OF ACADEMIC ACTIVITY PREFERENCES IN RELATION TO VERBAL AND QUANTITATIVE ABILITIES Thesis for the Degree of M. A. MICHIGAN STATE UNIVERSITY Muhammad S. Sajid 1959 THESIS LIBRARY Michigan State University # ITEM VERSUS CONFIGURAL ANALYSIS OF ACADEMIC ACTIVITY PREFERENCES IN RELATION TO VERBAL AND QUANTITATIVE ABILITIES Ву Muhammad S. Sajid A THESIS Submitted to the College of Communication Arts of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF ARTS #### ACKNOWLEDGMENT The writer feels indebted to Dr. Louis L. McQuitty without whose help and guidance it would not have been possible for him to undertake the study. He also wishes to express his gratitude to Dr. H. Kumata for his encouragement and valuable suggestions throughout the study. The researcher is grateful to Mr. James C. Lingoes for his help regarding the programs for the Mistic, without which it was not possible to complete the study within the available time. The author wishes to thank Dr. Albert E. Levak, Training Advisor, Ford Foundation Pakistan Project, for all mechanical facilities; and to Miss Wilma J. Woodford for her most sincere and continuous help and cooperation in preparing long, tiring tables and in proofreading. ************* ## ITEM VERSUS CONFIGURAL ANALYSIS OF ACADEMIC ACTIVITY PREFERENCES IN RELATION TO VERBAL AND QUANTITATIVE ABILITIES Ву Muhammad S. Sajid AN ABSTRACT Submitted to the College of Communication Arts of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF ARTS 1959 Approved by Andread America #### ABSTRACT #### Problem The purpose of this study is to examine differences in patterns of responses to the items of the Academic Activity Preference Inventory by the freshmen who scored high on verbal but low on numerical items of the College Qualification Tests versus those who scored high on numerical but low on verbal items of the same tests at the time of admission to Michigan State University, September, 1958. The study also undertakes the comparison of the configural and the item analytic results. #### Review of Literature Clinical psychology had two dissimilar heritages—dynamic psychology and psychometric methods. In harmony with the latter it has stressed objectivity; in sympathy with the former it has focused on patterns of behaviour. Clinicians faced serious problem when patterns of responses were neglected in favour of linear models by the psychometrists. Hence the former turned to projective techniques in assessing configurations. This move made the psychometrists aware of the seriousness of the situation and consequently they broadened the capabilities of their tradition by showing that configurations could be objectively assessed. Zubin, Mechl, Gaier, Lee, McQuitty, etc., are some of the pioneers in this field, and the second s who claim that the configural approach has unique predictive value which item analytic approach lacks. Both these methods have been applied and compared in this study. #### **Procedure** A group of 824 freshmen of Michigan State University who had taken both the College Qualification Tests and the Academic Activity Preference Inventory in September, 1958, constituted the 'population' of this study. The subjects were classified into two groups, \hat{A} and B, on the basis of their verbal and numerical scores. Group \hat{A} consisted of 164 students who had high verbal but low numerical scores; and group B had 176 students with numerical but low verbal scores. Each group was further subdivided into \hat{A}_1 , \hat{A}_2 , and \hat{B}_1 , \hat{B}_2 , respectively. The subgroups \hat{A}_1 and \hat{B}_1 were used as experimental sample and \hat{A}_2 , \hat{B}_2 were treated as crossvalidation sample. The data were exposed to both the item analytic and the configural methods. #### Conclusions and Recommendations The configural results were better than the item analytic results, but not at any significant level of confidence. The study was restricted to the first forty items of the Academic Activity Preference Inventory which has 275 items. The prospective researcher is advised to select sets of analytically suited and configurally suited items out of these 275 items. This would put him in a better position to see the correct picture of the relative merits of the two methods. An experimental design of this kind stresses the necessity of a theoretical approach toward the preparation of the configurally suited items. This would be a great help to the researcher who spends a great amount of time in selecting such items. ## TABLE OF CONTENTS | |] | Page | |-------|---|----------| | I. | INTRODUCTION | 1 | | II. | PROBLEM | 11 | | III. | ASSUMPTION AND SCOPE OF STUDY | 12 | | IV. | BRIEF DESCRIPTION OF THE METHOD | 13 | | ٧. | DESCRIPTION OF THE TESTS | 과 | | VI. | STUDY | 17 | | | Subjects Items Item Analysis Agreement Analysis | 18
21 | | VII. | SUMMARY AND CONCLUSIONS | 33 | | BIBLI | OGRAPHY | 36 | | APPEN | DIX | 38 | | | | • | |-----|---|---| | | | | | *** | | • | | | · · · · · · · · · · · · · · · · · · · | • | | | | • | | | ************************************** | | | | • | • | | | | | | | | | | | | | | | v C h t # P 4 # h 1 # h r h h d # # t 2 4 1 2 h 1 t 4 4 h t 1 1 5 4 h b 7 # A 1 A + 2 t | | | | 3 A P T T T T T D B B D S B T T T T T T T T B B D T T T D D D D D | | | | | • | | | | | | | | | ### LIST OF TABLES | TABLE | 1 | Page | |-------|---|------------| | I. | Intercorrelation of Every Item with Every Other Item in Group A. (Subjects Having High Verbal and Low Numerical Scores) | 38 | | II. | Intercorrelation of Every Item with Every Other Item in Group B. (Subjects Having High Numerical and Low Verbal Scores) | 39 | | III. | Matrix of Differences: Cell Entries of Table I Minus Cell Entries of Table II | Ц О | | IV. | Types Developed Through Linkage Analysis from Table III (Matrix of Differences) | 加 | | ٧. | Matrix of Reciprocal Pairs | 42 | | VI. | Sums and Averages in Descending Order of Columns of Table III (Matrix of Differences) | 43 | | VII. | Matrix of Items of the Largest Column-Sum in Table III (Matrix of Differences) | 1414 | | VIII. | Matrices of All the Items Appearing in Eight Types | 45 | | IX. | Matrix of Items Having Largest Entries in Their Columns in Table III (Matrix of Differences) | 48 | | X. | Two x Two Tables of Thirty-Eight Items Showing Cell Frequencies | 49 | | XI. | Ranked Chi-Square Values for Thirty-Eight Items | 50 | | XII. | Specimen Pattern of Response (Produced by Mistic) | 51 | | | , · | | |---|---|----------| | | | | | | , • | | | | ;
 | | | | | <i>)</i> | | | · · · · · · · · · · · · · · · · · · · | | | | · · · · · · · · · · · · · · · · · · · | | | | ************************************** | 7 | | | | | | | | | | | *************************************** | | | | ······································ | | | - | · • • • • • • • • • • • • • • • • • • • | | #### I. INTRODUCTION The present study investigated a problem which has received scant attention: the differences in patterns of responses between students who score highly on verbal items but do poorly on numerical items versus those who score highly on numerical items but do poorly on verbal items. From the very beginning of man's serious intellectual efforts, to understand human behaviour, both philosophically and scientifically, there has been at least some concern with the significance of patterns of responses, and one of the persistent theories has been that of typology. By studying the works of the psychologists in any period from the pre-Socratic to the present, it is quite common to run upon phrases which deny the possibility of explaining wholes by a study of their constituent parts. Mach (13) supports this theory by an example that the arrangement of lines in geometrical figures causes the emergence of different totals which are reported as squares, rectangles, diamonds and so on. This led him to resort to the doctrine of "sensations of space," sensations which, while not pointing directly to the elements of the original experience, must be taken jointly with them if the structured total: is to be explained. Etkin (11) reports that the animal and plant kingdoms are classified in a manner which reflects that characteristics have different predictive indicants depending on the combinations in which they occur. . "Clinical psychologists have been surprisingly ahistorical" (15). Little has been written about the development of clinical psychology. In part, this neglect is due to the clinical psychologists being very busy during and following the World War II. Young (15) remarked, "Making history on every hand as we are, we have a notion that we somehow have escaped history." However, by tracing the history of clinical psychology and by going back to the turn of the last century, it becomes evident that its origins are to be found in the dynamic and psychometric traditions in psychology. The latter, one of the headwaters from which clinical psychology sprang, was a part of the scientific tradition of the nineteenth century and stressed objectivity. Whenever a clinical psychologist insists upon objectivity and the need for further research, he is, intentionally or otherwise, showing the influence of this tradition. Going from Galton through Binet and Terman, it is evident that they always had a respect for quantitative measurement. Similarly Cattell along with Thorndike and Woodworth stressed dealing with individual differences by means of statistical analysis. The other major source
of influence (dynamic psychology) contributing to the growth and development of clinical psychology was the thinking and writing of James, Hall and their associates, also known as the "Boston group." Although they could in no way be labelled clinical psychologists, their thinking was much closer to clinical psychology and to progressive psychiatry than was Titchener's structural point of view. Their main interest was to understand human personality through the patterns of his behaviour. The emphasis of modern clinical psychologist on patterns of subject's responses, in understanding his behaviour, is an evidence of the influence of dynamic psychology (15). Louttit (5) states that the interest of the clinical psychologist is in the subject considered as a physical, social and psychological being in the matrix of his environment; and the understanding of the individual depends upon the knowledge of the clinical psychologist of the physical, emotional, educational, social and psychological factors, related to the individual, as a whole. Allport (1) quotes that the clinical approach is absolutely necessary for the investigation of personality as a whole, for a true picture of personality cannot be pieced together. It is an organismic, and not an additive, total. To summarize, in the language of McQuitty (7), "clinical psychology has two dissimilar heritages—dynamic psychology and psychometric methods. In harmony with the latter it has stressed objectivity; in sympathy with the former, it has focused on patterns of behaviour." Clinical psychology encountered a serious problem, however, because psychometrics tended to neglect patterns of responses in favour of linear models. The clinicians realized that too much emphasis on psychometrics restricted their discipline and that each individual clinical psychologist should demonstrate to the bordering professional disciplines and to the lay public that clinical psychology had a useful contribution far more valuable than psychometrics alone. Hence, the clinicians accordingly turned to instruments such as projective tests, that assisted in assessing configurations. The period in which projective methods were developed was pervaded by revolt against atomistic tradition of the early experimental psychology. Atomistic research began with the attempt to analyze psychological phenomena into elements. Opposed to this viewpoint is one which has various names—global, holistic, organismic or field theoretical. Lewin's typological concepts, Allport's personalistic psychology, Murray's organismic theory and the dynamic approach of Maslow, differ somewhat in conceptualization, but unite in emphasizing the importance of totality and wholeness of personality and of patterns in understanding human behaviour (5,14). Here clinical psychology has shown a willingness to sacrifice its birth-right of objectivity to its interest in patterns. However, as psychometrics was about to lose one of its most thriving, valuable and remowned offspring, it has broadened its perspective and capabilities by demonstrating that configurations can be objectively assessed. Gaier and Lee (4) point out that one of the more promising trends in present day psychometric research is an increasing interest in methods of evaluating patterns of test scores and test responses. In clinical, vocational, social and educational psychology, there is a growing agreement of opinion that taking account of interrelationships among test items will improve the efficiency of prediction. Zubin asserts that total score may conceal as much as they reveal. A total score may carry considerably less diagnostic significance than a direct • • and detailed analysis of the responses per se. The authors (Gaier and Lee) provide arguments that consideration of response configurations will yield more fruitful results with higher degree of predictive utility than obtainable by the traditional additive methods. At least one important research conducted by McQuitty (6) on psychological wellbeing has concluded that mental hospital patients differ from community persons primarily in terms of their patterns of responses. He points out that since the appearance of the Woodworth Inventory during World War I, the psychologists have been trying to investigate a definite problem: whether or not, on the basis of carefully