«flu : c “.5 lilo" 0*: w. z 4 ... f. ...1... ...n. u 0-,, 1‘.‘ '0 AR- .‘ ‘I at» . L ..n 2 _. (p t \ $.- ... a .00: I (In . 0. ‘t . or «a... ...-I . .u . .. ..w 33".!” .. .o .0 ..n. 1w u n. H Fr}... H.“ ..V Mr or. 6 .. T R: w! I‘Mi N mick ‘X‘. u ... ”no .0“ .....- . . ‘ w .. l- .. I . e . m . ... t n. “.9. O «.... ...“...a W- c not... \. “flow.“ who)...— 5». ._ f O w .v “ s I ".75“ ~1~f W1 1;. #0\ P.‘ U“ ,- , P u .. . c «a: f .. C? , ft" ZTPx‘w' I 1h. a; m ‘ .”_ 3 Z ' a .. L. R 3:. 3 L K,“ 5'? 3 § .1. A 1‘ 1. {E ‘1 .. .wé 4‘ '1 _6 1, :4 . x : g : :t 2‘ $.31“: : 3: 3 :: \::: :x: . :::::: 7:; ._1-‘; ‘2‘.”er *Tg-rj'w" ' * I'I—— ’ - "_f 3‘— l ' W‘§~ I t a f 1"“ ‘3. I | f. A .l' f .l‘ I . I 0‘ k, - , .1 . \,_ l l l l.. I in '4- Date . L] . l ‘ I ' I l 4 1 »L l" - ' “ J .. I; ..l , t r . 1“,! ‘ t: I l . ‘ 4 I u \ , I \ | ‘ ‘ I 1 J ‘ ‘ I I ' . l . I l r 1. . . l H . l a l I 1 1 l . " t I. ‘t - r i _‘ l ' L I * I J , | . ‘ _ V: \ J I I 1 r‘ Iv This is to certify that the thesis entitled " THE NATURE OF THE FORCE FUNCTION IN SELF-EXCITED VIBRATIONS presented by WILLIAM J. RUB! has been accepted towards fulfillment of the requirements for MASTER'S d in CIVIL ENGINEERING MOM Major professor March 13, 1951 ’b- . m: ‘v'W-¢l:=_'h m. , -_- . Jo- THE NATURE OF THE FORCE FUNCTION IN SELF-EXCITED VIBRL'I‘ICNS By William John__§u_by A {IBESIS Submitted to the'School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree or MASTER OF SCIENCE Department of Civil Engineering 1951 THESIS Acknowledgement The writer wishes to express his gratitude for the timely suggestions, mending inspiration, and unfailing interest given him by Dr. Charles 0. Harris during the preparation of this paper. - ' .9 an'lf‘a II. III. V. TABLE OF CCNTENTS Statement of Problem - Introduction - - - - - .- Oonversion of Data - ...... .. .. .. - - Preliminary Data - Idealized Case - Development of Function Comments and Conclusions Bibliography - .. - - - - 1. Statement of Problem The object of this paper is to determine the nature of the driving force causing self-excited vibrations. It has been assumed, that the curve, showing amplitude plotted against time, is available. II. Introduction .L self-excited vibration is a phenomenon in which the force furnishing the energy to cause oscilation is dependent upon the motion of the system.under consideration, in contrast to the usual forced vibration which does not depend on the motion. In general, this subject has two natural groupings: (1) systems where this form.of vibration is necessary for the unit to carry on its intended function, and, (2) systems where a self-excited vibration inhibits the intended action. Some typical systems where self-excited vibrations may occur are: vibration of transmission lines coated with sleet, airplane-wing flutter, nosing of locomotives, and some cases of hunting of generators. All bowed string or blown musical.instruments, the doorbell, the automobile horn, power-driven tuning fork, and many toys function because of self-excited vibrations. The characteristic, common to all systmms subject to this type of vibration, is instability. A.motion is said to be unstable when the driving force tends to increase the amplitude of the existing motion. A.system.is not necessarily unstable for all frequencies or conditions. There are usually certain ranges of frequencies for which the motion is stable and other ranges for which the motion is unstable, for any given system. It is desirable to control the self-excited vibration in many systems. There are two approaches leading to the control of this form.of vibration. They are: (1) the elimination of the instability of the unit; and, (2) the reduction of the vibration by introducing suffi- cient damping in the existing