A DESIGN OF A REINFORCED CONCRETE BUILDING AND SERVICE UTILITIES FOR A CHERRY FARM Them in: the Degree of E S. MICHIGAN STATE COLLEGE L. E. Sobkowski I947 TH ESIS . .E: II:..1||1|1- .14.‘ (Dual-Wwiufip‘ .‘ L ‘f. .1.....‘;;....14.'!r. i . ‘1 111.1,! 3‘13! “til: 3 film.“ ‘0» r. 1r .r . 1511...“... . . :IIII » . . I ‘4! . tightlivriiflllfw 141.. z. ,. up} . . ....I..fl1uIJ.V 11.. 4 .1 a . .. . . . . . u I. x. .. v‘_1xu5&_—. ‘3‘ III...=~.«:¢. . e A Design of a Reinforced Concrete Building and Service Utilities for a Cherry Farm A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND.APPLIED SCIENCE By L. E. Sobkoweki Candidate for the Degree of Bachelor of Science march 1947 3/1! [H7 (- ._ “JWT DED ICAT ION To my sons, Stevie and Joe 18.33 '30 ACKNOWLEDGMENTS I wish to thank the members of the Civil Engineering Staff for their assistance in this thesis, in particular, Pro- fessor C. A. Miller, for the time and effort spent with me to perfect the design both structurally and practicably. BIBLIOGRAPHY Sutherland and Reese - "Reinforced Concrete Design" O'Rourke - "General Engineering Handbook" I - H001 and Johnson - "Concrete Engineers Handbook" A.I.S.C. - "Manual of Steel Construction Trautwine - "Civil Engineer's Reference Book" A.C.I. Building Code T.E.C.O. Truss manual Joint Committee Report. 1940 Reinforced Concrete Design Handbook - Portland Cement Association Specifications for Design of Highway Structures - Ohio State Department of Highways, 1946 NI‘BNTS I Purpose and Scope of Thesis II Computations and Sketches ‘__-._.._~-. .... -.. - -.~.'_.- -.\.._‘_ ._._—— - , _~ H -~ ._._.- “,7 -..—..., a - 7706/27!“ b «SprayEr (2-7 Corn shredder I! to A ‘I/eh/c/es as shown :,"‘P:¥' “ , I I 43¢“ . ,7 tiff- “a, ‘ ' ‘ l ll g “i I m z, ~52; 'ir: . :U I 1‘." Mimi» ; w; Sb 1 3 swmwvé ‘1‘- Si‘orage Tank PROPOSED Bumowg Dwg. No.1 PART I Purpose and Scope of Thesi . The purpose of this thesis is to present a practical and economical design of a building and service facilities for use by the owner, a fruit grower in Grand Traverse Coun- ty. The owner plans an eXpansion in property and operations and thus I have taken the Opportunity to gain some eXperi- ence in practical design. Design methods used by the author are those set forth in the respective design courses as taught at Michigan.State College. Thus it may be stated that much more labor had to be applied to this problem than would be necessary if handled by an eXperienced design en- gineer. Despite this fact, it is a worthwhile project in that the application of fundamentals is necessary before acquiring the tricks and short cuts of the trade. The owner operates about 150 acres of cherry and apple orchards. This holding is to be increased in the near fu- ture and the required additions and changes to the present set-up constitute the object of this thesis. A. To locate and design a fireproof, durable build- ing to perform the following functions: 1. House the following listed tools and machin- ery: 2 tractors l pick-up truck 1 flat trailer 2. 3. 4. 5. 1 corn shredder 1 Orchard sprayer unit WOrk benches Welding set Woodworking machines Lubrication facilities Provide means for maintenance and repair of tools and machinery. Stock all necessary spray materials for orchard pest and disease control. Provide an inepection, weighing, and crating cen- ter for all seasonal fruits. Provide a separate section of this building for extended storage of fruit. This section will be a part of the main building but of conventional storage design. The owner desires this building to be located at the edge of an orchard, at the crest of a slight hill leading to the East boundary of this orchard. B. C. (See Contour lap - Drawing no. EL) To locate and design a well to be driven adjacent to this building. Select the most efficient and economical method of pumping water from:this well for the following pur~ poses: 1. water for orchard spray. Under the present plan of operation, a 400 gallon tank sprayer is being i 5057‘ Orchard From Orchards A — Preposed b/dg. /oco7‘/0n B— We// and pump C — Sforage funk 0 " New road (6" 44 BMr/00.00’ ,.. q) C . . r ‘\ Top of foundaf/on) SW 3 5’ corner of house (mar/red) x Q) 5‘ Q (U S ,. ‘0 Q E [\1 & Q 5* z: r" Q 2 K I K I Q '. S :“I/li" OI \0 E x Da/ry Barns 1 /' I g/ . 1 70 Houses ; [ll/i" .' I E f A I '. I I E I v . / , 7‘0 H13 no. way 350 I Y _ § . , __§_0N TQU R WaMgIE M A P E E ~ E . E; _f [057‘ Prop. [.1779 I z -- E I Dwng.No. 2 used and at the height of the spraying season, water must be supplied at the rate of 400 gal- lons per hour. 2. Water for dairy stock and other farm animals. Predicted future needs are 100 gallons per day. 3. Fire protection needs. A main of suitable size installed to make available adequate supplies of water at a sufficient head. 4. Garden irrigation. Fresh vegetables comprise an important item.of sale in the owner's farm marnet. In order to assure high quality and early appear- ance on the market, the owner requires a pipe line installed to the gardens and some means of effective distribution designed. D. To locate and design: 1. .An approach branch and turnaround from the exist- ing orchard road to the upper story of the build- ing. 2. A road from.the lower story of the building run- ning adjacent to the farm yard and houses, join- ing the highway at a point other than the exist— ing drive. This will eliminate all heavy traffic through the farm and near the houses. The sc0pe of the thesis is limited to the structural de- sign of units heretorore described. No attempt has been made to perform the functions of an architect in that architectural features and details for the allied trades such as plumbing, heating, or wiring have not been mentioned or treated. lgLLOWABLE UNIT STRESSES U§__ From.ACI Building Code 1946 Using a concrete with f5 = 3000 p.s.i. n = 10 Steel - Billet, Hard Grade rs = 20,000 p.s.i. COMPRESSION fC 1350 p.s.i. SHEAR v (Beams) W/o Web Reinf. - 60 p.s.i. W/o S.A. - W/o'Web Reinf. - 90 p.301. ‘Nith 80A. "' 180 p.s.i. W/O SsAs '- 360 psSsis With S.A. - One way footings ’ - 75 p.s.i. B0 u _ (2-way footings beams) Plain Bars - 120 p.s.i. Deformed Bars - 150 p.s.i. Plain Bars - 135 p.s.i. (Hooked) BEARING fc On full area - ' 750 13.5.1. 