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A THEOrwTICAL STUDY Of DISLOCATION £rxECLS
ON Th: STATIC AND DYw.A.IC xODULI OF CRYSTALS

by David H. Y. Yen

The relation between the static and dynamic moduli
of a perfect crystal is derived from the laws of thermody-
namics. However, if a crystal contains iupurities, this
relation is much more complicated. In this paper, the ef-
fects due to dislocations are studied.

The nonlineur stress-dislocation strain law dcrived
by Granato and Lucke to account for a strain amplitude de-
rendent internal friciion is used to define tune change of
effective static modulus. The stresse-dislocation strain
law depends on the distribution function of dislocation
loup lengths. A different distribution fuanction is suggest-
ed and a dififerent stress-dislocation strain law derived.
Numerical results of the changes of static and dynamic mo=-
duli are obtained by using boih stress-dislocation laws.

The results are also compared and discussed.
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CHAPTER I
INTRODUCTION

In the study of theory of elasticity, the genaerale-
ized Hooke's Law is postulated after the concepts of stress
and strain are introduced and formalized. It is well known
that this generalized Hooke's Law, being the starting point
of traditional elasticity, has the form of a 6 by 6 square
matrix for a completely anisotropic medium, i.e., the con-
stants Cij between stress and strain componénts in the fol-

lowing system of equations

6
c = zi Cij €; (v=1,2, - 6) (r=1t)

Y
teke up 36 inéependent values. However, depending upon the
existence of a strain-energy function and the symmetry pro-
perties of a specific material, this number of independent
elastic constants is greatly reduced. In the simplest case
for a material which possesses complete isotropy, there are
only two independent elastic constants.

Because in engineering design the values of tuese
elastic constants are at least equally as importent as the
mathematical theory of the strength of méterials itself, the
measurement of elastic constants of materials has had a long
history. Results of such measurements on various materials
by previous researchers have been reviewed and summarized in

)1,2

the papers by Hearmon (194631956 and by Huntington (1958).3

According to the ways these measurements are made,



the elastic constants nave the names of static and dynaamic
conscants. In the former case the mod.ulus is obtained by
directly measuring the stresses and strains, while in tae
latter case measurcments mry be made, for example, by using
resonance techniques to obtain the velocity of stress wave
pro_agation through the material; therefrom the elwstic con-
stants are calculated.

Static methods give the isothermal co .stants, in
the sense that the temperature is kept consiant during tie
me asurement; while dynemic methods sive the adiabatic cons-
tants, implying that during the measurement heat neither
flows in nor flows out. For a perfeci crystal, these two

constants are related by the following eqg.atlio.:

- bl . X " ¢/ ."
(5:], =550 = 2= (1-2)
static gynamic T
where (5;j] , the elastic cowpliances matrix is defined

as the inverse of the elastic coustants matrix, i.e.,

(cijilsijy = 1 (1-3)
Equatioa (1-3) can therefore be written cs
, - . L= cesct) o
ciy) — LGy = =T (1-4)
static Gomemil ;e

Herec¢ ;o; are tue cnangzes of strains :ngwith tem;erature T,
f is the density, and <p the specific uneat capacity.

It is seen from equation (1-4) that the static and dynamic

constants are directly r<lated by the thermodyneamic proper=-

ties of the material.

For a crystd wiich is other tuan perfect, it is

expecled that the imperfections will arfect the relationship
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between static and dynamic constants in equation (1-4),
While the meaning of the expression "imperfections in cry-
stals" has many implications, namely the following six pri-
mary types of imperfections:

(a) phonons

(b) electrons and holes

(c) excitons

(d) vacant lattice sites and interstitizl atoms

(e) foreign atoms in either interstitial or substitu-

tional positions

(£) dislocations
and the following tnree transient imperfections

(g) 1light quanta

(h) changed radiations

(i) nunchanged radiations,
it is only the effects of dislocations and those which inter-
act with dislocations during their motions under the action
of stresses that will be studied in what follows.

