

A STUDY OF FLOW THROUGH VERY SHORT, SMALL CYLINDRICAL TUDES

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY Lowell C. Smith 1959

į. i LIBRARY Michigan State University

1950

Department of Mochanical Engineering

MASTER OF SCIENCE

Submitted to the College of Engineering Michican State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

AN ABSTRACT

LOWFLL C. SMITH

₽v

THROUGH VERY SHORT, SHILL CMLINDRIGAL TUPES

A STUDY OF FLOW

.

.

Flow through very short cylindrical tubes differs from flow through long ripes in that the entrance and exit phenomena are the significant flow conditions. Eath a theoretical and an experimental approach were employed in an attempt to predict the flow characteristics through the tube.

The theoretical approach requires a mathematical description of each flow zone within the tube. Then, to predict the flow characteristics of the entire tube, these mothemotical descriptions must be linked together. Due to nomentum considerations, the streamline bounding the main stream, or core flow, separates from the tube wall at the source edged entrance of the cylindrical tube. This separation continues to increase for a short distance downstream from the entrance. This is called the contraction zone. Downstream of the contraction zone, the streamlines diverge and approach the tube wall - the expansion zone. Normal ripe flow velocity profiles and friction considerations are considered to apply from this point downstream to the exit. Mence, a mathematical representation of flow through a very short, small cylindrical tube required the joining of mothemotical descriptions of four flow zones:

- 1. Contraction zone
- 2. Expansion zone
- 3. Pipe flow zone
- 4. Exit zone

- 1 -

L. Smith

Mathematical solutions are presently available for the pipe flow and exit zones. A numerical approximation to the streamline pattern in the contraction zone is also available. However, mathematical solutions to the equations describing the contraction and expansion zones will require a better understanding of the boundary layer and a mathematical representation of the flow boundary streamlines in these zones. Further investigation is required in these areas.

An experimental approach to flow through very short, small cylindrical tubes approximates this flow condition by a long orifice. Experimental determination of the orifice coefficient of discharge indicates the coefficient is markedly affected by the velocity of flow and the reometric characteristics of the cylindrical tube: length, dismeter, and surface finish. Tests were conducted to determine the relationship between the geometric characteristics of the tube, the fluid properties, the fluid velocity, and the coefficient of discharge. The data obtained was plotted nondimensionally, and is considered to be generally applieable to any fluid flowing through any diameter tube subject only to the requirement of geometric similarity, i.e., equal L/D and e/D ratios for cylindrical tubes with a source edged entrance and exit configuration.

- 2 -

1959

Department of Mechanical Engineering

MASTER OF SCIENCE

Submitted to the College of Engineering Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

A THESIS

LOWELL C. SMITH

١

.

Py

A STUDY OF FLOW

.

"HROUGH VERY SHORT, SMALL CYLINDRIGAL TURES

				Ţ) II T				7,7		-								Fe	<u>م</u>	×.0.
List of grands	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		1
Lint of Figures	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 1	1
Introduction .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		1
Conclusions	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		l

erûniên î - danêsandî î vrre ûn

	Πhe	سن∪	<u>c</u> 1	ic	٢l	.]	` n 7	7 = 6	et 1	. س ر ا	· †,	1.07	าร	•	•	•	•	•	•	•	•	•	24
Roview of	P٣	ρŢ	10	יזק	L.)er	۲. F) مر	'n	•	•	•	•	•	•	•	•	•	•	•	•	•	6
n lycis	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
Disquarior	ı		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>∽0</u>

SECUTOR II - EXPERIMENT (PPEO) OF

Scope of Experimental Investigations	с.
Review of Previous Research	o o
Analysis	្ត្រ
Experimental Method	°9
Experiment 1 Fourpment	29
Test Procedure	zĴ
Discussion	zO

<u> Rabaran Managaran</u>

List of 1	Nofe	rences	••	•••	• •	•	•••	•	•	•	•	•	•	•	•	33
-ppendix	Δ -	Sample	Cald	puls	tion	9	• •	•	•	•	•	•	•	•	•	34
(ppendix	P -	Deta .	•••	• •	•••	•	•••	•	•	•	•	•	•	•	•	36
(ppepdjx	C -	Flowner	ter (Cali!	br t	ion	•	•	•	•	•	•	•	•	•	38
Appendix	D -	Parts 1	List	· nd	Dra	win	(† S	of	4 r	n	·ب	tu	S	•	•	42

LIST OF SYMBOLS

Symbol	Description	<u>Units</u>
Α	cross-sectional area of cylindrical tube	in ²
A _s	cross-sectional area of the fluid	in^2
Al	cross-sectional area at station l	in ²
С	discharge coefficient	
C _c	contraction coefficient	
C _v	velocity coefficient	
d	diameter of flow boundary	in
D	diameter of cylindrical tube	in
e	surface roughness	microinches rms
Fp	pressure force	lb
Fs	shear force	1 b
g	acceleration of gravity	in/sec ²
k	a constant	dimensionless
L	length of cylindrical tube	in
m	mass	lb-sec ² /in
Μ	momentum rate	1 b
MBL	momentum rate in the boundary layer	1 b
M _c	momentum rate in the core	lb
Pe	pressure downstream from the tube exit	lb/in ²
P _s	pressure upstream from the tube entrance	lb/in ²
q	total velocity: $\vec{q} = \vec{u} + \vec{v}$	in/sec
Q	flow rate	in ³ /sec or gpm
Q _{BL}	flow rate in boundary layer	in ³ /sec
Q _c	flow rate in the core	in ³ /sec
r	coordinate-radial distance outward from axis	in

i	i	

Symbol	Description	<u>Units</u>
R ·	radius of cylindrical tube	in
t ·	time: a state to the second	sec
T	temperature	o _F
u ····	velocity component in x direction	in/sec
U	core velocity component in x direction	in/sec
v	velocity component in r direction	in/sec
v	average velocity in x direction	in/sec
x	axial distance	in
У	radial distance inward from tube wall	in
Ζ	elevation with respect to datum	in

GREEK SYMBOLS

• • • •

.

· · .

۰.

.

