A STUDY of The variactes That Amber hat

Thosis for the Dogros of fô. S.
MChIGAN STATE UNivarsity
Edward Daniol Schmidt
1965

THESIS

Foon UES ORIV

$$
\pi^{2}
$$

A3STAACT

A STUZY OF THE VARIABLES THAT AF PECT HEAT PENETAATION RAIES IN GLASS JABS

by Edward D. Schmidt

Heating rate tests were conducted using l6, $26,32,48$ and 64 ounce glass jars filled with water plus small (3/8" diameter), medium ($1 / 2^{\prime \prime}$ diameter) and large (3/4" diameter) size marbles heated in water and in steam plus air mixtures at heating medium temperatures of $165^{\circ} \mathrm{F}, 180^{\circ} \mathrm{F}$ and $195^{\circ} \mathrm{F}$ (initial temperature $95^{\circ} \mathrm{F}$) to determine the effect of: jar size, liquid vs. liquid plus solid particles, particle size, heating medium temperature and heating medium on the heating rate of the slowest heating zone in the container. Temperatures were measured using thermocouples located in the jars and recorded using a temperature recording potentiometer. The time vs. temperature data were plotted on semilog paper and f and f values determined.

It was found that: (1) the heating rates were independent of jar size and dependent upon the ratio of the surface area of the jar to the volume of the jar, (2) there was no detectable difference in heating rate due to differences in marble size, (3) the jars containing water plus marbles heated faster than the jars of water, (4) the jars heated faster as the heating medium temperature increased, and (5) the jars heated faster in the water bath at $165^{\circ} \mathrm{F}$ but faster in the steam air mixtures at $195^{\circ} \mathrm{F}$.

Date han \quad Wi 1965

A STUJY OF THE VARIABEES THAR AREECT HBAC PENETRAIION RADES IN GLASS JABS

 53.9```
Udward Daniel 3chmidt
```

```
A TMEBIS
Sibmitted to the jchool for Advanced Graiuate Studies
 of Michiman State Untversity ir partial
 iulfillment of the requirements
 for the derree of
 MA.STER OF SCIENCD
 Department of Food Science
 19.5
```

ACKNONLEDGEMENTS

The author wishes to express his sincere thanks and appreciation to the following persons:

Dr. I. J. Pflug, his major professor, who provided inspiration, timely guidance and constructive criticism during his graduate work.

Dr. B. S. Schweigert, Chairman of the rood science Department, for his interest in the authors program.

Dr. F. H. Buelow and Dr. R. C. Nicholas, members of authors committee, for their consideration and interest in their review of this manuscript.

Mr. Ronald Fisher for his suggestions and help in setting up the experimental apparatus.

Mr. Garlos Borrero, Eruce Eder, David Gurevitz and Jeshaihu Kopoleman for their stimulating suggestions throughout the project investigation.

Mrs. Helen Erlandson for proofreading this manuscript.

## TABLE OF CONTEITS

1. INraODuCtion
Page ..... 1
2. Literatuad hevien ..... 2
3. exfenimental froceduaz ..... 6 ..... 6
a. Container preparation. ..... 6
b. Preparing temperature sensing elements ..... 9
c. Vertina mediums ..... 13
(1) nater bath ..... 13 ..... 3
(2) : təミn plus air mixtures ..... 15
d. Te...as proceaure. ..... 17
e. Er: llation of data ..... 19
4. RESULIS ..... 22
a. Discussion of Results ..... 22(I) Effect of heating medium and heatingmedium teriperature . . . . . . . . . 22(2) Water vs. water plus marbles36
(3) Effect of Jar size(4) Effect of marble size5

## LIS CF 「AミLE;

iable Fanse

1. Jar srecifications. . . . . . . . . . . . . . 7
2. Narble fill data . . . . . . . . . . . . . B
j. :arole specifications . . . . . . . . . . . . 9

4 . Ninter of marbies per jar . . . . . . . . . .
5. Steam pressures, air flows and rotameter settings. . . . . . . . . . . . . . . . . . . 1 ?
5. oumary of the heating rate results in terms of I-values for the several conditions . . . . . a.
$i$. Jmmary of the heating rate results in terms of the heating lag factor $j$

- te-arrangement of the $f$-value value data to rate possible comparisons of the f-values for three sizes of marbles. . . . . . . . . . . . . 2 ?
$\because$. averaxe surface conductance of the transducers in the two heating mediums at the three temperatures. (These are the averases of surface conductances determine? using the conper and aluminum cylinders in the heating nediums at the respective temperatures; the curves were broken, the first $f$ value ( $\hat{i}_{1}$ ) and the seconi $f$ value ( $\mathrm{f}_{2}$ ) were treated separately. . . . . . 29


## LIE OF PABLES (continue.)

Table
Page
10. Results of the statistical analysis of the f value data for jars containins marbles . . . 30
11. Calculated ratios, f-value (steam plus air) / $f$-value (water) and ratios of surface area/ volume for the five jar sizes. . . . . . . . 31

## LIST CF PIGUBES

rigure ..... Fase1. Leasuring the temperature at the cold point11
2. Setip for measuring temperatures in jars. . . ..... 12
3. Liasram of the water bath system used . . . . ..... 14
4. Diasrom of the laboratory retort system
used ..... 16
5. Deternining $f$ and $j$ factors ..... 20
6. The relation of $f$-value and heating mediumtemperature for 16 oz . jars heated in a non-agitated water bath and steam plus airmixtures • . . . . . . . . . . . . . 327. The relation of $f$-value and heating mediuntencerature for 26 oz jars heated in a non-agitated water bath and in steam plus air
mixtures ..... 33
8. The relation of f-value and heating medium tempereture for 48 and 64 oz jars heated in a non-axitated water bath and in steam plus

9. The relation of $f$-value and surface to volune ratio for jars heated in steam plus air

LIST OF FIGURES (continued)FigurePage10. The relation of $f$-value and surface tovolume ratio for jars heated in a non-agitated water bath . . . . . . . . . . . . 38

## INTAODUCTION

In the food industry the general practice when designing a heat process is to measure the rate of heating of the product in the container under the actual commercial heat processing conditions. The slowest heating container is customarily used for the heat process design. While this method of measurins and designing the thermal process is ideal there are certain situations where this is not possible. Under these conditions the data for a similar product, container and heating conditions are used for process design. I'he precision of the judgements depends on the general knowledge of the neating process, the more knowledge there is available the better will be heat processing judgement.

