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ABSTRACT

STRESS DISTRIBUTION IN THE END BLOCK

OF A POST-TENSIONED PRESTRESSED

CONCRETE BEAM

By Piyush Chandra Sharma

The object of this study is to investigate the distribution of stress

in the end block of a post-tensioned prestressed concrete beam. The

beam has been considered a two—dimensional elasticity problem in plane

stress with the stresses perpendicular to the plane of the beam equal to

zero. The technique utilizing Airy's Stress functions was applied and

the resulting differential equations were solved by the finite difference

method on the “Mistic” digital computer.

In order to check the theory, experimental measurements were

made on the end block of a post—tensioned prestressed concrete beam.

SR-4 Rosette Electrical Strain Gages were placed in a grid at the end

of the member and strains were measured for a ten ton tensile load

in the cable. While the laboratory experiments did not exactly duplicate

the theoretical solution in dimensions of beam and bearing plate detail,

it did afford a good comparison of conditions and variations of stress in

an end block.



It was found. that the experimental variation of stresses agreed well

with the theoretical solution. In magnitude also there was good agreement

except for the shearing stresses, which were too small in both the cases to

have any considerable effect on others.
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I INTRODUCTION

Whenever a concentrated load or pressure acting over a limited

area is applied to the ends of a beam. the stresses at some distance

from the point of application of the load vary linearly over the cross

section and are statically determinate but the stress distribution near

the load is no longer linear and is statically indeterminate.

This follows from the principle of Saint Venant which states that

if the forces acting on a small portion of the surface of an elastic body

are replaced by another statically equivalent system of forces acting

on the same portion of the surface, this redistribution of loading produces

substantial changes in the stresses locally, but has a negligible effect on

the stresses at distances which are large in comparison with the linear

dimensions of the surface on which the forces are changed.

In post-tensione-d prestressed concrete beams the prestressing force

is applied at the ends of the beam over a comparatively small area of the

cross section. This force is transmitted through a steel bearing plate,

which is assumed to produce a uniform pressure at the ends. This dis—

tribution tends to be uniform as the thickness of the bearing plate is in-

creased and decreases with the plate action. In general, the distribution

is assumed to be uniform beneath the bearing plate .

This uniform pressure applied over a small area becomes either a

uniformly varying pressure or a constant pressure at some distance from



the bearing plate, depending upon the position of the resultant force on

the end of the beam.

In this study, the resultant force has been assumed to act at the

middle third of the beam section and the experimental beam likewise

fulfills this condition.

The purpose of this study is two-fold. First, to investigate

analytically the distribution of stress near the ends of the beam (namely

in the end block) by means of the theory of elasticity. Secondly to com-

pare experimental measurements taken in the laboratory with the analyti-

cal solution.



II REVIEW OF PREVIOUS INVESTIGATION

The distribution of stress caused by a concentrated load acting

upon a large mass was originally worked out by Boussinesq (1885) in

which he developed relationships for stress variation in a semi-infinite

solid. These relationships have been used in determining stresses in

soil masses due to surcharge forces for both point and uniform type

loadings.

A closely related problem is the transmittal of the concentrated

load in a column to the supporting footing. An experimental investigation

by Richart (19) at the University of Illinois (1932) showed that in practically

all the cases stresses in the footing were distributed uniformly at an

angle of 450 with the edge of the bearing plate.

J. N: Goodier(9), (1932)ana1yzed the problem of stress distribution

in a plate due to concentrated loads, using the Theory of Elasticity. The

stress distribution was solved for blocks with varying dimensions. He

considered the case of a rectangular plate or block compressed by knife

edge loadings at the top and bottom of the block. It was shown that tensions

of considerable magnitude developed across the middle plane through the

knife edges. These tensions vary with the distribution of the load over

the bearing area. (fig. 1).

With the increasing use of prestressed concrete, greater attention

has been focused on this problem and a number of theoretical treatments
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Fig. 1. Variation of stresses according to Goodier's analysis
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have been developed. Since some of the theories have been recommended.

for the design of end blocks in prestressed concrete units, or have been

used as the basis for study of stress distribution in the end block, they

warrant special attention.

Morsch's Theory
 

The first approach to the calculation of stresses in blocks subjected

to concentrated loads was developed by Morsch (17) in 1924. It is based

on the following assumptions:

(1) The stresses due to a concentrated load are uniformly distributed

at a distance equal to the width of the prism.

(2) The curvature of trajectories causes the tensile stresses, the

latter being distributed according to a parabolic variation.

The last assumption was justified by Morsch on the basis of Kriiger's

measurements of transverse strain (Deutsche Bauzeitung, 1906, Paper

263) but Kriiger measured the strains only at three points from which he

constructed a parabola representing the stress distribution.

The distribution of compressive stress trajectories deduced by Morsch

is shown in fig. 2a if the compressive stresses are uniform over both the

P(a - a1)

loaded area and the remote end of the end block. Then the force Z = 4h

and hence the maximum tensile stress for a rectangular prism of breadth

bis ~32
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Morsch carried out tests mainly on stone blocks, however, a few tests

were conducted with concrete blocks. He applied a correction to the

depth of block (h) as shown in fig. 2b to bring the tensile stresses at

cracking load according to the above formula and the actual tensile

strength of the material of which the block is made, in agreement.

During the tests Mor sch discovered that there was no visible influence

of reinforcement on the cracking and ultimate load of the blocks and

he suggested that it was more important to use high strength concrete,

than to employ large amounts of reinforcement for the blocks.

Bortsch's Theo_ry
 

One of the theoretical approaches to the problem of bearing capa-

city as well as stress distribution in structural units under concentrated

loads is due to Bortsch (3, 4), (1935). He considered a hinge block as a

deep beam of infinite length subjected to a load distributed on the contact

area in the form of a cosine function (fig. 3). The amplitude of the

 

 

cosine function is p1 = 2—:—’ following equations were derived
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Fig. 3. Load distribution in Bortsch theory
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The stresses can be evaluated for various values of [3 = —a— ratio for

any point given by the values x/a and y/a. Maximum transverse

tensile stresses occur on the central axis of the block, at distance

between the end of the block given by x/a = . 2 to . 3 and the magnitude

of maximum tensile forces being . 38 to . 45 Efor {3 = . 2 and .1. At a

distance of x/a = l. 7 from the end the tensile forces are almost

negligible.

Bortsch dealt with small values of £3 ranging from O to . 2 and

did not indicate whether his theory could be used for [3 approaching

unity, as occurs in most cases in the anchorage zone of post-tensioned

members. Tests carried out by Jesinghams (3) confirm to some

extent the general shape of the Bortsch curve for the O'y stresses,

showing that the cracks in the block developed close to the central

axis. The recent tests by Kammfiler (13) give the abscissa of maximum

tensile stress as x/a = . 22 which agrees satisfactorily with Bortsch's

theory, but differs from Morsch theory.