α	asymptotic radius of contraction jet	in
β .	temperature coefficient of viscosity	1/ ^o F
۲	weight density of fluid	lb/in ³
δ	boundary layer thickness	in
λ	temperature coefficient of density	1/ ^o F
μ	viscosity of fluid	lb-sec/in ²
v	kinematic viscosity	in ² /sec
Ę	function of r and x	dimensionless
ρ	mass density of fluid	lb-sec ² /in ⁴
τ	shear stress	lb/in ²
τ	average shear stress	lb/in ²
το	local shear stress	lb/in ²
φ	stream function	in ²

LIST OF FIGURES

			rage
Figure	1	C versus <u>PO</u> Plot of Experimental Points ^{DD}	3
Figure	2	Flow Zones	5
Figu re	3	Plot of Streamlines near Orifice	8
Figure	4	Flot of Streamlines near Orifice	9
Figure	5	Plot of Streamlines near Orifice	10
Figure	6	Control Volume	11
Figure	7	Cross Section of Uniform Pipe	12
Figure	8	Streamline Pattern for a Circular Laminar Jet	16
Figure	9	Volume Element	17
Figure	10	Characteristic Curves for Square- Edged Jets with Different Values of L/D	23
Figure	11	Coefficient of Entrance Loss of Square-Edged Inlet	24
Figure	12	Calibration Curve - Potter Meter Flow Pickup	40
Figure	13	Calibration Curve - Waugh Flow Pickup	41

· .

iii

FLOW THEOUGH VERY SHORT, SMALL CYLINDRICAL TUBES

INTRODUCTION

Flow through very short cylindrical tubes differs from flow through long pipes in that the entrance and exit phenomena are the significant flow conditions. Actually, a very short pipe could be termed a long orifice.

The prediction of flow characteristic through very short, small cylindrical tubes may be approached in two ways. One approach is to mathematically describe each flow zone within the tube. Then, to predict the flow characteristics of the entire tube, these mathematical descriptions must be linked together. Verification of theory, by experiment, would be desirable.

Another approach is to consider the entire tube to be a long orifice, described by the flow equation:

$$Q = CA \sqrt{\frac{2\Delta P}{\rho}}$$

The value of the coefficient of discharge, C, may be determined experimentally.

CONCLUSIONS

Theoretical Analysis

An exact mathematical description of flow through a very short, small cylindrical tube is not now possible. A good mathematical approximation of the flow phenomena will require a better understanding of the boundary layer downstream of the inlet and a mathematical representation of the flow boundary streamlines in this region. Further work in these areas must precede solution of the equation describing this region.

Experimental Determination

Experimental determination of the orifice coefficient of discharge indicates the coefficient is markedly affected by the velocity of flow and the geometric characteristics of the cylindrical tube: length, diameter and surface finish. (See figure 1).

Cavitation occurred when the difference between the supply pressure and exhaust pressure, $P_s - P_e$, was very large. When eavitation was occurring, variation of P_e did not affect P_s . P_s was approximately constant during cavitating flow until P_e was increased to a critical pressure at which the cavitation ceased. The pressure difference, $P_s - P_e$, was approximately constant when the flow was without cavitation. Thus, the orifice coefficient of discharge is a function of F_s and P_e at low back pressure, P_e , when $P_s - P_e$ is large and cavitation occurs. The coefficient is not a function of P_s or P_e when non-cavitating flow occurs.

Figure 1 also indicates the coefficient of discharge is a linear function of $\frac{\rho Q}{\mu D}$ for values of $\frac{\rho Q}{\mu D}$ greater than 9,000.

It is the contention of Zucrow (8)* that the data plotted in figure 1 will apply to any fluid flowing through any diameter tube subject only to the requirement of geometric similarity, i.e., equal L/D ratios for cylindrical tubes with a square edged entrance and exit configuration. Further experimentation would be required to verify that contention.

* Numbers in parentheses refer to the List of References.

-2-

GOW CHARTS

8

SECTION I

THEORETICAL APPROACH

Scope of Theoretical Investigation

When fluid flows into a cylindrical tube through a square edged entrance, a contraction of the flow boundary occurs. The inflowing fluid particles have a radial velocity component as well as an axial velocity component. Particle inertia permits only a gradual turn at the square corner of the tube entrance, so the flow must separate from the tube wall. Between the wall of the tube and the streamline bounding the core flow area, a field of eddies is generated. Very little linear movement of these eddies occurs.

Downstream from the contraction, the flow boundary expands. A tube of sufficient length will allow enough expansion of the flow boundary to completely fill the tube. A portion of the problem is to determine the effect of various tube lengths upon pressure drop and quantity of flow through the tube. With long tubes, a normal boundary layer begins to develop at the point of reattachment.

The problem is to relate tube dimensions, fluid properties, and pressure difference to the quantity of flow. (See figure 2).

A mathematical representation of flow through a very short, small cylindrical tube requires the joining of mathematical descriptions of four separate flow zones:

- 1. Contraction zone near the tube entrance
- 2. Expansion zone
- 3. Fipe flow zone
- 4. Exit zone

-4-

Preliminary analysis was conducted assuming laminar flow. No attempt was made to represent theoretically, a turbulent or a cavitating flow condition.

 $\rho_{150^{\circ}F} = 14.77 \times 10^{-10^{\circ}} \frac{\text{in}^2}{\text{in}^2}$ $\rho_{150^{\circ}F} = 8.37 \times 10^{-5} \frac{16 - \sec^2}{\text{in}^4}$ $P_s \leq 3000 \text{ psi}$ $P_e \geq 40 \text{ psi}$

Figure 2

-5-

Review of Previous Research

A survey of previous research produced treatments for three of the four flow regions discussed previously.

1. Contraction Zone

The contraction zone near the inlet may be likened to orifice flow in three dimensions with axial symmetry. This is very similar to the flow of fluid through an aperture of infinite length--a two dimensional problem. An exact soltion to this problem was arrived at by Kirchkoff in 1896 (1). Many authors have since repeated Kirchkoff's conformal transformations in the complex plane including a recent book in English by Strieter (2). Unfortunately, no exact solution to the similar three dimensional orifice has yet proven feasible (3). In 1913 Trefftz (4) determined, by successive approximation, that the coefficient of contraction for the three dimensional case of a circular orifice in an infinite plane boundary was between 0.60 and 0.62 as compared to a coefficient of 0.611 for the two dimensional case.

A description of the three dimensional jet profile with axial symmetry was accomplished by relaxation and published by Southwell and Vaisey (5). They consider an orifice plate in a circular tube. They compute a boundary error η defined by

$$\eta = \frac{1}{r} \frac{\partial \varphi}{\partial v} - k \tag{1}$$

and reduce this error to zero (sensibly) along the streamline by modifying the streamline shape and the constant k.

-6-

Far downstream, the asymptotic solution was assumed to hold.

$$\varphi = \frac{1}{2} \mathbf{k} \mathbf{r}^2 \tag{2}$$

. . . .

Let φ_B = the jet boundary streamline constant α^2 = coefficient of contraction

Then $2\pi\phi_{\rm R}$ is the total flow through the orifice

α is the asymptotic radius when the orifice radius is unity.

From equation 2:

· · · · ·

.

2

. 14

ι.

;.