system. Both of these cannot, in general, be applied to all systems. When it is possible to eliminate the instability and retain the useful- ness of a system, the problem is usually quite easily solved. If the second expedient is to be utilized, it would be a distinct advantage to have some expression for the force to be reduced by damping. III. Conversion of Data Preliminary data. The information which was assumed to be available, at the outset of the problem, was the curve showing amplitude plotted against time. This curve varies for each par- ticular case, however, the general shape varies only slightly. A typical build-up curve, shown in Figure I, has time plotted as abscissa and amplitude as the ordinate. a. I: in... H: ... HI. _._I ... .1; a: __ 1. 4 . . _.. . _ .. .. ,. l . . . . _ I. a . ... . i - TlT]- l ..Yls lql.1‘4l 0 . rt . ..l I1 .0 s .0 la I Ink. ll“- WII vile. .IltI 1|. -¢.H . I II... . .. s I I r is tl o I.t| ll .. .le . ._ e sl T e s 4| H.. .... O ol..s F n I L . w . . . _ . . _ _ . . . , _ .- -. _ . “I . _ . . . . . _ _ _ . _ . _ e .4 L I. Is ”I4 . 9|. Jl ' 0 I4...‘ 11' (I.I l I In. A cl- . el .1? L. IL Ia. .. II. .IVL, H- 17] It a v . I . . o I I . . l t l . 0.0 O ._ all: . t . A .lb. 9 l . » . _ . . . . . H l . _ a _ H a. _ a H .Iv‘als .t .l. e . o‘l4. o .IILle I . .I. la . s Ill 9 cl. 0. . 4 el ls J I. 1 ll . . lkt I . .‘vn. ... It I a to . l v . I t ...I III. I 4 . I v .1" . . . . . . . _ . i . . . _ l . . . . . — . . O « til I . . TIP . -. s k-r . e . a, loIhII t I t. It . . l t I.... . . I. I. . elllJ ..-ti 0.14 ..4lII_o|.. II . -e .s 4|” ..tel r I..I .....I 4 .Ir .I a -Y. . . .q q .rl - o . l v. 11. la n .. . . _ . . N ..w _ p b . . w _ . . . . . . W .. P _ , , . . . . . . . . I m . .. .. . I 4 I. - . .. _ . . . .1. a _ II .1 _ _ . _ 4 . _ . . . [Tl]. . ’lJT ? «t . . o It I" [k .0 <. . . . ,I5 0 e I‘ . t r O . I o I.&..h I .I t 50:“ I . v p . vl.v .vl. . 1' e v t . I to "I e ll. 1 ._P r to .n l .9 '0. l n . sl ‘ . . _ _ . _ . . _ . . . _ , , . . . . . _ _ rifw . . Jo-.4t.st . t. . +... ..II .Il . t. . . . t a s . . o e- . . . . . o 4 .II+ o It ..4 I. t . _ fit. I. . L t- .o ~ . . t e M TL . . v . . I . t w o e a _ . _ . . _ c _ . . . . . . . . . ital J. .-L I» s e t . lb . a . 4 t . s I t s o . t . . .. . o w 0.4. s C e... 7W. .... I. I1 .... o _ t t t e . i l l e t . . t. e . . . 4 w, . . _ a _ . . . _ lLrla .lo I1; III. I» a ..»I . .I. .4 .. . . . . . . t v . t . . . .9. -41 9..t. . i .4 . o o . . . . . . .I . . I . . . . . n. , _ . _. , . . Tr: W a! . _ . I l L . I L a . e I 4 ,IL. - . . I . < _ I. . w t . e I. ..s . .. . e . t e e o . e . s t t u a .I . c .l.‘ e . . . I n e o. . . t . t o. . . t . . o . .I t L [4. . . .0. . e .. . . . _ t n . . . .. u e e . t t . 7|. I t . — ”.9: s .I. Y e p tl e . e . o s s t . e e . . o O l . . . . . _ r .l. e I. out I. I . . I. . . . . e . . . t t s . .11 I.“ h i V ... .r h o . . rI.I- ' ._ . I . e t . . . .l . A .. .J _ H II.. c . . . r o a . . e I. . _. . .. e . ,e . . t e t . . .IIe .. Iv . e o o r. .e e l. I t . s. t s . t . . . . o .91 . . _ . _ . . . . _ . _ r L a . A Y e t e e .e . . t o . . . s . e Ie. . . . . t I I . . . r . . Ie .t t . e e u e . . t . e. . . . v n t. OI . T .II.‘ t . . n . t . t. . o . e . a re. s . u . . p n v . . e t . t e o . . ~ 0 e s o .. t . t . e e o c all . . . . . Ifi . . s . e . .eI . e t s I. . . . . I t t I: . t t. . s n e e . s e . o . v s . . t G . . e t . s. u I n . . I‘ll. . . . . . . . C / . t .. I t . . e t e . . . . . . a v . e e . . e . .t r . .- . u . e t . t . t .. t e a c IIvII .- I . _ r y / . I I . _ . _ . ll- . T t o . v 7 ( . . ... . . . . . . s . . It III. . . . .t- . . .I. v e t a. v . e . . . . . e e t e s e . . . . e. l. i _ . . . _ _ l u I. A e / . t I t . . s s. t . . . 