o o 1 o0 :0 1 1 1 1
[}

¢y |06 o o 1 to o 1 1 o0
'

The cut-get matrix can be partitioned corresponding to the
branches (€rg) and the chords (-®r.,2), 1.e.,
4%’L4%”4%z]=£uf%zj
Since 2 is unit matrix of rank v-1=4, the rank of @5 is
v-1l= 4 and covers all elements of the graph by theorem &.
By ordering the entries in-®, as in this example, a
(v=1l) x (v-1) unit matrix can always be located in the

leading position. Hence, the rank of r 1is v-1.

Criterion 2: Choose a tree of the graph and order

the cut-sets such that the first cut-set 1s a tree cut-set.
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Each succeeding cut-set must include one new branch and
some or all of the chords and may include some or all of
branches and chords in the preceding cut-sets. The cut-sef
orientation mey be made to coincide with that of the new
branch.

The cut-set metrix € formed by this criterion has a
rank of v-1 and fits the condition specified. This can be
shown by rearranging the columns of the cut-set matrix e
s0 that the lth column corresponds to the new branch in-
cluded in ith cut-set, the leading square matrix of order
v-1l 1s triangular with +l's on the maln dlagonasl. Hence,
the @ matrix has a rank of v-1 and will include all elements
of the graph.

Example 2. Consider the connected greph G of Fig. 6
with 5 vertices and 9 elements. Choose a tree with v-1=4
branches as e), ey, 63 and 64, the remaining elements eg,
%s, 89, ©g and eg are the chords of the graph G. Form the
cut-set ¢y, cg, cz and c4 such that:

¢y 1s a tree cut-set which contains only one branch eg

and chords eg, eg; the ¢y orlentation is made to coln-

clde with that of ej;

Co is a succeeding cut-set which contﬁins a new branch

ez and includes branch e; and chords eg, eg, the orien-

tation of c¢p 1s made to coincide with that of eg;
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Cx contalns a new branch ez, includes branch °; and
chords eg, egs ©7 and eg, the cz orientation is made
to colncide with that of ez (element eg 1s not in this
cut-set);

¢4 contalns a new branch 04> includes branch ez, and
chords 8gs ©g> the ey orientation 1s made to coincide

with that of 04

Fig. 7. Showas the cut-set pattern formed by
criterion 2.

The cut-set pattern by this criteria 1s shown in Fig. 17
and the cut-set matrix<€ of the graph is:

branches chords
A — A —
01 -] 3 .4 95 06 07 08 39
¢y 1 0 0 0 : 1 0 0 0 1
- cp -1 1 0o ;0 1 O0 1 ©
)
c3 -1 0 1 0 :-1 1 1 1 0
Cq 0 0 -1 1 0 1 0 0 -1

The renk of this cut-set matrix & is v-1 and this cut-
set matrix & covers all elements of the graph.
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Criterion 3: Form the cut-sets according to the de-
finition in section I, paragraph 1, by placing one and only
one vertex in set A and the other v-1 vertices of the graph
in set B. There will be v cut-sets for the graph of v ver-
tices formed by this criteria. Any set of v-1 of these
cut-sets will form the cut-set matrix, €,, of rank v-1.

Proof: Define the cut-set orientatlion as from set A
to set B. The elements of any one of these cut-sets are
the element incident to that vertex. The cith row of the
cut-set matrix @, which corresponds to vertex vy 1s the
same as the 1th row which corresponds to the v4 vertex of
the incidence matrix Qe. Therefore, the cut-set matrix &,
formed by this criteria is the same as the vertex matrix Qg
of the same graph. Since vertex matrix Clahas a rank of
v-l1 and includes all the elements of the graph, the cut-
set matrix &y of the graph will have a rank of v-1 and
covers all the elements of the graph. The cut-set matrix
formed by this criteria may be named as "Vertex cut-set
matrix @y of the graph.

Corollary: Any incldence matrix,(za, is a sub-matrix
of the cut-set matrix @4.

Proof: From the mamner of constructing €y, &y= Aas

where a. is the incidence matrix of the graph.

1 Reed and Seshu, op. cit., p. 8.
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BExemple 3. Consider the same connected graph G as in
Example 1 and 2 as reproduced in FPig. 8. The vertex cut-
sets ¢4, €p, ©3, ¢4 and cg are formed corresponding to ver-
tices Vi, Vg, V3, V4 and vg of the graph and the cut-set
orientation coincides with the elements oriented away from

Vis Vg» V3, V4 and Vg respectively. The vertex cut-set

pattern is shown in Fig. 8.