1/3 Area or Less - 1125 p.s.i. O'ROURKE SOIL PRESSURE 3 tons per sq. ft. EA.S.T.M. C 90-39 Bearing on masonry block - 1000 p.s.i. PART II Loading Platform.Design - Sketchl#l Class E concrete 1:61} Vol. mix ’2 H 3000 p.s.i. 20,000 p.s.i. 1350 p.s.i. n = 10 H to H H H Computing Min. Live Load Apples to occupy a space 6' x 16' x 8' = 768 cu. ft. w/cu. ft. apples = 35# (Bldg. Code Com. of the National Bureau of Standards November 1924) 768 cu. ft. x 35#/cu. ft. = 26,880# total live load. ' Total Area = 18' x 6' = 108 p.s.f. Unit L.L. eggagag = 250 p.s.f. Floor Load Recommended - 300 p.s.f. Assume D.L. = 50 p.s.f. Total Load = 350 p.s.f. For a 1' section: V = w = 350 x 6 = 1050#/Lin. ft. 51...?— BM = .712 = 350 x 62 = 1575'# __§._. From table 2, RCDH, d °°| 3" RM”: 2.12' K 1.44 m H .575 3 .364 sq. in./ft. 11"“)! I‘ll "IIIIIJIIOII. 1.0.‘1‘;.‘IIOIIsI'IIII'Iv’qu‘IIIl‘II. 1.7. .I'Irn.lllllll‘lvi . .l. I u Inc .I 15 VI. I?v1’sl!ll-)\.v,1.wl 'a..l. .‘l.'.sn . I I. .1 .i....l.s:A< J F u 5 I . . ,. ,, . 0. 5 .. -. II- 4 . m I: ., amid: - .. . .- I/., ..>,_. g “0 w a . ... T E K 6 n . I! . a e i -vr / x m C l . . - .. _ .I , e. . . a ,- / I . / f- / | N. 1......- -........ )— / / / 9 ‘- En ET I I . . {n . . x .1 a. J .-\ . . In I - All \ t . i." I“. a: I u I: I . \ e. a... b I .Vw K 1&4... _ x x. E , Iv Ks . x . .x b .. . i x . .[r M . . . (k . x C a \ x x . -Z- 20 = V = 1050 = 2.67" 3du 773 x 3 x 155 . Table 3 RCDH USe 3/8" 0 3%" c.c. Spacing. To = 4.0 Use 1" cover, depth = d i c = 3" / 1" = 4" Check.weight - 4" x 1' x 1' x 150' = 50 p.s.f. 9g 3:2." SHEAR v ='V = 1050 = 33.4 p.s.i. 95 b3d 12 x 7/8 x 3 BQND ' u "V = 1050 = 100.2 p.s.i. QE 4 x 778 x 3 Check Bearing on Support - Sketch 2 II R slab = 1050# Allowable Bearing Stress = 750 p.s.i. ACI T 305 A 3 égsgg = 1.4 sq. in required 0 p03. 0 A = 12 x , x = 1.4 - .1165" thickness required 12 Use 4" thick support wall. Check Earth Bearing at Base of Support Wall - Sketch 3 Allowable Bearing Stress - 8000 p.s.f. (Ref. - O'Rourke Hdbk. - Compact, coarse sand or stiff gravel) R = 1050# W2 = 1 2/3 x 1/3 x 150 = 125# (Support) Total Vert. Ld. = 1175# ‘ Area in Bearing = 2" x 4" = .33 sq. ft. 44 117 : 3530 p.s.f. 9K. \0 an F N u w /, Q} 5 .0 W) b B 2’05” wP/czfes 0 6-1. 3X3"; /@/8’—0” Raga“, F V F , C 2 é) 6f" 0” ”’ A I A . ~ . 0—- L 3x25- 2@ 49 0 ’“ - In E, I A I I I / / l/ // K5 1‘ 3@ 4 W ‘3. G..L 3K 3XZ 2 @ // H9 ‘ HOG/(8 \ VI I ' E E - Lace/ed as mar/(ed F \ I i I /u l/ 2- ¢/2o52/—”/Pood., 5:221— 93/“ ed as mar/(ed J :44— ¢ 2@4§"Reqd.) 5:2” 3:23—- Al 2- 0A D LN£-E?LA If .9 BMW as T I L 3 ”-9-?7” -m 2’— 4” 5667‘. 8’5 Sketch 4 ROOF DESIGN Fink,Truss 40' 8' 16' 1t - O" Span - 0" Rise " O" COCO - O Eaves This truss was selected from'Timber Engineering Co. Truss Manual. Total load 2 4O p.s.f. Loading will be checked to see that this is not exceeded. i Roof Area : (21.5{; 1.0') x (48' x 2) = 1125 s.f. e = 21° 50' Sin e 8 = .3721 EITB C08 9 20' 3 .9302 élTB LIVE LQADS Wind Load, p1 = so p.s.f. (HOriz.) P ”137%. = 30 x 2 x .3721 i'7'7575i P = 19.6 2.9.1. Say 20 p.s.f. P" = P cos 9 = 20 x .9302 = 18.6 p.s.f. Snow Load - 25 p.s.f. (Vertical) It is unreasonable to eXpect a roof to be subjected to max. snow load and max. wind load simultaneously. Therefore, the following load combination is judged adequate: Dead Load { §~wind load on one side / full snow load on both sides T.L. = D.L. ; 18.6 x 25 ‘2‘” D.L. / 34.3 p.s.f. DEAD LOADS From.Truss Design: 501.FBM»@ 2580 #/1000 FEM = 1290 # Truss Wt. Roofing - Asbestos Shingles 200#/100 sq. ft. 200 x 11.25 = §§§Q# Felt 25#/100 sq. ft. 25 x 11.25 280# Total Dead Load ~ 1290 g 2250 / 280 = 3175# (For é-Roof) ‘2" . é Horizontal Area = 21 x 50 = 1050 sq. ft. Unit Dead Load = 317§fi = 3.02 p.s.f. 10 0 sq. ft. Total Load = 34.3 I 3.02 = 37.32 p.s.f. Use 40 p.s.f. Reaction = T.L. x Area = 40 x 1050 = 42,000# 2 - USe 4 trusses 16' - 0" c. to c. 42,200 3 10,500# Each wall truss reaction Length 3 48' 22:899.: 875#/L1n. ft. of wall - Unit Live Load Gross Area of 8 x 8 x 16 Concrete Block 15 3/4" x 7 3/4" = 122 sq. in. 1000 p.s.i. Allowable Bearing ASTM C90-39 -0- 122 sq. in x 1% = 91.5 sq. in. per lin. ft. 1 875 = 9.6 p.s.i. Bearing on Top Course 93 91.5 ‘UPPER WALL DEAD LOAD 8 x 8 x 16 Concrete Block Heavy load bearing i" Joint - 50# 10' wall Height 3 120" 120 = 15 courses 8 40' wall length = 480" 488: 30 blocks 48' wall length = 576" 576 = 36 blocks 15 450 block per 400 sq. ft. of wall area 450 = 1.125 block per sq. ft. of wall 405 North Wall 40' Long 2 - 3 x 5 windows South Wall 40' Long No windows East wall 48' Long 2 - 3 x 5 windows West Wall 48' Long 1 - 3 x 5 window 1 - 7 x 8 door N.W. s.w. E.W. w.w. Area Sq. ft. 470 500 450 409' No. Block 530 563 506 460 Tot. Wt. # 26,500 28,150 25,300 23,000 Unit Wt-#/Lin.' 663 704 .527 480 Check East Wall for Bearing on Bottom Course D.L. - 527 #/Lin. Ft. 91.5 sq. in. per lin. ft. L.L. -__8_'Z_5__ Area of Block T.L. -1402 #/L1n. Ft. 1402 #/ft. .= 15.3 p.s.i. 91; 91.5 sq. in./ft. Check South Wall D.L. " 704 #/L1no Ft. L.L. - 0 TOLO " 704 #mno Ft. 7 lfto 3 707 p.801. 9;; .5 sq. in./ft. WINDOW LINTEL DESIGN , East Wall Windows Sketch 5 3 courses at top 3 x 50 = 150# 150 x 12 = 113#/Lin. rt. 18’ 8" = .67' width 1' x .67' 3 .67 sq. ft. L.L. - 875#/Lin. Ft. D.L. -_;;§; T.L. - 988#/Lin. Ft. W 3 988#/Lin. Ft. 3 1480 p.s.f. 737 sq. ft. .. ‘a'AAV .munmw ”v— >-d v,” “We-s; ' ‘Wfiufli 9"‘O - ~ _ -‘—~' - V -.o‘>-Aawg—n& . u; . “' -wm'H-Qv-‘r “-a -.-.¢H7.v ‘v—wn x,‘cv Nth. .F'" w~um _ A I A4 “AHA-m‘”. .guu- lflM:~h.§-t-“‘ >‘- " "‘0' "-K 11-1-1111 d ccuwsts 7“?“ 1 3x15 L. 5'600R565 - .. .- u.” -...... ._.._fi # 5 W/NDow ‘ ’*.-V ‘r‘va-p-‘v—mm—Oc'cb ---qcu—-r.---¢‘u _. 1“" -...-.~--H-"-rwlewWfi-. '4 Roar TRUSS. LL = 675%7‘ A /010” ‘fi 8 _ LINTEL. DES/6N _.___-L_ 1 11.1.1. .1 .5... 415“couqst$ M“ “~*¢.‘ “w-.-” '7xa i " 7 TR/AN 601. AR 1. GA DING 5K5 TCHES 13M?! 5PACIR ”4-5 -‘--—I~v~.~- Sketch 7 Max. B.M; = wL? = 1480 x (3.2523 = 2120'# - 24 . 