AN EXPERIMENTAL STUDY OF THE

 EFFECT OF LUBRICATING OIL UPON ASPHALT SURFACESThesis for the Degree of B. S.
Adam J. Sajkowski
1928
Roads

SUPPI PIENTAFY
MATERIAL
IS BACK OF BOOK

An Experimental $s+u d y$ of the Effect of Lubricating 011 upon Asphalt Surfaces.

A Thesis Suhmitted to The Facilty of MIchigan State College of
Agriculture and Applied Science.

By
Aday J. Sajkowaki
Candidate for Degree of
Bachelor of Science.

$$
\text { June } 1928 .
$$

3
THESIS
0011

New instruments of locomotion, a greater volume of traffic, a granter weight in loada, and vantiv,increased rapidity in road travel have betireon them brought us to an 1seut.

Tine roat is one of the greatest fundanental institutions of mankind. Wo forget this hecause we take it for granted. It snems to be no necessary and natural a dart of all human life that we forget that it over had an origin or development, or that it is as much the creation of man as tho city and the 1akia. ijot only is the road one of the great human institutions because it is fundamental to social existence, but also because its varied effect appears in every department of the State。

It is the road which determines the sites of many cities and the growth and nourishment of all. It is the road which controls the development of strategics and fixes the sites of battles. It is the road that gives its Irane-work to all coonomic development. It is the road mhich is the channel of all trade, and, what is more important, of all idea.. In its most humbie functions it is a necessary guide without which progress from place to place would he a ceaseleas experiment. It is a sustenance without which organized soclety would be impossible. Hence the road moves and controls all history.

A road system, once established, developes at its pointr of concentration the nerve centers of the society it serves and the material rise and decine of a state are better
measured by the condition in its commun?cations-that, is, of its roads-than 3 any other criterion.

The constmiction, the trace, and the whole character of the road change with new social needs and hahits, with the facilities of natural science, their rise and decline. But this perpetual change, which effects the road as it does architecture and every other work of man, is especially marked by certain critical phases, one of which we heve now ontered. There are moments in the history of the road in any society Where the whole use of it, the construction of $1 t$, and $1 t s$ character have to be transformed. One such moment, for instance, was when there firgt appeared large organized armies. It oscurred whenever some new method of progression succeeded the old. It, occurred at similar critical turning-points in the history of the road not only when any of these things arose, but also when they declined or disappeared. The appearance of great cities, their sudden expansion or their decay, or the new deeds of a new type of commerce-and its disappea-rance-bring a whole road system to one of these revolutionary points. We have had five great moments of this kind in the history of the road system: the moment when British trackaway was superseded hy the Roman military road; the moment when the latter declined in the Dark Ages; the moment when the mediaval system of local roads grew up on the basis of the old Roman trunk roads and around them; the moment when this in its turn declined in the later sixteent, h and seventeenth centuries; and the re-castinf of the road system ry the turnoike of the

- ingteenth and early nineteenth centuries. To-dey the aixth sreat change is unon us. The need of a road to withstend the increasing traficic problem.

In our present day civilization our road systems and their construction are far and varied. Climatic conitions, geological formations, and human element, enter into the problem. There are many types of roads, each having properties which make it suitable in rerard to locality and the condit.1ons encountered at one place and not do at all at another. However I will treat one phase of road that is prominent now, sheet asnhalt parement, and the effect oil has upon its surface.

Bitumen is a mixture of native or pyrogenous hydrocarbons and their non-metallic derivatives, which may be gases, liquids, viscous liquids, or solids, and which are soluble in carhon disulphide. The word hitumen was at one time applied only to certain naturally occurring materials of more or less solla consistency which were black and sticky, and which were usualiy associated with rock or clay deposits. In connection with highway work this term now includes that portion of petroleum asphalt and tar products, whether cruce or refined, which are soluble in a liquid chomical ubstance known as carhon disulphide. The term hituminous material is even hroader in its scope and is applied both to bitumen and materials containing bituren. The bituminous materials are used in a variety of ways, in the treatment and construction of highways, the more important being as dust palliatives, in the construction
of bituminous mats or carpets, in the highway stmucture proper, as fillers, as fluxes and as impregnating materials.