2 . t t . . I t. . o w e s n. O s e. . 0 LT . e .t . t O t . a .. o . . o e ‘1 ti. o . no . _ . _ [I t . II . 4 e4 . r . I e t . t .t tut . . t . . a e. s t I s . . . cl . t t 7 o .. v . s b .4 . e A . . e t . n e llhli _ . . l . Tlo. .r. . . . . / .. . e . . . . o I . I Is. t t v. t. . . o e s q o . . F . o t e s . t t . . . n t .. II"! I I I I I I. W'LIII I. I I I I .IAV I o I a I a I I I I o I g . I I . I . I I . .p I! p . . II I. . I . . . . I .IIIII . - . . I . . . I I . . ..I . I I . I I I. I _ I I _ _ . . I I I . I I II . . . I I I I . I I I I I I I I . I . . I v . . v I a _ _ _ . I I fl I I o I I I. L J v lo I I I . O .I .I I I I I I I I ~ I . I . . , . _ , . o I O -[O V I I L 4. v I ‘ l A O, I. a v u v _ u o I b A . I I I I C n . ., . . I I . I . .I . . . . . I . I . II . I II I . . . . I r . . . . I . I . I . I . . . E I .II'II II r 1 I III . . fl 4 HI“. I I I I o I J I I I v I I I I I Y . I I I I . I I I I o I I v I I . I I. P 0| 0 In. t‘l A ..III I Y1, H r I I I . . "I I I I . I I . .3 I . I I I I I . I . I I I I I I . . 2 I _ Q I I o o I I l I I I I I o I I I I o . I I I. o I 9 I I v I . II I . I I o W . I _ r r I'I r Z a I . I I I I I I I . I I . I. I I I . I I I I :I I. . . I I W I I q ,I . . . I. h L . . I I I . I . I. I . I I I : . . . . F: I I . . I I I I . . r Jw FL I . I III I I I . I‘. I I o I . I I 7 n I I c I I I o I I I I I v I I k. I . A A O 9 I . . Hr . / , 11 31 I» u I I r I . . . I _ If; A I . I I . . .I / . . I. I . . . . . . a _ I . . . I . A .. . . _ , 1 _ . II I I . I . I . if I I I I I I I r . I I I . . I I I I I . I /2 I . I p 7!. I. I I I a L h I II I I I I I I .I I . v I . . I I I I a I f . . , , I/ I r I _ Q/ G , p I I I. III I I I I Z c . . I . I II. I I I I I I I I .I I I I I . I * II . .l' v I '.r V I; I / « ’Ilo 1 — I u I I I 4.4 L . I I I L I I 1‘. I I II I I I o q . I II I. I I f ’ I I I. . l . I _ J I . I . p a . 1 I. 1J . T . . I . . . .. . . .I . I / . TIwIII .I I .+ . . I I ..III . . . H. . I I, . I . . . I I . I o . [I .I I I . b I I . I I I. fIIw I I 4 I II! ”I II. I III» I I IoI I I I I_I I I I I II o. I . . I .. If . l . . I . . . I . I I . . . LIII I I . . . I . . M . 1W! . I I I l. r .L I 7~ 14 . 4U .. .1 n _/ I I I It I . I I . . . . . I I . I . I I I . I . .mr I I I . II fi\. '3 6: f n . I5 I 1J II I I I la. I / . A I I I .III I I I III. I. I v I III. 1/ I .v I I o. I . I ,1. pm . .v . c I I It I n I I I o I o I II I I II? I II J lo v I o .I I I I I -5 Y I “I I I I I I . 0 II o. I r — 7/ I ~ I _ IWIII I I F 9 Fl .. a I. oII I I I I r I I . I IIII Iv. . I I '/ VJ I I Lr 7 PC! I I‘I / \IIIY I (II [4 IF . 1 I I . II I I II. II I II . . I V I I I I I .h. I I / 1 II I , — I .. III I I. ” F’ I II“ I . I . I I r! . I I ... I I I I I I I v I II I o 7 It I. r I _ c I I V I I 4 I FJ .Ib . t. I . I I I. I I I I I . v I . I I II .IL, I I u g I I. I [:1 . . II . I I‘Io! _ I I W!. I I I I I I I I I I I v o I I I .I. I It” I. I I I I «I I I I I I I I , _ Ir 1.. I. A TI- I . I I .I I II I I I . . . I I I I I I . I .I I I I. . I I. . I. I I o . c I II I II ..J n ,I w I . I L . . III/.4 I . . . . I I . I . . . . . . ... .. I / l I . ...“ Auk I . I I II I I I I . . _ . I II . I I I I I I I II I . I I. . I I . + VI, L > J; r u v I I ‘1‘ / I . I 4. I . I I. I o I I I o I I I v I I I . . I . I I . II F I I I p .3. “a I I I "J I I III I I . I I I I I I r o I s I $I I I . I I . n7 . . . . . . . I. I I . a . . I A T . . I . I . I I . I II. I I. I . I I . . I . I I I I . I . I I. I . . . . I I I I . I I . I I I . I I I I I . . I I I. I . I I . I . . I I I I I. f . I I .o I _ I I I I v I v a. I I I I I I b . I I . I I I u I I I o I I I I O 0 n . ' Ia I v a V I I I v V n I I I . I I . I I I I I I I I I . I . I I . . . I . I . 