

INHERITANCE OF SEX EXPRESSION IN THE DIOECIOUS CUCUMBER (CUCUMIS SATIVUS L)

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY
JOHN WARNER SCOTT
1974

County of

ABSTRACT

INHERITANCE OF SEX EXPRESSION IN DIOECIOUS CUCUMBER (CUCUMIS SATIVUS L.)

Ву

John Warner Scott

The hybrids and segregating populations of 4 gynoecious lines crossed with 4 androecious lines were analyzed to determine the inheritance of sex expression in dioecious cucumber (Cucumis sativus L.). Sex expression of the hybrids was characterized by gynoecious and predominantly female phenotypes. Both phenotypes are characterized by a continuous pistillate stage of flowering on the main stem. No reciprocal cross differences were observed. Backcrosses to the gynoecious parents produced plants with a continuous female stage. Backcrosses to the androecious parent produced plants with a continuous pistillate, monoecious (without a continuous pistillate stage), and androecious phenotypes in a 2:1:1 ratio, respectively. The F₂ generation segregated 12:3:1 continuous pistillate, monoecious, and androecious phenotypes, respectively. Two major loci were proposed to control sex expression in the populations studied. The a locus permits male (aa) versus female (A-)

flower expression. The <u>acr</u> locus conditions the intensity of femaleness where \underline{Acr}^F is epistatic to <u>aa</u> and results in a continuous pistillate stage.

Accordingly, gynoecious and predominantly female genotypes are homozygous or heterozygous for \underline{acr}^F , while monoecious and androecious phenotypes are \underline{acr}^+ homozygotes. With an $\underline{acr}^+\underline{acr}^+$ genotype $\underline{A-}$ conditions monoecism and \underline{aa} conditions androecism.

INHERITANCE OF SEX EXPRESSION IN THE DIOECIOUS CUCUMBER (CUCUMIS SATIVUS L.)

Ву

John Warner Scott

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Horticulture

Guidance Committee:

This thesis is condensed into a format suited and intended for publication in the <u>Journal of the American Society for Horticultural Science</u>.

ACKNOWLEDGMENTS

The author expresses thanks to his professor,
Dr. L. R. Baker for his valuable assistance with this work
and to committee members Drs. K. C. Sink and M. W. Adams
for their input. I'm grateful to Dr. Jehoshua Rudich for
his unselfish data contribution and suggestions. Thanks
also to Dr. J. H. Gill for his statistical advice and to
H. M. Slatis for his help with the genetic interpretation.
Finally, thanks to Drs. E. T. Mescherov and M. Yordanov who
made the whole study possible by supplying the androecious
seed to our breeding program.

TABLE OF CONTENTS

															Page
LIST O	F TABLES	· .	•	•	•	•	•	•	•	•	•	•	•	•	v
INTROD	UCTION	•	•	•	•	•	•	•		•	•	•	•	•	1
MATERI.	ALS AND	METI	HOD	S	•	•		•		•	•	•	•	•	2
RESULT	S AND DI	SCU	SSI	ON	•	•	•	•	•	•	•	•	•	•	5
SUMMAR	Y AND CO	NCL	USI	ONS	•	•	•	•	•	•	•	•	•	•	18
LITERA'	TURE CIT	ED	•	•	•	•	•					•			19

LIST OF TABLES

<u>Table</u>		Page
1. Sex expression of S_1 plants from gynoecious and androecious lines of cucumber		6
2. Sex expression in the cross of gynoecious x androecious (MSU 1A1) cucumber	• •	7
3. Sex expression in the cross of gynoecious x androecious (MSU 1A2) cucumber	• •	8
4. Sex expression in the cross of gynoecious x androecious (MSU 1A3) cucumber		9
5. Sex expression in the cross of gynoecious x androecious (MSU 2A) cucumber		10
6. Proposed genetic model for sex expression from the cross of gynoecious x androecious	com	
cucumber		13

INTRODUCTION

Kubicki (9) reported that androecious (all-male) expression of cucumber (<u>Cucumis sativus L.</u>) was controlled by a single recessive gene <u>a</u> and was also influenced by the <u>acr</u> locus. The influence of the <u>acr</u> locus on sex expression had been reported earlier (16,17). The <u>acr</u> locus is probably analogous to the <u>st</u> locus (4), which in still earlier work was called \underline{f} (20). Kubicki (9) obtained entirely gynoecious (all-female) F_1 plants from some crosses of gynoecious x androecious. This result stimulated interest in the use of an androecious parent for hybrid seed production. Use of a vigorous, androecious pollinator might be advantageous over current monoecious (11) or proposed hermaphroditic (5,12) pollinators. It might also be useful as a pollinator for 3-way hybrid seed production (14).