Asphalt is a solid or semi-solid st.ecky product formed by the partial evaporation or distillation of certain petroleums, and if produced by natural agencies it is called native aephalt end often occurs mixed with considerahle quantities of water, sas, vegetahle matter and earth or clay. If, on the other hand, the afphalt, is directily manufactured from petroloum, it is sometimes called petroleum asphalt and is practIcally pure hitumen. Then asphalt occurs impregnating a porous rock such as sandstone or limestone, it is called rock aephalt. This material contains only a liaitec amonnt nf bitumon and is mostiy rock. Native asphalts are widely distrlbuted over the oarth, and history records a knowledge of their occurrence and use prior to petroleum. They are known to have been used in $2000 \mathrm{~B} . \mathrm{C}$. as a cementing material in construction of hrick in the city of Bahylon. They were used for a similar purpose by the Tncas of South America long before the discovery of the Anericas by the white race. Evidence has also been presented of their use in highway const,ruction hy these people. They are mainly found at or near the surface of the earth, altho in certain instances they are ohtained in an almost pure state from veins or seams in rock formations where they occur in much the ane manner as coal. Those at or nerr the surface of the earth usually contain apprecianle quantities of non-hituminous impuritien such as water, vegetahle matter and mineral matter. It is almost

1mpossible to renove all of these imurities hy refining processes so thet, unless originnlly occurring in a pure state, the refined native asohalt does not contain as high a percentage of bitumen as do refined petroleums. Where the asphalt occurs inpregnating a porous reservour rock the entire depos't 1s called rock asphalt. In such cises the percentage of mineral matter is greatly in excess of the pure sesphalt. When they occur at the surface of the earth as a seepage into a natural hasin they are commonly known es lake asphalts. The laxe asphalts are more widely known and are obtained in great, or quantities than any other form of native asphalt.

Highways in which asphalt is used is almost invariably composed of two or more courses. The upper or wearing courso is called the pavement providea it has a subatant, tal thickness, usually of one or more inche:. Tren asphalt is used in the . superficial treatment of any pavements to produce; with a suhsequent apslication of stone chips, snad, etc., a thin blanket course, such a superficial course is called an asphalt carpet or asphalt seal coat.

The hottom course of a highway which is latd directly up on the sub-grade, is ordinarily called the foundation or base and if courses are placed between the foundation and the pavement they are called internediate courses. when sub-grado.. conditions are particularly bad a course is sometimes placed below what would ordinarily be considered the foundation, in which case it is termed a sub-baso.

Asphalt pavements are laid upon a variety of foundations
or intermenlate courses which may or may not he of the same type as the paverent proper. The most types of forindition are the broken stone or macacar foundation, the Telfor foundation, the cement conctete foundation, and the bituminous conctete foundation. Asphalt paverents are frequentiy laid upon old pavements such as riacadam, cement concrete, prick or sone hlock, in which case the ola highway structure as it existe is usually referred to ac format:on.
\therefore sheet asohalt paverent is one having a wearing course composed of a medhenical mixture of asphalt cenent with a carefully graded gand and efinely aivided mizerel filler. This nixture is commonly calle: topping or surface. . Irrespective of the kind of founidition, the wearing course is ordinarliy lata upon an intermed sate course of asphaltic concrete celled the bincer. There are tio types of binder known as the open hinder and close binder. The former, as its name implies, has a rather open or porous texture due to the fact that it consists of a single commercial mix of broken stone, the fragments of which are coated and bound together with. asphalt coment. Close binder, which is more commonly used, is conposed of a mixture of broken stone and sand with asphalt cement, the proportion of sand being sufficient to fill the large voids in the atone agrregate, thus producing a hituminous conctete of relat ively close texture which is more impervious and offers greater resistance to displincenent than the open binder. The foundation is ordinarily mewly laid Portiand cement conctete, although ole pavements such as .
brick, stone block, conctete and broken stone may of ten be utilized to produce satisfactory and economical results. Sheet asphalt pavements are smooth, non-productive of dust, alnost noisless, waterproof and easy to clean. They are capahle of bustaining very heavy traffic and also last well under lifht traffic, therefore well adapted for husiness and residence streets and the facility with which they may be kept clean makes them especially deairable in tenement districts. They are easy to repa!r and of fer but slight resistance to traffic. They are somewhat softer in summer than in winter but when properly laid never becone too soft for use even in the hottest weather. Then ary and clean the surface is not slippery and its slipperiness in moist or drizzly weather is largely due to the presence of a thin film of mud caused hy the collection of street cietritus, and th!s can be arectly reduced hy washing or keepine them clean.

