 ON "HE STRUCTURE OF RH月RTMCE GROUP BHAVIOR

Thesis fer the Dagrea of M. A. MICHIGAN STATE UNIVGRSTY
Warren David TenHouten
1963

ABSTRACT
 METHODOLOGICAL IMNOVATIONS AID RODELS OM THE STRUCTURE OF REFEREICE GROUP BEFAVIOR

By Warren David TenHouten

The adolescent (and non-adolescent) perceives all his referal points (parents, peers, society, siblings, spouse, and self) in their desire and ability to provide opportunities to help him attain social, occupational, financial, and intellectual skills, goals, and roles.

This perception may or may not be "objective," but it will be organized in a well-ordered set of preferences. The adolescent, after perceiving, then attempts to optimize his goal-attaining potential by becoming disproportionately involved with (oriented to) those referal points that are perceived as having the desire and the ability to to provide opportunities to help.

It is hypothesised that if referents are perceived as having neither desire nor ability to help attain a goal, the adolescent will be involved with that referent at a low level. This hypothesis is supported, and it is show that the proportion of adolescents involved with referal points at any given level is a fixed fraction of the proportion involved at the next highest level of involvement.

It is hypothesised that if referents are perceived as having both the desire and the ability to help attain a goal, the adolescent will be involved with that referent at a high level. This hypothesis is supported, and it is shom that the proportion of adolescents
involved with referal points at any given level is a fixed fraction of the proportion involved at the next lowest level of involvement.

A third hypothesis is deduced from the mathematical description of the first two hypotheses. In the case where there is either desire but not ability or not desire but ability, the proportion of adolescents involved at increasing levels of involvement increases at a decreasing rate, has a maximum, and then decreases at an increasing rate. This hypothesis is supported.

More generally, it is hypothesised that Stouffer's proposition about intervening opportunities is a special case of a more general and sociological formulation. The proposition that adolescents at a given social distance (based on perceived desire and interest to help...) away from any and all referal points is directly proportional to the perceived ability to provide opportunities at that social distance, and inversely proportional to the sum of the intervening opportunities at all lesser social distances, is also substantiated.

METHODOLOGICAL INNOVATIONS AND MODELS ON THE STRUCTURE OF REFEREINCE GROUP BEHAVIOR

By
Warren David TenHouten

A THESIS

Submitted to
 Michigan State University
 in partial fulfillment of the requirements for the degree of

MASTER OR ARIS

Department of Sociology and Anthropology

The foundation for this endeavor was laid at the University of Chicago. In particular, Dr. Robert Crain stimulated my interest in mathematical models of social behavior.

My greatest indebtedness is to Dr. David Gottlieb for his guidance and encouragement of my graduate work and on this thesis. Throughout the course of this research, his ideas, encouragement, criticism, and direction have been invaluable.

Informal seminars with Dr. David Gottlieb and Mr. Jon Reeves contributed heavily to the first chapter.

Drs. William H. Form and William A. Faounce read the entire text, and made cogent criticisms and suggestions.

A special intellectual debt is owed to Drs. Louis Guttman and the late Samuel A. Stouffer, which is best expressed by the frequent references to their work.

Finally, in a category by herself, Diana TenHouten provided the encouragement, patience, support, and significant suggestions without which this thesis would never have been written.

1. A YODEL FOR A CROSS-CULTURAL STUDY OF ADOLESCEET BEHAVIOR I
A. General Orientation 1
B. Assumptions for a Cross-Cultural Model. 2
C. An Applicable Methodology: The Metatheory of
Facets. 3
D. Some Further Orientations 10
E. The Facet Paradigm: A Cross-Cultural Nodel of Adolescent Behavior 12
F. Definitions of Facets and Their Elements. 16
G. An Inter-Facet Mechanism: A Dynamic Aspect of the Model 19
2. TWO BASIC PROPOSITIONS 22
A. A Differential Equations Model. 22
B. Data and Testing of Propositions. 27
C. A Methodological Evaluation of the Model. 37
D. A Difference Equations Model. 38
3. A SOCIOLOGICAL REFORMLLATION OF STOUFFER'S THEORY OF INTERVEIING OPPORTUNITIES 48
A. Propositional Schema. 48
B. Operationalization of Variables 51
C. Data and Test of Proposition. 57
4. CONCLUSIONS AND IMPIICAITONS 65
TABIE - CHAPTER 2 Page
5. Responses for Five Referents to Dichotomized Levels of Desire and Ability to Help Attain an Occupational Goal, and to Level of Involvement. 30
6. Level of Involvement with Parents, Peers, Siblings, Society, and Spouse, by Dichotomized Response to Desire and Ability to Help Attain an Occupational Goal. 33
7. Level of Involvement with Parents, Peers, and Society, by Dichotomized Response to Desire and Ability to Help Attain an Occupational Goal: Probability Distribution 36
8. Empirical and Theoretical Distributions of Level of Involve- ment with Five Referents Perceived as Having No Desire and No Ability to Help Attain an Occupational Goal. 40
9. Chirsquare Values for Different Choices of k in B_{2} 42
10. Empirical and Theoretical Distributions of Level of Involve- ment with Five Referents Perceived as Having Both Desire and Ability to Help Attain an Occupational Goal. 43
11. Empirical and Theoretical Distributions of Level of Involve- ment with Five Referents Perceived as Having Either Desire but No Ability or No Desire but Ability to Help Attain an Occupational Goal. 45
12. Comparisons of Chi-square and \bar{X} (Diff.) for all Cases of Perceived Desire and Ability to Help Attain an Occupational Goal 47
TABLE - CHAPTER 3 Page
13. Percentage "Very Intensely Interested" or "Some Interest" at Each Rank of "Agreement" with Choice of Occupational Goal, for Five Referents 53
14. Social Distance, S, Social Distance Rank (1-9), and Number of Cases, N, for Five Referal Points 54
15. Perceived Ability to Provide Opportunities to Help Attain anOccupational Goal, Level of Involvement, and Social Distance,for Five Referal Points: (N) and Probability Distribution. .. . 57

IIST OF TABTES - Continued

TABLE Page
4. Test of Hypothesis for all Referal Points 58
5. Test of Hypothesis for Parents 59
6. Test of Hypothesis for Peers 60
7. Test of Hypothesis for Siblings 61
8. Test of Hypothesis for Society 62
9. Test of Hypothesis for Spouse 63
FIGURE - CHAPTER 2 Page
2. Level of Involvement with Parents, Peers, Siblings, Society, and Spouse, by Dichotomized Response to Desire and Ability to Help Attain an Occupational Goal. 34
3. Level of Involvement with Parents, Peers, and Society, by Dichotomized Response to Desire and Ability to Help Attain an Occupational Goal: Probability Distribution 36
4. Level of Involvement with Five Referents Perceived as Having Ho Desire and No Ability to Help Attain an Occupational Goal. 41
5. Level of Involvement with Five Referents Perceived as Having Both Desire and Ability to Help Attain an Occupational Goal. . 44
6. Level of Involvement with Five Referents Perceived as Having Either Desire but No Ability or No Desire but Ability to Help Attain an Occupational Goal. 45
FIGURE - CHAPTER 3

1. Percentage Distribution of Crientation over Each Social Dist- ance, for all Referal Points 58
2. Percentage Distribution of Orientation over Each Social Dist- ance, for Parents 60
3. Percentage Distrioution of Orientation over Each Social Dist- ance, for Peers. 61
4. Percentage Distribution of Orientation over Each Social Dist- ance, for Siblings 62
5. Percentage Distribution of Orientation over Each Social Dist- ance, for Society 63
6. Percentage Distribution of Orientation over Each Social Dist_ ance, for Spouse 64

F:EFACE

This thesis began with an attempt to construct a model for a cross-cultural study of adolescent behavior. The result of this effort was a model much broader in scope that the original intent.

Some broad hypotheses were developed out of this model. They were empirically tested in a questionnaire administered to an undergraduate sociology class. The hypotheses were all supported by the data, but the population contained a significant number of nonadolescente.

The result is that this is a general model for reference group behavior, with some general propositions about reference group interaction.

No attempt is made here to explain the structural variations of respondents in difierent social and demographic categories. What is done is the present a methodological and propositional framework for exanining adolescent-reference group interaction in different social structural conditions. In this sense, this research is the early groundwork for a cross-cultural study.

GHAPTER I

A MODEL FOR A CROSS-CULIURAL STUDY OF ADOLESCENT BEHAVIOR

A. General Orientation

There is mach empirical justification for contending that the literature about adolescence reveals some striking continuities in the structure of adolescent behavior. There appear to be certain elementary processes involved that go on in very different types of societies. Further, this elementary social behavior may be found in many contexts of sociological interaction, varying from small groups to complex organizations.

What are the basic patterns of interaction between social units such as the adolescent and his reference groups: that is, what social organization is involved? A paper by Gottlieb and Guttman begins with the general orientation that adolescents behave mach the same anywhere, in any socio-cultural context, in that they will ask help from referents they perceive as desiring to help them attain a goal, and will not ask help from other referents; and they will turn to those that they perceive as desiring to help them, and not to those that they do not. ${ }^{1}$ Any research or theoretical analysis must begin with such predilictions for a certain way of stating the problem to be investigated, for certain kinds of hypo-

[^0]theses, assumptions, and postulates. The values, judgments, and the existing knowledge of the investigators are of course involved in this. When the orientation reaches a certain level of specificity, it can be described as a model.

B. Assumptions for a Cross-Cultural Model

Assumptions, by definition, are not directly under investigation. But they are characterized by the possibility that an empirical study using a certain set of assumption might generate findings that would demand that one or more be discarded or modified.

It is necessary that assumptions are not at variance with postulates in the model; this condition will be rigorously met.

Janowitz defines an assumption as "...a proposition about a relationship within objects of study or linking an object of study to other variables, which is taken for granted in the investigation of the immediate problem at hand. n^{2} This will serve as a working definition for the following assumptions, which will be used throughout the entire study.

1. The adolescent wishes to attain skills, goals, or roles. ${ }^{3}$
2. a. The adolescent perceives his parents, peers, society, siblings, and himself.
b. The adolescent perceives these five in terms of a specific skill, i.e., as potential references.

[^1]c. The adolescent perceives that these four referents have differential power means (ability) and intentions to help him toward his goal.
3. The five potential referents mentioned in 2. a. constitute an exhaustive list, regardless of the cultural setting.
4. Goals may vary from society to society.
5. Nothing is said here about the criteria used by the adolescent in the selection of ands.
6. No statement is ever made about the "objectivity" (the validity) of the adolescent's perceptions with respect to goals or reference groups.
7. Perception precedes involvement. Perceptions can be made without involvement, but involvement cannot occur without perception.
8. The adolescent is the initiator in his involvement.

These will be referred to as "preliminary assumptions." Other assumptions will be added as the model is built, and these eight will be re-examined.

C. An Applicable Methodology: The Metatheory of Facets

A group of postulates is a group of statements which purports to define an object of study. Here, the object of study is a system of interaction. In Guttman's terminology, a postulate can be a facet, or an element of a facet-more technically, a statement about a facet. The five facets will constitute the observational basis for developing and
deriving a metatheoretical system, or model. Any theory is ultim ately defined in terms of its facets, í..., it must be concerned with various sets of elements. The presentation of the five facets in the next sections will rely heavily on "Facet Design" as developed by Guttman. 4

For now, a very brief discussion of Facet Design and Facet Analysis (which together are defined as Facet Metatheory) is sufficient.

If V is a set (a collection of things) defined as the Cartesian product (Cartesian space) of two sets A and B such that $V=A X B=A B$, then A and B are facets of V. This is all that "facet" means. Suppose that A is composed of elements a_{1}, a_{2},, a_{n} (the number of elements may even be infinite, but that is of no concern here), and B is composed of elements b_{l}, b_{2}, b_{m} - Clearly V has n times m elements, where "times" means ordinary arithmetic multiplication. This is the only sense in which the word "product" is used in Cartesian product: it does not imply manipulation, only the structuring of facets and their elements in (here, sociological) space. There are n ways of choosing an element from A and m ways of choosing an element from B, so there are n times m possible profiles over A taken with B.