The purpose of this study was to determine the inheritance of sex expression in crosses of gynoecious and androecious cucumber. This information is essential to determine the feasibility of using androecious lines as pollinators for hybrid seed production.

MATERIALS AND METHODS

In August 1972 crosses involving 4 gynoecious and 4 androecious lines of cucumbers were planted in the green-house to obtain F₁ and S₁ seed. The 4 gynoecious inbred parents were: 1) Gyl4, a white spined pickling line developed by Clemson University; 2) MSU 713-5, a black spined pickling line developed by Michigan State University; 3) Tablegreen 68G, a white spined slicer line developed by Cornell University; and 4) MSU 394G an experimental white spined pickling line developed by Michigan State University. The androecious parents consisted of 3 lines of black spined slicing cucumbers designated MSU 1A1, MSU 1A2, and MSU 1A3. The fourth androecious line, designated MSU 2A, was a white spined slicer line with prolific growth and late flowering. 1

A second planting of parental and F_1 seed was made in November 1972 to obtain reciprocal F_1 (RF₁), BC₁, reciprocal BC₁ (RBC₁), BC₂, reciprocal BC₂ (RBC₂), and F_2 seed. The sex expression of these F_1 plants under greenhouse conditions was recorded.

Gynoecious parents were sprayed 3x at 4 day intervals with 50 ppm $GA_{4/7}$ beginning at the 1-leaf stage to induce male flowers (13) for selfing and reciprocal crosses. The androecious parents were sprayed with 50 ppm ethephon at

¹Seed of MSU 1A1, MSU 1A2, and MSU 1A3 was supplied by Dr. E. T. Mescherov, All-Union Institute of Plant Industry, Leningrad, USSR. Seed of MSU 2A was supplied by Dr. M. Yordanov, Plovdiv, Bulgaria.

the 3-leaf stage to induce female flowers (1) for selfing and reciprocal crosses. To obtain staminate flowers for F_2 and BC seed the gynoecious F_1 plants were sprayed 3x with 50 ppm $GA_{4/7}$, whereas PF F_1 plants were sprayed 2x after classification.

Seed obtained from the various crosses was planted at 2 field locations in the summer of 1973. The S_1 , F_1 , RF_1 , BC_1 , RBC_1 , BC_2 , RBC_2 , and F_2 generations were planted near East Lansing, Michigan on June 15 and 26. On July 12, a second planting was made near Sodus, Michigan, approximately 120 miles southwest of East Lansing. A completely randomized design was used at both locations with 3 replications. Plants were thinned to 25 plants per 9.14 meter (30 foot) plot to avoid excessive crowding. Twenty-five plants were desired yet not always attained due to variable plant stands. Plots were fertilized with 22.59 kg (49.8 lb) N, 11.7 kg (25.8 lb) P, and 22.59 kg (49.8 lb) K by using 336 kg/ha (300 lb/acre) 20-20-20 before planting and sidedressed with 8.16 kg (18 lb) N using 56 kg/ha (50 lb) NH $_4$ NO $_3$ at the 6-leaf stage.

For East Lansing, daylength ranged from 15 1/4 hr to 13 hrs. Average maximum temperature for East Lansing was 26.0°C (78.8°F), average minimum temperature was 13.83°C (56.9°F), and average mean temperature was 20.5°C (68.9°F). At Sodus, daylength ranged from 15 hr to 13 hrs. Sodus average maximum temperature was 26.6°C (79.9°F), average

minimum temperature was 15.89°C (60.6°F), and the average mean temperature was 21.28°C (70.3°F).