Ma:gne1' 3 Theory
 

The first analysis dealing directly with this problem of end block

analysis was proposed by Professor Gustav Magnel (14) in his text pub-

lished in 1948. The author suggested an approximate method of computing

the stresses in a prestressed beam end block.

This method consisted of considering the end block as a free body.

The stress distribution at a distance equal to the depth is considered to

vary linearly and is given by the classical formula

+MY

" I1
1
>
|
*
U

Block ABCD was analyzed for stresses caused by the loading shown

there will be bending and shearing stresses induced perpendicular to and

along the planes FE, HG and other similar planes. Shear stress can be

calculated by using the formula 'r = IYBQ- . (fig. 4).

Similarly, bending stresses were calculated by considering ABEF

and GHDC as cantilevered sections with the load causing bending being

the triangular load on sect ion BC. The stress (TX in the longitudinal

directionwas evaluated by assuming the pressure dispersion takes place

at an angle of approximately 450.

In the same text, Professor Magnel proposes a second theory in

which stresses due to bending perpendicular to a plane parallel with the

longitudinal axis of the beam vary as a second degree parabola.
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2

0' _ 12 1 + 4x 3x

V bDZ D D‘2

where

M — moment

b = width

D = depth

x = distance in the direction from a reference point located

at l/ZD .

12M

bD

and a maximum
 

This gives a maximum compressive stress of

. 4M

tenetle stress of —— .

bD2

In the second edition of Professor Magnel's (15) book published in 1950,

this theory was modified. Instead of considering the stress as varying as

the second degree parabola, it was modified to vary as a third degree parabola.

Magnel assumed that the stresses under the bearing plate dispersed

at an angle of 45 degrees into the end of the beam and that at each plane 1-1,

2-2 etc. , the ordinary laws of eccentric compression apply. The typical distrir

bution of pressure on planes 1-1, and 2-2 is shown in fig. 5.

In all cases, only the effective width is used in computing the area and

moment of inertia, for areas outside the 45 degree dispersion line the vertical

stress is zero. As described before, by considering the element ABCD as a

force body, the loading causes a shear S and a moment M on any vertical

plane EF, GH etc.
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Dispersion of load in Magnel's theory
Fig. 5.

 

 

gnel's
End block and transverse stress distribution in Ma

theory

Fig. 6.
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The cry stresses produced due to M on any of the vertical sections

have a stress distribution diagram in the form of a third degree parabola

(fig. 6).

. . . 2 3

The general equation of the cubic parabola is O'y = A +Bx +Cx +Dx .

Where A, B, C and D are unknown coefficients to be evaluated by

applying four different conditions. These four limiting conditions are

(1) Atx=-%; 0 =0

Y

dO'

: _E. .__l :
(2) At x 2’ dx 0

(3) Sum of the forces in the y direction must equal zero.

3

2

0' b dx = 0

-9. y
2

where b = width of beam.

(4) On any plane EF or CH etc.

N
I
I
D

Substituting these conditions the values of A, B, C and D are obtained.

 

A=-2'21\A,B=O,C=6(;M andD=§-%£-/Ithen

a b a b a b

2 3

_ 5M 12x 16x _ M . . .
O'y - 2 [-1+-——2—- + T] -— K 2 where K is a coeff1c1ent.

ba a a ab
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Fig. 7. End block showing the movement of section for computing

the shearing stresses by Magnel's method
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When the law of variation of cr stresses is known, the shearing

stresses TX can be evaluated. Consider a slice of concrete between

a a

2 X 0 and 2

y + dy is isolated (fig. 7). This slice of concrete is subjected to a

and two parallel planes having an ordinate of y and

bending moment M on the y plane and another bending moment M+dM

on the y + dy plane. The unbalanced 0y force produced by these bend-

ing moments is resisted by shear on plane DB.

The change in force between the planes y and y + dy becomes

Total force on plane AB thus equals

a

zdcr

_X

dY dy

I

N
I
I
D

considering unit width of beam. For equilibrium

 

 

E

_ _ do

Txy(dy) _ -—-X dydx

dY
x

do

d K

also dYY — k2 d ; since 0' =-—¥I\2/-£. Now (cii—NL = shear S, therefore

ba y ba y

E 3

dc 2 k s 2

711:7 Sand'rx = ——2— S'dx= 2 de

y ba y ba ' ba x
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The values of those non-dimensional coefficient K and K1 have been

)evaluated for different x/a between . 5 and -. 5. The shear stress (Txy

transverse stress (cry) , the shear (S) and moment (M) are calculated

and then appropriate factors used to determine the stress at a particular

point.

Guyon' 3 Theory
 

Another theoretical approach to the problem of calculating the stresses

in an end block is due to Guyon (10, 11), who has obtained the analytical solu-

tion by the application of the infinite series. By the series solution, he could

not satisfy all boundary conditions and therefore made some assumptions.

As a result of his complicated analysis, Guyon has given six tables for

the calculation of 0‘ , O'X and 1' caused by normal or shear force in the

anchorage zone. These tables make it possible to estimate the above men-

tioned stresses on nine vertical planes

- .3. 1 1 0 1 1 2
y_—a'l -48" '23., ‘43., 9 4a. 23-, 4a, a,

at depths

1 l

x = 0, ga, -a, é—a, -:-a, a, l—a, 2a

for load at

‘0 la la 2aY . 4 . Z I 4 , a

The diagrams of the stress a for various al/a ratios are shown in fig. 9. I

Where a1 is half the width of the anchorage plate and a is half the width of

the corresponding concrete prism.
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Guyon carried out some tests on this subject, but he limited him-

self to a statement that the results given by this method agree very well

with the photoelastic tests of Tessar (11).

In the text ”Prestressed Concrete" published in 1953, Guyon has

also given another approximate method of estimating the end block zone

stresses using the isostatic lines approach. Here is an example of this

method:

Case of a single axial force:--The single force P is uniformly

distributed over a height Za' symmetrical about the axis of the beam OX

(fig. 10). The forces can be considered as passing across the block from

AB to CD along trajectories such as l, 2., 3, 4, 5, and 6 in fig. 10. These

trajectories are the isostatics issuing from the loaded area ab. These

isostatics at their origin in ab are parallel to the force P, on their arrival

at CD they are again parallel to P. Between these two sections, then, they

must adopt an S—form with a point of inflection at I. Having divided ab

and CD into n equal parts, each isostatics can be supposed to carry a

force of":: from the center of one division in ab to the center of the cor-

responding division in CD. The material in the interior of the zone may

thus be considered as made up of a series of curved fibers, each carrying

a fraction of the compressive force. Now these fibers cannot support

compression without exerting a transverse force normal to each fiber

caused by its curvature. This force acts inwards or outwards according

to the direction of convexity of the curve. The traces of these transverse
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forces are curves such as EE' normal to the thrust isostatics and form

a second family of isostatics. They may be considered as dividing the

material into another series of curved fibers tying together the first

series and subjected to tension or compression by their transverse thrusts.

