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SOuE INTERPOLATION FORLNULAS IN TwO VARIABLHES

1, INTRODUCTION

Properties of two classes of polynomials in
one variable, which play an important part in the finite
calculus, namely the polynomials of Bernoulli and the poly-
nomials of Euler, have been developed.1

One of the objects of this thesis is to ex-
tend the polynomials of Euler to two variables and develop
some important properties of these polynomialse An example
is given showinz the use of these polynomials in evaluating
a double sume.

A cubature formula for approximating the val-
ue of double integrals is obtained by extending Tscheby-

2 in one variable

scheff's formula of mechanical quadrature
to two variables. A remainder term is found and an example
illustrating the use of the formula is given.

Finally by using Newton's interpolation form-
ula with divided differences of functions of two VariablesS,

results are obtained from which a variety of cubature form-

1l L. Me Milne-Thomson, The Calculus of Finite Differences,

London, Macmillan and Company, Limited, 1933, ppe 1l<4 = 150
Hereafter referred to as Milne-Thomson.

2 Ibid, Pe 177,

3 Je. Fe Steffensen, Interpolation, Baltimore, The Williams

and Wilkins Company, 1lv27, pe 200 Hereafter referred to as
Steffensen.
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ulas may be deduced. Remainder terms are given as well as

an illustrative example,

Notation will play an important part in
simplifying and condensing the work of developing the afore-

mentioned formulase

In one variable the operators A and V

are defined as follows;

(1) Af) = £lern) - T

(2) V4w = S0 x+y) + f@“‘]] .

For two variables the operator &4 4 Z)z is

defined as follows;
(3) BBy Ry = O CH0x, 1) —#00y ]
- A\}[:f(x-l-\,‘&)— £ 0641
Focey+) = F 06y - Lt +{X Y,

from which it may be concluded that the symbols A, and Zl%_

are commutativee. Also, the operator Vx ‘Zl is defined so

that

AREARIOTLON foply

v2 &‘—L[-_QQ(-H,\%) + :f(x,\aﬂ\
) 2"_ Hw.lzﬂ) + £0x,9+0) + R, 3)+:|?u,ng] ,

which shows that V& and ‘Z} are likewise commutativee.

(4) V,‘V.L:Qu,z)

"
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Divided differences are used in Newton's
interpolation formula. For one variable these are defined

as follows;

£(a,) - (&)

Flan) = ——Fr
,_F(Q a,,b,) = :f.’(ao,a,,) - -'f(a.,,a.t)
had ¥ a. - a,

and in general

Pl siny = R ) = Yoot

ao - G

where this last expression is an n-th order divided 4iff-
erence of f(x) with respect to the arguments am,amr'”'a“'
Similarly, for two variables,

1?@10;43) - *?Giu:‘i)

Go - @,

‘£ an,aw)’&o) =

. f(a-.,an‘&) - i(a.,a,; g’a)
':-f(a'o:a'l)'&u"'l) - 4 ’4

:f(ao,‘e'o) - :ﬁlal'éb) - -f(&,,é,) +£(a,,£,)
-a,) (4, -4,)

and in general

£l i) = L@y, lniybs) = F@y4n)b)

o'a"t\.

and

:{(Q a,‘,l,o, jn) - {(uo; )an~u 81" 'n-') ‘f@'b a,‘-u ,&n)
(G -Gu) (4,4 o)

- 1?(0-,---,4-.")4,',--.4»"_.) ""*@H""ah;‘n“‘zéh)
La'o - a"’\) (""o"‘t\.)
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1

An important formula— for placing limits on

the remainder in Newton's formula is

n+t ! vkl
-f(")"'owv“n}‘a»('o,'-v@».\)= D Dy fl&w

(m+1)) ()

whereDE andD\.l denote partial differentiation, and where
a,s t fa., , /&oé é‘{rw" )
Important also will be the following Theorem
of Mean Value® for integrals;
Let f(x) and g(x) be integrable

functions of which f(x) is continuous in the

closed interval @£ X5, where g(x) does not

change sign in the interval. There exists, then,

at least one point g inside the interval such that

j-l-_f(x)%(x)abc = :?(g) SE(X)M

where a,,<§<»€-.