In 1941, Read4 first suggested that dislocatioa mo-
tion under applied stress might contribute to the observed
strain a.ud give rise to that portion of the internal friction
in metals which cannot be explained by other mechanisms.
There have been a great number of theoretical as well as
experimental investigatians since Read's suggestion on the
effects of impurities, and of cold work and annealing of the
specimens. Among them, Koehler (1952) made a theoretical

study of the influence of dislocatious and impurities on



the daumping and the elastic consctants of metal single crys-
tals by using the idea that the motion of a dislocation un-
der an oscillating stress can be considered analogous to the
motion of a damped vibrating string. By the method of suc-
cessive approximations Koehler solved the differential equa-
tions of motion and was thereby able to express the internal
frition loss and change of elastic modulus as a function of
frequency. He also derived expressions for the strain-
amplitude dependent internal friction loss and change of
elastic modulus by using ine idea that trie dislocation line
would break away from the impurity atoms at large strain
amplitudes.

Koehler's vibrating string model was further dcve-
loped by Granato and Lucke (1956)°, who solved the difter-
ential equations of motion in a much more general way, making
it possible to consider the dependence of the internal fric-
tion loss ana change of elas.ic modulus on the loop lengih
for all fiequencies.,

The vibrating-string model, as developed by Granato
and Liicke, leads to two types of loss and change of modulus.
The tirst type is a dynamic one due to the damping of the
vibrating dislocation segments, and is strain-emplitude in-
dependent. The second type is due to tne iact thut during
the loading and unloading parts of the stress cycle, points
on the stress-dislocation strain diagram do not iollow thLe
seme path, thus giving rise to a hystereskd locpe. For low

frequencies, the kilocycle renge, the stress-dislocation



strain relationship is independent of frequency, and so are
the internal friction loss and change of elastic modulus.

As <his paper is not primarily concerned with the
internal friction and change of elastic modulus in various
materials as functions of frequency, ampiitude, and the de-
gree of impurity, but rathner with the static ana d,namic
elastic constants in a dislocation-containing crystal, a
review of the various theories on the intexnal friction and
change of elastic constants will not given here. However,
it is interesting to note that in order to account for a
strain-amplitude dependent internal friction loss and change
of elastic modulus, a hysteresis loop in the stress-dislo-
cztion strain diagram was suggested in tine Granato and Lucke
development by extending the idea of breakaway first used by
Koehler. It was found that both the intermal friction and
the change of dynamic constant are directly proportional
to the arca of the hysteresis loop on the stress-dislocation
strain diagram, with the two proportionality constants being
of the same order of magnitude.

The static modulus of a crystal is obtained from the
stress-strain curve under static loading. Theoretically, t.e
load is applied to the specimen in a time of length infinity.
Under this type of loading one can not expect to have the
same stress-dislocation strain relation as obtained before,
as judged from a theoretical point of view, since the impu-
rities will not pin the dislocations in the way suggested,

but follow the applied stress in a diffusion process.



However, as the diffusion process is an extremely slow one,
while in actual practice the static loading and unloading
is always accomplished in a finite length of time, it is
reasonable to assume that diffusion of impurities will not
occur in actual cases. Under this assumption, the string
model and idea of breakaway can still be applied.

The stress-dislocation strain loop is dependent on
the magnitude of the maximum stress. The path of a point
on the loop is non-linear during the increasing-stress por-
tion of the cycle due to successive breakaways of the dis-
location line from impurities. But the path during decreas-
ing stress is linear since ihe entire bowed-out dislocations
come back to their original position as single loops. This
linear portion occurring during unloading will be used to
define the effective static modulus, which is dependent on
the maximum stress as mentioned above.

In the following chapter, both the effective.static
modulus and tiie dynamic modulus as a function of the maxi-
muwn stress, and,hence a function of the h;steresis loop,
will be studied and compared numerically. Furthermor;, as
the hysteresis loop in the stress-dislocation strain diagram
also depends on the distribution function of dislocation
loops (i.e., the number of loops for a given length ( as
a function of () under each stress, it is expected that a
different distribution of dislocation lines from the one
used by Granato and Lucke will affect the hysteresis loop

and hence the relationships between t.ie static and dynamic



modulus. In tne Granato and Lucke theory, the initial dis-
tribution of loop lengths Lo(the lengths determined by im-
purity atoms) is an exponential function, while in thc final
stage the lengths have a delta function distribution with
Ln, the network length, equal to a constant. There remains
the contradiction that in the initial distribution of L,
there are lengths greater than Ln. For this reason, an
alternate assumption is made about the distribution of loop
lengths after the breakaway from impurities occurs, and the

consequent results are studied and compared.



