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ABSTRACT

MODULAR FORMS OF DIMENSION -2
BELONGING TO SUBGROUPS
OF THE MODULAR GROUP

by John Roderick Smart

Joseph Lehner has given a method for defining
Poincaré series of dimension -2 on the modular group
[ (1) which does not rely on the Hecke method of intro-
ducing a convergence factor. The problem considered in
this thesis is the following: extehd the method to con-
gruence subgroups of the modular group; and determine
when the method can be extended to arbitrary subgroups

of finite index.

Let | be a subgroup of finite index, and let

A}loo, Jj=1, 2, e+ , o( ) be a complete set of inequiv-

-1

alent parabolic cusps. Aj €7(1). We assume AJ =0 if

and only 1if Ay = I. Let U be an abelian character on .

-1

A
Define e(Rd) =W(AJ U jAJ) where :\J is the least positive

- A
integer such that AJIU JAJé [ and we use the notation

e(z) = exp[2miz]. We define for integers p # O

e((p+x )V 2/ )
(*) G(Z:U)Ajsr 9}1) = i Zg: __1;I c,d JZ
= G0 YAy Ve, ) (c2+d)

ceg (AJ.F ) de fXc,Aq, 1)
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The sets of integers éf(AJ,r’) and OEKC,AJ,Y') are so
defined that Vc,d = (a b| ¢ d) runs over a complete set
of matrices in AJT_ with different lower row as ¢ runs
over é’(AJ,r ) and d runs over ¢9(c,Aj,['). The double
series in (*) is not aboslutely convergent, therefore,
we specify that it is to be summed first on 4 and then
on c. With this convention the functions G defined in
(*) are regular 1n'¥}, the upper half plane. In order
to show the proper functional equation is satisfied we

must prove a Rademacher lemma.

By a lattice point for AJ(' we mean the lower row
(c,d) of a matrix in A;[ . Let C}(Aj,r') represent the
set of all lattice points for AJF'. Furthermore, for
any positive integer K let C3K(Aj,r') be the set of all
lattice points for AJ[‘ contained in the squaré with
Sides u =+ K, v = +# K in the u,v-plane. We define a

class M of matrices such that every VE 7V has the form

g\

V=_1-Um1MUn'x with M€, U" = (1A [ 01) and m

and n integers. Then the Rademacher lemma implies:

e((p+ «L)vcldz/x ,L)_

’U(A}lvc.d)(cvd)z

(c.d)é@K(AJ.r M

(%) Glziay, Tow) = n Z

CQK(AJ,r M = g(q¢+Yd,§c +3d): (c,d)CC7K(AJ,r ) % that is
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we think of M as acting on the u,v-plane as an affine

transformation.

Using the Lipschitz formula we derive the Fourier
expansion of the functions G. This then shows that they

have the proper behavior at the cusps.

All of these results required an estimate of

C>(lcl1/2 +E ) for the Kloosterman sums corresponding to
"and .« We use a result of Petersson's which says

these sums have the proper estimate if [ is a congruence

subgroup and AV is identically 1 on a principal congruence

subgroup.

The problem we considered was solved in the following
generality: whenever the Kloosterman sums have the proper
estimate the method of Lehner can be extended to subgroups

of finite index.
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l. Introduction

In this section we give a description of the problem
considered and the results of our research. The defini-
tions and results required for this investigation are

given in the next section.

Lehner [6] introduced the series

®

o e(-(p-a)Vy __T)
(1.1) F(t)=ZZ k,-

(55 G0 €V, _p) (-1(k T-m))?

(m:k)—l

where &£ is a multiplier system for | (1) and the dimen-
sion -2, 0 { <1, U=(1]|01), Ve,-n = (* *| k,-m)
€M(1) and e(o ) = £(U). We use the notation

e(z) = exp [2miz].

Furthermore, we write matrices in one line with a bar
separating rows. He proved that for p =1, 2, ... F“('t)
is a modular form of dimension -2 for the multiplier system

€ regular in/f= {z = x+iy: y > 0}. Basic to the proof is

an estimation of the Kloosterman sums Ak p(m) which arise
- ’

€ "
as O(RI/Q’ ). Furthermore, the results depend heavily on

a generalization of a lemma due to Rademacher, which
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allows the rearrangement of certain conditionally conver-
gent double series. Lehner derives the Fourier expansion
of these functions at the infinite cusp. These coeffi-
cients are expressed as an infinite series of the
Petersson-Rademacher type, which involve Bessel functions.
The functions F“(‘C) are not identically zero since they

have a pole at T = ioo.

Our problem can now be stated:
(1) extend the methods and results to congruence
subgroups of the modular group;
(11) extend the results to arbitrary subgroups of
finite index in [ (1).
We obtain partial solution of these problems.

Let [ be a subgroup of [ (1) of finite index.
Assume -I€ I, Let Agloo =pys 1 =1, 2, ... 0 De a set
of inequivalent parabolic cusps of [ . AJG.F'(I) and Ay =
I. Suppose N=V(l ,-2) 1s a multiplier system for | and

the dimension -2, Consider the following series:

2 @ e((p+& )V z/2 )
(1.2) G(z,qr,AJ,f ,p,) = } } - ‘3 c,d %_

c € dc

&y 1) Aeyag,l)

where p is a non-zero integer and V_ , = (* *|c d)¢ Ayl
9
The sets Q(Aj,r) and ﬁ(c,AJ,r ) are so defined that as ¢
runs over é:(AJ,r') and d runs over DB(c,Aj,r7,Vc g runs
»
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over a complete set of matrices in Aj 7 with different
lower row. 'XJ is a positive integer which depends upon
. og Kj <1; KJ depends upon UV and ", The series is
not absolutely convergent and we shall have to specify the

order in which the terms are summed.

If the series in (1.2) were absolutely convergent
(which it is if 2 is replaced by r > 2), we could rear-
range the series. We would get easily the following

results:

1) G(z/U;Aj.f'.u) is a modular form. That is, it
satisfies the functional equation
(1.3)  6(Vz,7 44, Thp) = U(V)(ez + a)2 62,V Ay, T o)
for each V= (* *| ¢ d)€ [ . Furthermore, it satisfies
the required regularity conditions.

2) We would obtain the Fourier series coefficients

given in (6.10).

3) We would obtain the inner product formula given

in (9.2).

In order for us to obtain these results we must rearrange
conditionally convergent series. In doing so, we must

rely on:
4) a Rademacher lemma; and

5) a non-trivial estimate on the Kloosterman sums



4=

(1.4) Wc(n+K,p+Kj)=ZQ7'(A31VC’d)e[(n+&)d/c +(p+Kj)a/c;LJ],
déO&C(AJ.r)

namely,
€
We(n,p) = O(lel¥2 *€) €70
where the constant in the O -symbol does not depend upon n.

Our main result is this: If [ 1s a subgroup of finite

quired estimate then 1), 2) and 3) are obtained.

In §8 we give a series of examples of groups " and
maltipliers systems 'V for which we are able to prove the
validity of the Kloosterman estimate. They include:

= V(1) and all six multiplier systems U of dimension
-2; [ = V'z, the unique subgroup of index 2 in [ (1), and
all nine multiplier systems; and f‘o(q), q a prime of the
form 4m + 1 and the multiplier system which depends
upon the Legendre symbol. 1In § 9 we return to these ex-
amples and calculate the dimension of the space of cusp
forms belonging to these systems. Here we use results of

Petersson.

The proof that the G of (1.2) satisfies (1.3) depends
heavily on our Rademacher-type lemma. Roughly, this lemma
states that the series (1.2) can be summed over expanding

parallelograms centered at the origin., This is somewhat
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analogous to the standard way in which one proves the con-
vergence of the Welerstrass 65-function. To some extent
we follow Lehner [6] in proving our Rademacher lemma;
however, since in general I will have more generators than

T" (1) we need a more comprehensive lemma. M. I. Knopp
has developed other extensions of the original Rademacher
lemma ([5] , [5.1]); still others are in the process of
publication.

For the estimate of the Kloosterman sums we rely on
the researches of Petersson [11]. Petersson proves the
theorem: if | is a congruence subgroup and U an abelian
character on | which is identically 1 on some prihcipal
congruence subgroup T (N) C(‘, then the Kloosterman sums
(1.4) have the required estimate. In § 8 we give an
elaboration of his proof so that the interested reader
may see the neat way in which the complicated sums (1l.4)
are reduced to the classical Kloosterman sums. We require
the estimate of the sums (1.4) both in the proof of the
regularity of the functions G of (1.2) and in the proof

of the Rademacher lemma.

The above results are not all new. Petersson has
obtained them in [11]; however, his method of proof is
entirely different from ours. He uses the Hecke idea
(4, pp. 468-476] of introducing a convergence factor
tcz + dl's, s > 0 into (1.2). He then takes the limit as

8 => 0+, Our method of rearranging conditionally conver -
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gent double series was first suggested by Rademacher (13].
In some senses our method is more natural since it follows

the proofs for dimension -r < -2,



2. Preliminaries

In this section we give the definitions, notations
and results which are needed for this investigation. No
attempt has been made to give a reference for every fact
which is stated, but rather, to give references for only
those results which lie deeper in the theory. Almost all
of the results for which no reference is given can be

found in Ford's book [2].

We shall be concerned with infinite groups | of

linear fractional transformations

where a, b, ¢ and d are rational integers and ad - bc

= 1., These transformations map the upper half plane

H = {z : Imz > 0} onto itself in a one-to-one manner.
The groups we are considering will have the further prop-
erties: (i) for every point p on the real axis there

is a sequence of different substitutions w = Vnz and a
point z, such that the sequence v, = Vnzo accumulates
at p; (11) the same statement does not hold for any point
pE€H. Groups for which (ii) hold are said to be
discontinuous in H . Groups for which both (i) and (ii)
hold are called horocyclic groups (they are also called

Fuchsian groups of the first kind and Grenzkreisgruppen

-7-
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in the literature). This terminology is not used

exclusively for the case in which the region of discon-

tinuity is the upper half plane H.

Let the letters I, U, S, V, M, AJ denote the
following two-by-two matrices (written in one line with
a vertical bar separating the first row of the matrix

from the second)

I=(Qo|o0 1), U=(1 1|0 1),
(2.1) V=(ab|c d), s=(0-1|1 o),
M= («p|v §), and Ay = (ay by] ey ay)

where all the matrices given above are real unimodular

matrices. Further, for any real A , we write

(2.2) = a0,
Also, put
-V = (-a, -b | -¢c, -d).
With each of the above matrices we can associate a

linear transformation, namely

(2.3) w=Vz = -8z + b

Notice that V and -V correspond to the same linear
transformation w = Vz, Thus, to any group T of two-by-
two matrices there corresponds a group f: of linear
fractional transformations. -I may or may not belong
tol . However, since our interest 1ies in the groups

of linear fractional transformations we may assume that
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-I1e¢T . If it does not then we merely adjoin it to [
without affecting | . It follows that | = [/ (1,-1¢ .
There should be no confusion when we let V stand for the
matrix as well as the linear transformation. One uses

the same terminology for | as we did for | ; namely,

[ 1s discontinuous or horocyclic if and only if [ is.

Two points zlvand z, € H are said to be congruent

or equivalent with respect tol if there is a V¢ rT such

that Vz, = z,, A fundamental region for [, R([), 1s

a subset of /4 which satisfies: (1) R([) is a non-empty
open set; (2) no two distinct points of R(I" ) are equi-
valent; (3) each point of H 1is equivalent to at least
one point of the closure of R(/ )¢ A fundamental region
for [ can be chosen so that it is bounded by circular
arcs and straight lines called sides. A vertex of a
fundamental region is the common end point of two sides.
In our case the fixed point of a parabolic element in [

lies on the real axis and is called a parabolic vertex

or parabolic cusp. Linear fractional transformations are

classified as parabolic, elliptic, hyperbolic or
loxodromic. We give the same classification to their

matrices.

We shall assume that a fundamental region R( ") has
a finite number of sides. This is a restriction on [ .
A consequence of this assumption is that the groups we

are considering are finitely generated. There is a
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fundamental region R([ ) in which each parabolic cycle
consists of a single vertex; we shall always choose this
fundamental region. Since there are a finite number of
sides there are a finite number of inequivalent parabolic

cusps. Let this number be ¢ (1 ).

The modular group, | (1), consists of all matrices
V=(ab|c d), a,b,c and d rational integers and
ad - bc = 1, The modular group is a finitely generated
zonal horocyclic group discontinuous on H+ . A discon-
tinuous group of real matrices is said to be zonal if it
contains a parabolic element fixing oco. The substitutions
S and U generate [ (1), and U is the parabolic element
fixing oo,

A fundamental region for the modular group is the
set of all z = x + iy €7+, y > 0, such that
-1/2 < x<1/2 and |z| > 1. Denote this fundamental
region by R(1). R(1l) has a finite number of sides.
Rankin [14] proves that if ['* is a subgroup of finite
index in | then T * 1s horocyclic if and only if [ is
horocyclic. Further, he proves that a fundamental region
for T'* has a finite number of sides if and only if a
fundamental region for [ has a finite number of sides.
As we stated at the outset we are intarested only in sub-
groups of the modular group. If we add the condition that
the subgroup should be of finite index, then we will know
that it is horocyclic and has a fundamental region with a
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finite number of sides.

We reiterate, r-is a subgroup of finite index in the
modular group. R([ ) is a fundamental region for [ with
a finite number of inequivalent parabolic cusps
Pys J =1, ¢ees 0 (")e We may choose AJ € M (1) so that

-1
J
modulo | . A coset decomposition for [ (1) modulo [

A,” o0 = pJ. Then the AJ do not belong to the same coset

will be
(o 7\J
Faw=U U A}lUkl-
J=1 k=1
where, of course, the integers 7\‘1 depend upon | .
’AJ is sometimes called the width of R([ ) at Pye '13

is determined as the smallest non-negative integer so

N
that P, = Ajl y 3 Ay € T . P, is parabolic and fixes

pj. PJ generates the cyclic group of all transformations

in [ which fix pJ. We now remark that if V is any real
two-by-two unimodular matrix and [ 1s a horocyclic group,
then VI V™! is also a horocyclic group. If, in addition,

1

[ possesses a parabolic element which fixes V "o then

\'f F'V'l is a zonal horocyclic group. In particular for
our choice of [ € I (1), we know that Ajl_ A}l is a zonal

horocyclic group for J = 1, eee, 0 ().