1l Steffensen, pe 205
2 Ibid, pe 3o
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2e WULEK'S POLYNONMIALS IN Tw0O VAKIABLES

P 3 Sas T s _npm) N
Defining E polynomials buﬁt(x,y) of degree
v in x and u in y and order n in x and m in y by the rel-

ations
(n h«) O ) ()
(5) Dy D; ) = o Bl Oy

and

(6) {7‘1 %x F_‘:}’:)(X,g) = X" ‘1“'
vhere U“:)-_- v(u-t)---(v=-¢ct1) , 1t may be shown by the
method sugsested by Batenl that these E polynomials for two
independent variables x and y are the products of Euler

polynomials for the single variables,

By Taylor's Thecorem

Eolerhyrk) = ESI0g + kD, Enatx 4 Dy S
ﬂ—,[h D, £, 0y) + 2hkDDE By, 9
+D ETbop)
iy h‘k‘D;'D’ Ty

—
—

M
.Md

"
-3
o~
(-J

!

Substituting from (5) for D D’ ﬁ"’

( ' Y)
the above becomes

% (KR EN)y).

0 (=0

™

(1) BT Gk ek =

J

1 W. D. Baten, A Remainder for the Euler-iiacLaurin Swiation
Formula in Two Independent Vazlables, AAurLcan Journal of
ifathematics, Vol. LIV, lioe 2, April, 193




Substituting from (7) in (4) with h and k equal to (1,1),

(1,0), (0,1) and (0,0) and by (6)

v

anj -u n,hn)

Vi M By = ]ZZL GBS woy)
+Z( JETT b \1)+L(3) M’
< L:"w(x,‘y]

Letting n=m= 1 gives ¢ qx\;_b u.b"‘a):’(h w so that
Z ZQ’H \,NJ( 5 -\-}_,( Eoiuoy)
1-.0 i=o i=o
+L( ) E g s04) ¥ Enuy) =4y

=0

where £ ., WX E(\ ) b( ‘3}

For various values of v and u these poly-
nomials become
Eoo (X,7) =21

o (X,Y):X"% ’ Eo’\ (X:y)-_-':‘/"%

~\

)

B (x7)=(x - 2)(y - %)

Eze (%¥) = x(x-1), Eo,2 (X,7)=y(y - 1)
Ega, (x,7) = x(x - 1)y - 2),

E, o (%7) = vy = 1)(x - %)

Eq,2 (x,7) = xv(x = 1)(y - 1)

E30 (x7) =(x - Iy (x* - x - )

E 4,3 (x,7) = (v - vt -y - )
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E3,|(x,y):'(x - 3)

Epa (%,7)=(y = 2M3% -y = &)(x - )
Es, (X,y)=(x = ) (x% =« x = §)y(y - 1)
=)x(x - 1)

!
Y
4
)
d
]

Epa(x,7)=(y

4
b

Ny - Ny t-7 - &)

!
5
b
N
[}
™
]

Ej,(x,y)=(x
Etce
From the above poynomiels it is seen that
EP’Z' (X,Y)—‘-EP,,, (x,v) Eo,%’ (x,7)
vhere p and g run from O to 3. Tnls is evident for any p

4 o~

an'l a0, This cheowe thet these T nolynomials for two variables
x and y are the rroructs ot Enler nolynawrials for the single
variables, E:P,O (x,y) is an Euler polvnomial in the sin-le
variable x and E:mﬁ_(x,y) is an Fuler polynomial in the
sin~le variahle y,

It is possible to reach this same conclusion
by another method, Tis will now be done since many inter-
estine pronerties of the E polynomisls mav be broucht out in
the vrocedure.

Define (F polynomials (Fb'm,(x H) of degrce v
in x and u in ¥ 2nd order n in x and m in y by the relation

: £ w G(xt +2W)+g(£ w) & & tb “‘")(x )
(©) :FV\,M( J )‘e— 2_}_ ol W P,w :n
u-o V=0

where fnn“ﬂt,w), G(xt+yw) and ¢(t,w) are such that for a

certain ranse of x and y the exwansion on the right exists

as a uniformly convergent series in t and w and where G(xt~ “0=0

for x= 4=° MG['th+n_)+w(La+4)]= G—(x*:'rw&)-’ré-(tuws).
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Putting x=y=0 in (3) gives

1({'“’) 2, v w o nwm)
() f,  (tw)e -LL* Lo

w=0o Y=o

CWN| L“‘“)Lo,o) is called a (‘0 nunber of

wvhere -
'\).& - ‘\-l,u-

order n,ms
In (8) let xX=x4r and y=y+ 8 giving

Z 2 L Qo‘,‘,‘:’(m 43) = Fa i) €

W= o

(10) alt(xw fw(_zfsﬂ*glfﬂo)