[^2]For any element of V, call it $v, v=a X b=a b$, where it is understood that a is an element of A and b is an element of $B_{0} \quad V$ is defined as a profile over V; a and b are defined as the co-ordinates of V. The set V can be defined as the set of all possible profiles ∇ over A and Bo 5 This example has only two facets, but of course a Cartesian space can be composed of any number of facets.

In this model, there will be five facets, symbolized as a Cartesian product $V=\operatorname{PABCD}$, where
$P=$ the population of adolescents: a variable number of elements, $\mathrm{A}=$ behavior of adolescent: two elements,
$B=$ behavioral properties of referents: two elements,
$C=$ references: five elements, and
D = Ends (Skills, Goals, Roles).
V will be referred to as the "Facet Paradigm". V-z PABCD is a Cartesian product, and $v=$ pabcd is a profile over V. For any set V, there are elements $v_{0}, v_{1}, \ldots, v_{n}$. The set of all subsets of V is called the power set, denoted by $P(V)$. The subset with no elements is called the empty set and denoted ϕ.

By considering only A, B, and C as variable facets, where P
and D are fixed facets, $O V^{*}=A B C$, contains fifty-three profiles, that is fifty-three unique combinations of $\nabla \subset V^{*}$. Thus,

5 For a fuller explication of the vocabulary of facets, see Guttman, "Notes on Terminology for Facet Theory," reprinted from the Proceedings of the Fifteenth International Congress of Psychology (Amsterdam: North-Holland Publishing Company, 1959, pp. 130-132. A good introduction to abstract systems is Daniel T. Finkbeiner, II, Introduction to Matrices and Linear Transformations (San Francisco and London: W. H. Freeman and Company, 1960), pp. 1-18.
$P_{A B C}=X_{A B C}+X_{A B}+X_{A C}+X_{B C}+X_{A}+X_{B}+X_{C} ;$
$53=(2 \times 2 \times 5)+(2 \times 2)+(2 \times 5)+(2 \times 5)+2+2+5$.
The task in this research project is to "explain" $X_{\text {PABCD }}$. This will require an hypothetical-deductive theoretical system including hypotheses, assumptions, and postulates. This is Facet Analysis. ${ }^{6}$ Questionnaires will be administered (in a sense, tests) to a population of adolescents, to test the level of validity of components of propositional systems. The design of the entire experiment is
$X_{\text {PABCD }} \rightarrow$ Real scores, how the adolescent scores and interrelates variables.

There is a slight distinction between a profile and a variable. For example, $a_{1} c_{1}$ is both a profile and a variable, but $c_{1} c_{2}$ is not a profile because it contains two elements from one facet. So the explanation of the elements in the model requires the addition of all the variables that are not profiles. For the facets A, B, C, and D there are 24 such cases within facets, and many more between facets.

Facet designing consists of defining the variables of a given study as Cartesian products of the elements of sets of more inclusive concepts. The novely, and the usefulness, of Facet Metatheory is that it formalizes the intuitive processes involved in constructing relevent concepts and variables for a scientific study. This "spelling out" of facets

[^3]decides which of these should be retained. A result of this formalization is that it clarifies which elements are common to different variables and which ones are dissimilar among themselwes. 7 For example, given four variables 1. $a_{1} b_{1} c y$ such that they
2. $a l_{1} b_{2}$
3. $a_{1} b_{2} c_{2}$
they form a perfect Guttman scale, we can say that the four variables are ordered by similarity or contiguity. Foa's contiguity hypothesis states that the empirical correlations between variables increases with the semantical similarity of the elements of the facets in the profiles. For example, 1 and 2 differ only in the C facet, whereas 1 and 4 differ in all three facets. Hence the contiguity hypothesis would predict that 1 and 2 will be more highly correlated than 1 and 4, in making the "leap" from semantical structure to the statistical structure of observed (scored) data, 8,9 The utility of scaling variables is illustrated by Guttman's reformulation of a study by Bastide and van den Berghe. 10

7Uriel G. Foa, "The Scientific Development of the Isreal Institute of Applied Social Research," Mimeographed paper, nod.
$8_{\text {Uriel G. Foa, "The Contiguity Principle tin the Structure of }}$ Interpersonal Relations", Human Relations, 11 (August, 1958) pp. 229-238.
${ }^{9}$ The distinction between semantical and statistical structures, as different levels of systems of components, is developed by Guttman in "The Principal Components of Scalable Attitudes", and "A New Approach to Factor Analysis: The Radex", both in Paul F. Lazarsfeld, ed., Mathematical Thinking in the Social Sciences (falencoe, Hlinois: The Free Press, 1954).
${ }^{10}$ Roger Bastide and Pierre van den Berghe, "Stereotypes, Norms and Interracial Behavior in Sao Paulo, Brazil," American Sociological Review, 22 (December, 1957), pp. 689-694, which is discussed
$A=$ Subject's behavior $\quad B=$ Referent $\quad C=$ Referent's Intergroup Behavior

$a_{1}=$ belief	$b_{1}=$ subject's group	$c_{1}=$ comparative
$a_{2}=$ overt action	$b_{2}=$ subject himself	$c_{2}=$ interactive

Subuniverse

1. Stereotype
2. Norm
3. Hypothetical Interaction
4. Personal Interaction

Profile

$a_{1} b_{1} c_{1}$
$a_{1} b_{1} c_{2}$
$a_{1} b_{2} c_{2}$
$a_{2} b_{2} c_{2}$

An imediate result of this semantic analysis is to show that the four variables are only some of the $2^{3}=8$ combinations of these elements.

These four variables are ordered semantically: they are also ordered sociologically. The meaning of the sociological order is the degree of face-to-face contact with the Negroes, progressing from a weak to a strong type of behavior of the subject vis-a-vis Negroes. The degree is strongest in personal interaction, not so strong in hypothetical interaction, less yet in norm, and weakest in stereotype. ${ }^{11}$ The facet pattern shows, for example, that the nearest neighbor of stereotype is norm: the differ only within facet C. Such reasoning shows the semantic contiguity of the attitudes.
in Guttman, "A Structural Theory for Intergroup Beliefs and Action," American Sociological Review, 24, (June, 1959), pp. 3-4.
$1_{\text {Guttman, }}$ "The Structuring of Sociological Spaces," Technical Note No. 3, Contract N. AF 61(052)-121, (December, 1961), p. 10. This report is a portion: of the Proceedings of the Fourth International Congress of Sociology, Stresa, Italy, (1959).

On the non-empirical, conceptual level, perfect scales are possible, as the example shows.

The next problem is how to use this semantic structure in order to make predictions about the statistical relations among the parts of the substructed semantic space. In this study, as with the example, this can be attained by computing correlation matrices. This gives considerable insight into the adequacy of the facets in a model. If the contiguity hypothesis holds (Foa doesn't contend it always will, even if the facets are adequate), there is some methodological justification for rataining the substructed sociological space. In the example, the contiguity hypothesis was supported, and the pattern of intercorrelations formed a simplex, as predicted.

Considerable parsimony is attained by Facet Design in constructing questionnaires, as all questions can be structured with a clear picture of the variables involved. The several hypotheses tested in Chapters 2 and 3 are based on four questions about five referents.

The following criteria seem quite fundamental to any research design.
Facet Metatheory certainly satisfies these criteria, and emerges as a powerful methodological tool for the structuring of sociological spaces:

1. The need for clear dimensions.
2. The need to order variables, e.g., from higher to lower. But however they are ordered, variables should be articulate and not ambiguous.
3. The need to work with variables instead of concepts.
4. The need for a neutral family name for any given variable. Variables are frequently named only on one end of a spectrum, e.g., "alienation" means the negative of something that has a positive, "comittment." Alienation and committment are
the negative and the positive extremes on a continuium of "involvement." Here there are three concepts, but only one of them is a variable. The family name is necessary, both for comparisons within a family, and between families.
5. Variables may be close, and hide under different labels, but they should be distinct.

D. Some Further Orientations

All the hypotheses we generate from the mociel, and the model itself, involve decisional processes on the part of the adolescent. Simon suggests two alternatives for formulation of such a model: this model will contain itself entirely to the first (see assumptions 6, page 3):

1. Inquiring into the properties of the choosing organism, and
2. Inquiring into the enviomment of choice. ${ }^{12}$

It is the choice of using only the first alternative that gives this study crossmcultural potentialities. Studies of adolescent behavior based on the second alternative must wait on a great deal of theory and substantively cormarable data on the socio-economic structures of different kinds of societies.

The adolescent's perceptions, particularly his information about certain properties of potential or actual reference groups, is an important behavioral property. We are assuming, it seems, that the adolescent has knowledge about the relevant aspects of his reference groups in his social enviomment with respect to his goals. This knowledge may

12Herbert Simon, "A Behavioral Model of Rational Choice," in Simon, Models of Nan (New York, Iondon: John Wiłey and Sons, Inc., 1957), p. 242.
not be nobjective, but it will be organized in a relatively well. ordered set of preferences. And we assume that the adolescent has evaluative (or "ranking") skills that will enable him to "man culate" altermative choices of involvement (orientation) to optimize his preferences.

Simon distinguishes three givens within which "rational" choice is made:

1. The set of alternatives open to choice,
2. Relations that determine the goal-attainment as a function 13 of the alternative chosen,
3. A preference ordering of alternatives. 14

An implicit orientation to this study is the notion that the adolescent is somehow optimizing, i...., choosing the reference group that has the intention and power to help him attain a particular skill, role, or goal. To the extent that he optimizes reference groups (on the basis of his perceptions), the adolescent is rational. We never hypothesize that the adolescent is always rational, but the general notion is worth bearing in mind -- even if only to see under what conditions the adolescent will behave nonmationally. This begins to sound like Economic Man, but there

13A profile is a functional relationship between elements from sets. A function is a binary relation, i.e., a relation whose Cartesian product is defined by two facets. A function is identical to a mapping. See, e.ge, Robert R. Stoll, Sets, Logic, and Axiomatic Theories, Ch. I. See also Guttman, "Notes on the Terminology of Facet Theory," cited in footnote 5.

14 Simon, op. cit.
are crucial differences. The rationality (or lack of it, as the case may be) of an adolescent is hypothesiszed not "globally" or "objectively," as with Economic lian, but rather as restricted to maximizing his goals on the basis of his own perceptions and knowledge.

E. The Facet Paradigm: A Cross-Cultural Kodel of Adolescent Behavior

The following schema appears in the paper by Gottlieb and Guttman: ${ }^{15}$

| Adolescents | $\frac{\text { Peference }}{\text { (society) }} \quad \frac{\text { Relation }}{\text { (need for) }} \quad$ Object of Relation |
| :--- | :--- | :--- |

(adolescent) ranks (parents) in their (status on him on (skills) (peers) $\begin{array}{ll} & \text { asking for } \\ \text { help) }\end{array}$
(himself) (ability to help)
Note: Facets are underlined, and elements are in parentheses.
"Ranks" is not a facet because it is what the adolescent does in an interviewing situation, í.e., it is a statement about his interaction within the interview situation rather than with is references. We have assumed that the "...adolescent has evaluative (or 'ranking') skills that will enable him to 'calculate' alternative choices...." (page 12). Also, the preliminary assumptions on page 3 indicate that the sociological content of evaluation or "ranking" is differential
${ }^{15}$ Cf. Vladimar Cervinke, reported by Stuart C. Dodd, "A Dimensional Theory of Groups," Sociometry, XI, (February-liay, 1948), pp. 100-107. Cervinka developed a theory utilizing essentially the same formulations as used in this paper: both formulations were developed independently.
perception. This is equivalent to saying that the adolescent perceives facets and elements of facets as variables. Also see assumption 2. c.: "The adolescent perceives these reference groups as having differential power means (ability) and intentions to help him toward his goal." In summary, ranking is evaluative perception. Evaluation is behavior in an interview situation; perception is behavior vis-a-vis reference groups.