CHAPTEX II
PHEORY

In this chapter, a brief swimary of the vibruting
string model of dislocation movement under stress, as deve-
loped by Granato and Lucke, will be given in Section 1.
Section 2 covers the derivations of the functional depend-
encies of the distribution of dislocation loop lengths on
stress suggested by Granato and Lucke, as well as those
suggested by the author of this paper. In Section 3, thne
stress-dislocation strain laws as consequences of the deri-
vatians of Sectian 2 will be given. The definitioan of sta-
tic effective modulus and its relation to the dynamic modu-
lus as a recsult of the stress-dislocation strain hysteresis

loop will be given and discussed in Section 4.

Section I The Vibrating String Liodel

It is known tiat a crystal contains dislocations in
the form of a three-dimensional network. If the crystal
contains a large enough concentration of impurity atoms,
which interact with the dislocation lines through the so-
called Cottreil mechanism, there are two characteristic
dislocation lengins in tie model. They are : The networx
length Ln’ ana ti.e Length LC wnich is caused by tie pinning
action of the loops by the iupurities. In general, both

Ln and LC have distribation finctions wiich again are



functions of the applied load and otuner work conditions.

Wnen a shearing suress ¢~ 1s applied to the crystal,
two kinds of strain will occur: The elastic strain é&el ,
which would be the only strain we could have if the crystal
were "perfect"; and a dislocation strain &d4is due to tie re-
coverzble motion of the dislocations under the actiou of
stress ¢ , i.e.,

g€ = Lol t+ E&Edis (2-1)

The shearing stress ¢ and snearing strains are

related by the wave equation,

LS
d ¢
= (2-2)

EXa

o x*
where x is the directio.. of stress amplitude, and F the
density.

We al so have the Hooke's Law

¢ .

el = — (=7T42'7) (2-3)

where GG is the true shear inodulus.

Tie dislocation strain, &4/ , caused by a loop

of len;th { in a cube of ed.e L is given by

_ Jla
Eds= = 15— (2-4)
where ¥ 1is the ave.age displacement of a dislocation of

length !, and a the Burger's vector.
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¥ 1is given by:

-
/
3 -7/0 509 dy (2-5)

with y being the coordinate in the aislocation line as

shown in Figure 1.

L— - —y

Fig. 1 A bowed=-out dislccation
Now, if A is the total length of moveable dis-

location line in a unit cube, then
€gy = jha = 4-3—/" Jeurdy (2-6)
[

The equation of the vibrating string model for the

displacement of the dislocation under stress is

A df . 3 Ji:_ - C )’—’ = a¢- (2-7)

wnere ; = $ (x4, ¢)
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effective mass per uanit lengtu = wpa’
damping force per unit length

tension in tin= string = 2Gaé, 7 ¢i-v)
Poisson's .ratio

N, Qo
LU (I I 1

and the boundary conditions as shown in Figure 1 are

'.3("0' t) - O

[30x  ¢) = o (2-8)

To swnmmarize, we have tne following system of two

simdtaneous partial differential equations:

A . 1 . {
J T _ e 7 — A;a d - d
e x*r g ot* . ctise T
(2-9)
Py . 2
' < ~ (5 . -
. e - — = Q
ATty oo T e

together with the bo.ndary conditions (2-8). Tne solutions

are
. - x
Cet X “’Lf'v)
C = G- - (2-10)
and
= il
4a— ( o (2ne)TY i
- st n - -._—T -
3 TA "40 (2n+1) ! L’f": e d) (2-11)
)
7 [N — wd
where o = 28-‘ “h= (201t )7 lA—) ’ én = fan w?maw—;-
with
F
O Ay wd
=TT TR ety (2-12)



12

1 2 -
viw) = v[fi= Aoan twe - Y (2-13)

R s

if only the first term of the above series for ; is used,

i.e.
g —_ 4aC 50 ;’ 3-459
N A ‘ ) [(U):--:'}"-r(wd/‘J (2“10)'
in which v, =[&  a,- 8G4° ome
° f © | X . A .