constructed inventories, they can classify accurately even such widely different subjects as the mentally ill and the mentally healthy persons. investigators did not meet such success because of two uncontrolled problem areas: (a) what inventory test items to be tried out, (b) what method to be used in assigning 'weights' to item responses for the assessment of psychological well-being. The test constructor in this field has greater difficulties than the experimentalist who has two uncontrolled variables and does not know which one is responsible for his results; whereas the former, instead of merely having two uncontrolled variables, has two uncontrolled classes of variables, and does not know to which to attribute whatever success he has achieved. McQuitty, since 1935, and more recently his students, have carried a series of systematic studies of personality inventory items and methods of weighting responses on them in the assessment of psychological well-being. One of the conclusions that McQuitty reached is that the mentally ill differ from mentally healthy in response patterns (6). This is an evidence in favour of the claim that configurations can be objectively assessed, and this is the meeting ground of clinical psychology's two dissimilar heritages—dynamic psychology and psychometric methods. Cattell (2) insists that psychologists should study the meaning and effects of the total personality configuration rather than of more levels in specific variables; and the importance of the one and indivisible total configuration cannot be overestimated. He criticizes those techniques which specifically deal with effects of configurations but relegate the pattern to intuitive assessment rather than to explicit mathematical treatment. He proceeded further and developed rp and other coefficients of pattern similarity. Cronbach and Gleser (3) also developed methods of profile similarity. McQuitty (7) criticizes all these highly developed pattern analytic methods such as those mentioned above, for assessing profile configurations rather than patterns of responses to individual items. "In the profile approaches responses to individual items are used to yield total scores on several variables; and the configurations are isolated in terms merely of patterns of standings on scales, i.e., on linear continua. Thus, they are methods ¹For other methods of personality assessments (e.g., T Method, H Method, WH Method, MH Method, etc.) developed by McQuitty during his long continuous research, see (6). for studying data ordered to linear continua; and data that do not fit are discarded." Zubin (16) has pointed out that such information may be lost in thus allocating data to linear continua. Meehl (12) has shown that it is theoretically possible for responses treated configurally to have predictive efficiency which they lack when treated individually. For instance, an objective history of vigorous athletic participation at high school level, would argue in favour of masculinity in the male. But such a history in a male of 35, without heterosexual experience, living with his mother and 'sponsoring' boys' clubs, would give an indication of the latent homoerotic component. Hence, patterns of responses have unique predictive value. Meehl's paradox, as he calls it, is recognized by mathematicians. They take account of it in their definitions of independence by stating that the property Bo is said to be completely independent of properties B1, B2, ... Bn if two conditions (necessary and sufficient) are satisfied: (i) Bo is independent of every property B₁, B₂,...B_n taken separately, and (ii) B₀ is independent of the logical product of every group of properties selected out of B_{1} , B_{2} , B_{n} (7). In short, in the field of personality measurements, recent research indicates the possibility of getting higher validity by using patterns of responses rather than total scores for prediction. In this area, the "differential method" has been used often. It takes into account summative individual differences. (Differential weights are assigned to individual test items and a summation of scores on various • . . • And the second s 1 items is used as a predictor of personality). But Zubin (16) feels that this had not led to fruitful results. He advocates the "integral method" which focuses its attention on similarity between individuals. He is against the traditional assessment technique of personality inventories, because he maintains that the pattern which produces the score is itself more important than the summative score on the inventory. An average does not serve the purpose in judging the individual because it is not possible to know how it is composed. Two subjects may get the same average score by receiving different scores on individual items. Though both of them may have the same average score, they are not "equivalent in their structure." Zubin says that some personality specialists are interested in the totality of personality irrespective of the complex interrelationships of the variables which make up the personality. Other specialists, like clinicians, social workers, etc., are interested in the individual variables comprising personality. A golden mean would be to group individuals into families or types. The method used is to find out individuals possessing "similarly integrated characteristics in a given set of variables and, after the subgroups of similarly structured individuals are discovered, the patterns of characteristics that make them similar can be isolated and further studies can be undertaken in other variables of the individuals in
each sub-group The primary tool in this procedure is a technique for discovering similarities between individuals." This type of classification is a kind of typology where the individuals are classified, on the basis of similarity, into different types. The general criticism of typological methods that they put individuals into pigeon holes that do not fit them cannot be raised against the method of Zubin where individuals are permitted to group themselves into whatever constellations they may exhibit in common. "It is an operationally determined personality pattern." Thus, Zubin (16) in his agreement score (number of test items on which two subjects agree in their responses) has laid a foundation upon which it is possible to formulate a pattern analytic method for classifying subjects in terms of major pattern of responses to individual items of a test. However, he did not develop the method in any general sense. McQuitty (7) developed a comprehensive procedure for classifying persons in terms of their major patterns of responses. "In agreement analysis, the responses may concatenate in any fashion whatsoever: they are not restricted to linear continua; the method does not order the data according to any preconceived model. Rather, it classifies the subjects in terms of those patterns which include the greatest possible number of responses for each. These are called predominant patterns; and the data are ordered in terms of them. Responses that do not fit these patterns can be used later to reclassify the subjects in terms of less predominant patterns if it seems worthwhile! (9). The present study is planned to investigate some differences in the type of thinking between those students who score highly on verbal items • • - 1 • · but poorly on numerical items (i.e., having high verbal ability but low numerical ability) versus those who score highly on numerical items but poorly on verbal items (i.e., having high numerical ability but low verbal ability). The responses of the students are scored configurally and McQuitty's agreement analysis is applied in the form of a computed version developed by Lingoes. Also a comparison has been made between the results obtained by agreement analysis and those by item analysis. ¹James C. Lingoes is a graduate assistant in Psychology at Michigan State University. His version has not been published. It gives results similar to McQuitty's original analysis. #### II. PROBLEM The purpose of this study is to examine differences in patterns of responses on selected items of Juola's Academic Activity Preferences Inventory (AAPI) in two groups of freshmen (1958) who were selected on the basis of their performance on the College Qualification Tests (CQT). One group scored high on verbal items and low on numerical items, while the other group scored high on numerical items and low on verbal items of the CQT. Two approaches will be used to study the above differences: (a) an item analysis, and (b) a configural analysis of the data. Dr. A. E. Juola, Evaluation Services, Michigan State University. #### III. ASSUMPTION AND SCOPE OF STUDY The rationale for selecting the two groups of subjects is based on the assumption that those who have high verbal ability but low numerical ability think differently from those who have low verbal ability but high numerical ability. The present thesis investigates two hypotheses: - a. Students who have high verbal but low numerical ability have response patterns different from those who have high numerical but low verbal ability. - b. The configural approach has unique predictive value which an item analytic approach lacks. #### IV. BRIEF DESCRIPTION OF THE METHOD Before we outline the research design it would be helpful to describe McQuitty-Lingoes machine agreement analysis briefly. This method takes into account the pattern of responses of one individual and looks for that individual whose pattern of responses is most like that of the first individual. After classifying and combining these two individuals, it brings in that individual whose pattern of responses is most like what the first two individuals had in common, and classifies and combines this third individual with the first two individuals. In this study this process was repeated to the tenth level, i.e., those ten individuals were classified and thereby combined together whose patterns of responses had most in common. This procedure is carried out for each individual in turn. Overlaps in patterns, i.e., the presence of the same individuals in the patterns, are later eliminated. #### V. DESCRIPTION OF THE TESTS # A. College Qualification Tests The College Qualification Tests (CQT) Form B are designed to serve colleges in their admission, placement and guidance procedures. There are three tests in this series: - <u>Verbal Test (CQT-V)</u>: This is a fifteen minute test of vocabulary, containing 75 items. It is an efficient measure of the verbal ability. - Numerical Test (CQT-N): This is a thirty-five minute test containing 50 items on arithmetic, algebra and geometry. It measures skill in handling numerical concepts. - Information Test (CQT-I): This is a thirty minute test composed of 75 items from the fields of science and social studies. It measures the student's background. Scores on the Verbal, Numerical and Information tests are summed to yield the CQT Total scores. The CQT are administered to freshmen seeking admission to Michigan State University as a measure of their general academic aptitude. The present study takes into account the first two scores only, i.e., verbal scores and numerical scores. The Psychological Corporation, 522 Fifth Avenue, New York 36, New York. # B. Academic Activity Preference Inventory This inventory was constructed by Dr. A. E. Juola, Evaluation Services, Michigan State University. The assumption is that the following item classification areas are in one way or the other related to academic success: #### 1. Study Orientation. Haphazard versus systematized, planned, efficient use of time in school. Mechanics of study, (e.g. reading the introduction and summary of each chapter first and then reading the chapter, or reading in the order given in the book—introduction, main chapter, summary) is not covered. ### 2. Adjustment. Self-confidence, morale in academic setting, feeling secure in school. ## 3. Ultra-academic Ideal. Dedication to ultra-academic ideal and high scholastic motivation-real bookworm, puritan scholastic motivation. #### 4. Academic Ideal. High scholastic motives and values. Academic activities are most important but not all important. # 5. Socio-Economic Class. Items portraying values which differentiate the lower classes from higher classes in areas somewhat removed from school (e.g. semi-academic recreational areas). #### 6. Achievement Motivation. An obsessive desire to go ahead, to get good grades, apparently due to some internal or external very strong urge. There are 275 items in all which are liberally scattered over these six (somewhat overlapping) areas. Each item has four possible and equally correct answers. For instance, item 4 is "Discussing books with friends." On the scoring sheet, space 1 is to be marked if the individual very definitely likes the activity; space 2 is to be marked if the individual feels a mild positive reaction to it; space 3 is to be marked if the individual feels a mild negative reaction to it; and space 4 is to be marked if the individual very definitely dislikes the activity. #### VI. STUDY ### Subjects A group of 842 freshmen of the Basic College of Michigan State University (1958), who had taken both the CQT and AAPI constitute the 'population' of this study. Out of these 824 freshmen a random sample of 127 males and 96 females were selected to determine the distribution of scores on verbal and numerical items of the CQT. Scattergrams were plotted between verbal and numerical scores on the CQT separately for each sex. Median scores for verbal and numerical items were 47 and 34, respectively for males, while 46 and 22 for females. These criterion scores were used as a basis for classifying subjects as high or low in verbal and numerical ability. Out of the 127 males there were 24 (about 20%) who were high on verbal and low on numerical items according to the above criterion, i.e., they had scores equal or greater than 47 on the verbal items and scores equal or less than 34 on the numerical items. Based on the results of the selected sample, the following groups were selected from the population: A. High verbal ability, low numerical ability. Males: 47+ (on verbal items), 34- (on numerical items). There were 70 males in the population who satisfied this condition. Females: 46+ (on verbal items), 22- (on numerical items). There were 94 females in the population who satisfied this condition. B. High numerical ability, low verbal ability. • • Males: 34+ (on numerical items), 46- (on verbal items). There were 86 males in the population who satisfied this condition. Females: 23+ (on numerical items), 46- (on verbal items). There were 90 females in the population who satisfied this condition. The above two major groups (A and B) were randomly divided within each sex into two equal sub-groups, the first of which was designated the experimental sample, and the second of which was called the cross-validation sample. These groups are detailed below: ### Experimental Sample - 1. A₁ = High verbal ability, low numerical ability, 35 males, 47 females = 82 - 2. B₁ = High numerical ability, low verbal ability, 43 males, 45 females = 88 #### Cross-validation Sample - 1. A₂ = High verbal ability, low numerical ability, 35 males, 47 females = 82 - 2. B_2 = High numerical ability, low verbal ability, μ_3 males, μ_5 females = 88. #### <u>Items</u> Although there are 275 items in the AAPI, not all of them could be analyzed because of machine and time limitations incident to the use of even high
