J) r.) .1) 5”: ,L) 3'1 § ‘ ‘ , , ~ § § § § , , , , § , V § ,-, , ‘ NV ILHAVX Maw A COMPARISON OF THE VOLUMES OF A GRAVITY DAM WITH AN ARCH DAM Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE Sooran A. Yavruian I942 {ti-IE2»: .9“! .L q In. w ._..i ..l.I with. g] ‘..o‘ f. .r «nib»: :tw i if! M *‘.‘H ‘.‘ A Comparison of the Volumes of a Gravity Dam with an Arch Dam A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE .3: Sooran A: Yavruian Candidate for the Degree of Bachelor of Science July 1942 THESIS INTRODUCTION Many types of dams have been built using less material and yet retaining the safety and permanence of a “gravity“ dam. The most successful of these is the single arch dam where conditions permit its use; and so the purpose of this thesis is too mucumm no Apnoea mm.H HO.H HO.H NO.H nO.H HH.H mw.H medeaam mummmm no aouomm mm mm Ob on mw mm ¢H N62 as up onme HNI’DV'UDCO 6H .2“: oo .phm> new Aca>hmmmm an mna cm m mm nHH am 5 mm mm so 0 ea we no O m mm mm e m on mm m.® \\..l 0 0% mm wiWL .Nm: ano .xmz .caz ewmnm Kn: .osoo .pnmb Hank poa>pmmmm 24G HBH>4mO mme mom mam<8 mmwmam OOH mm Ob mm O¢ mm OH pmmho Scamp an ocean H.Ndhom Section 0' to 10' Reservoir full L——- 65“-———4 VJ .— & Q _P__r_.. a I IC— 2 P” R. w = 6.5xlel50= 9750# 2 2 P : !§_ 3 62. x10 = 3,120 ”heel ' 0 3130 x 10/5 1 9750x5.25 = 97502 = o j / z = 10J4OO+ 31,690 - 9750 ‘ 4°53. e = 4.55- 3.25 = 1.08' I , 4 I I I x ‘ p a 9760 # 6x1.08 _ 6.5 (1 _B:3——_) _ 1,500 (1 i 1) p : 5000“] .. 28 P5,, P : 0 r3 = 9750x.6 = 1.88 J 5120 f- 8 O-M: 3.. 62.4h 2é1?OX6§5 - 2,03 s=_2..=6120 =6 A 6.5x144 Res ervoir empty 9760 -——- (1 *i’ng-Qfl)=1,5oo (1 to) 6.5 . 1,500“ = 14 P... - 1,500” = 14 n“ Section 10' t025' Reservior full 8504-14,625 +10,975 = 26,450 T X (ha ' h?) = 31.2X(352 - 102) = 169380 a" 26,450 k k = 6.58' 16,380X + BIZOXIO = 19,500x25x2 3 X 17.94' y = 25.00 - 17.94 = 7,06' ”heel = O 16,580x7.06 + 5,120X15 4 26,425x6.58 850x-2§§§_ .14.625x4 '10,925x10.5 + 9,750x4 - 56,2002: 0 z : 115J700 + 46,800 + 174,000 + 59,000 = 10.37: 56,200 e = 10.67 - 8.53 1-87 = 56.200 1* 6xl.87 - v t 6.6 p _1§___.( __i§__9 _ 2160 (1 I p - 5540M a gsrej. P 2 95-540.: 6'5 e“ f8 = W _ 19,500 - 1'11 r - lefiflxll.fl§ - 0‘ 62.4x25 ’ 3'22 8 = 194500 = 8 17x12x13 Reservoir empty 9750x4 + 26,535x6.58 . 56,300x X = 5.89 (D II 805 ”5.89 z 2.61 p =_§§$ZOO (1': §z§$§l_I = 2150 (1 i .92) p = 170‘°'= 1 r4». 0 ”U ll 4,100“ '= as f... The Computations for the suceeding sections are done in a simalar manner. DESIGN OF AN ARCH DAM Hanna Method from Design 2: Dams by hanna and Kennedy y Arch dams differ from gravity dams principally in that if 3 .