A very special class of subgroups of the modular

group are the principal congruence subgroups of level N

consisting of all those elements in [ (1) for which
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V=41 (mod N), where the symbol = denotes element-wise
congruence. A congruence subgroup G of level N is a
subgroup of [ (1) such that [ (N)cG< [ (1) and there is
no smaller N for which the same statement holds., Princi-
pal congruence subgroups are normal subgroups of finite

index in [ (1).

A local uniformizing variable (hereafter local
variable) at z, 1s an analytic function t(z) of z such
that a complete set of incongruent points of a neighbor-
hood of z, is mapped one-to-one onto a complete neigh-
 borhood of t = 0, At a parabolic cusp p.1 = A}loo,

t(z) = e(Ajz/ﬁJ) maps a parabolic sector onto a complete
neighborhood of t = 0. A parabolic sector in our case is
the intersection of a suitable circle orthogonal to the

sides of the fundamental region at Py and the fundamental

region,

In the case of even integral dimension -r, a multi-
plier system VV belonging to [ and -r is simply a character
on[ . That is, for M, and M, in r

(2.4) V(M My) = AU(My) U (M),

and |v(M) =1 for M€ T'. We shall need the following
properties of a multiplier system v=~ ([ ,-2) for | and
the dimension -2, If ve [

(2.5) (V) = A(-V), WL = 1/4W) = TW),
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where v (V) is the complex conjugate of ~(V), and,
further,

(2.6) (1) = (-I) = 1.

The multiplier system v (Il ,-2) induces a multiplier
system on V [ V-l, = (VT V'l, -2), defined by

(2.7) (M) = Ar(M), M = v le vyl

We will be particularly interested in the case in which
V= AJ. In this case we write /U3 = fU‘(AJ T A}l, =2).

Let Pys J =1, eeep 06 ([[) be a cusp of R(I); we shall

assume that p, = oo and A= I. 7\‘1 was defined to be the
-1 g

smallest positive integer so that Pj = j U A.1 ér.-

Write ’>‘j = A (AJ,T' ), then this function satisfies

r ).

(2.8) ’xj = X(AJ,I‘) = A (1, AT Ay

In particular A= 7\1 A(1I,[). Since l-’V(PJ)l =1, we

choose Kj so that

Define «j = K (AJ, ), then

- - -1
(2.10) «J- k(AJ,F)- & (I, AJFAJ )e
In particular let « =k = k (I,[ ).

An automorphic form F(z) on| of dimension -r = -2

belonging to the multiplier system /V is a meromorphic
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function on X which satisfies the transformation equation
(2.11) F(Ve) = (V) (cz + d)° F(z2),

for each V= (ab|c d) € [ . One measures the behavior
of F(z) by -1ts local variable expansion. Furthermore,
F(z) must be meromorphic at each cusp pj of the funda-
mental region R([ ). A local variable for the cusp

-1

Py = Ay 00 1s given by e(AJz/ 'AJ). F(z) is meromorphic

at p‘1 if it has an expansion

(2.12) F(z) = (ch + dJ)°2 i an(F,AJ. r)e((n-l-KJ)AJz/?\j)

n=s

where s 1is a finite integer. The set of everywhere
regular automorphic forms of dimension -2 for [ anda
forms a complex vector space. By everywhere regular we
mean regular on % ' = # U ®, where = (A lw:a€ (1)
We denote this space by £ ([ ,-2,v). A subspace of this
is the s;t of all forms which vanish at each cusp of the

fundamental region., This is the space of cusp forms and
is denoted by §+( [ y=2,V).

To prove that F(z) is meromorphic at a cusp p‘1 it is
sufficient to show that F(z) approaches a definite limit
as z —> py through values lying entirely within the

fundamental region. *

i
Lehner, The Fourier coefficients...l1I, Mich. Math. J.,
p0670
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The V transform of F(z) is defined to be
(2.13)  Fylz) = F(2) | V'L = (-cz + a)"2 F(v12),

where V-l = (d4,-b |-c,a). It follows that Fv(z) belongs
to & (VI v'1l,-2, 4') where ' 1s the multiplier system
on VI v} induced by v onl . Furthermore,

(2.14) Fy(z)| V = F(2),

1

and if As % = py is a cusp for R([ ), then

(2.15) F, (z) = i an(F,AJ,I—)e((n + kj)z/xj)

J n=s

where an(F,AJ, ") 1s defined in (2.12).

We define the following sets of integers

C’(AJ,F) ={c:3V€A3r, V=(..\c.)} ,

T (e,hq ) = {a rJvear, V=( .|ead)i
(2.16)

Q(aT) = [de dIe,a,T) + ae [0,e211,

AlagpT) ={a:JvenT, V=1(a.|c.),

a€ [0:37\3]3 ’

where [0,cA] 1is the closed interval between O and c?
(note that ¢ may be negative), [O,c7\J] is defined in a

similar manner. The following relation is valid
00

(2.17) L(c,a,,T) = U {dﬂ-c?\q:déf’d(A .r)z.
J q=-00 cd
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which follows from vc,d = (., o« | c d)E AJr‘, ce.C’(AJ,[“),

des dZ(AJ.f_) then so is Vc’qu = (o »

qd-th%)éAJF.

In the course of our investigation Kloosterman sums

(2.18) W.(n + K,AJ, po+ KJ) = wc(n,p)

_ (p+ «4)a
_ } -1 (n+ «)d
= fU(AJ Vc,d)e( Y + 5 k‘}— )
de oOc(AJ.F)

with V, 4= (ab|c d)€ Ayl will arise. when [ =[(1),
AJ = I and "= 1, these sums are the classical Kloosterman
sums., We shall assume for the present that

(2.19) W(nw) = 0( [c| /2 +E), £ >0

for fixed p . In sectinn 8 we shall discuss situations

in which we can make such an estimate.

We include finally the Lipschitz formula [1,p.206].
If t is a complex variable for which Re(t) > 0 and
either 0<u<l, g>0 or u=1, g >1, then

Q0
g - -
(2.20) fL2m° 2 (m+u)81 e(it (m+u)) = E e(nu)(t+ni)"€

(g) =0 n=-o

where [ (g) is the gamma function.

Any further introductory material will be dealt with

in the course of the text.



3. Convergence and Regularity

In this section we prove the uniform convergence of
the series introduced in (1.2) on compact subsets of f .
Thus, these functions are regular in ?4 « The method

follows § 3 of Lehner's paper.

Consider the series

(3.1) i i e((p+ Kj)vjhﬂ z/?\jl ’

c=-00 =-00 n( A31 Vc’d)(02+d)2
ce ﬁ(AJ, 7) de o@’(c,AJ.r )

where vc,d = (abd \ c d) € AJ\,’; AJ,)j,K}' and the sets

5(AJ,T‘) and ﬁ(c,AJ,V’) are defined in section 2. We
assume p 1s a non-zero integer. The double series (3.1)
does not converge absolutely and for this reason we must
define in what order the summation is to be carried out.
First, however, we show that while vc,d is not uniquely
determined by the conditions c e g(Aj.f—). de ﬁc,AJ,I—).
that is, by its lower line jc,d} , the terms of (3.1) are
determined uniquely by these conditions.

Let Vé,d be another matrix in AJ [T with lower line

{csd) , then Vv, , = U" V, ;. However, V. ;= AM, Vg

c,d c,d

= AM', with M, M' € . Thus AM = UmAJM', and conse-

quently Asl UmAJ =MM'""1 €T . This is a transformation

fixing pJ, and hence, it must equal PIJ‘. In other words
-17-
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KA y
v! Substituting

m=k.>\ C,d.

j° This proves that Vc’d =

this into the term of (3.1) determined by {c,d{ , we find

kA
e((p+ Kj)vc,d 2/;/\.-1) _ e((p+ KJ)U J V::’d z/?\J)
-1 2 - .

Ay Ve,q)(0z+d) v E VL ) (ezsa)?

_ e((p+ lcj)(\l(':’d z+k 7\J)/’AJ)

A (kK
fv(A;IU J A?%V(AEIVé’d)(cz+d)2
kA

since U v = w+ k'xj. Prom (2.9) we see that

kA
(a1 J = =
VT ) = D) = ek 4y,
Thus the term of (3.1) determined by ic,d% becomes upon
simplification
e((l""Kj)v::’d z/?\:’)

AI(A'IVé’d)(cz+d)2

Now we introduce for the ¢ # 0 the auxiliary series

e((p+ IV, 4 2/2,)
(3.2) H(c’z) 3 i % J c’d EJ—
==00 /V(AJ vc,d)(°2+d)

de. QO-(C’AJ’ I—)

which for each c¢ (Aj,r') is nothing more than the
inner sum of (3.1). In the course of our exposition we
shall prove that this series converges uniformly on com-

pact subsets of 74 .

Let the series in (3.1) be understood in the sense of
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(3.3) SAJ’Ie((MK)Z/?\)* I]i-i-?ooz H(c,z) + %(ig‘ooi H{c,2z)

c==K c=1
ce & (Al ) ccc’(AJ,r)
where 2, if A A, = 1
(3.‘.’) SAJ,I = { ? J 1 ?
0, otherwise.

If both of the 1limits in (3.3) exist simultaneously, we
shall define the expression (3.3) to be G(z, ’U,Aj,r-,p).
The objective of this section is to prove that both limits
do exist uniformly for z belonging to compact subsets
of H .

1r Aj = 1 the terms of (3.1) corresponding to c = 0
arise from d = £ 1 because ¢ and 4 are relatively prime.
Thus, there are just two terms and we can choose
vo,gl = +# I, This will account for the first term of
(3.3) when we show that Oeé‘(AJ, ") if and only if Ay = 1.
Suppose 0 GC(AJ, 7); then there is a V€ A.1 T with V =
(ab| 0 d), which implies, a = d = + 1. That is, U°€ AT .

We can write Asl = M']'U-b, Mel and so Asloo = M1,

-1 -1

Then Py = A‘1 oo 1s equivalent to oo, because MAJ 0 =

MM loo = 0. Because of the way we chose the A, this

can happen only if AJ = I. The converse is clear.
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The following estimate of |cz + d| 1s essential.

(3.5) {cz + da| 2 (4] sin 5, 0< é=arg. z <,

lclz

Fig. 3.1

In Fig. 3.1 we see that |[cz + d| 1is the length of one of
the sides of the parallelogram PQRS with vertices *+ |4,
+ |c| z. For, |cz + d| = \cz - (-d)| 1s the distance from
cz to -d. Thus |cz + d| 1is the shorter side of PQRS or
longer than the shorter side. |d| sin{ 1s a leg of a
right triangle which has the shorter side of PQRS as
hypotenuse. In case z lies in the second quadrant we
replace % by m =§{ . The degenerate case is excluded
since z¢ H . Also,
(3.6) lez + d' = {(cx + a)% + c23,'2351/2 >lely, z = x + iy.

We split H(c,z) into the sum of two series. For

c # 0 we have

Vz =
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Let us define for c€S(Ay,7), ¢ £ 0,

((p+K,) AL) [=(u+k,)/ (cz+d)]-1
(3.7) nl(c,z)=f_'° wryda/e 2y) {el-(u+4y)/a e(cavd)]-]

d=-o0 M(Aslvc q)(cz + d)

and

e((p+k,)a/c A,)
(3.8) Hy(c,2) =f___ it Lech

-1
d=-oo”J(AJ Ve,d)(c z + )2
a eaﬁ(c,AJ,r )

where V, 4 = (a b| c d). Note that formally H(c,z)

= Hl(c,z) + Hy(c,z). Once convergence of H, and H, has
been obtained, we will have this result. We obtain
estimates of these series which involve c¢c. Expand the

second exponential in (3.7) to obtain

e((p+ K, )a/c A ) (-2m)®(p+ 4 )
(3.9) Hl(C.z)=i i AR kel | y — .

== m=1'U(A-1V¢,d)( ljc)mm! (cz+a)™*
de¢ o()'(C.AJpr )

This double series is dominated by

i @m® lps1| ™ ,
moAm o lcz + dl m+2

= Gx o™
de oﬁ'(c,AJ.r)

Using the estimates (3.5) and (3.6) we see for d # 0
czad|~(B2)g (o] ~(m42)/2=(m42)/2 || =(m2)/2( g, ¢ )= (m42)/2

and if d = 0



=-22=

“(m92) o) =(m42) ~(me2)

ez + al < le

With these results we obtain for our dominating series

m® lyal®
L ny 22 y2ut2

i i (2m)® |pe1\ "
i ot [ 3872)/2,(m+2)/2 ((m¥2)/2 (g, ¢ w22

m=1l d=1

ot b () o O (e,

y =0 ysin §

3 )

d=1

Therefore,

(3.10) [Hy(e,2)| < (ey)™2 exp(an (p41l /)

“5/2, . el om | +1\]
+C el (y sin §) exp[{—l"_y_s'tx'fg

vwhere C is a sufficiently large constant independent of z.

When we say that a series converges absolutely uniformly

we mean that the series of absolute values converges
uniformly. We have proved that Hl(c,z) converges
absolutely uniformly on compact subsets of H , actually
for y 2 y, > 0 and 0 < |x| < X,e Thus, H,(c,z) represents

a regular function in'H.
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Note that Hz(c,z) of (3.8) corresponds to the missing
term m = 0 in (3.9). The dominating series for H,(c,%)

is
> 1
d=-00 \cz + dl

Using the results (3.5) and (3.6) we find if @ ¥ 0

lcz + dl-a £ d-2(sin $ )-2,

and if d = 0
lez + c1|°2 < c~2 y'2.
Thus,
|y < (cy)™2 + 2 (d sin§ )72,

d=1
- 2
(3.11)  |Hy(e,2)|l € (ep)7? + — = .
3 sin § .
We proved that for \x\ £ Xor ¥ 2 Yo > 0 the series Hz(c,z)

converges absolutely uniformly, Ha(c,z) is a regular
function in ’H-. Now that we have established the conver-

gence of Hy and H, we can assert (see lines following (3.8))
(3.12) H(c,z) = Hl(c,z) + Hz(c,z).