• • • • • •

· . .

$$ka^2 = 2\varphi_B \tag{3}$$

By assigning a value to φ_B , k may be accurately estimated, since α^2 is approximately known from hydraulic experiments. The solution, by relaxation to negligible error at all points is:

11

$$k = 118.34$$

 $\alpha^2 = (0.78)^2 = 0.6084$

See figures 3, 4 and 5 from (5).

2. Expansion Lone

The expansion zone and reattachment of the flow boundary to the tube wall has not been previously described in mathematical detail.

3. Pipe Flow Zone

Brenkert (6) presents a calculational procedure for laminar flow and development of the boundary layer in a circular tube. Two assumptions are made:

> a. Bernoulli equation (neglecting friction) can be applied to central core.

b. Velocity is constant across central core.

Figure 3

Plot of Streamlines near Orifice

-9-

Consider a control volume, figure 6:

Control Volume

Figure 6

Apply Newton's Second Law:

 $\Sigma F_{x} = \frac{d}{dt} (mv)$ $P_{n}A - P_{n+1}A - 2\pi Rx\tau_{a} = M_{n+1} - M_{n}$

Solve for x:

$$x = \frac{(P_n - P_{n+1})A + N_n - N_{n+1}}{2\pi R \tau_a}$$
(4)

Evaluation of each of the terms in equation 4 follows:

$$M = M_{BL} + M_{c}$$
(5)

.

$$M_{BL} = \rho \int_{K-\delta}^{F} u^2 2\pi r dr = 2\pi \rho \int_{0}^{\delta} u^2 (K-y) dy$$
 (6)

$$M_{c} = \rho \pi (R-\delta)^{2} U^{2}$$
 (7)

Substitute equations 6 and 7 into 5:

$$M = 2\pi\rho \int_{0}^{\delta} u^{2} (R-y) dy + \rho \pi (R-\delta)^{2} U^{2}$$
(8)

The velocity is assumed constant across any core crosssection, i.e., viscous effects are considered appreciable only in the boundary layer. The modified cubic profile used by Shapiro, Siegel and Kline (4) most accurately describes the boundary layer velocity profile.

$$\frac{\mathbf{u}}{\mathbf{U}} = \left[\frac{\mathbf{3}}{\mathbf{2}}\begin{pmatrix}\mathbf{y}\\\mathbf{\delta}\end{pmatrix} - \frac{\mathbf{1}}{\mathbf{2}}\begin{pmatrix}\mathbf{y}\\\mathbf{\delta}\end{pmatrix}^{\mathbf{3}}\right] \left[\mathbf{1} - \frac{\mathbf{\delta}}{\mathbf{R}}\right] + \left[\mathbf{2}\begin{pmatrix}\mathbf{y}\\\mathbf{\delta}\end{pmatrix} - \begin{pmatrix}\mathbf{y}\\\mathbf{\delta}\end{pmatrix}^{\mathbf{2}}\right] \left[\frac{\mathbf{\delta}}{\mathbf{R}}\right]$$
(9)

As $\frac{\delta}{R}$ increases from zero to unity, the cubic velocity profile changes to the parabolic form characteristic of fully developed flow through a circular pipe.

Rearrange equation 9 and let $k = \frac{\delta}{R}$

$$u = U \left[\frac{3}{2} \left(\frac{y}{\delta} \right) - \frac{1}{2} \left(\frac{y}{\delta} \right)^3 + \frac{1}{2} k \left(\frac{y}{\delta} \right) - k \left(\frac{y}{\delta} \right)^2 + \frac{1}{2} k \left(\frac{y}{\delta} \right)^3 \right]$$
(10)

Substitute equation 10 into equation 8, integrate and simplify:

$$M = \rho A V^2 \left[1 - \frac{36}{35} k + \frac{677}{1680} k^2 + \frac{107}{840} k^3 - \frac{1}{560} k^4 \right]$$
(11)

Thus, for each assumed boundary layer thickness, the momentum rate may be calculated.

Pressure is assumed constant over the cross-section. In the central core apply Bernoulli's equation:

$$\frac{P}{\gamma} + \frac{U^2}{2g} = constant$$
(12)

In order to calculate pressure, the velocity must be first calculated.

To satisfy continuity, the flow rate Q must be a constant at every cross-section of the pipe.

$$Q = Q_{BL} + Q_{c}$$
(13)

Consider the cross-section of a uniform pipe shown in figure

$$Q_{BL} = \int_{R-\delta}^{R} u \ 2\pi r dr = 2\pi \int_{C}^{\delta} u \ (R-y) dy$$
(14)
$$Q_{c} = \pi \ (R-\delta)^{2} U$$
(15)

Substitute equations '14 and 15 into 13:

$$Q = 2\pi \int_0^{\delta} u(R-y) dy + \pi (R-\delta)^2 U \qquad (16)$$

Substitute equation 9 into 16 and let Q = VA

$$VA = 2\pi U \int_{0}^{\delta} \left[\frac{3}{2} \left(\frac{y}{\delta} \right) - \frac{1}{2} \left(\frac{y}{\delta} \right)^{3} + \frac{1}{2} k \left(\frac{y}{\delta} \right) - k \left(\frac{y}{\delta} \right)^{2} + \frac{1}{2} k \left(\frac{y}{\delta} \right)^{3} \right] (R-y) dy + \pi (R-\delta)^{2} U$$

Integrate and simplify:

$$\frac{V}{U} = \frac{60 - 45 k + 17 k^2 - 2k^3}{60}$$
(17)

Consider the definition of shear stress:

$$\tau_{0} = \mu \frac{du}{dy}$$
(18)

Substitute equation 9 into 18:

$$\tau_{o} = \mu U \frac{d}{dy} \left[\frac{3}{2} \left(\frac{y}{\delta} \right) - \frac{1}{2} \left(\frac{y}{\delta} \right)^{3} + \frac{1}{2} k \left(\frac{y}{\delta} \right) - k \left(\frac{y}{\delta} \right)^{2} + \frac{k}{2} \left(\frac{y}{\delta} \right)^{3} \right]$$

Differentiate and let $y \rightarrow 0$ to get wall shear stress

$$\tau_{0} = \mu U \left[\frac{3}{28} + \frac{k}{28} \right]$$

$$\tau_{0} = \frac{\mu U}{28} \left[3 + k \right]$$
(19)

For the average shear stress between station n and station n+1, compute:

$$\tau_{a} = \frac{\tau_{o_{n}} + \tau_{o_{n+1}}}{2}$$
(20)

Special assumptions must be made at the beginning of the pipe flow boundary layer development. Equation 19 indicates

an infinite shear stress for $\delta = 0$. Thus, the boundary layer thickness at the inlet of the pipe flow zone must be assumed equal to some finite value. This infers that the streamline bounding the core flow does not reattach itself to the tube wall, but only approaches the wall. A boundary layer of finite thickness separates the tube wall and the streamline bounding core flow.