Thus the tension of the fibers bounded by two curves EE' in fig. 10, in-

creases from BC to OX, the thrusts q1' q2. q3 etc. due to each isostatic

of the. first family adding together as the band EE'crosses them successive-

ly and decreasing again between OX and AD in a similar manner. The

transverse stresses are a maximum on the axis OX, Txy by symmetry is

zero on this axis. On the axis OX, therefore, the only stress is 0

normal to the axis, its value varies from AB to CD at which point it becomes

zero or at least negligible.

An idea of the variation of 0' along OX may be gained by replacing

the isostatics on each side of OX by an "average" isostatic carrying -—2-

to the center of the upper or lower half of CD (fig. 11). Then if R is the

radius of curvature at any point M. the transverse force per unit of length

of OX is % and this transverse force per unit of length equals the stress

0' since 2b has been assumed to be unity. R is negative in the neighborhood

of AB and 0' is thus compressive. At 1, R becomes infinite and 0 is zero.

Between I and CD, R becomes positive and 0 becomes tensile, increasing

until it reaches a maximum and then varying to zero as CD gets nearer.

The position of the point of zero stresses I, the value of maximum

compressive stress near AB, and the value and position of the maximum
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Fig. 11. Stress trajectories in Guyon's theory

 
Fig. 12. Corresponding to Sundara Raja Iyenger”s solution
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tensile stress all depend on the ratio of the breadth 2a' of the loaded band

to the depth 2a of the section

Other Inve stigations
 

R. H. Carter's Study
 

The investigation of the same problem was carried out by R. H.

Carter (5) at the University of Florida in 1952. The variation of stress

in the end block was determined by actual test using Huggenberger

tensometer for the strain measurements. The experimental results were

compared with theoretical methods proposed by Prof. Gustav Magnel and

by Boussinesq formula. Considerable variation between the three methods

was reported. Of the three methods the results obtained by the Boussinesq

formula were the least plausible, giving further evidence that the Boussinesq

formula is not valid for finite areas. In the same paper Carter reported

that the Magnel's assumption of the 0X and cry stress distribution varied

considerably from the experimental results. The experimental results

were not absolutely reliable, however, it was evident the 0X stress dis-

persed at an angle greater than 45 degrees and cry stresses did not always

vary as a third degree parabola.

K. T. Sundara Raja Iyenger (12) solved the problem of stress dis-
 

tribution in the anchorage zone by series method. He used the Airy

Stress function approach to deal with the problem as a two dimensional (fig.

12) elasticity problem. He starts by assuming a stress function
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to satisfy the differential equation
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The solution of the problem is then subject to the boundary conditions

0 =Oat =-_tb
y Y

1' =Oaty=-_I-bandx=0

Xv

— (3)

0X = -p(y) atx = O

 
P

: -o—E-Iatx —>oo._J Where p(y) is given.

Applying the above boundary conditions the set of coefficients in

equation (1) have been evaluated by using Crouts method. However the

same could be done quite easily by using digital computer.

Bleich's and Siever's Theories
 

The next theories on stress analysis under concentrated loads are

those given by Bleich (2) and Sievers (20, 21). Although these theories
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were not derived primarily for calculation of the stresses in the anchorage

zone, both theories deserve careful examination. Sievers followed in

principle the Mo‘rsch's approach to the problem, making use of an analy-

sis by Bleich of deep beams.

In this analysis Bleich makes use of an Airy Stress function F such

that

 

Satisfying the governing equation

4 4

BF 234F 3F _

4 “—2,—2— +7 '0
3x Bxay 8y

 

for the case of symmetrical load shown in fig. 13. the stresses are given

 

by: 00

l- h '— 2P Z ( fin )cos hfinx + an Sln thx

0y — a Enh cos Bny

n=l e

where

_ nTr

5n '7:

To satisfy the boundary conditions, it was shown by Bleich that the modified

equation

00 P -I3n(h-XI

oyzz z 2—a_t[l-BIl(h-X)]e

n=1, 3, 5
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should be used for plane y = 0. Sievers also presented an approximate

formula for the evaluation of the transverse stresses which fulfilled the

required boundary condition. With the notation given in fig. 14a

0' :8PZm (l _ 2.5n)e-(Tr/2)1°6nq

Y tl

 

where

n = x/l and

t = the variable width at which the load acts in the direction Z. The varia-

tion of t as a function of the length of the end block is expressed by the

equation

t ”0 - qu(1+ 2. an)e'("/2)1I6nq

where

mq = °. 5(tu - to)

and

qu = x/lq

fig. 14b represents the variation of t in the end block.

Photoelastic tests carried out by Hirschfeld (21) at Aachen in connection

with the design of bridge piers confirm the qualitative results of the Bleich-

Sievers theory. The total tensile force calculated according to Sievers

stress distribution is about 17 % higher than that given by Mo'rsch's theory.
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Existing Test Data on Stresses inAnchorage Zone
 

More recent tests have been carried out on the problem of stress

distribution in post-tensioned members by Christodoulides (6), (1955)

and Ban (1), (1957).

Christodoulides's preliminary tests on stress distribution in

anchorage zones were carried out as two-dimensional problems in which

standard photoelastic techniques were employed.

For the three dimensional photo-elastic investigation as applied to

a model of an actual end block, he used the frozen stress technique. The

analysis of the experimental data enabled Christodoulides to point out

for the first time that the existing methods of estimating tensile stresses

in the end block underestimated the actual values and hence, special atten-

tion should be paid to this problem.

Christodoulides (7) drew the following conclusions on the basis of

photoelastic tests as well as on stress analysis in the full scale concrete

gantry beam, where strain in three directions was measured by means of

embedded strain gages.

(1) The maximum principal tensile stress occurs near the loaded

end face on the central axis of the prism, between the anchorages.

(2) The values of the stresses expressed in terms of uniform com-

pression based on the three-dimensional stress :

Imaximum shear stress = 2x uniform compression

I

maximum principal compression = 4x uniform compression
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maximum principal tensile stress = . 6x uniform compression;

The three dimensional stress distribution obtained by photoelastic methods

on models agreed satisfactorily with the results calculated from strain

measurements. but not with the Magnels and Guyon's theories .' This

indicates that the effect of Poisson's ratio on the stresses is small.