3 ¢ I A I | I. _ I ~ p t I n r l n I O a o O I I . I .I I I I I I I . I I I . I . I I I I II I I _ I I I I I . I I I . . I I I I . I I_I 7 . . _ 1 4 a 4 _ . I 4 7 1 , A _ _ . 7 , 7 I 7 . I I . _ w IIOI'QIIIOII'. v I IcIIOII o. 7 IV I. . I . . I‘ «7 I TIIIII . I . .... YI. II 7] oil III .1 ,7 . IF " v PI 0 . .II.. I v (I . I o. I . . » II OI 7 . _ _ 7 n _ . 7 7 7 I _ . . _ 7 7 7 . _ I 7 T111) II 9|? I . IIOI - 0. I I A. . I . .I u o I . I . . I I II II, A . I . I . I. III I . I . . . . o . . . I 4. I . . . . w . . . I . . I 7 . , _ _ _ . fl . 7 _ . 7 . 7 . III. III; II. I I . . . .I I. _ I I . . . L I I I. I I . I . I . w . I . 7 . , I . . . . . , . I 7 . I _ . I _ _ _ , 7 q _ 7 IltIIIQ .5 L . I . . A I . I . .a I! I I . . I I» .I . . I I . . I. . . . I I . 7 . . I I .I I . _ . ~ . r > _ b — y I . . _ , _ 7 _ I I . . . . . . . . . ., . . . . . . I. . I . I . .. . . .7 . . . . . . . . I I I I . . . . . . . . . . . . _ , 7 I . , _ . _ O. . I .l 7 .IIoI I . P H A I . II b . . . 7 I“ . . I . . . I . I . . . . .p . . . . . . I . . I. T I . 7 7 , . _ 7 . . Y . I II. . IIII . I . .I I I . I I . . . . . . I II. . . I I ¢ . .I. M .o < I. . I I. . . .I . ~. I . . . .II _ . d . I I . . 7 _ . I I. IIv *1. II. . . . I . . ~ " .. . I . I I I . . .. .I. I. . I I . I . ‘.1K¢I . u . . o I o I h . . . Y I. o. 7 . , _ H I! 7 . 7 7 V I II . I. I . . I . . . . . . . I .. I v .p I I I, I0. oIIIA V . . I o . . I . . . . I. .I II, I 7 . 7 I _ 7 . . 7 _ . . . I 7 I . II ~.I I ..IL .I. . I . a . . . . . . . A .I . I. . . o I I .IOIIO I . . o I . v . . . I I I . I II. . . 7 . . _ _ .f/ 7 I . I . II I I. IQI I . I . . I .I _ I I . .I . . . I II. I? ”II .I I. I u o . I . I . I I I I o . . V 7 _ _ . _ . — . _ . . I . II I I Ia II .I . 4 . I I . I . I I I I . I . VI I .|. .w. . vI b v v. . . c o . . n . . I o .I . c . 7 I I... III 14.1 IA. 7 0 II . I a . II . . I . . I . . . t I c I. q. I . o I . I I..I v . . I . I I. ,II . . I . I [I Q. , 7 _ , . _ _ I! '.<4 + I . .II I . o . . . I . I . . . . I I I . I . . .I HI I I I . . . I . u . . I I c I . . c . . . . . f I . I I f O . I I. A . I 1 . . A - £II l I O u - DI - r l b . v n n I O I I I I a . . u . / . a 6 r 1v I I . A . I I . I . . I I I .. I . . . I . I I . I fl ' . . . . . . I I WI. I 7 I v o 4 N I — _ I H l _ ,.I . . . It I I . . q . I I . . I . . . . . I . I . . I . . . I. . . . . . . I I . . I I? 4 I. I . I . I .. I . . . . vI I 1 . . . . . . o . I i . I I . I . I . I I I . I 7 7 . _ I I. 7 . v I I. c. a I v . . c I . . _ I I. é . . o . I u I . I . . . v v I I I. I o I . I I I L .h v I . 7 7 _ , _ . I I II II. I I . t I. I . o c I v . . . a I u I I . I I I . o. I .0 I II . . I . . . I I. "d! A] c . . . 7 . t r? If . A I 7 . u 0 Q ..I . ,I I I I I . . . I . . . I . I . . I . I I II. I . ..I .II I . I. i .I . I I . . . . . I . ~I . II _ 7 _ II- a . J t _ . _ I, III. . q . I . . I . . . I . ..I . . . I I I. I. I I I I I III . r. Y . I . . I .. I . I . . ‘3’ . I . I I _ / I _ . . _ .I a 1/ . _ . . I I . . . I. . I VI Io ./ . 4 . I I .. . . I . I I I. .‘I I III I I . . v I « 1 A .4 . II . . I . . II II . . . I I . .0 I . . I L . I I . I < . . I .. o. I I . I 0 . I . r . II+ I o . . 4 ,. . I . . II I . I I I. ~ I I. . h, F p S a . I I r , a. I. I I. . II . . . s I . . . . I . II . I I I . . . . _ . . . Y . _ I a I elf q . I . . . o . I I III I I, I . . . o I. I. I I . s I I I a . . . I . . I. . h . I I . . . n / . I . . I ,f IT I . I I I . . I. . fl J ..I I . 7 . v/ . IL I I I r I . n I . VI .0 I . 7 I I I I I I ... I . . I L. I II. I o... o I 9. I u I I I p . a a . J . » I o /— I , I . . I p I 4 . . . I7 I. .I . . ¢ . . Fr . v . I I I . . I A . o I. . I n I u I . I > . . 1 40 I . I FM h“ I. .. , ‘ fl A If 4 I 7II I .I . I I b .I I . . . I I . . . . I I; I II . I I I . I o. . . 