ll i 7 124 750 TH _ LIQUID EXTRACTION IN A PACKED PULSE COLUMN Yhosis f0: 9910 Degree of M. S. M!CH£GAN STATE COLLEGE DOMINIK MARTIN SCHULER i953 V '\ 1E5 T: 'I 195".“ If f - -f '1 .‘u../.7.‘~ f ’Q'IOI I,“ - 1 1C a r); 'v'y‘pfiu *1)... (q, . h f5? 7?; {\f .mk-AJIJ It ‘ Ii"‘=UA ".u A I : Mpg 1». an”: Luau-J: w by 30min1k Eartin Schuler $ubm1ttal to the Graduate School of Richigan State College of Agriculture aufi Agglifld Science in partial fulfillment of the rcguirencnta for the de;rce of ~~n (inf-*9“ ‘gcc (H \T?“,f"§‘ :wi-‘JL .:. A-r ;,-\,;nr..x-...'. Canartment of Chemical gagineering 1953 A i"f .7271} IA‘EI OE? Vie writer wishes to eXprcas his aggreciation to :r. u. u. COOper for $13 helpful tugbeations anfi counsel during the course of tits inventigation. T5; ”113". 0.?" C '1 1'37 i7?"IS a Intra‘action .1? Tbfloretical Part 8 ”igerimental ?Mrt 10 Fe suits 15. fiiscvsniau of renults 23 Summary 5 bibliograghy 27 V‘,H‘:¢f .\-'.H‘x:“i VT 1. ‘l'ia.<*.Q./-!(3¢Irl'£.‘ Continuous liqnid-liquid extraction is usoi imlustriallg to a grout extent where separation or purification oy distillation or ad- oorption is ianractical. Extra tion is often performed in vertical towers. containing a.rayo. eiovo ylatoo. or saffloo. or they moy coon tain a packing such an Fasckig rings. In any case. one of the main problems 1o to obtain aioqnato mano transfer in a roaoonaolo height of towor. To do thio it in fieairablo to have among other things a high interfaoiol area between the two liquid streams. Baffle-type columno may be considoroa as vortiCal mixer-settlers in which the Contact of the two liquid otreamo is atago-wiso. h ffor- oat types of baffles are in use, but the efficiency. 1.6. tic number of the theoretical etagea, is nauolly far less than a column of the same height and decign would $1ve in dietillation. In extraction th ef‘foctivonooo of an actual stage is usually a small fraction of one tioorotical plate. In ograj columns one of the two liquids is dish road in fine drogleto in the second to obtain a high interfacial area. The height raglirod for oao theoretical stage in tbooe towera also it usually high. A packed column Lgnerally gives a better efficiency than one without packing. and this may be due to an increase in turJulonoe and inter- facial area. Powevor. even in thene columns the efficiency 18 usuAlly poor Locauao the only forco available for mixing of the streams is the difference in ionsity of the two liquido. fiechanical cont3ctora other than towers hnvo also been used to some extent. Vitractiou in a set of miiero and aottlera is common practice. Another fiovico extensively used in acme in us “1913 the fio&.ialnia :. L30.. co trifusal can Motor. which uses a big 33 epoed rotor wi‘h a ariral ribbon for contacting the two liquid ttreamm. Bartela and 371331213531 (1) report that one of '33-.er unite ma «333.31%- 1ent to about four theoretical stgges. ‘ho acmpany claims that some reflui3eo contain as «many on 15 theoretical ota as The mechanical difficulties involvod in devices of this tort and the generally poor 53orfornance of ez;raction colunos which are not afiitatei hag stimulatofi efforts to design vertical extraction columnn in which M 3itionalm 2. icel oner3y is mgpliod to tho qystam. 3} cc ways of fining thin have been investigatoi: a) A toroato mi3= in and oettlio5 zones. with mechanicallg opera- ted stirrora (usually with a rotating shaft to Operate tho stirroro): b) Vi.ration of tie whole baffle auaomqu in the tower: 0) ml: 3tion of the liqail phaoov vzhile plates or p3ckin3 are in a 5 30d pomition. & vortical tower with a motorbdriven. rotating shaft in tho coon tor.o 3Lich a number of stivrora havo bcca mounted. was mi mi and to~ro31L 3 .vontigatol oy mibol (3, 3). “Lo original colvon coo- tainei wire monk packed calmih “ no nos and mixing zones enur3izei my stirrera att,chod to a ehaft roaching from tho top of the column to the bottom, with a bear 33 in tho liquid at the uottom In this column. ona stage. consistin; of a mixing and a aottling zone. can have an efficiem y which exceeds the effect of one theoreti- cal 8:333 because of the aiiitional contactin3 of the two liquid streams in the settling zone. 039 actual 93339 is usually nearly equivalent to one thearatical stage. In a can-inch column. hei3hts equivalent to a thearetical stage of 2.2 in. have be~n obtainad by Neheihsl. In a geni—comnercial multi- fita;6 extraction column. 1? in. in diameter. fienigned 3y “chcibml, the hei3hts quivalant to a theoretical Etaga variei from 9 to 15 30133 (3). For a deoiun of an extraction tower with a vertically Viératoi plata 33933313, Van Eijck (S) was 3rfintci a patent in 1935. In that gatant to deficrioca also a nystam with the platos in fixed pasition. but with a pulmcd liquii phase. For the ayotem with a vi ratei 313t3 ovoeaolj no fartLor informa- tion was found in the litargture. But the other modification with fixed plaioo uni pulacd liguid pL3ao has been atuiici during recent years. Several atOQic anew“: inatallations of this kinl havo'been built and Operatod, but few 3etaila have been publiahci (fl). “taco. 3.1;? 5.302331; and. 326-3316? (7) 3mm? dosigzzad a 33:39.11 pails-:38 Mama‘- tioa column with :erforatad plates. and invaniJEtoi its perfornanco. To 3;;1J a vibr3ting motion to the liquii ,haso the iaveatigatora usod ‘ .. 2' I .,?",.*'1.3. an low on 10 in. “a M: a cam—drivan hollows yulsatcr. Values 0 have been obtained w tn the eyetom wateruiznamyl alcohol. The fliameter of the column was 1 in. k packei extraction column with pulaod liquii phase was invaoti- gated by ?cick And Anderaon (8). They extracted bonzoic acia and acetic acid from toluene with water. and operated a column with a I ' w ' r': -1 1 niameter a: 1 7/1. 