24 S ='M = 2120 x 12 = 1.275 in.3 f 20,000 Use 2 - 4 x 4 x i L's s = 1.1 in.3 25 = 2.2 1n.3 Sketch 8 ' This design will suffice for all windows in the upper story. DOOR LINTEL DESIGN ‘West wall Upper Story - Sketch 6 4.5 x 50 = 225# 225 x 12 = 169#/Lin. Ft. D.L. 16 D.L. = 169#/Lin. Ft. L.L. = 875 T-L. =1044#/Lin. Ft. w = 1044 = 1560 p.s.f. 767' max. B.M. = EL? = 1560 x (8.3313 = 39,200'# 24 24 s a 39,200 x 12 = 23.5 in.3 20,000 Use 2 - 8 x.4 x 7/8 L's s = 12.5 28 = 25 1n.d Sketch 8 UPPER FLOOR SLAB - Sketches 9 & 10 Live Load on Storage Section Area 16' x 40' = 640 sq. ft. Vol. of storage, considering apples in bulk 8 ft. high. 15' x 38' x 8' = 4550 cu. ft. Weight - V01. x unit Wt. of apples W = 4550 x 35 = 160,000#' 160,000 - 250 p.s.f. 640 Floor Load Recommended - 300 p.s.f. Assume a 6" thickness Wt. = 1' x .5' x 1' x 150 = 75 p.s.f. L.L. = 300 p.s.f. D.L. = .ZQ T.L. = 375 p.s.f. or for 1' ft. section 375#/Lin._§t. Considering this a simply supported, uniformly distributed loaded beam: Max. B.M. = 1L2 = 375 x 64 = 3000'# 8 “"8‘"’ _ V's g; = 375 x 8 = 15084 2 "‘2“‘ From Table 2 R.C.D.H. d = 3%" Changing thicxness of slab to 5" B.M. = 2900'# d = 34" v = 1450 AS = ‘M a = 1.44 ad 3 2.9 Af_ 0575 Sq. in./ft. RGQdo 1.44 x 3.5 Table 3 R.C.D.H. Use Q" d 4" Spacing ' 4.7" “1 o I S7nAR w v = V = 1450 335 12 x 7/8 x 3% 40 p.s.i. pg BOND u = V’ = 1450 = 101 p.s.i. 93 2333 4.7 x 7/8 x 3% T - BEAM DESIGN Sketch 11 Span 20' C. to C. Assume 19' Clear Span L.L. = 375 p.s.f. x 8 ft. = 3000#/ft. D.L. 8 Assume Stem Wt. - 200#/ft. T.L. = 3200#/ft. < u 2 H II 3200 x 19 = 30,400# 2 2 Allowable v .06 f5 = 180 p.s.i. with web reinforcement v = V b'd = 30,400 = 193 sq. in. b'd} 180 x 7/8 Let b' = 10" d / 3 = 25" d = 22" d - t = 22 - 5 = 17" Checking for weight of stem w = 10 x 18 x 150 = 188 f . g; “144“ Assume J = .92 BM'=‘E12 = 3200 x 19 x 19 x 12 = 1,390,000"# 10 10 BM = Tjd T = 1,390,000 = 68,700# .92 x 22 As = T = 3.43 sq. in. per ft. Reqd. H: s Use 4 - l" ¢'Bars, 2 rows Area = 4.00 sq.in. E3 E? I u = V’ = 30,400 3 94 2.5.1. 95 zojd TX 47 .92 x 22 - 10 - 120 p.s.i. All. Art. 306 AC1 REVIEW OF T-BEAM DESIGN Sketch 12 To select flange width "b", the least of these three con- ditions is chosen: 1. Span = 20 x 12 = 29" *LEAST 4 4 2. 8 1 Thickness x 2 / 10" : 23" 3. (8'-0") - (0'-10") 3 7'-2" clear Span 2(3'-7") { 10 3 96" ZIMna : 0 (50 x 4) (x - 3) 3 40 (22 - x) x = 6.17" .3_=.fc 2.17 6717 2 3 .352 fc fc-Z : .648 m- , .2 41:1 cl = .352 2, x 4 x 60 = 84.5 to x 20 cg = g-x .648 re x 4 x 60 = 77.8 re x 20.67 3300 fc ' 1,390,ooon# fc : 42030301. g c = 162.3 x 420 = 68,000 # c = 'r =' Agra f8 3 68 000 3 17,000 p.s.i. Q; 1690 re 1610 to 3300 re 3 *——- -- .v“.4‘.m v "—1 a- u-vu nu ----¢---— “anon---o..~-t‘d~_>-‘ O~—a *mw'. ‘- -7-. ”.-,~. 2 A N 6 I! L I c - F-r' {' 66C TION __ .7, I I ‘ -w ~M‘w‘—~ 9*”--. IT} A ' rv (J 4 q ' but 1‘, ! :77f‘.’ .5" a 1 i 1 I: Illu‘l'ltlllllllllll 1.!2‘IP" III .. 4 p o a , . A T. -.. I; In- [t 3.1 1.9:. .Iu‘illlul ._ A. \mmwnewi 0km... . _ .113ka . ”/0 '9 __ w ~ . r I ~aillttlcllinfl a it. ,7 4:- r. .3 4.... P - .b. L 2 : H [’1‘ t b.' i ’6: .l _ I . a . . 4 1'. A“! ’1 2.“: .k.'r/ _ . . “ e. .I. . . / 1 m :1. J A. ./,._ . . . . . _ w .u. 1. Ir # I. . . . 9.. .. . k . . ., l u . § . s. , ..N a . .n a} e - 7r .. _ __ n a ".1 a L .62. . . m . . 7 A t I... v . I n M (F P J 7 N‘ a .i. i . _ m@ u .r u If: . ‘ a _ - .L . a _._ I. .11 J _ _ "v .a _ Fm C 0 ./ . .14-‘.|¢I:.Lu|."1’.. I I. 1.0... . a .1! .f1 11”. l‘s...’. .- .r ).I {slit} . 0?... CHECK OF T-BEAM.RT SUPPORTS To locate neutral axis: Sketch 13 EEM, = 0 Al (x - 2) / 12 (x/2) = A3 (22 .x) x = 8.2" 2 3 f 3 °373 = .476 fc f ‘2:0524 c8 = 36 x .476 fc = 17.1 fc Cc = §~x .524 fc x 10 x 8.3 = 21.8 fc T = cS / cc 2 38.9 re 08 x 20 = 17.1 re x 20 = 342 to 00 x 20.67 = 21.8 2c x 20.67 = 552 re 38.9 f 894 f c c a = 23" MOment Arm of Resultant C T = c = 1311 = 1,390,000 = 60,400# . a 23 f = 60 400 = 1330 p.s.i. 95 c “38?9" "“' rs = 60,400 = 15,100 p.s.i. g; 4 T - BEAM WEB REINFORCEFENT Sketch 14 The maximum Shear, 30,400# occurs at the ends when the entire Span is loaded with the uniformly distri- buted load - 3000 #/ft. vm = 30,400 3 150 p.s.i. 10 x .92 x 22 The center shear will not be computed but will be calculated as 25% of maximum shear stress. vc 3 150 x .25 = 37.5 p.s.i. x = 114" x 90 = 91" 112.5 V taken by Stirrups 90 x 91 x 10 - 41,000# 2 Use %" d Stirrups A 3 .1963 sq. in. x 2 3 .3926 sq." 16,000 p.s.i. for web reinf. (J.C. Spec.) .3926 x 16,000 3 6280# taken by each Stirrup 41,000 = 6.5 Use 7 6280 121" = 13" Spacing 7 but 3 11", therefore use 9 Stirrups MID: Spacing: From end to center 1{@ 5" 8t? 10" PLACEMENT 0F NEGAT IVE MOMENT STEEL Sketch 15 Reinforcing steel, same size and Spacing as that used for tension, will be placed over supports. Length to be governed by general rule: & clear Span on each Side of support. b 3 10" x M [K M‘ ~__ A.... . 4‘..-_,. __.......-”__, f ;“ r11 '01 a" 'U‘ i “'1’ 3! O — - ..-~.......... . ——— Cunt.“ .H. ....__. \\ n . ...--.... -....-n—. -. . l -9 i-‘ - -..—.— ,-_ ,..,-u-- O-r" can. . .- . . 3 A. w- 'r‘..- _- a -.._n- WWI .~,~.- -._,q.... { o. dog-v --O -.‘_.. D-ru I!“ —— H—‘ -4. —.—~-- ’. — ‘--’ “1.. ~ .n n..-‘ ‘...- —- 15 HEAR .,... .. ' 1“~; i } ‘ n ’ I . . I . I ‘\, t, ' . I 0" ,l 7" r. " f s, l l I , 1 II _... . ... .— .4.— -.n-n— n- —-—-\. M‘~-.~ TAKEN \ I f 5 l I I . 5 \}_ 1 _"‘l 4,- s I s—co- -—— .¢. .-.. no .._--L«..-.:h.._ ; ‘ “"7"" .._-- " *7 x. . .acz 5' -i; "walnut c.c..- . hr .sp- pun—r..- b~o~ 55y CON’C. .‘ ps/ i 1 ._1-. .. -4‘ 0-4 I c "1' ' AsurfihV , l - w ..--.......-....u—‘ Cu“- ‘ n- '0” W’ """‘V n“ m m““*“ mafia. -u‘ ru- fl - 'W-- w~~r .4th 03". , ,,. .- _-.. .‘v ['1'2. 5p$I A..~.. -‘.. - 13 - supports - 8'-O” c.c. Clear Span — (8'-0")-(0'-10") - 72-2" 7'-2" 3 22" Length 4 GIRDER DESIGN Sketch 16 Considering this beam simply supported BM at center = 60,800# x 8' = 486,400'# = 1/8 wl2 but BM’3 1/10 W12 . 3 .°. Actual BM at center 3 486,400 x 8 x 12 3 i0 4,670,000"# Weight of Stem, assumed - 400 #/ft. l7,640#' 211,680," BM’3 1/10 w12 = 1/10 x 400 x 21 x 21 211,600 4 4,670,000 Total BMT@ center line 4,881,680 #" v = 60,800 4 w; = 65,000# (0 b'd 3 V 3 65,000 3 413 sq. in. ' 180 x j 180 x 7/8 Use b' = 14" d l 3 = 33" d = 30" D - 4 = 29" Checking weight of stem 29 x 14 x 150 = 420#/' pg 144“ Assume j 3 .92 BM = Tjd - 14 - T 3 4,881,680 3 177,000# .92 x 30 As 3 1 3 177 000 3 8.85 sq. in. fs 20,000 Try 1%" d A 3 1.56 sq. in. 8.85 3 5 / Bars 1.56 USe 6 - 1%" d 2 rows 3%" Spacing A39.36 sq. in. £036x5330" u 3 'V 3 65000 3 78.5 p.s.i. Q; zojd 30 x .92 x 30 - REVIEW OF T-BEAM DESIGN - GIRDER Sketch 17 To select flange width "b" l. Span 3 24 x 12 3 72" * Least 4 4 2. 8 x thickness x 2 % l4 3 78" 3. Clear Span 3 21' x 12 3 252" To find neutral axis: 25m, 3 0 (72 x 4)(x - 2) = (93.60) x (30 - x) x : gégn cl = (72 x 4) .55 re: 158.5 re x 28" = 4430 re 02 3 % x .45 fc x 72 x 4 3 64.75 fc x 28.67" 3 1855 f3 cl 4 C2 = c = 223.25 fc 6285 re Rm = 4,881,680 "# f 4 881 680 = 777 2.6.1. 