Using the notations D = wW/d and .1 = W/d,, the

change of dynamic modulus is given by

8G _ iv-v) s L (- LY
— = (V‘_ = on__[ . 7.1.,.,_} (2-14)
o (1- 1507+ %50
2 1 7t
as L=1 = - . This gives the dependence of the

V). 2

change of dynamic modwlus on frequency.

Section II Distribution of Loop Length as a Function of
Stress

I+ can be shown that for freqaéucies in tuie kilo-

cycle range, the expression o -4,
[(wo*-w*)t 4 (wd)*]"

3
. . I LA
is essentially <3 T i as W<« w, and g, —»o,

therefore,
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: Aa.n’ (wo' - w¥)
w) = S L -
v V[' 2 n [rm —w) f(wd)"J (2-13)

if only the first term of the above series for f is used,

i.e,
3 = %2 5. 2t
T I TPy (2-10)°
in which v, =/&  4,- 8Ga" o me
i ° Tric T A,
Using the notations =W/d and .1 = / s the

change of dynamic modwlus is given by

AG _ iv-w) a7 (- LY
2 2 gt
as L= 1 = . This gives the dependence of the

v).z

change of dynamic modulus on frequency.

Section II Distribution of Loop Length as a Function of
Stress

It can be shown that for frequeucies in tie kilo-

cycle range, the expression e-:J,

[(wo*-wh)b 4 (2d)*)"?

i
: : / LA
is essentially . = 1 as w<«w, and g, »o0,
A, T C

therefore,
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1
,4(.\4"( Ty .
? = e3¢ ~$in T | (2-10)

The force exerted by the dislocation line at any

instant 1is

f o= clg-¢%) (2-15)
where

, _ o3 4a¢ | T

$ = “j— = .'(—r"'(_,-‘. cos —Lj
Therefore,

" 400‘(.(_,-1'_[;_)

Fmax = € (@, = 4, ) pmax = ”s (2-16)

By Cottrell’'s theory,7 breakaway occurs when
.
: 4G € a
fmo: = -[ = _{i"‘ (2=17)
where ¢’ is the difference in atomic radii divided by the
atomic radius of the solvent atom, and Z the distance

between tne impurity atom and the dislocation line.

So breakaway occurs when

(oo Ly 2 &

) _"_j_ (2-18)

4a ¢

Granato and Lucke assumed *that the initial distri-

bution of loop lengths is exponential, i.e.
l

no-

Lo -

where Lc here means the average value of the Lc's. Wwhen

MlL) = - di

the strain becomes very large, the loop lengths were assumed

to have a delta function distribution. For intermediate
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strains,they assumed that the distribution function, denoted
by N'({)d!/, consists of two parts, i.e., (1) an exponential
part due to loops in networks which have not yet broken

away; and (2) a delta function part due to the already bro-

ken away yart,

L

) JLL»e--/"" J (L, Lo, La)dl ot d
(L) dl = (2-19)
't' S(l-Lln) md( X &(«o0

wiere Ln méans the average of the Ln's and M is the fraction
of network lengths in which the breakaway process has occur-
red; J1 is determined by the condition that the length of
line lost from the exponential distribution is gained by

the delta function distribution.

Based on the idea of Koenler's statistical analysis
concerning the breakaway of two adjoining lengths of a cer-
tain sum, and also considering the fact that the breakaway
process is a catostrophic one within the network length,
Granato and Lucke found M, for the early stages of the

breakaway process, to be

-9
M= (Y—1)(9+1)¢€ (2-20)
(i =°£/L‘)
and J; is therefore
Jo= =M= - (y=i)qee)e (2-21)

Equations (2-19), togetncr with (2-20) and (2-21),

will be used in the next section for the derivation of the
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stress-dislocation strain law,

It is seen that in the above theory, the initial
distribution of loop lengths is exponential, and ranges
fro; zero to infinity, but in tne final sta_e, all lengths
have the same value Ln. As no loop reduaces its lengiu in
the brea.away process, the loops which initially have len-
gths greater than Ln will always be greater than Ln. So
the assumption made about the distribution in the final
sta.e is doubtful. For this reason an alternate assumption
is made below and the consequent results studied.