13.. £11133 with j/o in. n"Ii r1133 3r 3 in. ficiahou 3333163. “or nenzoic 3013 the rapartufi haigkta cf a transfer unit vnry from 1}.5 to 3.07 feet far the unpulsei column, and for the Hui ca lung iron 0. 7}? ta 0.535 ft. 13 tha c293 of acati O acifl the b3153t of a transfer unit was 1.1 33d 0.“ ft. f3? the ungulrad $31 333 pulsed colu3a reagectively. It is inzereatin; to note tLat 1:3 graat- eat increase in peri ormnnce due to p3 ;aation we wrel 13 the caqa 3f the be3soic 3313 where the efficiency withoxt 331331103 was very poor. A similar iHVBetigatia3 was publiaha -i b3 ”3:: fer; and ”iaéqndt (9). ihcy give the inz'3rr3tio:1 t3 -fit in a packet colut.3 o. 1; 13. dia- meter. filléd with } in. ?&3ch15 rings, the heibfit of a tkearatical “ stage was ?.8 in. without zyvzlfi ation and 1.13. with yulaation. In .033 of tzeso refer '.ces only a few invariant dstsil3 are given about the aziractOt per ?3rnance. :33 - .Le present investigation was ”3 ert3ke. as the firnL nt:3 in 3 horou111 study of the pcrfarma: ca of ”-1321 303.1m33 far 11 xii- liquid extraction. II.'77§?3".‘“T CAI. FIG-3"}? CJ-lculra $.19; .91: tLe fl’icie‘e'tcj of tits-3 '71" wri’Er. “he data for the per1ormanca of a column may as 6?;3 re 98} in T. .E.W. (height equivalent to a theoretical stage). or as 1.7.0. (twin..t ofa t*axcfor u it). whila F.T.fi. yosceasea some thaoretical advantaflea ever H.F.T.S.. its ccrrect use raquirea knowlefiga of the fluid film resistances. H.?.T.S. has seen need here 313cc 1% may as com uted frOm tPQ coagotitioza of the streams a: frog e"u111brium data. In case tha equili'rium line and the oyeratinfi line have the name slope. aha numerical values of H.V.fi.?. a.d ‘ “T U. are 113.1tical. Co minimiza the uncertainty of data Scheibel (15) progosed to mdke he Operating line nearly parallel to the equilibrium line. there the slopes of the tun lines differ greatly the number of transfer units would Ci1fur greatly. depatnding upon which of $16 films has been as umcd to Le con trolling. 1% all tie rur .3 made in t1 1% lnvesti uvtion. tb 6 oz ractant (water) had a zero cancanuration of the aalute (acetone) at the etart. Further— more. the distribution coefficient was relatively constant. In sue h ce.9es he number of theoretical stages may be calculated accnrding to the furrula: ,: f 1) Y . 1 ,t (:11) ~33- H whicl.18 developed. for 1? stance, in De" "V's F niuook (16). In this formula 3 rapresenns the number of ifieal stages; and x awd 33 are the 0 concentrations of the naluta in aha naivent (caroon tetrachlarids) far tha incoming Rafi leavinj rtrnmmc revactively. 5 may be callad ”the thractiOQ fictgr". It is fi‘v ratio fif tEe @1033 of £33 equili- brium curvn to tke alaya of the operatiaw line. a V v \ q ‘7 1 '0 ‘ 1t in ayernfare also éivan by age ratio kg; Whore x in the dis- triuution caefficieat of th solute (acetone ; I 13 tye flow of the calvegz (carbaa twtrachloride), and E is tEe flow of the extractant (WRth). ihe'units URud 1n thia report are alwayfl gram mcls for acetonn and liters per hour for solves: aad uxtractaat. 10 1. 7'.i@ficri;;?*.i?“. Of the Abuarpttfi. Fhe apparatua defiigncd to 56% same i1formation abnut the perfor- mance of a packed pulse column is reproduced in detail in Fi;uro 1. It cancisted mainly of a column of gyrcx glass with a diameter of 5.2 cm and a length of 199 cm. There was only one kinl of packing in use. which connictcd oi fiaschi; rings made of pyrex 513cc with inside and outniie diameterc of 0.55 and 0.?8 cm respectively'and a length of 0.?8 cm. The packing had a height of 81 cm. It was supported cy a flat spiral mada of monel metal. On this spiral ware place} two layers of Faschig ringa with a diameter of 1.15 cm, in order to allow a wider egacinl in the winding of the spiral. "he spiral itself vac sup orted from the cotton of thc column by means of two eup,ortind stripa made of monel. 3 the: 231 of the column was closed with a rubber ntopgcr through which tie ilacs tubing for tha different liquii streans extenfiefl. Che ctegyer at the lower and of the 0015mm vac covered with a layer of aercury, adout 0.? cm in height. to keep it protected from the influence of the malvunt. The upper 930396: was in direct cantact viii the air space a.ova the liquid. The g.c..‘..s1-a3«.t‘.-'>r concistod of a brass bellows with an inner filameter of_5.5 cm and anon: 10 corrugations. T33 pulsative motion was produced \ by an adjustable motor-lriven eccentric. Fbc ballows was co prenscl hv a flaring ~ I «J and flraun back by tFe prencure of the liquid Mien the 90,133 Overflow , Polyethylene Packed Column Restrictions . | ‘. Ia. _ I}?! .1 A .lIIllllIl.’ ll" I'll‘- ‘5'“..‘1 I’ll... _ . “ ll NV. ... a l _ II lll'l- -‘liu |I \N'lllllll... “VIII! ...|. Mr. .lnlu I t .l . I II - IHIN up“ Ill- .D. I I III - ... Fur { llll il.--..-. - 4 u . t‘ll‘i .III' M a” ~ v. 5.... m so aa 80 Hm So on k) 1..I 4: t 3!}! In J \ III. t 1' {llllfw .“rlll I. r {I l V. c“ A 5 8H J .m x ; , Damping Flask 1 FIGURE Extractiyn Colunn with Pulsars? Pulsator 11 was comgrssssd hy the eccentric. Vhe bellows was closed with a rubber stepper which lasted three or four weeks. i glass tube wit} an inner diameter of 1.15 am co.iected the bellows with the bottom of the column. To get a relatively steed? overflow of the liquifls during pulse- tion, care was taken to have a free air space of 7 to 10 cm height setween the run er stooper and the liluii level at the too of the col- umn. For adiiticnal damping the air space was connected t3 a small glass tu,e to a bottle haviog a volume of about two liters. TLe two solvents to Operate the column were stored overhead in two S-gsllon bottles. ate height of the shelf for the two settles. measured frcm the bottom of tie column, was 2?0 cm. For most of the experiments the flow of the two solvents was con- trolled by fixed restrictions in the form of little glass nozzles in~ side tte tubing. the connections of the glass tubin; were sods with ;.