There seems to be one other ambiguity. It is in the Relation facet. (Need for) and (Ability to help) are behavioral properties of the References, whereas (Status on asking for help) is a property of the Adolescent.

So we have two properties for the Adolescent: 1. (Perception); and 2. (Status on asking for help), which we will call involvement or orientation. And we also have two properties for the Reference: 1. (Need for), which we will call desire or intention; and 2. (Ability to help).

Considerable space has been used to describe the substantive aspects of the study by Bastide and van den Berghe which was reformulated by Guttman (see pages 8-10; sources are described in fottnote 9). There is a remarkable similarity to the facets developed in Guttman's paper and in those just introduced in this section. The comparison can be displayed in the following paradigm:

Guttman's Analysis of
Bastide and van den Berghe

Further Analysis of Gottlieb and Guttman's Mimeographed Paper

Subject's Behavior	Facet	Adolescent's Blahavior
(belief) (overt action)	(element) (element)	(evaluative perception) (orientation or involvement)
$\begin{aligned} & \text { Referent's Intergroup } \\ & \text { Bhavior } \end{aligned}$	Facet	```Behavioral Proverties of```
(comparative)	(element)	(need for, desire, intention)
(interactive)	(element)	(ability to help)
Referent	Facet	Referent
(subject)	(element)	(self)
(subject's group)	(element).	(subjects groups: parents peers, society, siblings)

Note: Guttman's paper labeled the second and third facets differently than they will be in this paper. He call the Referent "B" and Referent's Intergroup Behavior "C"; here, B and C will be reversed in the "Facet Paradigm" to follow. There is semantical commutativity between these facets.

Guttman's analysis of Bastide and van den Berghe, and the further analysis can both be summarized with the following statement: Type of behavior of a subject vis-a-vis a type of intergroup behavior of a type of referent (with respect to a certain goal of the subject. This seems to be a generic statement about interaction.

The facets and elements in the model will be presented next, In the Facet Paradigm. The terms will be presented now and defined in Section F. This is a necessary first step in model building, or in research in general--to carefully define the variables that are to be used. It is then necessary to develop postulates and propositions relating variables to each other. This will be attempted in Section G, and in Chapters 2 and 3. Some mechanisms deduced from the assumptions, and some general propositions will be advanced.

The Facet Paradigm: $V=$ PABCD

An example of a profile over $V=$ PABCD: Let p_{0} represent lower class adolescents in a given population, and choose a $v=p_{0} a_{1} b_{2} c_{2} d_{2}$

Abstract

$\nabla \equiv$ (The lower class adolescent's) (perceptions) vis-a-vis the (ability to provide opportunities) of his (parents) to help him attain an (occupation); $V=A$ type of Adolescent's Behavior vis-a-vis a type of Interactive Behavioral Property of a type of Referent to help him attain a type of 9kill.

F. Definitions of Facets and Their Elements

P: The population of adolescents. This refers to the sample we draw. The work "universe" will be reserved for the parameter of adolescents from which the sample is drawn. Adolescents will bedefined in terms of an age bracket from a particular universe, e.g., all males in Tokyo from 14 to 18 years of age. In another social setting, there might be annther choice of ages defined as adolescents, but this will present no great methodological problems.

Blements for this facet are obtained by characterizing a sample by some criterion, such as father's occupation, or such as religious preference.

A: Adolescent's behavior. The two elements in this facet are exhaustive with respect to goal-directed behavior.
$a_{1}:$ (perception). Bastide and van den Berghe call this element "belief." Evaluative perception is approximately the same, except that we know the adolescent is able to evaluate by assumption. The content of perception will be elaborated in the next section, "An Interfacet Mechanism."
$a_{2}:$ (involvement, or orientation). This is interpersonal exchange,
and overt behavior, in contradistinction to a_{1}, which is an internally contained, or covert, behavior. Involvement means the adolescent has actually made a choice on the basis of his perceptions (by hypothesis), and is involved with his referents in certain ways. In a sense, he is either "using" them or not.

Involvement can vary from positive "cormittment," to a near-zero "calculative," to negative "alienation. ${ }^{16}$

B: Interactive properties of referents. This facet is in a sense the set of perceived outcomes and actual outcomes of facet A. The adolescent chooses from $A=\left(a_{1}, a_{2}\right)$ in certain ways. How he chooses will be hypothetical, but choice must be somehow made from both a_{1} and a_{2}. So the two elements of B determine a functional relationship determining the perceived outcomes and orientational outcomes. The variables $a_{1} b_{1}$ and $a_{1} b_{2}$ are perceived outcomes; the variables $a_{2} b_{1}$ and $a_{2} b_{2}$ are actual outcomes, that is, outcomes of interaction. Hence there is a mapping of the elements of A into the elements of B.
b_{1} : (intention or desire). Goldhamer and Shils define a person as having "...power to the extent that he influences the behavior of others in accordance with his own intentions. ${ }^{17}$
${ }^{16}$ This is closely related to Etzioni's use of Morientation, " in Amitia Etzioni, A Comparative Analysis of Complex Organizations (Glencoe, Illinois: The Free Press, 1961), Chapter 1, in which Etzioni develops a terminology for a corpliance relation between elites and lower participants in complex organizations.
${ }^{17}$ Herbert Goldhamer and Edward A. Shils, "types of Power and Status," American Journal of Sociology, 45, (September, 1939), p. 171. Behavior is defined as both overt and covert, i.e., power refers to both elements of adolescent's behavior--perception and orientation.

It is in this optative sense that "intention" will be used in the model. It can also be viewed as the perceived social interactional "distance" from referents.

In their first working paper, Gottlieb and Guttman used "desire" for this element. The two words do not mean quite the same thing. For example, if an adolescent with high ability perceives perceives his parents are able to help him attain a goal, they may intend to help him because "Its his life, and we should help him attain his own goals," but may at the same time be disappointed in his choice of goal, and lack psychological "desire" to help him, or lack "agreement" with his choice of goal. Considerable caution must be used in naming this element "desire" or "agreement."

We also want to be consistent with Bastide and van den Berghe's usage of this element as comparative relative to the adolescent's goal. "Desire" connotes interaction outside of the goalmirected context; the model is concerned with the adolescent's goals, not the goals of his referents.
b_{2} : Ability or power means. Parson's definition of power illustrates another aspect of this facet, the interactive. He says MPower is the ability to help another actor carry out roles or norms (here, ends) he supports. ${ }^{18}$ A referent can have power potentioal (ability) without (intention) to help; and a referent can have (intention) without (ability).

18 Talcott Parsons, The Social System (Glencoe, Illinois: The Free Press, 1951), p. 121, in Etzioni, Ibid., p. 4. Emphasis and parenthetical insert added. Etzioni uses "power means" in a sense equivalent to (ability): the terms will be used interchangeably here.

C: Referents, or referal points. By assumption 3 (page 3), parents, peers, siblings, society, and self are an exhaustive list of elements for the referent facet. Society is the largest category: it makes the list exhaustive. In chapters to follow, however, (self) will be left out and (spouse) will be added.

D: Skills, goals, and roles. Homans makes an adequate definition of goals: "A goal (end) is a part of the behavior to be explained, by assuming that goal achievement is a reward which one's activities get from another person, another group, or the environment. ${ }^{19}$ To this, the (subject's group) element, the (subject himself) element must be added. The only difference between Homans and this model is the length of the chain of activities which are goal-attaining.

G. An Inter-Facet Mechanism: A Dynamic Aspect of the Model

The dynamic postulates in this section are largely deduced from the eight preliminary assumptions. In the mechanism, we will consider only facets Λ and B, which are the behavioral facets.

In his work on the Metatheory of Facets, Guttman again and again substructs facets in sociological space that are called stimulus facets and response facets. This is of course more a consequence of Guttman's substantive interests than of Facet Theory itself, but at the same time it is certainly true that Facet Theory lends itself readily to this kind
${ }^{19}{ }_{\text {Goorge }}$ C. Homanis, Social Behavior: Its Elementary Forms (Ner York, Burlingame:: Harcourt, Brace \& World, Inc., 1961), p. 89. Parenthetical insert added.
of analysis.
In this section, we will use the terminology of stimulus and response, but we do not intend the terms to be interpreted in a purely psychological sense; the mechanism is social-psychological, or even sociological, in that interpersonal exchange is involved, as: well as perception.

The B facet can be considered a stimulus facet, and the A facet can. be considered a response facet. This is closely related to our assumptions.

The adolescent is stimulated perceptually by the two elements of B, that is, $a_{1} b_{1}$ and $a_{1} b_{2}$. Following this perception (assumption 7, page 3) the adolescent responds (becomes involved with) a referent by initiating (by assumption 8, page 3) an interactive process with the referent, on the basis of his perception of B, that is, $a_{2} c_{i}$. The adolescent, upon being stimulated cognatively, which is not interaction, then responds (a_{2}) by his involvement. His involvement is interaction. For the purposes of this model, we will initially be concerned with interactions initiated by the adolescent.

This sequence of events is usually neither rapid nor continuous. For example, an adolescent may perceive the intentions and ability of his parents to help him attain an occupational goal for several years before he becomes involved with them in attaining this goal.

To review the close relation of the mechanism to our assumptions, it can be stated that the mechanism satisfies assumption 8, Mdolescent is the initiator," and also assumption 7, "Perception precedes involvement."

The properties of this mechanism can be formalized in a manner used by Guttman. 20

There are three facets involved:
P = population of respondents, here the P facet,
$S=$ stimuli variables, here the B facet, and
$R=$ response categories, here the A facet.
We are considering a set P who are responding (R) to alternatives which are stimuli (S).

In general, $P \rightarrow R_{S}(s \in S)$, where R_{s} are possible categories for stimuli $=\left(a_{1}, a_{2}\right)$ and where the stimulus $s(s \in S)=B$ facet.
$P S \rightarrow R$, i.e., adolescent will respond to the stimuli.
The stimuli are faceted: $S=S_{1} S_{2} . \quad$ So $P S_{1} S_{2} \rightarrow R$. For any $p \in P$, in conjunction with $s_{1} \in S_{1}$ and $s_{2} \mathcal{S S}_{2}$, there corresponds a particular response.

In the inter-facet mechanism, interaction can be reformulated to mean an exchange of stimuli between the adolescent and some sociological unit. The exchange need not be continuous.

[^4]
CHAPTER 2

TWO BASIC PROPOSITIONS

A. A Differential Equations Model

Our general sociological orientation to the substantive topic of adolescent behavior, and more generelly, to reference group behavior, presented in Chapter l is not to be confused with sociological theory. Broad postulates were presented, indicating the types of variables to be accounted for. Facet analysis enabled us to raach a level of specificity which can be described as a model for a cross-cultural study. The stage has now been reached where relations between variables can be specified. ${ }^{1}$ The initial orientation that there are elementary social processes involved in this interactive behavior can be substantiated if basic hypotheses can be developed, tested, and confirmed. If this can be done, it will be possible to develop propositions that will hold up crossculturally.

In Working Paper Number 1, Gottlieb and Guttman hypothesised that adolescents will become involved with referents they porceive as having the ability to help them attain goals, and will not become involved with referents they perceive as not having the ability to help them attain goals. They also hypothesised that adolescents will become involved with referents they perceive as having the desire to help them attain goals, and will not become involved with referents they perceive as not having the desire to help them attain goals.