Fig. 8. Vertex cut-sets.

The vertex cut-set matrix £, is:

all elements of graph

—A—
_fol oz oz o, o o5 e, eg ?9_
e1="1 1 o o o 1 ©0 o o 1
Cpm Vs -1 1 0o o0 o0 1 o0 1 o
&= C3="3 o -1 1 o0 -1 0 1 0
Cam Vg4 0 0 -1 1 o -1 0 o -1
Cp =Vp |0 0 o -1 0 o -1 -1 0

Any vertex cut-set matrix of v-1 rows (4 rows) will be

of the rank v-l=4 and includes all elements of the graph.
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Criterion 4: Form the cut-set in such an order that

the first cut-set 1s a vertex cut-set of the graph. Each
succeeding cut-set 1is formed by taking a new vertex and

may include some or all vertices used in forming the pre-
ceding cut-sets. The cut-set orlentation may be made to
coincide with that of the element directed away from the new
vertexe.

Proof: Arrange the leading columns of the cut-set
matrixléz.formed by this criteria, in correspondence with a
"new® element introduced by each succeeding cut-set. The
leading square matrix of order v-1 is triengular with +l1's
on the mein daigonal. Hence, the cut-get matrix <§% has a
rank of v-1 and includes all elements of the graph.

Example 4. For the connected graph of Fig. 9, the
cut-set matrix 45% may be formed according to criterion 4
by taking the first cut-set c, as a vertex cut-set corres~
ponding to vertex vl and oriented away from vy with element
e, corresponding to the 18% column. Form ¢, at vertex vy
with orlentation away from vp, make the column corresponding
to element ey the ehd column. Form ¢ from v, and vy.
Orient c; away from Vz=Vg and mske column 3 correspond to
element ez. Form the cut-set ¢, from v, and v, oriented
away from v4-vz. Locate the column corresponding to element
4th

e, 88 the column. The cut-set pattern 1s shown in Fig. 9.
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Pig. 9. Cut-sets formed by criterion 4.

The cut-set matrix € 1is:

.1 og 03 04 .2 05 06 01 '9

—

e 1 0o o o0 ©0 1 o o 1
& " -1 1 o o 1 o0 1 o o
eq -1 1 1 o0 o0 -1 1 1 o

Cq | © 0 0 1 -1 -1 -1 1 -1
This cut-set matrix &, has & rank of v-1 and includes all
elements of the graph.

Theorem §: Let the matrix 42 be cut-set matrix of
rank v-1. Then a square sub-matrix of order v-1 of L2 1is
non-singular if and only if the columns of this sub-matrix
correspond to a set of branches.

Proof: (1) Consider the columns of a sub-matrix of €
which correspond to the brsnches of some tree T. Then

there exists a set of trse cut-sets for this tree.
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Let these cut~sets be arranged so that:
161-:' [_u ern.J
Let the columns of £ be arranged in the same order a&s
those of ¢2,, then
£ - [,43" /{?az:]
where the columns of.{f;correspond to the branches.

Now the rows of {2, are a basis for the set of all
cut-sets of the tree (T-cut-set) and so ere the rows of 2
(rank v-1).

Hence, there exists a non-singular transformation
matrix & so that: A&, =€
from which ‘OL Z//@r/:._] = [_,e,, ,@,zJ
so that (0=_¢€, 1s non-singular. Hence, the sub-matrix of e
corresponding to a tree 1s non-singular.

(2) If the sub-matrix _&2,does not correspond to the
v-1l branches of some tree, at least one column other than
those of,ézvcorresponds to a branch. There 1s some row
of . then with v-1 zero entries but not all zero entries.
Plece this row in the vth position with the v-1 zeros in the

th column,

first v-1 columns and eny non-zero entry in the v
Then 48 has a rank of v which contradlcts the known pro-
perty of renk v-1 of &, . Hence, if £, 1s non-singular,

it corresponds to a tree.
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Corollary 1.8: If A2, 1s the matrix of the tree cut-
sets for any tree of a connected graph G arranged so that
& = [Ulri]
and if ¢ 18 the matrix of rank v-1 of any set of v-1
tree cut-sets of graph G with columns arranged in the same
order as &, , then
L = L, CFr
-
and Lr =8, &
where /e-=‘/@,,£,3,] end , 1s square.
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III. CUT-SET MATRIX USE IN NET-WORK THEORY

1. Relation between £y and Ac matrices.

Theorem 8: Let .y represent the tree cut-set matrix

and B. the c-circuit matrix for any one tree of connected
graph G. Let ,er and &, be arranged so that they are par-
titioned corresponding to chords and branches of the tree as

/Car = [;dgfd er.]

