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INTRODUCTION

We shall define geodesics as curves of shortest dis-

tance on a surface. That is, a geodesic is a curve on a sur-

face such that the distance between two points measured along

it is less than the distance measured along a neighboring

curve joining the two points. The problem of finding geodesics

is then a problem of the calculus of variation. We shall show

that the definitions usually given in metric differential ge-

ometry are necessary conditions that a curve be a geodesic

according to our definition. They are not always sufficient.

It is not the purpose of this paper to give all the

properties of geodesics that have been discovered. In the

bibliography will be found a list of papers giving these prOp-

erties. we shall confine ourselves to a discussion of these

properties that can be derived by the methods of the calculus

of variations.

In part I the problem is set up as an ordinary problem

in the calculus of variations. Necessary conditions and suf-

ficient conditions are given for a curve to be a geodesic. The

results obtained are applied to several examples, including the

sphere and pseudo-sphere. In part II the problem is treated as

a Lagrange problem. In part III an interesting inverse problem

connected with geodesics is considered- The problem is to find

1



all surfaces on which the geodesics can be represented lin-

early in u and v. Part IV is a discussion of the isoperi-

metric problem of finding curves of shortest distance join-

ing two points A and B and enclosing with a given curve,

joining A and B, a given area.



I GEODESICS AS AN ORDINARY PROBLEM OF THE

CALCULUS OF VARIATIONS

1. statement gfuthg,problem- The equations of our

surface S are taken in the Gaussian form

X=X'(a, V),

(l) S. y any (a, V),

2' ext“, V),

We shall assume that IMHO, ytum) and It“. v) have as many

derivatives as necessary to carry through the analysis. We

shall also treat only those surfaces for which A”: EG‘FZ

is everywhere different from zero?' The length of a curve

joining two points on S is given by the integral

(2) iufizrv’wv" d“ - H‘

The problem of the calculus of variations, then, is

 

to find among all admissible arcs joining the points 1 and

2, one which minimizes the integral (2). Such curves we

shall call geodesics. We shall discuss the necessary con-

ditions and sufficient conditions that a curve be a geo-

desico

 

a! L-Po Eisenhart, Differential geometry 9;M and, m,

p. 71. (Hereafter referred to as Eisenhart.)

# x. Eisenhart, pp. 220-221.



2. mlgr's gguationo With the function 7‘ in the

form given in (2) the Euler equation

(3) i fv' "fv " fv’u *fv'VV'*fv‘v' V’I-fy =0,

becomes

I
,3

2(EG-F‘)V’ 46%.? +3F§-§ -2F§-§ 433-5”

6 C '3! F 5' 11

(4) 143ng +25}; +2F§-§-G;—7 -E§—§ -4;§-; -6§;—,)V

E”

+0535- rzrgf mg; 45’;- -2;§§)v’

F’ 35' Eli _

-r£!£?§h:‘-/7§;: -£:55;-C9J

which may be written in the form

v" 116355 *Fagff ”22%)V’3

35‘ II

+[(§%;‘-+F%5‘Z‘f{)‘ ”5517 F591"

2h" 2/!"

 

 

(5)

 

+{2(Ei?£ ’F-aaf) "(63%; +F§~§ -zr§;f]y’

2/" 2H‘

 

F a: at _

+[ng2 ‘éjza‘: ‘f-a—pl—O.
 



Expressing (5) in terms of Christoffel symbols of the second

kind we get

v”- {2.2} v” + (12.21 - {24) v"

+0422] _, [1,1])1/ +[Izl] =0,

Geodesics are defined by means of (6) in metric differential

(6)

geometryfg Since we have shown that Euler's equation reduces

to the form of (6) for our problem the ordinary definition

of a geodesic becomes a necessary condition. In other words,

a curve on the surface must satisfy (6) before it can be a

geodesic. This condition, however, is not sufficient. We

shall call solutions of equation (6) extremals.

3. figflgierstrags-Erdmann garner gongitignf’ A

corner is defined to be a point on the geodesic at which V"

is discontinuous but has a right and left hand limit.

We shall define admissible arcs as those arcs that

are continuous and have only a finite number of corners. If

the geodesic has a corner (u,v) the Weierstrass-Erdmann cor-

 

y- Eisenhart,p. 205.

* G-A. Bliss, Calculus g£_Variations. p. 143. (Hereafter

referred to as Bliss Io)



ner condition says that

 

 

 

(7) fV’( a) V, V,<‘¢‘O)) st’(“.a\/; V’(“+0))p

using F: V! +2FV' +6.14 , (7) becomes

FfGVL __ FfGV’

(a) —, -, - ——-L, . .
yE f2/V— *GVL V?f2f¥*f6Wf

If we square both sides of (8) and then multiply both sides

by (5' and. + 6 V93)(E f2FV—’ 4- G v:’) we get

[5/1 + 25%: v; rta’ Vf + 2/3 v1 HGI‘ V; v!

( ) zrcavf v1} +;'c v.11 * “'6”: v:1 +e3w} yd] =

9

[zzrc y.’ + zs‘vc' +1 F’vl 4'1}cm v; v.’ + 2:6' v,’ vi“

I I I3

-F’G v,” + 2rc'v,’ v.’ + c v,‘v.] ,

Equation (9) reduces to

(10) H2(V1*V-')[2F+6(V1+\L’)]=o

Equation (10) can be zero when

(11) V,’ = v.’. ,

01'

(12) 2F +6(v;+v.1)=o.



 
 

From (12) we find that V! nary; ran" = VI+2FVI {-61/1'

and Fiat/1 = —(F*6'V1) . Therefore (8) becomes

 

(13) -(F+GV.’) -' L"6",

V£*2FV,’ +614“ VE+ZFVH6VF °

From (12) and (13) we have that V.’ = V..’ :. 'Z'é: . .Hence we

conclude that a geodesic can not have corners.

4. The necessagy condition 9; Weierstrass."L Let

Gabe a geodesic. The necessary condition of Weierstrass

is that for every (:4, saw) of 6,3 the function

(14) [Nana/'1") =-' {(“.V.V')-ftu.m/’) -(V'—V')Fv'(u.v.v')

I

must be greater than or equal to zero for every (M,V.V)*(“.WV).