The estimate (3.11) is not good enough for our
purposes since we will want to sum on ¢c. One first proves
that the terms of H1 and H2 are uniquely determined by the
lover line fc,d| of Ve,a» The proof is almost identical
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to the case considered at the outset of this section. We

make the choice of the a of V, , = (a b| c d) unique. We
]

kA

=T JV' here V; d i1s another matrix
]

saw that V c,d ? W

c,d

with lower row gc,d} . That is,

a b> (1 k)\3>( a' bl) _ (al + ¢k *>
v = - - 1’ 3
c,d cd 01 c d c d
By choosing k properly we obtain ac [0,c ’/\j]’ i.e.
aéﬂb(AJ,l_). Now dividing d by c?A , d = q¢c '\ * 4

where d, ¢ oe'c(AJ.r). Then

v =ab)=<a* Lad) Ly qu

with ce S(ap 1), 4 eo@’c(AJ,F) and ae A (4,1 ).
Using these results and (2.17)

e((p+ Kja/c Aq)

Hz(c,z) = Z

- 2 q
de (AT ) g0 f\)’(AJ]'Vc,dlU )(cz+dy+e A q)

2

e((p-*KJ)a/c 7\J) i el-q K )
-1 2
d eﬂ%(AJ,\_) VAV, g ) e (cz+d +cAq)

where we have used 1//U(UqﬁA ) = e(-qX). The order of

summation is immaterial because H2 is absolutely conver-

gent.
Applying the Lipschitz formula (2.20) to the inner
sum of the above series, valid since g = 2, we find,

whether XK > 0Oorus= K =0,
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i e(-q « ) 5=-§ e(q « )
q:-oo(CZ+d * 7 q) 2 » q=._oo(-i(z/:\ +d/ )+q1)?

IST??Z)_ (n+ K el{n+i }z/n + d/ 5 )
n=0

where in (2.20) we identify t = -i(z/75 + d/cA ). Hence,

H (c,z)={
2 -1 2.2
TER, (g, T ) ViAg Ve, q) ¢ A

{ i (n+ K Je((ne k )&= + =5 ))}

e((ll"' Kj)a/c 7\j) -om 2}

n=0

= ('2ﬂ1)2{i (n+ K Ye((n+ K Y2/ ) } .
°2 A n=0

[ (p+ K,)a (n+ 5 )d
e

Sy

Te #% Ay 1) 3 Ve,d

2
(3.13) = (G2 >‘ (n+ K * e((n+ ¥ 12/ 2 )* W (n,p)
n=0
where we have interchanged the order of summation of the
finite sum and the infinite sum and have introduced the-

Kloosterman sum (2.18). The above interchange of
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summation is valid because of the absolute convergence of
the double series involved (recall that oO'C(Aj, F) 1s
finite for fixed c and j).

At this point we derive an estimate for H2(c.z).
The series (3.13) is dominated by

2 |
&g_{z E (n+ &) exp(-2m(n+ k)y/2A) |Wy(n,p)|,
(]

n=0

Now we use the estimate (2.19) for the Kloosterman sum

and the fact that 0 { K < 1 to obtain a dominating series

2
-&12[- i (n+l) exp(-27 ny/4 ) C \c\l/2+£ .
c

n=0
Thus,

(3.14) ‘32(0.8)| < i (n+1) exp(-2my/ )

n=0

A
|| 3/2-¢

-2
= CE Ic\°3/2 +& (1 - e'ZW/A) .
This is our desired estimate involving c.
It 1s now easy to see using the estimates (3.10)

and (3.1%) that the series

i Hl(c,z) and i Hz(c,z)

c==-00 c=-00
ceg(ag, ) cc(Agl)
c#o 3 c£0

converge absolutely uniformly for y 2 y, > 0, |x| < e 3§

we proved that Hl and H, are regular in W  Hence
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the above sums are regular in { . We have, moreover,

from (3.12)

Z IH(c,z)l £ Z lHl(c z) l Z |H2(c,z)|

c=)

céC(AJ)r) O(AJ’ r) CEQ(AJ’r)
and
i |H(e,2)| < |5, (e,y2)| + [Hy(e,2z)|

c=-K c=-K ==K
ceQ(Aj,T') ceguj,r‘) ceg(Aj,l")

therefore, the limits in (3.3) exist uniformly for |x| < x,
Y27, 2 O. This completes the proof of the lemma.

Lemma 1: The functions G(z,rv,Aj, [ ,u) defined in (3.3)

are regular in _H « Furthermore, we have the expressions

(3.15) G(z,/U,AJ,r,p) = SAJ’IG((M K)z/ A )+i H(c,z),

c=~-

cf%(Ajo r ),C%O

and

(3.16) G(Zs,\InAJ: rnl")z SAJ’IG((W" K )8/7\) + i Hl(c'z)

c==-00
+ i Hz(c’z) .

c eg(aj, M),c#0
=-00

ce £(Ag, [ ),c#0

The three infinite series appearing in (3.15) and (3.16)
are absolutely and uniformly convergent in each compact

subset of 1 . H(c,z) is defined in (3.2), H,(c,z)
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in (3.7) and Hz(c,z) is defined in (3.8).

For later considerations we discuss Hl(z) defined

by the series

-(p+ Ky)
oot P tewo i)
1'%’ = .

-1 232
c=-m d=-o V(A,” V ’d)(cz + 4d)
(3.17) cE&%AJ,FJ dEJXc,AJ,r) I e
c#O

Expanding the second exponential we get a triple series
(3.17a)

i Zl; i o((s+ K yda/e ) (-2mip+ )"
==-00 m=1

-1 m m+2
c=-00 AJ(ATT V. 3) md (e AL)T (cz+d) .
céﬁ(AJ.r )de @(C.AJ"-) J c,d j
c#0

Using an estimation similar to the one following (3.9)

we deduce easily that this triple series converges
absolutely uniformly for y 2 y, > 0, |x] < X ; moreover, we
get ro; the sum of the series, Hl(z), the estimate

(3.18) |By(2)| < Cy %exp(2mip+1| /y) + C(ysin§ ) lex 2n ju]
vysinf|

vhere the constants are independent of z.



4., The Rademacher Lemma

We now come to the main tool of this paper, a
Rademacher type lemma, which allows us to rearrange
certain conditionally convergent double series. 1In
part we follow the method of Lehner [6, § 4]. Some
preliminary investigations will be required before we

can state the lemma.,

By a lattice point for Ajf' we sShall mean an ordered

pair (c,d) of integers obtained from the lower row of
a matrix V, 4 = (ab|c d)eaT. Let CKAJ,T') be the
set of all lattice points for Ajl_:

(h1) O(Apl ) = {(e@): I V=(ablcaeag .

Let A(K = {w =u + iv: lul< K, vl < K} and
(4.2) O glAgs 1) = O (ay, TN /fx .

Let M consist of the following matrices M =
(2 Bl Y§)erls
(4.3) M=1;
(4o 4) Y=1, 0,58 <A and o2+ §2> 0;
(%.5) Y>1, 0<x,§ <YA .
IfM=(xBlYS)eET and Y21 then the conditions in
(4.%) and (4.5) imply that cxéCZ#I,Y') and § € &9}(I,T').
If Y =1 then from the conditions in (4.4) we see that

-29-
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% and § are not simultaneously O3 thus, S = (0 =1 |1 0)
is never in M . Furthermore, in the case Y> 1, B > 0
as can be seen from the conditions in (4.5) along with
ab -BY =1,

Each V£ has one of the following representations:

(%.6) V=g+ N M2 with Mem,
or, possibly, if S = (0 -1[10) €
(%.7) V=+ ™ syt

The representation for each V € | is essentially unique.

To prove this result let V= (ab|lc d)€ [ be an
arbitrary element. We may suppose ¢ 2> 0, for otherwise
-V has -c > 0. Now consider U 2" yu ™=
(a-mcA *| c, d-ncX ). If ¢ # O there are unique choices
of mand n so that 0 < a-mecA < cA and 0  d-nc> < c) .

-m’xm-rﬂ\ e IfLc=Y¥Y>1, then x = a=mcA and

Let M =T
§f= d-ncA satisfy the inequalities of (4.5) (neither

o or§ 18 0 since (X,¥ ) = (v, §) = 1); thus, MM, If
¢c =7 =1, either both a and d are integral multiples of
or this is not the case. In the first instance a - mcA= 0
and 4 - ncA = 0, hence, U VU ™= 5= (0-1]|1 0).
This case leads to the representation (4.7). On the other
hand, if a and d are not both multiples of 7 , |
M = U0 yu 2% since the inequalities of (4.4t) are

satisfied. Finelly, if ¢ = O then a = d = + 1, hence,
v =+ 0¥,
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We can think of Mc))) as acting on the u,v plane
not as a linear fractional transformation, but as an

affine transformation given by
("008) (uQV)(o;g):(u.’V')) ut! = D(l.'l""fv, V'SBu"’fSVQ

Ifch is a set in the u,v plane let /JM = {(u,v)m (u,v)
e,ﬂ. In particular,

(5.9 Clag, MM = [Coer Ya,Be+ $a): (e,a)¢ Opag,T % .

The square ’JK' with sides u = + K, v = + K is mapped by

M onto a parallelogram whose sides have the equations
(410) o«v - PBu=2+K and Yv - $u=+K.

As an example, suppose M€}, ) =% < 0 and X— B < O,then
the image of /¢, ¢ M, is given in Fig. 4.1.

((a+7) K, (§+)K)

(¢ r—a\}K,(s-@)}lf

/

N\

&
—\\\/ K
Z,_i?i:,@l::#- (-(¥-)K, =( §-3)K)

(- (¥ K ,=(§44 )K)

Fig. 4.1
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We see that
(4.11) C’(AJ. MM = &(AJ.F)

for each M€l ., For, if V=(ablc d)€E AJF then so is
VMe A, ; thus, the lower line of VM is in 6(AJ.").
This proves O‘(AJ,F) ‘_:0‘(143.\_ )M, Next, let (c,d) €

O’(AJ,\" )M; 4in order to show that (c,d) 60(Aj,r) we
must show there is a V¢ A.1 C with lower row (c,d). Since

(c,d)€ G(Ajor M, (c,d) = (c',d*)M where (c'.d')GO(AJ. r)o

Let V' = (a'b* |c'd')e A, T, VM= (a*b*| c d) € AJT'.

J
If»/ andj are any two subsets of the plane, we

have (.£NJ M =S MN T M. Thus,
(+.12) G'K(AJ,T')M= AVKM/\ (?(AJ,F),

In order to make the notation more concise we will

write ;L p ;SD- in place of the more complicated
J

c=-M =-00

summation conditions E
=M d=-00
ceg (AT ) ace )O(C.AJ,\— )
If a prime (') appears on a summation symbol it means
the summation variable ¢ does not take the value 0., K

and M may take on any values so long as the resulting

sum has meaning.
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We are now ready to state the Rademacher lemma.
Lemma 2: Let M be in the class 1¥| defined in (4.3),
(4.4) and (4.5), then

o ey

K —>00 3 s 1y

P, c, d)(cz+d)2

e((p+ Kj)a/b Ay)

("’013) = 1im -1 >
K =>o00 f\f(A.1 Vc’d)(cz+d)

(cod)GOK(AJo M

vhere V. , = (a b le @) € Ay and O’K(AJ,F)M is defined
in (""09)0

In terms of the notation of section 3(see (3.8))

this lemma becomes

' ' e((p+ x,)a/c A
(4.14) i H (c,z) = 1lim WP LAY L
2 )

- -1
como0 K =>00 ’U(AJ Ve, d)(cz+d)

(c,d) €, (AJ.F‘)M

We have shown that the series in the left member
of (4.,14) is absolutely uniformly convergent for y >
Yo > 0. Further, for fixed M = (x Bl ¥ §) €M the

Z ] Hy(c,2)

le] >(o +Y)K

series

can be made arbitrarily small by choosing K sufficiently
large. This is because o + 7V 1is definitely positive by

our choice of /) , (4.3), (4.4) and (4.5). Moreover,



-3Y4-

the sum
(ol+1)K;-1 cz(ut‘l)K-l e((p+ x)a/c )
(4.15) Z Hy(c,z) = Z i 1 J : 2
J b/ — J /U‘(AS V.. q)(cz+d)
== (L +Y)K4L g=-co ’

c=={+Y)K=-1
is an absolutely convergent double series for fixed M
€ and K. This can be seen by using the estimate (3.11)
obtained by taking the series of absolute values of terms
of Hz(c,z) and then performing the finite sum on c. We
shall want to rearrange this series, but first some new

notation will be introduced.

For fixed M € Y define the regions 121 = ﬁli(u,v)
Dy = Qy(u,v), 1 =1,2, as follows:

i

Q, = ()t (F-0K g u < (F+VK, av - Pu K},
Q, = {(u,v): ~(+¥)K < u < (Y-)K, ¥v -§u2 K{,
-fil = {(u,v): ~(x+¥)K < u £ -(¥-K, av - Bu < -K}s
<, = {(u,v): (0K < u < @K, 7v - fu < K}

The cases where ® = 0 and M =1 merit special attention.
It =0set Q=0 =g IfM=1, set Qy =LY, = 4.
The regions are given in Fig. 4.2, we have used the same

choice of M as in Pig. 4.1,



L2, S ((afT)K)(qﬂl)K)
////( //,
S 2 065
&
- e W
=K (EK)
il ]
(~(o45)K, - (51 2)K)
Fig. 4.2
Define
(4.16) W, (K) = }E: gle.d)s | yi(x) = 2;: 515&925 ,
(cz+d) (cz+d)
£, (c,d) <% (e,d)

i =1,2, where

gel(n+ Kj)a/c Aq)

(4.17) g(c,d) =7 (a"ly
J Cc

for (c,d)e¢ C9(AJ.V'). The summation conditions indicated

in (4,16) mean summation is performed over all lattice
points for AJT' which lie in the region -, or _fl'i,

84 ou=03etw1=wi=o. In case M = I set W, = W) = O.
One could check directly, using the methods of section 3,
that these series are absolutely uniformly convergent for
y 2 Yo > 0. Their convergence will come out in our

development. Notice that the regions {1, and-ff1(1=1,2)
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are symmetric with respect to the origin. This implies
(+.18) W, (K) = W (K) (1 =1,2).