Christodoulides in his tests neglected such factors as cable ducts

and embedded anchorages because of technical difficulties. These may

have had a quantitative influence on the distribution of tensile stresses

in the end anchorages.

Ban (1) and his team recognized the importance of the individual

method of post-tensioning for the values and distribution of tensile stresses

in the anchorage zone. They worked with a particular method of post-

tensioning, namely the Lee—McCall method. Apart from analyzing the

position and magnitude of stresses and comparing these with the theoretical

values they investigated the influence of specific factors upon the stress

distribution as well as upon cracking and ultimate load. Some of these

specific factors were:

(1) ratio of the dimensions of the anchorage plate to those of

corresponding concrete;

(2) the thickness of the anchorage plate;

(3) the dimensions of the anchorage nut;

(4) the amount and position of reinforcement ;

(5) the strength of the concrete;
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Strains were measured by means of electric strain gages on 40 rectangu-

lar concrete end blocks 20. 8" in depth and 7% x 4%:- inches in cross

section.

Ban pointed out the following

(1) Measured strain distribution decreased markedly from that given

by Guyon and Magnel ,

(2) Measured strains agreed fairly well with the Bleich-Sievers

theory,

- (3) Poissons ratio influenced the agreement measured and theoretical

strains.

(4) Cracking load of the anchorage end block of Lee-McCall post-

tensioned beams remained approximately constant regardless of the surface

area of the;anchorage plate. It might be influenced by the thickness of

plate and the nut-

(5) Amount of transverse reinforcement had a considerable effect on

the cracking load,

(6) The linear relationship between the strength of concrete, or the

thickness of the anchorage plate, and the cracking and ultimate load was

recognized.

Cement and Concrete Association Research (23)
 

In September 1960, the Cement and Concrete Association, London,

England, published a research report reviewing the existing theoretical and

experimental work. The report shows that wide differences exist among the
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various theories. The measurements performed by the C. C.A. were

executed in two stages. The first series of tests dealt with the problem

of individual end blocks subjected to single, symmetrically placed con-

centrated loads and the second series dealt with the interaction effects

when numbers of concentrated forces acted on a single end block of

varying cross sections.

The variables studied included the ratio of the loaded area to the

cross sectional area. the type of anchorage (whether embedded or ex-

ternal), the effect of ducts, and the percentage and form of reinforcement.

The results obtained are compared with those predicted by the existing

theories; the theories due to Guyon and Magnel underestimate the maximum

experimental tensile stresses by a percentage varying between 160 and

280 for various ratios of loaded area to cross-sectional area. An

empirical method, based upon the experimental results obtained, is sug-

gested for determiningthe total tensile force and its distribution in an

end block.

Their recommendations are based on the same approach as was

suggested by Guyon, but whereas he applied it to theoretical values, it

is applied here to the experimentalresults, showing the distribution of the

transverse stresses in the anchorage zone.

The important conclusions which have been drawn as a result of

the above research need mention here.
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(1) The distribution of transverse stress and the ultimate load of

an end block are not altered significantly by the different types and shapes

of anchorages.

(2) An important factor in the distribution of transverse stress and

the ultimate load is the ratio of the loaded area to the cross-sectional

area of the prism.

(3) The positions of maximum and zero transverse stresses are

not significantly affected by al/a ratio.

(4) The maximum transvere stresses, which always occur on the

central axis of the prism, are greater than those predicted by any other

existing theories.

These stresses are expressed as a fraction of the uniform compres-

sive stresses

.73 for al/a = . 30

. 40 for al/a =. 70

(5) Theories due to Bleich and Sievers give the closest approxima-

tion. Other theories do not give satisfactory assessment of the stresses.

(6) The total value of transverse tensile force, which is independent

of the width of the end block is given by

. 36Pfor al/a = .30

. 20P for al/a = .70
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(7) At the cracking load the uniform compression expressed as a

fraction of the corrected compressive strength was .16 and . 28 for al/a

ratios of . 30 and .70 respectively.

(8) The percentage of reinforcement has a significant effect on the

bearing capacity of end blocks for values of the contact stresses up to

l. 9 times the cube strength. There is no increase in the bearing capacity

if the reinforcement is increased, when the contact stresses are in the

range of 1. 9 to 3. 4 times the cube strength.

(9) The reinforcement is required primarily in the region of the end

block extending from . 2a to 1. 0a. The tests showed that helical reinforce-

ment was more efficient than mat reinforcement.

A comparison between various theories has been made as given in

Table 1, page 30.
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III SCOPE OF INVESTIGATION

From the review of the literature, it seems that an exact analyti-

cal solution has not been developed which will satisfy all of the boundary

conditions. While various types of series solutions have been obtained,

the accuracy of these results depends upon the number of terms taken.

Moreover these series solutions may not satisfy all of the boundary

conditions.

In elasticity problems the finite difference approach is being used

more and more. This approach satisfies all boundary conditions. The

accuracy depends upon the fineness of the finite difference grid. The

finer the grid, the greater is the number of the linear simultaneous

algebraic equations to be solved. The solution of these equations is no

more a problem and can be easily solved by using the high speed digital

computer.

If the bearing plate extends across the width of the member the

beam may be considered to have a line load and be analyzed as a two-

dimensional stress problem. No attempt is made in this paper to treat

the problem as a three-dimensional one.

The analysis was carried out with the following assumptions:

(1) Ducts of cables are neglected

(2) State of plane stress exists

(3) All elasticity laws are valid (though it may not be very justi-

fied as concrete has aggregate which might affect the distribution of stress.)
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(4) Prestressing force is distributed uniformly through the bearing

plate (which depends upon the thickness of plate used).

The first and second assumptions are justified only if the ducts areas

are small compared to the cross section and the width of the section is

small.

To summarize, this investigation is intended to investigate the

following:

(1) What is the distribution of stress at the ends of post-tensioned

member?

(2) Are built up sections needed in post-tensioned members?
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IV THEORETICAL INVESTIGATION

The solution of a two-dimensional problem involves the integration

of the differential equations of equilibrium together with the compatibility

equation and the boundary conditions. If we begin with the case where the

weight of the body is the only body force, the equations to be satisfied are

as follow 3:

 

80x 67

x _

3x 0y - O

---(a)

80' 87x

3y + 3x + g = O

2 2

27 + 12 (0' +0' )-= 0 ---(b)

8x 8y x y

---(c>

y = me + l'rxy

where :2 and y are the components of the surface force per unit area, 1

and m are the direction cosines of the normal to the boundary.