For the present problem (14) becomes

 
 _ hr:- rams-r9

V: r zrvv 6V”"
 (l5) {heart/7 = V£+2FV96VR - VfrZFv'fG'v"

which may be written as

(16) [(u’Ky:V') g [EanZQGV‘ ZE+2fw+€V7 —/£’+(V9-W)/*6WVJ

f V'rGV'
'

Since the denominator of the right hand side of (16) is the

 

 

 

expression ford.» , and is always taken to be positive, we

need only to show that

 

*31183 I p0 1310



  

V’Z‘V'4'5‘V'i IEH’FV’itgw' ’/ E + (VLV’IF' HS‘v'V'.(17)

V{ I +(V'—V')F+ cwvy“If we write the right hand side of (17) as

and express the left hand side as a single radical, we may

then compare the two radicands. We get

[5V"*fF‘V'V’ +£6w'7/(18)

2E6wV‘+ V"; up... 7'. WV“.

Setting h” = [G-F" we may write (18) as

(19) (;1*//ajvl‘+#
/3y’ V’*(F‘+l/‘)V"7

/

2(F‘fh")wV’. V’V" .zrw-V'. Me,

which reduces to

(20) H‘tw-V’NO-

We have shown that for every V'i’ V’ , E(¢-,V,Vj V970

everywhere on our surface. The Weierstrass condition is,

therefore, not a condition on the minimizing curve at all.

p

5. The necessary condition gkaegendre- The

Legendre condition states that if 611 is a geodesic then

at every (my, v') of 6'” the condition

(21) {WW ( a, V, V')’,0

*BliBB I, p‘ 1310



must be satisfied.

For our problem (21) is

£‘6’—/7‘
(22) fyoyl =

(E f-ZF'V’+ G 51")?!

H2

(5 arw. swat '

Therefore fr'y' > a everywhere on the surface.

Hence Legendre's condition places no restriction on the

curves that can be geodesics.

6. 1h2,necessary condition 9; Jacob ?' If we con-

sider the single infinity of geodesics

through the point 1, and if this family

has an envelope, then the geodesic

can have no contact point 3 with the

envelope between 1 and 2. For, by the

use of the envelope theorem the com-

;*

posits are 6”, +34, f 6-,, = ,1-
 

But.an is not a geodesic and may be replaced by an are

which is shorter than 1),, . This would give the composite

 

u Bliss I, p. 141.
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are 6,, +D” v- 6,2 a smaller value than the geodesic 6,: .

In every neighborhood of 6,, there is such an are 6),, +D”

+ 65;. giving a shorter distance from 1 to 2 than the geo-

desic. Hence the geodesic cannot be the shortest distance.

This contradicts our definition of a geodesic.

Tb make sure that .D,, is not a geodesic we make

use of a well known property of a second order differential

if

equation. Euler's equation for this geodesic is

(23) {Wet "' fr‘y V’ * fww V” ’fy =0.

Equation (23) can be solved for V" since {radio . If an

equation of the type of (23) can be solved for v”’, then

there is one and only one solution through an arbitrarily

selected initial point and direction (143 J 1/, J (4’) . Hence

if D” were a geodesic it would be necessary for it to coin-

cide with 6&3 . Thus, all the geodesics through the point 1

would, by the same property, be tangent to and coincide with

5i, . Then there would be no one-parameter family of geo-

desics as the theorem supposes.

If the Jacobi condition is to be of much value we

will need a convenient method for determining whether the

geodesic has a contact point 3, called a conjugate point of l,

 

* G.A. Bliss, grinceton @lloguium 1,ectures.
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with the envelope of the family of geodesics through the

point 1. From the calculus we know that if we have a one-

parameter family of curves V=\/(«,d) the contact point of

any one of these curves with the envelope of the family is

a root of V,‘(u,.q when x, is the value of d defining

that particular member of the family.*

It is not always easy to determine a l-parameter

family of extremals through the point 1 even if we do have

the 2-parameter family of solutions of Euler's equation.

For that reason we need a method of finding the points conju—

gate to 1 from the original 2-parameter family of solutions

V = V( a, 0-, b).

If we were to write the 2-parameter family of ex-

tremals as a l-parameter family it would be necessary to

choose the two functions at“) andbc-r) such that

(24) Vlunx) a w u, aw), 5(a))

satisfies the equation

(25) V. = Wand»).

If we differentiate (24) and (20) with respect to.“ we have

V.. = V. (a, a, b)a.’ + v, (a... a... b) ti

0 : qu(“c a do b)al + Vb(“4 “J b) b’,

 

* Wilson, Advanced Calculus, p. 136.
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where 4' and 6’ are derivatives of d and b with respect to «X .

When v. vanishes the determinant of the coefficients of d'and

6’ must also vanish. We can now state that the points (3)

conjugate to a point 1 on the geodesic are determined by the

zeros for a: a, of the determinant

4

Va‘“.4o,5-) Vb(“a¢0ob0)

(26) A(“1u1)=

V4 (69,40, 60) V5 (“hang be)

  
when V( u.’ a, 6) is a 2-parameter family of extremals contain-

ing the particular extremal for parameter values 4., b. . We

shall find later that Jacobi's condition does not hold for all

extremals.

7. §ufficiency conditions. In this section we shall

give conditions that insure that our minimizing arc is a geo-

desic. Tb accomplish this let us first define a field. A

field is a region é? of (Lgyo-space which has associated with

it a l-parameter family of extremal arcs all of which inter-

sect a fixed curve.z> and which have the further property

that through each point (a, v) of 6‘ there passes one and but

one extremal of the family.*

By applying the fundamental sufficiency theorem of the

calculus of variations we have the following theorem:'*

 

¥Bliss I, p. 132.

*nBliss I, p. 133.
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Theorem. I; 6,, is an extremal of a fi_el_._d 5‘ t_h_§2_ 5,;

_i_.§_ shorter than any 939; admissible gag C1,, in J3 joining

1h}: points I 229.. _2_. 1119.; 1—3, 6;, 15 a geodesic.

This follows since [(1.9% V,’ V') 7a everywhere on our

surface.

theorem. Li; a curve 6,, ig a solution g_f_ Euler's
 

 

a}; a, then 6!: i_s_ a geodesic.

This theorem is a consequence of the ordinary suf-

ficiency theorem for a strong relative minimum in the calcu-

lus of variations since [(1.9% VIV') >0 and fwydu, V, V920

everywhere on the surface.

8. geodesics 9;; a sphere. If we choose the (UN) co-

ordinate system as indicated in figure 2, th equations of

32

the sphere are

X: 44...} u can”,

(27) gi-‘dwwm' V)

18¢ Gnu.  
 