There is a great deal known about the heating of liquid and solid type food products, however relatively little is known about particulate foods. This study was directed toward obtaining data relating thermal process variables of particulate foods in a model type study. The specific objectives were to determine the effect of three sizes of glass narbles in a water marble system, in five sizes of glass containers when heated in a water bath and in steam-air mixtures at $165^{\circ}$, $180^{\circ}$ and $195^{\circ}$.

```
IITERATURE REVIEN
```

Ball and Olson (1957) outlined the procedure for making heat penetration tests. A discussion of their recommendations follows. Thermocouples were recommended for measuring temperatures, copper constantan beins satisfactory for the temperature range from 40 to $325^{\circ} \mathrm{F}$. The optimum size themocouple is 20 - 26 gage, a heavier wire will tend to conduct heat from the hot junction causing erroneous temperature readings. Thermocouples should be held in cans b; receptacles that do not project into the sides of the cans. For a glass jar, the far cover is punctured in the center to receive the thermocouple assembly. Thermocouples should be connected to a potentioneter for measuring temperatures obtained. Enouch thermocouples should be used to provide a complete cycle of readings every 2 or 3 minutes, depending upon the product being tested.

That the data be collected and plotted on semi-logarithmic paper and heat penetration data be evaluated using $f$ and $j$ factors was recommended by Ball and 01 son (1957). The rate of heat penetration is affected by the temperature gradient between container and heating medium; the rate becomes slower as the temperature difference decreases with the product temperature asymptotically approaching the retort temperatures (Hersom and Hulland, 1963).

The vicinity of the slowest heating point in jars was located by Fflug and Nicholas (1961) and was found to be $10 \%$ of the height of fill measuring from the bottom of the jars. Pflug, Blaisdell and Nicholas (1965), working with 16 ounce jars packed with fresh cucumber pickles, found that the slowest heating zone was near the geometric center in the case of conduction heating spears in $50^{\circ}$ Brix symup but moved toward the bottom of the jar for spears and slices in a $30^{\circ} \mathrm{Brix}$ syrup.

The volure of headspace of a container is important and some provision is usually made for positive control. (Joslyn and Heid, 1963). The container fill requirement under the U. S. Food and Drug Act for products with Standard of Identity and the general requirement by the U. S. D. A. - A. M. S. is $90 \%$ of the total capacity.

Blaisdell (1963) used copper and aluminum cylinders as transducers to determine the surface conductance coefficients of water and stean plus air mixtures; the determinations of the film coefficients ( $h$ ) were made by relating the film coefficients to the basic conduction heat transfer equations.

Varying the heating medium temperatures, pflug and Nicholas (1961) found that the slope of the heating curves decreases with an increase in heating medium temperature. Pflug and Elaisdell (1961) list the factors which may contribute to the increase rate of heating as: (1) the increase in thermal diffusity and decrease in viscosity of the water with an increase in heating medium temperature, affecting both the water inside and outside the jar, (2) the increase
in the convective flow inside the jar produced by the initially larger temperature difference and (3) an increase in the convection heat transfer coefficient with an increase in steam alr temperature.

Pflup and Nicholas (1961) found that (1) a steam plus air mixture at zero velocity is a less efficient heating medium than a water bath, water spray or saturated stean when heating glass containers and (2) steam plus air mixtures vary in efficiency according to the percent of steam present, increasing with increasing percentages of steam. Investigating the effect of velocity of steam plus air mixtures, pflus and blaisdell (1961) found that with an increased velocity, faster heating occurred.

Mixtures of steam plus air have been used commercially in processing glass containers in retorts, but during the past twenty years this has lost favor completely because of its uncontrollability in retorts of commercial size (Hersom and Hulland, 1963).

The use of surface to volume ratios to predict the $f$ parameter was sugeested by Nicholas and Pflug (1961). An increase in fill ratio (ratio of product weight to fluid ounce capacity) and reduced surface to volume ratio caused nearly significant increases in $j$, but decreases in $f$ (Pflug, Blaisdell and Nicholas, 1965).

Blaisdell (1963) listed the following causes for variation in $f$ and $f$. (l) the introduction of container capacitance causing an increase in $f$ and $j,(2)$ an increase in surface resistance producing an increase in $f$ but reduction
in $j$, and (3) an increase in $f$ and decrease in $j$ due to thermocouple capacitance.

The heating characteristics of two different size and shaped cucumber products, spears and slices, were studied by Pflug, Blaisdell and Nicholas (1965) and they found that at the slowest heating zone the cucumber received sianificantly lower lethality values. Hersom and Hulland (1963) postulate that any substance which retards convection currents decreases heat transfer. In liquids, heat transfer takes place primarily by convection. According to Hersom and Hulland (1963), with solids packed in liquids, the ratio of solids to liquids will effect the heating rate. The presence of channels which permit convection currents facilitates the transfer of heat.

## EKPEAIMENTAL PGOCEDUGE

## Contalner remaration

Five sizes of slass containers were evaluated in this series of experiments. These sizes selected are in common use in the food industry and represent a range of sizes that must be dealt with in processing a number of different types of food products.

Jar specifications are shown in Table 1. The data in fable 1 inclides specifications interpreted from the manufacturers code stamped on the bottoms of the jars.

To simulate the effect of particles on the rate of heating of water in glass containers, the five sizes of jars in Table 1 were filled with three sizes of marbles; small (3/8" diameter), medium (1/2" diameter), and large size marbles (3/4" dianter). In rable 2 are shown data for the weizht of marbles and water in the different size jars; in Table 3 are shown marble specifications and in Table 4 are shown the number of marbles per jar for each of the three sizes of marbles.