[^5]These "two basic propositions" can be stated more formally, in the vocabulary and notation of our model:

1. If an adolescent (perceives) that a referent has neither the (desire) nor the (ability) to help him attain a given goal, he will be (involved) with that referent at a low level.
2. If an adolescent (perceives) that a referent has both the (desire) and the (ability) to help him attain a given goal, he will be (involved) with that referent at a high level.

We will now develop a system of differential equations to describe these propositions. By doing so, we are also able to deduce a propositional statement about the additive union of the two ambiguous cases: desire but no ability, and ability but no desire.

Let the following notation describe $B=\left(B_{0}, B_{1}, B_{2}\right)$:
$\left(a_{1} b_{1}\right)=$ perceived desire to help, where
1 - evaluated positively, and
0 a evaluated negatively;
$\left(a_{1} b_{2}\right)=$ perceived ability to help, where
$l=$ evaluated positively, and
$0=$ evaluated negatively;
$B=\left(a_{1} b_{1}, a_{1} b_{2}\right)=$ (perceived desire, perceived ability);
$B_{0}=(0,0)=$ adolescent evaluates both the desire and the ability of a referent to help him attain a goal negatively;
$B_{l_{a}}=(0,1)=\underset{\text { positively; }}{\text { adolescent }}$ evaluates desire negatively but ability
$B_{I b}=(1,0)=\underset{\text { negatively; }}{\text { adolescent }}$ evaluates desire positively but ability
$B_{1}=(0,1) \cup(1,0)=a l l$ the $B_{1 a}$ and all the $B_{1 b}$ cases;
$B_{2}=(1, l)=$ adolescent evaluated both desire and ability positively.

From our two propositions, we can make statements about changes in B_{0} and in B_{2} with respect to changes in involvement, where $B=f\left(a_{2}\right)$. We are implicitly considering level of involvement as some function of time. For all changes in both of these "congruent" cases, we can ignore the negligable (if even possible) effect of the adolescent changing from B_{0} to B_{2} instantly, or of changing from B_{2} to B instantly.

Using involvement as some function of time is sociologically realistic, as we are dealing with a socialization process, of learning to attain goals over a period of time and activity. And, by definition, goals are not attained.

Let m equal the net probability of changing from B_{0} to B_{1} at varying levels of involvement. By our porpositions, as involvement increases, the probability of an adolescent being B_{0} decreases. Hence, the net sign of m is negative.

Let k equal the net probability of changing from B_{1} to B_{2} at varying levels of involvement. By our propositions, as involvement increases, the probability of an adolescent being B_{2} diacreases.

We can represent the statements made so far with the following system of differential equations:
(1) $\frac{\mathrm{dB}_{0}}{d \mathrm{a}_{2}}=-\mathrm{mB} \mathrm{B}_{\mathrm{o}}$,
(2) $\frac{\mathrm{dB}_{1}}{\mathrm{da}_{2}}=\mathrm{mB}_{0}-\mathrm{kB}_{1}$, and
(3) $\frac{\mathrm{dB}_{2}}{\mathrm{da}}=\mathrm{KB}_{2}$.

Our data, to be presented in the next section, will give us empirical epproximations to the graphs of these three equations. By solving the equations for B, and differentiation of the equations, i..日., finding the second derivatives, we can determine the general shapes of the curves for B.
(la). Solution of B_{0} :
$\frac{d B_{0}}{d a_{2}}=-m B_{0} ;$
$\frac{d B_{0}}{B_{0}}-m\left(d a_{2}\right)$;
Boundary conditions:
At $a_{2}=0, B_{0}=c e^{0}=c$.
$\log _{e} B_{0}=-m\left(a_{2}\right)+a^{*} ;$
$B_{0}=c e^{-m\left(a_{2}\right)}$
(lb). Solution of B_{1} :
$\frac{d B_{1}}{d a_{2}}=\mathrm{cme}{ }^{-m\left(a_{2}\right)}-\mathrm{kB}_{1} ; \quad$ Boundary condition:
$d B_{1}=c m e^{-m\left(a_{2}\right)}\left(d a_{2}\right)-\mathrm{kB}_{1}(\mathrm{da} 2) ;$
Using an integrating factor, $e^{k\left(a_{2}\right)}$
$e^{k\left(a_{2}\right)}{d B_{1}}+B_{1} k e^{k\left(a_{2}\right)}=m e^{k\left(a_{2}\right)} e^{-m\left(a_{2}\right)} d_{2} ;$
$B_{1}=\frac{c m}{k-m} e^{-m\left(a_{2}\right)}-\frac{c m}{k-m} e^{-k\left(a_{2}\right)}$.
(lc). Using a probability distrubution, for all a ${ }_{2}$, $B_{0}+B_{1}+B_{2}=1$.
($1 a^{*}$). Second derivative of B_{0} :
$\frac{d^{2} B_{0}}{d a_{2}^{2}}-m\left(d B_{0}\right)=-m\left(-m B_{0}\right)=m^{2} B_{0}$, which is greater than 0 for all a_{2}.
-
(lb*). Second derivative of B_{1} :

$$
\begin{aligned}
\frac{d^{2} B_{1}}{{d a_{2}^{2}}_{2}^{2}} & =d\left(m B_{0}-k B_{1}\right) \\
& =m d B_{0}-k d B_{1} \\
& =m\left(-m B_{0}\right)-k\left(m B_{0}-k B_{1}\right) \\
& =-m B_{0}-k m B_{0}+k^{2} B_{1} . \text { If } k \text { is less than } m \text {, the slope is }
\end{aligned}
$$

everywhere concave down. $B_{l}^{1!}$. can have a critical value if m equals k or is less than k. In general, the second derivative of B_{1} will be negative, as k is negative in (1).
(lc*). Second derivative of B_{2} :
$\frac{d^{2} B_{2}}{d a_{2}}=d\left(k B_{1}\right)=k\left(d B_{1}\right)=k\left(m^{2} B_{0}-k m B_{0}-k^{2} B_{1}\right)$.
In contradistinction to (1), k is positive in (2). Hence, the second derivative of B_{2} will in general be positive.

On the basis of the deductive statements we have made about the system of differential equations, we can determine the general shapes of the B curves. This is the main advantage to using such a model. The other advantage has been that we have been able to deduce a proposition about B_{1} from our original two propositions.

$$
\text { Figure 1. } B=f\left(a_{2}\right)
$$

B. Data and Testing of Propositions

We were able to test these propositions on the basis of a questionnaire administered to 447 students in an undergraduate sociology class at 佔chigan State University, in April 1963. 409 questionnaires were coded to test this model. Each respondent was asked about five fererents, so the number of possible responses was $5 \times 409=2045$. The actual number of codeable and applicable responses was 1573.

The sample isia fairly representative cross-section of the entire student body, though this is not the universe to which we eventually hopè: to generalize.

The relevant items were scaled with integers. Scaling is in general dependent on the choice of mathematical model which states differences in response as a function of location on an underlying dimension of scaleable data. The model consists of (1) level of measurement stated (nominal, rank, etc.), (2) the graph of the item as a function of location on the underlying continuium, (3) the judgment of the respondents, and (4) the mathematical pattern, by which it is deternined whether the continuium is scaleable.

We defined the referent categories as follows for the respondents as follows:
"You have described your occupational goal in preceeding questions. Now we would like to find out some things about your relation to the people who may help you attain your goaI.

Consider all the possibilities you have for getting help to attain your job goal:
(a) PAREMT (S) or guardian
(b) Your PEERS (Those close to your own age that you interact with)
(c) Your SIBIING(S): Brother(s) and/or Sister(s), if applicable
(d) SOCIETY: People in other relations to you, such as teacher or adult friend, or significant people in society generaßly. This is our catch-all category, so place everything that won't go in other categories here.
(e) SPOUSE, if applicable."
"Desire to help" is considered present if the respomdent answers "Strongly Agree" or "Agree" to the following question:
(Item 29) "Indicate for the following groups the extent to which they agree or disagree with your choice of occupational goal." Referent. $\frac{\text { Strongly Agree }}{+2} \frac{\text { Agree }}{+1} \frac{\text { Indifferent }}{0} \frac{\text { Disagree }}{-1} \frac{\text { Strongly Disagree }}{-2}$

PARENTS
PEERS
SIBLINGS
SOCIETY
SPOUSE
"Ability to help" is considered present if the respondent answers "Great Ability" or "Some Ability" to the following question: (Item 31) WTo what degree do each of these groups have the ability or power to help you attain your occupational goal?"

$\frac{\text { Great Ability }}{3} \frac{\text { Some Ability }}{2} \frac{\text { İttle Ability }}{1} \frac{\text { No Ability }}{0}$

Referent
PARENTS
PEERS
SIBITNGS
SOCIETY
SPOUSE

Four questions under Item 27 were constructed as indices of involvement with (orientation to) the five categories of referents. They dealt with (1) frequency of discussing goal, (2) frequency of respondent going to the referent for advice or assistance, (3) how often the referent offered advice or assistance, and (4) how much actual contribution has the referent made toward attaining the goal.

Item 28 is asked inmediately after these four indices of involvement: this question ordering made Item 28 meaningful to the respondent. The question is asked as follows:
(Item 28) "Indicate, in general, the degree to which you interact or arecinvolved with the following groups with respect to attaining your occupational goa工."

If a respondent failed to answer any of Items 28,29 , or 31 for a referent, all his responses about that referent were thrown. Any answers that were multiple, e.g., circle both 4 and 5 for parents on Item 28, were also considered non-applicable. The total of 472 non-applicable responses were distributed as follows: 11 for parents, 8 for peers, 77 for siblings, 25 for society, and 351 for spouse. The results of the coded questionnaire are presented in Table 1.

Table l.--Responses for Five Referents to Dichotomized Levels of Desire and Ability to Help Attain an Occypational Goal, and to Level of Involvement

Table 1 indicates an unusual distribution for two referents, siblings and spouses.

Siblings are not highly involved with the respondents. 217 siblings are categorized having little, very little, or no involvement, whereas only 115 are moderately, highly, or very highly involved. The non-sibling distribution here is 345 at the lowest three levels, and 904 at the highest three.

Siblings also fall disproportionately into the (desire, no ability) case, particularly at the three low levels of involvement.

The definition given for sibling accounts for a lot of this: no criteria are given for ordinal position, sex, or age. For siblings a lot younger than the respondent, it is highly improbable that they have developed much potential to help the referent attain an occupational goal, even though they might approve of the goal, and desire to help. The category is meaningless in terms of the respondent's three year old sister. But in terms of the definition for sibling, she should have been included. Of the non-applicable and uncodeable responses excluding spouses, 64% were of the sibling category. If this was entirely due to not having a sib, then 77 of the 409 respondents did not have a sib. This is highly improbable. The conclusion is that respondents answered non-applicable for much younger sibs, even though the letter of the instructions indicated they should have been included. This conclusion is supported by remarks written in the margin by several respondents.

Married respondents are highly involved with their spouses, and perceive that they have a lot of desire and ability to help.

It is not the distribution of spouses in Table 1 that is misleading; it is the sample itself: spouses are over-represented relative to a typical adolescent population. The sample included a lot of nonadolescents, and these respondents are far more apt to be married. Spouses were included to make the reference facet exhaustive. Ehaustiveness was attained at the price of a distorted sample.

There is also a weakness in the scaling for level of involvement revealed by the data in Table 1. There appears to be only a slight psychological distinction between being Mighly Involved" and "Very Highly Involved" for (1,1) relative to the psychological distinction between "Moderately Involved" and MHighly Involved." The percentage increase for the former is 19\%, but only 14% for the latter. There is apparently a greater psychological space between moderate and high than between high and very high, though the percentage distributions at each involvement level show that very high is more extreme than high. The difficulty is that both high and very high are extreme responses: both are highly correlated with (1, 1).

Equation (lc*) predicts that B_{2} will accelerate as involvement incfeases. But, contrary to prediction, B_{2} has an inflection point, and then decellerates. The decelleration of B_{2} in turn creates an unusual B_{1} curve. Equation ($1 b^{*}$) predicts B_{1} will, in general, decellerate as involvement increases, though this is not necessary. B_{I} has an inflection point, and then accelerates.

