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INTRODUCTION

We shall define geodesics as curves of shortest dis-
tance on a surface. That is, a geodesic is a curve on a sur-
face such that the distance between two points measured along
it is less than the distance measured along a neighboring
curve joining the two points. The problem of finding geodesics
is then a problem of the calculus of variation. We snall show
that the definitions usually given in metric differential ge-
ometry are necessary conditions that & curve be a geodesic
according to our definition. They are not always sufficient.

It is not the purpose of this paper to give all the
properties of geodesics that have been discovered. In the
bibliography will be found a list of papers giving these prop-
erties. We shall confine ourselves to a discussion of these
properties that can be derived by the methods of the calculus
of variations.

Ih part I the problem is set up as an ordinary problem
in the calculus of variations. Necessary conditions and suf-
ficient conditions are given for a curve to be a geodesic. The
results obtained are applied to several examples, including the
sphere and pseudo-sphere. In part II the problem is treated as
a lLagrange problem. In part III an interesting inverse problem
connected with geodesics is considered. The problem is to find

1



all surfaces on whicn the geodesics can be represented lin-
early in u and v. Part IV is a discussion of the isoperi-

metric problem of finding curves of shortest distance join-
ing two points A and B and enclosing with a given curve,

joining A and B, a given area.



I GEODESICS AS AN ORDINARY PROBLEM OF THE
CALCULUS OF VARIATIONS
l. gtatement of the problem. The equations of our
surface 8 are taken in the Gaussian form
X=X(«, V),
(1) S, Y=yl W,
ZeZ(u, V),
We shall assume that X(«,V), y(« v) and Z(4,v) have as many
derivatives as necessary to carry through the analysis. We
shall also treat only those surfaces for which //’= EG‘F]
is everywhere different from zero? The length of a curve
joining two points on 8 18 given by the integral

(2) lu‘EZFV'{-&'VJ dec . 7

The problem of the calculus of variations, then, is

to find among all admissible arcs joining the points 1 and
2, one winich minimizes the integral (2). 8Such curves we
shall call geodesics. We shall discuss the necessary con-
ditions and sufficient conditions that a curve be a geo-

desice.

# L.P. Eisenhart, Differential Geometry of Qurves and Spaces,

p. 71. (Hereafter referred to as Eisenhart.)

# » Elsenhart, pp. 220-321.



2. Euler's equation. With the function ¥ in the
form given in (2) the Euler equation

(3) f: fv' ""fv - fv'u *fv'VV’*fV‘V‘ V- fv =0,

becomes

/3
2066-F) V" +(C 32 +3F 3§ -2F 2€ -225 )y
t 4
(@) + (3F &L +2£37‘+2F-a?-§-6}7 -5% -4/‘-3{-65—5)\(‘
F(2£25 v2F2L -GRE -F 35 -2F35)V’

+2E8L -F3E-£22 =0,

which may be written in the form

£ _ 2
¢ [(£38+38-203E) - 2655 ~FBR)V
2H* 2H*
£
+{2(E%§ -F3F) - (62 +FEE —z;ﬁ—(_}y'
2H* 2H?

+[2[52£ -F2£ -£3E[-0.
2H?

(5)




Expressing (5) in terms of Christoffel symbols of the second
kind we get

o= (2 e (3 - (1) v
.,.(2[122} - [/'/]),Vf +[Y)] =0

Geodesics are defined by means of (6) in metric differential

(8)

geometry-* Since we have shown that Euler's equation reduces
to the form of (6) for our problem the ordinary definition
of a geodesic becomes a necessary condition. In other words,
a curve on the surface must satisfy (6) before it can be a
geodesic. This condition, however, is not sufficient. We

shall call solutions of equation (6) extremals.

3« The Feierstrags-Erdmann gcorner gongitigg.** A
corner is defined to be a point on the geodesic at which A

is discontinuous but has a right and left hand limit.
We shall define admissible arcs as those arcs that
are continuous and have only a finite number of corners. If

the geodesic has a corner (u,v) the Weierstrass-Erdmann cor-

¥ Elsenhart,p. 205.
¥* G.A. Bliss, Qalculus of Variations. p. 143. (Hereafter

referred to as Bliss I.)



ner condition says that

(7) frviCu,v, vitu-o)) =Ffrluy, viurd),
using f= [gr2Fv’ +6v2 , (7) becomes
F*Gve _ F rev
(8) = = = _

V£ r2rv: +6ve Ve s 27vs #6777

If we square both sides of (8) and then multiply both sides
by CE+2Fve + GVR)(E +2Fvi+ GviY) we get

[EF2+ 26Fe v) +tE£G V2 + 2F3v! mwGF2y] V!
(9) 2FGAVI VI +FG VR P 2FGV IR pedyd vl] =
9
[26F6y! +£6 v +a2FPv, +4F2C Vivi+2F 6t v, v2
‘ ‘ 2
—FR VP 2FGPVIVI 4 6 v,‘v:j ,
Equation (9) reduces to
(10) H2(vh-v!) [2Frecv) +vw)f=0
Equation (10) can be zero when
(11) v, =vi,

oT

(13) 2F +6(v, +v!)=o.



From (12) we find that J£ t2Fv. +6yt = VE+2FVE +6v7°
and F+Gv- =—-(F +6V,) . Therefore (8) becomes

—(F+6V,) _ [+ B,
e + 2Fv) + v VE+ZFv. GV -

(13)

From (12) and (13) we have that W = V. = -6'.-5 . Hence we

conclude that a geodesic can not have corners.

4. The necessary condition of ﬂeierstrass-* Let

G,lbe a geodesic. The necessary condition of Weierstrass

is that for every («,v,v" of G, the function
(14) £ (u,v,v'V) = FlayV)-ftuvv) = (V'-v) fyls v.v)

’
must be greater than or equal to zero for every (“,V,Vl)"(“'”v)-

For the present problem (14) becomes

(V-VI(F?6EV)
Ve 2rvir v’

(15) £tu,vv'V) = VE+2FV»6VT - £ +2Fvis6vT -

which may be written as

(18) Etu,vr. V) = YEr2FV+6V? Z[*ZfV'fG'VT’ —[£ +(Vev)FrEV V]
r2FV' 6V y

Since the denominator of the right hand side of (16) is the

expression for de- , and is always taken to be positive, we

need only to show that

% Bliss I p. 131.