All plants were classified for sex over the entire growing season (June through September) and placed into 4 categories:

- 1) gynoecious, all female flowers;
- 2) predominantly female (PF), some early male flowers followed by a continuous pistillage stage;
- 3) monoecious, many male with some female flowers, but no continuous female stage; and
- 4) androecious, only male flowers with no female flowers or in some cases with very late female flowers formed on third order laterals.

Each plot was coded for replicate number, F_2 sister (if an F_2), pedigree, generation, and location, together with the frequencies of the observed sex phenotypes. Genetic analysis consisted of testing for homogeneity with X^2 contingency tables (18) in order to pool and simplify the data. Homogeneity was tested in the following order: replicates of same plot and location, F_2 populations of the same pedigree and location, reciprocal crosses within generation within location, plots of the same pedigree (plots derived from sister plants - this includes S_1 plants) and location, pedigrees within generation within location, and location within pedigree within generation.

RESULTS AND DISCUSSION

Replicates within plots and locations, F_2 sisters (3) to 5) within pedigree and location, reciprocal crosses of F_1 , BC_1 , and BC_2 within location, and sister plots (of the same pedigree, generation, and location) were homogeneous (p > .05) and were pooled. Progenies from 2 selfed plants (S_1) for each parental line were homogeneous (p > .05) with each other and between locations (Table 1). Pedigrees within generation within location proved heterogeneous and are reported separately. When pedigrees within a generation were compared between locations, most proved to be homogeneous. Location differences were not significant (p > .05) within crosses, excluding those involving Tablegreen 68G and a single F_2 population involving MSU 394G xMSU 1A2. Thus all other data are reported with locations pooled (Tables 2 to 5). No definite location effect could be determined for heterogeneous crosses except that locations may have influenced sex expression in different ways.

For all crosses (Tables 2 to 5), the F₁ generation segregated gynoecious and PF plants with exceptional monoecious segregates resulting from 3 crosses. Hence, the heterozygote resulting from the cross of gynoecious x androecious exhibited a low percentage of gynoecious with a relatively high percentage of PF plants. Therefore, no genetic basis for differences between these 2 classes could be proposed.

Table 1. Sex expression of S_1 plants from gynoecious and androecious parent lines of cucumber.

Vordet		Sex ^z			Motol plants
Variety	G	PF	M	A	Total plants
Gyl4	93	12	0	0	105
MSU 713-5	126	10	0	0	136
MSU 394G	130	8	0	0	138
$\mathtt{TG}^{\mathbf{y}}$	75	12	0	0	87
MSU 1A1	0	0	0	63	63
MSU 1A2	0	0	0	72	72
MSU 1A3	0	0	0	68	68
MSU 2A	0	0	0	79	79

 $^{^{\}mathbf{Z}}$ G = Gynoecious, PF = Predominantly Female, M = Monoecious, A = Androecious.

 y_{TG} = Tablegreen 68G

Sex expression in the cross of gynoecious x androecious (MSU 1A1) cucumber. Table 2.

Ped1gree	Genera- tion	Sex G	frequencies PF M	nc1es M	S B	Total no. plants	Gen Obtained G+PF:M:A	enetic relat Expected G+PF:M:A	relationships ected x ² F:M:A	Д
Gyl4 x MSU lAl MSU 713-5 x MSU lAl MSU 394G x MSU lAl TGY x MSU lAl - E.L.x	F.	100 130 130	105 22 166 27	0000	0000	1009 1888 1004				
Gyl4 x MSU lAl MSU 713-5 x MSU lAl MSU 394G x MSU lAl TG x MSU lAl - E.L. TG x MSU lAl - S.W	BC ₁	106 187 288 24	92 156 13	44400	00000	178 203 344 71 25				
Gyl4 x MSU 1A1 MSU 713-5 x MSU 1A1 MSU 394G x MSU 1A1 TG x MSU 1A1 - E.L. TG x MSU 1A1 - E.L.	BC 2	911 976 10	1 0 0 0 0 0 0 0 0 0	1174 120 120 120 120 120 120 120 120 120 120	1 20 t 0 0 t 0 0 t	178 147 274 53	84:48:46 75:42:30 147:73:54 32:1:9 37:15:14	2:1:1	0.6068 2.0202 4.0984 2.6224 1.0000	7. 138 158 158 158
Gyl4 x MSU lAl MSU 713-5 x MSU lAl MSU 394G x MSU lAl TG x MSU lAl - E.L. TG x MSU lAl - S.	CV EH	1100 60000 40000	211 267 383 99	1 1288 198	26 26 7	6 4 4 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	341:83:25 406:98:31 678:128:56 362:58:26 82:19:7	12:3:1	0.4037 0.2874 8.6155 10.2424 0.0982	.82 .87 .02 .008