The flow in the tube downstream from the reattachment, can be completely described by use of known fluid properties and the proceeding equations 4, 11, 12, 17, 19 and 20.

4. Exit Zone

Schlicting (7) presents an analytical treatment of a jet formed by fluid flowing out of a small circular opening and mixing with similar surrounding fluid.

The pressure along the axis of the jet is assumed constant. From this assumption, efflux of momentum in x direction is given by:

$$M = 2\pi\rho \int_0^\infty u^2 r dr = constant$$
 (21)

Equation of motion in x direction

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} = v \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right)$$
(22)

Continuity equation

. • •

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{r}} + \frac{\mathbf{v}}{\mathbf{r}} = 0$$
 (23)

Boundary conditions

a. u is maximum on jet axis
r = 0: v = 0 ∂u/∂r = 0
b. fluid at infinity is at rest
r = ∞: u = 0
c. velocity profiles; u(x,r) are assumed similar

From equation 21 the momentum is seen not to be a function of x. Equation 22 indicates that the inertia and frictional terms are of the same order of magnitude. The solution may be obtained in the form:

$$\varphi = v x g(\eta)$$
 where $\eta = \frac{1}{\sqrt{2}} \frac{r}{x}$ (24)

The equation of continuity must be satisfied. Therefore the stream function φ must satisfy:

$$u = \frac{1}{r} \frac{\partial \varphi}{\partial r}$$
 and $v = -\frac{1}{r} \frac{\partial \varphi}{\partial x}$

This makes:

$$u = \frac{1}{r} \frac{\partial}{\partial r} vxg(\eta) = \frac{g'}{\eta x}$$

$$v = -\frac{1}{r} \frac{\partial}{\partial x} \left[vxg(\eta) \right] = \frac{v'^2}{x} \left(g' - \frac{g}{\eta} \right)$$
(25)

The equation for g is:

$$-\frac{d}{d\eta}\left(\frac{qg'}{\eta}\right) = \frac{d}{d\eta}\left(g'' - \frac{q}{\eta}'\right)$$
(26)

In terms of g, the boundary conditions become:

$$g'(\infty) = 0$$
 .
 $\eta = 0$ $g(0) = g'(0) = 0$

Since $\frac{qq'}{n}$ and $q'' - \frac{q'}{n}$ both vanish at the origin, equation 26 may be integrated in the form: 计终端 化化化物 化化化物 $\eta g'' - g' + gg' = 0$ (27) na in an eine eine The particular solution of equation 27 is: $g = \frac{\xi^2}{1 + \frac{1}{2}\xi^2} \quad \text{where } \xi = k\eta$ (28)This makes: $u = \frac{2k^2}{x(1 + \frac{1}{\zeta} \xi^2)^2}$ and then: $M = \frac{16}{3} \pi \mu k^2$ (29)Hence: $u = \frac{3M}{8\pi\mu x} \left(1 + \frac{1}{4}\xi^2\right)^2$ $\mathbf{v} = \frac{1}{4} \left(\frac{3M}{\pi \rho} \right)^{\frac{1}{2}} \frac{1}{\mathbf{x}} \frac{\xi \left(1 - \frac{1}{4} \xi^2 \right)}{\left(1 + \frac{1}{4} \xi^2 \right)^2}$ (30) $\xi = \frac{1}{4\nu} \left(\frac{3M}{\pi\rho}\right)^{1/2} \frac{r}{x}$ where: The flow volume is easily computed: $\dot{Q} = 2\pi \int_{0}^{\infty} ur dr = 8\pi vx$ (31) u(x, r)

Streamline Pattern for a Circular Laminar Jet

Figure 8

ANALYSIS

The first step in a complete mathematical description of a short cylindrical tube is to completely describe each flow zone and transitions, if any, in a compatible coordinate system. Adaptations of the work of Brenkert and Schlicting will describe the pipe flow zone and exit zone." The contraction and expansion zones require further original development.

Consider the forces acting upon an element of volume within the contracting flow region.

11/1/1 n+1 n+1 n

Volume Element

Figure 9

Assumptions

- 1. Pressure is constant across core section.
- 2. Flow is symmetrical with respect to axis.
- 3. Fluid is Newtonian.
- 4. Steady state.

and a second and a second

5. Mass interchange between core flow and boundary eddies is negligible.

317-

 $(-1)^{-1} = (-1)$

Apply Newton's Second Law

$$\Sigma \mathbf{F}_{\mathbf{x}} = \frac{\mathbf{d}}{\mathbf{d}\mathbf{t}}$$
 (mu)

 ${\bf F}_{\bf p},$ the pressure force, may be calculated from the following considerations:

radius at station n = r -
$$\frac{\partial r}{\partial x} \frac{dx}{2}$$

area at station n = $\pi \left(r - \frac{\partial r}{\partial x} \frac{dx}{2} \right)^2$

Therefore:

÷ .

$$F_{P_n} = \left(P - \frac{\partial P}{\partial x} \frac{dx}{2}\right) \pi \left(r - \frac{\partial r}{\partial x} \frac{dx}{2}\right)^2$$

Similarly:

$$\mathbf{F}_{\mathbf{P}_{n+1}} = \left(\mathbf{P} + \frac{\partial \mathbf{P}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{2}\right) \pi \left(\mathbf{r} + \frac{\partial \mathbf{r}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{2}\right)^2$$

 F_{s} , the average shear force, is obtained by considering the definition of shear stress.

$$\tau = \mu \frac{du}{dr} \qquad \blacksquare$$

Therefore: $F_s = \tau A$ where $A = 2\pi r dx$ Substituting:

$$F_s = \mu \frac{du}{dr} 2\pi r dx$$

Assume the shear stress at the midpoint between stations n and (n+1) is equal to the average shear stress between stations n and (n+1).