The linear element is

 

 2_ a ‘ ‘-1 .1
(28) 4,, -aduramuaarx

The problem is to find among all admissible arcs

V:V(a.) , Lanna-l4,

one which minimizes the integral
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“1

fa. V/rmzu. V“ 44-.

a
l

 

Euler's equation is

M, = C,

(29) y/ +M’KLV'2

Solving (29) for V’ we get

v’- C(so) - WW.)

which gives, by a quadrature

(31) V‘mmL f5,

tau-“-

V—C'

when K = -IC—’.'

1

With the values of sin V and cos V computed from (81),

and with the aid of (27), we can write the equations of the

geodesic as

x: aKConuCocC -—aco.u,e.:...c [luau ~17,
 

 

21:: QKMILMC-i-dwudo-QC sz‘c-Kzu

(58) 2: am».

If in (32) we multiply x by cos c , y by sin C , z

by-K and add we have

(33) X can 6- +JAALIC +(-K)z=a.

Equation (33) is of the form

Ax +3y+€z:0,
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which is the equation of a plane through the center of the

sphere. The intersection of such a plane with a sphere is

a great circle. Hence, the geodesics on a sphere are great

circles.

Suppose we have two points 1 and 2 on a sphere. The

great circles through 1 have the point at the other extremity

of the diameter through 1 as an envelope. Therefore to ob-

tain the shortest distance we must use a portion of the are

less than a semi-circle.

For a sphere the determinant (26) is

1
I

(I ~42) V/ —c,’,e..:x=u.

 

(34)
 

I

(z-c,2)V/-c,5m;i2a" I

  I

The zeros of (34) are u:- “Ign/pa‘. This checks with the

above statement.

9. Ln_illustrative example. Given the surface of

revolution

x=L¢MV }

y: “JAG—V)

(35) z=é[um_,¢3(u.+m).,

to find the geodesics. The linear element is

(36) da’ = u’da.‘ “1‘00" .
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The problem is to minimize the integral

‘5

(:57) / “Vl+v"du.

l

Euler's equation is

I

(38) W—% :C .

Solving (38) for V, and then integrating, we have

(39) v = ,2? c, (u . Vai-c‘) .

The determinant (26) is

 

I

(4 163-63 +0.41%“) '

c

(40) ' 23'
 

I

u,Vu;‘-c‘+(u,‘+c‘) , I.

  
The zeros of (40) are use“, . Therefore, there are no

conjugate points.

Some of the geodesics are shown in figure 4, page 17.

lo. A§_illustrative exam 1 ; th§_pseudo-sphere.

The equations of our surface are

X= umv.

(41) yeumv,

’lr—zfj - ’.fifi7521

Z " I a ’2? a fi
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The linear element is

2

(42) 442:3!1du +u‘do-2.

The problem is to find the minimizing arcs for the

integral

a.

(4'2) /)£". * “W7 dd"
9‘:

The Euler equation is

 

 

tc‘v’ duh-:0

(44) ’. + u V”

pa

Solving (44) for V"and integrating we have

V __ l/c.¢'--¢:IL

(45) "' Ca
+6}.

The determinant (26) becomes

_z__ /

6" Va 3-63 ’

‘

(46) I!

62 “$3.61 1 I

  
The zero of which is u:=cg . Therefore there are no conjugate

points. That is, a solution of Euler's equation is always a

geodesic.

Figure 5, page 19 shows the surface with some of the

geodesics drawn.
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II cronrsros; A PROBLEM or LAGRANGE

t

l. Ihe Lagrange problem. The Lagrange problem in

the calculus of variations is that of finding among the arcs

5.11.11) (x, :x:x,,' i=1-" n),

satisfying a set of differential equations

(47) %(XJ jl“"jn, WWW” («=/--'rn4n),

and joining two fixed points in (X, y, —---j..) space, one

which minimizes an integral of the form

‘3

(48) x 'f (x, y, ""jn, y,’----y.,') d4.

2. Ihe problem 9: finding geodesics. Let

(49) S.’ ¢(A;J,z)=a ,

be a surface on which we wish to find the geodesics. We

assume that f has continuous derivatives up to and in-

cluding those of the fifth order and that

g! + £2 +£z #0’

at G.A. Bliss, J‘hq Eroblem 9; Lagrange .11}. 15h; Qalculus pi

Iariations. American Journal of mathematics, Vol. LII

No. 4, October 1930 p. 674 (Hereafter referred to as

Bliss II)

20
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everywhere on the surface.

The form of the Lagrange problem that we are inter-

ested in is to find among the arcs

x: X($),

(50) y = 3(5), 5, 9. 5:5,

2: 2(5).

satisfying the equations

(51) ?(X’5’I2)‘0 J

X’z+ y’2+2”-/= 04

and having end points satisfying the equations

(52) SI = Xl-“I =J1-p’ 31”” =X1‘“1 ‘Jz‘fiz‘zz'Yz =01

one which minimizes the integral

is

(53) j = .4: @-

This is a problem with variable end points in (s, xd‘qfigyspace?

the parameter 5 measures distance along the are starting at

the point 1. In order to reduce this to the regular Lagrange

problem we replace the first of the equations (51) by the

equivalent equations

(54) fl,x’+ fiy’+¢zz'=o,
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*-

(55) X, ”d! =3: '5: = 21" )7 = 4'2“: =j1-fla =0.

We assume here that 7} as a at the end point 2. This does

not restrict the generality as one of they;" J ¢73 J g is

different from zero at every point. We can now replace

equations (53) with the equations

(56) 5’ :Xl-“I=Jl‘pl =1.'n=xa‘°‘z=y‘-pz=o.

3. The equations p:_f_ the geodesics. As a first

necessary condition that an are be a geodesic, we have the

followimg theorem:

Ihgorem. [or every geodesic 6;, there exists 9, sgt

pi constants c, , 62.9 and 9, function

(57) F: / +A,($)(%X'+%gl+?22’) +_3:_2(5) (X’zfj’:f2'.-/)J

such that

S

6’21;de4 *9,

£57“ *‘2.

5.2
[1' 5.4. F}.a +63,

I

H(58) F3!

 

*Bliss II, p. 703
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m gahhsfigd y; gmm pi Qt. 1h; gunctions (An A,)

gr; M ppph identically _z_e_;‘_g_, 2.2.8. unigue 211g continuous

except possibly g1; values p_f; s defining corners 9; 6’2.