The sheot asphalt pavement through many years of use has successfully demonstrated its ahility to meet requirenents of such wide variations of traffic and climatic conditions thet has become one of the most popular and extensively used types of pavement yet developed. As proof of the serviceability of the sheet asphalt pavement, Fifth Avenue, New York, sald to carry the heaviest travel of any street in the world is worthy of special mention, althours many other striking examples might also be cited. Sections of this pavement from five to twenty years old give wonderful ovidence of the adaptibility of sheet asphalt to severe traffic conditions. In adiltion
to the thorsands of quick moviny husiness and nlessure verLcles which dally traverso this pevement there are in onerat1 on 275 notor bises, ench corrying 49 passengers. These hises weigh five tons empty and when full ahout eifht and one-half tons each. In adi!tion to the hehovior of the pavement under this traffic, it is of interest to note thet the innoest recorded tire ilfe for motor huses hes heen ohtained on Fifth fivenue. The great Perehing parade with ite ponderous trucks and caterpillar tanks treversed Fipth Avenue producing no nermanent injury ene marring the surfece to euch an extent that, regular treffic soon ohliterated every gifn of tts passare.

The total thickneag of a sheet asphalt pavement is usualiy made three inches. Sometimes this thickness is oroportIonal to one inch of hinder ond twn inches of tonnine, hut better practice calls for one and one half inches ofeach. The ninder serves to true un unavoidahle ineoualities in the foundation, prevent elipping or shoving of the topning and increase the $s t a^{2}$ inity of the pavement for any given total thickness.

A properly constructed sheet asphalt pavement, wears very Elowly and uniformly under traffic which accounts for long service record. Fast movints rubher tired vehicles produce but little noticeahle wear and in fact the pavement often appears to improve under the treffic providing the grading of the arsregate and the consistency of asphilt have been judictously controlled. The kneading action of such traffic, If concentrater, together with the migt of 011 from the
exhoust of motor driven vehicles comº the to cons:lidate and nliven the surface until almost the anearanceof a dense rubber mat. Accumulations of oll drippings from stancing vohicles if allowed to collect in excess will, however, soften asphalt to such an extent that diaintegration will follow. Such accumulations should therefore not be neritted to occur. Gas leaks will also canse disintegration hy sinilar action. Some traffic is essential to the lone life of the pavement as an untravied street tends to herden more ranidis with age than one constantly kneaded $\mathfrak{y} y$ traffic, and cracking follows with accompayy ing disinterratson due to frost action.

Before the generally accenter cradinf for paying sands was determined, the question of volds was noseinl. regarded as of areator importance and interest than at the present. Tt was at, eirst considered thet the totel percentape of voids In a Rand should be as low $8 . \operatorname{soss} 1 \mathrm{hl}$ e and that. all the voide should he completely fllled with asphalt coment. Df recont yerrs, however, the tencency has been to keep the volds as small as posithle in size and use sufficient asphalt cement to thorougly coat all the particles regardless of whether or not this completely filled the volds.. A solid rock or stione would possess no voids at all, but it would not be a shoet anphalt pavement; also, of two sands having approximately the same mesh composition and different percentages of voids, the one to be preferred would usually he the larger total percentage of voids and yot heve them smaller in size then the other. So many considerations enter int,n the selection of a sand for
paving uso that there is a dancer of too rreat attention being given to the subgect of voids, if one hecones an erithus1agt on the eunject. Fiom a thenretical gtandyonnt a sand composed of spheres of the sane size should have noproximately 26; of volis, hit in practise it is imoosoinle to ohtain this figure owing to the difficulty or compocting the srheres to the moximum point, end the norvest apmonach to it h s produced a mixture showing 31, of yoins. Thele the preins are of uniform aime tho percentare of voids will vary yith the shape of the freins hut not, with the size of thene

The void tineory on osrinelt mixtures fises porker out and treled out over t,uerty years aro. Pxperiment.e. paverents were laid with hiph dust and les ritumen but while they were more st,file, other charactarigtics made then undesirshle excepting for use under ahnormal conditions which are selaom met with even in the treffic of to-eaj. Samples taken rror the work EDowed extremely hich density and whenver the rituren content happense to mun a frection of a percerit more then thet just required to flll the volds, the drvenent flushed under the rollers and the rakers complainer of the material heing too Etiff to reke readily. It has heer foind that the highar the percent of filler the more ronta le the cirop in stanility with changes in hitumen contents, and the parement will not have the life and enduring qualities that can be orteined from a mixtine containing more ritumen.