(17) VE #ZFV+EVrE+2Fv +6v* 3 £ +(V=-vIF +6v V-
Vi rcv=viF+6vvy?

If we write the right hand side of (17) as

and express the left hand side as a single radical, we may

then compare the two radicands. We get
(18) EFCEV +4F Y V' +t£6v?iy
2ECv V'tV F 2 2F% 1+ v *F 2,

Setting H*'=£6-F7 we may write (18) as
(19) (F*#HIV' "+ 4F 2 V' +(F+H)v" 2

2F DV sV F212F2 V' s vi*F2,

wnich reduces to

(20) H*(v'-V’') 0.

We have shown that for every V'# v’ , £E(«,v,v)V)r0

everywhere on our surface. The Welerstrass condition is,

therefore, not a condition on the minimizing curve at all.

»
5. The necessary condition of Legendre. The

Legendre condition states that if 6, is a geodesic then

at every (u,v, v') of 6,, the condition

(21) fov Cau, v, v)2o

%*Bliss I, p. 131.



must be satisfied.

For our problem (21) is

£6-F+
(E r2Fv'+Gv)h

(22) frive =

M
(E+2Fvis cvY)%’

Therefore f,:,+ » 0 everywnere on the surface.
Hence Legendre's condition places no restriction on t:e

curves that can be geodesics.

6. The necessary condition of Jacob ¥ 1f we con-

sider the single infinity of geodesics

through the point 1, ‘and if this family

has an envelope, then the geodesic ),

can have no contact point 3 with the

envelope between 1 and 2. For, by the

use of the envelope theorem the com-

posite arc G,, +D,y * G3p = /z°** !

But Dy3 is not a geodesic and may be replaced by an arc

which 1s shorter than D,, + This would give the composite

¥ Bliss I, p. 133.
x ¥ Bliss I, p. 141.
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arc G,, +D,, + 6, 8 smaller value than the geodesic 6,z .
In every neighborhood of 6,3 there is such an arc 6,, +D,,
+ 632 giving a shorter distance from 1 to 2 than the geo-
desic. Hence the geodesic cannot be the shortest distance.
This contradicts our definition of a geodesic.

To make sure that D, ; is not a geodesic we make
use of a well known property of a second order differential

¥
equation. Fuler's equation for this geodesic is
(23) Friw t Friv v/ + Foeve v’ -€, =0.

Equation (23) can be solved for v’ since Frvve#0 . If an
equation of the type of (23) can be solved for v” , then
there is one and only one solution through an arbitrarily
selected initial point and direction (u«,, V,,v,’) - Hence
if Dys were a geodesic it would be necessary for it to coin-
cide with 6,3 . Thus, all the geodesics through the point 1
would, by the same property, be tangent to and coincide with
6,5 . Then there would be no one-parameter family of geo-
desics as the theorem supposes.

If the Jacobi condition is to be of much value we
will need a convenient method for determining whether the

geodesic has a contact point 3, called a conjugate point of 1,

¥ G.A. Bliss, Princeton Qolloquium Lectures.
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with the envelope of the family of geodesics through the
point 1. From the calculus we know that'if we have a one-
parameter family of curves V=V (« «) the contact point of
any one of these curves with the envelope of the family is
a root of (U, < when «, is the value of « defining
that particular member of the family.*

It is not always easy to determine a l-parameter
family of extremals through the point 1 even if we do have
the 2-parameter family of solutions of Euler's equation.

For that reason we need a met:zod of finding the points conju-
gate to 1 from the original 2-parameter family of solutions
V=VvV(u a,b),

If we were to write the 2-parameter family of ex-
tremals as a l-parameter family it would be necessary to
choose the two functions 4Q(e) 8nd 4 («) such that
(34)  V(u, =) = V(u, ate=), b(=<))
satisfies the equation
(235) V, = V(u, , a,s).

If we differentiate (24) and (2») with respect to « we have

Vi = ValW, a, bla’ + Vp(w,a,b)b’

O = Volw, a,b)a'+ Vo(x, a,b)b,

* Wilson, Advanced Calculus, p. 136.
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where @’ and 4  are derivatives of @ and & with respect to o< .
When Vi vanishes the determinant of the coefficients of &‘and
46’/ must also vanish. We can now state that the points (3)
conjugate to & point 1 on the geodesic are determined by the

zeros for « # «, of the determinant
|

Va(“. 40,‘.) Vb(“,do,bo)

(26) Alr,u) =
Va (&, Re, bs) Vp (L, a0, ba)

when V(«, a,$4) is a 2-parameter family of extremals contain-
ing the particular extremal for parameter values Ro, & - We
shall find later that Jacobit's condition does not hold for all

extremals.

7. gSufficiency conditiong. In this section we shall

give conditions that insure that our minimiging arc is a geo-
desic. To accomplish this let us first define a field. A
field is a region F of (u,y)-space which has associated with
it a l-parameter family of extremal arcs all of which inter-
sect a fixed curve 2 and which have the further property
that through each point (« vy) of & there passes one and but
one extremal of the familyo*

By applying the fundamental sufficlency theorem of the

calculus of variations we have the following theorem:”*

¥Bliss I, p. 133.
#»Bliss I, p. 133.
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Theorem. If G,, is an extremal of a field & then 6,

is shorter than any other admissible arc C,, in & joining

—

the points 1 and 2. That is, G, is a geodesic.
This follows since £(«,V,Vv'V) >0 everywhere on our
surface.

Theorem. If a curve 6,, is & solution of Euler's

eguation and has no conjugzate point (3) between 1 and 2 nor

at 2, then G, is a geodesic-

This theorem is a consequence of the ordinary suf-
ficiency theorem for a strong relative minimum in the calcu-
lus of variations since £(«, v v!V) >0 and Ay (w,V, V)20

everywhere on the surface.