7 o C /I. . . I I .I I . I I. I I. w J I . . ~_ _ I , _ [I7 I- k f . If I .I . I I I . . . . I . . . I | . . I I . I I. . I I III I I . flvl 4 TI . ‘ o T . o . I o o o o o . ~ o / . n . I . R a ’ v 7 I v '1 I . I I I] + . I FIJ 4 I . . . . . I I I o I . I . .oI I . It I I- ,r . I . . u I o I i I I II . I _ . I. 7 _ 7 I II I I . d< L IL I/lI . . I . . . . . I v . . 4. c I I 0 I I I I . v I ¢ . 7 I .c ‘ . I L r . XVII Ir , III! 1.. ,1 GM . _ 4/ I I? 4 ‘ O I u n ‘ o t. n ‘ I n I o I n ' I 5 0 r L n O A c o l r G ’I o I h 1 O O D n b . b n O I. I; I 1 l / . . . .... 7 .A . . . I . .. . . . I . .. .I . I. .I. . I. ... ..-. Iv J .I , 7 . I I . I . b I . . . I I . I 9 . o I I. . I I. u. n v I . . I I . v o I I ‘.) I, . I a , I I . l 4r ‘ f V I III I I I I I- . . p . . . . . u . .. . .I I IA . I .I n . . o c . I I I . c > It I I . - .Iul 4 . . _ , _ J WII I I . OILI V I I I / I. 9. I . . II I 5 _ o I a I a . I I I. a I I I I . OI I . ¢ I II: o o o . . . 7. I I . r v . I‘ . 7 _ | II II It A I l. o . o. . L . I I I I . I . . I . I I. w I I II I ~I .. O I . ..I Is . . . c I I I . u , I n I . . ,.. I . I I . y I . . . I .. I I I ..I I . . . I . . . 9 I . . . . . I . . . I 7 I i If _ _ 7A v I 77 I v .I . I . I . . . . . I . a I I I u I I. I I II . c I I I . . . I . . I 1/ ._ 7 7 . 6 r I oI I I . . » I I . . . . I . . I I . . I. o, I I I .I I III I . . . I I . I I I . . . a ., _ .II .. . . .(H p I . . . . . . .I . . . . . . . . . I I . . . . . . . I . . ... Z .I . . . . .4) I . I I . . . I . I I . I . I . . . I I I . I . . I L I. I I . v . I . . I . . I I I I o . . . I v I . . . . o I . I . . . . . I I 7 I .4, a c u q I I I . Q n . . I 10 v. . v a v I . II I . . I I . . I . c I I n . I I I . .I . . I I A . I . I . . . . . I . I I . . . I I . . . I I . I q I . I a 6 I 0 I .0 I I. I a . I I I . . . . o a I a II I . o u . . a I c I _ u . . . . . I . . . I I . I o I . . . . . . . I . . . . I . I . . I I . . . . I . I .I . I . I I . . o I I I I .I . . . I I . . . . . . . I . . I . I . . I . H 7 OI I I III I. I I . . I . . I I I I I I I. I . I I . . . I I I . . . I . III. . . .II I II . . I . I . _ I . . . . . c . _ . I . . . . . . _ o . T III) I¢ c I I I I I . . I . . . . . . o . . o . _ . I I . I I I I III . 7 I. . . II . I . . . I I . I . . . . . . . I I o . . I I I I 7 . .l I .I I; . .I .I I Y I I . . I . . I I . . . I . . I II . . . . I I‘ll’l.. 0| 0 . DIIFI II‘T o I I: u . I . . I . I v . I . I I I o I I I b q _ I'V. Development of Function Two assumptions are needed before proceeding. They are: (1’ that the natural damping force of the system during the period under consideration is small compared to the driving force and thus can be neglected; and, (2) that the motion is of a sinusoidal nature. With these assumptions it seems reasonable to assume a sine series to represent a curve of the shape shown in Figure II. Thus, a::bnsin9%§, l. where a = amplitude, hn : coefficient of the series, t : time, T : total time interval under consideration. From the fact that CT 1 a : DA and, t : -é- , equation 1 gives, . -}. m D-‘ansin . 2. It can be readily shom,z that for a system undergoing a peri- odic motion, the change in energy per cycle, U, is, U = a -.12£a:. 30 NM 2 2 where a1 and a2 are the amplitudes at the beginning and end of the cycle, respectively, and k is a constant depending on the physical properties of the system.3 Again using a : DA, equation 5 can be resriten as , U 2 _ 2 b- D2 - D1 ° 4e By assuming that the system will require a considerable number of cycles to build up, the following approximation can be made, - ’ 52.11 a - a1 / A w 0 50 Here, A, is the slope of the build-up curve, half way between suc- cessive points of maxinmm displacement, and g! represents the time for one cycle. To change equation 5 to non-dimensional form, it I is necessary to determine A . First, d- Then,sincea: .gfi-3A.