95 c 336285 - 15 - T = c = 223.25 x 777 = 173,500 # r = 3,: 173 500 = 18,050 p.s.i. (g; 5 As 339763” - _ CHECK 0F GIRDER OVER SUPPORTS Sketch 18 To locate neutral axis: :zmg 3 0 (§)(14 x) / (84.24)(x - 2) = (93.6) (30 - x) 2 - x 3 11.5" RM=C1‘11"C2d2 3 (.65 fc x 72 x 4) 28 / (fi-x .35 fc x 72 x 4) 28.67 = 5240 re 4 1450 fc = 6690 re f = 4 881 680 = 730 p.s.i. 93 ° "6650—" c = cl / 02 = 187 fc ; 50.4 fc - 237.4 re 0 = 237.4 x 730': 173,500# = T f8 3 z 3 173 500 3 181500£.S.i. _0__Ig As 9.30 WEB REINFORCEMENT Sketch 19 3 168.5 p.s.i. max. at ends. V 3 V' 3 65 000 - m. 533 IE x..92 x 30 v 3 v x .25 = 42.1 Say 42 p.s.i. at center. c m Shear taken by Stirrups = 108 x 108.5 x 14 3 82,000# 2 - 3/4" 0 Bars A 3 .44 sq. in. x 2 3 .88 sq. in. 16,000 p.s.i. for web reinforcement. 16,000 x .88 3 14,100# each Stirrup 82,000 3 5 / Use 6 14,100 .- '.-.. v.' 4.5-- .__. .‘ .- .— u..- -. -1» -~ . ~ . _. _ l .. H ‘9' .. r .7... .- w .. 1 fl - : 5280.9 65.“..- ' I _. O ' g -. ‘ as .. 8’ 5 :3 ,_ , 5 G/F'Z DER J 5 24‘ cc. 2/’CA£AR SPAN ”"5 »» __ .,_.~'. 0* i ' ”/5 . -.- a-«-——~~.—c 3 .5'—“w“: ‘ . I . '3 2 ’ ZS” £545.75, 5 I 5 *- q~ ‘ -_,~,.. c...» m... ~v*-H-.““m I"m‘fl n».—— >4...— \ I 4 a..— \ 4‘. 5‘. I y " . ,I 5 “ ‘ . . \ I / I} ““.‘-.‘ . I .. /' . 7‘\- i V 60 V) '44 / lJ ' ‘ " ‘~ . 1 - Y —- .- - —--‘—-.--—‘"--v--..-- ‘- ‘ I ---~..... .-A...._. .. ........‘ Q “\~ 1 Av ~-.,,_ . . x . .. a... ,. , 4! ‘1 4"ps'l SHix‘vQ TA/TEA/ 5y CaNCQEr‘d‘ ’U_,.,._.‘..,.. ',_‘_..,.__,..-.-...A-.. 0’ " 5 5 5 5 1 5 5 g a...- «aw . v awn“ l/ 1 3.. . ~ /26 «Vas- xv‘ - - ‘ 5’93““ «,1 .ch 5K5 TLC/1’55 576453 i . o v .. ~ -1 .v» -. ,- -» 3'93‘ . '7. an— ~.. - N- fl-w-o.o'--~“h--' - 16 _ Minimum Spacing - g : 15" 108 3 7.2 Reqd. Use 8 15 Spacing: From end to center. 1 3'3" 7 € 15" EAST &:WEST WALL BEAM'DESIGN - Sketch 2O M.B.M. @ Center 2 30,400# x 8' : 243,200'#(06up1e) M.B.M. = 1/8 w12 ‘ but B.M. 1/10 wl2 may here be used. Therefore 243,200 x 8 x 12 : 2,335,000"# ' 10' Assumed weight of Stem 3 300#/ft. 1/10 w12 = 1/10(300 x 480)(21)2 = 33,200"# 398,000"# B.M. B'M. TOtal BoMo at Center : 2,733 ,000"# VI: 30,400 / El 3 30,400 K 780 X 21 3 38,600# 2 ' 2 b'd =‘v = 38,600 = 245 sq. in. 53— 180 x 7/8 It is evident that this wall beam.will be smaller than the girders, therefore computations will be discontinued and the girder design will stand for the wall beam design. All girders and wall beams 2, 3, l2 and 13 - Same design. NORTH & SOUTH WALL BEAM’DESIGN 3 Sketch 21 LL (Masonry) =- 704#/ft. 704 x 8 = 470 p.s.f. 12‘ "J ---. 1“ VV—o» . g.” o— a i . .’ ;--—w—.-m—+~.—‘ 1". (“'6‘ EV -,/-' /I w. a- .——---.—_,.— . C r. 46‘ ‘ IN“ I -.,.~' -‘u ,0 “. T r ‘ 3 a... i ! Z’f‘ 5 _.,~_-,_ —. -_ , c .3 -r .v——-- M—r-+-—--~—--—-—- ----- -—-j’ ." * a :19 . L l i ! L—aov‘ 0 q 4 ‘. l I i 4 I .' P n a.) b 'r" r l d ('3 r3 6‘ w fi-vl 5 3 . .. i 4. _ 1.... m f» A W uh .‘ 7. .. {I o "' i r. 2.4 MI ‘/ ‘ .5 . _ 2.. r ‘22 ‘ ..-v.5\flvmu XV §m....- i... v...‘ fin . a .0; '1'} . i . . . -1... . . -1... . c . 5 1.551. w. 6835:. . .. 5 .13.... ¢ 31.111.31-13- all..." C ’ ' WW... M 5% T - 1 ! L—J———L— 7" 1.. f - ..__.. .__--_ 1-..- - i 1' x L...”..... “4’ 1 .0 2 '5 K5 77. H .mh- ‘r. . .. . 1.0).... . | I .I'I. .. 11. (Floor slab) "-'- 351.150 3 50 p.s.f. 1 TOto 1.1L 3 52° po‘efe 3 520 x 4' 3 ZOBW/fie D.L. = Assumed wt. of Stem = goggrt. T.L. ‘ 228M/ft. Vsz'ZZBOX 9'21 600# 2... .74. . Allowable v (Web Reinf.) - 180 p.s.i. Assume J - 7/8 b'd = v = 21 600 = 137.5 sq. in. ' 9T 1331 778 3.11. = 112 = 2280 x (19)? x 12 .-.-. 937,000-# 10 10 “’3‘ Since B.M. and V are both less than used in design of the floor beams, that same design will be adequate for n11 beans 1, 4, 5, and 11. Sketch 22 - COLUMN DESIGN All Columns - Concentric, Axial Loading Col. 1 Sketch 23 f'c = 2000 p.s.i., n? 15 N = 103.6 kips In order for the Joining members to frame into this column, the dinensione of Col. 1 are set at 10' in. x 14 in. Area = 140 sq. in. to e 2000 p.s.i. N/wach [1! (n- 1) 13] 103,600 I 140 x 150 x 111 . .225 x 2000 x 140 [1 I 141)] m 12" 105,100 3 63 ,000 I 880,0001) p . 0048 -18- As =AXP=140x .048=6.7 sq. in. Use 1 1/8 A.‘ 1.27 sq. in. x 6 8 7.64 sq. in. iFor tie spacing, the least of these three conditions: é” o ties 1. met over 16 bar diameters 16 x 1.125"'-'18" 2. 48 tie diameters 48 1: § . 24"! 3. Least dimension of column 10" *Least Reference 2. 1104b ACL 318-41 ‘ This design.will apply to Cole. 1, 3, 7 and 9. Col. 2 Sketch 24 N32X65kf38o6/W Let Col. dimensions be 14" x 16.5" Area I 231 sq. in. p'- .04 ‘As a 231 x .04 I 9.24 sq. in. USe 1i" A.= 1.56 sq. in. x 6 = 9.36 sq. in. §" 5 ties V For tie spacing, the least of these three conditions: 1. 16 x 1.25 - 20" 2. 48 x .3" . 24" 3. Least dimension of column I 14" *Least This Design will apply to Gals. 2 and 8 .- ~- ...,....1 “‘0‘... —~ .. t.‘§.¥.l I'.III ..._ 7/ m...\./ w... A 3 J ..... .1 x J ,1 7-”... . Ix. . AA 5 1.. a 9f“ I. .. P v 4.4. o adv C 7.1 cu, _ "(w r r . ,0 _ / r ,., / . . ... a F 7 H u r . . . «tannin. XIII... 1.ij [ I! v yrx: I I l C I 1 r. -'63 t. V . -...-.__.. ..__ \ ._._ ' 82' .. ./ {ED-bill“. IO! .Ilvlf'l .’o! ‘0‘ LII‘AO‘IL. . ,. .../. n H. . . M. .9 m 64 V - .. .I c J TiltiakL ///” I 7 “WU/I\).\IJ VIU‘t‘IlIt-\ .11. 4.: .H. .. .. .,,. .1. I W. . r r . , a. 7v H x... .. c . 74 al.24— A . I 10.....- y} e n I- ..IO.|'0| .44/E / 3:?” If . TK/{Y HIV-'13 IL‘ c' 1 l l, I D a. 31:71)". ' . ' 1 I c 1 . '0 C . . . -_.--i. p w" j W —" ;, E “as-4 p 5 NA“ TcH -- J J «5 H"? 3.} 7- \ a/..' 41’ ‘-T' ‘ 'u.‘ 5 4 ll // .. ,, Z ;,c7/£/*f 21‘ el 1‘ III!" III . 0.1T?! I. 1‘ Io‘ldno'i. -.-.(II| I ‘1 PE‘. ill-t .}\.A-.r|.l~ a ‘Iv ‘I "II I'll" 1.1. ll‘-4l.l 0 Col. 4 Sketch 25 N'8 77.2 I 65k I 142.2 Let the column dimensions be 14" x 14" Area I 196 sq. in. 142,000 I ggg x 150 x 111 = 450 x 196 (1 I 14p) 144 12 p I .0458 ' A3 3 196 x .0452 = 8.85 sq. in. Use 6 - 1%" Area I 9.35 sq. in. %" 0 ties Ties Spaced 14".. This design will apply to 0016. 4 and 6. 001. 5 Sketch 26 h I N'I 2(65 I 38.6) = 207.2 kips Try 18" x 17" column. w'- 306 x 150 x 111 I 2950 144 12‘ 210,150 a 450 x 306 (1 I 14p) 1g46§9,s p - .0377 1,930,000 A3 I 306 x .0377 I 11.50 sq. in. ‘USe 8 - 1%” .A, I 12.5 sq. in. 5" 5 ties Spaced 17" COLUMN“FO0TINGS Col. Footing 1 Sketch 27 001. Size 10" x 14" p I 105.1 kips -20- .Allowable Soil Pressure = 6000 p.s.f. LL I 105,100# DL M62! (6% LL) TL I 111,406# A 3 1113406 3 18.6 sq. ft. Required 4'5" x 4'5" 3 19.36 sq. ft. L 3 4.4' Net Press. w = 105 100 = 5430 p.s.f. , 19.30 B.M. = 5430 (1.5 x 1.672 x .6 I 14 x 202 = 23,400'# 144 x 24 . Min. d .'%0 Let b = least dimension of columm.