This theorem is the first necessary condition of

the calculus of variations problem. In order to write the

function F in the form (57) it is necessary that the mini-

mizing arc be normal. In section 4 we shall show that every

minimizing arc is normal.

For the function F of (57) the equations (58) become

I s I

A: $3: “*Azx 57/5: Az(flxx *¢xgg'*¢:xz’)d& 3+CIJ

I ‘ ' l I

(59) A, $5 “(,3 =1; A,(¢.gx +4333 +7312).a +c21

5

1,56. + A, 22-1 A, (new my .59.. 194 +6..

By an integration by parts we can write (59) as

s

11x, =jéfljl’fi’h fc’)

I 5 l -—

(so) 1.31 1'ij 4+ch

, 5 l

)1‘?’ :j "/(Ifld‘cfcg'

5/

From equations (60) we can state the theorem:

Iheorem. h.geodesic can not have corners.

From (60) we have that 111'; Agy', A, I'must be

continuous on S, S, . Later we show that A; s/ and there-
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fore X', ff ', zlmust be continuous.

If we now take the derivative of both sides of (60)

with respect to 5 we get the Euler-Lagrange multiplier rule.

At every point of 532 the equations

670ml, 2) =0 .

x” a“ fir ,

(6°) , .7” v“ 9’2,

2” =7“ g,

must be satisfied. This proves the theorem:

Theorem. Ah every point 93: .9. geodesic the principle

normal 9; the geodesic must coincide with the surface normal.

The derivatives x”! 3’2 3” and the factor/acnare

continuous on S,’ 5, since the determinant

A2 0 0 fl 2x'

0 1 0 ¢ 23‘

(61) ’ ’

a a A: «p, 22'

fir ‘25 V9 0 0

2X’ 23’ 22’ 0 0

3 ¢(¢x: 4’ fl: *fl") 7‘0.

at 131133 II, p. 684.
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1 r
4. The transversality condition. The transversality

condition for our problem is that the determinant

-m *1. , -1, r. -Anx',".‘.7: 4.32 4.54213 run-1,; '1' ’3 “W34. 79 “’3'
l 0' 0| 0 £7 (a ‘0

C? / 0 (0 C7 0 ‘0

0 ‘7 / 01 C7 «0 (7

O ‘7 a I (7 ‘7 ‘0

o c: o 0 6’ / 0

0 c7 '0 ‘7‘ ‘7 ‘9 I 
equals zero. This determinant reduces to

A2 =F(’:) =7].

5. uprmh;ipy p;_th§ gxtrema 5” Every extremal arc

of our problem is normal. The condition for normality is

that there exists six sets of values of (t’ f}, 2(5), 21(5),), (5))

with f: ’ f1 arbitrary and p, , 7, , % satisfying the equations

c! i

25? (5’17. *2; 2. *9‘373)‘0:

xlz’f glyzl" 217’! = a 1

and making the determinant

(63)

 

yBliSB II, p0 6930

1* Bliss II, p. 693 and p. 704.

 



 

3‘7: be $3 ‘‘‘‘ In.

7” (51) 712 (5.) 7,, (5.) ————— y“ (5.)

71! (SJ 7;; (5.) 7,, (5,) ----- 7,.(5)

731(5) 731 (5.) 7,, (5,) -—— -- 7... cs.)

x,’ f,, *2/54) x; [11* 7,.(54) X,’fl,+z,(s,) ...___._x,‘};.+7,‘(s‘)

3.‘ t. we» :1.’ n. was» 3; )5. +7....) ----- g; h. an...) 
different from zero. In (62) the arguments are the Ly, z,

X’, y: 2' of the extremal arc. The equation (62) can

written

% 7,’ 437,: 1* fiz’ + (flxx’ *fi,y’+ 75,297,

+(gxx’+¢,,y’+¢,,2')g, +(q>,,x’+ ¢,yg’+%32')73=0’

X’z ’ +57; 4- 2’3’ 5Q

The matrix

9% ,

be

is of rank 2 at every point of the extremal since the

directions 49,. :¢, ; $1 and X ’;g’,z' are orthogonal.

another function Yang/,2, x,’ y’, 2') such that

Take
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is of rank 3 at every point. Consider the set of equations

¢x7,’ *QP; (4&2, +(%.X'+¢qg’+¢xel')z

+(%M’%.y'%.wz +<a.r’*¢zw'+a.zvz=o.
xlzl+ylzlfztzl=o’

9;. z’+ 997.” 1M: + m, +537. mafia»-

Let 715.). 7,6.) , 7,'( 5,) , 7, (5,) be arbitrary and determine

{(5) such that the above equations are satisfied. Since the

sets[, , 5,, , 29'.) , puts) , 2"ch , 7". (5.) are arbitrary we can

certainly choose them so that the determinant is different

from zero if 3(5.)¢0. If g’(s,)=0 and 1:25,) #0 we can

vary the above proof. If g’¢s.):x’(53)=o , then 225,)” .

- l I I_ ‘

Since 7;, x + gvgy +32 .0 on the surface we would nave

fl, =- a at the point on the extremal determined by 5-5,, .

This contradicts our hypothesis that ¢1¢aat the point 2.

6. hnalogue g; the leierstrass condition. The

function for this problem is

f = / + A. (fii’*@1”+¢329 + firm/“.29

" *1 (QXX‘ +7335 Q, 2') -f (X'3+3"+ 2")

- (X'-x‘)( A. 7:. +x') -(Y'—y')(1'¢g .3.)

‘(2'-2')(x. 4’; 1* 2').
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This reduces to

E: f [UV—X91 + (gt-3")" +(2’-Z’)‘] .

Hence we have that [(sz', xjy,’ Z; [17: 21))20 for

every (XIJflZ'Jv‘: (0, a, o) everywhere on the surface.

7. The Qlebsch condition. The expression

(63) 57.77,”, ”3441.76 +5475»; rzfly 77.74 + 2574.775 +2544. 77;,

becomes

7Z”+-Z§’i*25'.

Therefore we have the eXpression (63) greater than zero

for all sets (75,771,767 #(Qa,o) everywhere on the surface.

The conditions given in section 6 and in this

section are stronger than the ordinary conditions. The

ones stated here are usually denoted by z: and [Z ’ re-

spectively. They are of importance in proving the suf-

ficiency conditions.