speed electronic computers. The present program for correlational matrices are restricted to 38 variables on the computer used (i.e. Mistic). Since the various items of this inventory have not been grouped according to the rational categories described (under "Description of Tests") any selection of 38 items was assumed to be as good as any other for the purposes of this study. A frequency count was made of all the 275 items of the AAPI for the experimental sample. The first 38 of these which met the criterion of being answered in the same way by less than 80 per cent of the subjects (N = 170), were selected. The Meehl paradox (12) shows that the items which yield the best configural differences are those which intercorrelate differently in the two groups of subjects, such that if we subtract, the difference would be relatively large. Therefore, the intercorrelation of every item with every other item was calculated for A_1 and B_1 separately. This process yielded two matrices of intercorrelation, one for A1 and the other for B₁ (see Tables I and II, Appendix). The matrix of B₁ was then algebraically subtracted from the matrix of A_1 . The new matrix was called matrix of differences (see Table III, Appendix). In order to classify the items into a number of types or clusters of differences, McQuitty's elementary linkage analysis (8) was applied to the matrix of differences. This analysis is a method of clustering. It can be used to cluster any objects which have distinctive cluster-characteristics. Linkage is defined as the largest index of association which a variable has with a composite of all the characteristics of the members of a cluster (consequently as shown in Table IV, Appendix, every variable is assigned to a cluster in terms of its highest index of association). Cattell (8) recognizes the importance of cluster method by stating that it reduces an almost endless variety of variables to a comparatively small number of representative variables. In this study, the application of elementary linkage analysis to the matrix of differences yielded eight types (Table IV, Appendix). Some of the types did not yield highly interrelated clusters and involved very few items. Hence, in order to select the items which may yield the best configural differences further investigation was made by applying the following methods: 1. Sum and average of each column in Table III (Table of Differences) was calculated. Matrix of the first sixteen items having the largest column-sum of Table of Differences was prepared. Sum and average of each column of this matrix was calculated and ranked. General Mean (of all the sixteen columns) = .1518 Mean of the first thirteen largest columns = .1595 (See Table VII, Appendix). 2. The highest entry in each column of the matrix of differences was marked. The first highest entry was examined. It obviously yielded two interrelated items. Every time the list of the items was checked and the duplicates were eliminated. This process of examining the entries and pooling the non-duplicate items was continued till such time that there were sixteen selected items on the list. Matrix of these sixteen items was The figure of "sixteen" was maintained throughout these four methods, because there were eight types and therefore eight reciprocal pairs (highly interrelated items). In order to have a fair comparison between the items obtained through the types and the items obtained by other methods, the number of the items was to be kept constant, in relation to their suitability to the configural approach. prepared. Sum and average of each column of this matrix was calculated and ranked. General Mean of all the sixteen columns = .1513 Mean of the first thirteen largest columns = .1593 (See Table IX, Appendix). 3. Matrix of the eight reciprocal pairs (appearing in eight types—See Table IV, Appendix) was prepared. Sum and average of each column was calculated and ranked. General Mean of all the sixteen columns = .1309 Mean of the first thirteen largest columns = .1364. 4. Matrices were prepared for the sets of the items appearing in eight types. Sums and averages of all the columns were calculated. General Mean = .1588 (See Table VIII, Appendix). It was clear from the results of the above methods that: (a) the averages went down if more than thirteen items were considered, and (b) method 1 gave the best items. Hence, the items which were used in this study were numbers 6, 11, 15, 16, 19, 22, 23, 24, 31, 32, 35, 39 and 40, as obtained from method 1. #### Item Analysis At this stage it was considered advisable to expose the data to A and B are said to be reciprocal pairs if A has its highest correlation with B, and B has its highest correlation with A. item analysis for the purpose of testing hypothesis 2 (comparing the item analytic and configural results). It has been mentioned that each item on AAPI has four scoring categories. Therefore, for the Mistic facility, each item was divided as nearly as possible to the median in relation to the number of responses to each category. For instance, on item number 6, number of responses to category 1 was 13; to category 2, 70; to category 3, 61; to category 4, 26. Hence, the line was drawn between the first two and the last two categories, and the responses to categories 1 and 2 were called 1, and those to categories 3 and 4 were called O. Chi-square was calculated for all the thirty-eight items. The results are given in Tables X and XI (Appendix). Those thirteen items which were to be used in agreement analysis (i.e., 6, 11, 15, 16, 19, 22, 23, 24, 31, 32, 35, 39 and 40) were ranked according to Table VII in one column, and were ranked according to their corresponding values of Chi-square in another column. Then Rho was calculated to see whether or not the two sets of items for item analysis and for agreement analysis were selected independently. | <u>Item</u> | Ranked According to Table VII | Ranked According to the Corresponding Value, Table XI | |----------------|-------------------------------|---| | 19 | 13 | 1 | | 11 | 10 | 2 | | 6 | 11 | 3 | | 40 | 8 | 1 4 | | 15
24
23 | 5 | 5 | | 24 | 2 | 6 | | 23 | 7 | 7 | | 22 | 4 | 8 | | 35 | 9 | 9 | | 39 | 6 | 10 | | 32 | 3 | 11 | | 31 | 1 | 12 | | 16 | 12 | 13 | to a second to the t • . Rho = -.43 (P > .10) That is, the two sets of thirteen items were selected independently for the agreement analysis and for the item analysis. Or, in other words, those items which were likely to yield pattern differences were not necessarily those likely to yield item analytic differences. In addition, r was calculated on all the thirty-eight items based on the rankings from item analysis (See Table XI) and from method 1 described above (See Table VII) and was found to be zero. This is further evidence that the two methods for selecting items were satisfactorily independent. | Item | Ranked According to Table VII | Ranked According to Table XI | |--|---|---| | Item 4 29 27 19 12 30 10 30 21 53 32 32 33 8 20 37 14 8 17 39 46 | Ranked According to Table VII 31 21 15 12 14 23 17 8 9 11 19 38 33 30 29 27 2 26 37 3 22 7 10 32 6 21 20 18 31 35 36 28 13 25 16 | Ranked According to Table XI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | | 32
31
16 | 5
1
14 | 36
37
38 | r = -.000 This further confirmed the results obtained previously. The first thirteen items giving the highest values of Chi-square (Table XI, Appendix) were selected for the item analytic approach. They are items: 4, 6, 8, 11, 12, 15, 19, 21, 25, 27, 29, 30 and 40. The subjects of A_1 and B_1 were scored on these items in such a way as to maximize the difference between the groups in favour of high scores for group A_1 . The following distributions of scores for the two groups were obtained for: (a) the thirteen most significant items, (b) the four most significant items (i.e., items 4, 29, 27 and 19; p < .05) and (c) the three most significant items (i.e., 4, 47, 47, 49; 47, 49; 47, 49; 47, 49; 47, 49; 49, Frequency Distribution Number 1 (13 items) | Scores | A1 | \mathtt{B}_{1} | |------------------------|---------------------------------------|-------------------------------------| | 1
2
3
4
5 | 0
1
2
3
11 17 + 30 | 2
8
13
13
= 47 22 | | 6
7
8
9
10 | 13
114
20
12
6
0 | 10
12
4
3
0
<u>1</u> | | | 82 | 88 | Frequency Distribution Number 2 (4 items) | Scores | Aı | $\mathtt{B}_{ extbf{1}}$ | |--------|-----------------|--------------------------| | 0 | կ
17 21+31 = | 16
52
<u>41</u> | | 2 | 22 | 21 | | 3 | 18 | 5 | | 4 | <u>21</u> | _5 | | | 82 | 88 | . · Marketine . · · · / and and a second of the Frequency Distribution Number 3 (3 items) | Scores | $\mathtt{A}_\mathtt{l}$ | B ₁ | |--------|----------------------------------|----------------| | 0 | 12
25 37 + 13 = | 34
50 41 | | 2 | 21
2), | 8 5 | | J | 82 | 88 | For each frequency distribution the cut-off point was selected which allowed for the maximum difference in scores for the two groups. These empirically determined cut-off scores were 5, 1 and 1 for the three frequency distributions. Using the same scoring system each subject in the cross-validation sample (A_2 and B_2) was scored and corresponding frequency distributions were made. These were: Frequency Distribution Number 4 (same 13 items as in FD 1) | Scores | A2 | B ₂ | |------------------|-------------------------|------------------------| | 2
3
4
5 | 0
6
8
20 34+56 | 3
6
7
= 90 16 | | 6 | 15 | 20 | | 7
8 | 17
9 | 20
22
12 | | 9 | 6 | 1 | | 1.0 | 0 | 1 | | 11 | 1 | <u> </u> | | | 82 | 88 | The state of s • - - Frequency Distribution Number 5 (same 4 items as in FD 2) | Scores | A2 | | Bz | |-------------|----------------------------|----------------------------|---------------------| | 0
 | 2
28 | 3 0+ 69 = 99 | 2
17 | | 2
3
4 | 37
15
<u>0</u>
82 | | 42
22
5
88 | Frequency Distribution Number 6 (same 3 items as in FD 3) | Scores | Az | B ₂ | |--------|-------------------------|----------------| | 0
1 | 12
50 62 + 43 | 6
= 105 39 | | 2 | 19 | 36 | | 3 | <u>_1</u> | _7 | | | 82 | 88 | Applying the cut-off points determined from the experimental sample fourfold tables were constructed. Below are presented these tables as well as the corresponding tables on the experimental sample. Results on item analysis on first 13, first 4 and first 3 items vide Table XI, presented in fourfold tables. 3 ı | Experimental Sample | | | | Cross-validation Sample | | | |---|-----------------|------------------------|------------------------|--|----------------------------|--------------------------------| | (13 items) | | | | • | (13 items) | | | | Aı | B_{1} | Sum | ¥2 | B ₂ | Sum | | A High verbal Low numerical | 65 | 30 | 95 | 48 | 56 | 104 | | B High numerical Low verbal | <u>17</u>
82 | <u>58</u>
88 | <u>75</u>
170 | <u>34</u>
82 | <u>32</u>
88 | <u>66</u>
170 | | Correctly assigne $CR^1 = .63$ (not si | | | 23= 72 % | | Ly assigned
79 (not sig | 1 = 48+32=80=47%
gnificant) | | (4 items) | | | | | (4 items) | | | A High verbal
Low numerical | 61 | 31 | 92 | 52 | 69 | 121 | | B High numerical Low verbal | <u>21</u>
82 | <u>57</u>
88 | <u>78</u>
170 | <u>30</u>
82 | <u>19</u>
88 | <u>49</u>
170 | | Correctly assigned = 61+57=118=69% GR = .37 (not significant) | | | 18=69% | Correctly assigned = 52+19=71=42%
CR = 3.92** | | | | (3 items) | | | | | (3 items) | | | A High verbal Low numerical | 45 | 13 | 58 | 20 | 43 | 63 | | B High numerical Low verbal | <u>37</u>
82 | 75
88 | <u>112</u>
170 | <u>62</u>
82 | <u>45</u>
88 | <u>107</u>
170 | | Correctly assigne CR = 2.741 | d = 45 | + 75 - 1 | .20 =71% | Correct CR = 3. | y assigned