= 10" d I 233409 x 12 = 10.9" Say 11" x Le0.h = 4" (Cover) hIdI_1_§_" Weight a4.42x1§x150'3_2§2#.91< MsAsgjd- As '7' M =' 23 400 x 12 3'- l.475 sq. in. ?sjd 20,000 x .836 x 11 Use %" 0 bars .A = .1963 sq. in. 1.475 I 7 I bars. ‘Use 8 1503 Spacing 6" c.c. BO_NQ §TRESS 2 u 211%. . 5430 (4.42 -G-°—ll;:.42§ ) x .25 = 120 p.s.i. o d 5.1.57 x 8 x 7866 x 11 ,9; Allowable bond stress I I; x .056 I 168 p.s.i. Deformed bars, hooked. - 21 - Check for Diagonal Tension Col. BOND v = w L? - a‘I 2612 = 47.2 p.s.i. '95 a / 4d) . Footing 2 Sketch 28 C01. 5126 = 14" x 16.5" A = 231 sq. in. P = 168,600# 168,600# 10,100# T.L. 178,700# A = 178,700 2 29.8 sq. ft. Reqd. 6000 L.L. D.L. L 3 5.5' 1:28 30.3 sq. ft. Net pressure w = 1685600 : 5630 p.s.f. B.M. z 5630 (24 x 131 x .6 x 2 I 14 x 24 x 2 x .5 ) : 28,000'# Min. d g, 28 000 x 12 x 9.5" Say 10" 236 x 14 Let h : 5" (Cover) h I d g 15" s = 28 000 x 12 _ g 1.94 sq.in. ,000 x~.8 x 10 Use 3/8" a A ; .11 sq.in. A $122.: 17 / USe 18 bars. Spacing 3" c.c. ll - STRES§| 2 14 20~ u .-.- 5630g5.52- x .25 z 168 p.s.in. 9}; 8 X 101 x .8 X 10 Use deformed, hooked bars. . -‘l ‘I“ u A“ 1 1 . ac. 1| IV. (\L D. A _ Ru ..\r\ \ 0 u 1...|l|'.l.|!l.‘ [ ‘!- 1 ... 7 1 1 , 1 I _ _. / w .1 .. Ti -iii-.i.l,_ 1 . . 1 / 1 _ / .nIll -u' l. 4. I .|\ 4 .5... . , . 1 1. .. / / I ~ ‘1! ... .. , . / 1 L N. sf .4.‘ .. I 1 ll '5' 1! 1 'y‘ ‘.'O1llllo .‘ * —_ “fig.-- * -I. hm...“ - - . V . v.1. In I. .0 4 . J. (I Y if q . ICI- Smu r. I. . 1".sctll'i t! It‘ll-.- 'F‘ ‘0. It... i"0:-‘i {llg‘ kw. rt}; 9...» .1 M 1 5K5 73st "Z 7'2 8 “WW ..~—.-—-.;n.—-—.:——-_ ‘ .r, ... DIAGONAL.TENSION Col. v : 98 p.s.i. Too high Therefore, d must be increased. let d g 12" Then v z 68 p.s.i.‘Q§ AllowingAS to remain unchanged is on the coservative side and decreases the bond stress. Footing 4 Sketch 29 Col. size 14 x 14 p : 142,2oo# L.L. - 142,2oo# D.L. - 8154Q# T.L. - 150.74o# A = 150 740 = 2500‘ egofto RGQdo 6000 Use L = 500‘ Not pressure - w - 142,200 a 5670 p.s.f. 25 B.M. : 5670(1.792 x .6 x 1.79 ; 1.17 x 1.792 x .5) = 30.000'# . ' Min. d =fso§ogo x12 3 10.5 Say 11" h g 4" Cover h I d - 15" 30 000 x.12 = 1.89 sq.in. 20,000 x .866 x 11 USe 3/8" d A = .11 sq.in. A .- S 1.89 = 17 / USe 18 bars -Spacing 2%" c.c. .11 BOND STRESS 2 (14 l 22) 18 x 1.18 x .866 x 11 , Use deformed hooked bars. DIAGONAL TENSION v = 5505 p.s.i. 9E. Col. footing 5 Sketch 3O Col. size = 18" x 17" P = 207,200# L.L. - 207,2oo# D.L. - 12,4oo# T.L. - 219,600# A z 219,600/6000 = 35.5 sq.ft. L = 6.0' Net pressure w 3 207,200/36 . 5830 p.s.f. B.M. : 5830(2.1253 x .5 ; 1.5 x .5 x 2.1252) = 39,800*# Min. d = 39 800 x 12 = 10.6" Say 11" 236 x 18 h z 4." COVGI’ h/dsl5" As 839 800 x 12 ' 3 2051 sq.in. Ems é" d'bars A 3 .196 sq.in. 2.51/.196 : 12 / UBe 13 bars Spacing 4%" c.c. BOND STRESS 13 x 1.57 x .866 x 11 Use deformed, hooked hers. I .ku‘; ltzn\.0c_lv .I ..'I\.. .1... Q .0 V . 1: \ .“n‘ «1'... {I} If ...., t1 .3... \1 1 . . 1 1 . 1 .1... Ill-l III. III... tall-I III I... / o o A. .,. 0 V1 wrwék\ xmd\ I. \\ I . .I p A I . I...» .. .I *3! ill Wyl1t ‘Ivvr‘n'cllal- . . x . e; »‘ “|.|.|I’Ii.7i‘1‘(l.3 1 I; I f L ‘~-_--_ _. -.~‘~—¢ ...-—- - SKETCHES on... 1.3.1.1.. islii.‘ Iql. 1... .- Ww-w‘ ow“... — —--- Diagonal Tension v 2 87 p.s.i. Too high Increase d Let d = 12" v 3 72 p.s.i. OK FLOOR DESIGN - I?ron1an.analysis of all equipment to be stored in this build- imug, the max. wheel loading to be eXpected is 13523. [Being a 3000# concrete, the max. extreme fiber stress in com- pression, 1?C 3 1350 p.s.i. 'Fhe bearing area of a Ford tractor tire may be taken as 19 sq. in. 1250 ‘ 125 p.s.i. Q; 10 .A sub grade of a 6 inch layer of compacted cinders will be prepared to receive the slab. .A 6" unreinforced concrete slab will be poured in alternate sections as illustrated in Sketch 31. A %" filler will be used at the junction of the floor slab and all other members such as columns, walls, etc. DESIGN’OF RETAINIVC WALL - As this retaining wall is to serve as the back wall of the first floor, it must be at least 12 feet in height. As .a further precaution against frost action the wall arm will be made 14 feet with 2 feet of the wall above the footing be- low grade. ' In preparation for computing the total earth pressure _. m— o *g-p- -nh.--.._.-.—~ lo .0)" Ic’lyul‘i’ ‘ A .I .l.:. v .x :4 . . IN P {P1P f_r . p p . . / o -- 1 1 -. l .. I 5 d . 1 .1 1 1 .11 1 I). . t 1, ... s u. . 12.111! .1... 0 I . -4--. filial-:1: -n. all .1. 1V 1 ._ .. 1 ._ 1 17 . a 1 1 1 1 - . x. W ,1 1. r! ._ _ ~ VJ _ _ w! I! A— .1/1 . * f’: o 1 . c| [I I II .n’ , m . _ rll I 1 ~71?! t , .fo/I t r . M...\. .ls,\ .nh~.\ 3 .. // f . 4.1-.. _ n —. . p.111 1: 1 by u i '.‘\ N /-“\’v'-) f . ‘1 If I] t .5 1 3., 1 1.1.1 v u u. ,IL' . l‘ul.llL..HH1lk I /2 )\\\.<..\u J. nu U / .. N - R - - x . . . 1... L x . N1 r M/ . , ._ .. A. /2 “ lliO‘ 0,...0 . I» ’1’ N . ../ 1 uoll 'll \ - 4. III} .. . m u H. r Mull ! n .m M llllll 1‘? 5.: Il‘ II A m — _ 1. _ . {fr 1 ”I! 7 . .lll ll 6L , -w‘ 1.,1 _ . _ . .(prlrb .5? 10“; .. h '. I.....r.!1l P Iii, i . _ 1' no .Iuvhfr.- ,1. I g! $.1- ll. .\ 1\ __. lg 1 --O —-L - ..b—~——-'~—--‘ An , . . q . . I . .. 1 y . . \. _ a x 7 _ s . 1" L ’_ L ‘h—‘n... «mvfl. /C(:7-/Ns. 04. / L. ,.vl.ll.ll ’ 1 f \A 1 1 . \\ 1 . .I‘.. c.\ . . .‘I v ‘ _ I . . 1 _ 1 . \k \ l. 1 \‘ n “\ I \ A Q . . u I 1. “l. \ K I 1 iii- .I In“. ltll'ublt'ii 1.: III“ I01. ..-.|.‘\|..O|.I. ‘ u 'yI.’ .. wt ‘li'tl .I‘l“- "Ltlo .| (Ill. 3/ ,‘i’f 7 C H < x.) \w"“- ,.-..- - 75-: Gin-t 1.4-.1. agyainst the wall, the equivalent surcharge of earth must be ccnnputed for all loads eXpected to be impressed on the drive Emissing by the west wall and at the loading platform. ’Tlue largest vehicle expected to park next to the loading jplatform is a semi-trailer as illustrated in Sketch g2. Its ‘Nheel.load of 10,000# is considered to act uniformly on an .area.6' x 84', the dimensions of the tractor and trailer. Area 204 sq. ft. L.L. 4,800 / 2 x 20,000 = 44,800# Unit L.L. = 44,800 = 220 p.s.f. 204 220 = 1.83 feet equivalent earth surcharge 120 Total Platform Load - 1175# per Lin. Ft. of support. Total L.L. = 1175 (18 x 2) = 42,300# ' This load, too, is considered distributed over an area 6' x 18', the dimensions of the platform. .'. Unit L.L. = 42 300 = 332 p.s.f. G x l§ 392 = 3.27' Equivalent earth surcharge 120 Total surcharge = 3.27' l 1.83 = 5.10' Say 5' It is considered that an economy in the wall design out weighs the added cost of modified wall beam and column design if the loads imposed on.WB2 and W33 were transferred directly to the retaining wall as vertical loads. This therefore will alter the design of Wall Beams 2 and 3 and also Column 2. -26- 'Tlue thickness of the wall at the t0p will be 14", and there will be no batter. Eur use of RANKIVE'S Theory of Earth Pressure the magnitude axui point of application of the earth pressure may now be calculated. 