Momentum change, the right hand term in Newton's Second Law, is obtained from the following considerations. From the definition of a total derivative:

$$\frac{d}{dt} (mu) = \frac{\partial}{\partial x} (mu) \frac{dx}{dt} + \frac{\partial}{\partial r} (mu) \frac{dr}{dt} + \frac{\partial}{\partial t} (mu)$$

From the assumptions of steady state and negligible mass interchange between core flow and the boundary layer.

$$\frac{d}{dt} (mu) = m \frac{\partial u}{\partial x} \frac{dx}{dt} + m \frac{\partial u}{\partial r} \frac{dr}{dt}$$

Since u >>> v, i.e., $\frac{dx}{dt} >>> \frac{dv}{dt}$, and q is considered constant across any core cross section, then $\frac{\partial u}{\partial r} \sim 0$ and the last term in the preceding equation may be neglected.

$$\frac{d}{dt} (mu) = m \frac{\partial u}{\partial x} u$$
$$\frac{d}{dt} (mu) = \rho \pi r^2 u \frac{\partial u}{\partial x} dx$$

where mass = density x volume = $\rho \pi r^2 dx$

Substitute the above quantities in Newton's Second Law:

$$\left(\mathbf{P} - \frac{\partial \mathbf{P}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{2} \right) \pi \left(\mathbf{r} - \frac{\partial \mathbf{r}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{2} \right)^2 - \left(\mathbf{P} + \frac{\partial \mathbf{P}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{2} \right) \pi \left(\mathbf{r} + \frac{\partial \mathbf{r}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{2} \right)^2 - 2\pi\mu\mathbf{r} \frac{d\mathbf{u}}{d\mathbf{r}} d\mathbf{x} - \rho\pi\mathbf{r}^2 \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} d\mathbf{x} = 0$$

Expand squared terms and multiply through by $\frac{1}{\pi}$ $\left(P - \frac{\partial P}{\partial x} \frac{dx}{2}\right) \left[r^2 - r \frac{\partial r}{\partial x} dx + \left(\frac{\partial r}{\partial x} \frac{dx}{2}\right)^2\right] - \left(P + \frac{\partial P}{\partial x} \frac{dx}{2}\right) \left[r^2 + r \frac{\partial r}{\partial x} dx + \left(\frac{\partial r}{\partial x} dx\right)^2\right]$ $- 2\mu r \frac{du}{dr} dx - \rho r^2 u \frac{\partial u}{\partial x} dx = 0$

Neglect $\left(\frac{\partial r}{\partial x} \frac{dx}{2}\right)^2$ in comparison with $\frac{\partial r}{\partial x} dx$, an infinitesimal of higher order in comparison with $\frac{\partial r}{\partial x} dx$.

Expand equation:

$$-r^{2} \frac{\partial P}{\partial x} dx - 2Pr \frac{\partial r}{\partial x} dx - 2\mu r \frac{\partial u}{\partial r} dx - \rho r^{2}u \frac{\partial u}{\partial x} dx = 0$$

Multiply through by $-\frac{1}{r dx}$:

$$\mathbf{r} \frac{\partial \mathbf{P}}{\partial \mathbf{x}} + 2\mathbf{P} \frac{\partial \mathbf{r}}{\partial \mathbf{x}} + 2\mu \frac{\partial \mathbf{u}}{\partial \mathbf{r}} + \rho \mathbf{r} \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 0 \qquad (32)$$

Discussion of Physical Significance

 $\frac{\partial P}{\partial x}$ is negative and mainly a function of the velocity increase through the contracting flow region and, to a negligible extent, a function of frictional losses. The second effect may be ignored in comparison with the magnitude of the first. Thus, $\frac{\partial P}{\partial x}$ is a function of the flow streamline boundary.

-20-

 $\frac{\partial \mathbf{r}}{\partial \mathbf{x}}$ is negative and definitely a function of the flow streamline boundary.

 $\frac{\partial u}{\partial r}$ is negative and refers to the sizeable change in axial velocity as r increases from just within the core section to just inside the eddy field bounding the core section.

 $\frac{\partial u}{\partial x}$ is positive. This is the change in velocity required by continuity with a change in flow cross section--thus a function of the flow streamline boundary.

DISCUSSION

The difficulties encountered in solving the partial differential equation can readily be seen. To date, the streamline bounding core flow has not been described mathematically. The numerical solution is approximately correct at the relaxation nodes, but it is not continuous nor does it have derivatives. Thus, $\frac{\partial P}{\partial x}$, $\frac{\partial r}{\partial x}$ and $\frac{\partial u}{\partial x}$ cannot be obtained, since all depend directly or indirectly on the partial derivatives of the equation of the flow boundary. No method of deriving this equation is presently available.

Evaluation of $\frac{\partial u}{\partial r}$ is also very difficult, due to our present lack of understanding of the eddy field bounding the core flow and the interaction between the two flow regions.

An analysis of the expanding flow zone is very similar to the preceding development. The force equations are identical. However, when evaluated, the gradients will be opposite in sign. Just as in the contracting flow zone, the lack of a mathematical equation of the streamline boundary of core flow and an understanding of the eddy field bounding the core flow, prevent solution for the expanding flow zone.

SECTION II

EXPERIMENTAL APPROACH

Scope of Experimental Investigation

An experimental determination of the flow characteristics through short, small cylindrical tubes delves into variations of arbitrary coefficients which modify theoretical flow equations. The orifice flow equation is:

$$Q = CA \sqrt{\frac{2\Delta P}{\rho}}$$

The coefficient of discharge, C, modifies a theoretical description of frictionless flow through an infinitely thin orifice. This coefficient is affected by the properties of the fluid, finite thickness of orifice wall, surface roughness, and the inlet and exit configurations in practical applications. This experimental investigation is intended to:

- 1. Isolate unimportant factors.
- 2. Determine magnitude of each effect.

Review of Previous Research

Zucrow (8) investigated the flow of benzol through submerged tubes of small diameter (0.020 \leq D \leq 0.088). Among his important conclusions are:

1. If C, the coefficient of discharge, is plotted as a function of $W\Phi r$, the characteristic curve is valid for all jets which are geometrically similar. Where:

> W = actual rate of discharge Φ = fluidity of the liquid = $\frac{1}{\mu}$ r = reciprocal of diameter = $\frac{1}{d}$

2. Square-edged jets are geometrically similar when they have equal values of L/D.

-23-

1 :

ł

Figure 10 shows the characteristic curves for square-edged jets with L/D ratios of 0.333 to 10.57.

Portions of a thesis by Chia-Tsun Chen (9) are applicable to flow characteristics near the square-edged entrance of a cylindrical tube.

To investigate flow through the outlet pipe at the bottom of a tank, consider the following equation:

$$H = \frac{V^2}{2g} + f \frac{L}{D} \frac{V^2}{2g} + K_e \frac{V^2}{2g}$$
(33)

where: H = total head, ft

V = mean velocity over the section, in/sec

f = Darcy friction factor

 K_{ρ} = coefficient of entrance loss

Direct experimental measurements of H and V and theoretical calculation of f enables K_e to be determined from equation 33. The plot of K_e versus L/D, figure 11, has a very significant minimum at an L/D ratio between 3 and 4.