A flller is e meterial used to fill in the interetices betwoon the ercing of sand in the wensing courge and render

1t more compact and dense. Fineness is therefore an essential requirement. As very little of the sand used passes a 200 mesh sieve and as a considerable quantity of it does pass a 100 mesh sieve, it is spparent that the bulk of the filler should pass the former. Sost specifications reguire that at least 66% of the filler shall pass a 200 mesh sieve. The finer the portion which passes the 200 mesh sieve the better the filler, and two fillers, both showing the same amount of 200 nesh material, may vary very greatly in this respect. Generally speakink a filler should be free from organic mattor, should be composed of particles to which hitumen will adhere readily and should he canahle of packina colidiy together when dry. Thie last property adds greatly to the stability of the mixtur to which the filler is added.. A preat variety of materials have heen used as fillers, includins rock dust of almost, every sort, Portiand cement, natural cement, ground silica, slaked lime, clay, marl, fine sand dust from dust collestors and ground waste lime from boet sugar factories.

Sand const, itutes from 75 to 80% of a sheet asphalt pavenent and takos practically all the wear resultinf from trapeic. Rand for paving work, thereiore, must be herd, clean grainod and moderately sharp and must have a suitahle meshcomposit10n. The surfaces of the grains must be of such a character that asphalt cement will satisfactorily achere to them. The exhaustive investigations coupled with many jears of practical experienoe have led to the edoption of the
following two tandard jrad inzs for 11 ;ht and the othor for heavy traffic. In actual work, an endoavor ia made to approach one these standarde closely as posolble fithin specific linits. Typical specifications of the U. S. dureau of Public Joadg, which are essentially the aame as the specifications adoptec? in 1916 by the smerican Society for aunicipal Inprovemente, calls for the followines limitations of gradine. A sample sand alone will be seldom found to meet such specific IImits and recourse must frequently be had to a mixture of two or more sand in order to secure tho desired gradinj. Standard Eand Gradinds.

Sleves.
Pasina 10 mesin, retained on 20 mesh. Passing 20 mesh, retained on 30 mesh. Passing 30 mesh, retained on 40 mesi. Passing 40 mesh, retained on 50 mesh. Passing 50 mesh, retained on 80 mesh. Passing 30 , mesh, retalned on 100 mesh. Passing 100 mesh, retained on 200 mesh. Passing 200 mesh.

Heavy traffic percent. traffic. p-10823 1035 10 - 15-13- 15-30- 30-17- 101734 . 1020 $0-$ 0-

In the small city and town the prohlem of traffic regulation is a simple one and the increase in the street use which occurs on certain days and adds a certain anount of ilfe and interest which is an agreeahle chanese from the monotony of existance in a provincial community. As the town becomes a city and as the dity continues to grow the increase in traffic results in congestion with its attendant delays and
dangers. The sreater speed and flexibility of the motor Vehiclo has reatly increased the capacity of streets so far as traffic moverent is concerned, hut the parking of motor cars along the curh, whe her parallel therewith or at right ansles thereto or in the center of the roadway where its width is sufficient; has reduced the available space for moving trefic, and in many cases roadways have had to be widened at the expence of the sidewalks. As the character of the street surface is generaliy improved, motor traffic will become more diffused and the problem 80 far as moving vehicles are concerned will tend to take care of itself.

Under traffic the surface of the pavement is abraded and pradually wears off and the mineral particles exposed on the top are more or $108 s$ crushed and hroken. There these. particles are larse this crushing action is plainly noticeable, hut with the smaller particles of sand it is hard to detect 1t. Jnder heavy traffic and unfavorahle weather conditions, these crushed srains become active centers of disintegration. The crushed particles are not hound together by the asphalt cement and are soon swept away. The holes thus made in the pavement serve to retain the moisture and the edges of the holes are ovintually more or less hroken down; thus enlarsing the hole. This condition reproduced all over the surface tends to make it wear away much more rapidiy than wolld otherwise he the case. The effoct of this action, which at first glance appears trivial, has been so well estahlished hy years of investigration and experience that it has
become axionatic in the pavino induatiry that the heavier the traffic the finer must be the particles composing the miner－ al agsregate．In hot weather，when the pavement is plastic， the abrasion of the surface is much less than in cold weather， When the pavement is hard end possesses but little plastic－ 1ヶす。