W | 1 = 20+45=65=38% | The results are compared by McNemar's Critical Ratio Formula (19a) McNemar, Q. Psychological Statistics. New York: J. Wiley & Sons, 1955. j The above 2 x 2 tables show that the most significant items did not hold up on cross-validation. In fact it is to be noted that there was a tendency for the items to discriminate between the groups in the reverse direction. In the cases of 3 and 4 most significant items we obtained significantly poorer classification than can be expected by chance (P < .001). # Agreement Analysis Agreement analysis was applied to the scores of the subjects of A_1 and B_1 on 13 items (discussed above i.e., 6, 11, 15, 16, 19, 22, 23, 24, 31, 32, 35, 39 and 40). First their patterns were prepared on Mistic (one pattern as a specimen is given in the Appendix). All the patterns within each group, A_1 and B_1 , and then between both the groups, A_1 and B_1 , were compared. There were some duplicates within each group but there was none between the two groups, However, all the duplicates were dropped. This left 44 patterns of responses in A1 and 42 patterns of responses in B_1 . Subjects of A_1 and B_1 (experimental sample) and those of A_2 and B_2 (cross-validation sample) were scored on the patterns of A₁ and B₁ on the Mistic. Each subject of A₁ and B₁ was then classified in terms of the patterns. This process discriminated between the good and bad patterns. (Good patterns were those where most of the subjects were correctly classified and bad patterns were those where most of the subjects could not be correctly classified). All those patterns where the ratio of wrong classifications to total classifications was equal to or more than 1:4 were dropped. This eliminated 44 patterns of the 86. The subjects of A_2 and B_2 (cross-validation sample) were scored on the basis of the remaining 42 patterns of A_1 and B_1 (experimental sample; 23 patterns in A_1 and 19 in B_1). Each individual was assigned to A_1 or B_1 depending upon whether or not he made the highest score with A_1 or B_1 . If an individual of A_2 could be assigned to A_1 , he was labelled as "correctly classified," if he was assigned to B_1 , he was labelled as "incorrectly classified." Similarly an individual of B_2 was "correctly classified" if he could be assigned to B_1 , otherwise "incorrectly classified." This yielded 47 correct classifications and 47 incorrect classifications in 47 in the configural approach yielded results which although were not reliably different from chance when applied to the cross-validation sample, were, nevertheless, in the expected direction. The following fourfold tables were made to compare the results obtained by the agreement analysis and the item analysis: # Cross-Validational Subjects | | | | | Configural | | |---------------|----------------------|---|------|-------------------------|-----| | | | | A | В | Sum | | Item Analytic | В | | 60 | 47 | 107 | | 3 Items | A | | 29 | 34 | 63 | | | $CR^{1} = 2.68^{**}$ | | | | 170 | | | | | A | В | | | Item Analytic | В | | 17 | 32 | | | 4 Items | A | | 72 | 149 | | | | | | CR = | 3.94** | | | | | | A | В | | | Item Analytic | В | | 27 | 39 | | | 13 Items | A | | 62 | 42 | | | | | | CR • | = 1.81 (not significant | ;) | | | | ٨ | A | В | | | A.12 | B ₂ | Ą | 42 | 46 | 88 | | Actual | Az | | 47 | ם
35 | 82 | | | | | CR • | • .80 (not significant) | | The results are compared by McNemar's Critical Ratio formula (19a) McNemar, Q. <u>Psychological Statistics</u>. New York: J. Wiley & Sons, 1955. It may be noted that the critical-ratio in the case of the 13 items is not significant, but in the other two cases it is significant at 1% level of confidence. In general, the results obtained by the configural approach are better than those by the item analysis, but the fact, that the item analytic results are poorer than those which could be obtained by mere chance, makes this slight superiority unreliable. The configural results were compared with the results which could be expected by mere chance. The former results were superior to the latter but not significantly. The item analytic results which were obtained in this study were unusual, nevertheless, they were checked thoroughly. #### VII. SUMMARY AND CONCLUSIONS The present study investigated the differences in pattern of responses to selected items of the Academic Activity Preferences Inventory by freshmen who scored high on verbal items but low on numerical items versus those who scored high on numerical items but low on verbal items of the College Qualification Tests. The study also showed the comparison between the results obtained by item analytic method and those by agreement analysis. McQuitty-Lingoes machine agreement analysis was applied to differentiate two categories of people. In our present study we have assumed that the students who have high verbal but low numerical abilities have patterns of responses different from those who have high numerical but low verbal abilities. Since they were taken to be two categories of people, agreement analysis was applied to differentiate them. Three hundred and forty freshmen were selected out of 824, who had both College Qualification Tests and Academic Activity Preference Inventory in September, 1958, Michigan State University, on the basis of their verbal and numerical scores. Group A was formed of 170 freshmen who had high verbal but low numerical abilities. Group B had 170 freshmen who had high numerical but low verbal abilities. Each group was further subdivided into two equal subgroups. These subgroups were • . state of the • called A_1 , A_2 ; B_1 , B_2 . A_1 and B_1 were taken as the experimental sample and A_2 and B_2 as the cross-validation sample. Their responses on the AAPI were subjected to item analysis and agreement analysis. The results obtained by these methods were compared and the following conclusions were drawn: - 1. The results of both the approaches did not support the hypothesis significantly that the patterns of responses differ as a function of high verbal and low numerical ability versus high numerical and low verbal ability. - 2. Item analysis showed significantly poorer classification on cross-validation sample in cases of 3 and 4 most significant items chosen item analytically. - 3. The difference between the two approaches is significant in the cases of 3 and 4 most significant items, but is not significant in case of 13 items
chosen item analytically. - 4. Although the configural approach is slightly better in general, the fact that neither approach yielded better than chance prediction does not allow us to assess the merits of one method over the other. However, the prospective researcher is recommended to prepare the matrices of all the 275 items of the AAPI and construct thereby matrices of differences. Then he would be in a better position to select configurally suited items. Similarly all the items should be exposed to item analysis. This would give him a correct picture of the relative merits of both the methods. war and the second of seco • • . - ... · 3 An experimental design of this kind stresses the necessity of a theoretical approach toward the preparation of configurally suited items. If a theory could be developed through which items suited for configural method could be prepared, it would facilitate the situation tremendously by saving the time of the researcher that he spends in selecting such items. #### BIBLIO GRAPHY - 1. Allport, G. W. Personal Documents in Psychological Science, Soc. Sci. Res. Coun. Monog. 1942. - 2. Cattell, R. B. "r and Other Coefficients of Pattern Similarity." Psychometrika, 14, 279-298, 1949. - 3. Cronbach, L. J., and Gleser, G. C. "Assessing Similarity Between Profiles." <u>Psychol. Bull.</u>, <u>50</u>, 456-473, 1953. - 4. Gaier, E. L., and Lee, M. C. "Pattern Analysis: The Configural Approach to Predictive Measurement." Psychol. Bull., 50, 110-118, 1953. - 5. Louttit, C. M. "The Nature of Clinical Psychology," <u>Psychol. Bull.</u>, 36, 361-389, 1939. - 6. McQuitty, L. L. "Theories and Methods in Some Objective Assessments of Psychological Well-Being." <u>Psychol. Monog.</u>, 68, No. 14 (Whole No. 385), 1954. - 7. McQuitty, I. L. "Agreement Analysis: Classifying Persons by Predominant Patterns of Responses." Br. J. Stat. Psychol., 9, 5-16, 1956. - 8. McQuitty, L. L. "Elementary Linkage Analysis for Isolating Orthogonal and Oblique Types and Typal Relevancies." Educ. Psychol. Measmt. 17, 207-229, 1957. - 9. McQuitty, L. L. "A Pattern Analysis of Descriptions of 'Best' and 'Poorest' Mechanics Compared with Factor Analytic Results." Psychol. Monogr, 71, No. 17 (Whole No. 山の) 1957. - 10. McQuitty, L. L. "Job Knowledge Scoring Keys by Item versus Configural Analysis for Assessing Levels of Mechanical Experience. Educ. Psychol. Measmt. X 18, 661-81, 1958. - ll. McQuitty, L. I. "Maximum-Minimum Hierarchical Analysis." (Unpublished MSS). - 12. Meehl, P. E. "Configural Scoring." J. Consult. Psychol. 14, 165-171, 1950. - 13. Murphy, G. <u>Historical Introduction to Modern Psychology</u>. New York: Harcourt Brace and Company, 1949. - 14. Sargent, H. "Projective Methods: Their Origin, Theory and Application in Personality Research." <u>Psychol. Bull.</u>, <u>42</u>, 257-93, 1945. - 15. Watson, R. I. "A Brief History of Clinical Psychology." Psychol. Bull., 50, 321-46, 1953. - 16. Zubin, J. "A Technique for Measuring Like Mindedness." <u>J. Abnorm.</u> Soc. Psychol., 33, 508-16, 1938. TABLE I. INTERCORRELATION OF EVERY ITEM WITH EVERY OTHER ITEM IN GROUP A. (SUBJECTS HAVING HIGH VERBAL AND LOW NUMERICAL SCORES) | David Street Street Street Street | | | And the state of the state of | - Araba da | | | | or desired to the second secon | |-----------------------------------|---------------------------------------|-------------------------------------|--|---|---|---|--|--|--|--|---|--|--|--|---|--|--|---|--|---|---|---------------------------------------|---|--|---------------------------------------|---|---|---------------------------------------|------------------------|-------------------------------|-------------------------------|------------------------|-------------------------------|--|------------------------|-------------------------------|--|--| | Items | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 1 | 3 14 | 1.5 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 2 3 4 5 6 | 1797
- 1608 | | -1790 | - 0511 - 1790 · | - 0164
- 0120
- 0949 | 1311
-0598
1101 | 0732
0471
0557 | 2 111
L -036
7 -005 | 1 00
1 -24
9 18 | 18 - 06
27 - 03
21 22 | 671 -1
630 1
662 0 | 765 055
997 - 112
781 211
561 - 027
078 - 211 | 1 -00
7 -29
5 04 | 36 169
99 -00 3
16 00 1 | 4 ~ 012
1 ~ 135
2 189 | 18 -0140
1 0161
4 3421 | -0511
+ -3602
L -0343 | 0474
2 - 1218
0096 | -1826
1927
0858 | 0046
0470
1147 | 0084
2201
-0461 | -0394
0158
0176 | -0747
-2069
1549 | -1696
2247
-1422 | 1760
4830
0217 | -1135
2521
-1048 | - 1546
- 0965
2082 | -1.104
3035
-0336 | 0154
-1878
0160 | -1400
-1611
2030 | -0029
1143
-1845 | -0119
2087
-206h | -0524
-0256
-0903 | -1978
0372
0467 | 0532
2657
0667 | 0966 2415 -1220 | -0907
4991
-1168 | -0577
0744
1283 | | 8
9
10
11
12 | 1069
1050
-2016 | 1311 · 0732 · 1111 · 0018 · -0671 · | 0471
-0361
-2427 | 0557
-0059
1821 | - 0893
- 0568
1703 | 1184
- 0535 | - 0981 | -098;
L 055 | 1 - 06
05
7 | 70 - 06
57 05
17 | 30 2
387 - 0
315 - 0 | 281 103
136 261
938 -108
502 -208
370 093 | 9 05.
6 25
7 24 | 31 006
32 097
16 118 | 2 - 055
4 190
8 - 006 | 6 - 2252
2 0776
6 - 0060 | 2 0715
6 1091
0 2807 | 0537
0170 | -0025
-0649
-1429 | -2554
0763
1501 | 1174
-0456
-3005 | 0361
2545
- 0259 | 0978
0691
3347 | 1146
0351
-3031 | 1752
0392
- 1798 | 3452
-1099
-2216 | -1988
-1896
1429 | 0957
0800
-2000 | -2845
1525
2824 | -1445
1083
2153 | 0226 | 1151
1383
-3872 | -0172
0612
-0281 | -0120
0216
-0441 | 0761
-1115
-1378 | -0287
1381
-1304 | 1503
-3134
-2680 | 0886
0617
-1614 | | 13
14
15
16
17 | 0554
0252
-1319 | 1694 . | 2147
-2999
-0031 | -0275
0416
0042 | -2112
0425
0719 | 1037
3306
0078 | 2619
0531
0062 | -108
L 258
2 097 | 6 -20
2 24
4 11 | 87 09
16 - 19
88 - 02 | 34 0
87 0
15 - 1 | | 2 -21
7 14 | 62 - 011
149 | 7 040
1 120
029 | 14 0341
7 0219
2 - 0669
0 0511
6201 | -2766
1749
10054 | -0849
-0727
1186 | -0034
0236
0152 | -2021
1427
-0526 | 1822
0654
-1319 |
0714
2375
-2676 | -0826
0691
0289 | 2731
0548
- 0596 | 2907
- 0777
3368 | 4195
-0753
-0638 | -1414
1552
-2255 | 2236
- 0743 | -3310
31449
0915 | 0370
1527
-1354 | 0963
- 0884
2808 | 2074
-1025
-0176 | -0232
1496
0868 | 0722
0998
- 0379 | 1025
0236
0664 | 0499
-11.63
0220 | 4208
-3384
0462 | 1194
0469
1403 | | 18
19
20
21
22 | 1232
-1335 | -0511 · 0474 · | -3602
-1218 | 0096 | - 0594 1659 | 0444
-0524 | -2177 | 053
064 | 1 28
7 01
9 -11 | 07 08
70 21
29 - 12 | 187 0
124 - 3 | 344 021
220 -276
535 -084
891 -003
524 -202 | 6 17/1
9 -07/1 | 49 005
27 118
36 015 | 6 - 028 | 1 -1629
8 0276
2 0615 | 6 - 0935
6 0394 | - 0935 | | 1621
0843
1201 | -1823
-2115
2029 | 0768
0980
1190 | -0407
2945
2077 | 0652 | -1956
-1636
1227 | -0300 ·
-1363
2761 | 0414 · 0700 · 0284 | -1240
-2628
4845 | -1185 | 1565
2976
- 0721 | 0161 2666 | -0590
-0154
2019 | 0517
0444
- 0655 | 0815
- 0732
0951 | 0125
-2998
1732 | 0866
0252
- 0964 | -2334
-2862
2016 | -0387
-3803
1700 | | 23
24
25
26
27 | 2762
1835
- 4071
2632 | 0084
-0395
-0747 | 2201
0158
-2069 | -0461
0176
1549 | -0178
-0111
0570 | 2467
1597
- 0960 | 117L
0361
0978 | 254
254
3 069 | 6 - 30
5 - 02
1 33 | 05 - 40
59 00
47 14 | 60 1
37 1
14 -1 | 518 182
495 071
539 - 082
872 273
124 290 | 2 06.
4 23'
6 069 | 54 - 131
75 - 267
91 028 | 9 031
6 276
9 - 074
6 196 | 2 0243
1 0793
3 - 0789
5 1273 | 3 -1823
0768
-0407
0652 | -2115
0980
2945
-1949 | 2029
1190
-2077
1913 | 1036
1339
2001
-0100 | -2065
2855 | - 0254
1468 | - 0254 | | 0877
-1797
0992 | 1528
- 0902
3957 • | 1368
0162 -
0348 | 1358
-2432 | -2765 | 3220
1163
-0000 | -0275
0574
-0217 | 2021
-2118
3369 | 1791
0290
0711 | 1657
- 0624
1605 | 1160
-1652
3067 | 0380
-0495
0439 | -0002
-3053
2654 | 0419
-1618
1548 | | 28
29
30
31
32 | -0561 1299 | -1135
-1546
-1104 | 2521
-0965
3035 | -1048
2082
-0336 | -0686
0855
-0233 | 1344
0039
1079 | 3452
-1988
0957 | 2 -109
3 -189
7 080 | 9 - 22
6 14
0 - 20
5 28 | 16 ~ 13
29 15
00 ~ 13 | 05 2
663 0
43 3 | 564 419
543 - 141
931 223
972 - 331
121 037 | 5 -07.
4 15.