It is assumed that in the intermediate stage, the

distribution N'(!l)d’ is

l

(ﬁle-/‘.c Iz(i.Lg,L,‘)dl ofl(i
N'(()d(=( L (2-22)
TJL; o Tu dl Lel¢ 2o

N

It is obvious from (2-22) that the author has
assumed the same initial distribution as Granato and Lucke;
but, different from them,the broken-away part is taken to
be mn exponential function in the Ln's. Physically this
means that for each network length Ln which is greater than
or equal to £, the characteristic length, and which has
several impurities distributed randomly along its length,
there is always a chance to find two adjoining loops with
a sum which is at least;{. The significance of this assump-

tion will be further discussed later.



R V74
By requiring that } e E =J¢‘
0
J2 is fo.nd to be
? -
_ [ Ci+ -5=)e
J* - T ‘ o\i _—:“//L
g (2-23)
- /,
B e N o g—ﬂ e F
i— (1+ 9) (’_'i

Equations (2-22) and (2-23) will also be used in

the derivation of the stress-dislocation strain law.
Section III The Stresstislocation Strain Law

By (2-6) ana (2-10)''

A e l

Edis = L 3(y) dy
L ),
and
4arlt oy
3 7 c i L

performing the integration, one obtains

NAa  4sacl' 2.

€dig = — o =
g ]1’;{.. "
A3 ot Ut s
n4C
;A

, the in-pnase part
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el
By requiring that N eL = A

J2 is fo.nd to be

2 <~
z I8
(- Cot -Z=)e ™

j = _ Cld
, —
- :

{— (‘,L\ ) &—(L/LL—
Lo

g (2-23)
Loambe e
i— (t+ 9) e 1

Equations (2-22) and (2-23) will also be used in

the derivation of the stress-dislocation strain law.

Section III The Stress-=Dislocation Strain Law

By (2-6) and (2-10)'"'

A ¢ L
£ dis = = - 3(4)d
L),
and
4O’LL y
v . ™
P T et

performing tuie integration, one obtains

Ao gac(' 2
€dig = T
L A ¢

, the in-phase part
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of ¢ dig is

-AX 14
e R Bafl

Cdis = - - -— cos$ CWI ~kx) 2=2
rac ' o ( 4)
where k::-{% and is the wave number, Froa the above

equation ‘one secs that the dislocation strain is directly
proportiaal to the applied stress ::nd is also a function
of the loop lengtl.,

Neglecting the variation of stress over x, one
obteins for the contribution of a single loop of length (

to the dislocation strain

3

8a ¢ .3 »
{ - — Ceswi | L = YL

e
The dislocation strain fro.. tnhe contribution of
all loops is therefore

cas W=, g P w(yal (2-25)

[}

It nas to be noted tuat the distribution functiion
N'(() given by (2-=19) and (2-22) is dctermiued by the ins-
tanta:eous value of the stress for the guarter cycle of
increasing stress. For the quarter cyclc of decreasing
stress, the locps collapse elastically with no change in
the distribution function. Denoting by Ni(t) and N2'(L)
fof t..e increasirng and decresasing quarter cycles of stress,

respectively, and remembering that
__oxtfoi T

e ok I

equation (2-19) cen be written as

L am
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L
- -7 Tle
L:[«~Lr:ug:+ue Je dt
! ot [«
, /
NC)dl= -
\ -'EL;&(L‘LN).’E’—')(;H)l- “di
YRS
N(L)aL= (2-19)
‘ L —u‘:, ‘—‘
| AT S TR S B PSR P!
'. oo .
\ , AR YR
\NL(L,"L: / (9 ¢
o o
e L T e NG el Y U
bu LeLeo
-
where r = LA and ¢« = (", oS ot
AGL.»,
Substituting (2-19) into (2-25), one obtains
2 -1 Vt(f—l)(iu)
R S TR AR AL
; . (2-26)
SR | ;
-( gtatie ALEDIEEDNY