¢ “
_eG(xtﬂa..) o ) G»( ’Lﬂu‘;)-‘-jﬂ- )

—~—

Cixtr )2 ¢ LN (vm)
=€ 4720 3 Fun )
RN % ¥ ] ’
Now let G(xt +yw) = xt +yw so that (10) becomes
(ll) ® o0 v “w tryw
-4 Wt sy - " (').S
LY 51 ey =€ uzz‘ TR
w=z=o V=06

and (8) becomes

(12) tHy w4 lEw) bt t. Ln,m)
Papltiw) €T B AR
«w=o V=0 .
Substituting | & (xt« \.&w) +L_";t_'%%‘_“_)..\. ...

for ext-tau' in the right member of (11) and eguating

fe e v o«
coefficients of € wr gives

Posleenyes) = fo ms) + (TR, 8)

(gl v ORI )



e

) ("*)x«s g+ eni

R 0 [ 1 V‘{'Lt‘“‘ n,)

Lettins r=s =0 the above becomes

o »3)-th. )¢ Qoo uw,,‘r_’\

(w, ™

)K (QW:‘W"\‘&‘)&K)XI .au.-l

wym)

(
ML R R W o
This shows that unless (e(:'y:)")) ({u’w X, 'A) is of degree

v in x and u in ye

It is possible to rewrite (13) in the
symbolic expression
. “w
(14) o) = (¢™ex] g™
R wtiny) =€Tx +4)
where, after expansion of the right hand member, each

(n,m)

superscript of ? » including zero, is to be replaced

by the corresponding subscripte.e For example,

(] Le™] 2 T2

Difierentiating both sides of (12) partially

with respect to x and y pives

(135)

wm,m)
46 (x, 3):(‘{(‘) () 1'1(2-)(“) (m,m)

-1
vy, u-t v, U
ox 513 !
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v.\’u.—L

AL PTG S et

L gad SV (.V\v\\’“)

TAN

+ .---.+va\t’:) WX

which by (13) is equal to wvw (e A‘N_&X,é) This could be

written as

L‘\\

(19 D, ‘atngtx«AS-vw‘Qv.w- Uoy)

and by repeating this process (16) would become

L]

(17) 3 W, ) X,
D D (ev u_u 3) (CARENL | L\) \ ‘1)
which is seen to be similar to (5), one of the definitions

in the first method.

From (12)

xt+ywyqlt,w) (n,m)
A B pndt)e oA ;; X Ay
and using (3) the left hand side becomes
xt+ < (t:“"j
(e-t\—w G _e _\_\):c“ (tw)e \3 3
giving
t+yw+qlt w (Mw)
ke ‘)(e..r_\):e (t.w) x + +3 1o ) Z ‘ ulblﬁx‘fhuu.)

w=0 v=o
Also from (12)

xt-. w A 4l€,w0) — Z& Y %, )
«3\/& _{’)“““uw) LK = %sz G ‘(’v,w“"é)
W=0 V=0
and using (4) the left hand side becomes

xt+yw+qltiw)
7 (etrrety SELE I w) €T

giving
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(19) ¢ w xt (t,w) - (n)
I e w44t 5
er. _Ll‘f () &1 Z'E = 7 Vi Yk v, )

=0 U=zo

Formula (19) suggests that a simple class

of (.F polynomials should arise if in (1g)
Ny

(t—) “”) = A

%k““n et 1)) (& n )™

where n and m are any integers, positive, negative or zeroe.
The polynomials which arise in this way shall be called

N polynomials delined by

(20) i "“3“’*3“‘”} ° o Vv, N(n,m) )
(e%+1) (S \)‘M -
Since N polynomials are LP polynomials, (19)

“w=-o0 v=o0

gives " )
23 17wt (™) e_::_l e“Fi ol xt+'3u+3( w)
Lo viow ViMoo = 20 72 @rEr
wz-o Voo
lhvlf\w-\ t *‘X‘”"Au—"")
= @ ey
A I w‘* (n-1, m—l) )
= 7_1 L, 5t o« ‘3
w=o VU=z0

Vv W
and equating coefficients of"'- W this results in

(x-l)w;-\)