8. Ihe necessary condition p§_§hzer. The necessary

condition of Mayer corresponds to the Jacobi condition of

the ordinary problem.

Theorem. 1;,the hyperameteh family 9; geodesics
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throhgh_the_point ;.has.hh_envelope, thg geodesic joining ;_

and.§rcan havg hp_contact point §_with the envelope between

_]-._ and g.

This follows from the Hayer condition of the Lagrange

problem and the fact that the determinant (61) is everywhere

‘*

different from zero on the surface.

9. Determination p;.conjpgate points. A point 3

where the extremal has contact with the envelopeD is called

a conjugate point of 1. In order to apply the theorem of

this section it is necessary to have a method of determining

the conjugate points. 1

Let

x: X (5, al, 43,43, bl’bgié') J

3:.- 3(5, a,, 43,533. bubabz),

Z: 2 (S, 4,) alias) bl‘b 46..)4

be a 6-parameter family of extremals containing 6,, for digs-.1230

(i: 4 2, 3), Suppose also that the determinant

 

*Bliss II, p. 722.



1., (3. a,u

a, (S, 4.6)

1c, (s, 4.6)

1‘: ”a, “'4.

1‘0 p3.) *Jé’

 ”'4 fia.‘ 11!.

is different from zero at the point 1 on G): .

points 3 conjugate to 1 are determined by roots

X4, (5,4,6)

54, (s, a, 6)

24, (5,a, b)

A“: fraud:

Ad, 799+ 34,

I

A“: $19 ”a

of the function *(64)

’4, (5, 4.,b)

k, (‘0 ‘0, 60)

X" (5, 40,60)

3" (seed; h)

 2" (5,, ‘0; 60)

14, (S, 1.... be)

344$, as. be)

23, (3 do. be)

X4, (sue... 5.)

3a“. 4a. he)

243 (S, 00, be)

x4, (5. e. A.)

#4, ( s, 4,6)

74, (5. d. b)

14, fl., 4' x1,

A“; 79‘: I”;

I

A‘J ?“J +2‘,

’3 (5. 4o. ‘0)

94, (s, 4.. A.)

20., (5. do. be)

1., (5,, do, be)

94, (‘1)‘OJ 5.)

z a, (5“ e9: 6.)

X6, (5.. 4.5)

50, (5,46)

24 (5, a, 6)

A" f". + I;

*5, 71b. ’71.,

A5, fiélfl‘:

x6, ( s, as, b.)

55, (5. do. A.)

2,, (s, 4., 6.)

X6, (5., 40.90)

y“ (5” do)“,

1"(3~40, 60)

30

X5, (5. a...) I" (5, 4,1.)

951(5. a, 6) 3,, (5, a. c)

26; (s, 2,1») 2"“, a, 5)

Abzfibt-f x4 16%.)”;

2‘: fi‘z*‘y‘; 1% ’95:,"

“.7: a +14 *9 and?»

Then the

5, 9* 5,

xbzcs, awn.) X6 ($4.. 6.)

5., (s. 4.. a.) 5., (c a... a.)

lo, (5. lab.) 21., (8. tab.)

16, (she... b.) x” (9.. “a. A.)

y;,($,,l.,b) is, (s , ¢., 6.)

2.. (a, 1,, p.) 2,, (5., c... a.)

 

 
 

*Blise II, p. 729.
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10. gufficient conditions for 9.2!}. are _i_:p_ h_e_ §._ geodesic.

A Mayer field is a region 5‘ of($,X,y,z).space containing only

interior points and having associated with it a set of functions

,b,- (s,.x,y,z) , 2.. (s,x,g,z),

with the following properties:

(a) they have continuous first partial derivatives

in 3 ;

(b) the sets (5, 1.5, 7, pass”) defined by the points

( 5., :93, z) in 55 are all admissible;

(c) the integral

1* =/[F(S,X,H,3.b.U + (436-17844?) F1), (ax, 3.3.)”. U].

a

formed with these functions is independent of the path.

By applying the sufficiency theorem of the Lagrange

problem we have the two following theorems which correspond

H

to those of part 1.

Theorem. 1; 5;: _i_._s_ Ell. gxtremal 2f_ 9 field 3 then

is shorter than any other admissible arc Cm hp 5‘ bin-
4:

ing the points .1; and _2_._. Ihat _i_s_, 6,1 ;_s_ _a_ geodesic.

This follows from the fact that 6714,9971) 70 at

 

every point of the surface.
 

*Bliss II, p. 730.

*fiBliss II, p. 731.



32

Iheorgm. if; 21.1. are £12 satisfies equations (fig) and

hesrena‘uliconiusate islheimeelehaasreié. 13213.1}. 612

_i__ 2. geodesic.

11. Application t__§_ sphere. The Euler-Lagrange

equations fer a sphere are

(65)

X3r51f3‘-dz=o.

If we differentiate the equation of a sphere twice

with respect to s and make the substitution xx’-/«X‘.yy"wf

and zz”==/u.z’ we have

, ....L
fl “3 '

Putting in this value of)‘n and solving (65) we find

X9 6', 60¢.-2- f 63M i.)

S
(66) y: C’MZ+CVM%J

If we multiply the equations (66) by



’4 =C,Cg “Ceca",

(37) B = CzCJ'C,C‘,

I
t

respectively we find that

Ax + .8, 1.61:0.

Conversely, given values ofA ,3, and C we can solve (67)

for 63,6}, 6,, 6'9, cf, 6" . Therefore the geodesics on

a sphere are among the arcs of great circles.

For the sphere (64) becomes

Cot-2- 0 0 min-g 0 O

0 at: a a was. 0

O o c.45- 0 0 Mg.

datgl a a 4k“ is o O

0 can" a a ”.25. o

0 o antgL a a ,a;~§% 

33
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the zeros of which are u. a egg/re" . Thus, as in the prob-

lem in part I, the geodesic connecting two points of a sphere

is that portion of the great circle, less than a semi-circle,

through the points.