ANALYSIS

A theoretical approximation to flow through a very, very short pipe is derived from Bernoulli's equation.

$$\frac{P_s}{\rho} + gZ_s + \frac{1}{2}q_s^2 = \frac{P_1}{\rho} + gZ_1 + \frac{1}{2}q_1^2$$

where: $P_s = supply pressure, lb/in^2$ $P_1 = pressure at pipe exit, lb/in^2$ $Z_s = elevation of pipe inlet, in$ $Z_1 = elevation of pipe outlet, in$ For every large area ratio, $A_s >>> A_1$, and thus $q_s <<< q_1$. Therefore $q_s \sim 0$. Also, since the pipe is very short, $Z_s \sim Z_1$, regardless of the orientation of the pipe.

 $\frac{P_s}{0} = \frac{F_1}{0} + \frac{1}{2} q_1^2$

q

Thus:

$$= \sqrt{\frac{2(P_s - P_1)}{\rho}}$$
(35)

Rearranging:

To find total flow through the small cylindrical tube, consider the continuity equation:

$$Q = q A \tag{36}$$

Substitute equation 35 into 36:

$$Q = A \sqrt{\frac{2(P_{s} - P_{1})}{\rho}}$$
 (37)

Equation 37 applies only to frictionless flow. For actual flow conditions, the equation must be modified to account for entrance losses, the reduction in effective tube cross sectional area due to flow contraction just downstream from the tube entrance, fluid friction along the tube, and exit losses. Thus, for actual flow:

$$Q = CA \sqrt{\frac{2(P_s - P_1)}{\rho}}$$
 (38)

where: $C = C_c C_v$

 C_c , the contraction coefficient, is attributed to the inability of the radially moving fluid particles to instantaneously change direction of travel to an axial direction at the sharp-edged entry of the tube. Hence, the fluid flow area contracts near the tube entrance. For a very short tube, an orifice, $C_c = 0.6$, meaning that the flow area is only 60% of total orifice area. In longer tubes, an expansion follows the contraction but sizeable losses occur in the contraction-expansion process. C_c is a function of fluid momentum and the tube geometry.

 C_v , the velocity coefficient, is attributed to frictional losses along the tube wall and fluid friction. Wall friction is a function of fluid properties, surface finish, and geometry. Fluid friction is a function of fluid properties and flow quantity. Thus: $C = f(\rho, V, \mu, D, L, e)$

Since: $C = C_c C_v$

where:

 $C_{c} = f(\rho, V, L, D)$ $C_{v} = f(\rho, \mu, e, L, D, V)$

For actual experimental purposes, the quantity of flow, Q, may be measured directly. Velocity, V, is obtained by calculation from the equation Q = VA. It was decided to consider C = f(Q)for the purpose of simplifying the recording of experimental data.

Therefore: $C = f(\rho, Q, \mu, D, L, e)$

Dimensional analysis

Dimensions: $\rho \quad \frac{1b - \sec^2}{in^4} = FL^{-4} T^2$ $Q \quad \frac{in^3}{\sec} = L^3 T^{-1}$ $\mu \quad \frac{1b - \sec}{in^2} = F L^{-2} T$ D, L, e (in) = L

Dimensional	l Matrix:		,						
	ρ	Ŷ	μ	D	L	e			
Force: F	• 1	0	1	0	0	0			
Length: L	-4	3	-2	1	1	1			
Time: T	2	-1	1	0	0	0			
From F:	0 = 6	o + μ				39)			
From L:	From L: $0 = -4\rho + 3Q - 2\mu + D + L + e$								
From T:	0 = 2	2ρ - Q + μ			(41)			
Solve equat	ticn 39 fo	or µ: µ =	-p		(42)			
Solve equat	tion 41 fe	or Q: Q = 2	2р+ц			·			
Substitute	equation	42: Q = 2	2p - p						
Collect li	ke terms:	Q = (o		. (43)			
Solve equat	tion 40 f	or D: $D = c$	1 p - 3Q -	+2µ - L -	e				
Substitue o	equations	42 and 43	:						
		D = 4	4ρ - 3ρ ·	- 2p - L -	e				
Collect li	ke terms:	C =	-p - L -	e	. (44)			
From equati	ions 42, 4	13 and 44	construct	t the π ma	trix.				
r	ρ	Q	μ	D	L	e			
π ₁ (ρ)	1	1	-1	-1	0	0			
π_{2} (L)	0	0	0	-1	1	0			
π ₃ (e)	0	0	Ø	-1	0	1			
Therefore:	$\pi_1 =$	μD		:					
	$\pi_2 =$								
	$\pi_3 =$	e D							
• .									

-28-

ACCHRG2

The coefficient of discharge can now be expressed in terms of nondimensional parameters thusly:

$$C_{D} = f\left(\frac{\rho Q}{\mu D}, \frac{L}{D}, \frac{e}{D}\right)$$
 (45)

Experimental Method

Recall the relationships:

$$Q = CA \sqrt{\frac{2(P_s - P_{\theta})}{\rho}}$$

$$C = f\left(\frac{\rho Q}{\mu D}, \frac{L}{D}, \frac{e}{D}\right)$$
(45)

and

 ρ and μ are determined by the fluid and fluid temperature. A, L, D and e are dimensions which may be measured directly or computed from simple basic formulas. Experimental values of Q and P_s - P_e may be measured directly. The values of C may be computed from equation 38 and experimental data. By varying Q, L, D and e, the relationship suggested in equation 45 may be investigated.

Experimental Equipment

Small cylindrical tubes were made by drilling, reaming and, in some cases, polishing a small hole through a special test block (see Appendix D). The L/D ratio was varied between 8 and 1 by reducing the length of the hole. The sharp edge of the tube inlet and outlet was compared by microscopic inspection and protected from damage at all times. Steel and plastic test blocks were used. Holes in the steel test block were drilled and reamed yielding a microinch finish of between 50 and 55 rms. Holes in the plastic test block were drilled, step reamed and polished, resulting in a microinch finish between 4 and 6 rms-an optically clear surface, permitting visual observation of the flow phenomena. Finished hole sizes ranged from 0.122 inches to 0.133 inches.

a state and the second

The plans of the entire test fixture are included in Appendix D. A forty power microscope and microscope light were mounted in the microscope mount, which could be indexed along the length of the cylindrical tube. Careful, accurate observation of flow conditions was therefore possible.

Pressure taps were located 48 diameters upstream from the tube entrance and downstream from the tube exit to measure P_s and P_e respectively. Thermocouples, located at the same position, measured T_s and T_e . Two turbine type flow pickups located downstream from the pressure tap and thermocouple were employed. The capacity of the smaller one was from 0.3 to 2.2 gallons per minute; the capacity of the larger one from 2 to 24 gallons per minute. Valving permitted flow to be directed into either of the flow pickups. Thus, flows from 0.3 to 24 gallons per minute could be accurately measured.

