ON CONCRBTE

Thes! for fia Datres af Be s:
WICHIGAN 5TATH COLUEG3
R. F. Salazar
1946

THESIS

Urea and Ite Refoeta - Cenarste

A Imenis Suluitted to
The Faculty of
MTCHIMR $6 T A T E$ COLSEGE ot

ACRICUILIURE AND APFITED SGIENCE
的

R. F. Balamar
Casdidate for the Degree of

Bacheler of Solcmee

Jrane 1946

rivas
C. 1

I IEDICATE MIIS THESIS

TO MI

FATYER AND KOTYHR

Actantmanars

Page
INTRODUCTIOS:
SPECIFIC:TIO!S 1
List of aperificution followed in the vork performed for this theris
LETYODS OF PROCEDIPE 2
Performence of laboratory testa and preparation of epo- elmens
Normal Consistency
Tonsion
Compreseion
Percentages of urea uged in each specimen tested Curing periode
FESULTS 7Tabulated results obteined in all the tests performed
CUTVES 18Coupressive strength-uroa contentComparis on curveComprossive stresemuring pariod curve for 0% -$2.5 \%-5 \%$ urea eoncentration
Tonsile strength-ures contentComparison curve
Tensile strecs-auring period ourve Por 0\% - $2.5 \%-$5\% urea concentration
CONCLUSIOAS 17

Comerote bohovier, meme distarat conditilane anch wo loadizes,
 Viry impertint matter to ardmoure, comtractary, architente, oteo, whe
 Linal conditime to vaicht, Inpermenblity, eoler and apecinily In eate
 have fomed after eroat deal of werk, diffurns chmpetwintice mioh

 cover $1 / 4$ of the woris I chould have sone in arime to obtain Itinal and

 reacarik.

spECIFICATIONS

 monter arbes
 He. 20 siow an retaimed in He. 20 adere
 A. 8. I. M. Dovilymition ClOs-STY

 6- Oucing meat to dome in the follundry ways

Tiret 24 hetre opeaimang in the moles will to oterod in meltot ream at 67 te 73 ate. Fo ath at loant $90 / \mathrm{mmuldity}$. Then the opectione will te ramevel from the mide and etared in a metur sumk until texting.

 4 Mriquatto ar 8 cubere.

2- Touting Bachdree moe
Tes tumain Rialo shet lichitim
 Speal 0. 211 inci per ainite.

WETYODS C PROGEDURE

HOPMAL CONSTSTENCY
In arder to ietarine the peremertace of vater to be uped in mak-

 paratue mand. It comiets of a frome which hollo a red vith an indome

 mosile is the meed for Normal Consistemey Fert.
 the plunger er Vieat needle peaptratee 10 me beler the ourface of the coment parte la 30 owe.

 farmet purcentazes of vater.
the followiag preedure was taken ircm "Plain Comerete" in

mitx 500 y the following mamert?
 molationel. Porm a cruter and pour the vater into it. Iren the mineinl an the outer elge tomari the ounter with tromal within a periol of 30

Drerfing the falluring etops the mands chould be protoeted with

equanaing and lmoading with the hande for 1 1/2 min.
Form the paste quickly into a ball with the handw. Maintaining the bands about 6 ine aport, tans the ball aix timoo fran ano hand to the ether.

In the Sellewing eperation take cars mot to comprese the parte. Whe the mall restiag in the pala of mand, preas the pente inte the larger ad of the ring previded for this teat hold in the other hand.
 naight 40m.)

Fill the ring completely with the prote. Sossore the axcese parte at the larger ond by a single movenent of the hand. Piace the Fing with the peote on glass plate. Renove excess parte at bmiler and by eingle oblique ettroke of the tremel hold at a slight angle with the tep of the ring. Smocth the top, if neeoseary, with a fer light touches of the pelintel ond of the trowel. De not pudde surface.

Fout the maspls in the Vicat apparatone viting 30 tee. aftur the empleticm the mixing befor the reloase of the needle. Be eure the planger in alean and meve frealy in the guides and that thare are not vikrations. Place the emple under the plunger. The larger and chorid to dema. Bring the plunger inte contact with the surfeoe the paste. Release the plunger for 30 wee. and note the amornt at methement.

The gaite is of normal sonnisteney thea the plunger mettle 10 rame in 30 set. If the itrst trial doen not give the desired 10 man. per
 mount of elxing water. Repeat until the dosired conaistency is semurel."

It wa onemwe that the porecritage of mixing water for the gere.

Tollatermane the porountage of nater for martar of 1 gart of

 made fer thit thende.

TENSION SPECIMENS
In arder to make tenaion opendman liriquette molde mere meal. The molda Frere firot aleaned with vire brum and pioce of eloth and them vary well ald. Glane plates were alme used to aupport the molde during the lirst 24 home of the ouring peried. 2 me glaes platew were also olled.

The material uaed to make theme tension mpodmant mee meoted aceerding to mpecifications.