This simplifies to

"
< \‘ )
N
Cl

,-" r r ’_l"
. dis =olLl' 3.“( .}—4-‘)“’

(

(2=27)
Formuwla 1)

since q is taken in .the range 049 ¢ty and no ktreaxaway

occurs for q Y Y,

For the quarter cycle of decr.asing stress,

]

o —— e s e

-
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r
N AN T (2-27)
€ dis = Q[‘ et T J (Formula I)

8ot Ll 3!

where N = ctC

Similarly, (2-22) can be written as

r
~ T
4‘ -‘ .'(’-‘."v:) 2' ’ --ﬁ-‘ ‘lé
i L:L I—(l*—F)Q-Cu')L’ B ‘
N (dl = ofL <
" ‘ L
( ol
/. e Ll
N di o~ (2-220"
T r “/r:’-,' L
- l~~("‘;‘)‘ ”-“d
o f Lb?p( (H-\'E)*_“w‘J ozz/((
Wi (l)dl = ! YT
i ©
{\ L-'L LN d(_ f(. <
&~ N

Substituting (2-22) into (2-25) and performing the inte-

gration, one obttains

) , -4 ¢t 2t
— i - aQ ot = ’
€, dis Ty AL o v .7+£!)J
¢ 7
=1t =) - ;
‘\ (l d 3 - : + (2-28)
[o- (ic%) 27 - Y .
; ot -
, L . [ v
I S R

PR
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rb
b -
¥ r STV
€, dis — = (——+1) < v (2-27)
2 dis Q[ 3T J (Formula I)
2 Ba* L. 3!
where = £t C T
Similarly, (2-22) can be written as . .
r-, _'fv" '
4. ,‘ Ui (’-" lv:) 2— ’ _{.C ’(_ 5‘
P e e - o o :
I SN -{
| L
/ Lo g
/< Le L el S
N bl = (2-22)
! L F. ) -r:_'; L
| P LT R 2 by
Y . r" - -
‘ . L“P{ (’+{.3)ﬁ’ " ‘ i, &
Vi ()dl =] cevs
j ) L
L ':1\, g '\5(.(

Substituting (2-22) into (2-25) and performing the inte-

gration, one obtains

) o "tl ({L i’
P s - - — *
€, dis =y AL 3o g sa’lf
¢ -+
e S N (2-28)
[ (= (‘\"2) S / 9
N AU SR
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-1 -9
In the early stages e e 2o sy SO &
first simplificatim gives
3 L
2 - % 1
:Id:S :LPAL‘ SIL/ 'f‘( 3‘.-‘;7 2—’
3 .
= (2-29)

ST TR R

For cases where q is much larger than r, a further
simplication is given by
r L
Ergis = A L1+ P S J T

NI
(2-30)

or
E,dis = [ ( —+ WA(’ Cos s (Formula I11)

Some numerical results of the stress-dislocation
strain laws, equations (2-27) and (2-30) will be given in

the next chapter,

Section IV The Dependence of Chang.s in the Static and
Dynamic Modulus on the Stress Amplitude

It is readily seen that both the stress-dislocation

strain laws as given by equations (2-27) and (2=30) (refer-

red to as Formula I and Formula II in the following analysis)

have the following properties.

o
.

'L RS s

lh_.,
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FPig. 2 A qualitative s..etch of the stress-
dislocation strain relationship
(1) When « is small <.dis is linearly proportional
to ¢ , the proportimality constant being Q for Formula II.
For Formula I, tLis linearity holds until q = J .
(2) <. dis increases repidly (and nonlinearly) as o
incr.ases. However, when ¢ becomes sufficiently large, the

ClT-3) (Ter)

curve approaches the asymptove cdis = « I+ =

3 J
or  ay = QLY . respectively for the two theories.

(3) When the maximum stress ¢, (the point B) is rea-
ched, and the quarter cycle of decreasing gtress starts, tuae
path will tnen be a strai_nt line BO, determined by ¢, .
The slope of tinis straight line will be used to define the
change of the effcctive static modulus.