6 -07. | 53 - 063
52 - 225
43 117 | 8 - 018 5 018 2 106 5 - 062 | 0 -0711
7 1911
7 -0019 | -0300
-0414
-1240 | -1363
0700
-2628 | 2761
0284
4845 | -0454
0732
0159
2830 | 2593
0306
2707
-1270 | 1528
-1368
1358
0380 | -0902
0162
-2432
2760 | 3957
- 0348
3283
- 2765 | 2495
- 2673 | - 0768
3859 ·
- 2475 | -1726
1539 - | - 1726
- 2588 | -2588 | 2409
-0920
2329 | -1957
-0951
2313 | -2170
3722
-1207 | -0377
1706
3087 | -0794
1566
0308 | -2486
3556
-2428 | -0609
0236
1437 | -0824 · 3062 | -11/4
1450
-3020 | | | 0422
2805
1509
-1522 | -0029
-0119
-0524
-1978 | 1143
2087
- 0256
- 0372
2657 | -1845
-2064
-0903
0467
0667 | ~0177
0272
1088
0763
~0665 | -1561
0685
-0717
-0607
0186 | 0226
1153
-0172
-0120
0763 | 6 001
L 138
2 061
0 021
L -111 | 0 -06
3 -38
2 -02
6 -04
5 -13 | 26 19
72 01
81 13
41 -14
78 - 22 | 10 - 0
.83 0
.38 2
.97 3
.28 2 | 356 096
710 207
105 - 023
285 072
184 102 | 3 -08
4 -10
2 14
2 09
5 02 | 84 280
25 - 017
96 086
98 - 037 | 8 079
6 189
8 272
9 047
4 035 | 7 0566
6 1696
9 0037
5 1168
2 1265 | 0161
0590
0517
0517
9815
0125 | 2666
-0154
0444
-0732
-2998 | -1120
2019
-0655
0951
1732 | -1349
-0556
-0615
0787
1004 | -3361
0997
-0320
-0137
1805 | -0275
2021
1791
1657
1160 | 0574
-2118
0290
-0624
-1652 | -0217
3369
0711
1605
3067 | 2378
3083
0961
-0035
3196 | 0326 · 3414 · 1851 · 0646 · 1528 · | -1957
-2170
-0377
-0794
-2486 | -0951
3722
1706
1566
3556 | 2313 | -0824
2469
0158 | 1086
2324
1894 | 1390
0219
1552 | 1390
0161
0970 | 0219
0161
0715 | 1552
0970
0715 | 2428
3481
0480 | 0753 ·
1537
0206 -
0300 -
2643 | 1271
-0412
-0255
3404 | | 38
39
40 | 0495 | 0966 | 2415 | -1220 | -0967 | -1066 | -0287 | 7 138 | 1 -13 | 04 40 | 24 0 | 813 049
674 420
407 119 | 9 -11 | 63 022 | 0 -088 | 2 -0610 | 0866 | 0252 | -0964 | 0717 | -T997 | 0300 | -3053 | 2651 | 3399 | 1030 - | -0821 | 3062 | 1437
-2507
-3020 | 0289 | 0753 | 1537 | 0206 | 0480
0300
- 0255 | 2643 | 1575
0l ₁ 19 | | 0419
1269 | Note: Decimal points are omitted. . | • • | | | | | | | | | |----------------------|---------------------------------------|---------------------------------------|--|-----|---|---|------------------------|----------------| | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | _ | | | | | | v=1 | | ۲, | | • | | · | | | | | | 71 | · · · · · · · · · · · · · · · · · · · | | | *** | | | Y | - | |
7. | | | | | | , | | | | Ĺ | | | | | - | | - '7' - | | | | • | | • | 9 | | - | , | | | ではいい | - | | · | | | | | | | 1 | | | | | - i | * 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 | | | | | , - | | - | | - | | | | | 15 | | | - 1 | • | | ~ | <u></u> , - | - • | | ٤ | 1 2 2 | , | _ | | · · | | ^ , | | | | | | | | | • | | | | 1 03 | | 1 1 2 7 | | | · · | ing the contract | . 1 | · - · | | | | | | 1 . | | · · · · · · · · · · · · · · · · · · · | - | | | | | - | | | | | ' | | | 17 | | · · · · · · · · · · · · · · · · · · · | γ, - | ř. | i | <u> </u> | | | | 70 | 1 | - | | 1 | | | | 1 | | r | | | , in the second second | | | _ | | | | <u> </u> | *- | | 11 | | * | | • | | | | _ | 1 | 21 A | | - · · · | | | | | | | | The state of s | | $\mathcal{L}(\mathcal{L}_{\mathcal{L}}) = \mathcal{L}(\mathcal{L}_{\mathcal{L}}) = \mathcal{L}(\mathcal{L}_{\mathcal{L}})$ | | | | | الخار | | | | 1 | | · · · · · · · · · · · · · · · · · · · | - '- | . . | | | . — | | . 1 | | | ı | | | | ्रा ज् ष्ट्रा | | • | | , · | 1 a | | | | | | • | | | | | · - | - | w *** | | . 7 | | | | | V | - 1 | | | |
, <u>;</u> , | | | i | 4 | ì | | , | | | <u>ئ</u> ر | | | | | | -)
 | | | | 1,C | 2° | 1 - | | | Land to the state of | 1 | | 1 " | | . 1 | <u>-</u> | | | | | | - | | | 1 | <u> </u> | | | | | | | - | | : | | ,=- | , | • | | | - | | | 1 | ; ; | | | ¥ | | | _ | | | A | | | | | | | | | | , | | | | | | _ | | | | <u></u> | | · | | | | - | | | | 1 | 1 | | e de la companya l | | · 1 | · · · · · · · · · · · · · · · · · · · | - | ~ | | -1 | •• | · · · · · · · · · · · · · · · · · · · | - 1 | *** | _ | · - | - ~ | | | | | - | | | i i | -1: | | | | 2 | | 1 - | | | | , | 1 | 1 . | | , | | | | | | | | | | | • | ·- | | | | | | | | | ; · | - | | , | | | | - | | , 1 | | <u></u> | h - | 1 | | 111. | - | | | , | TABLE II. | INTERCORRELATION OF EVE | ERY ITEM WITH EVERY OT | HER ITEM IN GROUP B. | | (SUBJECTS HAVING HIGH NUMERICAL AND LOW VERBAL SCORES) | |-----------|-------------------------|------------------------|----------------------|--|--| |-----------|-------------------------|------------------------|----------------------|--|--| | oms | 0 | 2 | . 1. | 7 | | 0 | | 7.0 | 7 7 | 7.0 | | 71 | media ataga mengan mengan mengan
media ataga mengan-pengan-pen | | | - 0 | Constitution of the Street | Constant Constant Space | den et en e | Constitution of the Consti | | | | e Charles and Device and an ex- | and the desire of the desired bender | Constitution to the day | editional acceptance description (per para). | | Sendandan berejarga | - Manufaced brook on Quantificing | and too Brooker down to the Brooker down to | eregies demokraties (desse)
Wildensterede verberedesse) | The State of the State of Stat | | mali diriyya harafi mirili da ili da ili mali bara di siya
mirili mirili miril | | | | |----------------------|---|----------------------------------|---------------------------------|--|----------------------------------|--|--------------------------------|--|---|---|-----------------------------------|--|---|----------------------------------|---------------------------------------|--------------------------------|--|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--------------------------------------|---------------------------------|--|------------------------------|--|---------------------------------------|---|--|--|----------------------------------|--|--|---------------------------------------|------------------------------| | ems | 4 | 3 | 4 | 5 | 0 | 0 | 9 | 10 | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 4 5 | -0960
2390
-2059 | 0348 | -0422
-0746 | -0.140 | -1478 | -0895
-1971 | 0676 | 054 | 4 0091
6 050 | 7 1325
1 -1476
7 1056 | 5 - 019: | 5 1482
2 -0428
9 2782
8 0493
7 -1519 | -0522
-1869 | -0833
-0144
-0626 | 0621 | 0169
0438
1878 | - 0366
- 0558
0669 | 0020
- 2179
0099 | 0073
2018
-0430 | -1142
-1228
0149 | 1927
-0477
-1712 | 0545
1823
- 0590 | 0902
-1082
1981 | 1234
2915
-0892 | 0944
5005 | -0817
2584
-0122 | - 0716 -
- 1019 | -0367
3248
0337 | -0260
-1310
1842 | -0101
-0899
0128 | -1104
0868
-0736 | 0664
2667
- 1191 | 0555
1279
- 1431 | -0452
1368
0649 | 1774 (0338 (2540 0563 2696 | 0795
0942 | 1042
4094
1381 | 0479
1374
-1687 | | 9 10 11 |
4056
0407
-0225 | -1075
0160
-0887 | 0676
-0144
0091 | -1971
-2181
0546
0507
1056 | -2140
-0426
-0270 | 2912
- 0059
- 0968 | -0449
-116L | -0449
4 -028 | 9 -11 6
- 028 | 4 0250
5 0730
2122 | 0 1260 0459 -2201 | 1 1097
0 0712
9 0343
0 -1017
5 -0375 | -0148
0319
0475 | 0733
-0085
1503 | 0643 | 0248
-0094
-0274 | 1128
1309
- 0359 | - 0905
- 0525
1573 | 1070
-0624
-0118 | -1936
-0069
1039 | 1362
0384
0347 | 1959
-1088
-1702 | -2143
0196
3464 | 2290
- 0913
- 1390 | 1529
- 0968
1178 | 3004
~1557
0584 | 0371
-0137
0712 - | 1123
1553
0377
0716 | -1933
-1806
0000
2370 | -0827
-0932
-0005
0216 | 1191
2132
-1552
-0073 | -0851
2987
-1061
-0632 | -0104
-1085
-0476
1082 | -1108
-1989
0676
0936 | 1760 (
1465 1
-0347 (
0659 2
-1001 L | 0409
1332
0551 - | 0000
1667
0178 | 1251
1714
0651
0235 | | .6 | 1482
-0047
0550
-0069 | -0428
0982
-0833
0621 | 2782
-0522
-0144
1479 | 0493
-1869
-0626
2462 | -1519
-0684
1557
0248 | 1097
1949
3545
0819 | 0712
-0148
0733
0643 | 2 034:
3 0319
3 - 003!
3 148: | 3 -101
9 047
5 150
3 046 | 3 - 1591
4 0350 | 5 222
9 0079
1 026
0 139 | -1161
L -0784
L 0440 | - 1161
2822 | - 0784 | 0440
0871
0598 | 0523
-1749
0065 | 2482
1313
1283 | -1647
-1999
-1757 | 0069
0609
0541 | -0462
3328
0740 | 1833
1762
0784 | 1241
-0891
1025 | -1518
1319
1007 | 3855
- 1333
- 1438 | 3366
0021
0403 | 1619
-0274
-0722 | 0727
-1328
-0534 -
-1164 - | 1423
1236
1259 | 0490
- 1450
- 0533 | 0603
-2467
-1686 | - 0126
- 1054
- 0135 | 2251
-2023
-1405 | -0073
1739
0542 · | 0549
0839
-0810 | 1521 0
3157 -0
-0527 -2
-0015 0
1472 -0 | 0192
2092 -(
0081 -1 | 4036
0644
1466 | 1660
1098
0299 | | 9 | 1253
-1328
0860 | -0366
0020
0073 | -0558
-2179
2018 | 0669
0099
- 0430 | 0042
2871
-1735 | 1079
-2360
1083 | 1128
-0905
1070 | 3 1309
5 - 052
0 - 062 | 9 - 035:
5 157:
4 - 011 | 3 1800
8 - LL8 | 208:
0 -199
5 251: | 3 0523
2482
8 -1647
7 0069
7 -0462 | 1313
-1999
0609 | 1283
-1757
0541 | 6745
1414
-1273
1963
0819 | -0444
-1495
1513 | - 0758 | - 0758 | 1001
-3917 | 1609
0167
0523 | 1555
-1573
-0180
1096 | -0423
-1743
1071
-1096 | 0225
2890
-1175
1636 | 1632
-0489
0895
-0954 | -0139
-2588
3548
0115 | -0620
-0789
1413
-0776 | 2325
0135
0062
1472
-1234 | 0856
1696
3275
0085 | 2223
1030
0000
- 1137 | 0550
0509
-1476
-1765 | 0594
-0703
-1421
0132 | -0418
-0940
1659
-0365 | 0004 -
1393 -
-0132
2752 | -1275
-0502 -
1240
0440 | 0975 0
1187 -1
-2173 -0
0711 0
0458 -1 | .585 1
217 - 1
407 2
.854 - 1 | 1112 :
1888 -
12100 :
1949 - | 1556
2606
2219
0772 | | 3 4 5 6 7 | 2321
-2321 | 0545 | 1823
-1082 | -0590
1981
-0892 | -2030
2888
-1379 | 1938
0522
0828 | 1959
-2143
2290 | -Lo8
3 019
0 -091 | 8 - 170
6 346
3 - 139 | 2 - 1861
4 1031
0 - 1588 | L 049
L -039
B 191 | 5 1814
6 1241
7 -1518
0 3855
4 3366 | -0891
1319
-1333 | 1025
1007 | 1779
1324
1236 | 0875
-0255
2428 | -0423
0225
1632 | -1743
2890
-0489 | 1071
-1175
0895 | -1096
1636
-0954 | 0623
- 0733
1776 | - 1203 3869 | -1203
-1447 | 3869 | 2415
- 0210
3522 | 0896 ·
-1616 ·
1072 · | -2109
-0763 -7
-0258 | 3694
2167
1906 | -1514
0191
-1998 | -0387 · -0524 · 1075 · | -0131
-1890 - | 2864 · 3046 · 318). · | -1224 -
-0050
-1617 - | 0732
0228 - | 0611 10
4123 -0.
