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SOME INTERPOLATION FORMULAS IN TWO VARIABLES

1. INTRODUCTION

PrOperties of two classes of polynomials in

one variable, which play an important part in the finite

calculus, namely the polynomials of Bernoulli and the poly-

nomials of Euler, have been develOped.1

One of the objects of this thesis is to ex-

tend the polynomials of Euler to two variables and develop

some important properties of these polynomials. An example

is given showing the use of these polynomials in evaluating

a double sum.

A cubature formula for approximating the val-

ue of double integrals is obtained by extending Tscheby-

2 in one variablescheff's formula of mechanical quadrature

to two variables. A remainder term is found and an example

illustrating the use of the formula is given.

Finally by using Newton's interpolation form-

ula with divided differences of functions of two variabless,

results are obtained from which a variety of cubature form-

 

1 L. M. Milne-Thomson, The Calculus of Finite Differences,

London, Macmillan and Company, Limited, 1955, pp. 124 ~ 150.

Hereafter referred to as Milne-Thomson.

2 Ibid, p. 1770

5 J. F. Steffensen, Interpolation, Baltimore, The Williams

and Wilkins Company, 1927, p. 205. Hereafter referred to as

Steffensen.

 

 



2.

ulas may be deduced. Remainder terms are given as well as

an illustrative example.

Notation will play an important part in

simplifying and condensing the work of developing the afore-

mentioned formulas.

In one variable the operators A and V

are defined as follows;

(1) Aim) = 19““) ‘ I“)

(2) V4“) : lz[-:£LX+\) + {I’d-I .

For two variables the operator AK A] is

defined as follows;

(5) Axnfiuq) 2 A, [fcx,‘a+I)-— Imp]

: AIY‘IUH’A) - {09%)1

= 4’th #09:“) - WM) 400:),

from which it may be concluded that the symbols Afix'and [1%_

are commutative. Also, the operator Vac v.1, is defined so

that

(4-) VXV11€Lng <7x [11%er ““20“

‘73 \iIiWW) " IWA’II
; 21"[tflx‘I’b‘a’I'O‘t-fo‘q“)+£LXH

)3)+£(XJ'£—L

which shows that Vx and V} are likewise commutative.

)
l



5.

Divided differences are used in Newton's

interpolation formula. For one variable these are defined

as follows;

— Ia.)

Imps.) = rm.) f
ao-av/

Ia”) '- ffituafl.)

a, - a1,

 

 

{(‘cmauafl :: Ia.

and in general

;fi(¢ a" ....’an)
: £(a'oa"";

a.1~-,)
.. 1FLG'IJ""I

au)

as “an.

where this last expression is an n-th order divided diff-

erence of f(x) with respect to the argmnents ao,a'l;""la"‘ '

Similarly, for two variables,

(40:49) ‘" £La'u "3)

ao-‘a,

 

if «Rudd/en)
7‘ 4F

. _ f(&.fl,}&.) " :fimwali 4!)

7-?(a’ua'l)’&e)’&'|) " r ’4. — ,6,

 

:fmwgo) " £(aué) "' fang!) +£(QU4)

(do-4'!) (’60 ”’63)

and in general

' _ ”an 4‘.

"{(ao/LU-vganj/d'.)
:: flaw

[0,...”40)
¥(4., J )
 

a.-aw

and

{(4M~-,au}4°,m,gn)
: fl“01”‘2a’1~1;£’w"7£h-3)

-.f@,-~a,,_,;4,.@

(a. we») (ea—4“)

+ - {(al...,a,.,;4,,,-..&h_,) +_f@“..,a,‘;4,l..,4h)

(“a " an) (Lo-’4u)
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1
An important formula for placing limits on

the remainder in Newton's fonnula is

H-H MM

{ago/“an;3,4)...Ig
h‘)___ 1); DV, {($31)

(KM)! Us“)!

 

whereDE andD,I denote partial differentiation, and where

4.9% I éan ) 4°; 9‘4““ .

Important also will be the following Theorem

of Mean Value2 for integrals;

Let f(x) and g(x) be integrable

functions of which f(x) is continuous in the

closed interval OvéXé‘é’, where g(x) does not

change sign in the interval. There exists, then,

at least one point E inside the interval such that

[Ahmflcxmx = :fmggwdx

where ¢<§<4.

 

l Steffensen, p. 205.