(21) " m) (x =
V‘V N .‘3) anA) o i
\VA N(“’m) m‘p (ﬁ“ x4 ‘2,*\) -\"‘\“M\“"\Q*N ‘ iX,‘A*\)*N:'J"'z)

“-. ,h ‘)

(3‘:‘1 N x-n,T-l) +H v,u (.Hh‘})H‘\ v, J.l ‘aﬂ)+l\r lx n)

Letting x=0, y=0 gives the recurrence

But v‘3

Then, I/H

relation for N numbers,



/1”(:‘\’:”) H ”)‘i“\luwu 0)*“ \\\ '\“')

The simplest N polynomials are obtained by
putting g(t,w)=0, n=0, m=0 in (20). This gives
oo v
xtryw S B 1Y oA (o,0)
=Y T MLy
U=zp V=0

and equating coefficients of‘f“u;“-after expanding the left

hand side shows that
(o,0) AL
These simplest N polynomials shall be regard-

ed as KEuler's polynomials for two variables of order zero,

{o,0
denoted by E 1J:‘_‘L)(x,y). E polynomials of order n,m are now

defined by
Q_K*M X'f" W &, & tv wr“
) S 4 =R N E Ty
(€%+1) (&)™ :

Following NOrlund's notation for uler's
polynomialsl, let
3 (e “‘."'""*') (wy)
2 E 0,0 = <

v,
The gencrating function for the ¢ numbers

i1s therefore

(24) 27 S M i Pt
tr\)‘ (Q. 'H) w=o v-o Wt 1

(™
The values of 1‘“’*‘-_ ' ) (2 ,2) are called

E numbers, E‘:t:%f order n,m;
(25) E(hr“‘) [Sade E(“;M) "
v W10 '%)

1 Milne-Thorison, pPe 143
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Some fundamental properties of E polynomials
may be listed by noting that E polynomials are N polynomials
and therefore (f polynomials, Hence they have the proper-

ties of polynomials as well as of N polynomials,

E\.:‘W ) \_E (0) ‘\'X] [t_ (){—\3] from (14)

) ES (L [Ae o
(27) D —D3 \v\m) 1’_“1‘,““,‘:0«;\%) (X, \3) from (17)

(28) —¢ o ‘q from (21)
™ Ny W IOl <
V Vx E(\\, )(x") - t- W ) )

By repeated applicaéion of 28)
<} E;(“; &X‘%) ( ) )( 1)
It follows that
(29) 3‘3V Eu\. U.\%) X ”A

since =€o,0)
t 'U,.\&L x."&) — X‘
Notice that properties (27) and (29) are

exactly the same as the definitions (5) and (6) upon which
the first method depended.

An interesting theorem will now be proved
showing that E numbers in vhich either subscript 1is odd,
are all zero, This is the complementary argument theorem
for two variables.

The arguments x and n - X, y and m - y, are
called complementary. Keplacing x by n - x, y by m - y in

22 i
(22) gilves i C(M—A)f-r(h\-l)w

23S 4V (n,wm) £
1_,-? % C. (V\-X M-‘a) = (et |"‘(€“'ﬂ)
w=90 =0 *

il i

S 1) (€7




Equating coefficients of t'w” shows that

Ch,m vty
(30) EW“)(’I—X.M"a) ".("') ! E:::’:)(X:a).

Equation (30) is the complementary argument

theorem for two variables and it i1s true for any N poly-

ncmial in whose generating function g(t,w) is an even

function.,.
Letting x =0, y=0 and v=2r, u =2s in (20)
(n,m) (h,m)
Enzs (om) = E i as (0,0)
~(2n425) _ (h
S
in, 25 °
E(»..m) _I(.znus} C_m.m) oy =

Thus Yy 27,15 has zeros at x 20, y= O

and x=n, yxme Putting )(7-5}_,3: '%"_ and v=2r+ 1, us2s

in (30)

= (hm) oy, _ Lati+25 = (nym) (g
tln-u,.:s (I»‘?-) = &l Eln«,:.s (’-”2’1')