0296 01
4271 -1
3473 1 | 411 0
274 - 2 | 675 = 671 -2 | 1705
2683 | | 0 1 2 | 0735
2272
-1966
-0818 | -0716
-0367
-0260
-0101 | -1019
3248
-1310
-0899 | 1079
0337
1842
0128 | -0286
-2263
-0965
-1473 | -0312
1123
-1933
-0827 | 0373
1553
-1806
-0932 | L - 013
3 037
6 000
2 - 000 | 7 071
7 - 071
0 237
5 021 | 2 3256
6 - 1665
0 1775
6 1893 | 6 072
5 265
5 014
8 077 | 1619
7 -1328
2 11423
8 01490
1 0603 | -0534
-1236
-1450
-2467 | -1164
-1259
-0533
-1686 | 0977
1385
- 0133
0292 | 2325
0664
0675
1528 | 0135
-0856
2223
0550 | 0062
-1696
1030
0509 | 1472
3275
0000
-1476 | -1234
-0085
-1137
-1765 | 1123
-0282
-0803
-0289 | -2109
3694
-1574
-0387 | -0763
-2167
0191
-0524 | -0258
1906
-1998
1075 | -1156
3462
-1482
-0579 | 1713
3327
0000
-0069 | -0751
0943 -0
0837 -2 | 0751
0437
2006 | 0943
-0437
2034 | 0837 -
-2006
2034 | -2372
0352
0676 - | 0750
3968 -
0197 | 0459
-0471
0000 | 1169 -
1612
0904 - | 1548 10
2462 01
3236 -01
1504 21
0678 -09 | 141 1
162 4
324 0 | 347 C
371 2
757 C | 0024
2632
0897 | | 34
35
36
37 | 1558
3784
0209
- 0346
1774 | - 0664 | 2667 | -1191 | -3251 | -0851
-010h | -108 ^r | 5 - 047 | 6 108 | 2 0582 | 2 189 | -0126
2251
5 -0073
5 0549
1 3157 | -2023
1739
0839
-0527 | -1405
0542
-0810
-0015 | 0502
-0294
0738
1472 | 1200
-1150
-0190
0975 | -0418
0004
-1275
1187 | 1393
-0502
-2173 | -0132
1240
0711 | 2752
0440
0458 | 2186
- 0993
0611 | -1224
-0732
4123 | -0050
0228
-0296 | -1617
-0542
4271 | 1217
1881
3473 | 0746
1172
1598 | 0459 -0
1169 1
-2462 3 | 0471
1612
3236 | 0000 | 0474
-0493
0569
0100
0678 | 0966
0772 - | 0234
0857 | 0234 - | 0857 :
2139 - | 1340 Ol
1682 17
0222 - 03
0816 O2 | 789 3° | 751 2
631 - 1
085 0 | 2418
337
1697 | | 38
39
40 | 0701 | 7010 | -0942 | -1150 | -1234 | 0409 | 1332 | 2 055 | 252 | | 8 078
6 193 | 3 -0192
2 4086 | -2092 | 0081
-1466
0299 | -0378
-0133
0045 | 0294
0270
- 0060 | -1585
1112
1556 | -0217
- 1888
- 2606 | 0407
2100
2219 | -1854
-1949
-0772 | 1043
0964
3138 | -0411
0675
1705 | 0274
-2671
-2683 | -1167
3197
2231 | 1711
14446
3560 | 1049
3364
1898 | 0141 -C
1347 L
0024 2 | 4371 | 0757 | -0564
-0924
0390 | 0507 | 3751 - | 0631 | 1085 2 | 0803
2820 05
1931 10 | 581 | | .094
.336 | | .* | | | | |---|--|--|--| | 74 44 | | | | | 31 | St | | | | <u></u> | | · · · · · · · · · · · · · · · · · · · | <u>-</u> | | | | | | | - | | - | | | | | • | · | | 71 | · · · · · · | _ | | | | | - | | | | | | | | 7 | · · | | - | | <u>.</u> | | | The second second second | | | ~ | | | | | 1 | | | | | | | — · · | | of the second second | | - | | | | | · · · · · · · · · · · · · · · · · · · | <u>-</u> | | \mathcal{G}_{i} | | | | | | | | | | | - · · · · · · · · · · · · · · · · · · · | | · | | • | | | .1 | | | | 1 | | | s. ● | | | ~ , i | | • • • • • • • • • • • • • • • • • • • | · · · · · · · · · · · · · · · · · · · | | and the second of the second of | | | | ,ee e | | | | | | entre de la companya | | | in the second second | · | | | • 1.
• • • • • • • • • • • • • • • • • • • | | | | | | | | | | | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | i di | | _ | | | · · · · · · · · · · · · · · · · · · · | | | | | | | - · · · · · · · · · · · · · · · · · · · | er e | | | ~ | | | | | | T 4 1.7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | | | | | | | | 1 2 | | The second second | | | | | - | | | en e | - | | | | | | r | TABLE III. MATRIX OF DIFFERENCES: CELL ENTRIES OF TABLE I MINUS CELL ENTRIES OF TABLE II. | | | Donation de La description de la Constitución | | | | | Transferred services of the species of the services ser | en filler og som stem og som gren og | | | | and the state of t | The state of s | | - Indicate place and | land Read Corporation desired | | De region de la grande gr | Direct for the special condition |---|-------------------------------------
--|--|--|----------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------
--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Items | 2 | 3 | 14 | | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 2 3 4 5 6 0 | 045 | 3 065
1 085
1 030 | 56
59 10L
52 135 | 10
14
58 16 | 044
677 | 1358
1677 | 0297
0870
0828 | 0205
2738
1247 | 0217
0605
0142 | 2518
1314
1973 | 1146
1206
0885 | 0440
1805
0668
0749
0275 | 0635
0768
0593 | 2477
2285
1109 | 0113
0584
0838 | 2830
0568
0867 | 0274
1543
1509 | 3044
1012
0636 | 0961
0003
1212 | 0091
1288
0383 | 1698
0998
0515 | 2678
1251
1571 | 1665
0766
1919 | 0987
0432
2310 | 0668
0530
2055 | 0175
1687
1614 | 0063
0926
1853 | 0054 | 0213
0673
2030 | 0568
1682
2889 | 1299
0712
1902
2001 | 1075
0275
1109
0676 | 0545
0580
0873
3523 | 1079
1535
0508
2512 | 1526
0996
0182 | 0194
0117
1230 | 0171
3357
0070 | 1949
0897
0213 | 1056
0630
2970 | | 9
10
11
12 | 298°
064
179 | 7 180
3 095
1 090 | 20 029
07 020
51 021
05 251
04 114 | 5 27
7 06
8 13 | 738 :
605 :
314 : | 1247
0142
1973 | 0380
1243
0433 | 0380
0532
0494 | 0532
0842 | 0433
0494
0842 | 0982
0860
0143
0407 | 1750
0876
1397
1698
0835 | 1907
1429
1070
1309 | 1357
0679
2263
1941
0548 | 0671
1059
0315
1379 | 1199
0419
0530
0347 | 2500
0870
0214
0296 | 0635
0413
0218
3166
2630 | 1836
1272
1062
1403
0324 | 0299
1095
0025
1311
0024 | 2210
0618
0832
0462
3412 | 0368
0188
0840
3352
5284 | 0341
1598
3633
1443
1898 | 1482
3121
0495
0117
0383 | 0438
1144
0562
1641
0309 | 1141
0223
1360
2976
0113 | 2166
0448
0458
2800
2364 | 0351
2359
1759
0717
1693 | 0044
0596
0423
1284
0322 | 2312
1039
1525
0454
1049 | 2185
0513
1088
1937
1729 | 2752
1906
1562
0553
2381 | 1536
1872
2444
3240
0189 | 0613
0913
1088
0801
0756 | 0501
1869
0460
1377
1186 | 1279
0704
0768
2037
1227 | 1475
1619
0830
3827
0474 | 0870
0164
2956
1664 | 1948
0828
0034
1379 | | 13
14
15
16
17 | 0928
0299
1869
2689 | 8 069
9 106
9 252
5 071 | 49 283 | 3 05
3 05
3 05 | 768 (285)
584 (568) | 0593
1109
0838
0867 | 0060
1357
3467
0162 | 1907
0679
0671
1199 | 1429
2263
1059
0419 | 1070
1941
0315
0530 | 1309
0548
1379
0347 | 1236
0507
1354
0353 | 1001
0667
0033 | 0507
1001
1331
0331 | 1354
0667
1331
0308 | 0353
0033
0331
0308 | 0119
0304
1080
0449
0541 | 1863
5248
0436
1229
1525 | 1537
0798
1272
2943
0985 | 0626
0103
0373
0389
1611 | 0113
1559
1901
1266
0893 | 0553
0008
1108
2103
1608 | 0999
0527
3266
3701
0982 | 1142
0692
0628
0781
2067 | 0038
1124
1881
0842
0729 | 2600
0459
0798
2965
1120 | 0610
2576
0479
0084
0602 | 0184
0086
2086
1091
0790 | 1279
0813
0493
2431
0318 | 1120
3800
4899
1448
0489 | 0650
0233
3994
0332
1698 | 0916
1089
0170
2943
2326 | 0500
0177
0998
1229
1394 | 0210
0159
0243
0326
3023 | 1690
0173
0159
01431
0263 | 0663
2132
0763
0679
1120 | 0030
0691
0929
0139
050h | 0742
0122
2740
1928
0131 | 2370
0466
0629
1104
125h | | 18
19
20
21
22 | 002.
000'
135'
157: | 7 045
2 189
1 118 | 45 304
54 096
99 009
38 169 | 14 10
51 00
51 12
58 09 | 012 (
003 :
288 (
998 (| 0636
1212
0383
0515 | 1836
0299
2210 | 1272
1095
0618 | 10.62
00.25
0832 | 1403
1311
0462 | 0324
0024
3412 | 0119
1863
1537
0626
0113 | 0798
0103
1559 | 1272
0373
1901 | 2943
0389
1266 | 0985
1611
0893 | 1771
0898
2117 | 0177
0607
0012 | 2936
0676 | 2936
0678 | 0676
0678 | 0542
2209
0060 | 2723
0119
2435 | 0055
0902
0365 | 1460
1818
0854 | 1817
0952
2321
1696 | 0300
0574
1348
0322 | 0549
0638
1188
2016 | 0384
0932
1570
0244 | 0708
1250
1185
3967 | 1015
2467
0754
3956 | 0433
3369
0301
1481 | 1008
0786
0360
0191 | 0513
0949
0523
3367 | 2090
0230
0289
0347 | 1062
0825
1020
0546 | 2451
0469
1371
1213 | 3446
0974
0084
2696 | 1943
1197
0519
2145 | | 23
21 ₄
25
26
27 | 175 | 6 093
0 16L | 19 098
19 098 | 17 OL | 766 .