A function called Airy's stress function is introduced at this stage to

solve these equations. Then the stresses are given by the partial derivatives

of this stress function.
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and __-(d)

defining the stresses in this manner the equilibrium equations (a) are

identically satisfied. The solution of the problem is that which satisfies

also the compatibility condition (b). Therefore the stress function (4>)

. 'l‘must satisfy the equation

4 4 4

8x axay 8y

when the weight is the only body force, the solution of the two-dimen-

sional problem reduces to finding a solution to equation (e) which satisfies

the boundary conditions of the problem.

The finite difference method affords a good technique of solving these

equations with the help of a high speed digital computer. Here the dif-

ferential equation is replaced by the corresponding finite difference equa-

tion at each point of the grid.

The finite difference pattern for the biharmonic equation is shown in

  

fig.15

4 4 4

34> 34> 84>-

4+222 + 4‘0
0x 8x8y By

This finite difference equation must be satisfied at every nodal point of the
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grid within the boundary of the plate. The boundary values of the stress

function <1) have to be determined using the given boundary conditions.

A beam of depth to length ratio 3:20 is shown in fig. 16. Since

it is known from the principle of St. Venant that stress distribution is

linear at some distance from the concentrated force, this ratio should

be sufficient to cover the stress concentration effect.

¢ Values at the Boundary

Along the bottom surface there is no force, hence (fig. 16):

_ :o' : 0 (normal stress)

2 Y

My — Txy = O (shear stress)

It is assumed that the prestressing force is distributed over . 1L = 6

through the bearing plates.

From the above we obtain

a_q_>
¢=0. 8 =0

~
<

choosing the arbitrary constants in such a way to make them true.

Along the ends up to 36 there is no stress. therefore‘l> :0: 6-53 = 0

(no change).

For the portion under the bearing plate we have



because there is no shearing stress there.

Integrating once we have

y L

 

29; _ -10F .1:
6

y+A=- y+A
O
D

changing . 1L to 6 and integrating once again

 

2

_ FY
43 — - 26 + Ay + B

34> _
and — — constant = O, as before.

8x

Since we have for vertical side up to y = 6/2

2

§__¢_ = 0, fl = constant

2 By

By

2

-3 4) = 0, __8¢ = constant

3x3y 8x

In this case both the constants are equal to zero.

6 36

f ——-< <—4) or 2 y 2

 

Now to evaluate the constants A and B we proceed as follows:

Since at y = . 56 we have (I) = 0, g}; = 0, therefore

F _ F _

A—-é-y— 6(.56)-0.5F

then

38
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2

FY
=-—-—-—+.5F +13

4" 5 2 Y

01’

F.25 2
13—6—76 -.5F(.56)

=.125F6-.25F6=-.125F6

Therefore the expression for (6 becomes

¢=é£yz+.5Fy-.125F6

for

.56<y<l.56

then

4,]21? 2
—1.55 +.5F1.56-.125F61.56 25( ) ( )

=-1.125F6+.75F6-.125F6

=-.5F6aty=l.56

also

<1) £62+.5F6-.125F6

6 26

-.125F6aty=6

for the portion y > 1. 5 6, there is no load again, hence

 

From the previous portion we already have



-F

=—3y+.5F

_F ~

—6-y+.5.F

40

=-l.5F+.5F = -F

Then integrating the expressions

2fp—=CbutC=-Fasaty=l.55,351—)-

Y

-F (as found before)

5y

Integrating further

¢=Cy+D

¢=-Fy+D

but

<P=.-5F6aty=1,56

_then

-.5F6=-F(l.56)+D

so

D=F6

and

¢—-Fy+F6

for l.5<y<36

therefore 43] = -3 F5+F6

36

=-ZF6aty=36

and CF] =-2F6’+F6

26

l
l

-F6aty=26»
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Now for the top surface, again there is no load

2 2

therefore U = 0,-——8—£ = O

2.

6x 3x3y

Integrating we obtain

:3 = 0, (constant,as found before)

x

34> ._
5; — -F (constant,as foundbefore)

84>
-

at the corner the value of 5-; must be the same for both SldeS.

Therefore we have the condition summed up as follows at the

corner ;

4) = constant = ~2F6

at y = 36

8

i = constant = -F

3v

Since because of symmetry we do not need to go through the right hand

portion of the boundary but still it will be evaluated to serve as a check.

Right Hand Vertical Face
 

 

Wehave

32¢- 32¢ _
2‘0'3 a ‘0

3y X y

then

a--S->-=constant

3V

=-F
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and

8;? = constant = 0

3x

also

4) = -Fy + constant

36 we have <1) = -26F, thereforeSince for the top corner at y

43] = -26F = -36F + constant

36

constant = F6

then

¢=~Fy+F6

nowat y=l.56

d): -F(l.56)+F6

¢=-.5F6

aty=l.56

g—:=—F

Then for y =1. 56 to . 56 we have

 

2

?_¢=;§
2

8y 6

2

-3x3: =0, 2% = constant = 0

therefore

84> F

7 = - _6 y + constant

0
9
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now at

y =1. 56

22 : _F
3v

_ F

then ~F - —-E—(1.56) + constant (E)

therefore

E = .5F

and we have

34> -F

— = -— + . F

3y 6 y 5

-F 2

‘1’ = 26 y + .5Fy + constant (G)

now at

y =1.56

¢ = -.5F6

-.5F6 =-:Z-§-(2.2562) + .5F(1.56) + G

r56F =-1.125F6 + .75F6 + G

or

G = -.125F6

then

<t> =“71'5; y2+ .SFy - .125F6

check:

aty=.56



¢ =:-- (.25) 62 + .5F(.56) - .125F6
F

26

: -.125F6+.25F6- .125F6=0

similarly

84>-

a

~
<
:

l I

c
a
l
"
)

0
1

0
a

+ U
1

I-
xj u

0

therefore

.
6
.

H

O

c
o
o
:

<
9

I

O > at y = . 56 and below

0
9

.
9
.

l  
8X OJ

Again for the lower portion we have

 

since there is no load.

And w e obtain

32L = const = 0

3y

¢ = consL = 0

for the bottom side again since there is no load we have

  

32¢ _ 32¢ _
2 " 0"axa ‘ 0

3x Y

34> _ 34> _
—8x 0, —8y const.

as at the lower corner.

44
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The value of <1) , g?- and -g—:— are noted below along the bounderies (fig. 16)-

The <1) (stress function) values along the boundary of the beam are thus

known and they have been indicated along the boundary in the fig. 16.