$$
\begin{aligned}
& \begin{array}{l}
4 Q 02 . \\
\text { ErOCRWAY } \\
\angle 61 y-A \\
19.85 \mathrm{oz} . \\
49.31 \mathrm{oz.} \\
7.250 \mathrm{in} . \\
4.525 \mathrm{in} .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& J: \cdot r \\
& \begin{array}{l}
15 \mathrm{oz} \\
3 \text { rockway } \\
1344 \\
7.15 \mathrm{oz} . \\
15.99 \mathrm{oz} . \\
4.75 \mathrm{in} . \\
3.125 \mathrm{in.}
\end{array} \\
& \text { lanufacturer } \\
& \text { Hanufacturers Code } \\
& \text { weixht of Empty Jar } \\
& \text { Uverflow Capecity } \\
& \text { liaximum j1aneter }
\end{aligned}
$$

Larse ：iarbles
570 gms．
212 gms．
732 grs．
931.4 gms．
376.0 gms．
1357.4 gms．

1553.5 pms． 1801.0
599.0
gins．
2400.0
gms．

səโqxen antpal

Small Marbles

## 629 gms．



$$
\begin{array}{r}
1909.0 \\
542.0 \\
\mathrm{~ms} \\
2451.0 \\
\mathrm{gms} \\
\mathrm{gms}
\end{array}
$$

$-\quad-\quad-\quad$
$-\quad-\quad-$
$-\quad-\quad-$
gns．




－

| -1 |
| :--- |
| 0 |
| 0 |
| $N$ |
| $\cdots$ |
| -1 |
|  |


| ro |  |  |
| :--- | :--- | :--- |
| $\bullet 0$ | 0 |  |
| 0 | 0 |  |
| 0 | 0 | 2 |
| 0 | 0 | $m$ |

## 878С TTT』 əTqJBk

Wt．filled with water

エə7еM Ч7TM एəTTIJ•7M
SəTqJeu Jo • 7 M Wt．of water

ココҰロM पनTM рəTTTJ• $7 M$ Wt．of marbles
Nt．of water
Totals
Wt．filled with water Wt．of marbles
Wt．of water
Iotals
Wt．filled with water Wt．of marbles
Wt．of water
Totals
wt．of marbles
Wt．of water
Totals
Wt．filled with water
Wt．of marbles
Wt．of water
Totals
Wt．filled with water
Wt．of marbles
Nt．of water
Totals
Wt．filled with water
Wt．of marbles
Wt．of water
Iotals
Wt．filled with water
Wt．of marbles
Wt．of water
Iotals
Wt．filled with water


48 oz
$\bullet$
0
0
0

TABLE 3

|  | Narble Specifications |  |  | Avz. Density |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Averare } \\ \text { in. } \end{gathered}$ | $\begin{aligned} & \text { • Diag } \\ & \mathrm{mm} . \end{aligned}$ | Avg. wit. |  |
| Large Marble | . 723 | 18.36 | 7.68 gms . | $2.395 \mathrm{gm} / \mathrm{cc}$ |
| Medium Marble | . 505 | 12.83 | 2.73 gma. | $2.472 \mathrm{gm} / \mathrm{cc}$ |
| Small Narble | . 388 | 9.85 | 1.18 gms . | $2.356 \mathrm{gm} / \mathrm{cc}$ |

TABLE 4

## Number of Narbles Per Jar

| JAR SIZE | LARGE | NEDIUM | SMALL |
| :---: | :---: | :---: | :---: |
| 16 OZ. | 74 | 217 | 535 |
| 26 OZ. | 128 | 389 | 932 |
| 32 Oz. | 151 | $-\ldots-$ | 1068 |
| 48 Oz. | 235 | 698 | 1642 |
| 6402. | 351 | 942 | 2293 |

The cata from the marble fill tests were to be compared with data collected where the jars were filled with water and heated. Four sizes of water filled jars were reated: $16 \mathrm{oz}, 26 \mathrm{oz}, 48 \mathrm{oz}$, and 64 oz .

## Precaring the Tempergture Eensing Elements

Temperatures were measured by thermocouples made at the end of duplex 24 gauze copper constantan thermocouple wire
introduced into the top of the jars through Ecklund packing glands. A description of the assembly, designed to keep leakage to a minimum and found in $\mathrm{r}^{2}$ gures I and $\therefore$, $10 ?$; (1) the thermocouple wire, inserted through a hollow fiber rod, is split on the end and each half inserted into grooves of a fiber rod, (2) the grooved fiber rod is secured inside the hollow rod with epoxy resin (Epocast $R_{10}-F$ resin and $10-P$ 1951 hardener) and the thermocouple junction is made at the end of the grooved rod, (3) the grooved fiber rod is coated with epoxy resin, (4) pressure fitting $B$ is secured to the lug lid and to secure the rod to pressure fitting $E$, pressure fitting $A$ is screwed into fitting, expanding a washer. A piece of rubber tubirig is fitted over the end of the hollow rod and sealed with epoxy resin. This piece of rubber tubing keeps the flexing of the thermocouple wire at the end of the rod to a minimurn.

The fiber rod positioned the thermocouple at the cold point within the jars. In this study the assumption is that the cold point is $1 / 10$ the height of fill measuring from the bottom of the jars. This is the cold point location for liquids in olass jars found by Pflug and Nicholas (1961).

From the jars, the thermocouple wires were connected to input of a Brown l2-point temperature recordinz potentiometer which printed the temperature every 1.33 minutes.

「o make sure that the errors due to a faulty data collecting system, were kept to a minimum, the temperatures being reat from the thermocouple system were frequently checked


Figure 1. Measuring the temperature at the cold point of 16 oz • Jars.


Figure 2. Setup for measuring temperatures in jars.
against terneratures being read from a mercury in alass thermoneter. The thermometer and thermocouple readinas being comparad were taken at the same location and time within the water bati.

## Meatint yectur

Water 1 . The jars were heated in hot water in a rectancular, uninsulated steel tank, $24^{\prime \prime} \times 48^{\prime \prime} \times 18^{\prime \prime}$ (see F1g. 3). D water depth of at least 12 inches, which was 5 inches above the tallest jar, was maintained. The tank was heated Ly Etean flowing through a pipe coil at the bottom of the tank. The water bath temperature was maintained by a Taylor Kodel 87 a $U 47$ temperature controller modulating an air operated ( $F 1$ sher-Governor type 667 A) control valve. A hand operated diaphram type pressure reducing valve was used to adjust the upstream steam pressure to allow the stean control valve to work in the optimum control range. Three different bath temperatures were used: $165^{\circ} \mathrm{F}, 130^{\circ} \mathrm{F}$, and $195^{\circ} \mathrm{F}$. The steam line, after leaving the tank, was normally left open. Sowever it had to be throttled to ralse the temperature of the bath to $195^{\circ} \mathrm{F}$. At $195^{\circ} \mathrm{F}$ the temperature cycled as much as $\pm 2^{\circ} \mathrm{F}$ from the mean, which was greater than found when mafntaining a temperature of $180^{\circ}$ or $1,{ }^{\circ} \mathrm{F}$ due to the throttling of the line.