>o.1;;6 the" 16 as mild ng. ch system scetcne-water-cerbon tetrachloride was sslectefi because of convenience in hasiling, sci because the fiistrizution coefficient is relatively constant. in contraiistinction to most dissociatisg com- pennis. Furthermore. the quantitative analysis of acetone is not too cosplicated. The experiments were always started with a mixture of oeracn tet- rachloride (Dow, technical Grade) and acetone (fierce G.?. reagent grade). The acetone was extracted with untreated tap water. The extact, after 8 splinh. was discarded to the sewer. and after addition of more acetone the carbon tetrachloride was used in tho next run. “J moans 9f thi” procedure no ci'itional uork for regeneration of tie solvents was re- (glared. I" montcnt. 0‘ ). finalfric of écctnnc for the quantitative analysis of acetone several methods have been describol in t} a lit crot"ro: and .;hio and ‘~chulz (10);;wva an abstract for different matholo 25 years £59. The reation of acetone with Lyflroxylamine k:;.:3rocL13rifie. in which tte amount of acetone 13 determinod my titration of the Lyirochloric acid formed. was considered tLe most convenient mothoc. It is in frequent nae for the jetcrmination of certain Letoncc. and rye first fro,occl for acetone by Locpnor (11). In tLio azaalgzis certain conJi- tionc. mar' oi wLich re invcctigatod :y Marts o (12}. havc to no consilcrcd in order to obtain ruliablc and regroduciolc results. “:o urocedurc Hrc1erred for the dctcrmination of acetaac in the two solvents. water and/carbon tetrachloride. followed in 5oncral the inventi: 5ction ofi Bonnet t and yonovan (13). fl valxmo of 20 ml of the col: tion wlocc acetone content was to be deter; 11M ran first neutralized with 331. us in3 notW l cran5o as as iofiicator. ahero wan thou afidefl a volume of 10 m1 of hgiroxylwmine *Jirockloriie solution of 1.fi0 normalitf, ani finally a valune of 10 m1 of o+asmizm L ‘roxilo of 0.?9 normality. For comylction of the re- uction this mixture was than expaecd fort two hours at room tcm19rat1rc. Aftflr this time th mixture was titrated with hydrochloric acid. using methyl cran5c no an iniicator. To prcvont losses due to vaporization & 1’ -m1rlonnave« {139% with a 51389 Stofiyer was used. the 13 procedure with carbon tetmchmrme was swath; the same as with the aqueous. 9011131022. out baczusc of 't}.;a fact. thzat we reaction grahasly gnaw-ins only in the aqueous 33 page. the use of £21:'J‘.1"r3,:1;z was lament-ad. '10 convict they two 111111115 well without causing 105mm, the stagger-ad {12-13}: wan mf‘ecz';a.szically rota-steal arouai its axis in an 12-m112csd 91mm. A 1.2 cm Macks; ring 13 the flag}: was intended t;- 1zxa'sum 15.33% the. mixiag would be turbulent. 1 -Le hyiroxylamina method 18 reparted by K0?cman (18) as not givin; satisfactory results in cam vu-ry wall amounts: of acetnne have to be determined. Therefore, Roma tests were undertaken to pram: tirie m that}. your 10 m1 aasrzglea of an 0.}‘L3 normal timeout; solution of ace- tom were analyzed; two 111 the pres-sauce of 39:0 :31 a: carbon totmcblar- 6 1:18 23:3. ti-e other two alone. I'}'*,e gamma with carbon teztrachlm'izlu were Shawn thoromgily bafom fig readonta (Eigydrorwlsmine lgnirrscnlaria‘. V 3otz'sai‘sm Eviclraxitie) were sci-“ed. '1'1 tration with 1‘}.‘3‘;u. narml ‘1: a31& required 8.75 ané 8.57 ml of tydrachloric acid for the sinwle flu-o stage-011:3 mlthimm.‘ For this autism in which carbon tetraci'xlor- 1-.’.e ma grave-m. £23.32 anti {3.633 ml. ware r- quiz-(zed. Ira-:1: “$32036 analyses the calculate; acetone content. 11‘! 3.3:) milli- mols for a 13 m1 gaggle. Tince tie aggraegxflgt was better than e:~‘__;;aected and fa: better £222.21 necessary, this analytical method a peers satisfactory. 1%. «Stem affiéic '*‘:§+;:‘.ri'r:-fr-1’T-=*al Imrmtij'tirm. . ’fl'ze eye; tum tin-3631' consideration. a pa :ze-Ji puma (-3me 110:: colmm. ma 9. (great. mmbsr of process varialxlee uh ch determine its performance. 1!; the praceas variables which might be taken into consiieration are: 1. ”1nd of packing: 2. Uiametar 3f packiflfifi 3. Fcight of packing: “. “agraa of settling of packing: 3. Tiamater of the emfracting column; ’. ‘mplituia of pultatioxg . $rugucacy of pulsatian; E. Vtapa of paladtian curva; 9. ?low ratefi of solvent; 10. T%a particular calvents and solute; 1. Choice of cautinuoua phase in the column; 1?. ”ivection of tranefer of rnluta. .-.> :5 investigation inclufling all the process variables vault re- quire an crtremnlg lflrge number of test runs. The exhcrimfiatal waflz. iferefore. cnubi include only a very limitefl selnction of this grest sun fit of fiOSuibilitiafi. Fur thin investigation these variables hxva been cut Soun to only ona kind of packing (0.?6 ”aschi; r1359). one height of packing (31 cm), one iiamctar cf the column (5.2 cm}, and aster always as the cantiauouc phifin and as the extractant. 1L6 pulse frecuency was kfigt cacttaat aafi the motion of the pulses wan plwayn a nroximntelg a pin wave. V.e test runs include} the following investigation: &) ?loeiiab rates w thaut pulnation and with diffnrcat pales axplitufia: in a well scttlat packing; a) Tfficiencg of the column at constant flow rmtea ani different pulse an litudes in a well settled packing; c) ”friciancy cf tfle calumn at one giva: pulse amplitude an. éifferent flow rates of the solventa in a well settled packing; d) Cow9°r1rna of the c.ficianc; of tie column at given flaw raten and palsa an litudea far a well aattlad packing in 020 case and loose 15 fillofluin.fack1ng in the other case. 5. Q--.