The flow output of the variable delivery pump was manually controlled from negligible flow to 14 gallons per minute. The pump required a supply of oil at a pressure of 40 to 50 psi. This was accomplished by pressurizing the reservoir with compressed air acting on the fluid surface. Thus, the reservoir pressure, pump supply pressure, and reservoir return pressure was 45 ± 5 psig. All reservoir connections were submerged. Pump output pressure was determined by: resistance to flow in the system, pressure drop across the test block, and adjustable pressure drop across the needle valve. Line losses were considered negligible. The cross-sectional area of the lines was no less than 25 times the cross-sectional area of the cylindrical tube under investigation. The assumption of negligible line losses is therefore quite good. The pressure drop across a given test block is determined by the quantity of fluid flowing. A needle valve, downstream of the test block, was employed to vary the back pressure on the test block -- hence, the pressure range at which the pressure drop across the test block occurred.

Test Procedure

1

Warm up of the system was accomplished by an electric heater in the reservoir. Temperature was maintained by heating or cooling the fluid as required. The heater was controlled by a thermostat device whose sensing element was in the reservoir. Cooling was controlled manually by adjusting the quantity of cooling water flowing through the heat exchanger.

For each length and diameter of tube investigated, a series of runs was made. Runs were conducted at flow quantities of 1, 2, 4, 6, 8, 10, 12 and 14 gallons per minute. The test block exit pressure was varied from 50 psig to (3000 psig - ΔP) by adjusting the needle valve. After each adjustment in back pressure, the flow quantity and the temperature of the fluid were adjusted, if necessary, before the data were recorded.

-31-

Each test block was run and checked in the reversed direction of flow to detect any noticeable discrepancies due to edge sharpness or surface irregularities.

Discussion

and the second second

A nondimensional plot of C versus $\frac{\rho Q}{\mu D}$ indicates the coefficient increases as the quantity of flow increases--a rather sharp initial rise and less steep linear rise for further increases in $\frac{\rho Q}{\mu D}$. The surface finish of the cylindrical tube appears to have a very important influence on the coefficient--certainly as important as the L/D ratio. See figure 1. It must also be noted that the cylindrical tube in the plastic test block was not truly cylindrical. When the tube walls were polished, the entrance and exit of the tube were enlarged slightly.

-32-

LIST OF REFERENCES

- Kirchkoff, G., "Zur Theorie Freier Flüssigkeitsstrahlen", <u>Crelles Journal</u>, Vol. 70, 1869, p. 289.
- 2. Strieter, V. L., <u>Fluid Dynamics</u>, McGraw-Hill Book Co., Inc., 1948, pp. 174-177.
- 3. Rouse, H. and Abdel-Hadi Abul-Fetouh, "Characteristics of Irrotational Flow through Axially Symmetric Orifices", Journal of Applied Mechanics, Dec. 1950, pp. 421-426.
- Trefftz, V. E., "Über die Kontraktion Kreisformiger Flüssigkeitsstrahlen", <u>Zeitschrift für Mathematik and Physik</u>, Vol. 64, 1917, p. 34.
- 5. Southwell, R. V. and Vaisey, G., "Relaxation Methods Applied to Engineering Problems - Fluid Motions Characterized by Free Streamlines", Proc. Roy. Soc., Vol. 240 A, pp. 117-127 and pp. 134-141.
- 6. Brenkert, K., "A Study of Pressure Variation in the Region of Boundary Layer Transition in Cylindrical Tubes", Thesis, Stanford University, 1955.
- 7. Schlicting, H., <u>Boundary Layer Theory</u>, McGraw-Hill Book Co. Inc., 1955, pp. 159-161 and pp. 483-501.
- 8. Zucrow, M. J., "Discharge Characteristics of Submerged Jets", Bulletin No. 31, Purdue Engineering Experiment Station, 1928.
- 9. Chen, Chia-Tsun, "Unestablished Flow Patterns Downstream from Square-Edged Pipe Entrances", Thesis, Stanford University, 1952.
- 10. Reethof, G., Goth, C., and Kord, H., "Thermal Effects in the Flow of Fluids between Two Parallel Flat Plates in Relative Motion", American Society of Lubrication Engineers, preprint number 58 AM 4A-1.

APPENDIX A

SAMPLE CALCULATIONS

properties of petroleum base aircraft hydraulic oil -5606A (10).

$$\gamma = \gamma_{700F} (1 + \lambda\Delta T)$$

$$\lambda = 4.26 \times 10^{-4} \frac{1}{0F}$$

$$\gamma_{700F} = 0.0312 \frac{1b}{in3}$$

$$\mu = \mu_{700F} e^{-\beta\Delta T}$$

$$\beta = 0.01036 \frac{1}{0F}$$

$$\mu_{700F} = 26 \times 10^{-7} \frac{1b-sec}{in^2}$$

late:

$$\gamma_{150^{\circ}F} = 0.0312 \ 1 + 4.26 \ x \ 10^{-4}(80)$$
$$= 0.0323 \ \frac{1b}{in^{3}}$$
$$\mu_{150^{\circ}F} = 26 \ x \ 10^{-7} \ e^{-0.01036(80)}$$
$$= 11.35 \ x \ 10^{-7} \ \frac{1b-sec}{in^{2}}$$

. .

· · · ·

e equation:

$$Q = CA \sqrt{\frac{2\Delta P}{\rho}}$$

Lculate C, given Q, D, $\triangle P$ and γ , the following form of the ion would be more convenient:

$$C = \frac{Q}{\frac{\pi}{4} D^2} \sqrt{\frac{\Upsilon}{2(\Delta P)g}}$$

yhout these tests:

$$\gamma = 0.0323 \ \frac{1b}{in^3}$$

$$g = 386 \frac{in}{sec^2}$$

For the steel test block:

$$D = 0.122$$
 inches

Substituting these values:

$$c = \frac{Q \frac{231}{60}}{\sqrt{\Delta P}} \frac{1}{\frac{\pi}{4} (0.122)^2} \sqrt{\frac{0.0323}{2(386)}}$$
$$= 2.13 \frac{Q}{\sqrt{\Delta P}}$$

• . . . • .

• .