Each test consisted of heating two jars. The two jars for all tests were located at the same positions in the water bath. The water bath was not agitated; the average temperature between the two positions was $3^{\circ} \mathrm{F}$.

Figure 3. Diagram of the water bath system used.

Steam plus Air Mixture. The desired steam air mixture was developed inside a laboratory retort (see Fig. 4) whose pressure was maintained at one atmosphere by means of a pipe venting the system outside of the building and the lid of the retort not clamped closed but left open $\frac{1}{4}$ inch.

The temperature in the retort was controlled by an air operated valve. A steam line pressure reducing valve was located upstream to the control valve to facilitate final control. The baffles and arrangement of flow through the retort were designed to minimize the velocity effect and to eliminate, as much as possible, air pockets or stean pockets within the retort. Air flowed to the retort throuph a rotameter, a hand valve being used to control air flow to the retort; the air and steam line joined outside the retort. The temperature within the retort was kept within $\pm 2^{\circ} \mathrm{F}$ of the desired temperature.

The flow rate of the steam-air mixture throuch the retort was the same at all three temperatures and was maintained in this dynamic system by varying the air flow settings of the rotaneter. The steam pressure varied with temperature, and in order to keep the flow in the retort constant, the air flow was adjusted. Calculations used to determine water pressures, air pressures and air flows were as follows: a. $165^{\circ} \mathrm{F}$ - 5.335 psi - absolute pressure at saturation b. $\frac{5.335}{14.7}$ atmosphere pressure $=.36$ or $36, t$ steam in $m i x$ $\frac{14.7}{}$ atmosphere pressure $=100-36=64 \%$ air in mix c. $.36 \times 760 \mathrm{~mm} \mathrm{Hg}=274 \mathrm{mn} \mathrm{Hg}$ water pressure $.64 \times 760 \mathrm{~mm} \mathrm{Hg}-436 \mathrm{~mm} \mathrm{Hg}$ air pressure
EXHAUST TOTHE

Figure 4. Diagram of the laboratory retort system used.
d. A total chance flow of 20 cfm is adequate, allowinz for $2 \frac{2}{2}$ changes in the retort per minute. 20 x .64 - 12.80 cfm - rate of air flow.
e. $12.80 \operatorname{cfin} \mathrm{x} \frac{1}{1.235}$ ( $*_{\mathrm{K}} \mathrm{K}$ value) $=10.35$ (rotameter reading) where *K = temperature correction, the rotameter was calibrated at $10^{\circ} \mathrm{F}$ and is being used at room temperature. 1.e. $K$ - The rotameter reading at room temperature (For details of the calculations involved see coulson and aichardsen (1956)i. Table 5 sumarizes the pressures, air flows and rotameter settings.

## TASIE 5

| $\underset{\mathrm{F}}{\mathrm{T}} \underset{\mathrm{omperat}}{\mathrm{T}} \mathrm{T}$ | steam ?ress. $\mathrm{mm} \mathrm{Yg}$. | A1r Press mm HE. | Steam <br> plus <br> Air Press. <br> mm Hg . | A1r <br> Elow cfm at T | K | Rotameter geading |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $165^{\circ} \mathrm{F}$ | 274 | 486 | 760 | 12.80 | 1.23\%-1 | 10.35 |
| $180^{\circ} \mathrm{F}$ | 383 | 372 | 760 | 9.80 | $1.265^{-1}$ | 7.73 |
| $195^{\circ} \mathrm{F}$ | 538 | 222 | 760 | 5.83 | $1.295^{-1}$ | 4.45 |

## Testing Procedure

Two jars containing either water or water plus marbles were equilibrated at $95^{\circ} \mathrm{F}$, and at 0 time (the start of the tests) were placed in the heating medium bath. The heating tests were ended when the teaperatures in the jars were within two degrees of the heating medium temperature. A series of tests consisted of heating from ó - 12 jars.

In the first series of tests, water alone was used in the jars. At the end of these experiments, the tests were
conducted usino water plus maroles to determine if particle size affects the heating rates insile jars. A series of tests were conducted fllling the $16,26,48$ and 64 ounce jars with first a small (3/8 in. diameter), then a medium (1/2 in. diameter) and then a larae ( $3 / 4$ in. diameter size marble fill, and heating the jars in water.

The decision to conduct tests using 32 oz. jars came during the later part of the testing period; therefore, the above tests were repeated heating 32 ounce jars with fust two different size marble fills, small and large. To compare heating narble filled jars in water and a steam air mixture, the above tests were repeated heating 26 ounce jars, with the three different size marble fills, and the 32 ounce fars, with a small and large marble fill, in a steam and air mixture. Frior to being heated, water was added to the marble fill in the jars. The jars were filled until an air space equal to $10 \%$ of the total volume of the jars remained. The lid was placed on the jars and the themocouple positioned by the rod secured to the lid. Vach size jar with each size $f 111$ was heated while the temperature of the water and steam alr mediums were maintained at 165,180 , and $195^{\circ}$.

The rate of heating of containers is a function not only of the fluid and particles in the container, but also of the external heat transfer coefficient. To measure the external heat transfer coefficient, the transducers developed by Blaisdell (1963) were used. The surface conductance coeffioients were determined the first time by using an oluminum cylinder and as a check a second time, usinz a copper cylinder
(see Table 6), each cylinter being 3 inches in dimeter ank $41 / 2$ inches long.

Duplex 24 gauge copper constantan thernocouple wires were $1: m b e d d e d$ in the cylinders to measure heating rates. (For a more detailed description of the construction of the cylinders see Blaisdell (1963)). Heatins rate of the cylinders In each heating mediun and for each temperature ranre 95-165 , 95-180 and 95-195 ${ }^{\circ}$, were determined using the same procedures used to determine the $f$ values for the jars. Upon computing the $f$ values, the surface conductances were determined from the transducer calibration curves developed by Blaisdell (1963).