°=-—.§%=%S I A:% 31%. 6. Nov letting the slope, 23%, on the non-dimensional curve in Figure III be equal to A , equation 6 becomes, X899. Baa Substituting for X , its value from equation 6a and a : DA, in equation 5 gives, . MYA ”2-91“ m“ '7' When the right hand side of equation 4 is factored and the value of D1, from equation '7, substituted in the second factor, it gives, 2U - _ - E? - (D2 ,l D1) (D2 131) - (D2 ,4 D1) (.3019). 8. Further, D2 ,l D1 : 2D, where D is the ordinate half way between D2 and D1. This is also the point where the slope A is to be evalu- ated. Therefore, from equation 8, U3Me 9e w'I' the two variables, D and A , can each be expressed as a series, 1 °° nwc D a . sin --— I Z ha 8 v :Q-l‘ 21!. 3112 A (50". :bn 2°” 2 ‘ Using these series in equation 9 gives, U:§a“—'§:hnain nyé-EZhnncos 1:122. 10. The energy transfered per cycle,4 through the driving force F, to the system under consideration is , «as. U: Ira-at, 11. where y is displacement as shown in Figure IV, and can be expressed as, y = a sinwt . 12. Using the expression , D ll 3 ha sin %§ gives, '4 ll [ibn sin 3-3;] sinwt . 12a. The derivative of y with respect to t yields, §§.w[iq, sin N13] 00-th [ibnE-gcos 91%] sinwt . Rewriting equation 11, using the above expression for 5% gives, U :7: {w [inn sin 31?] ooswt ,l [inn 2;! cos 9?] sinwt dt . 13. _ _ , 4 _ I» , . 4 4 A . . 4. l, v . _ _ ... I I It‘llol. . . o I I . > I. I I fI I a- I I I1 I III e. I. .q .. vy .I I I. .. o » ~ . I IiIt. I. . I .II. I 7. III. . VI. . i _ _ i _ , . i , ‘TI.| o I! I». I r . I o I \tf I I I. L 1‘1, . I I III I I II I OI I o . v | I "I" v I. . I, h I a . 9|. I . _ _ _ , n , i‘aII I 6 v 9| v I .I .. p . . a c v I I 't' IL I II I A o I I . .A I . I _ _. . Q I I I It- A I. W _ _ . . . IA _ g i _ \_III a .II I . n n I I! I. I n I. I. H _ I I III? ...... A I v a I IL I .I I II I I I o If . iv v I L . L . , , a T .5. . III. I . I v 4 . I I . I I. . I I I . I a . . I a . . I T . I. I I I . . . _ . . i 7 I0 9. .5. r I ... I I. . . I I. A. v I . s . . I I I I” . . I . . IV I .! y e ..4| I 0 I .I 10.: Is a . , _ I . II pl I . o II II I 1 . . . ... .. I I >11 I I I I. . . . VI .I I . a I I .I . ‘4 t .w e . w I I I b It I I . I4 I .. . . . f . _ . , n . u . , .1 IH . II I. . . . I I _ I I . . .. I .I l I I I. I v I . f . II . . I . . a . .9 .I . . v I u . I I . . _ u _ I. I I 4 V Illa" .0. . . _ L i I L , ‘ [I a . :1 Iv I . I. I owl- ‘I I I I‘II I I v :e s Q! I I I I I . II OI tI . l I II. I . I 1 I e . I. _ e I . . , _ _ _ V 'II . _ _ 1 II . I . ”A I I . . . .I . I. I I .. . r I I I I . . I o I. T h I 03" . IN . . I I . I I“ _ a I I . I I . I I I I . I J— I I I .0 I I. s I I I» r Y. II: I t I I u . . .I I I I I0 OI . . i I V . . I I I I a I I I elo I VI 71-! . I . . e . . I II . I I I I . . . . I . I . . q . . . . . -. I .I I I . f I . .. a . I. ,. .IJ . . . . . I r» , f V 1 .e I I I I I . . . I I I A I a I v I. I I I . 6w 9 I VIII? . l I I) . .11 A V II .. . f . . . . . . . . I . . . . . II ,. I .-. . . I . U . I} III.- v [fl 9" I 11 R I I . I a! I, . I I . I I . II n . I . I I I I m i I I o I . I. I i . . . I . . . u I I v I . I . . I . . * I . _ J I I o A (w I ‘ I s a . I I. I I w . . In a I . I ~ I I . I . i , y I I I t a I I n f I I . e e I a I u I t e e / . . . . . I . i a L. I} F 4 A I _ , . . I v V I y I I II I e u I I I p I a . I I I . c I v v e I t e ‘1 . f . . . I i . I L! I. . I . . I . . . I . I I I If I o n I . . . . . I. . . , U . n q . I, . . . . . . . . ., I I. I . . . .. . . . . 2 . If}??? h P! PP 1}. 4 f- Iv . I r. I I I I . r . I I II I I II v .TIIOII I > I v I ”I. . I I. . I. A . Hi .. .4. . I q ”I. A II . Y I. I I I. u I I v I I I .71 I I O. . I . 