~ 1)? they transmit the water load to the sides, rather than to the bottom of the canyon. In order that the material of the gravity dam and arch dam shall be similar, we shall assume the maximum allowable compressive stress in the concrete eoual to the maximum stress in the gravity dam, which was 159 p.s.i., or 20,200 pounds per scuare foot, and the a110wable sheer 51 p.s.i. In any arch dam there will be some tension at the crown or at the abutments; so we will use the allowable tension of 50 p.s.i. We will use a constant radius of extrados, 82' and a constant central angle of 75°. The arch ring will be considered 'thin' if the radius of the extrados is more than 5 times the thickness of the arch ring, below 5 the arch ring is considered 'thick'. Nomenclature: N Ma, V : thrust, moment and shear at the abutments. a’ a Nh, Mh. Vh - thrust, moment and shear at the hsunch NC, Mo: Vc . thrust, moment and shear at the crown Nomenclature: p 2 unit water pressure on upstream face of any arch ring p' — unit water pressure on neutral axis of any arch ring R - radius of extrados r . radius of neutral axis re . radius of neutral axis thick arch ring t 3 thickness of arch ring radially to the neutral axis ¢a.' one-half central angle of extrados for loaded arch ring 4’1 angle between the crown radius and the radius of extra- dos through point g g : any stress point on neutral axis unit stress at extrados (D II - unit shear at extrados unit shear "b 4 ll Cross section of the Arch dam 5 CREST , 6 The thicknesses of the arch rings at the ,0- 5.5‘ various ellevations were found by trial and error. The'thin cylinder' formula which was used in the calculations of arch /‘ dams in the past gave erroneous results in this case, and so the arch ring thicknesses were found by trial and .5b' 28' error. The volume of any section = , 15 t - t' 4 2(rr1 - rn/2(2xrrx h)'75° 35' 5605 D‘Prf’ 6e/aw ((557 /00' b'IZ' The t-Otal volume Of arch 1"le ;-_- 810y60V2) (BB—6'5 ) -(16 .~ 6.5 2 16 6.5 (125) (82 - __4.+......._) .. (15 tea x 25)(82__16 (28 + 42 x 50)(82 - 16 4 28) T".— "—7? 222,620 011. ft. : 8,550 cu.ydg. ) 2 » 28 ) 4 ,//7 //’ \\\\i \\\\\ ‘\\c ‘\\\s \\\\ ‘\\\ /‘ // / Volume of the Arch wedge at abutments x I t tan Area of wedge 3 3:3- tan ‘v 1301381 91'88. g: 2 t2 tank; t2 tan 2 _ 767(6 :2 + 6.52 V01”me 0f wedge = ’ ‘” 2 sex 10 + (6.58 4 162) -7§Z x 15 *2 2 n 4 (102 + :8 ) (.767) x 25 +.i992 +2422) .vevx 50 a 60,995 cu. ft. Total volume of arch dam = total volume of arch ring — the volume of the wedges = 222:620 * 60:995' 285.615 CU- ft- Horiz'l plane ft. below crest 10 25 25 50 75 100 Horiz'l plane ft below crest 10 25 25 5O 75 100 Radius of Extrados 82 82 82 82 82 82 Thick Type of Arch Ring 6.5 16.0 16.0 28.0 58.0 42.0 of Arch Ring thin th in} thick thick thick thick Abut' 49.5 22.0 21.0 85.0 46.0 55.0 Shearing Stress t P.s.i. Haunch 26.5 11.0 11.5 18.0 26.0 29.5 Crown 0 O 0 0 0 0 Combined Compressive Stresses in Area P.s.i. Crown 82.0 77.0 70.0 63.0 58.5 46.0 STRESS In 14.0 -12.5 ~12.5 -9.5 -11.0 -4.5 Haunch Ex 60.5 57. 44.5 25. 59.5 25. 58.0 29. 29.5 27. 28.0 52. In 0 0 5 0 O 0 TABLE FOR THE ARCH DAM Abutment Ex In —15.0 114.5 -52.0 126.0 -46.5 157.0 -58.0 159.0 -54.0 158.0 -25.5 141.0 Arch ring 1 ft. high whose center is 25 ft below water surface R/t z 5.01 arch ring can be considered t - 16 ft. as either 'thick or thin' r = 74 ft. We will use'thin'. 