From experimental results:

for
$$Q = 6$$
 gpm, $\Delta P = 267$ psi

Substituting:

$$C = 2.13 \frac{6}{\sqrt{267}} = .782$$

The abscissa of the experimental plot is easily calculated:

$$\frac{\rho Q}{\mu D} = \frac{Q}{g \mu D} = \frac{6 \frac{231}{60} 0.0323}{(386)(11.35 \times 10^{-7})(0.122)} = 139.5 \times 10^{2}$$

÷

APPENDIX B

DATA

Series A - Plastic Test Block

D = 0.126 inch e = 5 ± 1 x 10⁻⁶ inch rms T_s = 150 ± 5°F

L/D = 7.86 @ L = 0.990 inch

Q (gpm)	P _s - P _e (psi)	С	<u>РО</u> µD
1	10 28	.631 .755	22.5 x 100 44.9 x 100 Long and a
4	90	,842	90.0 x 100
6	180	.893	135. x 100
8	304	. 918	179.5 x 100
10	418	.980	225. x 100
12	551	1.020	250. x 100

Series B - Steel Test Block

D = 0.122 inch e = $52 \pm 2 \times 10^{-6}$ inch rms T_s = 150 \pm 5°F L/D = 8.12 @ L = 0.991 inch

Q (gpm)	P _s - P _e (psi)	С	<u>ρQ</u> μD
1	10	.672	23.25 x 100
$\overline{2}$	35	.720	46.7 x 100
4	133	.738	93.5 x 100
6	267	.782	139.5×100
å	456	.798	186. x 100
10	619	855	232.5 x 100
12	833	.887	279.0 x 100
$\overline{\overline{14}}$	1150	.880	326. x 100

L/D = 4.02 @ L = 0.490 inch

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ρ <u>ο</u> μD	С	P _s - P _e (psi)	ų (gpm)	
2 35 .720 46.7 x 1 4 130 .738 93.5 x 1 6 263 782 120.5 x 1	23.25 >	.672	10	1	
4 130 .738 93.5 x 1	46.7 >	.720	35	2	
	93.5 x	.738	130	4	
	139.5 x	.782	263	6	
8 475 .782 186. x 1	186. 7	.782	475	8	
10 626 .850 232.5 x 1	232.5	.850	626	10	
12 867 .868 279. x 1	279. >	.868	867	12	
14 1149 .880 326. x 1	. 326. x	.880	1149	14	

L/D = 1.00 @ L = 0.1225 inch

•

.

(gpm)	P _s - P _e (psi)	С	<u>ру</u> µD
1	10	.672	23.25 x 100
2	33	.720	46.7 x 100
4	117	.790	93.5 x 100
6	245	.618	139.5 x 100
8	422	.830	186. x 100
10	594	.875	232.5 x 100
12	816	.887	279. x 100

:

•

APPENDIX C

1. 1

FLOWMETER CALIBRATION

ibration curve for a turbine type flow pickup is a plot of low rate versus the flow pickup output reading in pulses econd. The pulse rate of the flow pickup is measured by ectronic counter. The flow rate through the flow pickup mputed from data for each pulse rate. The time required llect a given weight of fluid is measured. Given the t of fluid flowing per unit time and the weight density e fluid, the volume flow rate may be computed.

r Flowmeter

atory number - 2011 ight oil rature: 150°F ± 5°F fic gravity = 0.840 t density (water) = 8.345 lb/gal

> $\gamma_{oil} = \gamma_{water} \times \text{specific gravity}_{oil}$ = 8.345 x 0.840 = 7.0 $\frac{1b \text{ oil}}{\text{gal}}$

) cycles/sec:

$$l \text{ gpm} = 400 \frac{\text{cycles}}{\text{sec}} \times 60 \frac{\text{sec}}{\text{min}} \times \frac{50 \text{ lb oil}}{7 \frac{\text{lb oil}}{\text{gal}}}$$
$$= 171,500$$

<u>Data</u>

.

:

400 Cycle Count	Pulses/Sec	gpm
88625	25	1.94
46045	50	3.73
31313	75	5.48
23503	100	7.30
18641	125	9.20
15602	150	11.00
13499	175	12 . 7 [.]
11800	200	14.5
10482	225	16 .4 [.]
9388	250	18.4
8543	275	20.1
7808	300	21.9
7206	325	23.8
6685	350	25.8

•

۰.

:

۰.

.

• .

:

 $\frac{1}{2} = \frac{1}{2} \frac{$

.

• •

CAUNK CHARTS

1

•

に用し

Figure 13

.

APPENDIX D

PARTS LIST AND DEAWINGS OF APPARATUS

Parts List 8021-022-0101

Drawing	67198-X	- Microscope Mount
Drawing	67199-X	- Outlet End Plate
Drawing	67200-X	- Inlet End Plate
D rawing	67201 <i>-</i> X	- Outlet Bracket
Drawing	6720 2-X	- Inlet Bracket
Drawing	67203-X	- Test Block
Drawing	67204-X	- Microscope Mount Slide
Drawing	67205-X	- Orifice Test Fixture
Drawing		- Circuit Diagram

NAME		FICE TEST FIXTURE	SHEET	г NO. 1 8021	-022-	- 1 - 1	IEE
			W. 0.	NO.	1315		
SIZE	PART	NAME			NO. REO'D	in cash	
1							
2							
3							
4							
8							
7			140.000				
8						A State	
9 E	67205-X	ASSEMBLY			1	Strate and	
10							
11		AND THE FOLLOWING SPECIAL	PARTS:			1	+
2	77100			-			
13 0	67198-X	MICROSCOPE MOUNT					
14 0	67200-X	END PLATE - OUTLET					
60	67201-X	BRACKET - OUTLET	Statesty at 1 - 14	and a second	and draw		
TC	67202-X	BRACKET - INIET	frankright diese	110	1		T
IB C	67203-X	TEST BLOCK			3	1000	
19 C	67204-X	SLIDE - MICROSCOPE MOUNT			3		
20							
21						1.9	
22					1000		
23							+
24						-	+
25							
27	and the second s	AND THE FOLLOWING STANDARD	PARIS	-			
28	154022	"O"-RING - 70 DUROMETER - 1 1	/4 L.D.		2		
29	1077-A	3/8 - 16 NC-3 ALLEN CAPSCREW			4	- The second	
30							
31	8077-	#10-24 NC-3 CAPSCREW - 3/4" L	ONG		8	and the state	
32	10357	#10-24- NC-3 CAPSCREW - 1" LO	NG		1		_
33	8076	#10-24 - NC-3 CAPSCREW - 1/2"	LONG		1	and the second	_
34	9706	#10-24-NC-3 CAPSCREW - 5/8"Lo	NG				+
35							+
37	1489	1/2-20 NE-2 1 1047 144 NUT					
38	1107	1/2 20 NF - J LIGHT JAM NUT			6	NO SHE	
39							
40						C. R. M. P.	
41					1000		
42					1000		_
43						the state of the s	
14							
15					1000		
40							
48	in a s						
L	INE WAS	DATE LINE WAS	DATE LINE	WA	S	D	ATE
	aler.	TO			e marte	21.121 21	5
3	TALL. FOR	1.04	2				
ZCE							
IAP							
	The local sector of the sector						

Di-11300 300