2 Ibid, p. 3.
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2. EULER'S POLYNOMIALS IN Th0 VARIABLES

Defining E polynomials Efierx,y) of degree

v in x and u in y and order n in x and m in y by the rel-

ations

(5) D: DIEE“w(x?) ___ my.) LI E;“1.03)

and

(6) {I71 {17" 9:32)“)? 2 Xv II“,

where 1;“): v(v—I)-~-(1I—i+l) 1 it may be shown by the

method suggested by Batenl that these E polynomials for two

independent variables x and y are the products of Euler

polynomials for the single variables.

By Taylor's Theorem

E‘”:’(x+ h,)-—~«3+k E‘L‘f’(x«3) + WE11,“fix3) +I<D9:»III“

wb:D: film3) + mama,EM(X3)

+I<D ETIIII#3)] ‘I ' "

“3

=23 Z“: 7'5, —-’7 h‘k’DjDz’IE"‘fix3)
3:0 Lzo

' Ln

Substituting from (5) for D: DjEv’I:’(X ,y)

the above becomes

(’7) E2110“...h ‘1-tk):jf Elia-I) (IIH'LKI £31233“‘3)

 

l W. D. Baten, A Remainder for the Euler-II.acLaurin Summation

Formula in Two Independent Variables, American Journal of

mathematics, Vol. LIV, No. 2, April, 19'f2.

 



Substituting from (7) in (4) with h and k equal to (1,1),

(1,0), (0,1) and (0,0) and by (6)

‘V

LMMJX ‘u bah.)

VJVE WI)ZZUUEMHI3)
3:0 L=10

+ZL‘2)E(“nut“09%) +j—Z:;O(j)-,Lh:\)(

4: (1”v2tx,~a)]

Letting nzmz 1 gives V qu tx’%)_xb u. so that

13w "

i it???KIWII) +Z<YEMI)
37’” ""° L10

‘4' EC;)va#3003) + Evl’wkx I3) :fivaAw

-0

where E uWU :E0I){X ,‘3)

r0? various values of v and u these poly-

nomials become

Ego (x,y) : 1

Eng (X,,V):‘X-':‘§‘ 9 E0” (X937): Y‘%

E ”I (X,':7)=(X - %)(.V - ‘33)

E1“, (X:y) Z X(X " l) 9 E10,; (X,Y):Y(y "' 1)

L
1
1

1,: (LY) :. X(x .. 1)(y _ £7),

Elfl... (X,y) Z My - l)(x .. 3,5)

E 1,7.(X:Y) : xy(x .. l)(.v _, 1)

L

E3,o (X9y) =(X‘%)(X "X"?l§)

)

L
4

7- 2.. I

E 013(XJ) = (Y - T‘i‘MY - “5/ - ‘2‘

-003)
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E3" (ny): (K " E (XL- X ';)(y " 7:?)

Egg (my): (I; - J2-)(yz - y - 92H}: - 3:5)

E3,,.(x,y>= (x - 2><xz - x - 2)y(y _ 1)

Ez,3(x,y)= (y - é—Myz- y i35-)X(x - 1)

E3,3<x,y>=(x - 2-)(x1- x - %—><y - -%-)(y‘- y .. 2)

Etc.

From the above poynomials it is seen that

Eh} (LN—113,9”, (LY) 30% (XJ)

where p and q run from O to 5. This is eviden+ For any P

*3
|¢

ani o. whiq snows that these i polynomials for two variables

X and y are the yroducts of Euler polynomials for the single

variables. El”,o (x,y) is an Euler polynomial in the single

variable x and E¢L$'(x,y) is an Euler polynomial in the

sinsle variable y.

It is possible to reach this same conclusion

by another method. This will now be done since many inter-

estinq properties of the E polynomials may be brought out in

the brocedure.

“1“)

Define ('0 polynomials (€21, “(x13)0f degree v

in X and u in y aha order n in x and m in y by the relation

u

- G(x£+ W)+ Ht») ” w 11.. W”)

(8) figmmcti ”)3. ‘3 3 :2: nE—T. “0(3)

where fnpn‘t’w)’ G(xt-ryw) and g(t,w) are such that for a

certain range of x and y the exnansion on the right exists

as a uniformly convergent series in t and w and where G{Xt* “0:0

:‘Pon. x: La: 0 MAGt‘th-HL)+w(%+4)]=G-(xf+w2&)+6{£1+ws),
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Putting x=y=0 in (8) gives

1th“) 5-" +“ “- Cum)

(9) 1‘1,“,>9- =LZ— ‘°<2“.
Is:- 0 b 7-0

twp“) COMM)

where _

‘9.“ "' ”,W

K250) is called a ‘0 number of

order n,m.