The psychological mid-point of the involvement scale seems to be "Little Involvement," But the scale has an even number of altematives,
and therefore has no integral midpoint. On the basis of the psychological reality of the scale, the use of two extreme positive responses over-represents that end of the continuium.

On the basis of these weaknesses in the scale, there is adaquate justification for grouping the responses Mighly Involved" and "Very Highly Invoved,"

To test our propositions, a probability distribution will replace the percentage distribution in Table l. A five-point involvement scale will be used. And $(0,1)$ and $(1,0)$ will be combined for the B_{1} values. Table 2 and corresponding Figure 2 will test our propositions for all five referents, and Table 3 and corresponding Eigure 3 will re-test, with siblings and spouses deleted.

Table 2.--Level of Involvement with Barents, Peers, Siblings, Society, and Spouse, by Dichotomized Response to Desire And Ability to Help Attain an Occupational Goal*

Level of Involvement $B=$ (Desire to Help, Ability to Help) With Five Referents

$$
(0,0)=B_{0}(0,1)=\begin{aligned}
& (1,0)=B_{1} \quad(1,1)=B_{2}
\end{aligned}
$$

Not Involved at AII	.554	.421	.025	1.000
Very Little Involved	.344	.639	.016	.999
Iittle Involved	.204	.468	.328	1.000
Moderately Involved	.080	.329	.591	1.000
Highly Involved or Very Highly Involved	.009	.149	.842	1.000

[^6]Figure 2. Level of Involvement with Parents, Peers, Siblings, Society, and Spouse, by Dichotomiped Response to Desire and Ability to Help Attain an Occupational Goal*

Source: Table 2.

Bo behaves as predicted. The first derivative is negative; and the second, positive.
B_{1} and B_{2} behave quite well, but B_{1} almost has an inflection point at "Little Involved"-at the psychological midpoint, and B_{2} almost has an inflection point at "Little Involved." In each case, there is almost no concavity at involvement levels 2, 3, and 4: the functions become nearly linear.

For B_{2}, the N at 1 and 2 is 3 responses. So the slight decline from 0 to l can be ignored. With a larger sample, this would probably not occur.

Another look at Table 1 reveals a highly plausable explanation for the deviance in B_{1} and B_{2} at the higher involvement levels. The answer is to be found in the B_{1} category. B_{1} is composed of two cases, $(0,1)$ and $(1,0)$. We have earlier referred to these as the "ambiguous" cases. The connotation is premature.

In Table l, the distribution of (1,0) (desire, no ability) is .355, . 508, . 380, .216, . 099 for five values of involvement, from lowest to highest. This is a well-behaved concave-down curve. Desire but no ability is perhaps logically ambiguous, but it is clearly not psychologically ambiguous.

In Table 1, the distribution of (0,1) = (no desire, ability) is . $066, .131, .088, .113, .050$ for five values of involvement, from lowest to highest. This is a poorly-behaved curve. It slumps at the psychological midpoint, "Little Involved:" both adjacent cases are larger. No desire but ability is perhaps logically ambiguous, and it is also psychologically ambiguous. Here is the case where the referent is perceived as somehow not wanting to use his potential to help the respondent attain his goal. The responses are polarized at the extremes, either toward psychological rejection and withdrawl from involvement, or to a level of high involvement. We have implicitly based our two propositions on perceptual optimization and rationality; but where the stimulus facet is perceived as ambivalent, this rationality is lacking, and the respondent is confused about how invoived he ought to be, to attain his goal.

We can now return to the problem of siblings (the inadaquate question) and spouses (the distorted sample), and ask what effect they have had on the shapes of the B curves. We will re-test our propositions, with siblings and spouses deleted. The results are presented in Table 3 and Figure 3.

Table 3.--Level of Involvement with Parents, Peers, and Society, by Dichotomized Response to Desire and Ability to Help Attain an Occupational Goal: Probability Distribution*

Level of Involvement With Three Referents	$\frac{B=\text { (Desire to Help, Ability to Help) }}{(0,1)}$ and TOTALS			
Not Involved at All	. 481	. 462	. 058	1.001
Very Little Involved	.367	.717	. 033	. 999
Little Involved	. 161	. 461	. 378	1.000
Hoderately Involved	. 088	. 281	. 631	1.000
Highly Involved or Very Highly Involved	. 010	.147	. 843	1.000

Figure 3. Level of Involvement with Parents, Peers, and Society, by Dichotomized Response to Desire and Ability to Help Attain an Occupational Goal*

Source: Table 3.

Deleting siblings and spouses has had almost no effect on the structure of the relationship between B and a_{2}. Relative to the distribution of involvement for the other three referents, siblings are under-involved and spouses are over-involved. The total effect of throwing both out is that they tend to cancel each other. In Section D, we will consider all five referents.

C. A Methodological Evaluation of the Model

We have assumed there exists a differentiable function

$$
a_{2}=f(I), I=0,1,2,3,4
$$

where a_{2} is the level of involvement and I represents the integral values for involvement we obtained from responses to Item 28.

There are three functional relationships between a_{2} and $B=\left(B_{0}, B_{1}, B_{2}\right)$, such that for each of the five values of I there corresponds one and only one value for each case of B. This is not a continuous function. And we must be careful about assuming continuity for the following two reasons:

1. We initially asked each respondent to make six discrim inations for level of involvement with each referent. Research on scaling has indicated that people cannot meaningfully amke much more than seven discriminations on scaled items. In this case, it was necessary to reduce the number of discriminations from six to five in the analysis of the data. But if our differential equations are meaningful, we must have continuous functions, for all differentiable functions must be continuous. The continuity criterion means we must have infinite discriminatory power on the
part of the respondents for involvement. This assumption is not justified.
2. Any sample we draw is finite. As the ratio of discrim inations over a sample of size N grows larger, the threedimensional histogram (the talues in both tables and figures) will fluctuate irregularly, and then collapse. And if this ratio becomes improper, there must necessarily be discontinuities. Such an improper ratio is exactly what happens in the limiting process that defines differentiation.

In spite of these logical and methodological shortcomings, differential equations are a useful tool in generalizing about, and making deductions about, a set of interrelated propositional statements.

It is necessary to be extremely careful about making unreal assumptions. The substantive assumptions have been presented in Section B, Chapter 1. We will attempt throughout to keep our methodological assumptions explicit, minimal, and realistic.

With this in mind, we will next re-work our propositions in terms of difference equations, limiting ourselves entirely to the integral values of involvement. This can be done with no loss of generality.

D. A Difference Equations Model

By constructing difference equations analogous to our differential equations, we can easily solve for m and k. This will also enable us to determine the "goodness of fit" for the B
curves B_{0} and B_{2}. This will lead to the theoretical distribution of the B_{1} curve.

Deviation in B_{2} has already been established, which is explained by the psychological reality of $B_{l_{a}}=(0,1)$. So the model will fit B_{2} worse than B_{1}. In this sense, the model is inadaquate, but it is concomitantly adaquate in that it will make possible a rigorous measurement of the degree of inadaquacy. Also, other kinds of samples can be used in future research to determine the generality of the model. Samples from less advantaged groups and strata than college students may show less over-involvement in B_{2}.

Define P_{n} as the probability of an adolescent in the B_{0} case being involved at level n, where $n=0,1,2,3,4$. We know from our data, presented in Table 2, that $P_{0}=.554$.

Proposition (1) can be reworded to mean that the probability of B_{0} being involved decreases as n increases, i.e., if $\Delta P_{n}=\left(P_{n+1}\right)-P_{n}$ is negative, we know the direction of change. We also need to know the magnitude of change. In our differential equation model, we have expressed the relation that the probability of involvement is a fraction, call it m, of the next highest level of involvement:

$$
\begin{aligned}
& P_{1}=m P_{0} \\
& P_{2}=m P_{1}
\end{aligned}
$$

$$
P_{n}=m P_{n-1}, n=0,1,2,3,4
$$

In general, $P_{n+1}=m P_{n}$. Subtracting P_{n} from both sides, we obtain

$$
P_{n+1}-P_{n}=m P_{n}-P_{n} \cdot \text { Therefore }
$$

$$
\Delta P_{n}=(I-m)\left(-P_{n}\right)
$$

In words, this means the actual decrease in probability of invoivement at increasing levels of $n, \Delta P_{n}$, is a fixed fraction ($1-m$) of the maximum possible decrease, which is ($-P_{n}$).

Finally

$$
\begin{aligned}
& B_{1}=m B_{0}, \\
& B_{2}=m B_{1}=m^{2} B_{0}, \text { and in general, }
\end{aligned}
$$

$$
\text { (4) } B_{n}=m^{n} B_{0} \text {, where } n=0,1,2,3.4 .^{1}
$$

Formula (4) emables us to test our proposition. (.554) $=(.344)$ which implys $m=.6$. The theoretical and empirical values and percentage difstributions are presented in Table 4 and Figure 4. Goodness of fit is measured by x^{2}, which is computed from the percentage distributions.

Table 4.--Empirical and Theoretical Distributions of Level of Involvement with Five Referents Perceived as Having No Desire and No Ability to Help Attain an Occupational Goal*

Level of Involvement with Five Referents	Empirical Distributions		Theoretical Distributions	
	Prob.	(\%)	Prob.	(\%)
Not Involved at All	. 555	(46.5)	. 554	(43.6)
Very Linttle Involved		(28.9)	. 332	(26.0)
Little Involved		(17.1)	. 199	(15.6)
Moderately Involved	. 080	(6.7)	. 119	(9.3)
Highly Involved or Zery Highly Involved		(.8)	. 071	(5.6)
Total		(100.0)		(100.1)
$x^{2}=5.05$				

Figure 4. Level of Involvement with Five Referents Perceived as Having No Desire and No Ability to Help Attain an Occupational Goal*

The fit is good. The theoretical curve, however, does not come as close to vanishing at 4 as the empirical value. Our first hypothesis is confirmed, and the mathematic description--Formula 4 -ais adaquate to obtain a highly significant X^{2} of 5.05 .

A difference equation can also be obtained for $B_{2}=$ (Desire, Ability) by much the same procedure used to obtain Formula 4 for B_{0}. But it is necessary to change the argument to a certain extent, for at the two lowest levels of involvement for B_{2}, the sample N is 3. And the percentage involved at the second level (I) is lower than the percentage for the second level (2). This problem of sample size is obviated by an obverse argument from highest to lowest.

Our second hypothesis is that the probability of involvement increases as involvement increases for B_{2}. We can equivalently say that the probability of B_{2} decreases as involvement decreases. Niore specifically, we hypothesise that the probability of involvement is a fraction, k, of the probability of the next highest
level of involvement.

$$
\begin{aligned}
& \text { (5) } P_{n-1}=m P_{n}, \\
& \\
& \cdots \cdots \cdots \\
& P_{1}=m P_{2}, \\
& P_{0}=m P_{1}, \text { where } n=4,3,2,1,0 .
\end{aligned}
$$

Sübtraction of P_{n} from both sides of Formula (5) yeilds

$$
\begin{aligned}
& P_{n-I}-P_{n}=m P_{n}-P_{n} \text {, and } \\
& -\Delta P_{n}=(I-n) P_{n} .
\end{aligned}
$$

In words, this means the decrease in probability of involvement at decreasing levels of involvement, $-\Delta P_{n}$, is a fixed fraction ($l-m$) of the maximum possible decrease, which is P_{n} :

In general, the empirical curve is not very concave up, as predicted; in particular, involvement is deviantly high at Moderately Involved, " having a probability value of .591. The solution for k is .7: for this k, the curve does not come close to vanishing, as does the ampirical curve. The theoretical percentage distributions have the values $47.3 \%, 26.1 \%, 14.3 \%, 7.9 \%$, and 4.3% from highest involvement to lowest. This is not an adaquate description of B_{2}.