C hords tree

gc = [7(0. Btn.]
Chords tree
where 2, and s ere v-1 and e-v+1l order unit matrices

and

respectively. Then, we have

Af%ﬂ = - ﬁi;naf

B.ra= -7,
Lr = [; a1 7"7‘]
& =[ u. -27)

Proof: The relations

£.Bs =0 TN ¢ D!
8. £7=0 erereneneeeea(2)

are valid by Theorem 2 since . and Be are sub-matrices

of /ea and Ba. .

Therefore

and -

Ue
& 8= Lew w] [ ;] -0



from which
Ly Us+ Ur Bep = O
7
Since U= U
and so Lry = —-8a,a

By teking the transpose of both sides or by substituting O

and Bc. in equation (2) there results
Beia = — L%y

The substitution of this relation into /@, and B, produces
7’

,@r = [" 6(!:'). Zl-r]

o = [ Ue ’/eru]

2. Relation between 4% and (e matrices.

N\
and

Theorem 1: The vertex matrix, (Ja, of a connected

graph G can always be arranged end partitioned so that

ds di
da = Aq Qaa

where CZhlis of order (v-1) x (v-1) and is non-singular.
There exists a set of tree cut-sets in G for which the

matrix of tree cut-sets 1s glven by

ezt ='[z@ru 217'] = [d,: A, Z‘r]

where leis the unit (or identity) matrix of order v-1l.
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Proof: Since//, has a rank v-1 the columns and rows
of 44 can be permuted so that the non-singular sub-matrix
of order v-1 appears st the upper right hand corner so that

Qu “,a
Aa = Zay éca]
and szof order v-1 is non-singular. There exists a set

of c-circults for which the c-circuit matrix,* A. , is

iven b 7 4
given by £c=£a¢ ﬁc,z]r. [7¢¢ 777 P
where 6&3'-"- - dl’/ a:’z/

Since, Theorem &§ gives

87// = - ;/n.

then ,er” = d’,}{ 7y
and '@7 -'-'[’er// ZZT]"‘[QZQ//QTJ
Corollary 1.7: A = (2o Cr

-/
and L = 22 Q
Proof: Since ﬂ,}( is of order v-1 and non-singular,

7: -
from Theorem Zsa *Cfr = d,alaii &, ]

= [dﬂ d/a ] - d_
Therefore, L,a Lf = &

and e, = aia

1
Reed and Seshu, op. cit., p. 18.
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From the result given by this last corollary:
2y and the incidence matrix of the tree, &Z,2—
@ and the incldence matrix of the tree, &2,5~—» @,

Example 5. Consider the graph of Fig. 10,

Pig. 10.

The incidence matrix 1is:

a b ¢c d e T
1 00 110
A= 2 -1 1 0 0 01
0-1 1 0-10

-

i

)
-

]
- O
o+~ o
[Fo+rllco il —au
t-'|o-l
O O W+

]

-

]
o+ ~
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then e, = ,‘_gﬂ, z/,.]
The vertex matrix QL can also be determined from the

tree cut-set matrix, ,ér, and the tree incidence matrix in

accordance with (2 = 2,2 .

de Current-function snd voltage-function relationships.

Two of the fundamental postulates of electrical net-
work theory take the mathematical form of vertex and circult
oquation.1 The vertex equations are

dJ@)=0 cesecesesncese(h)
where the matrix $Wrepresents the functions i1(t) assocliated
with the network elements, and the circult equations are

BU%d)=0o P ¢ |
where the matrix)e¢é)represents the functions v(t) associated
with the network elements,

A variety of 1lnterrelations among the current func-
tions, 1(t), and among the voltage functions, v(t), can be

expressed in terms of @y and its sub-matrices.

Theorem 0: If @T 1s the tree cut-set matrix of the
graph G and &wis the matrix of current functions, 1(t),

associated each element of the graph, then

,@r C93 ({) = O

1 Reed and Seshu, op. cit., pp. 21, 22.
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Proof: Let ,ér be a tree cut-set matrix of graph G,
and &""tho matrix of current functions, i(t), associated
with each element of the graph.