2 ~2 NC ‘ p'r x (1 "I2%_‘) = 25 x 62.4x74x (1 ‘i%%$%§l§—) - 127,900 (1- .415) = 74.900 Me = -r(p'r - N.) 221:1. - cos 4». = -74(53.ooo) W -cos 00 a -74(53,000) (.07) = 374:300 Vc = -(p'r - Ne) sin a 55,000xsin 0O - 0 Nh - p'r -(p'r -Nc) cos = 127,900-55,000xccs 18° 45': 77,700 Mb = -74(55 000) sin 570 50' o t - : 57° 50' — cos 18 45 . ~74(55,000)(.017) : €6,600 Vh = 55,000x sin is0 45' = - 17,000 N5 = 127,700-55,000x sin 57° 30' a 85.900 - - 3 o ' - "a - 74(55:000) Bigvg 539—. - cos 87° 50' : -74(o5,000)(.157) =-54e,000 Va =-55,000 x sin 37° 50' = 55,000 x609 .-52.100 Stresses at Abutments f = N 6M - 1.. 1.Ez_ (compressive stress formula) f . 85,900 - ~546,900x6 16 16x16 fe= 5550 - 12,850 =-7,500 fi = 5550 + 12850 4 18,200 r = Q! ._§£§§1129 = 5000 :22 .s.i. u 33 2x16 p at haunch r = 221399 4 §§1§224§ 10 16x16 fe = 4.250 r 1,550 = 6,400 f1: 4,850 - 1,550 4 5,500 r = £1. - 5x17,000 v 2t ‘ 2x16 2 1600 = 11 p.s.i. at crown f a 74,900 i 2241200x6 16 16x16 f1 = 4650 - 8450 = -1800-- H 0 ll 4,500 4 5,450 3 11,100 .714“ PtECe'Eo/MC (QLCULATION SIMILAI? Arch ring 1 ft. high whose center is 25 ft below water surface R : 82 ft. R/t = 5.01 arch ring can be considered as either 'Ghick or thin” t = 16 ft. We will use 'thick'. r = 74 ft. r" =gf-aL--’ = lé—‘- ' 75 85' lo 10 ’ ° R _ 5 Se 1.24 0 = 74.00 - 75.85 = .17 L = 02167 K. = 4097 rn . NC = pH (1- K. ; 62.4x25x82 (1- 4.97 = 12 ) 12 ) 75,000 Me = -rn(pR _ Nb).§l%JE_. —cos¢)= -73,85 (52,900)(.07) £275,800 v0 = O ”h = PR - (9R -Nc) 00844. 127,900 -52,900x947= 77,700 ”h = -75.85 (52,900))6017) - 55,400 Vh a -(pR-Nc) Bin 5 = —53,900 x .541 =-18,050 Na = 127,900 - 52,900x.795 = 88,000 M5 =~75.85 (52,900)(.157)=-1555.OOO _ -52,900 X .609 -.32’300 .4 p I f1 Stresses at Crown : 75,000x75.85 4 275,8 82x16 82 = 4200 + 5900 2 10,100 _ 75,000x75.82 - 225 66x16 = 5250 - 7050 - -1800 t Nrn +Mrn( 2 + c) Rt Eff % Mn‘ t —c) Nrn - 2 (R —t)t (R-t)I 0 At the haunch 22,700x75.8§ * 66.400x75.85; .17 82x16 82x541 a 4,500 4 1,400 = 5:700 77,700x75.85 - 661400x75.85x7.85 66x541 66x16 = 5,400 — 1,700 . 5,700 5X18050 : .1, 700 2x16 At the Abutments _86,000x75.85Ffs’5554000x75.82 F—82x16 . 4850 —11,500 82x541 -6,700 45:17 - 8,700 00x75.85x8.17 x165 12 ,800x75.85x8.85 66x541 RESULTS AND CONCLUSIONS The total volume of materials saved equals the volume of the gravity dam minus the volume of the arch dam : 548,500 - 285,515 = 84,885 cu. ft. The % savino : 542385 a b 548,500 = 18'6” The arch dam , noionly represents a savings of 18.6% of concrete, but also has the greater safety factor of the two dams. And in conclusion, I believe that wherever possible an arch dam can be used advantageously. finis .l.. ‘ I 1"7' 7 .‘ ' 4. .‘ -' ’I' . ‘. . .‘ i u v ‘ \ ' l 0 my ;m.’z_:’gnw 7"“‘3'3. . t" ‘ . ‘ «.o . A 0..) 5" . .4 I ,- . .. ‘. . a Q 4 ‘-.Lv..fl} ..u.- - -2 .. . .. . . 4i . .U . . . . 4 a. . c- . . .5 01 - ~ . s .n Q) .4.- 4 v. uni . l . . I . . I. .9 4 I . l .- I I 0 I . x . . O . . . .. 1 V . . o . ,g 4 .. a... I .- 1 . l u. r .v . 4. ~ \. a 4 x. 4 .. v ' I w . . x . x . .r r M. ii