8. @eodesics on a sphere. If we choose the (V) co-
ordinate system as indicated in figure 2, tth equations of
the sphere are

Az 2 auech CaV,

(37) g:a;;&.‘u. alw V,

224 Cn L,

The linear element is

2 _ 2 b L . 2 .z
(28) dat = dd“-fawuﬂafx

The problem is to find among all admissible arcs
VsViw) , U 4w e,

one which minimizes the integral



Uy
fa Vi e v A,
(74

‘

Euler's equation is

aac.ta V' =-c

V/ #Ace 2l V' E

(29)
Solving (29) for V' we get

vl = c
(30) = eV,

wiich gives, by a quadrature

(31) V = ae cn—X_ +c,
Cawn &
v —c
when K = %—.
]

14

With the values of sin ¥ and cos v computed from (31),

and with the aid of (27), we can write the equations of the

geodesic as

X= QK Crik CoaC —AComu ain & |[[taFa -A3,

:/:: AK Cot . pese ¢ + A Coo L Coe &

(32) Z= a Coa

Va2 —#%,

If in (32) we multiply x by cose € , y by sin €, 2

by ~-K and add we have

(33) XCmc + Yminc +(-)P=0.

Equation (33) is of the form
Ax +By + L2 =0,
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wiich is the equation of a plane through the center of the
sphere. The intersesction of such a plane with a sphere is
a great circle. Hence, the geodesics on a sphere are great
circles.

Suppose we have two points 1 and 2@ on a sphere. The
great circles through 1 bave the point at the other extremity
of the diameter through 1l as an envelope. Therefore to ob-
tain the shortest distance we must use a portion of the arc
less than a semi-circle.

For a sphere the determinant (28) is

[
(/-¢72) V/ -C*accw

(34) i
(/-¢,)lr-¢iaiza !

/

»

The zeros of (34) are w = «,twm/po° This checks with the

above statement.

9. An illustrative example. Given the surface of

revolution
x= “MV)

y: “-;O;“-V)

(35) 2= £ [ T — g (u +TET),

to find the geodesics. The linear element is

(28) da? = utdu? rutde?,
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The problem is to minimize the integral

U,
(37) / ulli+v? du.

{
Euler's equation 1s

l

(38) yl_—*% -c .

Solving (38) for V' and then integrating, we have
(39) V=ALgg(u- Vu®=c%) .

The determinant (26) is

i
u T-c2 + cur+c?) !
c
(40) - -3

/
u ui-c* + («2+c?) !

The zeros of (40) are u=«, - Therefore, there are no
conjugate points.

Some of the geodesics are shown in figure 4, page 17.

10 An illustrative example; the pseudo-sphere.

The equations of our surface are
X=ucmyv,

(a1) Yz u iV,
2
7 =V =« -,egL’ZE—»
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The linear element is
(42) da?=h au’ + ut ar?

The problem is to find the minimizing arecs for the

integral

«,
(42) /[{5 + Ut e
“,

The Euler equation is

(44) duw =0,

v’
%‘L‘ + uivll
Solving (44) for v " and integrating we have

V = llu -c?

(45) ca  tG

The determinant (26) becomes

i« /
ct fu?-¢c% '

(46) “

C2 VU',-CZ ) /

The zero of which is U=« . Therefore there are no conjugate
points. That 1s, a solution of ERuler's equation is always a

geodesic.

Figure 5, page 19 shows the surface with some of the

geodesics drawn.
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II GEODESIC3; A PROBLEM OF LAGRANGE
#*
1. The Lagrange problem. The Lagrange problem in

tne calculus of variations is that of finding among the arcs
J‘. -_-J‘-(X) (x‘ 5X=x4 3 l’-_-/--- n) ,

satisfying a set of differential equations

(47) Rl X, Y Yn, 4 ) (x=s--man)

and joining two fixed points in (X,jﬁ-—---Jm) space, one

which minimizes an integral of the form

£
(48) | Flx, 4,-""Fn, 4'--=-Ya) dr .

2. The problem of finding geodesics. Let

(49) S! Pixyz)=0,

be a surface on which we wish to find the geodesics. We
assume that ¢ has continuous derivatives up to and in-

cluding those of the fifth order and that

%Z_* %2*_%2#01

# G.A. Bliss, [The Problem of Lagrange in the Qalculus of
Yariations. American Journal of Mathematics, Vol. LII
No. 4, October 1930 p. 674 (Hereafter referred to as

Bliss II)
20
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everywhere on the surface.
The form of the Lagrange problem that we are inter-

ested in is to find among the arcs

X = X(s),
(50) Y =Ys), S5, £5<5,
2= 2(5),

satisfying the equations

(51) Pi(x.9,2)=0

Xteytrzi-/=0,
and having end points satisfying the equations

(52) 51 = X, o, =J:"ﬂ: =Z,-Y, =X,-o, 2 Sfa~"Ba~-22-03=0,

one which minimizes the integral

52
(53) Z :'é &

This is a problem with variable end points in(s, &y‘g)-space?
the parameter S measures distance along the arc starting at
the point 1. In order to reduce this to the regular Lagrange
problem we replace the first of the equations (51) by the

equivalent equations

(54) Pux'+ Gy tPp2'=o,

*Bliss II, p. 689
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*
(55) xl-d' =3I-al=zl—”=x2—‘z =31_ﬁz = 0.

We assume here that % # o at the end point 2. This does
not restrict the generality as one of thed | ¢, ., % is
different from zero at every point. We can now replace

equations (53) with the equations
(56) sl = X, —“Ole-’l =zl'n=xa'°‘2=.‘ft"3z=o'

3. The equations of the geodesics. As a first

necessary ocondition that an arc be a geodeslic, we have the

followimg theorem:

Theorem. JFor every geodesic &, there exists a set

of constants ¢, , ¢, ¢ and a function

3
(57) F'- /*Af(s) (ﬂ,x'-r?.;’g’-r%z') +}A_2($) (xl‘f‘y:‘le'_/)l

such that

S
Fx':‘lfxdd -fC,,

ls’}”’* 'a,

S
fr = Frde t6,

S,

"

%Bliss II, p. 703
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are gatisfied at every point of G,. The functions (A,, As)

are not both identically zero, are unique and continuous

except possibly at values of s defining corners of 6,z

This theorem is the first necessary condition of
the calculus of variations problem. In order to wrife the
function # in the form (57) it is necessary that the mini-
mizing arc be normal. In section 4 we shall show that every

minimizing arc is normal.