## Evaluation of Data

An $f$ value for each jar heated was obtained by plottins the time temperature data on semi-logarithim paper and then by determining the time in minutes required for the straight line portion of the heating curve to cross one los cvele on the temperature scale (see $1 \mathrm{~g} \cdot \mathrm{5}$ ). The data were taken off the recorder charts and were plotted on semi-loe paper as a function of print cycle. The $f$ value measured from the semi$\log$ plot was in terms of print cycles which was multiolied by 1.33 inin. to convert from print cycles to minutes. The $j$ factor for each size jar was calculated applying the relation$\operatorname{ship} \frac{\text { retort temp. - theoretical initial temp. }}{\text { retort temp. - actual initial temp. }}$ retort temp. - actual initial temp.

The fill data presented in rable 2 were obtained by subtracting the weights of the jars when empty from the jars when full with either marbles, marbles and water, or water.


Surface to volume ratios, Table 10, were calculated from the jar volumes, water fill data, and jar surface areas evaluated. The number of marbles per jar, Table 4 , were estimated by dividing the average marble weight into the marble fill weight. Analysis of varience tests, $t$ and $F$ tests, were used when determining the effect of marble size on heating rates.

## results

The overall effect of jar size, heating medium, ant the presence or absence of marbles in the jars are summarized in Tables 5 and 7. In Tables 6 and 7, average values for the heating rate of the three sizes of marbles are given. The effects of carble size on the heating rate at the different temperatures for the different size containers in the two different heat transfer media are sumarized in Table 8 . The surface conductance of the two heating media as measured by the copper and aluminum transducers is given in Table 9. The heatinc data for the three sizes of marbles were analyzed statistically and the results of the statistical analysis are tabulated in Table 10. The average j-value for all tests was 1.36.

## Discussion of zesults

The results were analyzed and will be discussed in terms of heating rate or f-value. The j-values were measured but the meaningfulness of the j-value in convection heating is not fully hnown. Since the significance of the f-value is understood and is in general independent of $j$, it will be used in the gnalysis.

Effect of Heating Medium and Heating hedium Temerature. An analysis of the heating medium data in Table 6 shows that
in all instances as the heating medium temperature increased, the f-value decreased. Tests conducted by Pflus and Nicholas (1961) showed this same relationship between $f$-value and heating medium temperature. Fflug and Nicholas considered the possibility that the larger temperature differentials accompanying the higher processing temperatures produced stronger convection currents which were responsible for the difference in the rate of heating. The data developed in this study verify this observation.

The $f$ value ratios, $f$ in steam-air/f in water in Table 11 and Figures 6, 7, and 8 were prepared to aid in the comparing the relative heating rates of water and steam-air mixtures. In general, differences are small and onlv trends can be pointed out.

The effect of heating medium temperature on the $f$ value for 16 oz jars is shown in figure 6; 26 oz jars, figure 7, and for 48 and 64 oz jars figure 8 . In these figures the relative chance in $f$ value with heating medium type and temperature is evident. The $f$ value of jars heated in steamair decreases more with the increase in temperature then the $f$ value for jars heated in water baths. Probably, there is significance in the fact that the 16 oz jar of marbles, the smallest jar with the lowest heat capacity and the 43 and 64 oz. jars of water, the largest jars with the greatest heat capacity behave differently then the rest of the group.

The results of surface conductance measurements (data in Table 9) reflect the data in Figures 6,7 and 8 that at $195^{\circ} \mathrm{F}$ there should be essentially no difference in heating
Summary of the heating rate results in terms of fovalues
6


Heating
medium
water bath
steam \& air
water bath
steam \& air


ᄃABLت 7. Summary of the heating rate results in terms of the heating curve lag

| Jar <br> sizes |  |
| :---: | :---: |
| 16 | OZ. |
| 26 | OZ. |
| 32 | OZ. |
| 32 | OZ. |
| 43 | oz. |
| 43 | OZ. |
| 48 | oz |
| 48 | oz. |


| Heating Medium Temperature$180^{\circ} \mathrm{F}$ |  |  | $195^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: |
| J | SD* | $j$ | SD* |
| 1.302 | . 1139 | 1.293 | . 0895 |
| 1.290 | . 0363 | 1.530 | . 2053 |
| 1.307 | . 0978 | 1.299 | . 0754 |
| 1.280 | . 0540 | 1.360 | . 0667 |


| $j^{165^{\circ}}{ }^{2}$ | $S D^{*}$ |
| :---: | ---: |
| 1.139 | .0738 |
| 1.320 | .0374 |
| 1.244 | .1135 |
| 1.360 | .1539 |

TABLE 7 (continued)

| TABLE 7 (continued) |  |
| :--- | :--- |
| Fill | Heating <br> medium |
| water |  |
| water |  |
| marble \& | water bath <br> steam \& air |
| water <br>  <br> water | steam \& air |

Jar
size
64 oz
64 oz
64 oz
64 oz


* = Standard Deviation

TABLE 8. Rearrangement of the $f$-value data to make possible comparison of the f-values for the three sizes of marbles.