The deterioration which eventually renders repairs nac－ ossary commences as soon as the pavement is lald nnd may be broaily classified under the following heads：1．Defocts due to the wear and tear of traffic；2．defects oaused hy the deterioration，thru age and exnosure of the bituminous cement－ ing material used；3．defects in construction．I will now endeavor to show you how lubrication oil affects asphalt surfaces．

Assuminj that the sheet asmhalt pavement is acted upon by heavy trafilic，which is the case in summer，then according to the pecifications of the U．S．Bureau of Puhlic Roads， the standard sand prading required is the followinp：
sleves．
Percent．
Passing 10 mesh，retalned on 20 mesh．5－
Passing 20．mesh，retained on 30 mesh． 823
Passing 30 mesh，retained on 40 mesh．10－
Passing 40 mesh，retained on 50 mesh．13－
Passine 50 mesh．retained on 80 mesh．30－
Passing 30 mesh，retained on $10 n$ meiah．17－
Pasoing 100 mesh，rotalned on 200 mesh 1734
Prasiny 200 mesh．．．．．．．．．．．．．．．．．．．．．．．

However, eand of just that grading was not obtainabie, and so a mixture of two sands, A B was resorted to prod:tce the socifled, hy making conbinations of the ind lyidual screenings.

Sloves.

Passing 10 mesh, retalned on 20 mesh. Passing 20 mesh, retained on 30 mesh. Paseinis 30 mesh, retained on 40 meah. Passing 40 mesh, retained on 50 mesh. Passing 50 mesh, retained on 80 mesh. Pasalng 80 mesh, retained on 100 mesh. Passing 100 mesh, retained on 200 mesh. Passing 200 mesh.
Λ
$1.24-$
3.12-
4.3- 15.3-
23.~- 23.<-40.43- $\quad 63.43$ 15.5-14.72- 3.93$10.58 \quad 1.71 \quad 6.18$ 23.62 3.32- .50-

In order to obtain a comparison, four fillers, namely, seerless portland cement, celite, silica dust, and lisestone dust wiere used in preparing the samples of asphalt surfaces, of different composition and varyine percentages of constituents. The asphalt employed was one commonly used in wich.1gan and known as Indiana Paving Asphalt " 3 ", whose syecifications, as given hy the Standard 011 Company, are: Grade Number 3

Penetretion at $77^{\circ} \mathrm{F}$. 40-50

Penetration at 32° a-N.L.T. 12

Penetration at 115° P. -N. $1 . \mathrm{T}$. 250
Selting point. (Ball \& Ring method) ${ }^{\circ} \mathrm{F}$ - N.L.T. 120
Specific Grovity © 77° F.-T.L.T. $\quad 1.00$
Flash Point ${ }^{\circ}$ Р.-N.L. ${ }^{-1}$.
400
5 Hr Loss $325^{\circ} \mathrm{F}$. R-N. M.T. 20
Pen. of Residue (\% of orig.) -N.L.T. 60
Ductillty : 77° F.-cms.-N.L.T. 100
Soluhlitty in $\mathrm{CS}_{2}-\boldsymbol{m}-\mathrm{N} . \mathrm{L} . \mathrm{T}$. 99.5
Soluhility in CCl_{4} - 99.0
All tests \therefore. S.T.M. Stendard.
N.L.T. Not Less Than.
N.:.T. Not ミore Than.The lubricating oil with which the experiment, and testawere carried out was medium Gargoyle Moh!10!1 "A": producedhy the Vacuim 011 Company, whose syecifications are:
Gravity925
Cold Test. 20
Flash Test. 375
Fire Test. 420
Viscosity at, 104-430
Viscosity at 140-173
Viscosity at 210-57-58
Viscosity Engler Viscosity Redwood
13.0 at $40 \mathrm{C}, 7.1$ at $50 \mathrm{C}, 4.6$ at 60 C , 1.75 at 100 C . 140 F. -145

Color

The method used in preparing samples of sheet asphalt was carried out in the ame manner and ident ically as commercially employed, except on a much smelier scale, within laboratory means. The sand was warmed to drive away the dust particles and then mixed with the ellier, hoth of which are heated to a temperature of $350^{\circ} \mathrm{F}$. The asphalt is melted and
brought up to the same temperatire. Then the latter in poured into the nixture and the product stirred until uniformly. coated. At a temperature ranging from 300 to 325 degrees $F .$, preferably the latter, the asnhalt mixture is compressed and rolled into the sheet and form desired on pavement construction. Before applied on the joh. A Pat feat is tiken of the asphalt mixture, to determine lts character.