For the function # of (57) the equations (58) become
A, B tA X! = LSA, (Pux X't Py Y'+ Pra2lda tC,,
(59) A By thy! =/:A, (Prygx' +Fyyg' +Py22)ela +C,,
A P * A12‘=.é:s/(, (PraX't oyl ¢tPrs2) a tCs,
By an integration by parts we can write (59) as
hex! = [ -4/ e 18,
(60) Ay =[$' APy oot Gy,
Ay 2 i[s—,(,'% oa, t+C;,

From equations (60) we can state the theorem:
Theorem. A geodesic can not have corners.
From (60) we have that AaX; A24' A, 2'must be

continuous on §,S,. Later we show that Az =/and there-
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fore X, g', Z' must be continuous.

If we now take the derivative of both sides of (80)

with respect to S we get the Euler-Lagrange multiplier rule.

At every point of 6,2 the equations
P(x.4 2) =0,
x"=u@,
(€0) y =,
z' =¥,

must be satisfied. This proves the theorem:

Theorem. At every point of a geodesic the principle

normal of the geodesic must coincide with the surface normal.
The derivatives X “, y” 2“ and the factor¢slare

continuous on S,, S, since the determinant

Az o o & 2x'

(7] A o é. 2y’
(61) ’ 7

o o r 2 ?. 22

4 Py 7 o o

2x’ 29’ 2z o o

= @+ @+ 70,




S5

x
4. The transversality condition. The transversality

condition for our problem is that the determinant

CFO) #dy, A e had, Ay by, A G ha2's Fd-Ag, A Bt s =A@ ke’
/ 7] o 0 o 7] o
o) / o o o o o
o) o / o o o 0o
o o o / o o (7]
(o] o o o o / o
(o] o 7] o 174 o /

equals zero. This determinant reduces to

Az =F(IJ) "-'-'/-

S Normality of the extrema gf’ Every extremal arec

of our prbblem is normal. The condition for normality 1s
that there exists six sets of values of (}:‘ Fe, 0,¢5), Yy(8), Dy ¢s))

with F. I arbitrary and )»,, %, , 4 satisfying the equations
d =
Z (%0 G atrhn)=0,

xlzlf 51724" 21731 = P s
and making the determinant

(62)

¥ Bliss II, p. 693.

# # Bliss II, p. 6393 and p. 704.



different from zero. 1In (63) the arguments are the x,y)z

4

X', y! 2' of the extremal arc. The equation (62) can be
written
o' B U B + (PuX t gy '+ Tra 20}
+ (%‘XI" ¢.‘/.‘IJ',*¢.‘/22')Z¢ +(Pex X'+ Pry Y+ Pa22) )y =0
Xp'+ygn +24 =0
The matrix

“ . % . %

is of rank 3 at every point of the extremal since the
directions @, : 4?, . @, and )(':’I,z' are orthogonal. Take
another function ¥(x,y,z, x,y’, 2') such that

Fe Fr2 s 0 == fre

Ju (S Mia(s) hs(S)  ——m— hets)

P2:(S) D22(s.) Ms(s) ~  ————- Y, 6(S)

D3:(8) D32(S2) D23(S) ——— =156 ¢5.)

Xa Bor #2658 X o2t 9.0%) X2 [as #9850 ——— X Fot he(Sa)
Y2 Fo +zl(é) Yi Fezt ea’S) Yz Fastha(S)———-- Yz Fre +DeetS2)
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is of rank 3 at every point. Consider the set of equations

Gy +, 7;*%2/ + (Pex X'+ Pryy’ + Pea?’) Y

P (Pua X'+ Pyy '+ Ba2) o + (Px X' * Pay Y ' +Pri?)g=0.
X'Z'-I-ylzl-rZ‘Z‘:O,
Vo 2485 N+ el Ya )+, +H D= FCS),

Let ).(s). h(s), h,(s,) , », (s,) be arbitrary and determine
j(s)euch that the above equations are satisfied. 3ince the
sets),'.. , f:,, 2‘(50 , 7,,‘5,) s Re€S) LY 08) aTre arbitrary we can
certainly choose them so that the determinant is different
from zero if y(s.)#0. 1If g’(s,)=0 and X(s,) #0 we can
vary the above proof. If y'ts‘).-,x'(sa);o , then 2%s.)=; »

s i / ‘. s

Since @, x'+ Pyy'* § 2'=0 on the surface we would have

®, = 0 at the point on the extremal determined by S$=S; .

This contradicts our hypothesis that @, # oat the point 2.

6. Analogue of the Weierstrass condition. The

function for this problem is

£=/1 MBI QI+ RI) + (X Y227

~ AP +P Y+ B E) - g (x gt 2?)
“(X-xWA Brx) = (V-9) (A Py t+Y)

—(2'-3.)(Xl ?z *2')-
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This reduces to
E: é [(X/__Xl)l + (gl_, y’)I f(Z'—Z’)‘] .

Hence we have that £ (X, 4.2 X.y! 2, x,'}’jz" A) >0 for
every (Xx,4"Z)+ (0, 0,0) everywhere on the surface.

7. The Qlebsch condition. The expression

(63) KoM, # /gy Usla +F2a W5 +2Fyy D7 + 2/ 50 B0, # 2650 By Ty

J

becomes
A+ 72 + 7.

Therefore we have the expression (63) greater than zero
for all sets (7 ,72,7;) # (0 0,0) everywhere on the surface.
The conditions given in section 6 and in this
section are stronger than the ordinary conditions. The
ones stated here are usually denoted by Z, " and [ZJ ’ re-
spectively. They are of importance in proving the suf-

ficiency conditions.