E (hym)

dadi,2s

~

n —-
g—) ‘I’) - Oa
il - - m -C - .
Putting x_‘.}_' i3 and v =2r, u<2s+ 1 in (30)

hm
ES™ (%,2)=0,
Thus, E numbers in which either of the subscripts 1s odd,
are all zero,
E polynomials of the first order may be
obtained by placing n=m=z1 in (22). Then,

ll ?(C'C-aw 00 (=} tv Wq
(5D e < =) ) o o Bty

=0 v

and letting x<-y=0 gives



O oo
N T T
pd — =7 <
(el ) (ewet) v ! Vi,

- eittiw ii ™ w s gy
(eSt) @=+1) B Vil ‘{:":‘4 (1, 1-)

u=o v=0
co
= YW E?
viow! e Ly
Uzo v=o
From (31)
vy | CEHYE%) (o Yo ¢V L, 4 s
€ = v 2 2 o o Evulhy),
Wzo V=0 ! )

Expanding the exponentials on both sides and equating

coefficients of t*wt s P=20,1,2,¢°* , q=20,1,2,°°° gives

the same polynomials as those found by the first method.
To find the E numbers, let x=zy=z 3 in the

first order E polynomials which shows that

qu =1
EJ.:O :-l, Eo,g_: -1
Ez,z.‘—' 1

and it could further be shown that

E'ﬁo =~ 5, E°)'4 = 9
EV,L:-S’ EJ,..' z =9
Eyg = 25

E, oz -61, Eo = =61
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E‘.J~ = 61, E,, = 61

By = =305, Fg 3z =305

B¢ = 3721

An example will now be_taken up to show how

E polynomials could be used in evaluating a double sume. To

evaluate v
D wb R e S

f:l r=!

make use of (29) for n=m=1, which gives

Vi Vi Evu (ei) = X759

It follows that

ST e = L G VE, (py)

=t et 5=t 1
= T [Ev G0+ ™E,, (ne,l)

) E (L) +EO™TE, (et me1)]

In particular to evaluate

>y SUMI Y&

=1 pu

g -
S5 Ot s LB (1)~ oy G460y (14) -8, (16)]

t‘:‘ ':.l
It may be shown that

E g (Xig)= X XH) (K-2XK3-2K% 3K €3) 4(3+) (3%y-1)
so that  Eqq (Ll) = E¢, ¢ (1) = &, (o) =0
and Eey (%6)= 311, 383 490,
Then et ¢8Y= = 77 595, %0.

By actual calculation, it is seen that this is the true

value of the double sume
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3¢ LBXTEKSICON UF TSCHEBYSCHikE'S 1OR:ULA OF lLECHANICAL

QUADRATUKK TO A CUBATUKE IFOKLULA

Let F(x,y) be a given function, and E(x,y)
an arbitrary function which is essumed to have continuous

derivatives in x and y up to and including the (n+4 1)th.

Points X, X;,+ -+, Xn and  §, Y5, ") ¥n are sought
such that

Py
o [ R B ady =44 L, 1 EGs ) +Ry
where hk and the points X, Ky, *=*) Xy and ,Y%, **, In

are independent of the particular function E(x,y) and where

the remainder term ﬁ%m devends upon the above points and

(XO,ng,)M‘E(t,y), where

. _ J“*v.
D, 0, E(K.y) = t.m,(k,y): wE(x.yJ,
By iMacleurin's Theorem

' 8
E(xy) = E(0,0) + (x0,+30,) EC0) + ‘L”L-—J—*”‘” £(0,0)
et (LQ‘%%L'!!"E(O)O) (XDx*é}Dl) £ ()

(htt)!
where Q¢ a £X, o5 ¢ £4.

Consider from (32)

= ['[' Fixy) Exy) dxdy - 44 )___ ECx:, §;).
4,4, / d-

H x ¥

Substituting for E(x,y) from Maclaurin's expansion gives

(x0, + 8 l"»;)l

Ry = f[ F(x,y)[E(oo)-s-(xo +§0,)E@0) + ————E@©0)

CXDx *ap )ﬂ*’

~mai E(“"’]‘l"‘pf"

+m+"“’__5_*_<li'ﬂ_g(oo) +
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Dx + s
\4ég ; LE(0,0) + (x; Dx*jjoy)E(O,O) + "_zz_i& E o

x: -
Foo 4 _&:‘;ll'a_”&/_:(oo) -—ml—ﬂz— E(qqej

Y v - A
Letting Tuwv = !";' ﬁ :3:'_ l\(x,a[)&,\ﬂg above gives

an = T;.o Ed,o(olo) + -’;0

E,, (00) +Ta, Eq (0.0 + T4 £5,0(00)
+nl El,' (00) + 7:,)_ Eoy(00) +++0 + 7:!,0 Eno (0,0)