Then making the ocporet mortar, pemat wat ilrat murod viti the watta having the required ocosartratise of grea mad after all the cement had beea mixod, helf of the mount of mond man addef. This papto wow sulxed for abort $3 / 4$ of a rufarte and thon the rant of the amal wan edded and medag continued matil completion of the $4 / 2$ minotem mising
 and filled with the ooncrete morter. The mold wes filled full and prove uro was applied to anoh kriquette using the thomis. Proesvere applien
 trowel the surtiee was meothed off.

At the time an oiled glase plate wae plaeed an tof of mell, the mold turned over and the other glase plate ramocel. Proavare was applied to thif other stie in the mame manner above and morter wat aldel to fill the cavition. The murface of the wriquottee vacemothed
-

finc mays

$$
\begin{aligned}
& 0.0 \%-0.1 \%-0.2 \%-0.3 \%-0.4 \%-0.5 \%-1.0 \%-1.5 \%-2.0 \%-2.5 \%- \\
& 3.0 \%-3.5 \%-4.0 \%-4.5 \%-5.0 \%-10.0 \%-20.0 \% \\
& \text { Tests rere zun on specimen eured 7-14-28-60 lays. } \\
& \text { Up to } 0.3 \% \text { comentration of urna oppoimen, Atlat eament wan }
\end{aligned}
$$

ued. From there on Aetra cencent was moed. Test! on 0.3% apeaiman shome a that there ia not nuch or any difforonce botweon the twe cemants. Dae to this fact all specimone vere comaddered to have beon made of the eame coments.

COPPRESSION TESTS PESUETS Areat 4 eq. in.				
\% urea	9 lare	24 day	28 eays	60 laye
0.0	9900	8810	9155	13810
	7820	8435	9632	13235
	7030	9955	8813	9114
	Ave. 2900	Ave. 2100	ATE. 2300	Ave. 3375
0.1	4540	6900	8995	9375
	4925	5700	7840	9755
	5820	6055	8520	11375
	Ave. 1297	Ave. 1555	Ave. 2111	Ave. 2542
0.2	8690	8840	11930	10655
	7245	7945	10270	15520
	6675	8775	8710	8535
	1ve. 1883	Ave. 2130	Are. 8777	Ave. 2897
0.3	6184	6327	10600	7640
	6665	6477	9280	10000
	6370	5050	9455	9100
	Are. 1635	Ave. 1488	Ave. 2445	Ave. 2388
0.4	5145	9160	21958	12150
	5575	7500	9630	13875
	5878	8800	10180	13850
	Are. 1383	Ave. 2122	AN0. 2644	Ave. 3283
0.5	6445	10985	11660	15900
	8180	11030	10220	14190
	7640	11625	10493	13480
	Are. 1855	Ave. 2800	Are. 2690	Ave. 8614
1.0	9020	10700	10465	16195
	9480	11155	12265	11910
	8730	9880	10798	- 12570
	Ave. 2270	Ave. 2586	Ave. 2792	Ave. 3060

\% urea	7 lave	14 day	28 days	60 daye
1.5	9000	10155	11420	13940
	8420	9000	8175	13350
	8380	9150	10900	13110
	Avee 2150	Ave. 2360	Are. 2790	Ave. 3370
2.0	8600	9600	11530	14310
	9200	9225	11650	14535
	8900	10575	10710	14580
	Aro. 2225	ATe. 2450	Are. 2824	Ave. 3650
2.5	8770	10875	12545	16500
	9100	9532	11410	15130
			12690	18110
	Ave. 2380	Are. 2650	Ave. 3054	Ave. 4150
3.0	9223	9545	12520	16500
	8791	11400	14220	13120
	10186	10565	10725	14925
	Ave. 2350	Are. 2600	Ave. 3443	Ave. $\mathbf{3 5 6 0}$
3.5	8517	9215	11755	24600
	8843	10100	12710	15735
	9396	8887	11810	14085
	Are. 2228	Ave. 2350	Ave. 3023	Ave. 3700
4.0	8765	9410	10280	13920
	8195	9325	10770	13450
	6326	10569	9410	17000
	Ave. 2120	Are. 2442	Ave. 2538	Ave. 8690
4.5	8748	10000	21725	14230
	8530	9873	11020	13145
	8583	10128	10315	14310
	Ave. 2150	Ave. 2500	Ave. 2755	Ave. 3470

7 \%ree	7 daye	14 daye	28 days	60 days
8.0	7819	8220	8060	12270
	7403	8130	11120	14455
	8058	8250	9080	11520
	Ave. 1940	Ave. 2050	Are 2355	Are. 3190
20.0	8230	8810	10775	14260
	8167	8505	9760	13160
	8804	9625	12805	15015
	Are. 2100	Are. 2245	Ave. 2948	Are. 3950
20.0	6425	7327	7510	12475
	5762	6152	9500	13125
	5814	6321	9500	12740
	Ave. 1500	Ave. 1650	Ave. 2130	Ave. 3190

TENSIN TESTS RESULTS
Area of Ruptures 1 हq. in.