We can, however, determine the k that has the best goodness of fit, as measured by chi-square. In every case, it was necessary to group the two lowest percentages at the two lowest levels of involve ment, so that X^{2} will be applicable. We obtain a curvilinear distribution:

Table 50--Chi-square Values for Different choices of K in B_{2}

| Values of k: | .5 | .54 | .55 | .56 | .6 | .7 |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Chi_square: | 10.82 | 10.71 | 10.09 | 11.22 | 15.47 | 22.33 |

As k decreases, the theoretical curve is lowered, and chi-aquare decreases. The increase in error from underestimating the higher level values for involvement is more than offset by the decrease in error from overestimating the lower level walues for involvement. A minimum X^{2} of 10.09 is reached at $k=.55$. At smaller k, the error of underestimation of the higher levels of involvement becomes greater that the reduction in error of overestimation of the lower levels.

We will use $k=.55$, as it produces the best goodness of fit. The results are presented in Table 6 and Figure 5.

Table 6.--Empirical and Theoretical Distributions of Level of Involve ment with Five Referents Perceived as Having Both Desire and Ability to Help Attain an Occupational Goal*

Level of Involvement with Five Referents	Empirical Distributions		Theoretical Distributions	
	Prob.	(\%)	Prob.	(\%)
Not Involved at All	. 025	(1.4)	. 077	(4.3)
Very Little Involved	. 016	(.9)	. 140	(7.9)
Iittle Involved	. 328	(18.2)	. 255	(14.3)
Moderately Involved	. 591	(32.8)	. 463	(26.1)
Highly Involved or Very Highly Involved	. 842	(46.7)	. 842	(47.3)
Total		(100.0)		(99.9)
$x^{2}=10.09$				

[^7]Figure 5. Level of Involvement with Five Referents Perceived as Having Both Desire and Ability to Help Attain an Occupational Goal*

*Source: Table 6.

The relation between B_{2} and involvement is more nearly linear than curvilinear. The linear correlation r is .26. A larger sample might raise the percentage of "Very Little Involved" somewhat closer to the predicted level, and "improve" the model. This small sample N at the low-involvement end of the continuium makes it difficult to generalize about the universe of adolescents. Although the goodness of fit of the model may be in doubt, the hypothesis is validated.

Using the best fit $k=.55$ for B_{2}, and $m=.6$ for B_{0}, we are able to deduce the theoretical values for $B_{1}=100.0-\delta_{B_{0}}-q_{B_{2}}$, $\mathrm{n}=1,2,3,4,5$. The results are presented in Table 7 and Figure 6.

Table 7.--Empirical and Theoretical Distributions of Level of Involvement with Five Referents Perceived as Having Either Desire But No Ability or No Desire but Ability to Help Attain an Occupational Goal*

Level of Involvement With Five Referents	Empirical Distributions	Theoretical Distributions
	Prob. (\%).	Prob. (\%)

Figure 6. Level of Involvement with Five Referents Perceived as Having Either Desire but No Ability or No Desire but Ability to Help Attain an Occupational Goal*

[^8]$$
\text { Chimscuare }=\sum_{n=0}^{4}\left(\operatorname{empirical}_{n}-\text { theoretical }_{n}\right)^{2} / \text { theoretical } n
$$
has two crucial weaknesses as a statistical description of goodness of fit:

1. The predicted values are a mean average of 3.69% off the empirical values. x^{2} divides the squared difference by the theoretical values. Holding the difference (empirical - theoretical) constant, we see that the contribution to X^{2} at a Eiven n is largest where the theoretical value: is largest. For example, $(5 \%-7 \%)^{2} / 5 \%=$.80 . but $(50 \%-48 \%)^{2} / 50 \%=.04$. In chi-square, equal deviations are weighted more heavily for theoretical values of smaller magnitude than of larger magnitude.
2. Our first objection would be substantively irrelevant if it could be expected that the differences (empirical - theoretical) be smaller for smaller theoretical values. But if we can determine any criterion for size of difference, it is sample N.

Sample N is extremely small ($N=5$) for the B_{0} case at $n=5$. The x^{2} component at this n is 3.76 , which is 74.5% of $x^{2}=5.05$.

Sample N is also extremly small ($N=3$) for the B_{2} case at $n=0$ and $n=1$. The X^{2} components of these two ns are 8.16, which is 80.9% of $\mathrm{X}^{2}=10.09$.

In summary, it is not the case that we can expect more exact predictions where the values are small, for by definition of the B-axis (percentage of B_{i})., the sample size is small when B is small. On the contrary, the small N necessarily associated with small B will create more chance variation, and less exact predictions.

To compensate for these two difficulties with X^{2}, another simple statistic can be imployed--the average of the sum of the differences:

$$
\bar{X}(\text { Diff. })=\frac{\sum_{n}^{4} \mid\left(\% \text { theoretical } l_{n}-\% \text { empirical } n\right) \mid}{n} \text {. }
$$

$n=0,1,2,3,4$. Comparisons of X^{2} and \bar{X} (Diff.) are presented in the following table:

Tahle 8.--Comparisons of Chi-square and \bar{X} (Diff.) for All Cases of Perceived Desire and Ability to Help Attain an Occupational Goal

(Desire, Ability) $1=$ yes $0=$ no	Measure of Goodness of Fit	
$B_{0}=(0,0)$	Chi-square	\bar{X} (Diff.)
$B_{1}=(0,1)$ and $(1,0)$	1.98	2.94%
$B_{2}=(1,1)$	10.09	3.86%
Average	5.68	3.69%

Our two objections are confirmed. Only B_{1}, with an \bar{X} (Diff.) slightly above average, has a very small X^{2}. The explanation is that B_{1} is the only B case that has a large sample size at every level of involvement.

A SOCIOLOGICAL REFORTULATION OF STOUFFER'S THEORY OF

 INTERVEIING OPPORTUNITIES
A. Propositional Schema

The novement of people in space is a fundamental aspect of sociolosical inquiry. Since the classic statement by Ravenstein, ${ }^{1}$ research has overwhelmingly shom a close relationship between mobility and distance. Ravenstein's basic proposition that Mifost people go a short distance; few people go a long distance, has been validated at a high level.

A standard approach to the study of this two-variable relationship is the "push-pu71" schema: what factors pust migrants from their place of origin, and what pulls them to their destination. This introa third variable, which is independent, and is used in demographich research and population studies to explain the relationship between mobility and distance, which are dependent. This third variable is the opportunities stiructure: at the place of destination, and at the place of origin.

Stouffer found empirical and theoretical inadaquacies in the push-pull explanations, and developed a refinement of the opportunities

[^9]variable. He said there is no necessary relationship between mobility and distance, and introduces the concept of intervening opportunities. He hypothesised that
"...the number of persons going a given distance is directly proportional to the number of opportunities at that distance and inversely proportional to the number of intervening opportunities. 12

Stouffer was able to relate empirical data very closely to theoretical expectations based on this hypothesis. The proposition seems to fundamentally generic to a demographic approach, that it merits an attempt to generalize it to sociological analysis. If we can develop a proposition that is sociological, Stouffer's proposition will potentially become a special case of a general sociological law.

Analogies between demographic migration and sociological orientation can be organized in the following paradigm:

DEMOGRAPHIC MIGRATION

1. Migration to a physical point; movement over physical space.
2. Perceived physical distance properties of the point of destination, with accessibility defined in terms of "physical friction of space" and measured by criteria such as time and distance.
3. Perceived opportunities to attain goals at potential points of destination.

SOCIOLOGICAL ORTENTATION

1. Orientation (involvement) with a referal point; movement over social space.
2. Perceived social distance properties of the referal poind of destination, with accessibility definedin terms of "social friction of space" and measured by criteria such as desire and interest.
3. Perceived opportunities to attain goals at potential referal points, i.e., the perceived ability to help of the referal points.

- $\quad 1_{\text {Stouffer, }}$ Ibid, p. 71. This article was first published as "Intervening Opportunities: A Theory Relating Mobility and Distance," American Sociological Reviev, 5, (December, 1940). pp. 845-867.

$$
n
$$

Such a generalization of Stouffer's basic proposition allows it to be reformated entirely within a context of the elonents in the Facet Paradigm developed in Chapter 1.

Stouffer found the usual push-pull analysis relating mobility to opportunities to be an oversimplification. Our hypothesis relating orientation to "...ability to provide opporiunities..." (page 15) to be an oversimplification of the same orcier. A more subtle, and more general, kind of hypothesis is found in the theory of intervening opportunities. Stouffer has demonstrated this in a demofraphic context; in this chapter, an attempt will be made to deronstrate that the proposition is extensile to a sociological orientation.

Proposition: The proportion of adolescents oriented to referal points a certain social distance away is directly proportional to the perceived ability to provide opportunities of all referal points at this social distance, and inversely proportional to the abilities of all intervening referal points at all closer social distances.

This can be represented by a difference equation:

$$
\frac{\Delta P}{\partial S}=\frac{K}{X} \frac{\Delta X}{\Delta S}, \text { where }
$$

= Proportion of adolescents oriented to referal points a social distance S away (actually, a band, with the closer edge of S being $S-\frac{1}{2} \Delta S$ away and the far edge $S+\frac{1}{2} \Delta S$). In the model, this is $a_{2} c_{i}$ for ΔP, and b_{1} for Δs.
$\frac{\Delta X}{\Delta S}=$ Opportunities to provide help of all referal points at a social distance band S avay. In the model, this is $a_{1} b_{2}$.
 the sum of the ability to provide opportunities for all referal points closer than S. Note that at the closest social distance, 1 , there are no intervening opportunities. $\mathbf{x}=\mathrm{a}$ constant of proportionality. $S=$ social distance. In the model, this is $a_{1} b_{1}$.

B. Operationalization of Variables

1. Social Distance

This variable is concerned with the (orientation) element of the referal point's behavioral properties, as (perceived) by the adolescent.

Guttman has demonstrated that all scaleable attitudes have many (technically infinitely many) principal components. ${ }^{1}$ The psychological interpretation given to the first component is the direction of the attitude. ${ }^{2}$ This has been measured by Item 28 in the questionnaire (on page 28) which was designed to determine if referal points are perceived as favorable, neutral, or unfavorable to the adolescents choice of occupational goal. This is the flrst index of social distance to be

[^10]used in S.
The second principal component of the (intention) element is the intensity component.
*If (a) scalable attitude has a meaningful zero-point (point of indifference), then as people have rank farther and farther to the right of it, they should become more and more positive, and hence more and more intense. Similarly, as ranks get farther and farther to the left of the zero-point, they should become more and more negative, and hence also indicate more intensity. Intensity accordingly should have a U- or Jshaped relation with the underlying rank order."3

The following question was designed to measure the second
principal component of the (intention) element:
(Item 30) How much interest do these groups take in your attaining your occupational goal?"

Very Intensely
Interested

3 $\frac{\text { Some Interest }}{2} \quad \frac{\text { Iittle Interest }}{1}$| No |
| :---: |
| $1 n t e r e s t ~$ |

Referent.
PARENTS
PEERS

SIBITNGS

SOCIETY

SPOUSE

We hypothesise that perceived "Agreement" with the adolescent's choice of goal (in a context of helping him) is the first principal component of the scalable (intentions) attitude-which is direction, and that perceived "Interest" in helping the adolescent attain his goal is the second principal component-which is intensity. The test of this

[^11]hypothesis is simply to determine if the relation is curvilinear, or U-shaped.

Table l.--Percentage "Very Intensely Interested" or "Some Interest" at Each Rank of "Agresement" with Choice of Occupational Goal, for Five Referents

Percentage at Very Insensely Interested" or "Some Interest"

Rank of "Agreement" with Choice of Goal
Strongly Agree Indifferent Disagree Strongly Agree

Disagree

The hypothesis is in seneral validated. The deviant value is 42.8\%, but $N=7$, which is extremly small--too small to reject the hypothesis.