+ Ty, Eng, (00) + -

It L -I'_Mﬂ El,n-. (0;0)1-73,., E°m (0,0)

f' u;ona"s) E(a,¢) F(x. ) dxdy

4, ]
~n* 44 E,,(00)-nhk E,,O(O,O)i X: -nhk Eo,,(":l?)‘; Ji

x: Dx* ‘.p’t\ﬂ .
Y tom(OO) i 33 ‘g&ii _(-;3%_) E@,t;),

gzt iy

where 0% a4c £ X, ©

(3

J' : :1’ for ‘,7: L2, N,

The terms containing E

0,0 (0,0)‘ E,'o(0,0), =y

Eo0,n(©0) can be made to disappear by taking

g =  Too
k&Y ke = Tuo
ht 4 ;E g; = Ta
hfﬁgxz = A To

ugdﬁi X:g; = * T
iy
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(")(/z ;: Z__ Xegy™ = 0 Ty
nzag a;‘ - 0! Toy

Since i X 3 i X; 3’.%

= il there are only

Z2n+ 1 indcoendent equations above. These are

"114 = T;.o
A4S Xe= Tra YPTERS

hﬁ&i x; =2 T, M"zg 9 =4 T,y
et

The 2n+ 1 number .

+ S eﬁ X|, XL 'k*lly‘)gl, “.’3”
may now be determined since they are expressed above in terms
of the moments, Ty,», Then (32) constitutes Tschebyschefr's

formula for two variables, the remainder term being



't X+ )T
(53) Rh.n = {/‘ ———L—a—.”—)- E (q,¢) F(uyg) axdy
~4 (X Oxt ¥3 Oy)™!
ﬁ Z TRt E(q"’ﬁ")

which vanishes when G(x,y) is a polynouial of de~ree n at
most since then (X0, 1-308)""6-()(,3) =0, In this case formula
(32) is exact, that is, there is no remninder term. In
general  (332) will not veniah, Tn this case it is not a
practical form for the remninder since esch of the binomiagl
expansions in the foraula contains n+ 2 terms anda the total
number of terms in the remainder is (nf+ 1)(n+2)e

The points x”x"""x"»x“31-'"'3n may be
obtained by makine some assumntions as to the nature of
F(x,y), E(X,v) and introducin~ a function of z anda w,
f(7,w), so that the problem reverts to the method of Tscheby-
scheff for one vorigblel.
The procedure is as follows;
Let F(x,y) = G(x) H(y), a product of two

ziven functions,

Let f(z,w) = r(z) s(w)

where r(z) = (z - x‘)(z - xl)(z - X))t (z - x~)
and s(w) = (w = y‘)(w - yl)(w - y3)°" (w - yh)
so that X, ky, *++, Xy are the roots of r(z)=0
and ‘3‘,31. o, Ya are the roots of s(w) = 0.

1l Hilne-Thomson, ppe. 178-180,



Take E(x,y) = z(x) h(y)
where g(x) = (z - x)7!
and n(y) = (v - y)!

It follows then, that

[]' Firg) ECgaxdy - [ S () Hg) 30 () dxdy

G(K) H(;)
j, £x[ ot oy

It has been shownl that

n'G) € e

~—

’Z(}) 9'11»1* Ff

'(}) ds La

I Hy) - — ==
and L le = ’q NEY) + o T wnes

<+ v

where ¢, ¢, +.. and 4, d, +++ are independent of z and w

respectively, so that

£:£| F(X yg) J [‘4 n(}) f;;, _‘_}%*_“.j

(3-x) (w—a)
’(u) 4. A
[ﬁ 5@) L\,’wl t wh+l *”'J

Integrating both sides with respect to z and w gives

[ / F(x.g) Loy (3K Log (o-g) dxdy = [{‘Lﬂnm (‘1:)'}“‘ 0::);"_“ “

[(\17 (BW) Ouc)w"*' ijm —]

where C ana D are constantse It follows that

1l Milne-Thomson, p.l73.
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_/,'G(X)}.a((;-x)&,x_[l'H(g)ﬁ,a(w-a)y;:g%né;)_ﬁ___mj

(nm);hﬂ

[féf =7 - (,m)whﬂ "J '