In (8) let x:x+r and y=y+s giving

:9 0' t1,

my“h (MM)

7: 22;; T?0L(X1’L‘\*5)=¥(flew)

«50 °

( 10) eolflxM-J +2~>L3tsfl+3wlt~9

f ufemur,“M)yams»? )
~

Now let G(Xt ryw):xt +yw so that (10) becomes

(11) if,“f”i“- ’D u’MOW”.3+szeexflaWZZ-g: 23:16”:iQfi)

‘0' LL! «:0 ”=0

((59 ”:0

and (8) becomes

(12) t (eH) (mm)

fmmLtw)eex +aw-ra _“Z 2%212u, vWong)

a.» V’O 1.

Substituting ‘ .‘. th.‘. ‘3”) 4. W42. ...

for ext-r3»: in the right member of (11) and equating

2.. . V w .
coef11c1ents of t 90' gives

q)um:)(x+ml—318)_, (5:::thL3) +LVJKLQ1L.“::1L'115)

“2231322222-2022:$212222)
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+6) €sz {‘32:2).”5) +6233 9‘,““(0%)21,8)

+ .. .. +(V)(u)><v~a“(f(:‘:(a,s)

Lettinm rzzs :O the above becomes

v,»“.022‘3)1‘Q311'L.
MM": fiL)nA(Q:‘2:-J\)

(n,M

01M 223;:3-2 Q’dk‘flxi 3.. u-

non)

* 23 ‘25"?2~2222’22”?“

(W“I”,

This shows that unless (f o o :0) LEVI:)OUA) is of degree

v in x and u in y.

It is possible to rewrite (15) in the

symbolic expression

- v u.

(14) 0‘2“") J- ‘3) 1 Y. “‘22

222mm) —.- 22 +2 2e +29

where, after expansion of the right hand member, each

(MM)
superscript of(€ , including zero, is to be replaced

by the corresponding subscript. For example,

[22122 —=‘Q ‘7 v, w

Difierentiating both sides of (12) partially

with respect to x and y gives

(15) um,1M)

at?“ LX133: mvvlfohm’ 1- L (1- )(“)X (14,2224)

5 x 3‘3 “-2 w‘ ""1“"



lO.

Leo’WL

VW 24W»)

flm film0‘ ) +3chullleet_L*-\

V" (15-4 (“3"“)

2e1 .-...+vau))‘tx

n,

which by (15) is equal to ”\fu. (a:an}i393) , This could be

written as

[K‘MS

(16) DK DEWS"ULMLXI2—3)- VWLQu-t u~|.033)

and by repeating this process (16) would become

(17) '3 “2M u.) (1) (x

D: D: (evwbh'33-'33 (ft’flwtl [3)

which is seen to be similar to (5), one of the definitions

in the first method.

From (12)

Xt+ 00'“ (It: ‘0)

A1Ax £“‘Mtt.w) e g (A

and using (3) the left hand side becomes

41‘s221,. 3--r‘("3,':’0:g)
uzo \{20

xt+ + (tfid)

(e‘t*‘*’_ Qt_e”Wwktw)e 3w 3

giving

Xt hf (t ”“2 anq

(18 (e—|)(e"—\)£(tauWe +3 +3 “123% QAIQNVM‘X')

Also from (12) “:01!”

(t,‘0 xt~1w+23(t,-,w) mm)

V‘AV‘ {I’M )e szzgTI tthx’a)

K=OV30

and using (4) the left hand side becomes

1 t“)

:z-(e**“’.ret+e"+\)£(t, ”’61.— ‘3‘“? '

giving
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E14 E 1'! ext? '4'“ 1“)

T'me’e‘t) ‘3 =2: LI? V3733:“)3
bozo U’:o

Formula (19) suggests that a simple class

of LF polynomials should arise if in (12)

K-q-M

 t w) : *1
“.M( ’

f (eta, I)“(€J-H)M

where n and m are any integers, positive, negative or zero.

The polynomials which arise in this way shall be called

N polynomials defined by

(20) 1,“+M ext-t-‘aur-th”; 93

(fiFrQWE:+\Y“

Since N polynomials are«L? polynomials, (19)

gives

 

 

'1' L: V‘ * W" xt+3w+3(faw)

“’1: V'ur“' 0&0“) _.§L:J GE‘r\ 1 #_

ZL 1%. “a: ‘7ng H m0" 3’ " l L (es 01640“
“.30 13:0

1m»! PW" xt +£X~r+gfltw)

 

:: KER)?“ LewaF‘

g erv(k-l:-4)XLX1‘A)

q u“
’

—

Ou 0
[
>
4
3

5
1
‘
4
3

(4.