Indeed, if (c,d)€ 0‘(AJ.I—) appears in the summation

W, (K) (1 =1,2), then (-c,-d)€ O(AJ,I—) since - 1¢ [,
and because of the symmetry (-c,-d) will be a lattice
point for AJT' appearing in the sum Wi(K) (1 =1,2).
Furthermore, because the terms of the series depend only
upon the lower row of the matrices involved we can
assume that Voe,-a = “V¢,q¢ Recall that V(-1) = U (1)
= 1. Thus,

_Slc;d; _ e((p+xj)(-a/-c ’AJ) _ g(-c,d)
(cz+d) M(Aslv-c,-d('l ))(c:z+d)2 (-cz -a)°

The parallelogram of Fig., 4.2 is simply the boundary
of JK M. Thus, because of (4.12) we can write

(d+7)’K-1
ZJ Hy(c,2z) = 2W; (K) + 2W,(K)
c==(«+Y)K-1 '
oap .y S
’V(AJ Vc,d)(cvd)
(c,d) € O‘K(AJ. T M
Now write
c=, T—.
ijﬂz(c,z) = L—j Hy(c,z) *+ ZJ Hy(e,2);
¢=-00 lc| <(Y+ol)K kel 2(at+¥)K

therefore,using (4.19) we get
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C,2 -
32 rv(A;]'v‘:’d)(czﬂi)2

e=® (c)d)€ O-K(AJ’ r )M

(1.20) = 20 (K) + 20p(K) + ZJ Hy(c,2)

fe] 2(x+Y)K
Therefore, in order to prove the lemma we must prove that
the three terms on the right side of (4.20) can be made
small by choosing K sufficiently large. As we have al-
ready remarked this can be done for the last term. Thus,
it remains fo prove that W,(K) and W,(K) can be made
arbitrarily small by choosing K sufficiently large.

This task will occupy us for most of this section.

Following Lehner [6, p. 77] we extend the definition
of g(c,d) by setting

(4.17a) g(c,d) = 0 for (c,d) ¢0(Aj’r)’

¢ and d rational integers. For (c,d)E’C*(Aj,r')

glc,d4ch ) = f—‘j(Aslvc,dw?\ ) e((p+ /«j)a/c RJ).

2

but we may choose Vc,d+c = Vc,dU s therefore,

glesdre ) = T(a7V, DT ) el(p+ kya/ec Ay
= e(- K)g(C,d)o
We used the fact that V, ; = (a b|c d) and Ve,dec =

(a *|c *). We now define a periodic function
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Let
(%.21) @(c,d) = e(dk/c ) gl(c,d)

for ¢ and 4 rational integers. Since
@ (c,d+c) ) = e(K)e(dn/c x)glc,d+c) ) = e(dw/c A )g(c,d),
@ (c,d) is periodic in d with period c¢A . Therefore,

it has a finite Fourier expansion

q)(c,d) = Z: Bke(kd/cl ) By = ‘%ﬁ' Z ¢(c,d)e(-kd/c ),
k

cA)
(4.22) d(e)

where in each case the sums are extended over a complete
residue system modulo c?A, say 0, 1, «.., lclA = 1.
From the first equation of (4.22) and the definition

of ¢ (c,d), (4.21), we see

(+.23) g(e,d) = Z B, e((k-« )a/e ).

k(c?)
From the second equation of (4.22) and the definitions
of ¢p(c,d), (4.21), and g(c,d), (4+.17) and (4.17a), we
obtain

lclA -1
(+.24) B = \c_l]i_ dE TGV Qellus kyda/e n y+(-ker)a/c))
=0

The summation conditions mean d € a@(c,AJ, ) and 0 < d <
lcl A . However, the above sum is periodic in d with
period jclA , thus, the finite sum in (4.24) is nothing

more than the Kloosterman sum of (2.18).

(""025) Bk = Ttl—'; wc(-k"/‘ ’AJD“" Kj).
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If we use the extended definition for g(c,d) in
(4+.16), we can drop the conditions on the summation
variables symbolized by the J on the summation sign; that
is, we no longer require c ég(AJ,r) and d € Og(c.Aj,r).
Now insert for g(c,d) in (4.16) the finite Fourier expan-

sion (4.23) to obtain

@+Y)K=1 lcjA-1 ( Ya/e A)
e - K C
) B )

(cz+d)2

c=(y-a )X k=0 K a-BeoK

(F=0)K-1 [e/A -1

(%.27)  Wp(K) = ) DN e( (k- x)d/c A)

2
- - p (cz+d)
c=-(vY+)K-1 k=0 yd-§eoK

The dependence of the Bk on ¢ has been suppressed_by the
notation; however, it is clearly present as is shown
in (4.24). It is in the above form that we will make

our estimate on wi(x).

In making our estimate on the inner sums of (4.26)
and (4.27), we will want to identify two cases. PFirst,
we shall suppose d may take small values and c 1is
bounded away from O by a multiple of K, and secondly,
¢ may take on small values and 4 is bounded away from
O by a multiple of K. We are excluding the case that
both ¢ and d can take small values, That these two
situations, and only these two situations, are realized
is a property of the class })]. The proof of this state-

ment is deferred until later.
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Define

(%.28) T(k,c,K) = e((k-4)d/c))

a=0K (cz + 4d)
where Q = Q(c) is defined so that QK is the lower limit
of summation on the inner most sum (on d) in the equa-
tions (4.26) and (4.27) for Wy and W, respectively.
Notice that Q(c) depends upon M. We assume that either:

(1) -00< Q(c) < + oo with lcl> RK,
(4+.29) R a positive constant; or
(II) 0 < Q(c) < # o0,

These two situations are not mutually exclusive. In

the proof of this lemma we always exclude ¢ = 0; this

comes from the fact that the summation variable c¢ in

the left member of (4.13) is not 0. Notice further,

that in (I) 4 # O since Ic| > 1 (for sufficiently large K).
and (c,d) = 1.

We intend to make an upper estimate for T(c,k,K).
This estimate will be carried out in four stages listed
below:
(I)1 situation (I) with k = 0,
(I), situation (I) with 1< kg ldA - 1;
(II)l situation (II) with k = 0,
(I1), situation (II) with 1 < k < lelA - 1,

(%+.30)

In order to carry out this estimation we introduce

some preliminary material. Let Sq = }f: e(o(k=-x)t/c2)
t=0
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with o = +1. Then S, =1 and for d > 1

0

.31 S, = i k=K)t/cA) = 1-e(o(k-4)(d+1)/c A )
e3n) d t=0 el /e 1 - e(o(k-Kk)/c 1)

provided k =« # 0. Using the inequality
sinwxzmin.§2x,2-2x} for 0 < x<K1l,

we f£ind that for k and ~ in their ranges (see (4.,30))
and k - K £ 0

-1 -
lSdl < {sin '(—E:%\)l” < {min[z l(x-x)/cn| ,2-2 \(k-k)/c'kl]} 1.

Thus,

(4.32) [8y] < leln /2 {Jk-a"L & Clela - Jx-#1172

This inequality is valid for 4 2 1. Under the conditions
on k and K the right member of (4.32) exceeds 1, there-
fore, this inequality still holds if 4 = O.

Recall the estimates (3.5) and (3.6) for lcz + 4| .

Let w=w(z) = min. &sin 5 ', y} where 0< §' = arg. z

< m. Combining these estimates
(4.33) lez+dl > |a| sin§ '> |d]w and |cz+d| > lel y2 lelw,
we conclude that for each ul with 0 £ n £1

(4.34)  |ez + d| 2 lel1 -1 ‘d(vl' .

We continue with the estimation on T(k,c,K).
(I), Suppose we are in case (I);+ Then with 7 = 5/8

we get
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(l+035) IT(ODC’K)l S i 'cz+d|-2$ u;2 ‘dl-sﬁ" Ic‘-3/‘+

d=QK d=QK

< Efitu'zldl'S/h]cf'3/h <C k\'3/h.

d==-00

C = C(z) 1is a general positive constant depending on

the parameters indicated.

(I)2 Suppose we are in case (1)2. In order to use the
preliminary material uniformly we decompose the sum
T(k,c,K) into two series so that in each case the sum-

mation index d will be positive. If Q(c) < 0, write

T(k,c,K) = Tl(k,c,K) + Tz(k,c,K)
with

T, (k,c,K) = (cz*-cl).2 e((k-x)d/c\)
d=QK
-QK

=) (cz-4)"2 e(~(k-«)d/c \)
d=1

-3
-
"

and
(4 o)

= T,(k,c,K) = Z (cz+d)™? e((k-K)d/e )
d=qK
d 21

N
!

In case Q(c) > 0 define T, = 0. 1In Tl and T, we replace
the exponential by Sd - Sd-l’ Then
-QK

Ty = Z (Sq = S4.9)(cz - 4)72
d=1

with Sq defined in (%.31) for ¢ = -1,
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Thus, -0K=1
T, = Sd[(cz-d)°2-(cz-d-1)~2] + S_qK(cz-»QK)'2
a=1 -2
-So(cz-l)
Therefore,
-QK-1

ITy| < }Z: \Sd\{]cz-d\Icz-d-ll}'1§|cz—d|'1 *lcz-d-1"1§
d=1

+ lS-QKl Icz-QK"2 + ISOl ez - 1] -2
Using the estimates (4.32) and (4.3%) with n= 1/M4,0,1,
|Ty| < {je[h/é ( [k-ATY « [lelA = |k- «l]'l)}

-QK-1

{Z (23 a(as1)/M |c|7/'*')'1 +2w™2 72 };
d=1

hence,

(+.36) |7y| < {lk-al'l +# [lelX - \k- mll‘l}- c- [el ~3/%,

By similar methods an upper estimate of '1'2 is made.
Let Q' = max {QK, 1} , then with o = 1 in the definition
of S d

T, = i Sd[(czﬂi)-2 - (cz+d+1)'2]

We see that
|T2| < {(lcm /2)( k- 4171« [ JelA - \k=-«]171) §

®
{Z [ |cz+d|| cz+d+l| 174 |cz+d|'1+ |cz+a+1] 1y, lcz+Q'+1)-2},
a=q
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hence,

(+.37) |1, < ﬂk-xfl +[ lel -|k-«1]‘1:}c-lcl'3/h .
Combining the results of (4.36) and (%.37),

(4+.38) |T(k,e,K)| < C el '3A§ lk-4"1 + [lelA -lk- Ki]-l}
for the situation (I),.

Now we turn to (II), namely 0 < Q < + o0,
(II)l Let the conditions of (II)l prevail., Then as in
(4.35),

| T¢0,c,K)| < Efi =M o “3M w2,
d=QK

Using an integral estimation for the series on 4, we find
(4.39)  |T(0,e,K)] < Cle|~¥M x1/%,

(II)2 Now turn to case (II)2. Then as before

T(k,c,K) = Y?L

/ S4 [(cz‘»d)"2 - (cz+d+l)-2]
d=qK

-Sk-1 (cz + QK)™2

with o = 1 in the definition of Sd’ Making the usual

upper estimate,

-

|T(k,¢,K)| < {ic!%./é (k=4I + [ lelr - \k-kl]'1)§

(35 w73 a2 e TP
d=QK

Thus,

0
(4.40)  \T(k,e,K)|< c le| "3M K‘l/”{_lk-&r1+[|clx- k- 71,
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We see el A-1
(b41) Wy (K) = Z Z B, T(k,c,K) (1=1,2)
c k=0

provided ¢ is summed over the proper set of integers -
as dictated by (4.26) and (4.27) according as 1 =1 or
2 respectively. We have essentially two estimates for

T(k,c,K) corresponding to (I) and (II). Let
lelA -1

(5.42)  T(e,K) = ByT(0,e,K) + ) B Tk,e,K).
k=1

An estimate for Bk is obtained from the relation
(+.25) and assumption (2.20), the estimate for the

Kloosterman sums, We get

(kol"3) Bk = O(IC( -1/2 +E )) k = 0’ 1’ o0y ’Cl)\ ‘1

where the constant in the OU-symbol depends upon p and € .
From (4.43), (4.35) and (4.37), we find for (I)
() |2(e,K)| < c. || "M +E
lelA -1 .
. {Ce |o| =5/ 4 ; Cre=r[t +C el A - fae- /«\]'1}.

In (II), using the estimates (4.39) and (4.40) in conjunc-
tion with (4.43), we get

45)  |T(e,K)| < cp oM *E /M
lelA -1 _
+ C, o] =5/ +€ g1/ Z{dk‘d.]'*-[lcl}\ 'ht-ﬁ.\]d}
=1

CE; = C(&,2z) is a general positive constant depending upon
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the parameters indicated. Recall c¢ and A are integers
c£#0, Thus [e]J]A>21. If JecJA=1 the sum on k in
(+.44) and (4.45) is empty and hence 0. Otherwise using
an integral to estimate this finite sum,

le[A-1

(- al™ + Tledd - x-41"Y) = Ottog le]) = O Idl€ ).
k=1

Using the above result in (4.44%) and (4.45) we obtain:

(4.46) 1n (1) T(c,K) = O le|™M™ * 28,

(4.47) in (II) T(c,K) = O( kl=5M * 28 g1/

From the definition of T(c,K), (4.42), and from

(k.41), we see Wy = E T(c,K) , 1 =1, 2. Let us
c
assume that we can partition the set over which ¢ 1is

summed into two disjoint sets, one in which (I) holds,
and in the other (II) holds for the same choice of R
(see (4.29)). This decomposition, if it can be effected,
need not be unique. Write symbolically

(+.48) W, (K) = T(c,K) + T(c,K),
! Zm ;(n)

(v

where E represents a summation over those ¢ in our
o I
decomposition for which (I) holds. E (11) is defined
II
c

by analogy. Then
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-5/ + 2€ - £ _
[0 < ;mcglcl . gm)% o |5/ +2E -1/

L
5~°E§E:l°| 5/t +2 +%EK /M g lel 5/4 .
lcl >RK ¢=-00
We place the restriction that 0 < 2 £ < 1/4, then,

Wy (K) = O(K’l/"‘ +28y O(K-l/h) - O(K-l/’+ +2€,

The constant involved in the C?-symbol involves only
ps € and z. This shows that Wi(K) —> 0 with K —>00,

as promised.

To complete the proof we must show how the decom-
position (4.48) can be effected. This will, of course,
depend upon the particular M€7))|. Certain cases must
be identified and handled separately. Recall the def-
inition of M given in (4.3), (4.4) and (4.5). We
assumed that for M = (X Bl Y § ) all the entries are
positive, further, & and § are not simultaneously 0. We
identify six cases:

1) M=1,
2) M= (2,-1|10) with « > 0,
3) M=(0 -1]|1§) with §> o.
Let M = (xB|¥§ ). The remaining cases have positive

entries and we identify them:
4) y-a>0, §-B>o0,
5) Y-d<0, §-B>O0
and, finally,
6) Y-x <0, b-PB<o.
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The only other possibility Y -& >0 and §-Pp <O

1s excluded by the fact that xS - BY =1. We determine
the image of «Cf K under M in each of the six cases. From

the geometry it will be clear how we can effect the
decomposition (4+.48).