A small wooden paddle with a hlade 3 or 4 in. wicle, 5 or 6 'n. long, and $\frac{1}{2}$ in. thick, tapored to an edge at one end and with a convenient hanilo at the other, is used to take as much of the hot mixture from the wagon as it will hold, taking a sample representative of the averaje mixture. A plece of hrown sianila pacer with a fálrly smooth surface, 10 to 12 in. wide, is creased down the middie and obened out on sone very firm and smooth surface of wood not stone or metal, which would conduct heat too repidly. The hot mixture is dropjed into the paper sidewata from the paddle and half of the paper doubled over on it. The mixture is then pressed down flat with a hlock of wood of convenient size until the surface is flat. It is then struck five or six sharp blows with the block until the pat is about $\frac{1}{2}$ in. thick. The paper will be found to he stained to a different degree, deponding upon whether there is a deficiency, a proper amount, or an oxcess present. In this way the amount of asnhalt coment to use in making a mixture can be rerdily regulated, and the pat papers obtained will be evidence of the character of the mixture turned out. In the laboratory the same performance
is followed through.
The test samnles consisted of tienty different comrinatio:1s of asphalt, sand and fillor, using four different fillers, and having five varied proportions to each elller. The asphait surfices were prepared under the sane conditions and In the manner explained ahove. A Pat test was made of each. (look into the pocket for the sane.) The aanples were formod into cubes in a device constmucted for that purpose, and compresced to the requires force of five thousand lbs to the square inch under a hand opersited Rinele testing machine. Belnj only five-elyhts inch in dia. the compression necessary was 1530 ibs, inomer to make them of the same spacilic eravity. (see drowing.) The preparea gamples were allowed to stand alone for a few dajs, then ach was weighed carefully to four declmal places, and suspended into the lubricating 011. !notici cirawings.) Bvory few days the same samples were welghed again, and any change in then noted.

The followinf, are the aspralt mixtures, numhered eo as to designate them more easily and rapidly when referring to the asme.
41
15." cerent.
16\% cement. I I $\%$ coment.
12\% asphalt.
11\% asphalt. $\quad 10 \%$ asphaIt.
73:- sand.
73: sand. 75% sand.

74	45	16
14\% eenent.	15, cement.	7\% celite.
11\% asphalt.	11\% esphalt.	15,? asphalt.
75,: sand.	74, sand.	73: sand.
47	"3	\%
6\% cellt.	5, celite.	5\% celite.
15\% asphalt.	13\% as jhalt.	15\% asphalt.
79\% sant.	?2, sand.	80% and.
\#10	"11	! 12
5\% celit.e.	15\% silica Aust.	15: silica dust.
14\% asphalt.	11\% asphalt.	12\% asnhalt.
81% sand.	74, sand.	73\% sand.
413	\#14	415
130 silica dust.	15, silica dust.	14: esilca dust.
11\% asphalt.	10\% asph It.	11\% asphalt.
76\% sand.	75\% sard.	75\% sand.
416	417	\#13
14\% 11 mestone dust.	15\% 1 !mestone dust.	- 15? limestone dust.
11\% asphalt.	11\% asphalt.	12\% asphalt.
75\% smat.	74\% sand.	73" sand.
19	\#20	
16\% I 1 mestone dust.	15\% 1 imestone dust.	-
11\% asphalt.	10, ${ }^{\text {asphalt. }}$	
73, siand.	75, sand.	

DATA.
Deterloration, in \%.