1 i . 11‘ . rr I . I: . . . 5 u‘. I I. . I I I . . . o . . . . I . . .0. . i“ . . a ._ r I. 4 . I I I . I . w 1.1. I I . . I . I I I I . I I II VII. I I I I I i . ‘IIHIII. . g I I . I I I. . D . r? P . r A 1,. _ a I . fl . . . I I I In II n I o It a s . I o I I V II I e . r III .I a c I I, II I . . _ ~ J i L II . I U. / I . . . . I I . . . I I I . _ . I e d. I .II‘, a I I . Lx‘. ..$ I s I p 1 I . \ V . I . o *I‘I I I I I I t I .I I u I o s . v. I I I I Vx‘ . I I I I I I . I I .L n . 'hr x _ - el 'a my. P .s. I ‘41 It!!! I III“! 4 el“ V .L . I /4 f I I . I . I I I I. I.\LYI“. I . . It I I A If I 5 Oh I I I . w I w . f4 .LW . . . , FF fill . . . .I , f . . . . . . . . . . . . . . V . I . .. . I . v . I .1 I . . o . . b ’ II I I I I I I . I I . I , I P. , hV —. 4(W J . . h . u/ . - . I I . . . . . . ., I . . , . . . I I I. . ‘Il . . . . u . . r. . I . . . I. I. . . . I III. I II . I. L . . v I .. . . I . L - . . r .I. .I. - . I . . . . I. . . . . . / . II I . I . .I I . . . . . . . . {I . . I . . I . I . . I . T .. . u I . . . “VII 7 II >’ A , _ e\ r I .I I filth. . . . . . . . I . I I . I I It . . I I IA . . I In; , v! I I I .eIII ‘ I r I . II. . I I I I I I . I e I ,e, I I I . I II I o I I I r , V. _ ,_ V I I «I l L a e I I I I I . I I t, I o I II I . I I o .I‘ a . . ... . . .. . . . ., . . . . . . . . . . . . . . . I . . . T. . . . f) .I LF '1 u I I I I . I I I. A I . I. I a I II. I e I I I I II .I 4 I I I I I . . . . I . . I .o . I . II . . . f . I t . I . I a I I I. . I . I I I u n ‘ t v a l I e 0 I I I' I D U a l I O . . . I I . . I . . . I . I I I . . I I II. ? I . . . o I . I . . o . I . . o . . I . . . . . . I I . . . I . r I I I I . I I I I I I I . I . . I I I I . . . I . . . . . . I . . I I I I . . . . . . I . _ I . . . . . . . I I . . I .I I. . . I . I . . . I . II D I e e t I u . u I I I O a b e 9‘ D a — LL LI- I . a; . . .1 .. .- . . .. I.. , . .. . .. . . .. [r I L 12 To convert equation 13 to non-dimensional form, use is made of t = 9%, dt 3 § do; and the resulting expression is, d p 1%: [inn Iin Dig—9] «WE—:3} [2% 231'. cos 5&9] Iin“-’-§9- g-dc . 14. | I The two expressions for U can now be equated; however, if the derivative of each is taken with respect to C, the integral will be eliminated. This gives, 31-5- [(2% n cos 52—0);- Zhn sin— n? 2% n3 sin ‘2'] =1'w[ (Elan sin —-)coI“’-— To;(ann ;cos'n-gg Iin %]§. 15. Solving equation 15 for F gives, me 2 " nIIc " nIc Zfi‘k (21:11 11 cos T)“ E'bn sin—é— Zen n2 sin -2- Mif.(23:51s11135-:;-(-:-)cos—1‘ (:bnn cos n—‘é'--c)sin“fm] F:— HOT Going back to equation 2 which states, NH .e 2%, 8111212, I The % can be placed within the summation, thus, 13 When evaluating the series constants, by harmonic analysis, either bn or b; can be round, depending on whether it is desirable to use dimensional or non-dimensional form. If the bn in equation 16 is replaced by b]; A it becomes, 1 212 [(2125 n °°’ mg")2 2511‘" '1” we Tin b. ”2 ’1” me] 3 168.. n «E [2:32 (2b; .myé)ms%T2/(:bnn°°'m§g).mu%é] This is the expression for the non-dimensional force F'. 1. See Figure III for definitions of C, D, and A. 2. See any complete textbook on vibrations. 3. Essentially the familiar spring constant used in theory or fib‘tiOflSe 4. See any complete textbook on vibrations. 14 V. Comments and Conclusions The non-dimensional force function F', expressed in equation 16a, depends upon the frequency of vibration,aJ, the build-up time, T, and the various constants which are known or can easily be found for a particular system. The general shape of this function has been plotted in Figure V, using only the terms for n = l. The conclusions are as folloss: 1. 2. 3. 4. 5. 