Now the finite difference equation for each point of the grid in turn

are written as follows:

for point 1 21¢1- 8(1) -16¢3 + 4¢4 + 24:5 = ~6F6
Z

for point 2

-8c1>1+21c1>2+4<1>3-16<1)4+2<1)6 = 2F6

for point 3

-8<1)l + 2(1)2 + 22<1)3 - 8<1)4 - 865 +24)6 +<1)7 = -6F6

for point4

24>-8¢2-8¢3+22¢4+2¢5-8¢6+¢8 = 2F6

for point 5

45- 843 + 2¢4 + 21¢5 - 8¢6 - 33¢? + 24:8 +q>9 = -6F6

for point6

<1)2 + 2<1)3 - 8<1>4 - 8<1)5 + 21% + 2<1)7 - 8<1>8 +<1)10 = 2F6

for point?

<1)3 - 8<1)5 + 2<1)6 + 21<1)7 - 8<1>8 - 869 + 2610 +<1)ll = -6F6

for point8

+ _ - 2
<1)4 2<1)5 8¢7+Zl¢8+2¢9 8¢10+¢12 2F6



for point 9

for point 10

for

for

for

for

for

for

for

for

point

point

point

point

point

point

point

point

ll

12

l3

14

15

16

l7

18

46

¢5 - 84)., + 2¢8 + 21429 - 8610 - 84911). 24,12 +413 : -6F6

$6 + 24).] - 8¢8 - 8% + 21¢10 + Zcpll - 84512 +434 z 21:5

ct’7 ' 8¢9 + 21¢11' 8(1’12 ‘ 84’13 + 24’14 +4’15 .__ '6F6

<1>8 + 2% - 84>10 - 84:11 + 21¢12 + 24>l3 - 8¢14 “1’16 z 2F5

<1)9 ’ 84’11 + 24’12 + 214’13 ’ 84’14 ' 84’15 + 2416 “1’17 = ~6F5

$10 + 2¢11 - 84>12 - 84:13 + 2mm + 2¢15 - 84316 +¢18 = 2F6

<1’11' 84’13 + “’14 + 214’15 ' 84°16 ' 8(1’17 + 21’18 +4’19 = '6F6

4’12 + 24’13 ’ 84’14 ' 84’15 + 214’16 + 24’17 ' 8ch18 +4’20 : 2F6

<1’13 ‘ 84’15 + “’16 + 214’17 ' 8¢18 ' 84’19 + 2“1’20 : '5”

- - + 21 + — : .12 F6(1914 + 2<1>15 84316 84917 (1)18 2619 84:20 2 5
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Table 2

Ldatrix 

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢ 

8 91011121314151617181920F66 75234No 

300000000

0000000000-1

00000000000006

00000002 l-8110.5-4

100000

-8

-8

-8

-8 22

-8

2 -410.5 2

3 -81

4 2

l22 22

-8 000000000000-2l0

-8

2 -8

2 21 -8

-8

000000006

0'000000000-2

0001

0

-8

2

-8

-8

-8 21

0

l . l-8 21 2

-8

20

000000000612

—8

2 21

-8

0

l 000'00000—22 01

221-8-8

-8

0

l

2

1

1000000

8000

00000006

000000-2

l

l

2-8090000

2—80-8 212

l

1

000006221 -8 -8 21

-8-821 1

-8000000

120000000

11

0000-2-8 O

-8

22

0006l2

-8

-8

-8 21

—8

221-80-8

1

11300000000

00-2

1

l0-8 -8 21 2

-8 2 21

-8

2

l

1400000.0000

15 0—820

1

0000000000

21600000000000

000000000000

18000000000000

2 21 -8 —80

l

117

-8212-820 -8 -2.125

-8 13.75

~8 22 -3

0 —8 2 22

-8

11900000000000000

2l20000000000000000 
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for point 19

6.
5 - 8<1)17 + 2618 + 22c1)19 - 8620 = -l3.75F6

for point 20

¢16 + 2<1)17 - 8¢18 - 8<1)19 + 22<1)20 = 3F6

These simultaneous equations are written in the form of

n-l

z a1Jx+ain=0

i, j, = 0

and entered in a table in the matrix form, and this matrix should ordinarily

be a symmetrical matrix, which serves as a check, that the finite difference

equations have been formulated correctly. The first two equations no. 1 and

2, have to be divided throughout by 2 to make the matrix symmetrical.

Data was fed to the lVIistic Computer and the solution of the equations for

the values of <1) was given by the computer as given below:

fi_ = -1.0303046

02 = -o.3030319

03 = —1.03o3079

04 = -0.3030351

05 = -1.0303219

¢b = -0.3030486

07 = -l.0303586

¢B = -O.3030820

1? = -1.0304229

30 = -0.3o31252

61 = -1.0304276
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612 = -0. 3030130

613 = -l.0298987

¢l4 = -0.3018938

<1)15 = -l.0273002

4316 = -0. 2965732

= - . 1 4<1)17 l 0 950 7

<1)18 = -0. 2775298

619 = -1. 0052337

(1)20 = -0. 2239330

Calculation of Stresses

x Byz 62 8 2<1> : 6

2

finite difference pattern shown in fig. (17a) 1

_ a 24>
“ ’ 2
Y 8x 2 24)

finite difference pattern shown in fig. (17b) 6 —2=

3x

_ a 24>
T _-——

xy 8x8y

finite difference pattern shown in fig. (17c)

2

0' Longitudinal Stresses -462 U=

x Bxay

Section through 1-2

at top -. 0606092 — Fig. 17c.

at l '-. 2.424227

at 2 -. 4242408

"
’
I
"
1

C
”
I
"
j

0"
l”
‘1

c
»

'1
1

at bottom -. 6060638



Section through 3-4

at top

at3

at4

at bottom

Section through 5-6

at top

at 5

at 6

at bottom

Section through 7 -8

at top

at 7

at 8

at bottom

Section 9 - 10

at top

at 9

at 10

at bottom

Section 11- 12

at top

at 11

at 12

at bottom

., 2424193

. 4242377
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. 4242247
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Section through 13-14

at top

at 13

at 14

at‘bottonn

Section through 15-16

at top

at 15

at 16

at bottom

Section through 17- 18

at top

at 17

at 18

at bottom

Section through 19 - 20

at top

at 19

at 20

at bottom
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0' transverse Stresses

 

 

 

 

Y

Location Stresses

Edge —. 197866 {—

20 +. 0453362 €-

18 +. 034553415—

16 +. 0137228 _16;

14 150042014?