V u.

and equating: coefficients oft w this results in

”(X-5M-Q( 21) m\M)

V‘BVN“1’1”“? “m M

But V vx Nurm)was); Z‘IERM:(x .9) ‘31")“Li-“\hM)“4"! MVP)».W1)! ,3“)+M:W2X|3)

‘3“
(h-l’u-"

Then,l/HM'::(X,'1)-:'NLx+n,‘+n)+Hu“(x-elqhfivuiwauybrmy!)

Letting x: O, y=O gives the recurrence

relation for N nwnbers,



Ll ”(ELMU“A”:15”)+Nb‘u::U
I 0)*Nh.: +\\L‘:,“W:

The simplest N polynomials are obtained by

putting: g(t,w):O, n20, m:O in(20). This gives

xt+aw_ 991 39‘ iv AICONIO"

“so Uzo

and equating coefficients off:3“ after expanding the left

hand side shows that

0)(Q, g 17‘k

These simplest N polynomials shall be regard-

ed as Euler'spolynomials for two variables of order zero,

00;)
denoted byE (X,J)o E polynomials of order n,m are now

defined by

“"VM a...PM.

 

2. m“ w U3,“
(2‘1;e :. "1"“TE— )
W(€t|)(€—3 242415.14. :1

Following Norlund's notation for Euler's

polynomialsl, let

" UL M3 '(‘H'UQ “MW"

(20’ E ‘ (0,0) 2 c
139»

v,u.

|
|

The generating function for the 0 numbers

is therefore

“*M fl

2.

(24) f u, M, 7- ""‘

getfl)“ (Q- ‘H) use {7:5 1’!

(F‘W)

The values of 1"”“EU’‘ ‘03:.) are called

V t“0")

’
J
B

‘U’u.

K‘

bd’

‘TITITCC

E numbers, E‘::jof order n ,m;

(25) (“I“) \f-rkk (“0“)

E 3 1— E \‘1‘1. '5.)
b.“ ‘U,\~

 A“

l Milne-Thomson, p. 145.
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Some fundamental properties of E polynomials

may be listed by noting that E polynomials are N polynomials

and therefore (6 polynomials. Hence they have the proper-

ties of polynomials as well as of N polynomials.

E\:::MPOLE.“)(0) +x]\!’[EM(0) +13)“ from (14)

<26> sway——[fin[19%1

(28) urn.) "CHM-1)L;1

<73‘K7xrz' ’ w::“3): t;’ )

By mrepe)ated applicationLof 28)

at 0‘0“” EC“)°)(x

Eu.23) ‘3)

It follows that

CK‘W

(29) 337‘ E»QC¥I‘§) :X‘, “A“.

Slrlce E‘o’u)kx‘\s) :ZX‘

Notice that properties (27) and (29) are

Irom (21)

exactly the same as the definitions (5) and (6) upon which

the first method depended.

An interesting theorem will now be proved

showing that E numbers in which either subscript is odd,

are all zero. This is the complementary argument theorem

for two variables.

The arguments X and n - x, y and m - y, are

called complementary. Replacing x by n - x, y by m - y in

(22) iv

g 83 1 1M». chtam-AM
-£V “ u~nj _______,__

"' ”Li Ev0‘" “'33 “(eaPPM)“
1"! “a! 3“

4d: - vinfihaea :5#‘

- (e't... .)V\(eoI-JT ‘ M

2

M
8

q$2.0 :0



p0

-.-. 2i LL10? L’w) EMWL

"U! LU u u. x13)

Kzo uzo

Equating coefficients of (’W“ shows that

(30) 0' m; (mm)
£1,“ 01-x,-m-;;)xflU)Ev.“ (Ly),

Equation (50) is the complementary argument

theorem for two variables and it is true for any N poly-

nomial in whose generating function g(t,w) is an even

function.

Letting sz, y:O and v22r, u =25 in (30)

“"1"" (h. M)

£147.15 (mm) — E1415 (0’ 0)

~(1 +15) (h

: 2- n C; 'b"

Inns

“Mm, _ "(10+15/ (hfl‘fl) ‘

Thus £112.15 .1 1m“. has zeros at x -o, y- 0

and xzn, yzm. Putting); X15113: ’7‘: and v~_2r+ l, 11:23

in (30)

.— (n m) 14141-15 (31 m)

t. ’ l) ' El

I’D-“’15 (1) 1—):E 5‘""441-5 (‘le1-)

(mm; (2;, $.13) O.

. -H ‘m -r _ .