Since this is now a function of z times a
function of w eaual to a function of z times a function of

w, the functions of the like variables may be equated giving

(34) [: G(K)Lz((;-x)l)(;élqn,‘é/_ <.,

U[ﬂ) }‘ﬂl

and
. w A
(25) / H(y) Loy (-)ly = Al 5 v

This throws the problem of aetermining the points directly

upon the case of one variable where 1t is shovn that forl

n= g, =X, = X, = e O713002"7
n=23, =X,z X3= «70710678, x,=0
n=4, =X, = X, = «794055447
=X,z X3 = 18759247
n=_5, =X, > X = 033249749

=X, =X, 3 «37454141, x,20,
where G(x) has been taken equal to one. The same values,
of course, apply to the y's for corresponding values of n
and again, H(y) has been taken equal to one,

To determine hk, proceed as follows;

W4 =[] Flxg)ax dy

but F(x,y) < G(x) H(y) = 1 so

1 Milne-Thomson, p. 180.
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hl - ! '
A& [‘ [’ JKJJ
and
An example will show how formula (32) is

used., Suppose 1t is desired to evaluate
3r3
[ L X+ tt[X%y

Here E(x.a):r_\fgl ) F(x, a_)-:_/ A transformation of

variables must first be made that will change the limits
of integration so that they will be from -1 to 1.

Let x = p+2, y = a+2¢ Then
3r3 PPN
/:[ X*e g2 ‘{x"J /[ (.r+z)*+(su.)“w‘£3
P+ 2

where -
E(¢q) = PN FgEn"
Teking n=3, the result is, exclusive of the remainder,

e+

[/ mz)z:(;u)“f”; = ‘H 38673 ¢. 10796+, 143¢5+.3520Y
+.25000%. 17655 ¢.30079 +, 23897 +, 1%470]
= 00533,

Taking n=4, the result is, exclusive of the remainder,

‘et P+ L |
[ trpysma 44 = 5 [ 11483« 25441 1. 143214, 13002

1 32sp € 17568t 22Ys7 +.16335

t. 35067 t X106 +. 22956 €, 17369
+, 30170 +. 2518 + 228) +.12¢9(]

= (L0043,



However, the integration may be performed

directly in this case, giving
3/3 X Y _ -1 _ -1
/:[ @z‘{"“’d - ‘7‘/47/5 11?101-5:27]_1-3-”1&» 3443
=00382,

This shows that by increasing n, more accurate results may

be obtainede.
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4., CUBATUR® FORIULAS INVOLVING DIFFERENCES

From Newton's interpolation formula with

divided differences for a function of two variablesl

(36) Lxy) = i i X 4. o tR,

vI0 «:0

» I(x,y)

where the following notation has been used;

(A= Gg) -+ (X- auy)
%q (b-ﬂ,) (7"&4-:}
Xo do = |
qu = 1 (do'-- A, 40"' {q)
Xngy e ”MH Xngr dmu o
R = =200 fl1) + 2 Dy Flun) -5 22 0D f)

" (n+)! CT m +1)!

Assume f(x,y) to have continuous derivatives
in x and y up to and including the (n+1l)th in x and the
(m+1)th in y in the region being considered, and

Ao SX, 4, K S$hy, 4 S 3,0,85 6n

Let a and a+w be numbers such that in
the interval a< x<a+w, the product (X-do):*+(X-4n)= Xu+i
has no zeros. In this interval the product has a constant
signe.

Let b and b+d be numbers such that in
the interval b< y< b+ d, the product (¥-6)-- (§=lu)= mau
has no zeros. In this interval the product has a constant

sign.

1 Steffensen, pe <05,
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Therefore in the rectancle whose vertices are
(37) (a,b), (a4+w,b), (a,b+d), (a+w,b+d)
the product (x-a,)--- (X- Q.‘)(a-&,) (7 ) = Xnet Jme
has no zeros. In this rectancle the product has a constant
Sicme.

Hence, applying the Theorem of llean Value

€+ atv ¢+d u.zk ot Gr o.u.,’ "
l L R4xdy = j [ G Dy flt.) 2y t) f o D, Fixn) dxdy

2+4 atw

Knet ah.u "M P xd
[ ] o o G e iy

atw

- J D:* ’f(ﬁ,”f)(h“ﬂk 1‘W .M. f(“.h)f ?MH

(ntn)! (W\ !

nst nm Aty

D, Ds, 7(*.B) I
mfx"” nynH

vhere mine {“r},a, a+w = f,,&’ X, < naxe (a,},«, at+w
and  min., {8K}‘ ¢, ¢+d $1,1,B = max. {6“} 4 ¢+d

Integrating both sides of (36) with respect

to x and y over the rectangle of (37)

¢+l a+w e+d atw €12 acw
F(xg) dxdy = f f Z i Kot F o Ay + j f R dxdy
_w,ﬂg Z: A Fo t WA, Pf—f%—,‘i)

" g 0, {p)
cogh AN A g,

0,m41 (m+1) | - heto " "6 met ) ! (me1)!
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Dividing by wd

¢td atw

[ _ DM' f({' ‘l‘
S fogiig=)_ ) AuFo+h, et

0y #(1,)

Rt me
D«,d; f(“h@J
(m+0)!