12. Application hp.h,cylinder. For a cylinder the

Euler-Lagrange equations are

The solutions of (68) are

S I

X: C’MVI-Q! 2" + CKMVI’Cfg'J

C s

y: C, c... Vl-cfas- + 6:4,...(1—63‘3)

2: C35 +C‘,

If for convenience we set /(= .——-l-";" the determinant

(64) becomes
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tee/(s 0 iii MKS -£.L&. cuss 4.th a
a 1-: 4W1

c c
0 (ac/(S —-‘—‘- . 5 .. c m: 0 ° Ks

.w-wf‘f" mi? “*

o o 5 o 0'

cars flair/es. - 5L5"- GaKS law: a
4|”-ch 4"]..2" I I

O 8 ‘- Coah". 0c“UV/ aw7:§?4u~w¥% ‘zmfira? .uamkfi

C) o 5’ <9 <0 
The zeros of which are 5 = grew-{3% . Hence, from (89), the

geodesics joining the two points will make less than one com-

plete turn and go in the direction of the smaller angle.

 



III AN INVERSE'PROBLEE

We know that on a plane the geodesics are all the

straight lines. Therefore in the vacoordinate system the

geodesics are represented by equations linear in xandj .

It is the purpose of this part to determine whether

we can so choose acsv-parameter system on a surface such that

all the geodesics will be represented by equations linear in

Leandv'. Beltrami was the first to propose and solve this

problemf* He asked if it were possible to get a one to one

correspondence between a sphere and a plane such that the

geodesics on a sphere will correspond to straight lines of

the plane. Darboux solved the problem as an inverse problem

of the calculus of variationef* The method of this paper is

essentially that of Darboux.

l. Ihg,inverse problem p§.php_calculus p;.variations.

The inverse problem of the calculus of variations is, having

given a second order differential equation

 

x‘E. Beltrami, Risoluzione del Problema: Riportare i punti di

una superficie sopra un piano in modo che 1e linee gecdetiche

vengano rappresentate da linee rette. (Annali di Matematica

pura ed applicata pubblicati da B. Tortolini, t.VII,p.185;1866)

aH‘Darboux, Theorie Des Surfaces, Vol. 3, pp. 53-63.
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(69) v”:— ch.v,V').

defining a 2-parameter family of extremals, to find a

function f(u,vv7such that (69) is the Euler equation for

the problem of minimizing the integral

“1.

Ram, V')du.

“I

2. The problem p_f_’_ heltram . The necessary and suf-

ficient condition that the geodesics be represented linearly

in u and V is that the equation of the geodesics be

(70) V”: 0.

We shall first find a function {(uficv‘) such that

the Euler equationé fw - {van a is v”=a . The re-

quirement that Euler's equation reduces to (70) is

 

I.

‘3; V, + 31f "a :0.

(71) pva au‘av’ 3V

If we take the partial derivative of (71) with respect to V'

3‘!
and set M: 57, we get

 

3M an
—_ V’ + :0.

(72) a V’ 3 H-

To solve (72) we first solve the equations *

 

#Wilson, Advanced galculus, pp. 267-268.
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(73) fig 0‘" r—éfi’=-¢¢'-,
I v' a a

From (73) we have

0’: 0,

dm =0,

llhac==db7

which gives M=c; ,V'scz and VLuV’I-CJ . The solution

of (72) is, therefore,

(74) M = Wv’; v-av'),

where f defines an arbitrary function of v’ and V—uV’.

Thus, in order that v’S-o be the Euler equation, we must

have

31'}: _, ’ .. .

(75) 3V"— 47(Vjvuv)'
 

From.part I we know that the geodesics are extremals for

minimizing the integral

 

“t

j V! +2FV‘+6'V" at“ .

0‘

Equation (75) then requires that

33*

3 V"8 1

 £6 4"

(76) (5+ ZFV’ +GV'2)%
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01‘

a

Ezrv'f-GV" , (6‘11) 3

(£6 -r8)’/: 3 V' ‘

 

We shall not consider surfaces for which EG-F’:o. Since

ts-F’ is an invariant of the surface it can not be made

zero by a transformation of parameters.

3" " . . ,

Since (57.) is an arbitrary function of V,

V-uv’ we can write (77) as

[fl/V’IGV" ._ c ._ a.

(78) (EG‘F‘)? "' 7(V, V “V

Since the left hand side of (78) is a quadratic in V’ the

right hand side must be also. This is possible if and only

if 7 is a quadratic in V ' and V—u V’ . V will then assume

the following form

A v" +3V’+ C(v-uw)‘ +0 (v—u V’) f K J

from which we have

inn/06V" .

(56 v")?!

 

(79) (la mam/1) 4- (.3 —Du-zcuV) v’ +(A +cu’) V" =

Equating the coefficients of powers of V'in (79) we get
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E = 1(£6..th Cy {'DV-I'KJ

(80

) __’r__ —- 19 Cu .2

([G’Fz);§-.§
V’qu

6 :2 A + Caz .

(gs-r945

[6 -F‘

Com ti _—pu ng (EC—F‘) “from (80) we get

I(81 _____,___ =Acv1+ ADmm ( wwvmew ran ”—4-:-

E g cv’fbv-HI ,

 

 

R!

(82). R2

6 = A *6“: J

1?!

H’ = [JG-F“:- 35-...
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We can now prove the following theorem:

:heorem. gh§.gg;1,surfaoes ghggg geodesics g§g_bg_

represefigg pl linear eguations as Lh£s_e of constant tota_l_

curvature.

. The total curvature,/(t , expressed in terms of E, F

and G, is given by

9925 , __ .1 1.5a a; 5 a: *

(83) t:- 2_’-// EnL& H 3344] +DI/[// Du. // 3V ‘7} 34]]¢

Using (80) we get

 

._£: 19"- I 6‘ _ C ’ . f ac 1

5,, :5; "Wawn“?! K 73%“! (2Acx+£2__+AD)v

~2Acw3 +(CDK --f3)u2 -3Acp v1 4%...“ -2.3C/()u-T_——3—’-’,+Am/j

’—
25. :6 gist [( 9521, gas/()u’ + 2Ac‘u v2 +2ACD¢4V

-2 Age y + (AN—2AM 42.1.3344 wan],

’74-? =-M {(g, D"~3CD/0a; +(ZCDz-44'3K) «av-2.34%

-23¢D a V +( «36K 3.331)“ + 3A CD v‘+(24cx my! 1332:) v

+2.4:IV3 +ADK {- £3’Dj’

 

*Iisenhart, p. 155.
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4L.3£’ 2 ._ 3 - 1 3.. 3 .;g z