432 : | 1919
2310
2055 | 1482 | 3121
11111 | 0495 | 0117 | 0383 | 0553
0999
11142
0038
2600 | 0692 | 0628 | 0781 | 2067 | 0534 | 0632 | 0055 | 0902 | 0365
085L | 1332
1079 | 0949 | 1953 | 1953 | 1530
1587
2530 | 0632 | 0925 | 0265 | 1954
2569 | 3607
1687 | 2464 | 0843 | 3015 | 2389 0852 | 2963
1356 | 0799 | 0677 | 1286 | | 28
29
30
31
32 | 129
097:
069 | 6 083
3 073
8 043 | 30 005
37 021
L4 056 | 3 06 | 673 : 682 : 682 | 11/ ₁ 1
2030
2889 | 0351 0044 2312 | 2359
0596
1039 | 1759
0423
1525 | 0717
1284
0454 | 1693
0322
1049 | 0610
0184
1279
1120
0650 | 0086
0813
3800
0233 | 2086
0493
4899
399h | 1091
2431
1448
0332 | 0790
0318
0489 | 0411
0683
0927
0589 | 0549
0384
0708 | 0638
0932
1250
2167 | 1188
1570
1185
075h | 2016
0244
3967
3965 | 0817
2989
0467 | 0741
2336
1954
3607 | 0925
0265
2569
1687 | 0090
1377
0767
1075 | 2642
0967
1191
0128 | 2486
0532
2475
0127 | 0975
0596
1572 | 0975
2151
1086 | 0596 2151 | 1572
1086
0295 | 041.5
1303
1637 | 2920
0246
1010 | 0836
2177
3087 | 1963
0046
0596 | 0024 | 0750
0398
0887 | 2171
1309
3264 | 1168
1182
3917 | | 33
34
35
36
37 | 1130
0979
1300
1170
090 | 6 107
9 051
0 107
6 152
4 019 | 75 027
45 058
79 153
26 099
94 011 | 5 13
80 08
85 09
6 03
7 12 | 109 (873 : 508 : 182 : 230 : 1 | 0676
3523
2512
2111
2031 | 2752
1536
0613
0501
1279 | 1906
1872
0913
1869
0704 | 1562
2444
1088
0460
0768 | 0553
3240
0801
1377
2037 | 2381
0189
0756
1186
1227 | 0916
0500
0210
1690
0663 | 1089
0177
0159
0173
2132 | 0170
0998
0243
0159
0763 | 2943
1229
0326
0431
0679 | 2326
1394
3023
0263
1120 | 2573
0496
1187
1358
0290 |
0433
1008
0513
2090
1062 | 3369
0786
0949
0230
0825 | 0301
0360
0523
0289
1021 | 1481
0191
3367
0347
0546 | 3550
0355
2506
0856
1194 | 0144
0843
3015
2389
2963 | 2464
0928
0240
0852
1356 | 0781
0185
2328
2147
1204 | 1429
0015
0256
1916
0277 | 0307
1904
1105
0526
0120 | 0415
2920
0836
1963
0024 | 1303
0246
2177
0046
0320 | 1637
1010
3087
0596
0924 | 0899
0331
1900
0058
2069 | 0120
1552
0959
1215 | 0120
1624
1076
0130 | 1552
1624
1978
1192 | 0959
1076
1978
1531 | 1215
0130
1192
1531 | 3866
0228
0315 | 0837
0785
0177 | 0925
0952
U473 | | 38
39
40 | 019 | 5 017 | 71 335
49 089 | 67 00 | 070 (
213 : | 0267 2272 | 1475 0870 1918 | 1619
0164
0828 | 0830
2956 | 3827
1664
1379 | 0474
1364
0064 | 0030
0742
2370 | 0691
0122
0466 | 0929
2740
0629 | 0139
1928
1104 | 0504
0134
1254 | 0904
0126
1688 | 2451
3446
1943 | 0469
0974
1197 | 1371
0084
0519 | 1213
2696
2145 | 2727
0471
2383 | 0799
0677
1286 | 0769
0382
1065 | 1606
0543
0683 | 0749
1047
0413 | 0076
0666
0160 | 0750
2171
1168 | 0398
1309
1182 | 0887
3264
3917 | 2204
1213
3284 | 2317
0246
0703 | 0639 2214 1147 | 3866
0837
0925 | 0228
0785
0952 | 0315
0177
1473 | 0994 | 0994 (
3067 | 3067 | | | 3820 | 9 3957 | 77 3699 | 5 385 | 569 49 | 9524 1 | 11608 | 43584 | 37177 | 55386 | 41911 | 34497 3 | 35668 | 48521 | +7315 | 37357 | 34598 1 | 48102 | 42021 | 33870 5 | 50629 5 | 7222 5 | 8425 L | 10561 L | .5607 L | 15615 3 | 6242 4 | 1331 3 | OTOT 6 | 0210 5 | 3538 4 | 9067 3 | 38607 5 | 51029 3 | 37272 3 | 35975 4 | 0985 4 | 7418 49 | 1.00 | | | er e | |--|---------------------------------------| | | | | | | | | · | | | | | | | | | | | And the second of o | - | | | - | | | , _ = f | | en de la composition de la composition
La composition de la | | | en en la companya de la companya de
La companya de la co | Ņ, | | | : . | | | | | | 14 | | 그는 그들은 그는 그는 그를 보는 그는 그를 가는 그는 그를 보는 그는 그는 그를 보는 그는 그는 그를 보는 그는 그는 그를 보는 | | | | | | | | | and the second of o | ··· | | And the second s | , , , , , , , , , , , , , , , , , , , | | | - | | | | | the second of th | | | | | | | | TABLE IV. TYPES DEVELOPED THROUGH LINKAGE ANALYSIS FROM TABLE III (MATRIX OF DIFFERENCES) TABLE V. MATRIX OF RECIPROCAL PAIRS | Items | E. | 9 | 6 | 12 | 77 | 15 | 16 | 19 | 23 | 24 | 25 | 26 | 31 | 34 | 35 | 38 | |--|--|--|---|--|--|---|---|--|---|--|--|---|---|--|--|--| | ⁶ | 0302
1807
1994
0693
1068
2527
0145
1649
2930
0545
1079 | 0302
1247
0885
0693
0636
0636
1571
1919
2310
2055
2688
2512
0267 | 1807
1247
0860
1907
0673
0413
01188
1598
1598
1598
1114
1039
1872
0913 | 1994
0885
0860
1309
0548
1379
2630
5284
1898
0309
1049
0189
0189 | 0693
0593
1907
1309
1001
0667
5248
0667
5248
0527
0527
0177
0177 | 1068
1109
0679
0579
0579
1001
1331
04,36
1168
1288
1881
1881
1889
0998
0243 | 2527
0838
0671
1379
0667
1331
1229
2103
3701
0842
01448
1229
0326
0139 | 0145
0636
0436
0436
2630
5248
1229
1229
1191
0632
0708
0708
0708 | 1843
1571
00188
5284
0008
1108
2103
3378
1438
1532
1079
0467
0355
2506 | 0939
1919
1598
1898
0527
3266
3701
1191
1138
0949
2401
2401
2401
3015 | 1649
2310
3121
0383
0692
0632
1332
0949
0949
0240 | 2930
2055
11144
0309
1124
1881
0842
0980
1079
2401
1953
2328
1606 | 0414
2889
2889
10049
3800
4889
4441
0764
0167
1954
0767
0767
3087 | 0545
3523
1872
0189
0177
0998
0355
0843
0185
0185 | 1079
2512
0913
0913
0159
0159
0240
2506
3015
1624 | 0171
0267
1691
0474
0691
0729
0139
2451
2727
0769
0769
0639
3866 | | Total 18
M
Rank order X
General mean of | = 18106
= 1132
= XV
n of all | 22656
1416
V
the si | 22656 19150 1994;
1416 1197 126;
V XI IX
the sixteen colum | d | (a) | 20124
1258
VIII
09 | 19211
1201
X | 1 | | 1 | 18936
1184
X II | 21584
1349
VII | 26987 :
1687
I | 1 | 23167
1448
IV | 18106
1132
XIV | | Mean of first thirteen largest column | st thirte | em lar | rgest c | :olumns | 136 | . | | | | | | | | | | | Note: The decimal points are omitted. TABLE VI. SUMS AND AVERAGES IN DESCENDING ORDER OF COLUMNS OF TABLE III (MATRIX OF DIFFERENCES) | Number | Item | Column Sum | Column Average | |--------|------|---------------|--------------------| | 1 | 31 | 60210 | 158l ₄ | | 2 | 24 | 58425 | 1538 | | 3 | 23 | 57222 | 1506 | | 4 | 11 | 55386 | 11 ₄ 58 | | 5 | 32 | 53538 | 11 ₄ 09 | | 6 | 35 | 51029 | 1343 | | 7 | 22 | 50629 | 1332 | | 8 | 6 | 49524 | 1303 | | 9 | 40 | 49100 | 1292 | | 10 | 33 | 49067 | 1291 | | 11 | 15 | 48521 | 1277 | | 12 | 19 | 48102 | 1266 | | 13 | 39 | 47418 | 1248 | | 14 | 16 | 47315 | 1245 | | 15 | 27 | 45615 | 1200 | | 16 | 26 | 45607 | 1200 | | 17 | 9 | 43584 | 1147 | | 18 | 20 | 42021 | 1106 | | 19 | 12 | 41911 | 1103 | | 20 | 8 | 41608 | 1095 | | 21 | 29 | 41331 | 1088 | | 22 | 38 | 40985 | 1079 | | 23 | 25 | 40561 | 1067 | | 24 | 3 | 39577 | 1042 | | 25 | 34 | 38607 | 1016 | | 26 | 5 | 38569 | 1015 | | 27 | 2 | 38309 | 1008 | | 28 | 17 | 37357 | 983 | | 29 | 36 | 37272 | 981 | | 30 | 10 | 37177 | 978 | | 31 | 4 | 36995 | 974 | | 32 | 28 | 36242 | 954 | | 33 | 30 | 36101 | 950 | | 34 | 37 | 35975 | 947 | | 35 | 14 | 35668 | 937 | | 36 | 18 | 34598 | 910 | | 37 | 13 | 34497 | 908 | | 38 | 21 | 338 70 | 891 | Mean of the first sixteen items = 1343 Mean of the first thirteen items = 1373 Note: Decimal points are omitted. (MATRIX OF DIFFERENCES) TABLE VII. MATRIX OF
ITEMS OF THE LARGEST COLUMN-SUM IN TABLE III | T-Hems | ۷ | = | ا
بر | ٦,6 | . 01 | 22 | 23 | 5 | 9% | 27 | ۲۶ | 32 | 33 | بر
بر | ç | O'(| |---|--------------|--------------------|---------------|----------------|---------------|---------------|--------------------|-------------------|----------------|---------------|-------|---------------|---------------|---------------|--------------|---------------| | | , | 1 | | | <u> </u> | ; | 7 | • | 3 | -
- | ; | , | | | | 3 | | 9 | | 1973 | 1109 | 0838 | 9690 | 0515 | 1571 | 1919 | 2055 | 1614 | 2889 | 2007 | 9290 | 2512 | 2272 | 0316 | | Ħ | 1973 | | 1941 | 0315 | 3166 | 0462 | 3352 | 2447 | 16/1 | 2976 | 0454 | 1937 | 0553 | 0801 | 1664 | 1379 | | Ţ., | 1109 | 1941 | | 1331 | 0436 | 1901 | 1108 | 3266 | 1881 | 0798 | 7,899 | 3994 | 0170 | 0243 | 2740 | 0629 | | 16 | 0838 | 0315 | 1331 | 0 | 1229 | 1266 | 2103 | 3707 | 0842 | 2965 | 9445 | 0332 | 2943 | 0326 | 1928 | 100tc | | T6 | 0636 | 3166 | 0436 | T229 | | 20012 | 33/8 | 1191 | 0980 | ληςτ. | 90/.0 | 5T OT | 0433 | 0513 | 3446 | 1943 | | 22 | 0515 | 0462 | 1901 | 1266 | 0012 | | 0900 | 2435 | 0857 | 1696 | 3967 | 3956 | 1481 | 3367 | 2696 | 2145 | | 23 | 1571 | 3352 | 3000 | 2103 | 3378 | 900 | | 1438 | 20
20
20 | 1089 | 2940 | 101 | 3550 | 2506 | 1740 | 2383 | | 77 | 1919 | 2443 | 3266 | 3701 | 1191 | 2435 | 1438 | | 2401 | 1538 | 195/1 | 3607 | 1 | 3015 | 2290 | 1286 | | 56 | 2055 | 1641 | 1881 | 0842 | 0860 | 0857 | 10 79 | 2401 | | 2530 | 2920 | 1075 | 0781 | 2328 | 05/13 | 0683 | | 27 | 1614 | 2976 | 0798 | 2965 | 1817 | 1696 | 1089 | 1538 | 2530 | | 1191 | 0428 | 1429 | 0256 | 7047 | 6113 | | 31 | 2889 | 04540 | 74899 | 8441 | 9020 | 3967 | 29 [†] 10 | 1954 | 1920 | 1911 | | 0295 | 1637 | 3087 | 3264 | 3917 | | 32 | 2007 | 1937 | 3994 | 0332 | 1015 | 3956 | 10T | 3607 | 1075 | 0428 | 0295 | | 0899 | 1900 | 1213 | 3284 | | £, | 9290 | 0553 | 07.0 | 2943 | 0433 | 1481 | 3550 | ולו נס | 0781 | 25
1759 | 1637 | 0899 | | 1552 | 0246 | 0703 | | 35 | 2512 | 080 | 0243 | 0326 | 0513 | 3367 | 2506 | 3015 | 2328 | 0256 | 3087 | 1900 | 1552 | • | 0837 | 0925 | | 39 | 2272 | 1664 | 2740 | 1928 | 31/1/6 | 2696 | 2740 | 2290 | 05/13 | 70 lt | 3264 | 1213 | 0246 | 0837 | | 3067 | | 017 | 0316 | 1379 | 0 629 | 4סננ | 1943 | 2145 | 2383 | 1286 | 0683 | ομι3 | 3917 | 3284 | 0703 | 0925 | 3067 | | | Total M | 22863 | 24021 | 26146
1653 | 12671
71,41 | 20903
1306 | 26813
1676 | 25599
1600 | 30015 | 20440
1278 | 19118
1195 | 30914 | 26983
1686 | 79171
2701 | 24,168
151 | 2611
1632 | 24177
1511 | | Rank order = | 1 X 1 | × | Δ | | | | | Ħ | | ΔX | | | | Ħ | | VIII | | General mean of all
Mean of first thirts | of all | of all the sixteer | | column | I m sum | 1518 | Note: Decimal points are omitted II II TABLE VIII. MATRICES OF ALL THE ITEMS APPEARING IN EIGHT TYPES | Type | I | | | | | | | | | |------|--|---|--|--|--|--|--|--|--| | | Items | | 12 | 23 | 30 | 33 | 20 | 18 | 21 | | | 12
23
30
33
20
18
21 | | 5284
0322
2381
0324
0296
0024 | 5284
2989
3550
0542
1017
2209 | 0322
2989
1303
0932
0683
1570 | 2381
3550
1303
3369
2573
0301 | 0324
0542
0932
3369
1771
2936 | 0296
1017
0683
2573
1771
0898 | 0024
2209
1570
0301
2936
0898 | | | Total
M
GM | = | 8631
1233
1040 | 1559 1
2227 | 7799
7799 | 13477
1925 | 9874
1411 | 7238
1034 | 7938
1134 | | Type | II | | | | | | | | | | | Items | | 14 | 19 | 39 | | | | | | | 14
19
39 | | 5248
0122 | 5248
3446 | 0122
6بلباد | | | | | | | Total
M
GM | = | 5370
1790
1959 | 8694
2898 | 3568