‘-I"-'4t_171-; ‘I‘roi‘o’t‘ro $39 of tho two foofl oottloo ovorhoofl woo filloa V th tap water aud the othor With carbon tetractlorido contfiinin; angroximotoly 1 percent acetone by wmight. Io moot runs tho flow to the column wag fixod by nozzles in tho lines. the pulse soglitudo of the lixuid was dotoroioed by moanuriog tho total di-plocomaat of t?e liquifl ourfooo at the top of the column. «he flow rates were determined by measuring the over- flow from tie column in a given timo by moono of graduated cyliooors of one and two litero volume. The interface of tho two liquids was naintoinod at a constant lovol by adjuotind the height of the flexi- ble overflow for the carbon tetrachloride. Samples were collected from each stream 35 or #0 minutes after getting the oyorotio; caofiiu tiono (flow owl lovol) constant. Since the total ho1&Up in the column was only 2.5 liters. this flow rate wax oufficiont to roglooo the liquifi in tho column several tiaoa flaring each run. 3...: UK 17 ’.‘." {‘1 3"? £51" . . H. L.’.‘Ja.,‘-I the adta for the distributian of neetogn in water and carbon tetra- chlariiasereréaterminei by ahnkin; thnrsnghlf nearly aquml part3 of the 123.0 malvents tafgfith’i‘. with an amount of acetone in a acgé-.rator;y' funnel. Cnmtlaa were takgn fram tbs twn layorm anfi anaxyzefi. The temperature was 31.2” C. t—dti‘éin 0.5”- £2153 refillts £3.73; .lffivfifi 13 232318 I. unncentratlan of acetanc. millimols/liter .. . t- .1. . .. ' - .. . p30 )Hare . -tvlu,eua~e Histrzuution W -—— . A“ a f 'f rnctf‘c*Ar+ J, c.- uxbmem 173 83.0 1 233x5 1}“) 1 153.8 . ?1.0 “.1. ' 1 1 05.13.) 0 {a - ~* ‘ w 3 {3.1. ".4 (an. i 33. 17.” 3o 7 1;.52 5.u7 2.@9 1%: shown in the graph. tigurg g. the ratio of tin can.entraticn of acetjno in the two solvsnta is an an ially canetant in the range unier cansideration. The average value for the éiatribution cceffin '7’: . \ clent W 13 2.135 an a valumetric haste for tie salutiona. .J; comgaric son, wcidall (l7) ragortad iistribution coefficients of 3.295 and 3.235 at a tanpcrature sf ?5° 3. far the rangn covarad. 1? 'J- u h ’- '? ,. . 2. 3mm in“; vat-.022. my 2212111294 203135251. The 5123011112; rates hava been aietermtnafi. for tit): 2;.-:222.ls'ez‘. coltzsm unarier norm]. camiutione with well set; 43:1 pad-£1513. ‘37}:e *‘zata have no 111511 (1.2.;1-99 of regrmlunibility. 301292123": 12609.net:- of a. twat-martin which m_;: ":39 invnlvnd. TfljLfi 2. .7- . n.- 1 .1 I" '2 2'2‘2- 1:1. .- “3314.5.“2; -.t.:.:.*.2,r~:*1. 1'“! ., 4- A 14A .. . s; 7*?22 .22 2.... m"? 3...? 3:323; V m Yafl “h?"fi Cfllk ”hafia i .. A- ’ »_.. 33,) 1;.83 , 1*.n “v.2 \‘£&.l 1?.U 394.2 . 21.2 1%.“ 31.6 The; data. are 13.111552?th in 2’1_;ure 3. «mar-fling; to literature reported. by “fa-03M}. (13). the m2; of they sqmre 2::th of tie line-2.12 a‘zgpczrflcial liquid velocitias (based of the empty tower aroma section) at £1,109.11; mould. give a. stra.i.5E'-.t line for each system of liq-21169.. It was furthermore shown that tm m of them tun 82:13.36 rants 1:5 nearly a cone-taut for each watem. In the {$223.22. I‘t‘ihgtre '3, the. 52.2.2.2: of the square roots of titzets. yclmitiea 1:3 also Nicki-r1. It aggxeam nearly a Egarizontal 111123. at! expéctad. 3. Ilhfifling_f“t§_ffir {Fe flfilfifil Tfilvmn. :29. flats. ft)? 1:112.» {10051213,- ratea for the pulsed 091mm with mall settle-.3. 3}“..01-"1121; are given in. Table 3. ‘='«"3.th 1.2;113at103 tire r23¢.:ort mi 18 instabilities were ovex graater than in the unpulsai column. the re- sults are corresnoeiingly lens reprofincible. “be puleu frequency was always 125 étrokes par minute. ‘,94 3.: \«~ “imaging; 2:: 1:1 3“.s..“f3*:23'3 301mm. Pulse Flow rate Amplitude liters per hour 2'3 1315‘. O 20.? 1?.0 0. 50 18-. 1908 0. '35 10. 22 1‘. 5 0.88 16.3 13,? 1.15 13.2 13.9 ”he (ata are plotted in ii are a. TLe plot 3f tbn quare roots of tra valacities in this case apwnars to me a elizhtly CRTVEi line. 4'4. fifrifi ti 2!} cf 3':- rf’grrfince 1-2.1 4.132 7" .1922. .12.. mwll $35.61. The inventigaticn was performéd at conntfint flow rates anfi V&ri- able pulse amplituia. The frequancy of the pulsatinn wag 12fi strokes per miante. tre well settlefi packing cansietai of 0.?3 cm Ranchig rings. the heiqht of tha packing wax 31 ca. tte continuuus phasa was wqtar. which waa also the extractant. The flow rate of the caraon tetrachloride wag 18.9 liters. aha thr valocity of the water 13.2 liters per hour. The temyaraturo was 50° 6.. camstaut Within 2° C. Ijat 30° 2 I'If ; I 1300" mfIIImoI$ ac e;one {I1FI' I . ‘f“** I I: -§“I"-j-j-#; % perI lite; of ater “'f“*, f*' “I" ,I‘ “ - __.._ __ I i L L ' ’ 1 I ___I.__._I_._._J,__. W ! L : Y I I; II , , "I; i ? v-f ~ —r; -:~w« u+&~I: : I -:4: '"‘x*fi“m“ff“ :vI~: Mr~ : I . I . ‘1 - - ‘ ~. I: I a s- I * —4._.._L. I 4-5-- I . 7 ' / I I - ' I I ..- L...“ I ' I I I ' . ‘ : :I ~ I (I I . ___-_L.____ I _, ,_ _, I” _ , ._ ;,_.__ «I» . _ - _ .. .-.- . . . _ ._._ - I.-._T-.7_,_ .1. III-"II“ .__ ._ ._" "T I I I I ' .j I I I ‘ ', _ I . . ,:. I I I ~< , .‘” ' _;.1«~1 1 ' I IiH-%% 4 : - I «I -' I ,5 . 9 I .-I .I 2 ~ I *I"FICHHRE”2‘“”I"’""' ‘ 'I”** 7**‘””I"‘ITI‘ "_I'°"* T _‘ I ’ ' g": A : I I I *“j’mt-i““1 f ‘iOOI , I'~ : 5 Iv ‘* ._ _D,-BtriIQUU10n - .. _ I H N“ 1.. w- _I. _. ”I”; A. . .1.-- .1 . I :; .1 I , H_I gf _Acetone _ ; I L I I I _ I i i I .,; ,‘ I , :. {Ii— water anfl I __..:-_ - -im. ;. _....I_-. _.LI_I ‘ :.I_- ._'-. agrbonIretrachloIide I 'I' ' , s *"*“*“‘ “*1r"“l , - * f'*‘ ! . I EcokwI ‘I41I150-451 llimo o... _ I— - 0...: a g - m..- :3: f' . ‘ ' ‘ I ' I ‘ i ' I I , '. 5 r-+~-L*+ ' ' ~ I I f ’ i I acfiFonfiIPP?_liierrof« I-f .-J_ -3- _; --i WI-I; _Iu I ';Ifig9§ib@n)Igirthlpridq ’ I ' I . I '1 I.‘ I ;.I ‘.'1 I . . ,___.__.___-_-.___.. I I I I.» ; _I I I , 3‘ é I ' I W: VI = ‘ - . r - I . . I' ~ . I 3 I' I ~1Itersof: W138?“ * 3~~ -_ :-- -— j ~~ — ; 3 *1?" ‘ I LiT‘f‘f IW' “‘ "I I' I I I 3 I ‘ ' . 