8. The necessary condition of Mayer. The necessary
condition of Mayer corresponds to the Jacobi condition of
the ordinary problem.

Theorem. Jf the l-parameter family of geodesics




a9

through the point 1 has an envelope, the geodesic joining 1

and 2 can have no contact point 3 with the envelope between

1 and 2.
This follows from the Mayer condition of the Lagrange
problem and the fact that the determinant (61) is everywhere

*
different from zero on the surface.

9. petermination of conjugate points. A point 3

wnere the extremal has contact with the envelope D is called
a conjugate point of 1. In order to apply the theorem of
this section it is necessary to have a method of determining
the conjugate points. |

Let
x= x (S, al) d‘,a’, b’; 54'46’) J

Y= Y (S, 4,245, b, bs,b),
2= 2(S Q,. a,a,, b,,b,.4,),

be a 6-parameter family of extremals containing G,, for Qo= bio

(¢=¢ 2,3), Suppose also that the determinant

% Bliss II, p. 733.



Xa, (5.4, 6)
a, (s, @.6)
2q,(5,4,&
Ug, e, *%a,
Aa, fye, * Y2,

Ae, Pra,* 2a,

is different from zero at the point 1 on Gn .

points 3 conjugate to 1 are determined by roots

Xa, (L4, 6)
Y2, (5,4, 4)
Zq,(s,a, 6)
Aa, Pray* X
A2, Byt ga,

A‘: ﬁ.. fz,‘,;

of the function *(64)

Y, (S, 20, b0)

L‘ (S, “0, bo)

XQ, ‘5, Qo,b0)

,., (SJ&J b)

Za, (S, @0, bo)

Xag (S, %, bo)
Yas (S 2. bo)
24,45 a0, bo)
x.,, (5,,%,6)
Yay (S, Go, bo)

14 2 (5 ? a"l bﬂ)

Xe,(5a,8)
Sa, (5. 2,6)
%a,(5, @, b)
A4y Bay * Xey
Aa, Fya, *"/‘ls

A" ?"‘ +Z‘,

Yoy (5, @0, b0)
Ya, (8, G, bo)
242,(s, &0, bo)
Xq, (S, 20, b0)
Ya, (S, 40, b0)

2 a, (s,, @0, be)

X5, (S, 4,6)
Ys,(5,4.8)
24(5,4,6)
Ab' ﬂhfle
Ao, Gyo, + 36,

As, ﬁ‘lfl‘:

Xp, (S, @o, be)
0, (5,8,&)
24, (5,40, bo)
X4 (5,20, b0)

y“ (5'. do;bo)

2“(-’0 a.o bo)

30

Xop(s,2,8) Xy, (5,2,6)
Hb4(5,4,6) Yp, (5,2 b)
2,,‘ (s, a,b) Z, (s,a.8)
Aoy Ben,t Xé, *b,‘ﬂ.,*"'é
A“:?.‘l"z’y“; Ay, %"a*“ﬁ-‘
Ao, ‘4*:4 A, q’zb,"l":
Then the
S, S

Xp, (5, @5,60) % (5%, 50)
Ys, (5. @0, b0) Yy, (S @o, b0)
24, (S G0, be) gy (5 20, b0)
X, (5,40,6) %3, (5,40, b)
362€51.%,40)  Jo,(S, €, bo)
7, (5, 80,b0) 24y (5, Go,b)

*Bliss II, p. 739.
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10. gufficient conditions for an arc to be a geodesic.

A Mayer field is a region & of(S, Xy,7)-epace containing only

interior points and having associated with it a set of functions
P (S, X4 2) ,l<(s,xy42),

with the following properties:

(a) they have continuous first partial derivatives
in & ;

(b) the sets (s, X4, #, b(s xy43) defined by the pointe
(5 X,42z) ind are all admissible;

(¢) the integral

I* = [[F(s,x9,2.b.1) + (ayimpi da) Fy! (5,5, 4.2, p,1)],

*
formed with these functions is independent of the path.

By applying the sufficiency theorem of the Lagrange
problem we have the two following theorems which correspond

X
to those of part I.

Theorem. JIf s is an extremal of a field & then
¢, is shorter than any other admissible are ¢, in & join-

——— G

ing the points 1 and 2. That is, G, is & geodesic.
This follows from the fact that £(x,4,y'Y, ) >0 at

every point of the surface.

*Bliss II, p. 730.
% ¥ Bliss II, p. 731.
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Theorem. JIf an arc £,, satisfies eguations (8Q) and

has no point conjugate to 1 between 1 and 2 or at 2, then G,

is a geodesic.

11. Application to a sphere. The Euler-Lagrange

equations for a sphere are

(65)

Xirya+zi-q2-o.

If we differentiate the equation of a spnere twice
with respect to S and meke the substitution XX"seex?, ¥y =uy?

and zz"s/u.z' we have
i I
Putting in this value of>¢4 and solving (85) we find
X= C co¢ng§ t Cy aien 2,

) ys G £ Guain £,

Blw

Z = Craee g? + C s

If we multiply the equations (66) by



(67) _B = Cz({,—-c“ C‘)

1)

c clc‘l’ —CZ c3)

respectively we find that
Ax + By +CZF=0,

Conversely, given values of A4 ,8, and € we can solve (87)
for C,,Ce, C5, €4, €, C¢ + Therefore the geodesics on
a sphere are among the arcs of great circles.

For the sphere (64) becomes

c‘.,_aﬁ_ o o 4‘;‘%« o [
o Y o ] M‘{. o
o o Mf' o o 4«4-‘3‘
Cou 2 o o o B o o
o Cn 3 o o ,.......:,'- o
o o c.,_‘—:-f- o ) ,,;,_%:_
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the zeros of which are w = «,2/p90° . Thus, as in the prob-
lem in part I, the geodesic connecting two points of a sphere
is that portion of the great circle, less than a semi-circle,

through the points.