1189 | | | | | | Туре | Ш | | | | | | | | | | • | Items | | 15 | 31 | 32 | 22 | 40 | 5 | | | | 15
31
32
22
40
5 | | 4899
3994
1901
0629
2285 | 4899
0295
3967
3917
1682 | 3994
0295
3965
3284
1902 | | 0629
3917
3284
2145
2970 | 2285
1682
1902
0998
2970 | | | | Total
M
GM | * | 13708
2285
2158 | | | | 12945
2158 | 9837
1640 | | - - - 1 - 1 - - TABLE VIII - Continued | Type | IA | | | | | | | | | |------|---------------------------------------|---|--|--|--|--|--|--|--| | | Items | | 35 | 38 | 11 | 4 | 17 | 27 | 13 | | | 35
38
11
4
17
27
13 | | 3866
0801
1535
3023
0256
0210 | 3866
3827
3357
0504
0749
0030 | 0801
3827
2518
0530
2976
1698 | 1535
3357
2518
2830
0175
0668 | 3023
0504
0530
2830
1120
0353 | 0256
0749
2976
0175
1120
2600 | 0210
0030
1698
0668
0353
2600 | | | Total
M
GM | * | | | | 11083
1583 | | 7876
1125 | 5559
794 | | Type | <u> </u> | | | | | | | | | | | Items | | 16 | 24 | 10 | 8 | 37 | 36 | | | | 16
24
10
8
37
36 | | 3701
1059
3467
0679
0431 | 3701
3633
0341
2963
2389 | 1059
3633
1243
0768
0460 | 3467
0341
1243
1279
0501 | 0679
2963
0768
1279 | 0431
2389
0460
0501
1531 | | | | Total
M
GM | * | | 13027
2171 | | 6831
1139 | 7220
1203 | 5312
886 | • | | Type | VI | | | | | | | | | | | Items | | 6 | 34 | 29 | | | | | | | 6
34
29 | | 3523 | 3523
. 2920 | 111 ₁ 1
2920 | _ | | | | | | Total
M
GM | × | | 211t8 | 4061
677 | og og skalender der der | | | | Continued | | | | | | | • | | |----|-----|---|-----|-----|-----|---|--| ı | - | | | | | | 1 - | | - | - | | | | 1 . | | | 1 : | | | | | | 1 | | | 1 | | | | | •, | | | | | | | | | | | 1 | | i | | 1 | , 1 | | | | | | | | | | | | | _ = | = | | | | - | | | | |--|---|---|--|----| | | | 1 | | == | i ~ | | | | | |---|---------------------------------------|---------------------------------------|--------------|------|--| | | , ;
1 | · · · · · · · · · · · · · · · · · · · | | | | | | , | | | | | | | v
v | | | | | | | | | * = | | | | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | * 18 | | | | | | , m | | | | • | | | . | | | | . | |----------| | , = | | | | | TABLE VIII - Concluded | Type VII | | | | | | |------------------|---|----------------------|----------------------|--------------|----------------------| | Items | | 9 | 25 | 2 | | | 9
25 | | 27.07 | 3121 | 2987 | | | 25 | | 3121
2987 | 1750 | 1750 | | | Total
M
GM | * | 6108
2036
1746 | 4871
1629 | 4737
1579 | | | Type VIII | | | | | | | Items | | 3 | 26 | 28 | | | 3
26 | | 2930
0318 | 2 93 0 | 0318 | | | 28 | | | 2885 | 2885 | | | Total
M
GM | = | 3248
1083
1363 | 5815
1938 | | | | | | ~, ·, | | | Over-all Mean = 1588 | Note: Decimal points are omitted. TABLE IX. MATRIX OF ITEMS HAVING LARGEST ENTRIES IN THEIR COLUMNS IN TABLE III (MATRIX OF DIFFERENCES) |]] 1 | i | | |----------------|--|-------------------------------| | O [†] | 0034
1379
0064
0064
0629
1104
1284
2383
1286
3917
3917
0703
0925
0675 | 20937
1309
X III | | 38 | 0830
3827
0474
0691
0929
2151
1213
2727
0789
0887
2317
3866 | 24029
1502
1 X | | 35 | 10.88
0801
0756
0756
0159
0243
3367
2506
30.15
30.15
1900
1552
0925 | 24,104
1507
VIII | | 33 | 1562
0553
2381
1089
0170
2943
1481
3550
0144
1637
0899
2317
0703 | بلدہلا2
1338
XII | | 32 | 1088
1937
1729
0233
3994
1014
3607
0295
0899
1900
2204
3284 | 27517
1720
V | | 31 | 1525
0454
1049
3800
1489
0708
3967
0467
1954
0887
3087
3087 | 30094
1881
III | | 24 | 3633
11443
1898
0527
3266
3701
11931
1954
3607
0144
3015
0799 | 30337
1896
I | | 23 | 0840
3352
5284
0008
1108
2103
3378
0060
1438
2566
2727
2383 | 30248
1891
II | | 22 | 0832
0462
3412
1559
1901
1266
0012
0060
2435
3956
1213
21481 | 28068
1754
IV | | 19 | 0218
3166
2630
2630
5248
0436
1229
0012
3378
1015
0433
0513
1913 | 24571
1536
1536
VII | | 16 | 1059
0315
1379
0667
1331
1266
2103
3701
1448
0332
0332
0139 | 19342
1209
XIV | | 15 | 2263
1941
0548
1001
1331
0436
1901
1108
3266
1899
0243
0629 | 24659
1541
VI | | 7,7 | 1429
1070
1309
1001
0667
5248
1559
0008
0527
3800
0533
1089
0159
0691 | 19256
1204
XV | | 12 | 0113
0107
1309
0518
1379
2630
3412
5284
1019
1729
2381
0756
0474 | 23463 1
1466
X | | # | 0842
0407
1941
0315
3166
0462
3352
1443
0454
0853
0801
1379 |
21949
1372
X I | | 91 | 0842
0143
1429
2263
0218
0832
0840
1525
1088
0830
0830 | 17386
1087
XVI | | Items | £ %%%%% 53866 444446 | order # | | | | Total
M
Rank | Note: Decimal points are omitted. | | - | | | | | | | | | |---|----|-----------------------|---------------------------------------|-----|-----|-----|---|---|---| | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | 1 | | | - | , | , - | | = | | | | | | | | | . | | | | | | | | | | | • | | | | | | | | | | | | - , | | | | r | ı | | | : . | 2.2 | | | | | | | | | | | | | | | | | | and the second second | | | | | | , | ر - | 1 7 | * . | | | 5 | | | | | | | | *.
* | | | | | | | | • | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | , | | | , | - | - | | | | • | | | | | | | | • | | | • | | | • | | | | | | | | | ÷ / . | <u>.</u> | - | | | - | - | • | - | | | | | | | | | | | * **** | | | | | | | | | | | 3 9 11 | •• | | | | | | | | | TABLE X. TWO X TWO TABLES OF THIRTY-EIGHT ITEMS SHOWING CELL FREQUENCIES | Item | Cell | Frequencies | | |---------------------------------------|---|---|--| | · · · · · · · · · · · · · · · · · · · | | | | | 54
1 6 | 63
11 | 28
66 | 25
74
75
35
53 | | 39 | 13 | 43 | 75 | | 54
1,3 | 53
35 | | 35
53 | | | | | 33 | | 35 | 49 | 47 | 39
60 | | 19
50 | 28
Ь0 | 63
32 | 148
148 | | 49 | 63 | 33 | 48
25 | | 52
1.3 | 51
1-2 | 30
30 | 37
1. c | | 43
53 | 43
67 | 39
29 | 45
21 | | 53 | 58
53 | 29 | 30
35 | | | | | | | 21 | 37 | 61. | 36
51
48 | | 34
56 | 40 | 48
26 | 48
37 | | 56 | 56 | 26 | 37
32 | | | | 59 | 59 | | 38
32 | 46
23 | 44
50 | 42
65 | | 51 | 53 | 31 | 59
42
65
35
70 | | | | | | | 28
20 |)ı7 · | 54
62 | 54
41 | | 49 | 77 | 33 | 44
62 | | 25
35 | 26
38 | 57
47 | 62
50 | | | | | | | 38
30 | 43 | 71.3
747 ⁴ | 63
45
50
22 | | 66 | 66 | 16 | 22 | | | | 37 | 43 | | 25
25 | 31
29 | 57
57 | 57
59
32 | | 42 | 56 | 40 | 32 | | | A
54
39
54
39
54
39
54
55
56
23
32
57
39
64
54
55
25
26
26
27
38
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | A B 63 14 13 53 55 149 28 149 55 143 55 149 56 29 149 55 15 18 28 20 149 25 35 27 38 39 66 145 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 514 63 28 16 114 666 39 13 28 143 35 28 147 19 28 63 33 55 29 149 63 33 55 29 149 63 33 55 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 147 53 35 58 29 150 51 37 34 140 156 56 56 56 26 26 23 38 32 23 55 31 39 18 18 28 20 147 62 149 25 35 38 143 27 25 38 143 39 38 66 66 16 16 16 16 16 16 16 16 16 16 16 | TABLE XI. RANKED CHI-SQUARE VALUES* FOR THIRTY-EIGHT ITEMS | | • • • | |-----------------|------------| | Item | Chi-Square | | կ | 19 •975 | | 29 | 13 •778 | | 27 | 12 •803 | | 19 | 4 •395 | | 11 | 3 •504 | | 25 | 2.659 | | 9 | 2.372 | | 6 | 2.255 | | 40 | 2.195 | | 15 | 2.178 | | 12 | 2.144 | | 21 | 1.526 | | 30 | 1.259 | | 40 | 1.183 | | 36 | .454 | | 2 | •411 | | 2h | •382 | | 5 | •359 | | 13 | •325 | | 23 | •277 | | 38 | •243 | | 22 | •227 | | 33 | •222 | | 28 | •200 | | 35 | •174 | | 3 | •170 | | 8 | •137 | | 20 | •135 | | 37 | •111 | | 11 ₄ | •096 | | 18 | .056 | | 17 | .051 | | 39 | .032 | | 34 | .030 | | 26 | .010 | | 32 | •007 | | 31 | •000 | | 16 | •000 | ^{*}Yates correction for continuity applied. TABLE XII. SPECIMEN PATTERN OF RESPONSE (PRODUCED BY MISTIC) | | | | | | | | | | | | |---|-------|-------------------|-----|-----|-----|-----|-----|-------------|-----|--| | 012
011
010
009
009
008
007
007
006
224 | 193 | 194 | 220 | 208 | 230 | 165 | 166 | 195 | 167 | | | OFO
ON1
ON2
OJN
OJO
OF6
O+5
O+6
ON3
O+7
3+00000 | ാരാദവ | †31 <u>11</u> 117 | L | | | | | | | | ## ACADEMIC ACTIVITY PREFERENCE INVENTORY ## Items - 1. Studying during free hours in the day, so as to reduce the evening's load. - 2. Believing that my parents would sooner have me work than go to school. - 3. Discussing books with friends. - 4. Going to parties where couples are expected to pair off. - 5. Staying away from school activities in which I don't do well. - 6. Going along with a chairman's decision rather than starting a fuss. - 7. Working on tasks for long periods of time, without interruption or diversion. - 8. Having friends who are inferior to me in academic ability. - 9. Cutting classes when I need to cram for a test. - 10. Learning to repair such things as the radio, sewing machine, or car. - ll. Considering studying as important as work I will do later. - 12. Participating in a discussion that is exceptionally logical, precise, and coherent. - 13. Pretending that I agree with a teacher after I see that he has his mind made up. - ll. Giving up on a problem rather than doing it in a way that may be wrong. - 15. Feeling that examinations measure what I have learned. - 16. Feeling that examinations measure what I know. - 17. Changing my answers on examination questions. - 18. Doing more constructive things than studying. - 19. Going to school. - 20. Relying on specific class assignments to spur me on to accomplish things. - 21. Keeping to a regular schedule, which means working when I don't really feel like it. - 22. Believing that teachers, on the whole, are fair in the ways they grade. - 23. Spending a good deal of my time on activities which are amusing but of little practical value. - 24. Preparing for examinations by first taking time to arrange the facts I must learn in some logical order. - 25. Reading great novels written in the past. - 26. Searching continually for the source of difficulty in a problem until I've located it. - 27. Working in science and mathematics rather than art or music. - 28. Trying to develop a sincere interest in every course I take. - 29. Laughing at a dirty joke every once in awhile. - 30. Reading books which stress adventure. - 31. Sitting around and thinking. - 32. Giving all my energy to whatever I happen to be doing. - 33. Spending some time to get "warmed up" to the task of studying. - 34. Believing that my parents regarded going to school as important as working. - 35. Setting a goal as to how much material I will cover before each study period. - 36. Fixing things around the house. - 37. Looking up things in original sources in order to find out for myself. - 38. Completing assignments if they are boring and dull. MICHIGAN STATE UNIVERSITY LIBRARIES 3 1293 03174 7037