\% erea	7 days	14 day	28 days	60 dzys
0.0	268	315	375	451
	258	341	385	367
	263	252	410	380
	Ave. 263	Ave. 336	Ave. 390	Ave. 399
0.1	291	343	306	450
	298	342	280	455
	284	425	395	405
	Ave. 291	Ave. 370	Are. 327	Ave. 428
0.2	296	359	413	435
	305	391	360	400
	330	370	405	452
	Ave. 310	Ave. 373	Are. 393	Are. 429
0.3	208	260	323	343
	220	245	351	380
	179	255	324	316
	Ave. 202	Ave. 260	Ave. 333	Are. 346
0.4	279	303	404	400
	292	353	358	400
	265	340	388	
	Ave. 275	Ave. 332	Are. 350	Ave. 400
0.5	288	349	432	432
	272	340	354	432
	310	377	886	432
	Ave. 290	Ave. 355	Ave. 391	Ave. 432
1.0	315	405	395	418
	327	305	375	446
	288	388	429	440
	Ave. 310	Are. 366	Ave. 400	Ave. 435

\% urea	7 Alye	14.4ys	28 dave	60 daye
2.5	185	231	290	283
	153	205	206	275
	187	180	25%	812
	Ave. 175	Ave. 205	Ave. 276	Ave. 290
2.0	272	338	395	385
	247	859	411	442
	258	827	421	390
	Ave. 259	Ave. 340	Are. 407	Ave. 426
2.5	247	377	411	440
	278	304.	443	486
	284	350	432	450
	Ave. 268	Ave. 348	Ave. 429	Are. 444
3.0	235	331	365	430
	253	315	386	416
	282	325	315	387
	Ave. 240	Ave. 324	Are. 855	Ave. 411
3.5	245	822	385	445
	257	315	381	460
	285	356	400	420
	Are. 262	Ave. 331	Ave. 389	ATe. 442
4.0	275	338	377	880
	325	357	877	460
	302	370	377	435
	Ave. 300	Ave. 355	Ave. 377	Ave. 425
4.5	267	350	385	410
	283	316	390	410
	260	355	355	434
	Ave. 270	Ave. 340	Ave. 377	Ave. 418

\% urea	7 days	14 deys	23 day	60 day:
5.0	262	480	473	587
	315	500	530	550
	284	425	523	575
	Are. 287	Ave. 468	Ave. 509	Are. 571
10.0	263	302	390	457
	260	316	360	417
	242	340	340	439
	Ave. 255	Are. 319	Ave. 363	Are. 454
20.0	198	290	342	459
	235	287	355	410
	284	298	350	395
	Ave. 222	Ave. 292	Ave. 349	Ave. 421

4000
soa
1

VSid NI SSTYlS

๕๐ ¿
$8 \quad 8$
¿
\& \% \%
!

The result obtained in this thesis are not anocesfull as I expeeted them to be.

Dy etudying the eempression and tanaion curve it can be notioad that a ratio of inorcase ar decrease botwom the reaulte ovinined see net anist. That is to say that there being an increase in the rewile obtained in the tenaion terte. the anme chould ocemer in the remults obtained from equal specimons tented on ompresaion. Ose of the explamations I oen find is that boing the urea an orgenie base it affacte the friction sotwem the ecmant paote and the partielee of and. Dae to this fact, wher the sonereto is working in compereaten the perm ticles of mard Elide more than thoy do when evered by minple exment parte, net reateting as anch preanure as they voald othorwione. The beet resulte were obtained, in tension, uaing 5f urea but oindar apeeiman gave reculty Iower than nosmal whon testel in compreanion. In ecupremion, 2.5% urea epecimen gave the bept reault and In toanion it also whowed inorease of whrongth but not an mach as the 5% urem apoodmat.

1y bacie in judging a normal value ere the reculte obtained in the no urea speatmane. Te dotaraine the normal valuet, many speaimone were made in ordor to ebtain aceeptable arerage valuese.
sepording to wy deterninations and obenvations, if it was dosired to use urea mixed with concrete, the percentege to be used should be 2.5\% which would add more etrength to the mixture. But I ean not as the sam thing about the other propertice of cemont eince teets were not rum in order to obtain the effect of urea an the other properties. Falluring is eumgary of my ooncluaions:

1- 2.5% urea concentration increasee the etrangth of conerote in tansion and compression.

2- Uren - $\operatorname{CO}(\mathrm{NH} 2) 2$ - is very soluble in water and it does not proeure any extra work when mixing it.

3- The cost of urea is very low. Using 2.5% concentration, an average cost would be $\$ 0.10$ por sack of cament. The inerease in cost is not mush but it aimaye dopende on the percontage of mixing wator. In this case the cost is based on 11% mixing water.

4- Urea decreases the friction between the porticles of and and the coment paste. There is a possibility of an oxiating layer of ures aristals between the surface of the sand particlee and the oment paste. This layer of urea oristals broaks when toe mach prossure is applied. Thas happens during compression. In tension tris offeot does not oxist beoause the eement paste takes all the load.

t