1.1,. ; I If»: I ‘ I~--'-i9€31‘-~.h0=;tr—-~-I~\-~.a T * "“""'“.“‘_—*”“- 7-1.,” *"I— ‘ 1‘ ' IMTII’f—‘kmj— I'“'t“""‘ '§_I I I I “\ I I ' I J .I,I I.,I I.; I I H i ” I I I ‘I ' I‘mmef‘I . — — 7 I "M “ ' . , 50 5 7' I I I . t .; I “” “f‘” ‘ I ‘ j\I “““T “'L-WIIIIIG'IIS Cf “In—”W‘K‘LI Cur ‘I a; , . I x I ' I I i' II'I” . I r..-_. . .II -1 _ -. I- _ __ -. ._.-. . L__..-_;_-_.. _ ILL - ,-,_._;L.-___-;_..'_I _....1- _.__,j.. . I__ . . I g i (rowI .I'B-te ofcnrbon' 5?3. J i ; I I tetnacalo 3 I * ___ -4; . .... ~r+It*”*L“*- ""—I"—‘ _ iter I I Y . . I A oddin;; - I I I 5] Sum df sQu 7' I Ghfi‘dl I . I I I I . I thout) I ._J IL _ I . I K. t _ I A III}: :5: ‘ I4". I??? “9‘ " .51. -'.? ”Ifri'r1i*. jF%°°flifigffigtes ““ -I I , . a I . o , . | I If arr—“- +4.;J ' L My 9 (120...; 1,1,4.-. {M93 g; cm Q at (.1... H, .1 lfv Q Q~ad . j~ ‘ ‘ .IJ . ' ‘i ’3“ < LLfi/IAL'Q 19 “um Pulse .Acn .nne1,m 11 8319/" fiumber EEO. ‘15-" 11312.6 :4. ' g“ .I: :1; 0f it‘lefil 1.130.110 0 .__. ._£1L_. 12. 221. .11 on ._121_._. - 1 0.00 0 21h.5 218.8 70.0 1.13 60.8 ’ 2 0.?8 0 2&1 23C.5 53.3 1.77 45.7 - £- 3 c o 23‘ 213 75.9 1.337 61.0 »"* 0.23 o _ 6 215.5 A7.1 2.13 38.0 -« 5 0 o 2%} 212 77.3 1.3» 63.4 6 0.28 o 239 217 12.9 2.25 36.0 7 0 O 19' ' “‘4'”. 5 (J30). 1. 31 {1'8 L;,/3 0.40 o 252 228 31.5 2.51 32.2 —» 9 O 0 1?? 183. 61.0 1.31 *1.8 "’ 1-0 5.82 o 2. 185 16.93 3.62 22.1; .._ 11 c o 122 105.8 52.5 1.32 60.8 2. 0.23 o 2'371'.) :72 9 .93 11.53% 1-137 13 o 0 252.5 203.5 (7. a 1.31 11.3 (14: 1.15 o 313 211.5 11.15 5.01 15.1 1_5 o 0 203.5 222.2 6’. 1 1.34 50.1 ; ~41.) 1.10 0 1.17.5 2214-.5 11. 37 11.23 1:11» _._ 17 3.20 o 311 217 20.1 2.21 13.9 13 0.20 o 222 :2. 1.57 2.10 19.7 t?u column started at the pfilnation of about 1.1 GM. 1'15”. -' ;-u data are reprasented 1n the Mr 11211810 the {£467,213}; QB a, “10:3 atalvrted to the nambar a LI . UHH Wit? at C.?O Cm. .4 .- -' if. .f1::t 9 In this test the flow 2. For theaa $73.31: . r51 be. 1-2111 111ve:1t.1g;.a £11 0 Tea 80.719 of 11021 stages. W3°41‘ I)-_‘l “(‘11 Lflq-‘y— ‘ variatio» atlljd. 5'" 011’ I-‘gfl - 1,.-w14“ The get 115 9.3111, figure 5. Flaoding of at the same-am- ted up by the 31111 sad there is a break 11 the curve regresentina of the pcrfarneaca of the pu13£é col- pmlso amplitude was fixed the: conditions were as LiVBJ oefcre in Table 4. 1 ,1- « 4_I.91. 'J—ril -. . .m 1.4. ._. A .4 H . 4 . V _- _ . .. .. .1. _ mmufifirdHQL-rm vafiQW 4 4 4 4 , 4 4 .4 4 . .2 fl. 4 .. .. 4 . :4. 4 . 4 4-7.. - V. . . a _ u a- 1.- i -i I...- . 1-4--.. _- 2....- ” --:..-Mr. -. .-.....-.... _ 14.-.; .. 312.52%- .. mumumad+nvo....a. __C. _ 4 mac . .. ‘ -,; 4 . 2.0.. _.. . _ 6.. H 4 . A_ea -4--4 4 _ 4 4 4 4 . 1. 4 1 . 4 . 4 . 4 4 .1 4 - 1 . . 4 V - . . .. 1.1 a L. .. .4 4 - _ 4 4 .. 4. - 4 .. . . . . . ..4 ..4. 4 4 _ 4. _ . _ .. _ . _. _ . _ ._ . .. . _ 4 . . . w 4 . 4 4 ._ . .. . x I. 1 3.....- Lfi I 1 - 1- y- ..1 ..u- 4 1 - 1+: -1 I 14 : :1 {1.2.3.1 ---¢L-+:9-. l . I 114 i.- l - - - 1 - I+l 1 1-1.. 1- 1 ..... 17+ 1 -:...; 11:411-114-! L _ 4 1 4 . .4 . . n 1 1 - . .H 4 1 4 . _ H .4 4 .. u 4 .. 4 .- 3141: +1 r- _ .1 r - .lilwl-II W 1 .- 21 . w 4 4 . 4 4. a 4 -. _ a _ . . _ 4 _ .- H . 4 .- . _ . . , . -14... «41...»- *-»4.1_-“- .4»..- .... .141 .4... H 4 . 4 _ 4 H . V _ J. H - C 1 4. I. - u . - . . . . . . . A1 4 H _ 1 . 4 4 4 H 4 4 . . . 4 . fl . __ 4 w . N . .. . . - . 4 . . . . 4 . . 4 . - . . . 4 . . . Y1 O .H!‘ V Tloll |r-&I \01 Till)” III: :4“|IYIO* lll'u l. ‘1 l ”(.14 1110 t .1 110 II l. [01! I ll.AH—Iol.i‘lb- I ¢|n . +Y-IOIOILFQII {vifirc'lllthlv ..I'J‘uvi‘lll." |.9|c1A- Illrvlfil.r¢'-I MW ~ Oivl-fll‘l: v ID.'-|| v lull: .4:l..lu'l4jnlaltl.'h.tli ”-1 .:..1 1. . VH - Y. .Alrlly rOrllo' Y'all.r1(l..o\.lo.li.....'\ I H . . . 4 a H . . . . 1 . . . h . - . . _ _ o . . . .. . . . .- . . . _ . 4 ‘5 4 . -. . v . _. 4. 4 .u 4 _ .. -4-.. 4 .. . .. . L.- 4.. 4 . .._ H , _ [r4 _ . .- . . . - 4 , . Lynn-tn-.- -. . . . ._ -, - . 4 . .1 4r . 4 4 4 4 4 .4. «1.11 4 .4 .F. _, .14 fi 1'14. In 1 w l J] 0| filll‘l‘IwIWlV 1f W w-wl‘l 14* ‘ .1 .11 'I'Qlfi 'l‘llqt- 1' Lwll-u'l WWI .l | A III-VIII. .H II lllo 1‘14 v.01 1|. IIOI I A '4’3 lib-.4 .I u: .Wi. .1. 4 In '4. 1 .m- ..cml All 4 .. .1. _ . 4 .4 4 4 . 4 . . - 4 . . - .. . . 4} 1.1 _ 4 4 . - .. bl . . . .. H . 1 . fl _ . . .4... __,_. o—.—_ ._.. _.._‘ _ 4 Ill‘l r . 4 . 4 4 . . .. _ _ _ .. . _ _ .4 - . a H- v: b. - . .H HI W “ 4 ~ ~ — I . V . . _ 1. I4 ‘- . p. . . — 4__- . - .:...- . - - 9411.4 -.-. ,. 1.-.--- .., -.--”.-!--;--.v .It- . N....-..-...---4I-...+5-._1--Jar-«1+--. 5-11-1- -.-- .1. :1. .- J - - ..fw :1 ._ . . _ . . _ . _\_ ,. _ . - . . . . ._ . _. . 4 .1 _ 4 4 . . _ ._ . _ .7 . 4 _ . _. . . . _ ‘11.; it: _ L . H ..... V y 4 . 1 A 4 fill?! .Iol. Inn-.114 w \4xll . . _ J _ 1 . m 4 WI' T 4 4 _ . \ _ 4 _ 4 _ ~ .._ 4 4. . .. . L . .--- La- 3 1.3;? ti! .11! .11.- :r... 1-.. i...-1...l... -13..-. . 4 4. T 4 -. $4 3 4 . 4 “tr-11 4 . 4 4 4 . . . 4 .. 4 . 1 . 1 r . 1.. - . ._ 4— 1 -1 --‘~ TIL- I-+.1r_-ll-+l-l_il- L--T-|..4.I-r.!-i4 .- ill-i451. .1.- 411-.-.- -rlJ--HI-I . 4 . . _ 4 4 . _ 4 4 .. . . _ — w -. ¢ 1 - . I --. .._!-. .-:... --.. 4 4 4 fl l-IIIL” ll? l_.I.I|-|J!-9.I14!tA-.vl .71.]. 4 _ -———+ " I I . i -4. 44 ,4 I | t 1 o | L44- 4.4---- . > V, . .' 1 i l ._.—.__.._,. “.47..-- 1 l ‘ 5 l | 4-- ’4 _ I 414 ,. 4 4 _~424_ .4.._44.-.4 1 \ \ -O 3£BLE 5 .. ,- " fl . . .". ‘- Tulncfi gg.utn wit} Enriaslp low12.tqg. Run flaw rate Evaber 30. _ _ . of ideal 1.1. m .S. 1...... 1111110 11.1.12" 3.3.1. on La 32211. 41122-222 on 303.0 121.2 27.0 3.08 23.3 116 125 $8.1 2.82 28.7 5?? 122 13.29 1.15 ~2.8 323 131 122.3 1.51 -53.6 2.71.1.5 131.3, 111.. 57 11. 1.2 10 . . :5 1?!" PS7 70 55 20 80 2'1’09 25 15-“? “-28 129 25? 6.00 2 .23 26.3 26 12.37 77 121 202 2.53 2.22 33.5 “7 12.1? 5.69 139 #55 2.8 2.66 30.4 3 13.10 5.? 126.5 330 3.1 2.? 