Social distance will be defined on the basis of the first two principal components of (intentions) as follows:
$S=$ Agreement + Interest.
Each component of S will be equidistantly scaled from 0 (the point of minimum distance) to 3 (the point of maximum distance). The range of social distance is thus scaled from 0 to 6. There must be at least one tie on any scale: where agrement is nearest and interest farthest, and where agreement is farthest and interest nearest. Tied combinations will be added together as a single social distance. Each distance will be given a rank number, $1,2, \ldots, n$, but these ranl:s are not necessarily equidistant.

The U-shaped relation, and the general tendency toward perceived high agreement and high intensity presents a sampling problem for S. As the respondents are unevenly distributed, there are several cases with few entrys. The original design for S was a twenty-point scale (nineteen unique points). This had to be rejected because eight of the nineteen distances had less than ten cases, which weighted the individual case too heavily. This problem was overcome by dichotomizing the four-point scale for "Interest," as in Table 1.

The resultant matrix for S is presented in the following table:

Table 2.--Social Distance, S, Soical Distance Rank (1-9), and Number of Cases, N, For Five Referal Points

Level of
Interest

Level of Agreement
Strongly

Agree Agree Indifferent Disagree | Strongly |
| :--- |
| Disagree |

DISTANCE .	0	.75	1.50	2.25

Little or None 3
$5.75(8)$
$N=16$
$6.00(9)$
$\mathrm{N}=4^{(9)}$
3.00 (5) $\quad 3.75(6) \quad 4.50(7)$
$\mathrm{N}=18 \quad \mathrm{~N}=84 \quad \mathrm{~N}=185$

The first measure of social distance, devised by Bogardus ${ }^{4}$ in 1925, was a Racial Distance Scale. A set of seven items was used to measure

[^12]decrees of social acceptibility, or social distance. The Bogordus Scale ordinally measures the direction and intensity in a way that the components cannot be separated out. Krech and Crutchfield cogently criticise this scale: "Social distance is a complex quality, related in the most intimate way to the ego standard of the individual, his concepts of prestige in the...group..." and "...social distance from an object may in some cases be markedly independent of the general affectivity of the object. ${ }^{5}$ This is an attempt to isolate the components, as they are in Table 2. Since Kramer's ${ }^{6}$ elaboration in 1949, the concept is applicable to other individuals in various personal and social relationships.

2. Opportunities

At each social distance, an index of the perceived ability to provide opportunities to help the adolescent attain an occupational end can be established. This is based on Item 31 (page 28):
$\frac{\Delta^{\boldsymbol{x}}}{\Delta^{S}}=3$ (probability of "great ability") +2 (probability of
"some ability") +1 (probability of "little ability").
x_{s} can be deduced from this.

3. Orientation

There is now enough information to predict the distribution of adolescents involved over S. An independent measure of involvement can

[^13]be constructed, to test the proposition by giving an "actual" distribution of involvement over S. This is based on Item 28 (page 29).

Real $\Delta P / \Delta S=2($ probability of nvery highly involvedn $)+$ l (probability of "highly involvedn).

The index of oportunities measures the whole range of perceived ability. Orientation will be given a more restricted interpretation, as only the two highest levels are considered.

Section C will test the proposition, for all referents, and for each referent separately.

C. Data and Test of Proposition

Table 3.--Perceived Ability to Provide Opportunities to Help Attain an Occupational Goal, Level of Involvement, and Social Distance, for Five Referal Points: (N) and Probability Distribution

$\begin{aligned} & \text { OPPORT- } \\ & \text { UNITIES } \end{aligned}$	(least)		Social Distance				(greatest)		
	1	2	3	4	5	6	7	8	9
Great Ability	(271)	(146)	(15)	(4)	3)	(4)	(10)		$0)$
Some	(241)	(289)	(47)	(6)	(6)	(19)	(33)	(7)	(0)
Ability	. 361	. 440	. 317	. 261	. 333	. 226	. 178	. 438	. 000
Little	(107)	(174)	(49)	(8)	(4)	(35)	(55)	(2)	(3)
Ability	. 160	. 265	. 324	. 348	. 222	. 417	. 297	. 125	. 075
No ${ }_{\text {Ability }}$	(49)	(47)	(40)	(5)	(5)	(22)	(87)	(4)	(1)
Ability	. 073	. 072	. 265	. 217	. 278	. 262	. 470	. 250	. 025
TOTALS	(668)	(656)	(151)	(23)	(18)	(84)	(185)	(16)	4)
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
OREEITATION									
Very	(208)	(60)	(2)	(1)	(1)	(3)	(3)	(0)	(0)
High Inv.	. 317	. 091	. 013	. 044	. 056	. 036	. 016	. 000	. 000
HighInv.	(178)	(147)	(18)	(4)	(2)	(4)	(4)	(3)	(0)
	. 266	. 224	. 119	. 174	.	. 048	. 022	. 188	. 000
Inv.	(160)	(237)	(48)	(14)	(5)	(15)	(16)	(2)	(1)
	. 240	- 361	- 318	. 609	. 278	. 178	. 086	. 125	. 250
Little Inv.	(70)	(113)	(33)	(1)	(5)	(29)	(35)	(5)	1)
	. 105	. 172	. 218	. 044	. 278	. 345	. 189	. 312	. 250
Very L. Inv.		(73)	(39)	(2)	(3)	(25)	(48)		(1)
	. 055	. 111	. 258	. 087	. 167	. 298	. 259	. 125	. 250
NotInv.	(15)	(26)	(11$)$	(1)			(79)	(4)	1)
	. 072	. 040	. 073	. 044	. 11	. 107	. 427	. 250	.250

Table 4.--Test of Hypothesis for all Referal Points*

S	$\frac{\Delta X}{\Delta S}$	X	$\frac{1}{\bar{X}}$	$\begin{array}{r} \frac{\Delta \mathrm{P}}{\Delta S} \\ \text { нуро. } \end{array}$	$\frac{\Delta \mathrm{P}}{\Delta \mathrm{~S}}$ (\%) нуро.	$\frac{\Delta P}{\Delta S}$ $(\%)$ (\tilde{j}) Real	$\begin{array}{r} \frac{\Delta \mathrm{P}}{\Delta S} \\ \text { Real } \end{array}$
1	2.100	---	-mom	2.100	49.9\%	40.1\%	. 888
2	1.811	2.100	. 476	. 862	20.5\%	18.3\%	. 406
3	1.243	3.911	. 256	. 318	7.6\%	6. 5%	. 145
4	1.392	5.154	. 194	. 270	6.4\%	11.8\%	. 262
5	1.384	6.546	. 153	. 212	5.0\%	10.1\%	. 223
6	1.013	7.9 .30	. 126	. 128	3.0\%	5.4\%	. 120
7	. 815	8.943	. 112	. 091	2.278	2.4\%	. 054
8	1.565	9.758	. 102	. 160	3.8\%	$5 \cdot 3 i$. 118
9	. 075	11.323	. 088	. 066	1.6\%	0.0\%	. 000

*Source: Table 3.

Figure 1. Percentage Distribution of Orientation over Each Social Distance, for all Referal Points*

$$
\begin{aligned}
& 50.0 \\
& 40.0
\end{aligned}
$$

(\%) Theoretical (*)
(œ) Empirical (.)
Percentage 30.0 Oriented

*Source: Table 4.

The data in Table 3 can be broken dow by each referal point: parent, peers, siblings, society, and spouse. Computations can then be done for each referal point, to test the hypothesis.

Sampling problems are anticipated, so it is necessary at the outset to establish certain "ground rules" for grouping adjacent social distances:

Any S with N less than 5 is to be grouped with the nearest lesser distance with N of 5 or greater.

To avoid distortion of the scale of social distance, no distribution at any S is to be moved more than two distance ranks.

Empty cases will be left out of the computations.
The social distance of grouped Ss is the mean of the S of each included rank, e.g., if 8 and 9 are grouped, the distance of the values combined is 8.50.

They hypothetical and real distributions are presented in the following tables and corresponding figures.

Table 5.-.Test of Hypothesis for Parents

Figure 2. Percentage Distribution of Orientation over Each Social Distance, for Parents*
60.0

50.0*	(\%) Theoretical (*)
40.0.	(\%) Empirical (.)

Percentage
Oriented
30.0
20.0 ?

Source: Table 5.

Table 6.--Test of Hypothesis for Peers

S	1	2	3	4	5	6	$(7$	8	$9)$
Predicted o\% Distribution	44.0	26.1	10.0	6.8	5.8	4.9	2.4		
 Distribution	40.6	18.5	10.2	7.9	10.6	9.4	2.8		
$\bar{X}($ Diff. $)$	$=3.60$								

Figure 3. Percentage Distribution of Orientation over Sach Social Distance, for Peers*

50.0	(\hat{p}) Theoretical (*)
$40.0 *$	(曾) Empirical (.)

Percentage 30.0
Oriented

Source: Table 6.

Table 7.--Test of Hypothesis for Siblings
$\left.\left.\begin{array}{ccccccccc}\hline S & 1 & 2 & 3 & (4 & 5) & 6 & (7 & 8\end{array}\right) 9\right)$

Figure 4. Percentage Distribution of Orientation over Each Social Distance, for Siblings*

Table 8.--Test of Hypothesis for Society

s	1	.2	$(3$	$4)$	5	6	$(7$	8	$9)$
Predicted \% Distribution	57.4	21.2	8.9	4.7	4.3	3.4			
Real \% Distribution	40.4	26.7	12.8	5.2	7.3	7.5			
$\bar{X}($ Diff. $)$	$=5.73$								

Figure 5. Percentage Distribution of Oriebtation over Each Social Distance, For Society*

*Source: Table 8.

Table 9.--Test of Hypothesis for Spouse
$\left.\begin{array}{ccccccccc}\hline S & 1 & (2 & 3) & 4 & 5 & 6 & 7 & 8\end{array}\right) 9$

Figure 6. Percentage Distribution of Orientation over Each Social Distance, for Spouse*
80.0
70.0^{*}
(品) Theoretical (*)
60.0°
(\hat{p}) Empirical (.)
Percentage 50.0
Oriented
40.0
30.0
20.0
10.0
0.0
(least) (Ereatest)
Social
Distance

CHAPTER 4

CONCLUSIOIS AND IMPLICATIONS

Our general orientation that adolescents show a great deal of continuity between their perceived opportunities from referents and their actual involvement with referents is in general substantiated, on the basis of the data analyzed.

Further analysis needs to be directed at a breakdown of the population, to see which kinds of respondents (male, female, parentorianted, peer-oriented, urban, non-urban,...) behave as predicted, and which do not. It is hypothesised that every category will exhibit consistency and cognative rationality. This may or may not hold up. Certainly it can be anticipated that there will be systematic differences both within and between societies, and within and between referents.

The models in the second chapter show that for a certain population, which is both adolescent and non-adolescent, and which is considered with and without consideration of siblings and spouses, the propositions brought forward are validated. Here, again, the next question is whether this behavior will hold up cross-culturally. The model permits future research to find different distributions of involvement for different perceptions of desire and ability. A breakdown should also be made by each referent. For example, male and female adolescents can be expected to show differential involvement with parents that are perceived as providing the same opportunities, as
the social role expectation differ between sexes in all societies.
A descriptive model has been presented, to hypothesise what variables are relevant to a study of adolescent behavior, and to see in what ways these variables are interrelated. A closer look at the social structure, within which these processes are hypothesised to take place, is needed to explain why the variables in the model are related as they are.. Even if the hypotheses and models could describe adolescents in all cultural settings, they would not constitute a scientific explanation. Nuch of the description presented here is methodological, but the explanation of the interrelationships must be theoretical and sociological.