12. Application to & cylinder. For a cylinder the

Euler-Lagrange equations are

:X”=/“~x1

Y=y,

The solutions of (68) are
X= €, caVI-GT ¢ + Ceainlr-¢7 ¥,
[} s
y.‘:C"Co‘— '/‘Cllg- + C;M I—C.fz')

Z= C,_S +C‘,

If for convenience we set A= ‘——-l-i’;‘ the determinant

(64) becomes
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Cot XS o 1S . KS -CiG CouAS  AilKS o
ay-c, alr-¢;?
Cy C
o caks k. ks - —’,d.sr-‘ Caks o (kS
AW ~cy' “s alr-¢ef e
(o) o s (/] o
CuKS  © 9l o ks - Sl a NS aliks o
dv”d‘. al’l_z." ’ /
C & Cs G-
(o] S : - Con XS, o y
Cot X, aVT:EPAh~“”5 aVi-et s K S,
o o 34 (o] o

The zeros of which are S = S,rw_—q-._IT . Hence, from (39), the

-C

¢4
geodesics joining the two points will make less than one com-

plete turn and go in the direction of the smaller angle.




III AN INVERSE PROBLEY

We know that on a plane the geodesics are all the
straight lines. Therefore in the X y-coordinate system the
geodesics are represented by equations linear in xandy .

It is the purpose of this part to determine whether
we can s80 Choose awuv-parameter system on a surface such that
all the geodesics will be represented by equations linear in
wuandv . Beltrami was the first to propose and solve this
problemj* He asked if it were possible to gét a one to one
correspondence between a sphere and a plane such that the
geodesics on a sphere will correspond to straight lines of
the plane. Darboux solved the problem as an inverse problem
of the calculus of variationéf*-The method of this paper is
essentially that of Darboux.

l. The inverse problem of the calculus of variations.
The inverse problem of the calculus of variations is, having

given a second order differential equation

X E. Beltrami, Risoluzione del Problema: Riportare i punti d4i
una superficie sopra un piano in modo che le linee geodetiche
vengano rappresentate da linee rette. (Annali di Matematica
pura ed applicata pubblicati da B. Tortolini, t.VII,p.185;1866)
¥ ¥ Darboux, Theorie Des Surfaces, Vol. 3, pp. 53-863.

36
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(89) vi= Y, v, v,

defining a 2-parameter family of extremals, to find a
function f(u,vv)such that (69) is the Euler equation for
the problem of minimizing the integral
Uy
flu,v,v)de,
“l

3. The problem of Beltrami. The necessary and suf-

ficient condition that the geodesics be represented linearly

in « and v is that the equation of the geodesics be
(70) vizo,

We shall first find a function £ (&, V,vY such that
the Euler equationi_: fv--fy=0 18 V=0 . The re-
quirement that Euler's equation reduces to (70) is

[}
lV’ + Chid -2f =0,
2VvOV’ d2udVv’ dV

(71)

If we take the partial derivative of (71) with respect to V'

23f
and set M= S5v2 we get

oM
—— V/ + =a’
(72) 2 v/ o«

To solve (73) we first solve the equations *

¥ Wilson, Advanced Qalculus, pp. 267-268.



(73) ok . A | g’ dAM
/ v’ o o

From (73) we have
ade ‘=0,
am =0,
Vdu = duy

which gives M=( ,V'ng and V<uv=C; . The solution
of (72) is, therecfore,

(74) M=@(Vv'; v-uy’),

where ¢ defines an arbitrary function of v’/ and V-uv’.
Thus, in order that y‘@®©0 be the Euler equation, we must
have

2%F _ VUV
(75) 2 vi~ Pvisv-avy.

From part I we know that the geodesics are extremals for

minimizing the integral

“y
VE+2Fvi+éevit ol .

«®,

Equation (75) then requires that

o3f
ov:

E 6 -F? =
(E+2FV' rev?)h

(78)

38
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or

2
3

Er2Fv't év'? _ (a*f‘)'
(£6-FIYY3 ov/ -

We shall not consider surfaces for which £¢-F%:0. 8ince
£6-F%is an invariant of the surface it can not be made
zero by a transformation of parameters.
217 )- y . ,
8ince (ﬁ.) is an arbitrary function of v,

V-uv’ we can write (77) as

’ 2 ’
S e

(78)

S8ince the left hand side of (78) is a quadratic in Vv’ the
right hand side must be also. This is possible if and only
if @ is a quadratic in V 'and V-« Vv'. @ will then assume

the following form
Av': +BV' + C(V-uv)2 +D(V-u V') + K

from which we have

E£+2FV'+6 vt .
(EG-F)"

(79) (K+DPViev) + (B -DuU-26UVIV’ +(A $Cu?) V'’ =

Equating the coefficients of powers of v'in (79) we get
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__L_ — CV: *DV +K)
(E€-FI%
(80
) £ =B -cuv-2u ‘
(c6-FY% 2
6 = Atcur.
(EG-FI%

£6¢ -F2
Computing—————_from (80) we get

(£6-F2)%
2
(81) (.;_—;—_-;;,)&= Acvi+(AD+Bew)y #(cK-2)u? rBu +AK -3,

For convenience we place z—#;) R . PFrom (80) and (81)

we obtain
_ eVIIDVHK
£ = =
;o= 3 -cv-f
'R2
(82) .
A rcu?
G =
7?!
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We can now prove the following theorem:

Theorem. The only surfaces whose geodesics can be

represented by linear eguations are those of constant total

curvature.
The total curvature, A, , expressed in terms of £, /7

and 6, is given by
L26] 42 [2 2 _ 12 2c7)"
- mm— L --l- - S
(83) Ke 2//[aa&§ ) +a¢[//au. N v Eiaa]j.