29.1 2 11.33 10.23 222 265 10.3 3.02 — 25. .67.2 232 6 .27 1.36 - 23.2 319 227 20.1 2.28 18.9 3.33 3.20 15.1 13.8 _,.I The results of this table are rlottad in Eigures 5 and 7- together 0600000000000 ux...‘ 4‘3 H “2 with mere data. Afiiscontinu.1cy at a flow r222 of 5 to 5 liters per haur of 501- vent may b0 oucervad. 2.32rentL2 at least two influences are involved in fietermining the performance of the column. 6.mfiffnc$ of Flow 5ates in Um 31931 Colu'n. The operating conditions of Table 5 have been reproducefi with the excegtion tha: there wan no pulaatian and the flow rates were V 2.391911. ~A.;.__.‘~. ‘T’f-T w ILA '\ ..R Ix’ I I | I. ' 11' 3,4 1.. __.'fl_-__ 1-. ' f I " T"‘""II A I . _ .,_ LrI..- -.l..._.-_4 f“ 74'” I (I , I) \‘ I I I I I I p I- N. -f. I I w IIIII -4} . _. rmwaw¢»«a-I;IIzyI;I:I; ..v —.-.—- -4 4m». 4 I . I . I . ‘ . I . ._.-... . .. .. . . NI . , . .. I f . . . .7.._.. _-. ,4 , V. I I I F . I ,’ I I ~-—.—-——-4———.—>4 “tan—o “Q...“ in ‘3‘" I I I 44-44, I I I I l...- M_, o I ! . If- I -7”-..— O I v I .. .. , | _.._ _- '7- _... I I - I ....... r a... ;— —---—~ I—-—-I~A~-» , I “———I-—-——.. If. ffi—‘T‘r' —“J‘a———‘. .. l A I 6 4 j v ___._ I 4+-..- -i,J-II__ 1 . IIIITI __ 5. NI. -.w:m»n¢»1nowvw _- bran. n a. 4.1 IIIIII.I III! 4 . - . IFIII I III I... 4 . 4 _ ~II l I I _ . _ w . _ “ -.. I, I r m . _ IIADII IIIII- 4 :_ . _ I . . II IL IIII.II4 IIIII I l o 4l-uun .ogm . _ r I.-. -4 ._.L_ o- .44 II I III.III _. ._...._ _ ..7— ....¢...—-—.«, I I l I O I I I . II |..I| I01 .11.... Ilgl . . . — I , . . ml: . - rIII I:+I IIII .IIIIIII LTIIIA‘IFI LII II _——_.._. 4. , 0M3? Hand.“ r 4 Iiimg I 4 _ r H _ . 4 w 4 _ fl v--'-‘l 215.3 6 Unaulaqd CnEuna wgtfi ?a:iable Flafi'FfitfiBo 1‘1“ :1ow rate 10.? 5.93 5.8? 5.933 9.15 “.75 “.51 13.1 Humbar of ifleal fi.?.T.S. 2+... , ' fna 2% 67.1 3&300 3301 1.10 7306 “$.5 227.5 23.7 0.95 83.3 3?.8 230 60.“ 1.29 ‘ 52.5 64.4 1?2 26.5 1.06 76.“ 203.5 909.“ 66.1 1.33 60.9 jus 2 2 113.0 1.h9 5h.) 3' I - ‘ 5h.) V 15.2 27 18 .1 $5.8 1.é9 #7.9 18.7 233.5 1“9.3 76.1 1.61 50.3 1800 231 15000 I .8 1055 5202 ?02 235. 90.2 1.5 59.1 230 1&8.) no.6 1.30 $3. 2?? as r31.2 1.10 "f8.6 253 250 78.5 1.35 60.0 5.: Cl) 0 0 000000000000000 5“ CS \3 i: i p 1...; I ’t' xb 1he renultg of this table are plotted together with the data of Table 5 on ligurea 5 and 7. In case of a constant flow of water and a varia 16 rate of carbon tetrachloride. the efficiency of the un ulsafi column is sli¢ht1y in» creauei by increasing tha rate of tha carbnn tetrachloride. which 19 the dispersed phase. varieule Ia ti :9 case of a con-tant flow of carban tetrachloriie and a rate fer the water. wtich is the continuous phana. a maximum in the a.ficiency of the cclumn oculi be found. at very low apawds there seems t0 be a vary poor efficiency. probably bacauae of mixing 0f the continuous phase. it hifih agenda there 15 a slight decrease in a fi.iency up to the point where flooding conditions ara reached. VII-III ,I III II H I .4. u . . ._.£IIII 1 N I ._ g fiI. Ifuw. 1.. _ 1 1. « . M .II . % . .. 1 1+ “ _ .I. m 1 1 III. 4 I - —v-——‘4 I I I I I I i4 I .I A I I 4—; I I I O ... I-.. _+__-_. ..I Ibt-gvm-u-Io-H I III, M . -..-..-; ...I...--.I.I.1m...1III.-I4......1--I.-I4N- . ..-..IMI..I-. II.I. II-I-.-..“ 11- ..I-_ I... 31-: L I II1. .I... .I azuy1QIerIH Mfipmmm .II-”II.I IT fiI II .II. 7.1I1-I-I-I II. -.I I..1:I1 ..LMI. .3-4: . 1H-I-I . ...I1-. I ...-.1. II.I .I.I.I..11.I.- I I . 111. _T_._. 1.. -..-I .4; - 1- ...a... ---.I_.3.-_._.-I_.-_J I . I I . .. .... I I I J I I I I I I I I I I I I I I I I I ll. ... J. I I I I I I I I I I -1 I I 114111 .1 I I I I I I ~ ..- k I I I I I H'. I I I 4 . ...» IIII4-Iy ..— >—JL~---r ... I I. I I I I I 1 1-1 -1111 I I I I I l I I I |.- I ..l I l . '- 'i.‘ ...-{L4_.-._$-’ _,_I -. v -: I I . 1 I I .I‘ I I T. I I I I I I I ..w ......- ..1v Lao... my? . --..4" » r-I 141. 1. 1_ 1.. . 1 .. _ . . _ ._1 n _ ¢¢Hmnwwow . 1 . I . Imam-1.1 u .4.. ..... . . _ . _ h . 1 . u . 9 H u q . I 1 . 1 -. 1. . ._ . , I . . _ 1 . . . . . . _ u .. - , _ _ w 4 . . _ 1 1 4 . . 1 _ 4 .I _ . . _ u _ . u _ . 1 I . m 4 \ M . . 1 . . O _ .III II A III II II II .II. I I I II If r III- I I I III I .r II II I-YII L III III. .II .1171! I: I ..II1IIIJIIII I IIIIII+ .II I I. I II III II II | I I? I LTI III. I I I4 . . . 6 _ m 1 _ a 1 4 . _ v. . . , . . . A h - . 1 . __ ~ . . 1" . - II . H . L‘ < _ o .. . . . _ . 4 1 . 4 .. I _ . . u .1 .1 1 .. _ . _ I 1 “I. *4 -. 4.131.111-1111 I I I . 3!; rib? I I: Li! I . ...—.... ---- I I - I I 1 I 1111-Q W11 11.1111- I , I. I .2: 51 .‘t . I I I b _ 1. . ~ . . _ I . I . I c . . _ I I . I - II -ILI III-+- II . HI.I..I.IIIII..:. 1I-I-I .3? “TI ...41.HI-II.I I. ..-I. II.I...” II . . -.ILII-I-I I+I.I _ . 4 . _ 1 _ 4 4 .III I I IlIIé-III 1- I I II «IIIIIIIVIIIIHIHIIIfiI-I “III ”.I III- f. IIv IIIIIAIIII. III III III VIII-II.IIII !.I.III Ih-IIIII A III-III. II.I-I v... .IIIIL1I IILI IIJ IJI III-II lfiIII II.I . 4 » . 1 1-1- F 11.. >71‘.“ -41.... . I t a; g . I I I I I Y I " *“ 5‘1“” I I .II1.I.Iu1IO INT--.. . IIJL...I#WIWI;II MIurmI4-. II.I..gI I 4 . 4 e demwm ITH odeo: amaumnwuouuaa-wmd roan _. F 4 .1 . _ .. . .. _ . . - , . .. . 1 I 4 .1 1. ...II.II.3.I.I_.III_I.III II.IIII..-III-_I III .III:.. ILIII. .IIII1-I1III. II. I-II_IIII..1 I.I ....IIMlIhr-H-NII-gI-y-Lfi- 1 .I11II1... 411.. I. .ILIILI I.-II1III I I I I 1 ,1 I ..- ......I... _._1.m1_I114_4_ I I In tha early stages of this investigation it was observed that some of the runs at low pulaation cauli not be reprofiuced after high gulaation runs had been made. This gave the ingreesion that tha dif‘ f9 ence had been caused by settling of the packing auring pulsation of the liquid phase at high amglitudea. It was {wand that the volume of the packiag was reduced while pulsing the column with carbon tetrachlnride. So obtain a progcr packing the column was firnt filled with liquid ani the ?