Putting x-1’ 3,- J. and v Mar, 11 \231-1 in (50)

M. 2.5+: 1- ' :1.

Thus, E numbers in which either of the subscripts is odd,

are all zero.

E polynomials of the first order may be

obtained by placing n: m a l in (22). Then,

11 _= Kt+3w_. tVW0“

(51) (Q‘HMCWH) € ‘ Z: Z 7 <7:- E‘Cua'g)

and letting Xzyzo gives
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_ —- c

(etflne‘vu) V '4' W4.
Q20 ‘VEO '

 

Letting x =y-. :3— shows that

JL—€£t+iw ii tv’w“ ‘ 1 l

(FHHQ‘W) ‘ 17? 7! firm (1’ 1—)

 

 

uzo V=0

c» 00

1 33,51qu E

V! u! 1"“ ’Vm
(4:0 1/20

From (31)

t ‘2‘ °° q
"*3W-C€H’fl)(€t__l)2 E 57w :

C ‘ Y ; LVNA[X';/v

“:0 ~10 '

Expanding the exponentials on both sides and equating

coefficients office“ , p:O,l,2,"° , q:O,l,2,-H gives

the same polynomials as those found by the first method.

To find the E numbers, let x::y:-% in the

first order E polynomials which shows that

EON : 1

Elm 2-1, EO’L: -l

EAL=L l

and it could further be shown that

E30 : 5’ EON 2 5

EV,L:-5’ El’c.‘ ‘2 "'5

E.“ 1 25

E‘.O: ’61, EOI‘ : -61
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E63. : 6]., E2,“ :: 61

Eh” = -505, Ex; : -505

An example will now be taken up to show how

E polynomials could be used in evaluating a double sum. To

evalu te

a :thW
:I

make use of (29) for n»=m:=l, which gives

Va Vx Eva“ 0"?) =XV3R.

It follows that

E: : WWW = 3'ZliéU/M VsVrEmIM)
e, ,i,

J—[quaI)+(--EI)"“ (In-I, I)

+61)”1Emuhm)+(U")5erMn].

In particular to evaluate

:{iQ—ommv [emu/2L 5”,(%//+E.,.,(/,é)—éjfl(7,6j].

It may be shown that

5‘”! (X13): X (K‘U (AV-lKLlA‘f 3X (3)3(‘7‘0 (az_y_”

so that E5”, CH) 2-55“, (7,!) 7. E9” 0,5) 2.0

and Em (cm): 3/1, 383, 770.

Then a)” #8": ~ 73 57.53%0.

By actual caldulation, it is seen that this is the true

value of the double sum.
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5. EXTENSION OF TSCHEBYSCHEBF'S FORMULA OF MECHANICAL

QUADRATUHE TO A CUBATURE FOHhULA

Let F(x,y) be a given function, and E(x,y)

an arbitrary function which is assumed to have continuous

derivatives in x and y up to and including the (n+—l)th.

Points X“ X," - . -, X" and a“ 31V"! 7" are sought

such that

'l

(52) fl Fag) E(X.3)Jxflg 1‘ 44:2: 2: £01.75) ”in. ,

where hk and the points Ann, "3X” and 3”,“ ..., y"

are independent of the particular function E(x,y) and where

the remainder term Hz”, depends upon the above points and

(X0,+gD,)M-‘E(X,g)’ where

a v _ Juwv

D,‘ 03 5mg) : two”): mil—(X050.

By Maclaurin's Theorem

I

150,3) -. E(o,o) + (xox+3o,)5(o,o) +W Ema)

 

(x0 + D " (x0 +30 ""

+... + 47p! Ema) + 0:”);— EM)

where ogq‘éXJOéfiég.

Consider from (52)

l l h -.

Rh... {[1, F(x.;)EIx.:)&xIIa ~41. : 2: Hindi).
.I is!

Substituting for E(x,y) from Maclaurin's expansion gives

Rm : ['1' F093)[Eco,m+(xox+3v,)ecqo)+““ZD’LEmo) 

x D a C D n+1

+... +WE(0,0) + %ff,{’ EI4.6I]M&' 



1L3.

( 0+ 1
‘44; : LE{o,o) +(xgo,‘+yjo,)£(o,o) + K ":3?2;)5030)

(x 0 +31) (no +30)”
+u. + Afmw+ git-‘33; EMQQZI’

. 3 K "‘ ~— .