 $^{Z}_{G}$ = Gynoecious; PF = Predominantly Female; M = Monoecious; A = Androecious.

yrg = Tablegreen 68G.

 $^{^{}x}E.L.$ = East Lansing location.

Ws. = Sodus location.

Sex expression in the cross of gynoecious x androecious (MSU 1A2) cucumber. Table 3.

Ped1gree (Genera- tion	Sex	frequenci PF M	enc16 M	es A	Total no. plants	Gen Obtained G+PF:M:A	Genetic relationships d Expected X ² A G+PF:M:A	lonships x ²	D.
Gyl4 x MSU 1A2 MSU 713-5 x MSU 1A2 MSU 394G x MSU 1A2	ъ	9 14 46	26 118 105	000	000	35 132 151				
Gyl4 x MSU 1A2 MSU 713-5 x MSU 1A2 MSU 394G x MSU 1A2 TGY x MSU 1A2 - E.L.X TG x MSU 1A2 - S.W	$^{\mathrm{BC}_1}$	85 326 46 112	51 184 15	0 1 18	00000	136 94 511 79 139				
Gyl4 x MSU 1A2 MSU 713-5 x MSU 1A2 MSU 394G x MSU 1A2 TG x MSU 1A2 - E.L. TG x MSU 1A2 - E.L.	BC2	23 28 20 20	54 20 60 21	47 20 50 1 20	27 9 37 17	151 555 175 1	77:47:27 26:20:9 88:50:37 41:20:17	2:1:1	5.3576 4.5634 1.9371 0.4359	.08
Gyl4 x MSU 1A2 MSU 713-5 x MSU 1A2 MSU 394G x MSU 1A2-E.L. MSU 394G x MSU 1A2-S. TG x MSU 1A2 - E.L. TG x MSU 1A2 - E.L.	رب (۲	157 151 207 105 38	129 174 231 69 7	823 39 14 17	123 14 14 8	25 25 25 25 25 25 25 25 25 25 25 25 25 2	286:53:19 325:82:28 438:64:25 174:39:14 45:6:7	12:3:1	4.6221 0.0312 18.8010 0.3827 5.3687	.10 >.95 <.001 .83 .07

 $^{\rm Z}_{\rm G}$ = Gynoecious; PF = Predominantly Female; M = Monoecious; A = Androecious.

 y TG = Tablegreen 68G.

*E.L. = East Lansing location.

WS. = Sodus location.

Sex expression in the cross of gynoecious x androecious (MSU 1A3) cucumber. Table 4.