-ech1g ring were then poured into the liquid. Because of the densitiea o! pjrex Elana and carbon tetrachloride being not very different, the fiaechig tinge bnuncei at pulse amplituies of about 1.0 cm, and by this process the padking as a whole lost in Valume about 13 pcrcont ulthin one hour of pulsina. To o;tain a quantitative picture of this influence. Gama test runs were made. All coalitions were the same as those used to obtain the data of Table h. oxccgt that the packing was now prepared by ainply pouring tha leschig r1313 into tha water-fille& column. TAJIE 7. fiun Pulse I 1.. .. Eumber Ea. Amplitude a F W in CUlg of ideal H.E.T.S. ....1 §EL___.__.-£a 23$. La Pu ..szzzaa. .1431... a? o 0 G7.“ 117.2 ua.€ 0.92 25.0 48 o.uo 0 108.0 11%.5 39.8 1.19 (8.0 a9 0 o 186.b 200.3 91.5 o.a6 86.1 50 0.55 0 21m 9 7 6-3.7 1.37 5?.1 5 O O “2 910 10}.8 0 OR 82.? 57-3 0.87 0 2&5 Mi! I’~ 3.9 1. [5 145.2 53 1.05 o 342 ”97.7 55.7 2.18 I3?“? 5» 1.10 o 322 ?70 II 5 7.36 53.3 1 I I | I 1 1 1 l L. ......11" ... 1 . 137- ~ ' 1 1 ”1: 1 1 1 1 1 1 1 J 1 .1 . ., . ... 1 . ...1. .. .3... - 1 W . . . .w . _W. W “.mwzgaamfie mmHSQAWmameavmmo . W . . _ . _;... _ . ..- -.1...1. 1.1. -a 11.1 ..- 1..- a -..-11 111.-...- --1411 .2 1.1m--m . .... -- 11-r:--, _ --; .-...-11. --.:. -e . ..-- - 1.1..11.. -1 w.:.1 -..-111.. 1 .4 1 1 ... -.. . m ¢ H” ...N HA. HOMH TX. ”wgmv 7.. . .mmho. .“ W O_ ..NJO _ _. .... . _ ._ . .. . .... 1 .... . . r 41 w M w . .1 w .1 _ 1 . . ... g. H ... ...; _ __,._ , v . ,. . . gag .. _ .--11e111141.--w1-....-1.u-.;..---1_..-1. 11-_1L11---1w. .1. ” .--1...1.<1111..1---:.e- 1---1-.-1..R-111---1-W1- : .1L1p::.111111p11- L . . r. . .1 :fiy.-.+-.11+1111 . . p. w M. . . 4 M .. . fi.i _ , . ; .....- _ ... . nu t”. ... h .. . . f _ .. . m .. , _ m1... . . w M _ . - w .. . ._ .1 L. . ., .. _ .1 . .1 .11. ... . 1 . . . _ . A ; . .f. w. M w. m ..r .. . . ...-:. 4.;. . W. _ . ..- .. ..f. .. . . . .... .-W - . _ ....fiufi ...ut .M .. . 111 11 .11. 1b.. 11 1-1 1.11 .1 1- 11-+.1-111.-1 11 1 T1 1 11. .A 1 1L1 1 A .1. 1r 1 5 111.11 ..T. . 1 11 11 T 1_ - i 11 11 1 .111 1111 ...1 11 ...H1. 1 1 0.1“-111 11 11 1111 ..-. . ... ...g 4 . _. fl . .. . p. .2-.J. :wf.. . _ . . ..5 w . m ..r. W .; _- ... . w _ ... . gr ..fi._ _ . ..11 . ,. . . . M . h _ 3.:. 3.“ . ..H “F. . 5 . _. . .. . . . . 1 ...... .1 - r 1 J 1 ...—... 1 W +~ — _.___. '1’ —+—- 1 W1” 1 p...— . ml... .t- 1 D I .K: 1 .fi! I . V' '- 1 '0.— v -... _._._._—4 1 1 L 1 1 >-—-o---. ‘F . . 1 -_ __ +~ .----. e l . . ~. {:T; ' ‘55 ' +-~1_- . J 1. 1' g‘ .. ‘ 1 A_. 1 -.4._~T-.__1 . dfi] 1 1 7. 1 .-.1.;-L;;.'; : ' L‘H .; 1 1 l---_._ 1 1 1 1 1 1 -.-... ..---- .. -1-.___..r_.-- _-- P...— 1 1 L’.—L.—O— —-o.—_——4 1 1 1 1 1 1 - n-.. ' ; , 1 '1 . . . ... """'L_ V. , ... 1 i . , , . 1. ,. . . .. .a 5.x... .. ; _. . ...--.-...m.. . -... .. ...-Sfi.§..o~m. av: , Q . NJ. " .3: ' #3 P1 r4 ‘1 1 301‘:r% _ . . . .., g . .T .. . , . .. - , , . .. . _ _r 1 . . . 1. 1 L r L v fl . _ . . . . . .7 _. .M w H .\... m.. u .m ; w . . .... _ . . WI. 11.111111 1 11+I11 11 1.511111 1.111%1! 111\.. 141g 11‘ 1%1. 111A 1 _ 111 1 11411 .-A.-. 1i 11 Ah 4 v1.1 1 1 N11 11¢ 1 +011 . ...I j _ ,. “...- . . . . . n . ._ ;. .. # .... _. . . . . . m m _ .. . .. _ ... . 1 . . . ,_ .D _ . ., . 4 . . . . . 7 w . . ._ . ... M. . . . _ . . .F r . ~ . _ , . . .. . . . . h _ . . w . . . . . W . _ . _ . ._ W _ _ . 4 11111... 111w.11 111.111 1-....- 1 .f -411... .n .-.. 1 1.- V .1 1 1- . -111 1.1- 41- 1H 1 1.. 1 111 l..1 17 - 1.11 1.11.11 - 11-1.1141 .. . _ _ . _ . . ... M. _. m. . . .. . . . _ n . _ a M. M . . . L. - .1 . . .. .. . a . .. 1 . _ _ . . . . _ . . . m. f m. m . . . M g. . ” ... .. h . U .. .. . . . . . _ . . . . w ._ .* . H 1 11.1 101.10” 11 11. 10.1111 T1111 1.1 v 1:1! 111.611 1 1.1.1.11 .1 1111.11 . .. .1 1,4 v1.111..1- ..1 1.1.1". 1 1 I . ... 11 11 1h. 111:1 .111 1l1~1 1 111111» 1. a n. 1 , . . J 1 1 ‘ . a _ . n . . _. . . .. . _ _ . . .. . _ . . A . . . w _ f m b . 4H. . M . > 1. k L 1 ._ . 1 1_, 1 . .—u— 1..1 1 . . . . q _ . M ... _ ,f. MEJ.. . _ .; W . - em. . f... . . .. . + _p . .J. . .-- a. . -1u1 1.e11 1:1 11- 1.1111. .. . .. «uN fl . . . , .. . _ - .. _. _ . . . . . . _ .. . T I 11w-+ueaawneuuwuwdomwu . . . - 9 .... .. - “E . A -.. H7 ,_-- ....w -- 1 t - ..—..1r.--—.~->—. -4. ...... . ¢ . .1.J:i1 1-1w1.1*1 1 ..1.T -:F«-w111. ,Tzwh“1111;1111-1.w1pi..-Hr1y;11w.11- 11p ..... w M H. _ .1... _ » _. 1. 11-11..--m brawn. 1r 23 The data are shown graphically in F13ura 85 in which the data for Table a are regresen ted a gain for comparir on. The investigatian could not be extended tn higher 9ulke 89plituieq bficruae thfi packing started to settla at pulse am li'xdes of aaoat 1. 0 en. 5-. (‘3‘!!! (a «1 ~51 'tv'vv ~ 9 ‘ v. ..‘Ia"..a~.'? In! 0:. . .:‘.S:T."I..;SJ in ninted out in advance. this investigation could owl” cover a 0‘3 few of the teats requirei to ex lain the behavior of a pulse extrac- tian column. These few tegta nhnw that pa laation in extraction cclumna miwht have a con?1‘e “ole economic izterest. ‘ 3 5.1.3.)»;- ; 11 th 6 data reportnl. tlfl aver of 1ztea1 sta5ae wag lzcreased by pulaation up to 3.5 times the number obtainei withaut pulsation under the same c naitione. Treater 1:9 rovementa can be cx9ected after further luv at 5atioa of 09eratin; conditions gush an pulse frequency. pulsa anglitude. or typa of packing in the column. T;e efii Mi oncy of the column was acea 11y increased ». 3h increas- in; pulse amplitudes at given pulse frequency 321 given flow rates of the solvents u9 tn the point at which flon&1n5 occurrefi. The height equivalent of an ideal eta5e wag refiuee&. due ta pulsation, from 50 cm ('23.5 in.) flown to 16 cm (6.3 in.) at £19031n3. Th9 flou'rataa of the nolventa under 1eso conditions were 18.? 