Letting; gm, : L[' i 5.; “WNW? above gives

Rn” Z 7:10 E0,o(o’0) + H0 EI”, (0:0) +73. Ea,‘(010) 1’ 71.0 57-10(010)

+7.” Em (0(0) 1’ Ta. 50.21“") 4"” + 7:1.0 Ema {0, 0)

+ T51-“ EH,|(0’0) + “ ‘ "‘ 77.“ Elm-I (0:0)1'Em 50m (0’0)

+4f'WE(q{)F(x.3)&xfly

-—n{£59,020} “445.0(00):X«. ”£454.00: 3a

01*:

_ H‘ - V145: 1:0.__IL_____(O,0) : 2; _£&::IWWE@£.4a')

d-‘ c"-l

where 0§ a; E x; , 05. e'a' : ’1' 50“ t.i=’o1:"‘a’l.

The terms containing E
000 (0’0) 1 £50 (0’ 0) D . . .)

50,3.(010) can be made to disappear by taking

hl‘gfi : T010

*l g‘é : KC 2 7:10

h44 : 33' 2 7’0"

n 2. - 1! T

'1 (4 if. X; “ ' "°
2:

l‘giixt'w :l:TI,'

=l C:. I
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.124

Since ,1: 2—4 X534. ‘ 1:. ‘ i=I 3’ there are only

2n+l independent equations above. These are

”1‘4 2 Tom

MIX" x; = 7;, Wig w: 7;,
i:

“a: x221! 72,, we}: a; :1! 73,,
tut

The 2n 1 numbers .“

+ (in x‘)*‘- Ik‘llg'13l;"'13h

may now be determined since they are expressed above in terms

of the moments, Tq,-V'. Then (52) constitutes Tschebyschefr's

formula for two variables, the remainder term being
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I I k+l

(53) RH" : f Lfl‘éfflfl E(q,c) F(X:y)&;(!g

 

" h+a
o '0

14% g (Xu9x+30 a) E(45,€j)

(HI)!

which vanishes when G(x,y) is a polynomial of degree n at

most since then (XDX +303)"“G(x,3) :0. In this case formula

(32) is exact, that is, there is no remainder term. In

general, (53) will not vanish. In this case it is not a

practical form for the remainder since each of the binomial

expansions in the formula contains n+-2 terms and the total

number of terms in the remainder is (nl+-l)(n+-2).

The points X“ x,” “RX!“ 3,, 31. ”'7‘! may be

obtained by making some assumptions as to the nature of

F(x,y), E(x,y) and introducing a function of z and w,

f(7,w), so that the problem reverts to the method of Tscheby-

scheff for one variablel.

The procedure is as follows;

Let F(x,y) : G(x) H(y), a product of two

given functions.

Let f(z,w0 :,r(z) s(w)

where r(z) : (z - x1)(z - xl)(z - x3)°" (z - x”)

and s(w) : (w - yl)(w - y1)(w - y3)°°' (w - ya)

so that xux,.-u, xh are the roots of r(z):(1

and '3‘,31'~.’ 3‘1 are the roots of s(w) :0.

l Milne-Thomson, pp. 178-180.



Take E(X,.V) : (AX) My)

where g(X)-: (Z - XYJ

and My) = (W - y)"

It follows then, that

[I.' F03) Exams: [1' 6(5)H(3}§(K)4(3)£X10I1

 

_ ' GM) HQ!)
_ [4} xflxlw-3I0,

It has been shown1 that

/’ GCX/&K _ it “(3)1, ~& ‘1-
_ W + ‘ I o

-‘ 3~x ,2(}) 1.5,??1 J'If3

I d o?
‘ H‘J) ‘ 1—”) I + ——i‘ +

and Le,a”; [J ‘ 4 5g) + LV'H'L Wm:

where gucl,nu and &01%I~- are independent of z and w

respectively, so that

' FCK. ) (9).?) Cl C).

[.[I (01MM};3) A“2:51[4/27 4'3““ +JTIT+WJ

$1M)+ IQ! 4£5_
[fis5(W)+ wax—L + wh+3flnj

 

Integrating both sides with respect to z and w gives

[lF(Kg)[v](3'KI/¢J(W7)JIMJ=[A£H1...”) .E—_.’ _‘_;.‘ ..]

we?“my“ ‘

[(17785(W)qH)wn'—'L—?|- W-h]

where C and D are constants. It follows that

l Milne-Thomson, p.178.
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['G(x)floa(a‘}()&x [1' “(Im’aW-Wg {.4147 mast __c_,_ ...j

(hfi)9htl

[Aggie50d) [hf-()Ld.”Q'fiH‘L] .