Hfi=kfiafl2cfi :52)u=v 24c 1/ Many +(CDK 4)“

+ (“z/ICK - £2? —- ANN +(é‘92- 236K)“ ‘91-? -—AM’]
2 2 4‘ "

hfi ‘3 ..._!_ 2 a , a :
El/S— _x‘sIzBCuv +(yck CD)“ V+23c.p.uv

+ (zapx 232.3% -29’c v + (aw—2.9m)“ -g.z}

We find that

(84‘) 42.25-425-11 a; =0

 

fi/ 3“ II 2V AEA’ 51; J

and

/f 3&7 _szji I ‘4 3 1L 1
.- _. - .-.-._ Bcty + ABCDV

5” a ” au- (cV‘+Dv+/()R3§ [ 2

+ (38C’K-%.BCD')L¢’V + (3c: - A}? + 2463K)al/1

.'.-
3

9-5) + (“52" - CD‘A’+2€‘/(‘) «3 4- (C311) ~45? +2ACDK)uV

2

+(213c2k --”-B.D~')uz *(___3:c 7‘ L230 *AECK)V

I I"! 3

*(5-3’5’4551 + 4-323- +2ACK’)« -.%_4+4%9.!}

=;" JR'}QuL

(avian/0m:

Using (83), (84) and (85) we get
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_LD k. RR“

Kt :- 2” an (4: v1 +DV 1.10723;

3 I -__L 1
W(3.... R 2 m)

— -§_is.. ’_ACA’ “ Af—

='<Ln¢a1=uu4€

We next prove the converse theorem:

Iheorem. I; 13);; tgt_a_l_ curvature of a surface E.

constant than the geodesics 93 that surface m be expressed

linearly ig,u QEQ,V .

Let us choose our curvilinear coordinates in such a

manner that V': constant are geodesics andcx== constant are

the orthogonal trajectories. When such a curvilinear co-

'ordinate system is used the linear element may be put in the

form

(86) 44‘ = m.’ 4-- Gaw‘.

1

From (83) and (86) thetotal curvature is 7;!- g—f .

By the hypothesis of the theorem we have

(87) ”iii-e =K.

3“‘

We shall consider the three cases K=0 , K 70 , K40.



For /(=o we have

_Léié-eo J

6 244‘

01'

2

(88) 36 :0

got

The solution of (88) is 6' :2 Va «r t; where If and IQ

any two arbitrary functions of V.

For R70 we have

/ 3’6-.£
2-57‘2'42 J

or

é’f + _Q. :0 .

(89) a u’ a‘

The solution of (89) is

(90) 6=KCod§'*V4¢l«-%.

where V and I; are any two arbitrary functions of V.

For K <0 we have

23.5 : -.L
" EL 3 u" 42 J

01‘

31 _. _6. :0 a

(91) 5-5: at

are

44
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The solution of (91) is

(92) 6=Veé+vz¢'a‘-‘.

If we taKe V"-.;.€+¥ J V’s-7V+¥ we can change

(92) into

-5 -
(93) vaef-€4*Z6£+eg.

 

’ T- 2

If in (90) and (93) we replace a by duwe have the

three forms of the linear element

4.5“ M1+(VR*K)I¢V’ J

(94) d4“ = a[d«‘+(¥,¢.;lu +15 muffle-“j J

‘ =a[d«=+(vdg—e'—‘%+W—%‘4-)’M%

If V': constant are to be geodesics it will be n

necessary for 6 to be zero when u is zero. If G = 0 when

use we have from (88), (90), and (93) K30 . Choosing

the coordinate V in a suitable manner we may reduce‘M'to

unity and write the three forms of (94) as

44’: du.’ + u’dv",

(95) at" = d’[da’+44‘u’udvz],

 

do‘ = a‘fi‘n‘ 49:; 3-326],
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We next compute the geodesics for the three forms of

(95). For

11¢” = dflL’f'xx‘afir3.,

Euler's equation is

ALL :1 C,

(96) W

Solving for b/'and integrating we get

(97) Aumv *3KMV-I'C-100

For

44‘ = a’[d«’ +4.;n‘udw4 ,

Euler's equation is

#2“, V, -_-, C,

(98) W. . ”w.

Solving (98) for v’ and integrating we get

(99) Vsmmvf—tyflu-ui-C.

If we put K c (99) reduces to
__£L_.

VI " 6/2
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(100) AMVW“ +3MVWK+C=0o

For

44‘: magnummaze—.1 ,

Euler's equation is

 

 

 

 

)aéa42zta v”' c:

M + M"’V” J

01'

c

(101) V’=

44441 VM’u —-C‘- .

Solving (101) as we did (98) we get

(103) AMVMKf-flmvwfca'a.

The geodesics for the three forms are

Aumv+3aw VfC-saJ

(103) AMV‘W-w +3oéxyuau¢¢=c¢

A €10.wa +341“un +4 =0)
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respectively.

The transformations which we must make on the u andv

in order that the equations of the geodesics will be linear

in a andv are evidently

Ei=uca¢v , 7::qu J

(104) E a emu/t...“ , Var-'MVfau-u. J

E=mvuul V=Mku,

respectively.

After making the transformation (104) the linear.

elements (94) take the form

 

44‘ : da‘i'da" J

at“; .. a'[du.’+dw' +cva4u-uac-rf]

.. (Ii-“.3 M”)? J

at.” __, a_'[gh’+dw’—-(vx..~u¢a)’]
 

(l—u“—V’)’

respectively.

Theorem. m only surfaces 9_n_ 32122.13. ho_th_ thg

equations _oi thg geodesics Eh; h_e_ linear it}. (4 9.1.19. V , hi;

the parametric system orthogonal §£g_developable surfaces.

The necessary and sufficient condition that two

fl .. V - .1.) K

curves be orthogonal is that {so . From (82) F: 2 C“ 2

R2
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SinceF' is to be zero for all «’5‘ and Visit will be necessary

for 3 --= c =D so. since K. =Acx - €14 - grit follows that

“t is zero when F30 . The necessary and sufficient condition

that a surface be deve10pable is K¢=0 . This proves the

theorem.

If we take the sphere with the same uv— coordinates

as in part I and make the transformation

(2:01ku , V‘MVW“J

we find that the equations of the sphere become

a“

X -.- V] +u‘f-V’

 

(105) _ a V J

t( ‘ V9 rcxiwrvr'

 

*4

= Vl'rul'I-Vz

.-

 

Z

The linear element will be

as L" wad...)- ant/ac... at.- .0...» div-fl
‘dfl

4‘ - (Ifu’er’y'

If the equation of the geodesics is computed from (105) it

will take the form V2:- 0.