Using (80) we get

—E a_€ =, / c‘ - C 3 s + ’C 2
£H v Eh(cw,«wm{‘“ K - E2) wty (242K +22 +4D%)v

“24crv? +(eoK ~Z)ut ~34¢Dyt +(22 - 23 cK)u 22 22 rask],

L 2e - L €23 2¢3K)U> + 24Cc*u Vi +24ACDuy
H 2w R% [(T-z

-243cy +(4D-24cK -£2")u -ABD),
22F oL [(2D°-3¢cDK)Us +(2CDX-6C3K) urV -2BC%V?
22 - %{({,D ICDK)4a +(2C )

~28cDuy +(+8cK -5 8P+ 3ACD V2 +(2AcK +AD+3 BC)Y

+ 24c2V8 + 4 DK # ;awj,

xEisenhart, p. 155.
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H v
2
+(-24cK - €2 42?)v +(BR - 28cK)u-22 -ADK|

Yy Wog DY uty - 2ACHV -3ACD Y3 4 (COK -2) u?
o [ (26K =R ) utv - 24V v 7/

N
™

ﬁ 2L "'i%s [23c uv? + (4C*KH -CDY w2V + 28cD UV
2 .

+(2cDK -2 )ur — BV +(BD*-23C K)u -2 ]

We #£ind that

L2 L6 - ! ABcty® +$ABCDV?
H o — CeyirDv+K)R% [

+ (33c*/(-.}3c17’)u'v +(Bc? - ﬁf—?' $ 2AC3K ) uv?

£8) 4 (;’.' - CD*N +2CK*)u’ + (CBD -‘??’f 2ACDK)uy
+(§Bcok -3 BD')u? f(-’:‘ # A:Bzmack)v
‘G- BEK o 4B canck)u - 52 0432

= RRw
(CV2:DVFX)RY

Using (83), (84) and (85) we get
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K =_/__D_ | R Ru
t T2Ho4 (cyr4+Dv+k)RE

= / -LRE
E—— N P
= -8 _4p?

= AcK -ZE 4D
-‘:w

We next prove the converse tneorem;

Iheorem. Jf the total curvature of a surface is

SRy  CESEE—————  C——— S GETIED  GED  ——  SE—

constant then the geodesics on that surface may be expressed

linearly in w and v

Let us choose our curvilinear coordinates in such a
manner that v = constant are geodesics &and « = constant are
the orthogonal trajectories. When such a curvilinear co-
ordinaté system is used the linear element may be put in the

form
(88) Hat = ad?+ GCalor?

2
From (83) and (86) the total curvature is --GL g—‘z .

By the hypofhesis of the theorem we have

- /- 336 =
(87) 7 L= A

We shall consider the three cases A =0 , K70, K<o,



For K =0 we have

_ L 2°¢ -0 ;
6 u*
or
26 =0
(88) W‘ .

The solution of (88) is 6 = W« + Jf where ¥
any two arbitrary functions of V.

For K »© we have

/ 96 _
._—6‘ .a’—"“z - 42 J
oT
26 =0 .
(89) 5 +s

The solution of (89) is

(90) GV, Coul *V ace .

and Vg are

where |/ and J/ are any two arbitrary functions of v.

For K <o we have

226 - _.4
- 2 u*” gz
oT
o? .__6.=0 o
(91) -;fz z*

44
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The solution of (91) is

(92) C-VeZ+Yed.

If we take Z-Z-Y*zz J K--?-I’/f‘-zu we can change
(92) into

(93) G = Vei‘-e‘f' *Zeffe‘g' .

If in (90) and (93) we replace ® by @4we have the

three forms of the linear element

Ayt= e+ (VutV)de? ,

(94) ot = afctu? + (Y oin « +V,cau)’6w’] J
a’-—a[daﬁp(V.e_f__e_iéV )do—]

If v = constant are to be geodesics it will be n
necessary for 6 to be zero when « is zero. If 6 = © when
« =o we have from (88), (90), and (33) ¥=2 . GChoosing
the coordinate V¥ in a suitable manner we may reduce V/ to

unity and write the three forms of (94) as
Add? = dee? + uloler?

(95) odo? = a'[du? + pivtu de?],

de* = a*[aul + (€ -e V.
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We next compute the geodesics for the three forms of

(95). For

&2 = da." + A‘.d‘fz 3
Euler's equation 1is

#i = C
(96) oot - ¢

Solving for V'and integrating we get
(97) AucoeVv +Bu g v+C=0.
For
dat = @[ d? + nctuded

Euler's equation is

&"“'V, - CI
V + oce 2 v?

(98)

Solving (98) for v’ and integrating we get

(99) V = axe MV}__C'——‘;TMM.-I'C.

If we put K -v.’_i_—‘;—z (99) reduces to
- &



(100) AcouVitawu 1B .aiu Vtew t+C =0,
For
Ad4? = az‘[b&L‘ + aid*u do-t]

Euler's equation is

Al Vv’
= C
w* ﬂl' ‘IVIz ’
or
c
(101) yv'=

ac £ VM'a -c2 :

Solving (101) as we did (98) we get
(103) AcaVtaud w + B ogivwVtad 12=0 .
The geodesics for the three forms are
Au Cav 4 B acec V +& =0
(103) AtriVluwuwu tBoiuy tanu +c=0,

A Q‘un- + BasVtadl u +2 =0

47
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respectively.
The transformations which we must make on the « andvVv
in order that the equations of the geodesics will be linear

in « andvy are evidently

A = ucov ’ V= uaadiy )
(104) A = cCraViguu , V = ade Véaw |

G = cavtadu, V=0V taddu,
respectively.

After making the transformation (104) the linear.
elements (94) take the form

aa* Aut + dr?

@l [ A+ At 4 (Y on— )]
(I + w?t+vy)2?

J

\

dﬂa

_ aifauttde? = ( Vet ~udr)?]
(/= ar—y2)?

Az

J

respectively.

Theorem. The only surfaces on which both the

equations of the geodesics will be linear in « and v , and

the parametric system orthogonal are developable surfaces.

The necessary and sufficient condition that two

A _ -Du«
curves be orthogonal is that F£=0 . From (83) £, = _2 cuv 2

Rz
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Since £ is to be zero for all «'sand Vv sit will be necessary
for B = C =2 =0.8ince Kg=ACK - 2{-‘ - 42%1¢ follows that
He 18 zero when F=9 . The necessary and sufficient condition
that a surface be developable is KA¢=92 . This proves the

theorem.