(htl)! (m+1) !

+Aom.,

‘A‘N-l,(? 0,myey

where e+d a¢y

(39) Av,‘( :‘«7,37 [£ Xvaqa?xﬂg,

From this result a variety of cubature form-
ulas micht be deduced by assigning suitable values to {av}
and {4“}

It is noticed that in (88) the values of {q,]
and (eq} all lie outside the rectangle of (37) whereas
in the extension of Tschebyscheff's formula the points lie
inside the rectangle over which the integral is taken.

The same problem that was used to illustrate
the formula derived in 3. will not serve as an illustration
here since the remainder terms in (38) are large if the
smallest points are near onee.

Consider, instead,

[[ 5 ndy.
3 3

Let a,=< by= 2.8
a, = b, = 2.9
a, =b, =5.1
a3 = by = .2



Then n=m=3, a=b=z 3, w=d= 2,
To find the values of fLK first set up a
function-table giving the values of the function at the

points (Q,, €m).

x Y=L 249 S.1 S.2
28 | ¢17857 «17231 08272 08028
29 | «17846 17241 0038425 08181
5S¢l | «150066 «14817 «02804 «09614
S5e2 | 14508 «14669 09802 «09615

Table I

Next set up a difference-tablel in x in which the numbers

in the first, second, etce., column are obtained by forming
the divided differences of the values 1iIn the first, second,

etc., column of the function-table.,

{@,¢,) 1@,,¢) @, ¢,) (2, ¢,)
« 17857 e L7231 08272 «08028
fa.a,;.) {@.,a,;¢,) (40,4, 4,) F(,a; ¢;)
=-o00110 «00100 «01530 «01530
{@,2,a,4) (@,9,4;; ¢) fla,,a,4,; ¢,) Flo,0,4,¢;)
- 00502 -e00523 - 00393 -,00382
F@p,0,85:6) | #@2,8,84:6) | R2,8,254) | 1(2a,0,2,¢,)
«00152 «00150 +00047 «00043
Table II

1 Steffensen, pe. 217,




Finally set up a difference-tablel in x and ¥y by forming
the divided differences of the values in the first, second,

etc., row of the difference-table in x.

f@,s.) fag,6,4) {(agy0,4,6) flas;6,4,4,¢)
17857 - 06260 «00951 -¢00100
{24 o2 6) f(a0,4,44) 14,26,6,6,1)

-+00110 +02100 - 00630 «00145

¥(49a':ql.l ‘o) 1&‘, d,'(;; ‘0; ‘l) f@/q‘/ 4, 4140 “J {@4‘141; "('l 4‘1‘)
-+00502 -+.00210 «00117 -+00040

00,084 | Faaatibt) | Hagepibas) | Thrabbig)
«00152 -.00020 -+00012 «00006

Table III
Table III gives the values of qu. Evaluate Av“‘ from (39)
and then from (38) apart from the remainder,
ff A dxdy = Lf[,/7557 —, 01512 +,01572 +.0010§
X+ y?
3 3 _ 00132+ 03014 —.01250 —,00183
— 00830 —.004(7 4.00320 +,00070

—.00/60 +,00025 +,0002] +.00007

= ,50063.

The followingz inequality which has been
showr® to hold for the function in gquestion may be used

to find an upper bound on the remainder.

1 Steffensen, p. 217,
2 1Ibid, p. 229
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= lo.l*'*lufl

where /0; l’a("i-;‘ .

For the points being used, take /922-8-11 i
Then the

absolute value of the remainder term is found to be

‘-[[l 2.181 ¢, N’)" <Ll/il) (.sz.'z 7 ]

HA

004964,

I

By actual integration

s s X
£ £ iEgidxdy = 50003,

so the result obtained is satisfactorye
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