IV- AN ISOPERIMETRIG PROBLEM

In this part we consider the problem of finding

on a surface the curve of shortest length joining the

points 1 and 2, and enclosing with a given curve Cb, join-

ing 1 and 2, a fixed area. It was in the solution of this

problem that Minding discovered the function to which Bon-

net gave the name geodesic curvature.

l. gtatement g; the isoherimetric problem. The

isoperimetric problem is, given two integrals

“1
a

z= name , Je/‘yama,
“Iu.

to find among all admissible arcs, joining (1) and (8), the

one which gives the integral J'a constant value and minimizes

the integralj'?*

If AD; is a minimizing arc for the problem there

exists constants (Aal)¢(o.a) such that

(106) 0%: FVHszo

between corners of £72, where

 

*‘Minding, grelle, Vol. V (1830), p. 297.

xx G.A. Bliss, Lectures.
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(107) F: Aof’lj.

If the are 5;, is taken to be normal there exists an unique

set of multipliers (1., J) = (I, .U . Hereafter we shall con—

sider only arcs normal on every sub-interval. Abnormal arcs

are of no importance in our problem since an abnormal arc

would also minimize the integral .7.

The other necessary and sufficient conditions are

like those of the ordinary problem of part I with {NIH/AW)

replaced by Fat, tel/1}!) .

2. 1h; problem 91 Minding. Given an arc Co join-

ing two points 1 and 2 on a surface, to find the curve of

shortest length joining l and 2, and enclosing with Co a

given area.

The area will be given by [fl/44060- , where the

integration is to be taken over the (AV-region corresponding

to the area} It is possible, however, to find two functions

flH(a\I ' 3A/..29 J**.. ) and AN“. V) such that H- 5; V . By an application

of Green's theorem we have***

 

K

fiat If Ham/)is continuous in u we can take ,sz; may) and Ate/Wu),

I

x-H-F-S. Woods, hdvanced galculus, p. 181.
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[/H‘m‘a” = f/(gg’gT/M)d“°b=/Mw
r/Vdv'.

The problem then is to find among all the admissible arcs

which join 1 and 2 the one which minimizes the integral
a

a

[W4.4 and keeps the integral] (M fNVQda
a,

“‘

equal to a constant.

The F-funotion (107) is

 

F: V: +2FV’+6 v" + 1((Me/VV’),

and Euler's equation is

d ( fitEV’ )... _Z-aéfZV'gvf‘fV’zéa-Vc AH

108 — I [Z
3: o

( ) flu VE'fZFV'fGV
2V?+2Fv’f6l/” 

we can now state and prove the theorem of Minding:

Theorem. Lg order that _a_. curve c joining two points

shall he. the shortest which, together with 2 given curve
 

thrphgh these points, incloses a_ portion o_f_ the surface with

a given area, )5 _ig necessary that the geodesic curvature

 

if; C pg constant.

From a formula derived by Bonnet the geodesic

curvature of 9V“. V)‘ constant is a!

 

+Eisenhart, p. 136.
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.L = _L a ( Fg‘ié “63'; )

9.7 H #5“ ((3.??- 2/35‘55 +6é9’
'3

9(10) + 2( F3 ~6§§ )}

av , ‘

War-Mgae +6 at”)

 

If we take Pin the form

V - ¢(u)=0,

then

‘2! a". a = —v{
(110) 'av / a ,3“

Substituting (110) in (109), (109) becomes

Frcv’ ) _D_( eri )]

I - .L 2.. - I I ,

(111) (a; " H [2m (anrwrcvw 3V V2? 1” *‘V’

 

 

 

 

Equation (108) can be written as

E+£v’ 2- FfCV’ V

.1. 3-- Vg—Tr-p. *7 (W
A 3 H '3“ ’2 V f V V

I

(112 19 ,‘3F ,aQG

) Q5 4- 2v 2" 4V 7‘,

2 V2,. 2FV’f-6V’z

fl
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Hence, comparing (109) and (112) we have the geodesic cur-

vature constant and equal to X .

Due to the fact that the geodesic curvature is

constant,the curves representing solutions of (109) are

called geodesic circles.

3. 1h§,necessary and sufficient conditions. The

Equnction is

Ewmvjwu = W: ”(MM/w)

 

4’5 sz' + 6v" -A (M +Nv')

rrGV’

"(Vi-v0 (quvw-sv" +1” ’

 

 

which reduces to

Elu,\/,V’V,’A)
= VEfZFV'i-GV”

~VE‘f1FV’f6'v"
 

(113) . __ (V’- v') ( F *GV')

VE+2Fw+6 v"

 

 

The {vowof the Legendre condition is

”I.

(E +2Fv’rs v") ’2

 

(114) flowwiwvlz') =-
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Both (113) and (114) are the exact expressions for

the corresponding functions in the ordinary problem of part I.

Hence, we have the same necessary and sufficient conditions

for the isoperimetric problem as for the ordinary problem.

4. Application t_g_§_ plane. Letting uzx and V83

equation (108) becomes

.4... -—L’ :4.

4‘, Wf;:§71

Integrating we get

I

(115) ”7%, =11“.

 

The solution of (115) is

(116) [1‘ + 113+2€,AX +2¢aAg +q‘+c,1-I =0.

Hence the curve of shortest length that joins two

points in the plane and makes the area with another fixed

curve, joining the points, constant is the arc of a circle

through the two points.

To show that the curves (116) are minimizing curves

we need to show that the sufficient conditions of part I

are satisfied. Since the only zeros of the determinant
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[1+3

(Plum-6.)“

 

J I

H
a

I
.

N, 1* CL

Vii-(1 t,+c,)‘

 

  

are .K==x; it follows that there are no points conjugate to

1. Therefore the curves (116) are minimizing curves.

.5. hpplication tp_§_sphere. For a sphere

 

d41= a VI+M‘1uv'i J

and (108) becomes

4 41.13“ v’
(117) M ( V/L——

+4.3“ 144V"

) = A afield-u.

If we integrate both sides of (117) and set ‘344.=I( we have

44‘sz

 V/«f ‘1“V13 =KMLL+C.

Solving for V"we get



I Hull-f6]

118 V = '

( ) Mu. V2.4... -£K¢«-- *4?“

 

The solution of (118) is

When-4‘ 4.4.. (v-tz) - 6,6... a =I\’.
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