3 15H(2h / H) 2 6250# = l6t 25‘1“”: n ()1 / H) = 6.35' distance from base /*H) B.M. at base 2 6250 x (6.35 - 2.00) = 27,200'# M n A [‘3‘ h) ‘33" .‘V = P = 6250# To determine "d" required at base section x - x, (1) M6 = kbd2 from which d = 27.200 x 1é* = 10.7" Reqd. “236 x 12 Say 11" (2) v = _y_ bjd from which d 3 6250 3 19:9" Reqd. 12 x .266 x 60 The selected thickness of 14" provides ample cover of the maximum required "d". As 3 M = 27.200 x 12 3 1.71 sq. in. Reqd. ijd 20,000 x .866 x 11 From Table 3 RCDF Use a" 0 Spacing 3" c.c. A = 1.76 sq. in. «at..- 7-a .1"~ 'IQ-r-vr o'- ‘1‘ “firm. ".‘N' n‘f- v“ rfip—o—WJ‘H—_.. ”- . .0 ..4...... - —--- v- u—- c..-4 ‘m—r“.—‘pfl-‘ --.¢—; — I. ll .I'I Ill. i ‘01:: it“s‘li It’sllllv‘lrii n.-. .[l’luhlll .4iv10?’ A (t. '17 l . Vi i . .it. t. n o 1|»? .I . . . . .7. —- 8,...“— .~__ _.-_. ; I :‘J '/«4’ W A . ~ .- . Oil- 1‘ ‘ r . Y) . - _ ._ .. fl... ,1 .1 .1 . D 1 z .... ,.\ a . I. , * f" o .,.. _ .o, , 1 - d . If“ w . f _ - . «x _ .. A '5. r) v .. x .. _ I - n. 1:: III- 1;! n l v]: 1 _ _ f . . ., I“ a. I a . r _ ‘ I ‘ 1 . .5‘ .1.” .l i’t- :l-I‘ slit 6": 1 A \ J l . .. u '11 ID- \0 .I-.-..l -..l... . I-..L||l4ll|’|t. . .- -lu . -1Iluol o .. . Olh _ a. x H 1 .4 . ,u m ’ .rn it. o... s . . o .1 .C .. . 1 1 . 5 . 1 1 _ . . o . I. a . . . a L . P‘ a! .—' “M L t V will. ’1 o l 1 . 1. u m .. * XI — . ’74 1 “ L 1 . _ 1 a 1 . , f v a. A . r - .III III -. l.— w . . b n ‘ w .~\‘ . . ti 0 it u;‘ll"¢"!‘l’. .l‘.x§. \In'l‘ 0"?) .r . {lit-0n IF‘II". 1" {'3' a --. ~. —— “A'— --oo‘ I “o~4«—~ 4 ”~w'V‘h-‘M h noun-- .. - 1‘ 'u = 5250 : 70 p.s.i. pg 160 p.s.i. All. 9.4 x .205 x 11 Ixength of emoedment required. 1 = :5 D = 20.000 x .75 = 24" Reqd. 4u 4 x4160' Simme there is but 24" in the base slab, this vertical tensile steel can be bent and extended into the base toward the toe ' in order to gain the required length. See Sketch.§§ Temperature steel will be used in both the front and back faces of the wall as illustrated in.DRAWING NO. ‘4 . DESIGN OF BASE 8 AB - HEEL With the base slab dimensions selected as follows: Thickness - 2' Toe - 3‘ Sketch 33a Heel - 5' The resultant passes through the base at a point 3.5 feet from the toe, within the middle third. Factor of Safety against overturning - n 3 l 3 9.16 3 4.25 l-Za 90 16-7 -_ P - earth pressure 3 6250# F - vertical component of Resultant 3 22,428# E - Resultant 3 24,000# See Sketch §§ To solve for foundation pressures Sketch gg P max. 3 (41 - 6a) F 3 4170 p.s.f. QE 6000 p.s.f. H All. P min. 3 (6a - 21) 720 p.s.f. F 2 l2 o---. .m..._ n 7...-- '-" Mr. -1.- "b"’ -< ”h- u.- .M-uuo-- m. - am...- .~--- ..~..- -—.-~‘—r—_-a._...~------ .—-—...-. . . p... [V :‘I _' .’ fr" >Iullb’llr' -ill’ln“- . 0t ’!'.i| ht. \w“il»‘ 0". \I .I‘Irll .A w ’I'tl'lr. r 1......)l" ML. I' [70.30 m“. —.—-—.. “—— '\ Q ‘I 1" '00—. -v.--—... mac-0, . .C ‘ 'r it ill. a I ll .1 a a . M W r... ‘ R. w bk)» * ‘ ‘ 1 a 1 . 1 1 .1 1 Pl». . 1 . .. / _ . _ w 30 w ; Q ~ 5._ «yu—gfl n.-~-—..o-. — . . 1 w. .1 . 7. . .t '21 ’I-‘|ll‘.f.|lllo.|l'l t’l..‘|'l‘ll' '¥.I‘;§LF . N . m a ‘ ‘ 1/.,1.. .. 1 4.1. u .v 1.7: .1 w/ ii- - 1 i l y, 4 _ m / .1 ,1 m 1.1 W 1... u p. a r 1 z 3 ‘ L 7.1 1a . a M 1eflxxomu .. 1 _ m .6. f M ... . / . N 1 m. M N r w .1 w h .. J / m A w LiL .fl +1! a” N S. w. c . N U i. a)“ w r .... . ... .11.. 5. I . -17 . 1 Ga wM / 1 1 . 51.. A a t I. It if...£.......1l c... ill.“ .5 ul 253?...0195 f 11,400 x 2.5 / 1500 x 2.5 - (2700 g 720) x 5 x 2.9 2 ‘ 10,ssot# 11,400 1 1500 - 1710 = 11,190# d (for moment) 3F5850 x 12 = 6.8" Reqd. 2&3 x 12 d (for shear) 3 11 190 3 18" Regd. . 35 x..836 x 12 .A.slab thickness of 24 inches was tentatively used and thus 5 it is evident that it will more than suffice. As 2 10 850 x 12 = .42 sq. in. Reqd. 561mm From Table 3 RCDH Use 3/8" 5 Bars Spacing 3" c.c. A 3 .44 sq. in. QOND STRESS u = 11 190 = 153 p.s.i. Z.$ x .836 1 IE For sufficient embedment length: 1 = 20 000 x.3/8 = 11.7" 4 x 130 - TOE DESIGN - M33 = (4170 3000) 2.2 - (3 x 2 x 150) 1.5 = 6537'# V33 = 3585 - 1350 = 2235# - d (for moment) = '6537';tl2 = 5.75" Beg . 253 1.12 d (for shear) = 2235 _= 3.58" fieg . 30 x..§33 x 12 A slab thickness of 24" was used for the heel, therefore the toe will be the same. . A d = 18" was selected. 3 Q537 X 12 = .253 sq. in. Reqd. AS 20,000.x‘T§€6‘§‘I§ No tension steel will be designed for the toe section as the vertical steel of the stem willbe bent in the slab toward the toe in order to obtain sufficient embedment length. This steel, a" d 3" c.c. will more than provide the required steel area in the toe. - FACTORS W SAFETY - ggarturning F.S. = 4.25 Sliding v.3. = 22g428 x.tan 25° = 1.68 22211123 F.S. = 6000 = 1.44 Zl76 - POINTS OF CUT-(FF FOR STEM VERTICAL STEEL - Bending moments will be computed for 1' increments of height of the stem. Area of steel required for each bending moment will be computed and it will then be a simple matter to de- termine points at which steel may be cut-off. figight from top $133.11. A 339d. 1 80 Ft. Lbs. .005 Sq. In. 2 340 ’ 0.022 ' 3 810 0.051 4 1520 0.096 5 2500 0.157 6 3780 0.238 7 5390 0.339 8 7360 0.463 9 9720 0.610 10 12,500 0.785 11 15,730 0.990 12 19,440 1.220 13 23,660‘ 1.490 14 27.200 l=Z;Q_ As = ¥:§3%gv rs = 20,000 p.s.i. - 3 a .866 " Betas . = 11" 4 - i" 15 Bars 3" Spacing Add Embedment Length - L L 3 fc x D 3 lg" Zu For points of cut-off see Sketch 34. .i‘u.‘ b . ’y o t. . v. 1: . t . . l "1 {I‘ll c [I u . 4 l 4' 3’0 .4 y I .60 . . .. . I- .I n . .7! .ID . 1.1 {I'll '35 . .Iu}.l.1t'l. ' |.>‘: Irxrl 4 1. . II. '1 ‘r 0..., i.. Ii. II! 1“ l \l. \ . \.. ' ’ I #1 [III IIEI’I‘... '1 I» - \.. (\ II“. I." I I {II 1.1!»..IIIIIII] I [I’ll l. .I'OI - - _ , 1 I: . .. \ l..\ I us\ 3? - s A-~._ -- 5 , . .4' o.“ _. -n. m---v_-- .- q‘fiso—g “—_.—o-‘-. . _~_-,__', - r- .3... “~- ? -....4L- .3 .L. o‘L‘lI):.’l I.|1¢l‘| ‘.. 3| .{;.:} .M-vm aR —O a...‘ - . _ p... t, r.“ 7 a- a. I z! e\ a . . — pt ~ a I. - .. . ta 0"..l‘01... li'ii‘. 1.1.0'1 (CI-IV! !.t‘.l." 1,1“? 1*|zl'tl“. 1+, {It'll}. ‘- .|on..l'. . Ln.lvu-..lltlill'ul‘lalltl : 1" “q- A J 3:4 s— cums-ts . 14 K .... i4 .... \ 4.14144 .4 m. .6“... --- M p~—.4._.__--A4- .A-«n-o—r «Ac.— M -,....-v “14—- : I .0 i. I‘I.