			7 6 8 6 5 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6	128 158 158
Δ,			4.0009	
onships X ²			1.8174 0.4849 5.0540 4.9630 0.9189	2.3847 0.5769 2.5123 2.5651 3.9000
Genetic relationships ed Expected X ² :A G+PF:M:A			2:1:1	12:3:1
Gene Obtained G+PF:M:A			63:41:33 87:38:42 67:20:24 60:31:17 78:32:38	290:83:30 455:116:33 289:58:21 247:48:20 126:30:4
Total no. plants	95 163 101 60 22	11 32 164 31 57	137 167 111 108 148	403 604 368 315 160
A A	00000	00000	3 3 3 3 3 3 3 3	223 40 40
frequencies PF M	0 0 0 0	00000	41 38 31 32	118 116 116 118 118
freque PF	70 140 81 17 14	117 64 5	3246 3246 344 344 344 344 344 344 344 344 344 3	1258 1262 465 266
Sex	23 23 37 8	73887 2518	13 13 14 16	1111 888 888
Genera- tion	F ₁	ВСЛ	BC ₂	氏 C
Pedigree	Gy14 x MSU 1A3 MSU 713-5 x MSU 1A3 MSU 394G x MSU 1A3 TG ^y x MSU 1A3 - E.L. ^x TG x MSU 1A3 - S.W	Gyl4 x MSU 1A3 MSU 713-5 x MSU 1A3 MSU 394G x MSU 1A3 TG x MSU 1A3 - E.L. TG x MSU 1A3 - S.	Gy14 x MSU 1A3 MSU 713-5 x MSU 1A3 MSU 394G x MSU 1A3 TG x MSU 1A3 - E.L. TG x MSU 1A3 - S.	Gy14 x MSU 1A3 MSU 713-5 x MSU 1A3 MSU 394G x MSU 1A3 TG x MSU 1A3 - E.L. TG x MSU 1A3 - S.

 $^{Z}_{G}$ = Gynoecious; PF = Predominantly Female; M = Monoecious; A = Androecious.

 $^{\rm y_{TG}}$ = Tablegreen 68G.

 X E.L. = East Lansing location.

WS. = Sodus location.

Sex expression from the cross of gynoecious x androecious (MSU 2A) $^{\mathrm{Z}}$ cucumber. ņ. Table

Pedigree	Genera- tion	Sex	frequ PF	frequencies ^y PF M	ν. A	Total no. plants	Gen Obtained G+PF:M+A	Genetic related Expected HA G+PF:M+A	relationships cted x ² :M+A	Д.
Gyl4 x MSU 2A MSU 713-5 X MSU 2A MSU 394G x MSU 2A	FT.	540	18 84 154	000	000	18 88 178				
Gyl4 x MSU 2A MSU 713-5 X MSU 2A MSU 394G x MSU 2A	BCl	38 135 396	23 122 238	000	004	61 257 637				
gyl4 x MSU 2A MSU 713-5 x MSU 2A MSU 394G x MSU 2A	BC ₂	10 32 32	47 130 95	139 86 86	127	103 323 225	57:46 159:164 127:98	1:1	1.1748 0.0704 3.7378	.28
Gylt x MSU 2A MSU 713-5 x MSU 2A MSU 394G x MSU 2A	E4 C3	193 336 460	204 512 504	115 282 326	3288	520 1188 1322	397:123 848:310 964:385	3:1	0.5025 0.7587 3.0207	840.

 $^{\rm Z}$ MSU 2A is suggested to be a monoecious genotype but appears androecious under long day, high temperature conditions.

= Androecious. $^{
m y_G}$ = Gynoecious; PF = Predominantly Female; M = Monoecious; A

In the backcross to the gynoecious parent (BC₁) 50% $\frac{\text{acr}^F \text{acr}^F}{\text{acr}^F}$ homozygotes and 50% $\frac{\text{acr}^F \text{acr}^+}{\text{acr}^+}$ heterozygotes were expected. Thus depending on the percentage of heterozygotes which are gynoecious, a greater number of gynoecious with a lesser number of PF plants is expected. This is true for all BC₁ populations with the exception of Gy14 x MSU 1A1 (Table 2). In this cross, the heterozygote expresses a low percentage (4%) of gynoecious plants in the F₁ so the nearly 1:1 gynoecious to PF ratio in the BC₁ is not surprising. Other exceptions are Gy14 x MSU 1A3 and MSU 713-5 x MSU 1A3 (Table 4), but the small populations may reflect sampling error.

In the backcross to the androecious parent (BC_2) , a segregation of monoecious and androecious phenotypes was observed along with gynoecious and PF phenotypes. The gynoecious and PF phenotypes were combined as a single class since the heterozygous F_1 expressed both and a consistent segregation between the 2 wasn't observed in BC_2 . The monoecious and androecious classes are nearly equal in frequency with the gynoecious plus PF class containing approximately twice their number. Thus the ratio of gynoecious plus PF to monoecious to androecious is 2:1:1 respectively.