If we take the sphere with the same uV-coordinates

as in part I and make the transformation
L = CnVv thuu V = gcr V Ganrw,
we find that the equations of the sphere become

aun

X =
|ﬂ¢u*rvl

(105) _ av ,
J = V/ r Uz Ve

Q
= V/fuafvz

z

The linear element will Dbe

@i [(1+VYdaa? = 2L/ olaa ol +0 +ud) ar?]
(/1 +tur+ve)?

Xa® =

If the equation of the geodesics is computed from (105) it

will take the form V =O.



IVv. AN ISOPERIMETRIC PROBLEM

In this part we consider the problem of finding
on a surface the curve of shortest length joining the
points 1 and 2, and enclosing with a given curve Co, join-
ing 1 and 2, a fixed area. It was in the solution of this
problem that Minding discovered the function to which Bon-

net gave the name geodesic curvature.

1. gtatement of the isoperimetric problem. The

isoperimetric problem is, given two integrals

“Ly «u.
L=/ ftwu v.v)a |, Je/ ’y(u,V,V’)d“»
o«€,

“,

to find among all admissible arcs, joining (1) and (2), the
one which gives the integral J a constant value and minimizes

¥ X
the integral/ .

If £, is a minimizing arc for the problem there

exists constants (Ao d) # (0,0) such that

(108) ;—":L Fv -Fv=o0

between corners of £,2, where

» ¥inding, Qrelle, Vol. V (1830), p. 397.
%%G.A. Bliss, Lectures.
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(107) F = Aof*l(j-

If the arc £,, is taken to be normal there exists an unique
set of multipliers (A, d) = (/, A) . Hereafter we shall con-
sider only arcs normal on every sub-interval. Abnormal arcs
are of no importance in our problem since an abnormal arc
would also minimize the integral J.

The other necessary and sufficient conditions are
like those of the ordinary problem of part I with f(«, Vv,vY
replaced by £ (u, vy’ A) .

2. The problem of Minding. Given an arc Co join-

ing two points 1 and @ on a surface, to find the curve of
shortest length joining 1 and 2, and enclosing with o a
given area.

The area will be given by /h’dadar- , where the
integration is to be taken over the wv-region corresponding
to the area.* It is possible, however, to find two functions

N &
MC«,v) and M(w, V) guch that A= 5a ~ 5V + By an application

of Green's theorem we have ¥ *X¥

* EiBenhart, jo 1) 750
«
#x If H(uv)is continuous in g we can take N= L’H(u,v) and M=M(),

##x%F.3. Woods, Advanced Qalculus, p. 181.
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f//””"““" = f[(gg“g—vg)d“dv-—-/Mdu N dor.

The problem then is to find among all the admissible arcs
which join 1 and 2 the one which minimizes the integral
« A
/ [E?z»’v'f 6v? s« and keeps the integral / (M+N V) e
«, «,

equal to a constant.

The F-function (107) is

F=VErzrvize v + A(m+NvY),

and Euler's equation is

: ( : ) - —ZaV r2v By 1vigs AH
108 IV = ‘
(108) Zu \E+2Fv776V 2 VE7ZFVFEV?

We can now state and prove the theorem of Minding:

Theorem. JIn order that a curve € joining two points
shall be the shortest which, together with a given curve

through these points, incloses a portion of the surface with
& given area, it is necessary that the geodesic curvature
of € be constant.

From a formula derived by Bonnet the geodesic

curvature of ¥ (4, v)= constant is ¥

# Eisenhart, p. 136.
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(109)

If we take Pin the form

V - ¢(a)=0,
then
¢ . °2f . -vi
(110) >V =/ T i

Substituting (110) in (109), (109) becomes
Fréev’ ) o ( FVv'+& )
—,— = _/- 2_ - v 7

Equation (108) can be written as

_Ftev’ v

A= "L[eu (V?n?v’f?af’) —av V£f27v’737"

(112) L 4 2v' 2F +V".§)3

2Ver2Fvirev?



o4

Hence, comparing (109) and (112) we have the geodesic cur-
vature constant and equal to A .

Due to the fact that the geodesic curvature is
constant, the curves representing solutions of (109) are

called geodesic circles.

3. The necessary and sufficlient conditions. The
E-function is

ECu, v,V A) = [E+2FV +6V': +AM+NV)

Vet 2Av F vt A (M AN V)

£ rév’
“(V'-v) [G'—fJFV'fGV" +FAN],

which reduces to

E (v V.A) =z VE+ZF V" sGV2: -|Era2Fvi+év?’

(113) | _(V=V)(Fr6v)
\le+2Fv +ev'?

The f,.v’0f the Legendre condition is

”3
(E+2FV't+6v7)%

(114) ‘/:..,. (k,yv.,A) =
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Both (113) and (114) are the exact expressions for
the corresponding functions in the ordinary problem of part I.
Hence, we have the same necessary and sufficient conditions

for the isoperimetric problem as for the ordinary problem.

4. Application to a plane. Letting #=x and v=g
equation (108) becomes

Zr V *+ g%
Integrating we get

/
(115) V/%l’ = '( X +C, B

The solution of (115) is
(118) AX* 4492426 AX +2€2LY +622c2- =0,

Hence the curve of shortest length that joins two
points in the plane and makes the area with another fixed
curve, joining the points, constant is the arc of a circle
through the two points.

To show that the curves (118) are minimizing curves
we need to show that the sufficient conditions of part 1

are satisfied. 8Since the only zeros of the determinant
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AX + C
Vi-€ Ax+¢)?

AX + & |
Vi- (s rx te)?

are X=X, it follows that there are no points conjugate to

1. Therefore the curves (116) are minimizing curves.

5. Application to a sphere. For a sphere

dar= a VI # 2ilZuyv®

and (108) becomes

A POy XM
(117) M(V/—&————-

?acs 2y’

) = f a*owca,

If we integrate both sides of (117) and set -/ 4 = we have

Zek 2

B8olving for V' we get



. K Con & +¢

118 v = .
(118) et |[ain 2 - [K Cacn +a]”

The solution of (118) is

V,‘Tk_z'..Ti aeie (V-€3) - C,Ca ek =K,
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