12 +. 0010070 E—

10 +.. 0001554};—

8 -. 0000098 %

6 —. 0000199 %

4 -. 0000103 5;;

2 -.'0000064 31::

Location Stresses

Edge -. 0104674-1g—

19 -. 0090373 {-

17 +. 0064755 g-

15 +. 0051970 E;-

13 +. 0020696 3;-

11 +. 0005336 %

.11:
9 +. 0000596

(
"
i
n

’
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F

7 -. 0000276 3'

F

5 -. 0000227 “6—

3 -. 0000107 g-

l -. 0000066 i:-

'r (shear stresses)

XY

Location Stresses

F

20 -. 004876175};-

F

18 -. 0055161253"

16 -. 00259854:-

14 -. 0008185?-

12 -. 00013105;

10 +. 00001725 3;);-

F

8 +. 00002525 :3-

, F

6 +. 000012675 6-

F

4 +. 000004325 :5-

2 0

19 +. 03813265 7::-

17 +. 01316005 E;-

15 +. 0060910 E-

6
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7 . 0000276 '5;—

5 . 0000227 g—

3 . 0000107 56‘:-

1 ., 0000066 '5;-

1- (shear stresses)

XY

Location Stresses

20 . 004876175};-

18 . 005516125?—

16 . 0025985?-

14 . 0008185};-

12 . 00013105 %

10 . 00001725 1%

8 . 00002525 71:-

6 . 000012675?

4 . 000004325};-

2 0

19 . 03813265?

17 . 01316005 75:

15 . 0060910:

6
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'r 1 continued

 

 

XV

Location Stresses

F

13 +. 00160995 —6—

F

11 +. 00030785 .6—

F

9 +. 00001725 6-

F

. 00001915 --

7 ' 6

5 -.000011725%

3 -. 0000041759;—

1 0

 

The variation of these stresses has been shown in the fig. no. 19.

Principal Stre 5 se 3
 

Since the cracks will be formed perpendicular to the maximum prin-

cipal tension it will be of interest to know the magnitude and orientation of

principal stresses. As it has been observed that the stresses are critical

in the end block zone, the principal stresses shall be calculated for the

points 16, 18, 20, 15, 17 and 19.

denoting i; = p (pressure beneath the bearing plate)

Point 20

(TX = -. 557p

0y = +.045p

T = +. 004876p

XY
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, . F!\ M$120046“

  “15%-.“7P k  

Fig. 18a. Mohr's circle for stress at point 20

A T Note: 7'1 and {"2 are the principal

stresses

. m 2.-.”...

2...; 1

4fLA-“ZISP...

5.-”‘n— 63-92%.

 A

  
Fig. 18b Mohr's circle for stress at point 19
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Point 18

= -. 440x 46 p

0 =-+.03455p

Y

T = -.00551;)

Point 16 1

U = -.434p

x

U = +.0317p

Y

T = +.0025985p

XY

Point 19

0 =-.213p

x

0' = '7 009p

Y

T = -.03813245p

XY

Point 17

a = -.238p

x

U = +.0064p

Y

T = -.013l6005p

xy

Point 15

ox = -.24lp

U = +.0051y P

T = -.0060910p

XY

for each set of stresses given the Mohr's circles were drawn and the

stresses determined. It is observed that since the shear stresses are

very small compared to the direct stresses, the principal stresses are not

very different from those of direct stresses.
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 L=106

Fig. 19a. Variation of longitudinal stresses (0X). Note: All

figures have to be multiplied by p (bearing pressure)

to obtain the stresses.
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Fig. 19b. Variation of transverse stresses (0 )
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If these stresses are expressed as a ratio of the average com-

pression over the section the following relationships are obtained:

F
_

'5 = p = pressure beneath the bearing plate

F
.

.

36: P' = average compresswe stress over the section

The maximum transverse tension

= . 06533 x 3p'

= . 136 p'

this occurs at a distance of . 333d, where d is the depth of the beam.

The maximum transverse compression (at the edge)

. 197866 x 3p'

.593598 p'

The maximum shear stress is

.0381 x 3p'

.1143p'
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V EXPERIMENTAL PROGRAM

A concrete beam 6" x 7" x 8' - 4" containing a .6000'I <1) Roebling

steel stranded cable (ES = 24 x 106 psi) was selected.

SR-4 strain gages were used. The rosettes (AR-l) and gages

were placed as shown in the fig. 20.

2 3

a: 2:— =2
  

 

 

Wi’6 'WFT9 1§512

4 5 7 8 10. 11 

 
  

  
  

‘ ,rr'ls 18 g 217'

13' 14 16,177 1 1 20

22 23 24

Fig. 20. Arrangement of strain gages

After the appropriate connections for the strain gages were made,

the prestressing equipment consisting of hydraulic jack and cable pulling

attachments (as shown in fig. 21) were fixed in position.

Initially, a tension of 2 tons was applied to the prestressing cable

and initial readings of the strain indicator were taken. The load in the

cable was increased to 12 tons. The strains were measured for a net

prestressing force of 10 tons.

The gage readings are tabulated as given in Table 3.
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l.

5.

Beam; 2.

Dummy gages; 6.

Fig. 21 Experimental Set-up

Hydraulic Jack; 3. Cable pulling attachment; 4. Gages

Switching unit; 7. Strain Indicator.
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TABLE 3

Gage no. Initial Final Strairf"< Correctedflc

strain

4 11010 11000 -10 -7. 39

Set I 5 9415 9370 -45 —43. 36

6 12340 12225 -115 -1l4.98

7 9515 9530 +15 +17

Set II 8 10787 10765 -22 -20. 10

9 11900 11812 -88 -88. 34

10 11650 11672 +22 +24

Set 111 11 11332 11302 -30 -28. 33

12 11423 11335 —88 -88. 27

13 9680 9750 +70 +76. 2

Set IV 14 12025 11905 -120 -ll6. 88

15 12660 12387 -273 -274. 59

16 12015 12075 +60 +65. 39

Set V 17 9960 9840 -120 —115. 65

18 13210 12373 —237 -238. 36

19 10500 10550 +50 +54. 32

Set VI 20 10082 10000 ~82 -12. 91

.21 10085 9895 -190 -191. 13

1 11595 11615 +20 +20

Single 2 10925 10930 +5 +5

gages 3 10715 10715 +0 +0

22 12132 12045 +87 -87

Single 23 11805 11730 -155 -155

gages 24 10415 10185 -230 -230

Single 25 10940 10900 -40 -40

gages 26 11400 11330 -70 -7O

 

*Units of micro inches per inch.
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Correction: if R1, R2, R3 are the indicated R1

strains in the three directions then corrected 7.

strains e1, e2 and e3 are given by (fig. 22):

 
fig. 22.

where b is a constant for a particular type of gage, given by the manu-

facturers. In this case for the types of gages used,b = 44.