«.lu ll 1...! ll IE.»II}‘III§.I’I-§ilg s 4 til}... i ‘11! ‘l -31... WALL POUR SCHEDULE All column and wall footings will be completed in one pour. Dowels will be placed in these footings of the same ldiameter as the vertical steel in these reapective joining members. Dowels will project 25 bar diameters beyond the footings. L 3 18" A key way will be formed in the t0p surface of the wall by placement of a 2 x 6 board on the centerline while the concrete is still in the plastic state. Before pouring the stem, the footing surfaces will be thoroughly cleaned, scour— ed, and a é-inch layer of neat cement paste applied before the wall pour begins. The wall proper, excluding the columns will be poured in two lifts. This is deemed necessary for proper puddling. Form.work will be placed for the front or inside face of the wall for the full height - 14; Form work for the outside face will first be placed up to 7' for the first lift. Here again, a keyway will be placed on the t0p surface of the first lift. The second lift will complete the wall to grade, the bottom of the floor slab. To provide anchorage for these two members, dowels bent 90° will be placed so that 25 Die. extend into both the wall and floor slab. Use E" d bars. L = 4'. To provide anchorage of the wall and the columns, the longitudinal temperature steel of the wall will be extended 25 D13. into these columns. L = 16". Re 2‘0 I'm'ng. We // 586/. A~A F/Oor 43/35 3.1” . 35 “r? I ‘. 7') l [#3 C: ' * 1”" ..- _. J ‘32- 33 N; " \r’ -4 n (’7' .1 ’1’!" I/ - f/ “A / ,‘ "Y / FRAMlNG PLAN Dwg, No.1 SECT/O/VS -32- Upon reference to "Reinforced Concrete Design" by Sutherland and Reese, it is decided to build this wall in one section. The author prescribes a maximum.wall section length of 60 ft. without putting in eXpansion joints. - STAIR DESIGN - Stairs located and dimensioned as on.Sketch.§§ L.L. - 100 p.s.f. Use 6 inch Slab D.L. - _Z§ p.s.f. T.L. - 175 p.s.f. Total rise from top of floor to first landing - 6 feet. Stairs with 10" run, 6" rise and l" nosing will be used. Horizontal projection of stairway = 9.16' Platform.slab 4' length, 8' width The stairway slab and platform slab will be designed as one slab, length = 13.16'. v = 11. = 175 x 13.16 = 1150# 2 M2“""" 3.1!. = 112 = 175 x 13.162 = 303054 10 "‘"1'0' "" . d (for shear) = 1150 = 1.85" x . x 0 d (for moment) = 33030 x 12’ = 3.6" 412 x 235 Use d = 4" AS = 3030 x 12 = .525 sq. in. per ft. 20,000 x .866 x 4.6 USe 3/8" 5 bars Spacing 2%” c.c. BOND " L1 ‘: 1150 = 5802 peeoio e X o X The lower and upper stairway slabs are fixed to the landing .ili‘tiii ’Illll‘lslt In- II 0". a '5 -‘Il I 19"]. I.I.. .Icl‘ , -ngv- ..- ,2, u“- —~.. w —.—-..-- . .. 11 {it} I.O.I'3|a% .1 A ‘tlbl‘ll'iv't‘hl. ‘-“\. In... ‘1‘... n I l x n ,/ ,c J. a . L ’l .. . 1 .. : (713.11.- L. . 4. ll...’ \IL \ rusl.. x... \ Jl u r 1‘i I‘Is...‘ (I14 -J 1._ v 4’ ".4 I I 1 .-J ;- -d-—.._——-J but. 9/5 -33.. slab along the inside edge. The landing slab, 4 ft. long is fixed in the west wall. The stairway slab reinforcement is continued through the landing slab and anchored into the wall a length: l 3 20000 x 3/8 3 l6" 4 x 120 This same reinforcement will be run along the 8 ft. length of the landing slab. A beam will be designed to support the east or inside edge of the landing also. The north end of this beam will be fixed in the north wall and the south end of this 8 ft. beam will be supported by a short column. pesign of landing slab beam - Stairway slab reaction 3 ll5Q#/ft. 6 inch landing slab 3 75 #/ft. R 3 4 x 75 3 l50#/ft. Landing slab reaction 3 150#/ft. Total load on landing beam 3 l300#/ft. Assume weight of stem 3 20#/ft. T.L. 3 1320#/ft. V 3 1320 x 8 3 5280# ___§___. v 3 ‘V , b'd 3 5280 3 33.6 sq. in. reqd. 5753- EEG—x 7/8 Web reinforcement needed - stirrups Let b' 3 4" then d 3 9" d / 2" 3 ll" / 3 6" - 34 - ll - 6 3 5" 5 x 4 x 150 3 20.4#/' Weight 0K 144 B.M. 3 1320 x 64 3 10,560'# 8 j = .92 B.M. = Tjd T 3 10,560 x 12 3 15,300# .92 x 9 As 3 15,300 3 .765 sq. in. reqd. 20,000 Use 2 - g" 3 bars AS 3 .88 sq. in. BOND u 3 5280 3 136 p.s.i. Use deformed bars. 4.7 x .92 x 9 Maximum shear stress at ends: V1 3 5280 3 160 p.s.i. 4 x .92 x 9 max. shear stress at half Span 3 v1 x 25% 3 40 p.s.i. Total shear taken by stirrups: v = 100 x 3.33' x 4 x 12 = 8000# 2 Using i" 3 stirrups, A 3 .05 sq. in. 2A 3 .1 sq. in. .1 x 16,000 p.s.i. 3 1600# taken by each stirrup 8000 3 5 stirrups Reqd. 1600 Minimum stirrup Spacing : g : 4.5" 2 3.33' x 12" 3 9 stirrups @ 4.5" c.c. at each end. 4.5 ' Landing Post Design - Let A 3 4 x 12 3 48 sq. in. Gross area. - 35 - p 3 .02 As= 48 x .02 3 .96 sq. in. Use 4 - 4}"$bars A = 1.00 sq. in. Wt. = 48 x 515 x 150 = 275# 1214. Beam reaction 3 5280# Total axial load at base 3 5555# 5555 3 1155 p.s.i. Compression stress upon floor. 48 Allowable = 1350 p.s.i., therefore no footing is re- quired for this post. PARTITION’WALLS The Herth, South and East lower floor walls will be concrete partition.walls. A tentative thickness of 6" was arrived at by the use of / = 10' x 12: 4" 30 Assuming a wind load of 30 p.s.f. as before in the roof truss loading, this thickness is investigated. This wall will be independent of the inclosing mambers such as the upper wall beams and wall columns. Therefore it ‘will be assumed that there will be no transfer of loads from these members to the wall. The maximum wall area under action.of wind loads will be taken as fi'of the East wall minus the door area, the col- umn area, and the wall beam area. .A 3 12 48 - (14 1.12 l 3 3 1.24 I 12 x 10) %(X)12 1‘2 _ A 3 90 sq. ft. Total wind load 3 30 x 90 3 2700# Unit wind load 3 2700# 3 208#/Lin. Ft. . 