We refer the reader to either Pig. 4.1 or Fig. 4.2.
1) Let M = I,

~
d‘-)
(-KL_K_)______,___“N_________,_ I (K) K)

E:
|
? S VU SO
i
| |
|

(- K-K) (K= K)

t
Figo l"‘03

In this case wz(x) = 0. Further, in the sum for Wi(K),
(I11) always holds with Q(c) = 1.
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2) Suppose M = (&, =1|1 0)€¢M with % > 0. The

transformed region is given below.

v
B '
(-(‘+u)K)Ki<\_ 3((1—a)Kﬁ0h i
- a,
AM (5
u
j\\\\\\\____h_J<(d+nK;K)
Fig. 4.4

We see that for WQ(K) situation (II) prevails with
Q(e) = 1. We handle W,(K) in the following way

(1+%)K-1 . (K/2]
Wm0 =S rew e Yo e

c=[K/2]+1 c=(1-d)K-1
to obtain the decomposition (4.48), In the first sum
above (I) holds with R > 1/4; in the second sum (II) is
satisfied with Q(e¢) > 1/26¢
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)

3) LetM=(0-1]18)emwith §> 0.

: Vv .
v (%, (§+1) W)
. /

Q,
(-2‘_?;'_9 / (KA+9K)
T

e ’

(K, 0-6)K) :

(- K, = ($4 i)
Fig. 4.5
For this choice of M, wl(x) = 0, We write

[-k/28) K-1,
) =) TeK) ¢ ) T(c,K)
c=-K+1 c=[-K/28]+1

to obtain the decomposition (4.48). 1In this case for
(1) R=1/28 and for (II) Q(c) > 1/2.
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h) Let M= (X B|¥§ )e M with ¥ -% > 0 and

§-PB > 0. The configuration of regions is given in
Figo ""060

| v :

(DK, 8K

u

e = —4 .-

(~ (F+)K B+ §)K)

L

Fig. 4.6,
For wl(x) we always have (I) with R = (7Y -X )., However,
we must decompose W,(K). Write
[-K/2§) (¥-c0K-1
W2(K) = }:: T(c,K) 4'22: T(c,K)
c=-(V+d)K+1 c=[-K/25]+1
to obtain (4.48),

The cases 5) and 6) are handled in a manner similar
to 4). We give their configuration of regions in Fig.
4,7 and 4.8 respectively. The reader can see how these

situations are handled.
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5) M= (dBlY¥YS)eMwith s-x < O0Oand §- B > 0.

(0K, (64 £IK)

(- (YK, -(§+8)K)

Pig. 4.7
6) M= (AB|¥ > )eMwith ¥y -& < 0and §- B < O.

(o 1) K, (8+£)K)

(~(oa) 4~ (§- BYK)

Figo l"’08
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A useful consequence of lemma 2 is the following.
Lemma 3: Let M €M then
e((p+n )V z/\,)
(449)  G(2,0345,T ,p) = lim Z 1'%c,d J__
Koo &= gl $)(cz+d)
9
(c,a)€ 0K(AJJ‘ M

Proof: In lemma 1 we proved that

0 ,

G(z.fv.Aj.l' sB) = 3AJ,I e((p+n)z/2 ) + Zj H, (c,z)

c=-00
>
+ H (c’Z)o
j 2

=-00

Now, lemma 2 gives for M € 1|

] e((l""xj)a/c KJ)

(4.50) H,(c,z) = 11
5 2(¢,2 KEmZ

A ATV g)(ez+d)?
(c,d) €0, (AJ. M

Furthermore, we proved that the double series Hl(z) of
(3.17) which sums to E Hl(c,z) is absolutely conver-

gent. Thus, we may write

(p+Ay)
e((u«o/c da/c 7\J { [ : (gz-fd)] —1;
(4.51) H,(z) = lim 1

- -1 2
K =>00 A, Vc’d)(czﬂl)
(c,d) 69(AJ. M
Both the limits in (4.50) and (4.51) exist, therefore,

we may add them. Using the fact that for ¢ # O,
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Vz = (az+b)/(cz+d) = a/c - 1/c(cz + d), we see that

Z e((“*kﬁvc’d 2/7\;3
(AP ez + @)

G(Z"UoAJ: [sp) = 1lim
K =>00

where we have incorporated the term corresponding to

c 0 in with the 1limit.



5. The Functional Equation

In this section we prove that the functions
G(z,Qr,AJ. I ,p) satisfy the functional equation (2.11).
That is, for every V= (a b |c d)

(5.1) G(Vz,03hy0 [ ,p) = W(V) (cz + a)° G(2, U A0 T o1)e

We use the results of the preceeding section; namely,
lemma 3 and the representations (4.6) and (4.7) for Ve T .
The result (5.1) follows from the special cases:

(5.2) G(U" 2,m,Ay, Tow) = (07 62,045, T 40

and for M = (Bl Y&§)e M,

(5.3) G(Mz,’U,AJ. lop) =7(M) (52 +$ )2 G(z,'ll’,Aj, [ o)
finally if, in particular, S = (0 - 1| 1 0)E T , then
(5.4) G(52,4,, 0 4u) = U(S) 2° Gz, Ay, [ on)e

Indeed, suppose first V = Uml MUnk with M = (2 B|Y §)eW).
If V=(ab|cd), thenc =Y andd=§ + ncA . Apply-

ing (5.2) and (5.3),

(O™ ) cout A

G(VZ,ABAJ,I—,P) Z,W}Aj,r.,ﬂ)

fU(U""‘M) qmrﬂz +§)°2 G(Un?\z,’lf,Aj,r.p)
=AM M) (U ) (Yz +¥nn +§)2 6(2,15 85, T 41

= /L"(V) (cz + d)z G(Z,’V’AJD]—D“)O

-55-
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If, instead, V = U™'su™ = (a b\c d) then ¢ = 1 and

d =n\A. As above,

G(Vz,/U’,AJ,r )l-") =/U-(Um’)\) G(SUnxz,(U,Aj,r oll')

=/U'(Um7\5) (UMZ)Z G(Un-)\z,'\f, J"- ’h)

‘_"U-(V) (z +* n?\)z G(z”UF,AJ, ra“)o

There was no loss in generality in assuming ¢ > O since

we were dealing with linear fractional transformations

rather than matrices.
We defer the proof of (5.2) until the next section

where we obtain the Fourier expansion of G(z ’V’Aj,r sh)e
To deal with (5.3), we have from lemma 3,
e((p+ £V z/ 1)
G(Z,’U’Aj,r ,]‘) = 1lim Z 1 ‘& g‘gf '12
K-> =
oo /U’(AJ Vc’d)(cz + 4d)
(Cod)6 "%‘((AJQF)

where in that lemma we have taken M = 1. Now for any

M€ ) we see upon substitution

e((p+K,)V Mz/ 7\1)
G(Mz,’U’,AJ. [yp) = 1lim Z -1 i c.d 2
K =>00 MAJ vc’d)(cMz-rd)
(c,d)e @K(AJ.F)

1im (M) (Yz+$)2
K =>c0 4f(A

dM)(c z+d' )2
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where V. M = (* *|c' d") = (** |[we+ Y4, Pe +§a).
If (c,d) runs over 0K(AJ, [) then (chd') = (c,d) M runs
over K(Aj’ [ )M, The terms of the series depend only

on the lower row of Vc’dM; thus,

a((p+ 4V, 2/
G(MZ:W’AJ9‘— ’B) =/U-(M)(XZ"‘8)2 lim E 1 Jr c,d 212-
K =>o00 /U(Aj Ve, 4) (cz+d)

(c.d)é&K(AJ,r)n

but by lemma 3

e((p+4, )V, 2/A,)
G(z.’U.AJ.r o) = 1lim Z i_c,d %-
K =>mo ’V(AJ c,d)(°z+d)

(c.d)eﬁfc(A M

j,
therefore,

6z, A4, T L) = VM) (V2 +§ )2 62V Ay0 T on)e

Suppose, finally, that S = (0 -1} 1 0)€{ . Then
from lemma 3 with M = I,

e((p+a )V Ssz/ A )
1lim E J” c,d 2L
K =>00c— ar(a3lv, 4)(cs24d)

(c,d)e Oy(ny, T )

G(Sz.'U.AJ. T »p)

j’

2 e((“”KJ)vc,dsz/?\'J)

lim U(S) 2z
K =>00

2 (a3 g8)(az-c)?
(c,dX O y(as,1)
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As (c,d) runs over O’K(Aj,l— ), (-d,ec) = (c,d) S runs

over &K(AJ,T )S. But O’K(AJ.T)S = Oi(AJ,T )e Thus,

Z e((ll'”(d)vc’dz/AJ)
Qf(Aglvc’d)(cz+d)2 |

G(Sz, A4, [ 8) =V (S) z° 1im
K =00

=(S) 2°2 Gz, V044, [ ,p).

J’



6. The Fourier Expansion
As mentioned in sectinn 5 we must yet prove that
A A
(6.1) G(U z,/U,Aj,r,p) =y (U )G(z,’lr,Aj,r sh)e

This is accomplished by expanding G(z,v;AJ,f',p) in a
Fourier series, which, furthermore, will give the behav-

ior of G(z,v}AJ,f',p) at the infinite cusp.

We begin with the series

!
(6.2) Hz(z) = iJHZ(CQZ)

C=-=00

/ 2,2.2
= ] (2m)</c\ (n+&)wc(n,p)e((n+5)%/2 )

c=-00 n=0

vhere we have used (3.13). The above series was shown
to be absolutely uniformly convergent for y > Yo > 0.
Each of the functions Hz(c,z) is regular in y 2 y, > O.

Thus, by the Weierstrass double series theorem

!
(6.3) Hy(c,2z) = i e((nw\)z/?\)i J(--21r1/<:7\)2w¢(n.p)(m/«_)

n=0 c==-00

-59-



-60-

Following lemma 1 we proved the double series Hl(z)

[0 )
(3.17), whose sum is ZJ

:-m

Hl( ¢,z), converges absolutely

uniformly as a double series for y 2> Yo > O« Thus we may

rearrange the order of summation in the manner of Hz(z).

Proceeding from (3.17a)

-21r1(u+« e e((p+ 4y da/c 2y)
Hl(z) 1 >
™ ’)\ m' J /u'(A' Vc d)(cz+d)m*

c-'-oo

(6.4)
Now, as in Hz(z), we can write the inner most sum (on d;
see section 3, the development following (3.12))

i e((p+KJ)a/c')\J) ={Z e((p+xj)a/c ?\J) g
3 (4] v, -1

P d)(cz+d)m+2 fU(AJ Vc,d)
de OQ:(AJ’ r )

{c-u"‘*z i e(q )
(c))B*2 (-1(z/» +d/c A )+q1)®*2

q=-00

{Z e((wkj)a/c *y (-2m)0*2
) ’U(Aslvc’d) (e A)™*2 [(n+2)
de O(}C(AJ.T' )

00
{Z (n+«)B*1 e((n+x)z/ A + d/cA ));
n=0

where we have used the Lipschitz formula (2.20). Inter-



-61-

changing orders of summation, valid because of absolute
convergence, and introducing the Kloosterman sums, we

obtain finally

e (-2m1)8*2 (nex)B*L
Z cee = i e((n-’-/()z/)\) Wc(n,u).
3 - (eM®*2 (me1)s

=-m

Introduce the above expression for the inner sum in (6.4):

(6.5) Hy(z) = i e((n+x)z/2 )

( 2"1)2m+2(n_..K)m+l( + K )
) 3 o

m=1 C==-00

On comparing (6.3) and (6.5) one sees that (6.3) corres-
ponds to the missing term m = 0 in (6.5). Thus, on adding
(6.3) and (6.5), we obtain

G(z,ﬁr.Aj, M,p) = SAJ’Ie((p +Kz/% )

(6.6)
+ }fi c, e(n+x)z/A )
n=0
n+« >0
where
o
¢, = W (n,p)
? c=-ooc ' m=0 c2m+2 ZP+2 K?(m+1)!m!
ceG(AJ.V)
(6.7)

=3 cn(’U'.AJ. r i)



-62-

We note in (6.3) and (6.5) that if x = 0 then the coef-
ficient Co = O. This is the reason we restrict our sum

in (6.6) so that n + K > 0,

A simplification of the coefficients c_ can be

n
effected if one used the Bessel function [18, p.358]
(6.8) 7 (z) = i (-1)® (z/2)>™1

1 L= m! (pe1)t

The sum on m in (6.7) can be written in the form

m 2m+1 2m+l
_ _2m_ /oK JXJ (-1)"(2m) (/pﬁ‘lil v/n+ K )

leld itk v =0 m!(ml)!(/?x-; Jx)2mil || 2mel

- &

2
(6.9) = - —2I (—i"” ) (&tﬁ\;% 3 (‘"’ '\} Qe )
) el \ 2y 7 e Ay oA

We assumed that p # 0, therefore, p + Ky # 0. Using
this expression, we may write the coefficients ch in the

following form

1/2 1/2 '
B+ - b1 [(p+ K ) (n+k)
L f thd i R i )
°n = ('A ) <7\ ) =_°’:' W (n “’Jl(c Ay A )

J

When y + Ky < O we can replace p + Ky by [p + KJ( and

then we must also replace J,(z) by Il(z) = 1'1.]’1(iz) (18,
372], the Bessel function with purely imaginary argument.
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We now derive (6.1). Replace a by U z = z +A in

(6.6) G(U'z,u,A,, T o) = SAJ,I e((p+x )(z+A)/2)

+ i c, e((n+k)(z+ 1)/ )

n=0
n+K >0

= e(K)G(z.'U,AJ.r,l&) =U(Uf)‘ )G(zﬂfsAjor s1)

As z =>io0 within the fundamental region R(I" ),
G(z,/\f,AJ,F ») tends to a definite 1limit, finite or
infinite. We see that if y +X > 0 or A, #Z 1 this limit
18 0. If Ay =T and p ¢k < 0 then G(z,'U‘,AJ,r,p.) has

a pole at 1 o,



7. The Behavior at the Cusps

In order to show that G(z,'[r,AJ.r,p) has the correct
behavior at each of the parabolic fixed points of [, we
establish the formula

(7.1) G(ZQV:AJ’F:P)I B = G(z:”U!)AJBpB-lr B)Il)

for each BE [ (1)(see (2.13) for the definition of |B).
o= (BT B,-2) is the multiplier induced on Bl B by
= (T ,-2). This formula is of interest in its own
right.