Plants in the F_2 population segregated approximately 12:3:1 for gynoecious plus PF to monoecious to androecious, respectively. The p values ranged from .07 to > .95 for

goodness of fit to this ratio (Tables 2 to 5). Based on the ratios observed in the BC_2 and F_2 generations, an independently inherited digenic system is proposed. The significant number of androecious segregates in both the BC_2 and F_2 generations seems to discount a more complex system of inheritance for androecious expression.

The 2 loci involved are designated as a after Kubicki (9) and acr as originally designated by Shiffriss (16,17) and then by Kubicki (6,7,9). These designations will be used here to avoid confusion with nomenclature. The A allele as the female flower allele is dominant to a the male flower allele. The acr locus controls female intensity with acr^F homozygotes being of high female intensity while acr + homozygotes exhibit a low female intensity. acr Facr + heterozygote is intermediate between the homozygotes, but tends toward the \underline{acr}^{F} homozygote phenotypically (6). An $\underline{\operatorname{acr}}^{F}$ complement exhibits epistasis with $\underline{\operatorname{aa}}$. The proposed model is outlined in Table 6. An $\underline{\mathtt{acr}^F}$ complement results in a continuous pistillate stage, i.e. gynoecious or PF; whereas acr + homozygotes do not. The difference between gynoecious and PF may be due to different alleles at the acr locus (7) and/or minor modifier genes (7,8,16) and/or environment (2,3,4,10,16,19). In common between monoecious and androecious genotypes is acrtacrt. The difference between monoecious and androecious is that monoecious phenotypes require an A- genotype whereas

Table 6. Proposed genetic model for sex expression from the cross of gynoecious x androecious cucumber.

Generation	Ratio	Genotype	Phenotype
Gynoecious Parent	1	AA acr ^F acr ^F	Gynoecious
Androecious Parent	1	aa acr acr +	Androecious
F ₁	1	Aa acr ^F acr ⁺	Gynoecious/PF ^Z
-	3/8	A- acr ^F acr ^F	Gynoecious
Dan	1/8	aa acr ^F acr ^F	Gynoecious
BCP ₁	3/8	A- acr Facr +	Gynoecious/PF
	1/8	aa acr ^F acr ⁺	Gynoecious/PF
	1/4	Aa acr ^F acr ⁺	Gynoecious/PF
Dan	1/4	aa acr ^F acr ⁺	Gynoecious/PF
BCP ₂	1/4	Aa acrtacrt	Monoecious
	1/4	aa acrtacrt	Androecious
	3/16	A- acr ^F acr ^F	Gynoecious
	1/16	aa acr ^F acr ^F	Gynoecious
_	3/8	A- acrFacr+	Gynoecious/PF
F ₂	1/8	aa acr ^F acr ⁺	Gynoecious/PF
	3/16	A- acrtacrt	Monoecious
	1/16	aa acr ⁺ acr ⁺	Androecious

 $^{^{\}mathbf{z}}$ PF = Predominantly Female.

androecious phenotypes require <u>aa</u>. Except for the difference between monoecious and androecious, it is beyond the scope of the data to show that <u>A-</u> adds to the femaleness of other sex phenotypes. For example, <u>aa acr^Facr^F </u> and <u>A- acr^F-acr^F </u> are assumed of equal female intensity for this study and the proposed model. The phenotypic difference between these 2 genotypes is likely small.

A major deviation from the proposed genetic model occurs with crosses involving MSU 2A (Table 5). Greenhouse experiments at Michigan State University in the Fall of 1973, demonstrated that the androecious expression of MSU 2A was unstable under low temperature and/or short day conditions. Only under high temperature and long day conditions (as with 1973 field experiments) is MSU 2A stable for androecious expression. Under short day (10 to 11 hr) and/ or low night temperature (10 to 12°C) conditions MSU 2A exhibits monoecious expression (15). Environmental influences on sex expression have been observed previously (2,3,4,10,16,19). It is generally accepted that stronger femaleness is observed with short days and low temperature conditions. However, some lines are environmentally stable, such as MSU 713-5 (3) and MSU 1A1 (15). Such a genetic system for sex expression which causes certain varieties to be environmentally sensitive while others are stable has not been reported. Thus, the genotype of unstable MSU 2A might be an acr acr with a gene complement which causes

femaleness under short days and/or cold temperatures or the genotype A- acr + with a gene complement which causes maleness under long day and high temperature conditions. The cross of MSU 2A and MSU 1Al might provide an answer to this question.