| Water bath medium |  | Marble size |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Small } \\ \text { inin. } \end{gathered}$ | No.* | $\begin{gathered} \text { Medium } \\ \text { fin. } \end{gathered}$ | No.* | $\begin{gathered} \text { Large } \\ \text { fin. } \end{gathered}$ | No.* |
| 16 oz. jars | $165^{\circ} \mathrm{F}$ | 10.45 | 11 | 10.53 | 10 | 10.67 | 4 |
|  | 1800 F | 9.31 | 12 | 9.39 | 12 | 9.64 | 6 |
|  | $195^{\circ} \mathrm{F}$ | 8.72 | 12 | 8.80 | 12 | 9.24 | 6 |
| 26 oz. jars | $165^{\circ} \mathrm{F}$ | 13.37 | 12 | 12.89 | 11 | 13.49 | 11 |
|  | $180^{\circ} \mathrm{F}$ | 11.74 | 12 | 11.33 | 12 | 11.57 | 10 |
|  | $195^{\circ} \mathrm{F}$ | 10.74 | 12 | 10.94 | 12 | 11.17 | 6 |
| 32 oz. jars | $165^{\circ} \mathrm{F}$ | 14.05 | 6 |  |  | 13.94 | 5 |
|  | $180^{\circ} \mathrm{F}$ | 12.24 | 6 |  |  | 11.79 | 6 |
|  | $195^{\circ} \mathrm{F}$ | 11.31 | 6 |  |  | 11.22 | 6 |
| 48 oz. jars | $165^{\circ} \mathrm{F}$ | 18.00 | 6 | 18.02 | 6 | 17.88 | 5 |
|  | $180^{\circ} \mathrm{F}$ | 16.34 | 6 | 16.25 | 6 | 16.41 | 5 |
|  | $195^{\circ} \mathrm{F}$ | 15.74 | 6 | 15.54 | 5 | 15.47 | 6 |
| 64 oz. jars | $165^{\circ} \mathrm{F}$ | 18.22 | 4 | 18.49 | 4 | 18.09 | 6 |
|  | $180^{\circ} \mathrm{F}$ | 16.45 | 6 | 16.40 | 6 | 16.54 | 6 |
|  | $195^{\circ} \mathrm{F}$ | 15.87 | 6 | 15.74 | 6 | 15.85 | 6 |
|  |  | *NO. | Numb | ber of | tests | cond | ted |

Marble Size
Steam plus
Air Medium

26 oz. jars $\begin{array}{r}165^{\circ} \mathrm{F} \\ 1800 \mathrm{~F} \\ 1950 \mathrm{~F}\end{array}$
$\begin{array}{cc}\text { Small } \\ \mathrm{f} \\ \mathrm{min} . & \text { Nodium } \\ \mathrm{f} & \mathrm{m} \\ \mathrm{min} . & \text { Large } \\ \mathrm{f} & \text { No. } \\ \text { min. }\end{array}$
$\begin{array}{rrrrr}32 \mathrm{oz} \cdot \text { jars } 165^{\circ} \mathrm{F} & 14.05 & 6 & 12.97 & 6 \\ 180^{\circ} \mathrm{F} & 12.22 & 6 & 12.08 & 6 \\ 195^{\circ} \mathrm{F} & 10.19 & 5 & 9.82 & 6\end{array}$

TABLE 9. Average surface conductance of the transducers in the two heating mediums at the three temperatures. (These data are the averages of surface conductances determined using the copper and the aluminum cylinders in the heating mediums at the respective temperatures; the curves were broken, the first $f$ value ( $f_{1}$ ) and the second $f$ value ( $f_{2}$ ) were treated separately.

The Surface Conductance in the Two Heating Mediums

|  | Water Bath |  | Steam Plus A1r |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} h_{f} \text { for } \\ f_{1} \end{gathered}$ | $\begin{gathered} h_{\text {for }} \\ f_{2} \end{gathered}$ | $\begin{gathered} \mathrm{h} \text { for } \\ \mathrm{f}_{1} \end{gathered}$ | $\begin{gathered} \mathrm{h} \text { for } \\ \mathrm{f}_{2} \end{gathered}$ |
| 165 deg. F. | 147.24 | 127.50 | 56.25 | 65.75 |
| 180 deg. F. | 168.33 | 150.33 | 71.80 | 93.00 |
| 195 deg. F. | 189.17 | 167.00 | 143.25 | 192.50 |

IASLE 10. Results of the statistical analysis of the f-value data for jars containing narbles.

> Sisnificance of Varble fill Data when Heatire the Jars in a Water Bath

| Jar size | Feating temperature rance | F-value | Level of stonificance |
| :---: | :---: | :---: | :---: |
| 1. 16 oz . | 95-165 ${ }^{\circ}$ | 1.209 | $\because$ ne |
| 2. 16 oz . | 95-130 F | 3.092 | none |
| 3. 16 oz . | 95-195 ${ }^{\circ} \mathrm{p}$ | 19.992 | 795 |
| 4. 26 oz. | 95-165 ${ }^{\circ}$ | 7.214 | 99\% |
| 5. 25 oz | 95-180 ${ }^{\circ} \mathrm{F}$ | 6.247 | 93. |
| 6. 26 oz | 95-195 | 14.591 | 79,5 |
| 7. 43 oz | 95-165 | . 113 | Ione |
| 8. 43 OZ | $95-180^{\circ} \mathrm{F}$ | . 336 | None |
| 9. 43 oz . | 95-175 ${ }^{\circ} \mathrm{F}$ | . 693 | $\therefore$ Sone |
| 10. 64 oz . | 95-165 ${ }^{\circ}$ | 2.056 | rone |
| 11. 64 oz . | 95-180 | .11: | Sone |
| 12. 64 oz . | $95-195^{\circ} \mathrm{i}$ | . 254 | None |
|  |  | I-value |  |
| 13. 32 oz | 95-165 ${ }^{\circ}$ | . 982 | Sone |
| 14. 32 oz . | 95-180 ${ }^{\circ} \mathrm{F}$ | 3.221 | None |
| 15. 32 oz . | 95-195 | .934 | None |

Sisnificance of marble fill data when heating jars in steam and air

| Jar size | Heatine temperature range | $\because$ value | $\begin{gathered} \text { Ievel of } \\ \text { si"nficance } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 1. 26 oz. | 95-165 ${ }^{\circ}$ | . 353 | $\therefore$ one |
| 2. 25 oz. | 95-1800 | . 359 | $\therefore$ ne |
| 3. 26 oz . | $95-195^{\circ} \mathrm{r}$ | . 940 | gone |
|  |  | $\bigcirc$ value |  |
| 4. 32 cz . | 95-155 ${ }^{\circ}$ | 8.200 | 99\%' |
| 5. 32 oz . | 95-1300 | 1.129 | None |
| 6. 32 oz . | 95-105 | 1.001 | cone |

## rabLe 11

Calculated ratios, f-value (steain plus alr) / f value (water) and ratios of surface area / volume for the five jar sizes

Water fill

| Jar size | Surface to volume ratio | $165^{\circ}$ | $180^{\circ} \mathrm{F}$ | $195^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: | :---: |
| 16 oz . | .1027 | 1.091 | .969 | . 923 |
| 26 oz . | .0967 | 1.052 | . 918 | . 915 |
| 32 oz . | . 0356 | - | - | - |
| 43 oz . | . 0761 | .969 | . 933 | .870 |
| 64 oz. | . 0764 | . 958 | . 965 | . 863 |

Water plus marble fill

| 16 oz. | .1027 | 1.102 | 1.049 | 1.025 |
| :--- | :--- | :--- | :--- | :--- |
| 26 oz. | .0967 | 1.009 | .988 | .014 |
| 32 oz. | .0956 | .960 | 1.011 | .887 |
| 43 oz. | .0761 | 1.000 | .984 | .960 |
| 64 oz. | .0764 | 1.035 | 1.010 | .908 |



-ipure 7. The relation of $f$-value and heating medium temperature for 26 oz jars heated in a nonasitated water bath and in steam plus air mixtures.