11+ era per hour for carbon tetrachloride and 13.2 liters per hour for water (830 cm or 39.2 ft. 9er hunt vnlncity for the carbcn tetrachloride in the emyty tawar and 4.12 cm or 20.“ ft. per hour for the water which was the cormtinzaul phase). fiecreaning the flow rate of watar at a constant rats far car- bon tatrachlorifie of 13 .9 11+ers per hour also decreased the 91: iciency of the tcwcr in case of 0.9 on pulse amglituflc. 13 cane of no pulgm— tioa there wag a maximum efficiency of tie column near 8 liters Hater jer hour. In case the amount of our on tetrachloride was decreaccl at a constant speed of 13.2 liters water per hour. there was a decrease in the number of ideal atagoa in both cases with b.9 Cm pulsation anfl also without pulsation. At a flow rate of 5 to 6 liters carbon tetrachlorifie per hour azfi with 0.9 cm yulsation there was a flificoutinuity in per- formanca as 2L wn in ? 5uro C, which reminlo that more than one influ- ecco controls the efficiency of tFe coluin. ?eick and Anderson (Q) ragort an improvement due to gulsation up to a factor of 15, ct where cuch imyrovcmnnte were Observed, the hei5ht of a transfer unit without pulcation was of the order of 10 ft. Rowcvor. whero tho initial height of a transfer unit was similar to the values in this report. the imgrovemnut fine to pulsation was also nimilar to the improvements of this investigation. It seems that with gulcation a biguor diameter of packing can be use& without 109135 too much efficiency. A comparison of the mata of Tailfifi h and 7. which are reproduced in Figure 8. chews clearly the effect of settling of the packing on efficiency. A lease packing 5iven a connifieracly poorer performance than a packing which has been settleé well 9y pulsation. Thin may partly orplain why data reported in the literature about the performance of packed columns are often 12 such a connifierablo fiinagreemcnt. The increase of efficiency at the column due to pulsation nigh be attributefi t3 mare than one grenarcnan. It ran easy to ace differ- , excas in thc appearance of the alumn. Vitbnut pulsation big droplets streamed down the column. but with pa ration. especially at high am- plitude. these draplets were several times smaller. ani these amallcr droylets hounccd up and down in the yulecfl continuous phase. Hhile many theories might ue advanced on the basis cf this obcervation. it is not felt that any of there could be wubatgntiatca withaut further exyoricentation. v1. fiVkEAFY As the first Etep, to a more tharough study of the performance of packed pulsed columnfi. an aaparitus was designed, cannisting mainly of a Calumn ané a pulsator. The column had a diameter cf 5.? cm (2 in.). and tie langth of the packing was 81 cm (32 in.). canaisting of Taschig rings with 0-73 0“ diameter. Th8 palattcr cansiated of a cam-driven bellows, which an 11%& tha pulsating motion to the liquii phase. In this investigation only to a few of the interesting variables could ha gich attention, and the refit had ta be left for Saturn V I The results .uOWfid that the efficiency of the cclnmn was in- creaccd with increacing pulse amplitude, up tn the yoint where flood~ n3 occurred. The height equivalant to a theoretical stage was reduced inc to pulsation from 60 cm (23.5 in.) to 16 cm (6.3 in.) at a pulee anglitude 0f 1.0 cm and st superficial velociticc of 890 cm (29.2 ft.) 26 per hunt for carbon tetrachloride and £22 Cm (23.b it.) per hour for water. ,rn A Le 9521 “clenc{ Qf tLg w"10»1 colurq nereaeei 1n evary cage when ‘ha—M' ~— - “"‘-~- “‘9 . .... I-NW—‘m he £1ow o1 eifher so1vent was 1“?“61361. Thin was also true for the ‘I an .M ‘__I . , I." ,u. .... .. ... ~- "“‘ nah, —.. a. ..Vu- M ..m u" manulaei column except as high throuéhyut where a 9113ht decrease in a“ m; 11cienc7 occurrad with increaain 3 watvr rr..e. Pulsation réduced the capacity of the column a Lig.‘ .13. fit high tulsn a >11tule t3 :9 flow rates at wfich flao;iz- ozcurrai wars abaut 83 para {vat of those at which £103? in no currel with at pulention. Tie candition of the packing hai a consifiarable influence on per- formance. The well aettled pack1n3 gave mare theoretical stages for the same height thaw a laosely filleiain packing. Tia ratio was 1.24 z 1 w thoat pulsation and 2.5 : 1 at high pulse an lituflea. 2. Fcheibal. f. 3.. 3 W 0 U} 0 ‘3' C3 ..:- 9' p Q ; 1 o . . o .I ‘ _r\ ‘ 4. sn91‘291. -. 7.. : 13:. l' . .. ‘3' t '- T 1“ . ry )- 7&3 Niven. o ‘r o o I» ’o .I 3 P ‘ n '1. 9. cguunson, x. : A. 1.99.:.. - ,"Q ' _ '2‘ LI 031L711. ° 0 . :‘61 “C. --\ ~o a O .J i}, v. 161‘ ‘ O ”Chij. .::.. ?31’.i. $69,412. .— .s 2‘ "ca. 12’ a-. ll. Laepnar, I. : Z. Tatera. 2. ”ara’pn. ". . 1713. Q3. ‘.ntett, 3., and o.ovan, H 7r ' H. v I, ‘ \J g c 1. - . ".‘ P V 3 1,1. ' C..;é:ib-' 10 o ‘o 3 ~31 I: I" ' " T r‘ ‘ l '. E‘I-‘;. L. 1‘. : ' 439121. Vr * . *' ..‘ .ork. 3ri 99.. 1?. F? ii L‘ll. An. 3 $0.. I:‘C.. Q . .-. I IQTk, jm’ » Q 1951) A<¢9 ‘,-‘.‘ 3 RM 741 (1959) I ~‘ 0.5L} [9 . )U 3 . p: qu‘afi a 0:“; —- Chem. . «gr 9?, 0&5 (llwn) «- }'):‘0~;r.?ns' ZLIL r Progrecc h , t 9240 J l"?O.‘1“t3.»¢71 {31 (1393) ??1 (19HE) f. Pateat 2,311,135 (195G) 9.. and Anderfon. I. 7. u, f. 1., Rafi Hieéan&t, ‘ I 3 i» 0 $1; Jvz-lflwfi' . 2:. 1' . u . . I ‘51": 7 $.21. wk n—u 4.15.}. {2;.8.X1. ~'~‘. ., 3 19:36.91. ..-(‘I' ‘1' 11. ‘Y' ‘. $11-13 Q I‘, 71“,. ., “"‘ia anargan. t fleeting. ?oranto. .J. 1-3'3QT833 if). 39 . Chum. ?. : Uheu. he, J]. 1'. 1‘ -. 1 3 6:71:19 ('9 3:. £39 I” <1.. 1?1 (1991) f?" 3. 1" “‘ ' ,— ; -, t ". 1' i. .« 3.53:" Una-.1 . . . z " Q-iiiiki L ‘ x 4.?“ ctiau" ”“olubilltiea of Organic 53; ow York. 3: I . l"; :9 .:...-3 2:1: 59 (1.1149) Canafia (1735) 904 (1932) ‘”‘f (‘3‘). fl. IT),\ M, 4...... 953 ( nunis" 3.-: \. 3c“raw Iill 339k 1.151,; (June 2L7 (19”?) 91?} law “ . '90.. .14! {A '3“- .x' TU K if} (1“ .' min" ‘J 'J 4‘.