Since this is now a function of 2 times a

function of w equal to a function of 2 times a function of

w, the functions of the like variables may be equated giving

I: wemWe“
and

I. 09,

W I' Henge/w; M75"m

This throws the problem of determining the points directly

upon the case of one variable where it is shown that for1

n: 2, -xI : x; : .5775502'7

n==5, -x'; x3; .707l0678, x1: 0

n = 4, -x, .-. x1 : .7946544'7

-x2_:-. x3 : .1875924'7

n::5, ~x’; xy: .83249749

-x,_:x.‘ ; .57454141, x3: 0,

where G(x) has been taken equal to one. The same values,

of course, apply to the y's for corresponding values of n

and again, H(y) has been taken equal to one.

To determine hk, proceed as follows;

‘7‘“. =51} Irma/mo;

but F(x,y)=: G(x) H(y) : 1 so

 

l Milne-Thomson, p. 180.



(
0

(
fl

0

h). . I I

{Q - I, [I did;

and

An example will show how formula (52) is

used. Suppose it is desired to evaluate

3 3 '
[/1 X\—3?!(Ma

He ,. J. - t P A ‘re E(x'3)‘X‘+y‘- ) F(X:&)v-l. A ransformation of

variables must first be made that will change the limits

of integration so that they will be from -1 to 1.

Let x : p1-2, y : q+-2. Then

3 34.. ML

[[\LX"+g4x13 2/”! (ow-z)+(8+1)11¢Jg

J’1-2.
where ( , : ll ‘E M) warren»

Taking n::3, the result is, exclusive of the remainder,

 

 

pa-l

[.l, (I+1)‘+(5+z)do”; = %L[.33473r.llm Jr. l‘f365’t35167

+, 150001. (7655'r. 30079+. 1330+, K6770]

21.00533.

Taking n::4, the result is, exclusive of the remainder,

['I' “1 M5-=L’1183+lw [Quit-I301
-: c (ft-J.) 141311.)" ‘I V 7/111

1‘, 381.56 1". 1.756% t 11757 +16 335

+, 35067 1: 17/06 1-. 12M. +. 036%

1-. 30170 +. 15%? 4-. 111$7+J78QU

2 1.00431.



However, the integration may be performed

directly in this case, giving

[73 swag = a,”wwwws~.2 2:3

 

: I. 003 8.2.

This shows that by increasing n, more accurate results may

be obtained.
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4. CUBATUHE FORMULAS INVOLVING DIFFERENCES

From Newton's interpolation formula with

divided differences for afunction of two variablesl

(56’ 1’09?!) r: i X 3.1m +R
“=0 «4.:0

9 f(X:Y)

where the following notation has been used;

X, = (K- a.) (X- 4m)

‘a, = (21-5.) (3-4.-.)

XO 2 3. = I

iv“ 1' 7: (“am “V; 40'" (‘1)

X mu run m“

R = (ff; Dg f(é,1)+(:~—j;',0:f(u -,"~, (335; D. D, How)

Assume f(x,y) to have continuous derivatives

in x and y up to and including the (n1-l)th in x and the

(nr+l)th in y in the region being considered, and

a, §X,£,a( gal... 6. .5- may...

Let a and a4vw be numbers such that in

the interval a< x<a+w, the product (x-a.)-~-(x-4.,)= an-l

has no zeros. In this interval the product has a constant

sign.

Let b and bi-d be numbers such that in

the interval b< y< b+ d, the product (7-4.)... (3- 5m): 3»...

has no zeros. In this interval the product has a constant

sign.

 

l Steffensen, p. 205.
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Therefore in the rectangle whose vertices are

(57) (a,b), (a+w,b), (a,b1—d), (a+w,b+d)

the product (1561,)" - (K‘ anxg-ed'” (7‘41“):x'fi" 3......

has no zeros. In this rectangle the product has a constant

sign.

Hence, applying the Theorem of Mean Value

6N!
‘+&f

‘1' and

«“0 with“ Owl f 1L“

£LR1X132”1:
! (wt)! DI WWII”); +&I(

m+7, D:Wf(m)1x.flg

3'3 afw

X" I a +1 0"“ Dunn

j

~ ll. 5177).! 0:“)I
DK affix

: 3) IX
J

Aug

0:1“

+1

DW ((5,?
Lad

df
A

: & (“if“
)!

M)]
XMI

&X +w
L—
-

(WH- I)! HMH 3

DM‘1,3.)fD:*'f(XWJX fut3W4”

(n+1)! (me)!

where min. {fly} a afld .5. (”h I, 0‘. =< max. {4,},a,a+w

and min. {eqfl{4+1 _‘(H‘lu F, ._<. max. {6“} , 4, 4*!