Figure 8. The relation of $f$ value and heating medium temperature for 43 and 54 oz jars heated in a non-agitated water bath and in steam plus air mixtures.

$$
]
$$

rate between water bath and stean-air mixture with some difference expected at $165^{\circ} \mathrm{F}$ and $130^{\circ} \mathrm{F}$. In general the results confirm this; the trend in Pable 11 is for the steam-air to becone more effective as the heatine medium temperature soes from $165^{\circ}$ to $180^{\circ}$ to $195^{\circ} \mathrm{F}$.

The f-values ratios for the two heating meilums appear roughly to sroup themselves with jar surface to volume ratios; at lower surface to volume ratios, 0.076 compared to 0.096 or 0.103 , the f -value heating medium ratio for water in jars appear to be smaller, whereas for water plus marbles the difference is less pronounced or there is no difference. For both water and water plus marbles there appears to be a decrease in the f-value ratio as temperature increases which suggests that the relative effect of the surface filin of water vs. stean glus air, changes with heating medium tenperature. Stean plus air becomes relatively more effective, f is smaller, as we go from 165 to $195^{\circ} \mathrm{F}$. Comparins the h values at $165^{\circ}$ and $195^{\circ} \mathrm{F}$ we find that the $h_{1}$ ratios are $56 / 147$ and $143 / 139$ and the $h_{2}$ ratios are $65 / 127$ and $192 / 167$ resrectively. This $h$ ratio comparison would seem to explain the chanse in f ratio. This result sugsests that the rate of neating of water in jars is more dependent on heat transfer coefficient than the rate of heating of water plus marbles; this is true even though the $f$-value of water plus marbles is smaller than the $f$ value of water. ( Fhe relative heat capacity of the jar of water is sufficiently larger than the heat capacity of the jar of water plus marbles to make this possibled It follows that in jars of water plus maroles, flow resistance
is probably the limitins factor as far as rate of heating is concerned.

The results of these experiments appear to iit into the overall patterm of steain-air heating. Fflug and Nicholas (190́l) using a non flow steam-air heating system found that steam-air mixtures at very low velocity were not as efficient as a water bath in cases when the external film coefficient had a controlling influence. Fflug and Blaisiell (1961) established that the effectiveness of steam-air mixtures varies directly with velocity, that at the low velocities used by Pflus and Nicholas (1961) steam-air mixtures can be very bad but at hizner velocities the differences between stean-air mixtures and water are small. The experiments in this thesis project were carried out under controlled steam-air velocity concitions selected to approximate commercial flow conditions. Obviously under the steam-air flow conditions evaluated the steam-air was in general less efficient than water at 165 and more effective than water at $195^{\circ}$.

Water vs. water plus marbles. The effect of water vs. water plus marbles is shown graphically in figures 9 and 10 where rexariless of heatins medium or fill ratio the f-values are smaller for the water plus marbles than for the water. Rephrasine in terms of heating rates: the jars containing water plus marbles heat more rapidly than jars of water.

In jars of water plus inarbles the heat capacity of the system is smaller than for water alone due to the relative difference of density $x$ specific heat of glass, $150 \mathrm{Lb} / \mathrm{ft}^{3}$


Plyure 9. The relation of $f$ value and surface to volume ratio for jars heated in steam plus air mixtures.


Figure 10. The relation of $f$ value and surface to volume ratio for jars heated in a nonagltated water bath.
$\mathrm{x} 0.13 \mathrm{Bry} / \mathrm{lb}^{\circ}{ }^{\mathrm{F}}=27$, conpared with water, $62.4 \mathrm{lb} / \mathrm{ft}^{3} \mathrm{x}$ $1.0 \mathrm{BIU} / \mathrm{lb}^{\circ}{ }_{\mathrm{F}}=62.4$. The solid glass marble heats bv conduction, therefore not only is the final heat capacity of the systerd reduced $56.7 \%$ for that part of the voluae replaced by glass, but the glass portion of the system will absorb heat at a lower rate than the water portion (the temperature of the glass will lag the temperature of the water). Since the surface area of the jar remains constant we are theoretically increasing the surface to volume ratio which produces faster heating (snaller f-values). Obviously we are not reducing the $f$-value linearly as we theoretically increase the surface to liquid volume ratio.

In the jar of water plus marbles the water will be flowing through a series of small channels (spaces between the marbles) therefore the resistance to flow will be hiaher than in jars of water. The velocity of the convection fluid flow will be a function of the flow resistance or friction dras; consequently heating should be faster in a water filled far than in a jar with water plus marbles.

In the convection heating system the convection flow criving force, temperature difference, which is a function of the heat transfer rate to the far is going to be about the same for jars of water plus marbles as for jars of water since water contact surface area will be only slightly reduced by the point contact of the marbles with the jar. The result is probably that there is sufficiently more convective flow pressure in jars with water plus marbles to overcome the increased friction. If the size of marble is reduced to a
point where the friction becomes quite large the result would be slower heating.

It can be concluded that since spherical particles do not block the flow when heating the liquid mass and since they make only point contact, the addition of particles in the range of $3 / 8$ to $3 / 4$ inch diameter to a liquid system should not appreciably affect the rate of heating. If the particles are large and have flat sides that can prevent liquid wall contact in a significant surface area the heating rate will be reduced.

Effect of jar size. In figures 9 and 10 the f-value data from Table 6 are shown as a function of the surface to volume ratios. The rate of heating increased consistantly (f-value decreased) as, the surface to volume ratio increased. Nicholas and Pflug (1961) showed that correlation of heating rates with surface to volume ratios are more meaningful than correlation of heating rates with jar capacity. The rather good agreement of different.sized containers with similar surface to volume ratios in Figure 7 (for example, the 48 and $64 \mathrm{oz}$. jars have similar surface to volume ratios, 0.0761 and 0.0764 , and have similar $f$-values when the type of fill and heating medium are the same) suggest that the heating rates of water or water plus marbles in jars with other surface to volume ratios can be predicted if in the same overall range of conditions. Effect of marble size. The effect of marble size is shown in Table 8. A statistical analysis was made to determine if the differences in Table 8 were significant; the results of the statistical analysis are shown in Table 10. It was found
the f-value deviation of replicate runs was greater than the difference in f-value due to marble size variation for 16 of the 21 comparisons.