Since [ is a subgroup of the modular group and B
€T(1), then BT B 1s a subgroup of the modular group.
If R(T) 1s a fundamental region for | then B™XR(T ) is a
fundamental region for B"X[ B. Write R(B™I[ B) =
"B™IR(I" ). 1If R([") is bounded by a finite number of
sides consisting of straight lines and circular arcs
then so is R(B-]'r B). Furthermore, if the parabolic
cusps of R(1 ) are inequivalent, so are the parabolic
cusps of R(B'lr' B). If A'J'loois a cusp of R(T ) then

(AJB)']'oo= B! 3100 is a cusp of R(B™IT B). Thus, all

the developments of sections 2,3,4,5 and 6 hold for the

Poincare series in the right member of (7.1).

We shall assume for the moment that (7.1l) holds and
show that G(z,‘v',AJ, [ ,un) has the proper behavior at the

-6l
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cusps. In section 6 we showed that G(z,'U’,AJ,\— s#) has
the proper behavior at z = 1 co. We consider first the
remaining cusps of R(1 ). Let A;]' 00= p, for 2 { k g
o(["). Then from (7.1) applied to G(z,’Vk,AjA;]',rk,p)
with B = A, and rk = AT A;]' we get

(7.2) G(Z,'ngAJA;]', rkﬂ‘) I Ak = G(Z,’U’Ajyr,ﬂ).

", 1s the multiplier system on | , induced by vV on | .
/U'k induces ) on r o« Rewriting (7.2)

(e + 4720z M AT ) = 62,055, )

where A, = (a) bk' ¢y 4). As z = Py = 'dk/ck’ Az

—> 1 o0o. Since G(Akz’ koAjA]-‘lsrkill) = O(‘e(kakz/ak)‘ )
with W, =K, if kK, > 0 and k # §, wy =11f K, = 0 and
J #Xk, and 1f k = j then Wy = p +/cj, it follows that

G(z,V,AJ.]—.p) tends exponentially to a definite limit
as z => p,. Indeed, i1f k # j each of the terms of the
Fourier expansion of G(Akz.’Ui{,AJA;l, T')s8) tends expo-
nentially to 0 as z = Py

Now let p be a parabolic fixed point of | . Then
there is a V = (a b| ¢ d) such that vl = p, is one of
the cusps of R([" ). The functional equation (5.1) gives
C(Vz, A0 1 0p) = V(W) (ez + )2 6(2,1300, T ,0). 25 & —>
Pm in a parabolic sector in R(T ), Vz —> P in a parabolic
sector at p. G(z,V;4y, ,1) tends exponentially to a
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definite 1imit, therefore, G(V:{T,Aj,r'.u) does also.
This completes the proof that G(z,%;Aq, T ,p) has the

proper behavior.

It remains to establish the formula (7.1). We do
this by induction after we have established

(7.3)  G(z,WA0 T L8| U= 62,0, A0, 2T 0,0,

and

(7.".‘) G(Z,’U—’Ajpr )“) ' S

" -
G(Z”U-’AJSJS lrstl‘)

for the two generators U= (11]|01) and S = (0 -1| 1 0)
of [T (1). A’ 1is the character on U'lr' U induced by & on
T . Ar is similarly defined.

Proof of (7.3): In (3.2) we defined H(c,z); and

G(U .’\f,AJ,\_,p.) = i:H(C'UZ)
c=-0

where

H(c,Uz) = ijrry(Azlvc’d)(cUzw)'ze((p+KJ)Vc’dUz/7\j).

d=-00
Now
£y = S0t o

and

e, 000,07 0) = ferdrae s(e,ayn ) {.
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The proof of these facts is almost immediate., Further-
more, if A’ is the multiplier system induced on U-l\" U

P
and V = vc,dU € AJ " U, then

c,d+c

- I e
M(Ajlvc,d) = vty =m0,

Also,
A =AM U) = AL T) = Ay,

and

K= K(ADUN T 0) = Alay, 1) =4y
Substituting these results into H(c,Uz),

H(c,Uz) = va ((a40)" 1y d+c)(cz+d+c)'2e((p+lﬁJ)Vé,dMZ/AJ)
d€ﬁ(c’Ajor )

ZN‘((A U)” V d)(cz+d) e((p+Kj)Vc’dz/7lj)
de ab(c,AJU Uiru)

E(c,z)

since as d runs over ﬁ(c,AJ,r) d' = d+c runs over

aO(c,AJU.U‘lr U). Thus,

i H(c,Uz) = H(c,z) = 6(z,n",A,0,071 Usp)e
J ) J

c=-00 cep(a,U, uTiruy

Proof of (7.4). PFrom the definition of the operator
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S and from lemma 3 with M = I, we see

G(z.fxf,Aj,r,p)lS

‘1_1_2002 !U(A'lv cl)(<:Sz+<1) e((u+ }(,J)Vc dSz/AJ
(c d)GO-K(AJ’ )

Let V! =V

a,-c S = (b, -a| d, -¢). V! € Ajrs =

c’d d’-c
A8 s”1r s. Thus, (d,-¢)eO0(A;,T) s and

Og(ay,0 ) 8 = Op(a,8,871T 5),

Moreover,

VATV, ) = ATV 8) = IV )
and

?\(Ajs,s’lr 8) = 4, , (28,871 s) = Ay
Therefore,

-2 = -1 -2
z 11512>ooz l‘U(Aj Vc.d)(cSz+d) e((.H-l(J)Vc’dSz/‘»\j)
(c,d)€0 (A1)

lim ZW’"((AJS)-]'V d)(czm—d) e((tw I(j)vc dz/')\ )

K =>00
(c,d)€C (AJS,S-]' rs)

" -1
G(Z:M,AJS,S r S:F)o
This last equality follows from lemma 3 with M =

Since S and U generate | (1), we can write any B

a, b a_b
€T(1) in the formB =S W01 ... s "W ", & > 1,852 0,
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bi 2 1 and bn 2 0. Now we need to know that
F(z) | V,V, = (F(z) | V)|V,
Let ' be the multiplier system on VI]' [ v, induced by
on T , &/ be the multiplier system on (V1V2)'1r AL

induced by S on V]'_lr V,» and let n"' be the multiplier

system on (VIVZ)'IF ViV, induced by V on [ . Then

NS =
(7.4) and the above mentioned facts.

(7.1) is now proved by induction from (7.3),






8. Kloosterman Sums, Main Theorem, and Examples

We introduced Kloosterman sums associated with our
modular forms of dimension -2 belonging to [ and the
multiplier system U=V ([ ,-2) in (2.18). At the same
time we assumed that for fixed p # O these sums could

be estimated as O ( lel 1/2 +¢ )e With this assumption

we have proved the following theorem.

THEOREM 1: Let | be a subgroup of finite index in the
modular group | (1) and let v =V (T ,-2) be a multiplier
system for [ and the dimension -2. Let Asloo = py be a

cusp of the fundamental region of I (Asloo = oo if and
only if AJ = I). Then

e( (K, )Vc’dz/aj)

(801) G(Z,W’Aj’r ’p) = i
c=-o0 =-00 /U(A'J']'Vc.cl)(cz+d)2

cCG(AJ:r ) dfﬁ((:)AJnr)

1s a modular form of dimension -2 for [ and the multiplier

system A =V ([ ,-2), provided the Kloosterman sum

(8.2) wc(n-rK.AJ,p*-&J) = E(Aslvc’d)e((n+&)/cl+(.;+«a)/c?»J)
dedsc(AJ’r )

can be estimated as (J ( (cl]'/2 +€

) for fixed p # 0. The
series in (8.1) is not aboslutely convergent; we under-

stand that the summation 1s to be performed in the order
-70-
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20 -
lim S E:: eee + 1im j:l ; eoe

c=0 d=-o00 c=-K d=-00
ce’Ay, ) aedle,a,,T ) ccG(ay,T ) dede,al)

The sets & (Aj,r ),0(9(c,AJ,r ) and 0§C(Aj,r) are defined
in (2.16). Furthermore, G(z{U}AJ,r-,p) has the Fourier

2xpansion

8.3) §, 1 e(wrnra/n) + D euiay, T apdelnr)z/A)

n+K >0
vhere
, r, | A5 n+K% W, (n,p) b [ P4y nex
(8.4) ¢ = '/’k{wj T} > = Jl(‘c‘\‘ oyl )
n+K>0

where we use the positive square root. Jl(z) is the

Bessel function defined in (6.8).

In regard to the estimates of the Kloosterman sums

Petersson [11] has proved the following. theorem.

Theorem (Peterson): Let | be a congruence subgroup of

the modular group, V an abelian character for f_, and
suppose there is a principal congruence subgroup | (N)
such that [(N)CT and V=V ([,-2) is identically 1

on [ (N). Then the Kloosterman sum (8.2) has the estimate

O1e|Y2 *&) for fixed p # 0. The constant in the
O-symbol depends upon U,[ ,u and € but is independent

of n.
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We shall give Petersson's proof of this result. The
material given in the next few pages is an elaboration of
pages 16, 17 and 18 of [11]. The proof proceeds by
showing how to reduce the sum (8.2) to a sum of original
Kloosterman sums. Then the results of Salié [15] and Weil

[17] for these sums are applied to give the final result.

F(N) is normel in | . Suppose | has the coset

decomposition

(8.5) U K, (M), K e

s=1 s
where v= [T :T(N)]. Then

v
= U
8.6) a7 =L ax a0,

We state a lemma.

Lemma U4: C7(AJ n? »[ (N)) and C?(AJKS [T (N)) are either

disjoint or identical; they are identical if and only if
-1 (AJ

K = PJKSM where n is an integer, P‘1 = AJ U Aj and

M € [(N). Finally, for ceé(Aj,r)

(8.7) oﬁ(c.AJ,F ) = Ul e, AKg, T ().
o

n
. = ph = J
Proof: Suppose first, Km PJ KSM then Aij =0 AJKSM.

1f (c.d)eO(AJx M, (N)) = c?(AJ » [ (N)) then there is

a V& AK, T"(N) of the formV = (a b |¢c d). Furthermore,
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nn
Iy

U = (* *| c )€ AT (M. Thus, O(AK,, (W)

gﬁ(ijm, M(N)). 1If, on the other hand, (c, d)e@(A e (W)

n
then there 1s a V= (a bl ¢ d) € ijmr(n) =U k AJKsr(N).

nA
Thus, V = U

lower row §c,d$ . Therefore, (c,d)€(9(AJKs,I'(N)).

Cose

VY with Vte AJK [T(N), but V' has the

Now suppose (c,d)tO(AJlgn,r(N))n@(AJKs, (n).

We shall show that, indeed, the above two sets are equsal

and that K = p?xsn where M< [ (N). By hypothesis, there

are two matrices V and V' such that V= (a b| ¢ d)
€ Ay (N) and V' = (a' b'| ' da')€ AK T (N). Write

= '
\4 JKmM and V J

V' have the same second line, V = UrV'. Thus, AJISnM =

AKX M where M, M'€ T (N). Since V and

' - -1,.r 0 -1 -1,.r
JKSM or Kg = Ay UTAM'M ", We see that AyTU AJE Iand
-1

fixes Py = AJ oco. Hence, ASlUrAJE l_p » the cyclic group

J A
which fixes p‘1 and is generated by l:’J = A31U jAJ. There-

fore, AE:lUrA:j = P! for some n. By part one of our

J

proof the sets are equal.

Let Kl, K2, coey Ku"‘ be a complete set of represent-
atives of [ /T (N) no two of which differ by a power of P

We shall prove that for cQS(AJ,r )
3

(8.8)  We,ay,T ) = U fLie,akg, (M)
s=1

j.
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and the sets dﬁ(c,AJKs,T—(N)), s = 1’2’...’vy are pairwise
disjoint. This is a restatement of equation (8.7) of
lemma 4 with only the distinct d9(c,Ast,r;(N)) chosen.
The proof is immediate from the decomposition (8.6), the
way in which the first Km's were chosen and the first

statement of lemma k4.

Before turning to the Kloosterman sums we need some
A
auxiliary results concerning r_andfv'. U 1is the least
translation in | and UN €T (N)c I fixes 003 therefore,
g X = N for some integer g. Similarly gJ‘XJ = N, Now
-IUN

consider QT(UN) = e(gk) =1, and /l)’(A‘1 AJ) = e(gJ’<J)=14

Hence, g k and 53 Kj are integers.

Consider the sum (8.2)

Wo(mshohgoprhy) = ) TATH, De((nrhIa/ed +(uoky)a/e A ),
ae (a4, 1)

The summation conditions mean that the sum is extended
over those matrices V in AJT' with V= (a b| c d) and

d€ [0,cX]. The terms of this sum are periodic in a with
period c"J and periodic in d with period c» (see material)
following (4.17a). One could make a unique by requiring

0<ag \c\%‘j. Therefore, we can write
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lelA
gwc(n!;/) = g Z oo
a=1
de ﬂc,AJ’r )
g\cD\__ .
8.9) T 4= TV, ) el(nrn)d/ech Hus < 5)/c A)
deod(c, A‘,r)
N el

- 07<A31Vc a) e([g(n+/t)d+gj(u+ «j)]/cN)

de CO(C' A}jr)
where we have used the periodicity in d and that gA = N

"‘IVI

and g5 xj = N. Now using the decomposition K9(c.AJ,T )
y*

= U X9(c,AJKs,I'(N)) and the fact that these latter sets
S=

are pairwise disjoint,

v* Nlcl
g (n,p)= 2; dzla'm;lvc,d) e([e(neh)arg, (ut 4y )al/e),
(&
(8.10)  d€d(e,aK,,T (N)

Now V, 4 = (a b|c d)e AK T (N). Let p(c) denote the
non-empty set of integers s, 1 £ s £ V’, for which
;O(c,AJKs,I‘(N)) # g. vrite Ve,a = AsKgM(a,c,d) with

M(a,e,d)ET(N). Then A(ANV, o) = U (Ky) U (M(a,e,a))
=/TJ(KS). Introducing this into (8.10) we obtain

N lc|
gl (n,e) = ) T(K,) Z e(le(n+k)d + g,(p+h)al/eN).
scp(c) d=1

(8.11) d€ O(e,AsKg, [ ()
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Define the integers m = g(n+4) and aﬁ = gj(p+~kj).
Define

(8.12) ScN(m’AJKs’ N, wJ) = le e((md + wja)/cN)
de aﬁ(c.Ast. C(N))

vwhere the summation conditions mean that d runs over a

set of integers with 1 < d < N [c| and with each d there
must be associated an element V = (a b| ¢ d)é‘Astr'(N).