13' This force may be considered to act at the third point from the base. Height 3 12 feet - 33 inches 3 111" B.M. 3 208 x 111 3 770 in. lbs. ’2 U AS 3 770 3 .011 sq. in. per ft. 20,000 x .866 x 4 Use %" a 5%" c.c. Spacing Shear 3 v 3 208 3 5 p.s.i. OK 12x .866 x4 BOVD u 3 208 3 38 p.s.i. OK 2 x .79 x .866 x 4 Temperature Steel .002 A C AS 3 111 x 6 x .002 3 .0093 sq. in. Reqd. 144 Use i" 0 l2" c.c. Spacing Door Lintel There is no appreciable load of partition wall above the 10' doors, therefore lintel is deemed unnecessary at these loca- tions. Special reinforcement will however be placed at the top cor- ners of the door openings in the wall. PARTITION’WALL FOOTIVTS For a 1 ft. section of wall, 6" thickness, height 117" W 3 .5 X l x 117 x 150 3 730#/lin. ft. 12 Assume wt. of footing 3 150#/1in. ft. T.L.: 880#/lin. ft. 280 3 .147 sq. ft. bearing area Reqd. 6000 Use a 2' width 6" thickness No reinforcement needed but temperature steel will be used. Use i" o bars 15" c.c. Spacing For Drawings - Girder Stirrups - %n 5 l (2) 3n 7 3 15" (1) (2) (3) - 38 - WATER DEMANDS irrigation 3 acres @-§ in. - acre/week Each acre to be irrigated once every 6 days 43,560 x .gg 3 967 cu. ft./acre/2 days 12 Q 3 967 x 7.48 3 7240 gal./2 days This quanity of water to be pumped in about 10 ~ 15 hours and stored for 2 days. Tank must have min. capacity of 7240 gal. Pump and well must be able to supply - 7240 3 724 Gal. 10 Hr. or 7240 3 485 Gal. 15 Hr. Livestock and Toultry Reqm. Cattle - 20 Ed. @ 10 g.p.d. - 200 g.p.d. Pigs - 10 @ 2 - 20 Poultry 200 @ 5g/100 - __;Q__ Total - 230 g.p.d. Spraying Regm. The Spraying equipment, capacity 400 gal., is used in the Spring, summer and fall. Spraying services are required mostly in the Spring and fall, therefore any demand for this purpose will not be added to the other demand for the total figure. The max. Spraying accomplished in one 24 hr. period is 5 loads 3 5 x 400 3 2000 gals. - 39 - It may be stated that max. demand conditions will occur in the summer when irrigation will be carried on at almost a constant rate. To this irrigation demand will be added the constant poultry and livestock demand. Qt 3 7240 l (2 x 230) 3 7700 gal. (Every 2 days) 22%9 3 770 gal./hr. Rate for a 10 hr. pumping period. Assuming the water table at 75' below Gd. Surface. A 4" well casing used Using these conditions, different type pumps will be selec- ted from "Deming Pump Catalog" and a final choice made. l pipegiet 2 pipe_1et Force Pump Unit No. S-660 Unit No. C-660 10150 15m: 15m: 1§HP Capa. - 845 g/hr. 845 g/hr. 855 g/hr. 2299 3 9.1 hr. of 2299 = 9.1 hr. 2299 3 9 hr. 845 pumping 845 855 4" Casing But, a 5" casing 3%" casing must be used. -- Unit Cost $266.00 $262.00 22229200 The 1 pipe Jet pump will be installed because of its low initial cost and size of well casing required. - STORAGE TANK DESIGN - The pump unit selected was capable of pumping against a 20 p.s.i. tank pressure. Since a pressure tank is not be- ing used , the maximum allowable lift from the pump to the storage tank is 20 x 2.31 3 46.2 ft. - 4o - The minimum tank capacity was computed as 7700 gal. In anticipation of future expansion and peak demands, a required tank capacity of 8500 gal. 8500 3 1136 cu. ft. 7.48 Assuming a tank 10' in.height. .A 3 113.6 sq. ft. \ Dia. =F13.6 x 4 = 12.1 ft. Say 12 ft. ”‘IT' The flow of 100 gallons will cause a decrease of 100 3 13.35 cu.‘ 7.38 , 13.35 3 13.35 3 .118 ft. A 1:3 1 ft. = 847.5 gal. The discharge of each 100 gallons from.this tank will lower the water level only .12 ft. This of course is true when the sides of the tank are vertical or if all horizontal sections are identical. This feature is favorable, that is, a constant static head under discharge provides uniform.flow. Rather than use pressure switches to govern the action of the pump - a float switch arrangement will be installed. This arrangement will operate so that pumping will begin.when the tank water level is lower than 5.00 feet and shut off when the water level reaches 9.75 feet. 9.75 - 5.00 3 4.75 foot range 4.75 x 847.5 3 4030 gal. 4030 3 4.75 hour pumping period. 335 The outlet of the tank will be installed at least fi-ft. from the bottom of the tank in order to prevent flow of settled material in the line. The advantage of static head gained in elevating this stor- age tank is deemed insufficient as compared to the cost of constructing a suitable support structure. Therefore the tank will simply rest upon a Spread footing. Therefore the gross static head available at the tank site is 9.75 feet. The well will be located adjacent to the tank and the pump will be mounted in the building, in the compartment on the first floor under the stairway landing. The distance from the pump to the well and tank is 20 feet. Ground elevation at tank - 130 ft. Length of pipe line to the point of irrigation distribution 3 163 feet. Elevation - 108 ft. Difference of elevation - 22 ft. Total gross static head - 9.75 f 22 3 31.75 ft. Ground SlOpegjalong pipewline) L1 - Water tank ,4 4s' - (130 - 116') - 14 ft. Diff. Elev. L2 - Next 51' - (116 - 110) - 6 ft. Diff. Elev. 19 - Next 69' - (110 - 108) - 2 ft. Diff. Elev. The pipe line will be laid to a minimum depth of 2 feet. No account of frost protection will be taken as the water facilities will not be used in freezing weather. PrOV1sions iliit‘} 1" $10!-."5‘13 ’ 2.7.! .l”\ .0544. .m--—s -w'q— .“2‘. . \<0\.k v. v V Wh.r..>\\ Q. \\<\5Q\ v- .. ”we”: pvr A—mn tun P 1. i. s... w . .0.” .\u_ if. u: _ i. 1:. .10., .1: 1 4K. .: . r ~§.l-.'.-. ‘11.] I141 '.Ilp 'nll' I \. .l a» llk. '95.-.l.~"...4 I... .l. ....ll.0.ln ell-1’. i .(I‘i - .o‘L..blwI-’o,vl ~.‘L "Ihr xi, 'ow-Q-u -- ~ , +- \\i ;.0|I'-l' 3-,| Ill..." III). 'Qll‘vtillg. -42- will be made to drain the line. Slope L 3 l4 3 32.6% 1 as = 6 3 11.75% L233: 3 2 3 2.9 % 1369 - Pipe Size Selection and Friction Losses - By the use of a diagram based on Hezen - Williams Formula with C 3 100 for C.I. pipe after 20 years service. Selecting a 4" diameter pipe, and a desired Q 3 100 gal./min. Head loss for L1 3 1.25 x .43 3 0.54' Head loss for L2 3 1.25 x .51 3 0.64' Head loss for L3 3 1.25 x .69 3.9299' Total Head Loss 3 2.04' V 8 2.6 f.p.s. A total head loss of l velocity head will be assumed sufficient to cover bend and nozzle losses: hL = 2.62 = .105 ft. 2 x 32.2 Total Head loss .5 this point: 2.04 / 0.105 3 2.145 ft. The next point of distribution and the end of the line for the present period of design is centrally located in the farm yard 110 ft. from the first point. Elevation - 101' Difference in elev. - (108-101) 3 7' Head loss in L4 3 1.25 x 1.1 3 1.375' 7"1“! -'Il“}.l‘lflui luv. new EL 6: . ”\U\\¥ “\(\nn.\\\fi.nu.\ V“? m (\(Nh Werngm \.kok M 1.15.. {00¢ Nb comfy I .w a A. '1‘.- "i I, [.1 ,lc. In . I 'u. ,. tin: ,‘ u I Ii :1 . .I u .I!A.III .lll‘lll.‘ -.II.|'III M. MO 0, .u -MN QXJ. new . Q 0 .9936, . 00 x V Mei u .00 . v 5.6.69 ... UQXV \ h .6: 00 ed... “manta .m \1 HI; . . . e. u 0.. ..\/ -... I. .>... .X \o {I fix \ . x (n 1 Ni .. v.3 - law»... :3. ed Y1... av. .0...“sz - \\< .w... VLU .r..lw.w\ev.w\.v (A X ‘II. I II! .I IV Ill... .30.,...K The -V \ M Sci . 0m «0.3.x \ 2%.... (NR - V\ 7“. -‘~_ .%3-._fi.— 1",, ..II|.I bil- , to be thus applied will be 20% or 5 cu. ft. per 100 cu. ft. of gravel. _- FINIS - RSI?" Ll 7'1“ 31:11:. SHIFTS ‘ s ‘ | l