Semple \#		T170.		
	2 तxys.	6 days	8 days.	Íc doys
1.	.77	6.19	9.21	14.63
2	2.90	7.19	10.72	14.93
3	2.65	7.06	12.15	17.46
4	1.97	4.37	7.42	10.32
5	1.67	5.39	7.72	11.44
Average/	2.03	6.23	9.44	13.76
6	3.43	9.51	13.77	19.35
7	4.23	3.69	21.17	15.63
8	3.51	7.19	10.15	13.83
9	1.49	7.03	10.02	12.74
10	1.43	6.12	10.64	13.50
Averaze $/$	2.82	7.71	11.15	15.11
11	4.95	8.12	13.48	16.67
12	4.03	10.22	16.37	22.56
13	3.44	3.09	11.68	16.33
14	5.33	9.52	14.41	13.60
15	3.32	10,17	14.99	21.34
Averarje\%	4.31	9.22	14.19	19.10
16	5.80	12.01	10.21	25.42
17	4.39	10.44	16.03	c2.08
13	3.94	16.75	21.90	29.30
19	2.54	6.98	34.86	19.30
20	2.67	7.59	15.38	20.30
Average/	4.87	10.75	17.49	23.30

Based ujon the results obtainod, luhricating oil deteriorates sheet asphalt. The mixture usin coment as a filler showed the leagt, change of the form, that of 13.76% averafe, in l2 daye time, followed hy celite; silica dust and limestone dust; the latter ecoring 23.30% average, slightly less than twice as much as cement. From the tests performed the following mixtures rate the least offected by the oil. deteriorstion infóm
Coment. 44 10.32

Celite 19 上к.74
silica dust. 413
16.33

Limes one duat. \#19 19.30
The lubricatin; 011 softened the asphalt mixture to such an extent as to break the immediate bond existing between the asphalt, sand and filier. The surface narticles of the sample disintegrated and fell away from the main boiy, which appeared minutely like a honey comb section. A slifht frictIon of the oil 1 mmersed area tended to cause the sand to hreak away in individual spaing. Naturally heing of a fairly dark color, the oil assumed a muddy appearance, for the period of time it had remained. To all indications the oil ate its way into the granular structure, whose hond was not sufficien nt to withstand the attack. Cement, due to its binding qualities, seemed alone more able to oppose the deterioration, mainly because the viscious liquid like oil in a way formed a cementing action not possinle hy the others. Fere these asphalt surfaces subjected to traction, and the elements, there is no dount the deterioration would hereater. However, it
would be proportional to the existing conditions and the design of the mix, as shown hy the results.
\therefore All bituminous materials used in paving work deteriorate upon exposure to the elements and to the rottinr ection of escaping gas; wotor and streot liquics. The lighter oils contained in them gradually volatilize, thus hardening the remaining bitumen. As the hariening process goes on, the pevenent loses its plasticity and woars away with increased ranidity. Fventually the bitumen loses its elasticity and the pavement criacks. تie eiges of these crocizs crumble away ard the cracks bec me afficiently wice to he plainly felt hy vehicies passing over then. The bumping action previously descrthed in connection with waviness is procuced sind edec to the rapidity with which crumbling takes place. . In orier to guard egeingt this and piolong the ef ective ilfe of the pavement, the asphait cement usea in its construction is mace as eoft, as possible without rendering the pevement too mushy when ne. p_{i}. The extent to which this con be carried dem pends unon the grading and charactor of the and employed. With a well sharp and and plenty of filler, a much softer asphalt cement, can be used then Fith a poorly oraded or rounded samat This is due to the greater inherent stahility of the former tix ofsand. It 18 obvious that a mineral age regate which when dry strongly resists displ:cement will permit the use of a comparatively soft asnhalt cement. hodern trafflc conditions have in this partioular respect come to the ald of pavement makers. futomohiles in their
bassaye over the pavement, are continually droming a certain anount, of oil, which if very sinall, is very avenly aistributad ry the larpe number oi vehicies passinp oven it. Inis 011 In grodueilly ahsorbed hy the pervement and thus softers the ritumen and counteracts to a large extent the hariening action of time unon it. This is very clearly shown in a certain pavement in Ghicago, which, prior to the passaze of any ce:siderate mumer of automobiles over 1 t , about 1910. Was so hard and badly cracked as to have practically reached its limit of usefulness. The street in cuestion cubsequently develoned into an autononile center with the result that the pavenent was softened up hy the slifint dropoint of oll upon it, to such an extent that, In 1015 1 ory service. Fifth Ave., Ner York City is a somenhat inilar сяse.

Broadiy speakinf, the governing principle in the tineory of gheet, sspin?t paverents are: l. Tie selection of a mineral afsyregate of sufficient hamines. and denseness to resist the abrasive cction of traffic; 2. binding tine various particles of the mineral aysregate tosether in such a way that the pavement will maintain a mooth surface and resiat the disinte rrating action of traffic and the elements.

nuevmeoterner

Pocket hus Samples $1-8,10-20$