We may suppose 1 < a < Nlel, for UrNV = (a+rcN*‘lc d) €
Ag [(N). We see that

(8013) gwc(n,l") = Z '/T-I(Ks) ScN(m’AJKs’ r(N):wj)-
sep(c)

Let us consider the sums ScN more carefully. Suppose

M= (aB|YS)ET(1) and c €M, T (N)) then

(8.14) S y(mM, [ (W), w) = ) e((ma+wa)/el).
4<BM, T (M)

We can state the summation conditions in the following

form:
d mod cN; (d,c) = 1;

(8.15) )
dz5, a =« mod N, ad = 1 + cp mod cN.

Now let M' = Uk*MUk = (x* B'ly" £'). Then

(8.16) ’\0}{. - (Mw s+koa+k*(‘s+k1)j

B\ _
S, Y §+k¥
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The object of introducing M'! is to replace the last

congruence of (8.15) by ad = 1 mod cN. This will require

an appropriate choice of k and k¥, We have

(8.17) Sy(mM; [(M,w) = )  e((ma' +wa')/eN).
ate @, T(N))

1 de K(M, T(N)) and V = (a b | c d)€ M (N) is the
matrix determined by this choice of d, then by the normal-
ity of " (N) it follows that UX*vU¥ = vie M' I (N) and

d' = d+ck€ 0Kc,M', [ (N)). Furthermore, as d runs over
dZ(M,('(N)), d* = d + ck runs over a complete set of
integers congruent modulo c¢N to aﬁé(M',l—(N)). Thus,

(8.18) ScN(m,M',l—(N),u))'= }Z: e([ (d+ke)m+w (a+k)c))/cN)
del (M, T(N)

= e( (km+k™ w)/N) Soy(msM, M(N),w).

We return to the choice of k and k*., Since ( 5,7 ) =
1 there are infinitely many primes in the sequence 3+k7';
choose one which is not a prime factor of N. This fixes k.
Then we can choose k™ so that B' = 0 mod N (see (8.16)).
Now the summation conditions dédZ(M',T'(N)) for
ScN(m,M',f_(N),a)) become (see 8.15)):

d mod cN; (d,e) = 1;

d $' mod N, ad = 1 mod cN.

However, ad = 1 mod cN implies (a,cN) = (d,cN) = 1, and
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azx' mod N and d = §' mod N are equivalent. To see
this last remark, note that ad - be = 1 =ct§ - g% ,
1

B=b=0mod N; thus, ad = o' §' mod N. Now use (a,N)

= (d4,N) = 1. Therefore, we are permitted to write

(8.19) S y(m,M', [ (N),w0) = EE; d((md +wa)/cN)
d

*(cN)
ad = 1(cN)
az ' (N)

where the asterisk indicates that 4 runs over a reduced

residue system modulo cN.

We are now in a position to reduce the above to a

sum of Kloosterman sums. We use the fact that

/N i e((r-ot')t/n) _{1 when r = ¢! mod N,

0 otherwise.

t=1
Therefore,
ScN(m’M" T(N),w) = }Z: e((md+wa)/cN) I/NEf: e((a-x')t/N)
d*(cN) t=1
adz1(cN)

M

1/N

e(-ot't/N) Z; e([ma+(w+tc)al/cN)
t=1 d*(cN)

ad=1(cN)

(8.20)

™

= 1/N e(-o't/N) S(m,0+tc;eN)

t=1

where
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(8.21) S(u,viq) = Z e((ud + va)/q)

d*(q)
ad=1(q)

is the classical Kloosterman sum. We remark that if

either u or v = 0 mod q, this sum reduces to the

Ramanujan sum. We shall not be required, however, to

make a distinction.

Thus, we see from (8.13), (8.18) and (8.20) that

(8.22) W (ntk,prky) = l/gN{Z T(K,) e(-[kgm + Kkt ]/N)%
s€p(c)

{ g e(-d;t/N) S(m,LUJ+ct; cN%
t=1

where ks,k*, u' are integers depending upon AJK m =

g{n+Kk) and (uj = gj(p + K J) are integers.,

We now concern ourselves with the estimation of the
sum appearing in (8.21). It is known [1.1, p.91] that
S(u,v;q) is multiplicative; if q has the prime power

i W) My
decomposition Py Py P then to each integer u and
to each integer v there are integers Vis VoseeesVy
such that '

(8023) S(U,V;Q) ——r S(u Vt,Pt )o

Salie [15] proves that if q = p®, p a prime number,
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and (u,v,q) # p" 1, p®, then

(8.24) |s(u,vsa)| < 2 V3 [q]1/2 o172
where
(8.24a) 4 = min g(u,q), (v,q){ .

Weil [17] proves for p a prime, uv 7 0 mod p and
(u,v,q) = 1, that

1/2.

N

(8.25) [s¢u,vsp)| < 2 pl

In the case in which (u,p) =1 and v = 0 mod p we find
S(u,v;p) = -1. The case q = pm, m> 2, p a prime and
(u,v,q) = pm"1 is handled by using (8.25) and the known

result [1.1, p.90] that S(u,v;q) = pm'IS(u/bm'l,m/bm'I;p):

(8.26) [stu,v;q)| <2 p® 1V .

The one final case to consider is q = pm and (u,v,q) = q.
Then,

(8.27) S(u,v;3q) = {(q) = p® - p?1 ¢ q.

We can write the inequalities (8.24), (8.25), (8.26)
and (8.27) uniformly as

(8.28) |stu,vs)| < 2/72 [q /2 a1/2,
Now from (8.23) and (8.28) we obtaiﬂ

r
‘S(u.v;q)l < (2 Vrﬁ)r\qll/z I:E'dt/é



-81-

By Dy
where d, = min {(u,pt ) (vt.pt )} « Thus,

(8.29)  |s(u,vsq)| < (23T [q¥2 (u,V2.
Now using the symmetry of S(u,v;q) in u and v,
(8.30)  |S(u,vsq)| < 2V 2T |q[Y20,)V/2.
Therefore, combining (8.29) and (8.30)

(8.31) | s(u,viq)| < (272 )T [q|1/2 a1/2,

Let r = r(q) be the number of prime divisors of q.
Then it is known [3.1, p. 46] that

2v/2)7D cc, o, £> 0,

therefore,

(8.32) ls(uo‘”q)‘ < CE lQll/z +E dl/z'

Now using (8.22) and (8.32)

¢ 1 1
lwc(n+K,p+xj)l<(;f/g@ Z lCEcN 1/2+ min i(m,cN)Z(ah+ct,cN)2}
(8.33)

< (V/gN) Ce \chl/z’i i(wj*ct.cml/z .
t=1

Now Wy = gJ(p-l-kj) # 0 since p # 0. Then the above sum

does not exceed

N1/ }i_ @gret, )2 ¢ W/2 (0,002 ¢ W20,
t=1
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Therefore,

(8.3%) \wc(n+&,p+xj)‘ < CW,T ,e,pm) 10(1/2'+€

where C(V ,[ ,&é,u) is a positive constant depending on

the parameters indicated.

We now give a series of examples in which our method
applies. From theorem 1 we must only show in each case

that the Kloosterman sums have the proper estimate.

EXAMPLE 1: van Lint [7] has shown that the commutator
subgroup, Y_.(l), of the full (inhomogeneous) modular
group contains the principal congruence subgroup of level
12, [ (12). That is,

raz2)c r'ayc ra.
Recall that /U (-1) = 1, Every character (there are only
six) on [ (1) will be identically 1 on T-'(l), hence on
[ (12). By Petersson's theorem the Kloosterman sums
associated with [ = [ (1) and any character V on T (1)
will have the proper estimate. These constitute the cases
considered by Lehner [6]. We can make the following easy
extension. Suppose [ is a congruence subgroup of level
N and V"= V([ ,-2) 1s a character on [ (1) restricted to
[". since [(12N)cCI{12), we see that V= 1 on T (12N).

Again Petersson's theorem applies.

EXAMPLE 2: We consider a case similar to example 1, in
fact, example 1 suggested this consideration. Let T =
Y‘z. the subgroup of the modular group generated by
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US = (1, -1]10) and SU = (0 -1| 11). [, is a normal
subgroup of index 2 in | (1). 1Its fundamental region

consists of two replicas of the fundamental region of

Ry = R( (1)), namely, RyUUR, = R(ré). We shall prove

THEOREM 2: The commutator subgroup of ré contains the

principal congruence subgroup of level 6:

. ’
l—(6)C r2 .

The proof of this theorem rests on the following
well known result: If [ * is a subgroup of | , | /[ ' is a
finite group, and every character of | is identically 1

on | * then *cr?',

I", is generated by US and SU, and (Us)3 = (sm)3 = -1.
If . =2( Fz,-z) is a character on [—2, we find

AV ((us)3) = ((su)3)

3"_(-1) = 10
Therefore,

Afus) = e(k/3), ~V(SU) = e(m/3), k,m = 0,1,2.

2 -1.,.2

Let U; = U" = (12101) and U, =87U°8=(10 [-2 1),
We use the Reidemeister-Schreier method for calculating
generators for [ (6) as a subgroup of [ (2), which is
generated by U1 and U2. We omit the details of this

calculation; the method is given in [3] and [9]). 1f

a,s b a_ b
- - 1 1 L) n
vel(2) and Vv = U, U, UI“UZ then E ay, E b, 1is
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called the exponent sum of V in the generator Ul, U2’
respectively. Using the relations U1 = -US.SU and
U2 = -SU*US we can calculate the exponent sums of V in

the generators US and SU of | oe

| (6) 1s a free group. Let Vis 1=1, 2, «0.y 13
be the free generators of I"(6),’ZI1 and ), the exponent
sum of Vi in U1 and 02 respectively, and, finally, ii
’Qi the exponent sum of V1 in US and SU, respectively.

The results of our calculation are contained in Table 8.1.
Now from Table 8.1 we see that S’i and 7 ; are multiples
of 3. Therefore, if U=( r2,-2) is any character

on I—Z’ then for any generator vy of [ (6), we see that

V) = 4(0s)3 A7(s0)3 = e(3kn/3) ¢ e(3mn/3) = 1

n an integer. Hence, ' is identically 1 on [ (6). This

completes the proof of Theorem 2.

In Table 8.1 we have let p; and o; be the exponent
sum of V1 in terms of the generators US and S, respective-
ly. Using the relations U, = (US+S)? and U, = S-USS-US
we can calculate the exponent sums of V in the generators
of S and US. Then from Table 8.1 we can see that van

Lint's result can be improved to I (6)<T'(1).

Now we apply Petersson's theorem to obtain the esti-

mate on the Kloosterman sums for r2 and U,
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Table 8.1 Generators and exponent sums for [ (6).

Generators| Representation in | p, ol Ty| Wy Ei Qi
of [(6) 'terms of U; and U, Us | S U1 U,| US| su
T
3
vy ;Ul 6 6 3 0 3 3
|
) -1,,-2
V2 £U2U1U2 U1 0 0 -1 1 0 ! 0
i |
f -2..~1 !
V3 EU2U102 Ul 0 0 1 -1 0 ! 0
o2 o
vy, !U1U2U1U2 6 | 6 2 1 3 1 3
. |
| 2, =2 =2 E
V5 %UlU2UlU2 U1 0 0 1 -1 0 i 0
202 e=l=1 |
V6 ?U1U2U1U2 U1 6 6 2 1 3 j 3
: |
[y 2y =2 -
V7 ;UleUle 6 6 L 1 3 | 3
vg (U3 6 |6 |3 |0 |3 3
-1,.-1,-1 i
V9 U2U1U2U1 U2 U1 0 0 -1 1 0 ; 0
: |
u.udusl !
Vio 1030303 6 6 0 3 3 g 3
| 2 -1 -1 -2 f
a
[ pr2r 3772
Vy5 (U703U] 6 | 6 o |3 |3 3
2 -1,.-1 }
Via |UULU,U,U7705 6 |6 |2 |1 |3 3

13

-
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EXAMPLE 3. Let [ = ro(q) where q is a prime of the form
m + 1. ro(q) is defined to be the group consisting of
all those elements V = (a b| ¢ dx[ (1) for whichc = 0
mod q. Let the multiplier system for [,(q) and the
dimension -2 be defined by

(V) =7 ((a b | e d)) = (%)

where (%) is the Legendre symbol. Hecke [4 p. 809]

calls a modular form for this group and multiplier system,
a form of type (-2,q,(-§) ) or of real type. We see
(@)l y(q)c(1); since -1 1s a quadratic residue of.
primes of the form 4m + 1, we have

v(Vv) = (%) = (i—1>3 1

for Ve{ (q). Petersson's theorem applies.

EXAMPLE 4. The principal congruence subgroup | (2) of
level 2 is a free group with two generators Ul and 02.
One can obtain a character on | (2) by defining its values

on U1 and 02. Say,
V(Uy) = e(*/8), 2(U,) = e(B/8), 0 %, p< 8.

We choose this notation to agree with Maak [8]. Any

element of | (2) has a representation of the form V =

a, b a b
U11021 e+s U,"0,%  Then,
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V) = (U;) — ", "1 e(Zaiot/B)e(ZbiB/B).
Maak, in the paper cited above, solved the more difficult
problem of determining 7J(V) in terms of the elements

a, b, ¢, d of V. We shall not have occasion to use his
results. We use the Reldemeister-Schreier method to
calculate the free generators of T (&) and [ (8). 1In
tables 8.2 and 8.3 are tabulated these generators along
with the exponent sums 'Ci and Wy of these generators in
terms of Ul and U2 respectively. The last column gives

the value of the character.