6. The shape of the curve for the non-dimensional force func- tion seems to be reasonable from the solutions of analogous problems. The function is periodic. The frequency of the force is the same as that of the motion of the system.and its higher integral harmonics. When the displacement of the system, y, is a.minimum, the force function is also a minimum.in magnitude and vice versa. The expression 16a for F' could be used to advantage in the calculation of a damping unit for a system.subject to self-excited vibrations. Since there is nothing in the function representing the condition of the source of the energy increase, it could be assumed to influence the force function through the fre- QHGHOY.UU, and possibly the time, T. ‘4 . l _ A. , I4 _ _ I.“ a W 4 11 i It'OIioIlf.‘ I9-IT‘0.IO.1. -.Y IYIe‘IeIIiIIIIIIIIIi. I4II-' e L III‘II .II> I1.. 10‘ oi I .. A .I I‘III. 11 1.]. . . .lleI‘s I_II.. III .|I.|.I'I I‘m. II II . .I .OII F I .-..lts . IIIYX|.I a , . . r _ n . TI [It Ilev‘sII . I . . .0 5v! I. vl . u! I .I.» I I . . .. e VILT I I I. I I I I. I. k . I I . II .VI 0 I1 I l I J,i!I IL I." I I I I o AI AlisIIIe I I . . . if I . I I . I cl . d l n _ _ ITIYI.1‘ I. . . II I I. I. I. . I I I II? I. . . A III. I 9 I . . I.1II.IIIII . . 1. l. ,9 I II. I I It .I . . I III I I nnlil _ l jnIIITI I 1 [III I I I I . I I II 1 I . I I I I st r I I v..|.|.9I... I 1 . 11+ I II. t . 1? IIII I _ . I I. I I I I . . I . I I. . . o oI .II|IAII. I4 I 01. II. I n I .4 I IIIDIIIYI. . . . v . II . II I 4 \L It _ l _ _ . .. [4.1. . 35... .I T... ..... ..I I ..I .. .- _ l v . , 0‘? .I 1‘ vI . \I I .I o I . 6 II A . It . .I . . I v . I | OI I e u . I I o V¢I I . I I I I . . _ \. . . I I II I i . o I . l . v . I? . II . . . I I. . I IrUII . I» . I . I I I . I II I . . III! Avril-Is ‘In I. III I‘Il Yilll‘iLI I III . . 4 I,I ‘1'. . . . a I I I I . II . . . I . . I .I. I . I e . F . _ I V I is..: oII II a I I I . I I I III I I. 1 ‘II It I I e n I . I . I I p . . I o . I I .0 o . f v I V c. w I s'L II! I 7“ A . . o . . . II OI I A A a I a . v e I I 1 II. I s . I I s . I It . IIIIII A I I . I .I I . I o Ii 4 Is I I I. I . .I. . . I . . . I A . I . w / ‘UI , 4r 7 I7 I. . II . . . n . I . II I II . . .II. . . . It I . I I . . . . I A I .I . 6 II I v o . - e . A I , I I II . I I I v . x I. II n . I I 1: I I . I . . s . I . P. . 0|. I III. 0 . I f I L. . . I . . I . I . . I . I v I . l I I I . l . t. . I ,o I I . . . I I i . . i It I. . . I /I k 4/H InI I I y E . . t . I I I I . VI I I I s H I . I a e . I I . . I Q I I I. l o I I . I .I . .r V .-. . . .. I.I..-.. J I . I w I I . . I I . I . I I I I v I I I . I . I . I . I t I I I . u I . o ‘1 -.. I .C E . .1.II.,x... I .... .-.. . . I L _ I I. . . . . . I .-I . . I I I v . . I o I . . I .2; v I I V 1.. . I e I. I I s Q a I o J v I l Fh rs M 1""- vIIIQIIQIII s I t Y I a s 4 s I n s O s IeW} s a .II D 4 v ..I. .. C III. . . .....I-»L .. ... . a . . rw I .. . . . . . . . . I . .-. . ,. -. . I V l 1 l . v . E. E _ o e I I I o . II t I I I .1. o .5 I I II II . I I c All. . + s! I 1P v ., . o a I I I I c I QI I e s . . . I I _ 1|. III A I A D «I. .. I I. . I I .I.I I . I . v I I I I r. i I . .‘I I I l I. II. uII‘ Io . I I 0 .II 1%.. ..-- I. If! H A \J l . I . (J bf '1‘" . ‘ . . . ‘ I . . . 41 I5 A P y— y t cl. ‘ ['LIYIIIII.‘ vIIIqIIIIfIIlYII‘IIIIiQI I: £1977 / ENA s v u I I . I I - I o I I I 6 I e . A 16 Bibliography 1. Baker, J. G. "Self-Induged'Vibrations”. Trans. A. s. M. E. Vol. 55, mes-z, 19:33. 2. Baker, J. G., and 8. J. Mikina. ”go Cglglaticn of Dampers for Systems Subject to Self-Indug§g_ ‘Vibration‘. Trans. A. S. M. E. 1-121, 1936. 5. Don Hartog, 3. P. ”Transmission Line Vibratign_ Due to Elect". Trans. A. I. E. E. Vol. 51, p. 1074, Dec. 1932. I . . I ' e \ l . I - . I s . _ . ’ A . . I . . i I O I . \ ‘ I a I . . . I ‘ . ; I . . . I V I I , l l I I I | I \ I . , . I ' '