This paper is a preliminary modei, and an orientation to the study of adolescent behavior involving a fixed number of variables. The usage of Guttman's facet design and analysis has been of considerable utility in developing the model and the Facet Paradigm. The value of this metholology has been far greater than is apparent from the paper as written, as it was highly suggestive in choosing what variables are relevant, and in what ways they are sematically interrelated, and interrelated by our assumptions and postulates.

But we are essentially finished with Facet Theory and the algebra of abstract systems. It has given a start. But defining variables and making assumptions about them is not the stuff of sociological knowledge: it is only prolegomenous. Where the paradigm has led us to here bounds the difference between definitional systems and hypothetical-deductive systems. The philosophical implications of this can be illustrated by the
theories of Parsons-Smelser and of Homans. ${ }^{1}$ This paper attempts to begin to do what Homans did in The Humen Group. ${ }^{2}$ So a breif exegesis of the methodologies of both will be instructive.

Parsons calls his system of interrelated concepts a theoretical model. It is a model, but it is not a theoretical model. His combining of pattern variables look like, but on such a high level of abstraction, they become virtually tautological and definitional. Like Parsons, this paper has developed a definitional system of variables and postulates: but it is never claimed that this constitutes a theory. It does not explain in any philosophical sense.

In the first Homans book, The Human Group, a lot of propositions of the type "x varies as y^{n} are developed. This is heavily inductive, building up from empirical case studies. The model developed in Chapter l enables us to follow a similar procedure. By reviewing the literature on adolescence, we will atterpt to generate--by an inductive process-propositions interrelating variables that appear in the model. Hopefully,
$1_{\text {See Carl G. Hempel and Paul Oppenheim, "The Logic of Scientific }}$ Explanation," Parts I and II, in Feigl and Bradbeck, Readings in the Philosophy of Science. Also see Ernest liagel, The Structure of Science: Problems in the Logic of Scientific Explanation (New York \& Burlingame: Harcourt, Brace \& World, Inc., 1961), Preface and Chapters 1 and 2.

The methodologies are contrasted sharply in their respective theories of human exchange: See Talcott Parsons and Neil J. Smelser, Economy and Society (Glencoe, Illinois: The Free Press, 1956), and see George C. Homans, Social Behavior: Its Elementary Forms.
${ }^{2}$ (New York: Harcourt, Brace, and Company, 1950). The parallels are substantive as well as methodological, for Homans deals with reference groups and social structure. See Merton, "Continuities in the Theory of Reference Groups and Social Structure, " in Social Theory and Social Structure, p. 285.
after the propositions developed in this paper, and from a review of the literature, are empirically tested in a cross-cultural setting, it will be possible to borrow or invent more general (anatomical) propositions, which, in conjunction with a conceptual schema, will lead to some kind of a theory. From such a theory, the described propositions can be deduced. This is precisely what Homans did in Social Behavior. But at this stage, as with Homans in The Human Group, we are about to engage in "The first process, the process of building up from the empirical to the more general" with the ultimate purpose of "...building back down from the general to the empirical. The first is an act of creation, which has no rules of procedure that will unsure you success; the second has definite rules, the rules of logic. ${ }^{3}$

This technique is debatable, but it can be defended on the grounde that the process itself contributes to sociological knowledge, as propositions are useful, where definitions alone are not.

One other concept, in Chapter 3, needs a note of explanation. As indicated, social distance is used quite differently here than in the usual way. Perhaps the concept is too stretched here. But it is used in a nominal sense, to define the equal weichting of two variables, which, in conjunction with a third, the onortunity structure for each case of the sum of the other tro, predict level of involvement.

Social distance, as a concept, lead this reacarch to a theoretical formulation of a relationship between three variables, to explain a fourth.

3social Behavior, p. 10.

So social distance was useful in forming this hypothesis, but the test of the hypothesis is not contingent on the concept. For, as stated, it is nominally defined.

If the reader objects to calling the sum of agreement and interest (direction and intensity of perceived intentions) social distance, he is encouraged to call it whatever he likes. And if he objects, he is objecting to the statement that the proposition is a generalization of Stouffer's theory of intervening opportunities; but he is not objecting to the hypothesis, nor to the testing of the heroothesis.

A. Books

Etzioni, Amatia. A Comparative Analysis of Complex Organizations. Glencoe: The Free Press, 1961.

Finkbeiner, Daniel T. II. Introduction to Matrices and Linear Transformations. San Francisco and Iondon: W. H. Freeman and Company, 1960.

Goldberg, Samuel. Introduction to Difference Equations. New York, London: John Wiley \& Sons, Inc., 1961.

Homans, George C. The Human Group. New York: Harcourt, Brace, and Company, 1950.

- Social Behavior: Its Elementary Forms. Nes York, Burlingame: Harcourt, Brace \& World, Inc., 1961.

Krech, David, and Crutchfield, Richard S. Theory and Problems of Social Psychology. New York: KcGraw-Hi11 Book Co., 1943.

Nađel, Ernest. The Structure of Science: Problems in the Logic of Scientific Explanation. New York \& Buxlingame: Harcourt, Brace \& World, Inc., 1961.

Parsons, Tälcott. The Social System. Glencoe: The Free Press, 1951. , and Smelser, Neil J., Econory and Society. Glencoe: The Free Press, 1956.

Stoll, Robert Ro, Sets, Logic, and Ariomatic Theories. San Francisco and London: W. H. Freeman and Company, 1961.

B. Articles

Bastide, Roger, and van den Berghe, Pierre. "Stereotypes, Norms and Interracial Behavior in Sao Paulo, Brazil, "American Sociological Review 22 (December 1957), 689-694.

Bogardus, Emory S. MMeasuring Social Distance," Jcurnal of Applied Sociology, 9 (1925), 299-308.

Cervinka, Vladinar. "A Dimensional Theory of Groups," Sociometry, XI (February-liay 1948), 100-107.

Foa, Uriel G. "The Contiguity Principle in the Structure of Interpersonal Relations," Human Relations, 11 (Auçust 1953), 229-233.

Guttman, Louis. "The Principal Components of Scale Analysis," in Samuel A. Stouffer et. al., Studies in Social Psurchology in Forld War II, Vol. 4: Neasurement and Prediction. Princeton: Princeton University Press, 1950, 312-361.
"Nhe Principle Components of Scalable Attitudes, in Paul F. Lazarsfeld, ed., Mathematical Thinking in the Social Sciences. Glencoe: The Free Press, 1954, 216-257.
"An outline of Some New Kethodology for Social Research," Public Opinion Quarterly, 18 (Winter 1954-55), 395-414.

- What Lies Ahead for Factor Analysis?," Educational and Psychological Research, 18 (No. 3 1958), 506-511.
- "A Structural Theory for Intergroup Beliefs and Action," American Sociological Review, 24 (June 1959), 13.
- Motes on Terminology for Facet Theory," Proceedings of the Fifteenth International Congress of Psychology. Amsterdam: North-Holland Publishing Company, 1959, 130-132. - "The Structuring of Sociological Spaces, "Technical Note No. 3, Contract N. AF 61(052)-121 (December 1961), p. 10. This report is a portion of the Proceedings of the Fourth International Congress of Sociology. Stresa, Italy (1959).

Goldhamer, Herbert, and Shils, Edward A. "Types of Power and Status," American Journal of Sociolory, 45 (September 1939), 171.

Hempel, Carl G., and Oppenheim, Paul. "The Logic of Scientific Explanation," in Feigl and Bradbeck, Readings in the Philosophy of Science, Parts I and II.

Kramer, E.N. Nimensions of Prejudice," Journal of Psycholory, 27
Merton, Robert K. "The Bearing of Sociological Theory on Empirical Research, " in Social Theory and Social Structure. Glencoe: The Free Press, 1957, 86-89.

- MContinuities in the Theory of Reference Groups and Social Structure," in Social Theory and Social Structure, 285.

Ravenstein, E. G. "The Laws of Migration," Journal of the Royal Statistical Society, 48 (June 1885), 167-235, in Samuel A. Stouffer, Social Research to Test Ideas. Glencoe: The Free Press, 1962, 69.

Simon, Herbert. "A Behavioral liodel of Rational Choice," in Models of Man. New York, London: John Wiley and Sons, Inc., 1957, 241-260.

C. Unpublished Materials

Foa, Uriel g. MThe Scientific Development of the Isreal Institute of Applied Social Research," Wimeographed paper, n. d.

Gottlieb, David, and Guttman, Louis. WWorking Paper No. I," Nimeographed paper, (November 1962), p. 1-3.

Janowitz, Morris, Working Delimitation of the Subject Matter of Social Organization Research," liimeographed paper, (Fall 1962), p. 2.

[^0]: $I_{\text {David Gottlieb and Louis Guttman, "Working Paper No. 1," }}$ Mimeographed paper, November, 1962, pp. 1-3.

[^1]: ${ }^{\text {Morris Janowitz, }}$ Working Delimitation of the Subject Matter of Social Organization Research, "Mimeographed paper, University of Chicago, (Fall, 1962), p. 2.

[^2]: 4 whe technical concept lenoted here by 'facet' occurs widely in the social and other sciences, as well as in mathematics, but strangely has never been given a standard name. Christening the concept by 'facet' was formally proposed by Louis Guttman, "An Outline of Some New Methodology for Social Research," Public Opm inion Quarterly, 18 (winter, 1954-55), pp. 395-414, esp. p. 399. Prominent sociologists who have used the concept extensively in their own work, albeit ratherinformally, include Pareto, von Viese, Parsons, Sorokin, Dodd, among others," in Guttman, "A Structural Theory for Intergroup Beliefs and Action," American Sociological Review, 24 (June, 1959), p. 13ff.

[^3]: ${ }^{6}$ Guttman, "What Lies Ahead for Factor Analysis?," Bducational and Psychological Measurement, 18 (No. 3, 1958), pp. 506-511. Such an explanatory system does not need to exhaust all interelations of all variables.

[^4]: ${ }^{20}$ Guttman, "Introduction to Facet Design and Analysis," p. 132.

[^5]: $1_{\text {Robert }}$. Nerton, "The Bearing of Sociological Theory on Empirical Research," in Social Theory and Social Structure (Glencoe, Illinois: The Free Press, 1957), pp. 86-89.

[^6]: Source: Table 1.

[^7]: Source: Table 2.

[^8]: *Source: Table 7.

[^9]: $l_{\text {E. G. Ravenstein, "The Laws of Migration, " Journal of the Royal }}$ Statistical Society, 48, (June, 1885), pp. 167-235; 52, (June, 1889), pp. 241-305, in Samuel A. Stouffer, Social Research to Test Ideas (Glencoe, Illinois: The Free Press, 1962), p. 69.

[^10]: $1_{\text {Principal }}$ components "...are also known in mathematics and physics by various other names such as principal axes, latent vectors, eigenvectors; or eigenfunctions," in Guttmen, "The Principal Components of Scalable Attitudes, " in Paul F. Lazarsfeld, Mathematical Thinking in the Social Sciences (Glencoe, Illinois: The Free Press, 1954), pp. 428 ff; see also pp..224-226. A formal mathematical treatment of principal components is presented in Guttman, "The Principal Components of Scale Analysis," in Samuel A. Stouffer et. al., Measurement and Prediction, Vol. 4: Studies in Social Psycholosy in World War II (Princeton, New Jersey: Princeton University Press, 1950), pp. 312-361.
 226.

[^11]: $3_{\text {Guttman, }}$ Ibid., p. 229.

[^12]: 4 Emory S. Bogardus, Measuring Social Distance, " Journal of Applied Sociology, 9, (1925), pp. 299-308.

[^13]: Soavid Krech and Richard S. Crutchfield, Theory and Problems of Social Psychology (New York: KcGraw-Hill Book Co., 1948), pp. 222.

 6B. N. Kramer, "Dimensions of Prejudice," Journal of Psychology, 27. (1949), pp. 389-451.