A 0.75 marble should heat at a rate $25 \%$ as fast as a 0.375 marble therefore jars of water plus the 0.75 marbles should heat faster because the rate of heat removal is smaller plus the fact that the flow path in the 0.375 marbles should have a higher resistance which would slow the rate of heating. Since in these experiments there appear to be no major differences in the rate of heating of the jars with either large or small marbles, it must be concluded that neither of these effects are significant in this range of conditions. Decreasing the size of marbles to 0.25 or .1875 inch may change the results dramatically.

It can be concluded that the effect of the size of particle over the range tested in this experiment do not produce significant effects as a function of particle size. These data annot be extrapolated since there is certainly a critical particle size that has a significant effect on heatins rate.

A stuay was made of the heating characteristios of water and water plus naroles in five sizes of glass containers in water and sieam airmixtures at 165,180 and $195^{\circ} \mathrm{F}^{\circ}$.

Glass jars in common use in the food science industry having $16,26,32,48$ and 64 fluid oz capacity were stuiled fllled with water, water plus $3 / 8 \mathrm{in}$. diameter, water olus 1/2 in. diameter ard water plus $3 / 4$ in. diameter mass marbles to determine the effect of the particulate objects on the heating rate. The jars were neated in a water tath and in stean - a1r mixtures at 165,180 and $195^{\circ}$. The temerature time neatin: characteristics were determined by thermocouples located at the slowest heating zone in the container. The temperature-time data were plotted and the resultind curves analyzed for $f$ and $j$ values. The effect of jar size, water vs. narbles, marble size, water bath vs stean-air, and heatint redium temperature were determined as a function of the heating rate.

The resilits of the stidy showed a rood correlation between the surface to volume ratio of the container are the heating rate. The rate of heating of the jar increasei (f value decreased) as the surface to volume ratio increased. There was no detectable difference in the rate of heatinf
for the thrue size rarbles. Jars with the water plus iaricles heated sastir tian jars of water.

All jars heated faster with increasing heatinc medium temperatire. Greater changes in heating rate were observed in stean-air mitures then in a water bath. The difference between water bath and steam-air mixtures was small tie to the relatively hign flow rate of the steam-air mixtures; however, the water bath was more effective at $165^{\circ} \mathrm{F}$ with the steam air more effective at $195^{\circ} \mathrm{B}$.

## CONCLUSIONS

The following conclusions can be drawn with respect to heating 16 to 64 oz . jars in a water or steam air medium from $95-165^{\circ} \mathrm{F}, 95-180^{\circ} \mathrm{F}$, or $95-195^{\circ} \mathrm{F}$.

1. As the heating medium temperature increases the $f$ value decreases.
2. In these tests water was in general more efficient at $165^{\circ} \mathrm{F}$ with steam plus air being more efficient at $195^{\circ} \mathrm{F}$.
3. The $f$ values correlate well with surface to volume ratios rather than jar size, the $f$ value decreases with an increasing surface to volume ratio.
4. Jars with water plus marbles heat faster than jars of water.
5. No difference in the rate of heating was detected due to differences in the three sizes, $3 / 8^{\prime \prime}, 1 / 2^{\prime \prime}$, or $3 / 4^{\prime \prime}$ of marbles.

## AFPENDIS

Nonenclature
$F$ is tine tine required to produce a given sterlization erfect at 250 derees $F$.
$j$ is the los factor computed from $\frac{\Gamma_{1}-\Gamma_{a}}{\Gamma_{1}-\Gamma_{0}}$
$\Gamma_{1}$ is neating medium temperature in dexrees $F$.
$\Gamma_{0} \quad i s$ the initial temperature in desrees $\vec{F}$.
$T_{a}$ is the temperature at $t_{h}=0$; the intercept value of the straint line asymptote in desrees $F$.
$t_{h}$ indicates neatinn time, the time the container is subject to a xiven heatinn medium temperature. is the time required, in minutes, for the asymptote of the heatinis or coolinis curve to cross one low cycle, i.e., tne tine required for a $90 \%$ change in temperature on the linesr portion of the curve. Subscripts are use to denote successive values if more than one linear portion is used to describe a heating or coolins curve.
h is the surface heat transier coefficient in $3 \pi U / h r$. (ft. $)^{2} 0 \therefore$
 Food Eotmology• Nosram－Hill Inc．，New York．633 pp．

2．Bl彐1sd：ll，I．L．（1963）Natural convection heating of lizuid＝in unagitated food containers．Thesis for the dewree of rh．د．，Nich．State Univ．，East Lansina． （Orgut！saded）．

3．Coulson，J．M．and J．F．Pichardson．（1956）Chemical Erimering．3rdedition．Pergamon fress．ivew York， Loncion agi paris． 331 pp ．

4．Nerson，$A \cdot C \cdot a n d$ E．D．Hulland．（1963）Canned Fnons． 5th ediにisn• J．A• Churchhill Ltd．London． 279 pr．

5．Joslyn，$\therefore$ ．A．and J．i．Held．（1963；Food Processinx Demet＇once Volume II．The A．V．I．Publishin天 Compery Irc．$\ddot{x}^{\prime-}$ ：vort，Connecticut． 530 pp ．

6．Nicholes，ג．C．ant I．J．Fflug．（1961；Heat orocessirec characteristics of fresh cucunber pickle products．
 44：522．

7．Pflux，‥ J．，J．L．Blaistell．（1961；The effect of veloci．$\because$ es stean air mixtures on the heating rates of glass 口天：tininers．Zuart．Bull．Vich•Agr．Exp．Sta．， Kich．：tate Uriv．44：235．

Leferences (sontinued)
B. Pflus, I. J., J. L. Blaisiell and R. C. Nicholas. (1765, Rate o.. heatine ant location of the slowest heatine zone in sreet fresh cucumber pickles. Food Technol. 19:121. 9. Pflug I. J. ant 3. C. Nicholas. (1961) Yeatink rates in giass containers as affected by heating medium and product. quart. Eull. Fich. Asr. Exp. Sta., Nich. State Univ. 44:153.