Integrating both sides of (56) with respect

to x and y over the rectangle of (57)

as aw, 6+1 a+w cu mw

f(X,3)cIXI5I=II ZZXVZ“ {qudgl'lfRoQXIIg

(imam

:on: :Avqfi +IwIMAM—-'————(n+')!

V2.9 0‘: 0

01......'(IH.J__ M A Ilij'flw

°"w (mu)I W °""" (MI) I (mu)!+w£A



Dividing by Wd

5*?! a {-w

I
- .{ 4d”'{(fifl,

(58);; ll: {(X,g)&xflg~wo 24‘“ vq ##4quW

 

W33“'11) D»fl 0:“ for,

+/~\°am+l0:l Auto on”, ’13)

(MN)! (MID)! (MN)!

 

whe re e4 a“w

(39) Av,“ rat; [i Xvaqflxflg'

From this result a variety of cubature form-

ulas might be deduced by assigning suitable values to {a.}

and {4“}.

It is noticed that in (58) the values of {4,}

EHKi {6.} all lie outside the rectangle of (57) Whereas

in the extension of Tschebyscheff's formula the points lie

inside the rectangle over which the integral is taken.

The same problem that was used to illustrate

the formula derived in 3. will not serve as an illustration

here since the remainder terms in (58) are large if the

smallest points are near one.

Consider, instead,

IfX+3’~ ”(13'

Let a0: b0: 2.8

a,:'b,- 2.9

211sz 25.].

a3 =b3: 5.2



Then n=m=5, a: b: 5, w=d: 2.

To find the values of {La first set up a

function-table giving the values of the function at the

points (a... 4m)-

 

 

 

 

      

x y=2.8 2.9 5.1 5.2

2.8 .1785? .17251 .08272 .08028

2.9 .1?846 .17241 .08425 .08181

5.1 .15066 .1481? .09804 .09614

5.2 .14908 .14669 .09802 .09615

Table I

Next set up a difference-tablel in x in which the numbers

in the first, second, etc., column are obtained by forming

the divided differences of the values in the first, second,

 

 

 

 

    
 

etc., column of the function-table.

((49) ‘0) {(40, (I) {(00, ‘1) ((40, e3)

.1?85? .1?251 .082?2 .08028

«4.4.; 4.) f(a-flc; 6.) {man (a) ‘Hd-fld 4.)

-.00110 .00100 .01550 .01550

{(4941, Q1; ‘0) {(00,01141; 6!) {($14941; 6g ) ffiolqlal; ‘3)

-.00502 -.00525 -.00595 -.00582

‘fkoraflalla]; (a) f («930410433 ‘4) f(q0;a‘)alya35 (J 1(494:, an“); ’3 )

.00152 .00150 .0004? .00045

Table II

 

1 Steffensen, p. 21?.

 



Finally set up a difference-tablel in x and y by forming

the divided differences of the values in the first, second,

etc., row of the difference-table in x.

 

 

find.) {@490 . flash/J.) #056,“.6)

.1785? -.06260 .00951 -.001oo

{(awfl.) {mafia f(4.,a.)'{'.,‘a,€) £4,304,656)

-.00110 .02100 -.ooeso .00145

 

mam-,4» 1é.,4«,m; 4,4.) @4944an W:4n”’4’
-.00502 -.00210 .0011? -.00040

 

374$” 4:19;} 4o) 1(4944,“zfl:; ‘9‘.) #4944, 41,43; 6,496) 2%,,‘1949‘5349$945)

.00152 -.00020 -.00012 .00006    
 

Table III

Table III gives the values of ‘fw... Evaluate Av,“ from (59)

and then from (58) apart from the remainder,

IffiTIXM:#[,/7557-.O7511+.o:571+£0on

.3 .3

_ 00131 +.0301'-/-.OIJ.SO ~,oom3

_ 00330 —.001/7 +,00310 +.ooo7o

~.oomo +.oooz: +.ooo.u +.00007

:; .50063.

The following inequality which has been

shown2 to hold for the function in question may be used

to find an upper bound on the remainder.

 

l Steffensen, p. 21?.

2 Ibid, p. 229.
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< (JV-:- 1 ‘4)!

" 70.2Vflt-(Tl—

    

where [Baht-tat. For the points being used

Then the

take [mam

absolute value of the remainder term is found to be

ql‘lT1. ”9/ (1.9r_______)_" +<1___.l/9l) (1,855.12#27]

H
I
\

9/

.00 763.H

By actual integration

5' 5' X X I

L : N;
i! X +31 x J 0002)

so the result obtained is satisfactory.
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