For this data, MSU 2A does not fit a 2:1:1 BC₂ or a 12:3:1 F_2 ratio so the androecious and monoecious classes were combined and 1:1 BCP₂ and 3:1 F_2 ratios, typical of monoecious inheritance (7,16) were tested and found to be acceptable fits (Table 5). This suggested that the genotype of MSU 2A is $A = acr^+acr^+$ with modifier genes for unstable androecious expression resulting in maleness under long day, high temperature conditions.

Other significant deviations (p < .05) from expected F₂ ratios occurred with Tablegreen 68G x MSU 1A1 (East Lansing location), Tablegreen 68G x MSU 1A2 (Sodus location), 394G x MSU 1A2 (East Lansing location) and MSU 394G x MSU 1A1. In the case of Tablegreen 68G x MSU 1A1 (East Lansing), the significant deviations are due to a higher than expected female tendency, that is more gynoecious and PF phenotypes. But, the monoecious and androecious classes are observed to be high in the Tablegreen 68G x 1A2 (Sodus). In the first case, the greater female intensity is not too surprising based on higher percentage of gynoecious segregates in other generations as compared to the other pedigrees. Varying intensities of femaleness among "gynoecious"

varieties has been reported previously (7,8,16). Tablegreen 68G is observed to express a strong female intensity such that it is extremely difficult to induce male flowers after treatment with $GA_{4/7}$ (unpublished data). This study lends no evidence for a genetic basis for such a strong female tendency. Its occurrence could lend support to:

1) multiple alleles at the <u>acr</u> locus (7), in this case having a very strong acr^F expression, or 2) another locus controlling female intensity (8), or 3) it may be due to an accumulation of highly female polygenes (7,8,16), or 4) combinations of the above.

Yet certain Tablegreen 68G crosses segregated monoecious phenotypes in the F_1 and BCP_1 generations which is incongruous with its strong female expression (Tables 2, 3, 4). Also the S_1 segregates the highest percentage of PF's of all the parents (Table 1). These incidences of greater maleness are likely related to the Tablegreen 68G x MSU 1A2 F_2 (Sodus) which expressed a greater than expected frequency of monoecious and androecious segregates. Further work must be done with Tablegreen 68G to explain this apparent disparity.

In the $\rm F_2$ of MSU 394G x MSU 1A1 and MSU 394G x MSU 1A2 (East Lansing location), the significant deviations result from a higher than expected frequency of gynoecious and PF plants. High female intensity is evident in other crosses with MSU 394G (Tables 2 to 5). The $\rm S_1$ of MSU 394G

segregated the lowest percentage of PF plants indicating a stronger female tendency than the other gynoecious lines (Table 1). This strong female intensity might be analogous to the high female intensity of Tablegreen 68G. The possibility of a unique environmental effect in the F_2 populations of MSU 394G x 1A2 (East Lansing) and Tablegreen 68G x MSU 1A1 (East Lansing) is apparent since the same crosses at Sodus were consistent with the expected.

Additional experiments would be necessary to determine any modifier genes or multiple <u>acr</u> alleles which might cause the significant deviations in sex expression. If actual numbers of male and female flowers were counted, this would provide quantitative data which might elucidate the modifier genes affecting sex expression.

SUMMARY AND CONCLUSIONS

The inheritance of sex expression in the cross of gynoecious and androecious phenotypes appears to be controlled by 2 major, independently inherited loci; viz., a and acr. A flower sex allele A conditions pistillate flowers and is dominant to a which allows staminate flower development. The sex phenotype is controlled by alleles at a female intensity locus acr. The acr acr or acr acr + genotypes condition a continuous pistillate stage on the main runner of the plant as opposed to the acrtacrt genotype which is not associated with a continuous pistillate The $\underline{\mathtt{acr}}^{\mathtt{F}}$ allele exhibits epistasis to the $\underline{\mathtt{a}}$ allele (9). The only major genetic difference between monoecious and androecious phenotypes is that androecious phenotypes require aa whereas monoecious require A-. Other modifier genes and environment also influence phenotypic sex expression.