Table 8.2 Generators and exponent sums for [ (4)

Generators |Representation in Ti Ni
of [(4) terms of U, and U, ()
Ul U2 *
T vj 2 | o (/%)
1l 1 e
2
Ts Us 0 2 e(B/M+)
2 -
T3 EPULE 2 |0 | e(*M)
-1..-1
-1
‘1‘5 020102U1 ' 2 0 e(p /)
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We see that the UV =U (. (2),-2) determined by

1) o= 0,

2) o= 0,
(8.35)

3) X= ""9

4) o=k,

B
B
B

B

F o ¥ o

will be identically 1 on [ (4).

From the data given in Table 8.3 we see that, in

addition to the above multiplier systems, the multiplier

systems determined by

5) o =0,
6) of = Y4,
(8.36) 7) d = 0,
8) d =W,

are identically 1 on [ (8).

> ™ T

B

2
2
6
6

Petersson's theorem applies to these cases. We

shall return to these examples at the end of the next

section.,
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Table 8.3 Generators and exponent sums for [ (8)

Generators| Representation Ty W, v(X,)
for [(8) |in terms of T, (Ul) (U2)
2
Xy T1 L 0 e(%)
-1,-1 |
X2 T2'1‘1'I'2 '1‘1 0 0 1
-1.-1
: -1 X
' "l ;l i %
X5 (TlTthTu L ; 0 ; e(2)
2 1.-1 ! :
X6 ;T5T1T5 T1 0 g 0 : 1
5 -1 ! e
s { {
2 !
X8 ;T2 0 . ’ e(.g.)
x. 1r.rilril -2 | 0 -
9 Lt2ts 11 | et- g
-1.-1 | ' _a B
X0 TSTZTh T, | -2 , L } e(- + 2)
2n-1 ' i B
-1 ol
-1 . | P B
! -1 ': 3 i
f r : X
| -1,-1 | :
) -1.-1 :
x17 ‘T5T3T5 Tl 0 0 1l



Table 8.3 continued
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Generators| Representation Ty w, ’V(Xi)
for T(8) |in terms of T, (uy) | (Uy)
IR XX o l 0 e(3)
Xy rl'rur_,,r{,l 4 0 e(3)
Xy |TyTs73T =t 0 0 1
Xy | oI Tt -2 0 e(- )
X0o |TE 0 0 1
Xpy | Te25M T -2 0 e(- 1)
Xy, |TToT,T5 2 0 e(r)
X,s 3 0 0 1
Xog lesrhrgl 2 0 e(%)
Xpy | T,TeT 17" -2 N - %+ B
Xo8 rkrs'rzl'rll : -2 0 e(f-f)
X, | T3 o 4 e(%)
X3 | T 75T o l e®)
Xy | TyT,T6T 2 N o + &)
X35 T, M, T 15 2 0 e(p)
X35 EX X 0 o i1




9, The Inner Product Formula

The set of all cusp forms ¢ (I ,-2,1) 1s a finite
dimensional vector space. Petersson [10] introduced an
inner product
(9.1) (F(z), G(z); R(T)) = f F(z) G(z) dx dy

R(T )
on this space. The integral is a Lebesgue integral,
and R( ") is a fundamental region for | . The integral
is known to converge and be independent of R([ ) [10,
pp. 494-496]. The object of this section is to establish

the inner product formula:

THEOREM 3: For u > 1, F(z) £ (1 ,-2,V), we have

2
a“(F,Al,r ) 7\}_

o2 ’ sUsAsgy |l H r =
(9.2) (F(2) G(zQJ'AJ T yu); R(T)) lm(p*nj)

where a“(F,Aj,r') is the p-th coefficient in expansion
of F(z) at the cusp Asloo =Py (see(2.12)).

We start with
Lemma 5: If F(z)EGQ +(r,-2,’U’) then for y 2 y, > 0

(9.3) F(z) = O(exp[-2wy/A 1))

where (W= K if K> 0, otherwise w= 1.

Proof: F(z) has the expansion in (2.12) with AJ =1

where s + K > 0 since F(z) 1s a cusp form. This Fourier

-91-
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series converges absolutely uniformly in y > Yo > 0. The

result follows.

Let R([ ) be a fundamental region for [ which is
connected and lies in the strip £< x < £+A where ¢ is
a cusp Ailoo. This fundamental region is to be bounded
by a finite number of straight lines and circular arcs.
Each parabolic cycle is to consist of a single element.

We begin the proof of (9.2) with AJ = 1I; let

(9.4) J = (G(z,V,1I,0 ,u), F(2); R).

For each p.1 = Asloo, J =2, 35 eeey o(T7) 1let RJ = R
P
be a parabolic sector of R at pJ; We suppose the sectors

are chosen small enough so that, for j # k, RJIW R, = g.

g
Let Ry = R - Lé RJ. We are now able to write
J:

(9.5) J = }f: (G(z,V,I,1 ,p), F(2); Rj) = Ef: Jj

=1 3=1

where RJ indicates the set over which the functions are

integrated.

We now introduce two results of Petersson [10]. 1If
(B is an "admissible" region, then for V = (a b | ¢ d)

a real unimodular matrix

(9.6) f (F(2)|V) (G(z)|V)dxdy = fF(z) G(z) dx dy;

vV 2 @
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and for L €V

(9.7) Jf .F(z) G(z) dx dy = J’F(z) G(z) dx dy.
L® B

Suffice it to say that R, R;,... R are "admissible"

regions.

We now apply (9.6) to Jk’ 2<k o, withV = Ail.

(9.8) I, f{c;(z,v,x,r,p)\A;l} | Fa)| gt ax oy
APy

J G(qurksAl-{lo rkyll-) -F-‘(Z)\ Al.{l dx dy
ARy

The last equality comes from (7.1); rk = A T Ail.

We now use the representation
9 v At T =
(9.9) G(z, k’Ak’ k,P) = H(c,2).
ceg(al, T)
This converges absolutely uniformly for y > Yo > 0. The
parabolic sector Rk is mapped by Ak onto a strip /!L =
iz = x + iy: ék < x <§k +7\k, y >7Zk >0 }. Introduce

(9.9) into (9.8) and interchange summation and integration;
thus,

(9.10) Jy = zz: (. H(c,2z) F(z)\ Ail dx dy .

-1
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We now justify this interchange of integration and sum-

mation. We see from (3.10), (3.12), (3.1%) and lemma &
ifc#oO

H(c,z)F(2) IA;1\< C(7k)exp[-21rmy/?«] {(l/czyz)exp[aw(p-v-l)/y
+(c/ el 5/2 y sin§ dexp(2n(p+1)/A ysing ]
+(C¢/ fel 3/2‘5)(1 - exp[- 2ry/2 )72

Recall that S= arg. z; since gk <x <§k +7\k, y > 7k > 0,

we see that sing is bounded away from 0., If ¢ 0

\ H(0,2) F(z) | A"

< C(Py) exp[-2 (p+ K+w)/A ].

Therefore,

0o
Z f \H(c,z) F(z) | Al.(.ll dy < + oo,
¢ Mx

and this completes the justification of interchange of

summation and integration.
H(c,z) 1is the series

Zﬂj'k(Ach’d)(cz + d)'2e((p +K)Vc’dz/7\ ).
d¢ ﬁ(C:A-lnrk)

Recall that K = K (I, ) = &(Ail, l’k) and ')\=7\.(A;1, rk)’

This series is absolutely uniformly convergent for y =

y0> 0. Introduce this expression into the terms of
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(9.10) and interchange orders of summation and integration.

We obtain
(9.11)
— e((peR)V, 42/2)  _
J, = y ~ F(Z)\ ‘ldxdy.
k Z L /Uk(Ach d)(cz4-d)2 "
ce d< AkBk ’

cl,) e L)

We understand that the summation in (9.11]) is to be car-

ried out in the same manner as indicated in Theorem 1.

We now justify the interchange of summation and
integration on d. We see from lemma 5 and (3.5) that
iradafo

e((p+RIV, dz/7\ )
Cd
T (Vg Cezed)?

exp[-2rwy/ 2]
|cz + d[ 2

F(z)]A;]‘ < C(?k)

< € )(1/a%) expl-2mwy/a 1.

Therefore,

Z f°° e((W*KIV, 42/ ) 5] a2
Tk [V (aglV, @) (ezea)

dy

d K

< C(7y) {1 + Z'l/d:2 } foo exp[-2rw y/ A ]dy
1

< + o0,
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In the terms of the series (9.11) we make the change
of variable w = Ach q 2 The Jacobian of the transforma-
tion is

-4

Since F(z)\ Ailé cg(rk.-Z,Uk)

F(V;]" AA W) [A;l = ”Jl;(v;f ahet) (= (ca rac, Jw+(cby +aa, ))2F(w) | 47t

On computing one finds that

1

- 1
c,d

(cv Ai w4+ d)"2 = (-cpw + ak)z(-(cdk+ack)w+(cbk+aak))'2.

Therefore, substituting these results into the terms of

(9.11), we find they become

J[ e((p+n)A£1w/7\)(-ckw + ak)'2 F(z)l Ail dudv.

AVe,aMkPx

Once again we make a change of variables. Let z = Ailw

then the above integral becomes

f e((p+k)z/A ) F(z) dx dy .
Ve,alkPx
We have used the fact that the Jacobian is [c, .z + dkl - ,

and the identity

(c 2z + dk)-zF(Akz)\ A£1 = (ckz+dk)'2(ckAkz + dk)'2 F(z)

F(z)
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Thus,

(9.12) J, = E E / e((p+K)z/2) F(z) ax dy.
d
¢ Ve, aliRy

¢ and d are summed over the same sets as in (9.11) and

summation is carried out in the manner of Theorem 1.
-1
We mentioned that V. ¢ T A so that Ve,ahS .

As (¢,d) runs over G(A;;l,rk), (c,d)4, runs over O (I,V ).
Let R bve a complete set of matrices in [T with different
lower row. We shall make an appropriate choice of the
upper row. Let [Ul ] denote the cyclic group generated

by Ul « Then

(9.13) T wtiv.
e®R

Let

(9.14) B =

v%)ﬂ VR(T) .

d7is a fundamental region for [Ua']. We suppose that
-1l
Vc,de T'Ak is chosen so that Vc,dAk e R . Define

@k = U Vc,d Ak Rk for k = 1,2, eeey O o Then’

vc,d‘kfscQ

by the completed additivity of the integral, we see from
(9.12)

(9.15) I = d[l e((p+x)z/X ) F(z) dxdy .
k
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g
=
Furthermore, ./ Bk =0, Thus, from (9.5) we se
k=1

that

(9.16) J = fe((pﬂx)z/}\) F(z) dxdy .
oJ
Thestrip,f ={z=x+iy: §<x<§+1 ’ y>0‘} is a

fundamental region for [U)‘]. Due to the way we chose
R([ ), there is a determination of the V's€ (& so that
d9=z{7. We shall use this determination.

Define «ﬁ(yo.yl) = izerﬁ Yo <y« yl% then

J = 1lim J(yo,yl) = 1im f e((p+nr)a/a )F(z)dxdy.
y1 T Y1 7% @9(y4s¥;)

By the lemma of this section
f C Cly) A
‘ F(z)e((p+K)z/2 )(dxdy < mexp[~2v(p+x+w)yo/7\ ]
9] (YO’yl)

If now y,—>00, the integral tends to a 1imit J(yo,oo).

Introduce the Fourier expansion for F(z) and interchange

orders of summation and integration:

I(ygrx ) = Z Zn(F.I.r ) f e((n+4)z/A e((u+~)z/ 2 )dxdy
n+k>0 O (ygs)

The interchange of order is justified by the Fourier series
converging absolutely uniformly in y 2> Yo > 0. Consider
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f e((n+X)z/ A )e((p+K)z/A) dx dy
OO(YODW)

J

542
exp[ -2m(n+x+p)y/ X ]dyf exp[ 2mi(p-n)x/ 2 Jdx

Yo g

A 2
uﬂ(p+K)

00

exp[-hw(p+x)yo/a_] Sl“’n .

Sp n is the Kronecker symbol. Thus,
»

a“(F’I’ )rA

J(ygs0) = exp[ -Um(u+K)yo/2 1.

Lr(p+k)
Now let y,—>0. Since (F, G; R) = ( G, F; R) the result

(9.2) follows for Aj = I.

Consider

J(Ay)

i ( F, G(Z,/V',AJ, r’l’»); R(T )).

Then by (9.6)

3ay) = CFlaTh, Glz,m5y, T L) (AT R(T))

1}

-1 .
( F\AJ ’ G(z:qrjnltr:jrll), R(rj))-
Now X, = ’?\(AJ,F) =2(1,7,) and My = »:(AJ,T‘) = K(I,I’J).

Thus, from (2.15) and the case already proved
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2
ap(F,AJ, ) 'XJ

-1 . -
( F AJ ’ G(Z)VJ’IQ rjll")’ R(rj)) -

This completes the proof of the inner product formula,

The following well known result is an immediate

consequence of the inner product formula.

Theorem: The vector space spanned by the Poincare series

G(z,V}AJ,’-,p), B=1l, 2, ¢o0 equals ¢;+(f', =2,V).

We return to the examples we considered at the end

of section 8.

EXAMPLE 1. | = [ (1); there are six characters on T (1).
In only one instance is the dimension of the space

£ (T (1),-2,v) positive. Petersson [12, p. 189]) gives
a formula for calculating the dimension of & '. Using
his formula, we find that when Q) (S) = =1 and U (US) =
e(-1/3) is the character defined on the generators S and
US of [7(1), the dimension of & "(1),-2,1 ) 1is 1. This
proves that in this instance not all the functions
G(z,V,1, { ,u) with g > 0 are identically 0, However, for
the remaining five characters on r_(l) and for p > O,

we have G(z,V,I,V ,p) = O.

EXAMPLE 2, ' =T, = [SU, US]. There are nine characters
on Y—Z' As in example 1, there is only one character for
which dim Z%( (,,-2,V") 1s positive. If 1(SU) = e(-1/3)
= [Y(US) then the dimension is 1.
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EXAMPLE 3. In the case [ =T (@), 4 (V) = (%), Vv =

(a b)c d), q a prime of the form 4 m + 1, Hecke [k,
p. 815] gives the dimension of é;*xi—o(q),-z,if). The
first prime for which this dimension is positive is

q = 29, in which case the dimension is 2.

EXAMPLE 4, If [ =((2) and V" is the multiplier system
determined by Qf(Ul) = e(1/2), 'UKUz) = e(1/4), then the
dimension of the space é§+( [(2),-2,7V) is 1., 1In the

other seven cases considered the dimension is 0.
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