Example:

Taking the first set of readings corresponding to the gages

4, 5, and 6 we obtain

Corrected strain

corresponding to 4

l

-10 -Zz(-115)

-10 -2.61 -7.39

l

-45 x 1. 02 +—— (125)
C .
orresponding to 5 44

= -46 + 2.64 = —4-3. 36

. 10
Correspond1ngto6 =-115+Z—;=-115+.0227

= -114.98

Similarly the corrections are applied for the other strain readings.



63

Calculation of Stresses from Strains

 

 

Strain in any direction (fig. 23) I A 3.

¢

6X + 6 6X _ 6

6 = _'____.'_X + ;.___'X cos 2(1)

<1) 2 2

Yx

+ -—2-X sin 2<1>

therefore 11y

fig. 23.

61 = 6X

6.x + 6‘ 11x O

6 =———X+—'—X, since<1>=45

2 2 2

therefore

ny = 262 - (6X + 6y)

6 = 6

3 Y

We also have for plane stress

 

__§_
O'x- 2(€X+V€y)

l-V

o: ‘ E (6 +V€')_ 2 x

y l-v y

_ E
T _ 

xy 2(1+V) Y'XY

6

taking E = 4. 5 x 10 psi and 1/ = . 2 for the concrete of the beam.

_ 6

ox — 10 x 4. 9 (6x +-2€y)

106 x 4.9 (6y + .2 EX)0'

Y

6 61;”, 10 -x 1.9 ny



Corresponding to set no. I the stresses are calculated thus:

ox = -4.9 (114.98 + 1. 48) = -563 psi

0y = -4. 9 (7. 39 + 22.996) = —142 psi

«rxy =1.96[-86.72 + (7. 39 +114.98)]

=1.96 x 35. 65

= 69.8 psi

64

. Similarly stresses corresponding to the other set of strain readings

can be calculated.

 

 

Table 4

Location (I si 0‘ si T si

(fig. 24a) X p V p XYP

19 —563 -142 +69. 8

17 -450 -3. 28 +58. 9

15 -418 +31. 2 +33. 5

20 -1270 +107 -69. 4

18 -1103 +86. 8 -113. 5

16 -882. 5 +78. 4 —53

T1 +98 - -

T2 +24. 5 - -

T3 0 - -

B1 —426 - -

B2 -760 - -

B3 -1127 - -

E1 — -196 -

E - -343 -

 



 

 

P = 20, 000 1b.

  
   
  

Fig. 24a. Variation ofcr (experimental)

x
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Fig. 24b. Variation of 0y (experimental)
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Fig. 24c. Variation of Tx (experimental)
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For the sake of comparison it is necessary to have the stresses

expressed in terms of average compressive stress over the beam

section.

Average stress over the cross section:

 : 20’ 032 p51 (excluding the hole)

= 714. 3 psi

Ratio of maximum tensile stress to the average compressive

stress over the cross section:

107

= . 15

714.3

Ratio of maximum transverse compressive stress to average

compressive stress over the cross section:

343

714.3

= . 48

Distance where the maximum transverse tensile stress occurs:

. 33 d from the end, where d is the depth of the beam.

Maximum shear stress expressed as a ratio of average com-

pressive stress over the section :

113.5 _

714.3 ‘°159
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VI DISCUSSION

The variation of the theoretical stresses 0‘ , 0'y and Txy was

x

in close agreement with the experimental stresses. The magnitudes

of ax and (I were also in good agreement, however the theoretical

values of1' were only 72% of the experimental values. This differ-

XY
a

ence may be due to the difference in -: ratio between the experimental

and theoretical models.

A comparison is made in the following table between the analyt-

ical solution and the experimental investigation.

 

Description Analytical Experimental

 

l. Max1mum transverse tensfle . 136 p' .15 p'

stress

2.. Maximum transverse compres-
l . 4 l

sive stress ' 5935 P 8 p

3. Maximum shear stress . 1143 p' .159 p'

4. Distance where the maximum

transverse tensile stress oc- . 33 d . 33 d

CHIS

 

The differences between the theoretical and the experimental values

may be attributed to the fact that. the experimental beam has a hole for

the prestressing cable unlike the theoretical model. Also the size of

bearing plate was not the same as stipulated for the theoretical model.



68

The magnitude of stresses, particularly the transverse tensile

stress determined by this investigation are lower than those given by

Magnel, Guyon and other theories reported in the Cement Concrete

Association Research Report (23), (ref. p. 30). There is also con-

siderable variation in the magnitudes of stresses as reported in the

C. C. A. research report. Therefore, it would appear that the magni-

tudes of stresses arrived at by this study approximates the actual

stress condition.

When the end blocks were tested for failure, as reported in the C. C. A.

research report, the cracks developed longitudinally up to some distance

from the bearing plate. This indicated that the transverse tensile stresses

are developed in the region near the bearing plate. which is confirmed by

every investigation made to date.

Regarding the use of end blocks. on the basis of present investiga-

tion, it can be seen that the maximum transverse tension is . 05 p, where

' l

p is the bearing pressure or . 15p , where p is the average compressive

stress over the cross section. The temporary tensile stress permitted by

the ACI code is 3 Vf‘ci , where f'ci is the compressive strength of the con-

crete at the time of initial prestress. The allowable tensile strength at

full age is recommended as ft = 7. 5 f'c. Therefore,if the compressive

strength at the time of prestressing is taken to be 4000 psi,then the ratio of

tensile strength of concrete to the compressive strength is



69

V 3 f'ci V3x 4000
"_f_'— : ——————— : . 4

fCi 4000 O 75

which is less than the ratio . 05 p (transverse tensile stress related to the

bearing pressure). As the prestressing force is increased the bearing

pressure is increased and the beam should fail due to transverse tension.

Since it is not economical to delay prestressing until the concrete attains its

full strength, it seems that the possibility of transverse tensile failure has

to be taken care of by either thickening the section in the end block zone or

a combination of both.

Considering the above factors it seems that the use of end block as is

conventional in the industry, in post—tensioned members is justified. How-

ever it may be dispensed with in case of pretensioned members because the

prestressing force is distributed throughout the length of the member.
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VII CONCLUSIONS

As a result of the investigations carried out in this thesis it is

concluded that:

(1) Transverse tensions of considerable magnitude are developed

in the end block zone and are maximum along the plane through

the center of the bearing plate.

(2) There is transverse compression produced just beneath the

bearing plate, which accounts for the resistance to lateral ex-

pansion beneath the bearing plate.

(3) Shear stresses in the ends of the beam due to the prestressing

force are small as compared to the transverse stresses.

(4) The use of end blocks or additional transverse tensile rein-

forcement appears to be needed in the ends of post-tensioned

beams.
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