Since ,€r=ﬂ & by corollary 1.7,

then /ef ‘} ) _ d d Je L)

la.. EQ Je “J]

But by the fundamental postulate
d e ¥ =0

Therefore: @&, X P-4 »0= O

Theorem 9: If &7 1s a tree cut-set matrix, = %)
and 2/; (¥ are the matrices of voltage functions associated

with all elements of a graph and the branches of the tree,
then %) —
’éf ) [eclz &:a * 2(7-] y(()

Proof: Let ,@, be a tree cut-set matrix of graph G,
e (® the matrix of voltsge functions assoclated with ele-
ments of G and let B¢ be the circult matrix of the same
trees of the graph. Partitioning /@r and 6¢ corresponding
to chords and branches, %(‘) can be partitioned corres-

ponding to chords and branches as

Ve £)
U@("’) = w ({)



o4

€
Then OF Vg ) m [»91-11 2(7][:/5 (4)]

= 8;—,, (é) m (¢)

Since, by Theorem 8§, Ayy = — Bc/.u,
by direct substitution
Cp U ®) e — B9800 ¥ 4 V% (®

From fundemental postulate (B),

8. e (t)___

Ve ¥
[ 8] [ ] = ©

and so

%(t)*_ BC"%(¢)= o
Ua ¥ = —fosr Up (&)

Using this value of

B, U ()= —Becia [6,,,,_-% (l)] + g ©)

Lr Ve ()= [_3¢l2 /3cu * 21 ] B (€

Theorem 10: The functions of ¢k <€ assoclated with
the chords of a tree of a connected graph G, can be ex~
pressed 1n terms of the functions Of%a) assocliated with

the branches of the same tres.
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Proof: Let Be and &y be c-circuit and tree cut-
set matrices of a tree of a connected graph G. Partition
52 and A?r to correspond to chords and branches as
Be = [élc./g;/&_]
Agr = l;l?ra ZZrL]
Let ¢ and 23 ¢® represent the voltage functlons assocla-

ted with chords and branches of the tree respectively, then

Ve ®
> @ [ o m]

Since, by fundamental postulate (B),

Bea ZZE(*)==;c>
Ve &)
ZZQ.ég‘ =
E '11[2/4 (4)] ©
and Yoo + Baja Y6 #) = o
By Theorem 6 € /@7_
Csa = - "

therefore,

zz;(l)-'/éa;u i W= O
Ue® = @85, 2 &

Corollary 1.10: The voltage functions e ‘¥ assoclated

with all elements of the graph can be expressed in terms of
the voltage functions ;%;(«Dassociated with branches of any

tree of the graph as

;ag (":== /é?;: 22 c¢)
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Ue® Uy (B

on substituting the value of ?}:‘*’m terms of J&¥from

Proof: Since Ve «)]

the theorem, there results

e =

m 4)
€1
/A
e/
But ™ _
u [u] = CF
and so -?fe W _ ,@,’_ szu)

Example 6. Consider the graph given in Fig. 1l and

suppose the voltage functione assoclated with the branches

of a tree of G are known as V,» Vp and v, which are assocle-

ted with branches a, b and ¢ respectively.

+

Fig. 11.
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The problem is to find the voltage functions associated

with all elements of the graph

.
e Ea(t) vp() Vo(t) va(t) ve(t) ve(t)]
First write the tree cut-set matrix for this tree with

elements arranged in the same order as 1in

O O + p

o

b
0
1
0

c

0
0
1

d

0
1
1

1
1
1

r

1]

1
0

The matrix 2 ¢¥1s in the form of single column as

Va
P Vo
Zieo= |
Then the P ¥ matrix can be found by
eV =2 T Y )
which in detail 1is
" vy ] "1 0 0]
v
Ve o o0 1 8
/R vy
e =lvg| =lo0o 1 1]*
v
v, 1 1 1 ¢

b + Ve

Lva +Vb
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CONCLUSION

The cut-set and cut-set matrix properties studied here
are useful in solving net-work problems. For instance, the

node transformation equation1

ZZ;CHD== 62:39;.0*)
where'ZG‘*’are arbitrary functions, obscures the fact that
the v(t) of a tree determine all the v(t), whereas in terms
of the cut-set matrix

2%;‘“’ =:44?;:2z;(¥)
in which %’(’6) is the matrix of voltage functions corres-
ponding to a tree. Furthermore, the cut-set matrix seems to
be more general for the vertex matrix 1s always a sub-matrix
of the cut-set matrix. Also the circuit matrix can be found
from matrix € . It is here suggested that the cut-set
system be consldered as the fundamental 1-function postulate

in place of the vertex equations of Kirchhoff, 1.e.,

‘G?Lg‘ Oé)<== o

1
Reed and Seshu, op. cit., p. 26.
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