For hybrid seed production an androecious pollinator would be used in the same way as monoecious pollinators (11, 14) in producing highly female F_1 varieties. Hermaphrodites seem more suitable for production of seed of all-gynoecious F_1 (5,12) varieties which are necessary for parthenocarpic cucumber production (12).

LITERATURE CITED

- 1) Augustine, J. J., L. R. Baker, and H. M. Sell. 1973. Female flower induction on androecious cucumber, Cucumis sativus L. Jour. Amer. Soc. Hort. Sci. 98: 197-199.
- 2) Atsmon, D. and E. Galun. 1962. Physiology of sex in Cucumis sativus (L.). Leaf age patterns and sexual differentiation of floral buds. Ann. Botany 26:137-146.
- 3) Fukushima, Eiji, Eisuke Matsuo, and Junimitsu Fujieda.
 1968. Studies on the growth behavior of cucumber
 Cucumis sativus L. J. Fac. Agr. Kyushu Univ. 14:349366.
- 4) Galun, E. 1961. Study of the inheritance of sex expression in the cucumber. The interaction of major genes with modifying genetic and non-genetic factors. Genetics 32:134-163.
- 5) Kubicki, B. 1965a. New possibilities of applying different sex types in cucumber breeding. Genetica Polonica 6:241-250.
- 6) ______. 1965b. Investigations on the sex determination in cucumbers (<u>Cucumis sativus L.</u>). II. The effects of polyploidy on sex expression in monoecious and gynoecious cucumbers. Genetica Polonica 6:251-265.
- 7) _____. 1969a. Investigations on sex determination in cucumber (<u>Cucumis sativus L.</u>). IV. Multiple alleles of locus acr. Genetica Polonica 10:23-67.
- 8)
 . 1969b. Investigations on sex determination in cucumber (Cucumis sativus L.). V. Genes controlling intensity of femaleness. Genetica Polonica 10: 69-85.
- 9) _____. 1969c. Investigations on sex determination in cucumber (Cucumis sativus L.). VI. Androeciesm. Genetica Polonica 10:82-99.
- 10) Nitsch, J. P., E. B. Durtz, J. L. Liverman, and F. W. Went. 1952. The development of sex expression in Cucurbit flowers. Amer. J. Bot. 39:32-43.

- 11) Peterson, C. E. and J. L. Weigle. 1958. A new method for producing hybrid cucumber seed. Michigan Quarterly Bulletin 40:960-965.
- 12) Pike, L. M. and W. A. Muldey. 1971. Use of hermaphrodite cucumber lines in development of gynoecious hybrids. HortScience 6:339-340.
- 13) and C. E. Peterson. 1969. Gibberellin A_{4}/A_{7} for induction of staminate flowers on the gynoecious cucumber <u>Cucumis</u> sativus. Euphytica 18: 106-109.
- 14) _____. 1974. 'TAMU Triple Cross' Pickling Cucumber. HortScience 9:83.
- 15) Rudich, J., J. W. Scott, L. R. Baker, and H. M. Sell.
 1974. Phenotypic stability and ethylene evolution
 of androecious cucumber. HortScience 10:270 (Abstr.).
- 16) Shiffriss, O. 1961. Sex control in cucumbers. J. Heredity 52:5-12.
- Gynodioecism in cucumbers. Genetics 49:285-291.
- 18) Steel, G. D. and James H. Torrie. 1969. Principles and procedures of statistics. McGraw Hill, New York. pp. 481 p.
- 19) Tiedjens, V. A. 1928. Sex ratios in cucumber flowers as affected by different conditions of soil and light. J. Ag. Res. 36:721-748.
- 20) Tkaczenko, N. N. 1935. Preliminary results of a genetic investigation of the cucumber (<u>Cucumis sativus L.</u>). Bul. Appl. Bot. Genet. and Plant Breed. 9:311-356.