(4) Tre arca OABO has been snown by Grarato and Lucke
to be prurortional to the amnplitude - dependent internal
friction loss and the change of dynamic modulus. They also

showed that the ratio of the internal frictim to the change

of dynamic modulus, called r by t:em, is a co..staut.
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As the internal friction is given by the quotient of tihe
area OABO divided by twice the area of the triangle 0BB',

the change of dynemic modulus can be obtained once r is

known,

A_T__wf_iﬂ

—
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CHAPTER III
NULIERICAL RESULTS

In order to plot the stress-dislocatioun strain curves
given by Formula (I) and Formula (II), the following numeri-
cal values were chosen for the ba'ra.meters\ appeared in the ’
equations. They apply to a 99.999% pure copper crystal,

and are essentially the same as those used by Koehler?

in
his investigatiom.
= 2.55 A = 2.55% 1072 cm

1.4%10%%a = 3.5x10° ea/ca’

n

L x10%a = 2122107 @
8.93 gram/cm3

3.40 ,
4,53 x 10tt dynes/ cm®

2.51 ¢ 10”14 ‘gram/cn

3,90 x 1074 gram cm/sec2

N Thy oo:—»mt\_‘,o!.—'>F
"

: 2 5, s em?
= -»éi;f}é" = nL3xee? € Zagne
-6
= 4 x10 dynes
- Tt f = 1.8 x10! dynes/cm?
4 a Lc .

Three different values of ¥y, i.e., y =5, ¢ =10
and ¢ = 50 are used; and six curves are plotted up to the
range of strains which is several times g,, & being defined
as the point where the stress-dislocation strain curves
start to be nonlinear. On curves where no abrupt changes

from "linear" to "nonlinear" can be found, the point (6w, &w)
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ed.'f ems Stress - Dislocetion Strarn Curve
Formula (1)

7 =/0
-é
3xreo +—

]

asxer

e e

-6
2X10

/‘5'1/;

/X100 —

c.5xr0

2*/06 a’yﬂ"—f/c é

6
o 0. 4x/n /,,06 Ry -

Frg. 4
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6"";’ o D tress - D/'S/oCOf/bn Strain Curve
Formula (1)
T =10
-é
3xro +—
%
Z'j’r/oL‘
-6
2X10
£
y.5%/0 -
-6
/xr0
-6
agno
-
) . L -
o 0. 4xss s 006 4 Erp 2xr06 dynéis
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e
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5‘7‘/‘@5\5'0/'\3/0(,07*'/'3/‘, Strain Curve

é‘ \ Crn
d's /Cr»
Formelag (1)
r=250
X110 —
-4
/5xr0 i
/X’56 -
-€
efxre
’//.
o """/
—_— —
| | ! 7 -
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cm

€a’.'51 e SH#ress -Dis/ocation Stran Curve
Lormula (Z)

X =

o = /0
-7
15X/0
i
{
I
-7
/X720
-.7
abro’ - /
—
A ! . | X !
0 0.5',/05- VD 4 /05 ’, 5*/05 2‘(/05 " f)'lof O/y/’if/”z
~, 9. 7



Edrs

/,. 51/0

/X/0

-8
oS5xric

f—

29

57‘/—@55— DiSlccation Stron Curve

’IEOI"MLI/C( (17)

So




50

is defined as the point at which the nonlinear effect con-
tributes 1 4 to the total strain. Values of (fN,Cb)are given

in Table I.

Table I

Values of(z,Jm)on the ¢4, - Curves

Formila | ¥ ! TR cn L
I 5 3.6 x 10° 8.6« 10°'
I 10 1.8 +10° 2.5 1077
I .50 1.1 = 10° 1.5 1077
II | 5 2.6 % 10° 3.4 <107
IT .10 1.3210°  1.8<108
II ‘ 50 1.9x10% | 2.5x1079

|
'

It is seen from the above table that the (¢, )
points fall in ranges of different order. |

For cases in which (., is smaller than -, , there
is no amplitude-dependent change of dynamic modulus because
the hysteresis loop has zero area. However, there is a
change of static modulus determined by the slope of the
straight portion and the true elastic modulus. This change
is amplitude independent and has a constant value uwntil “.a,
is equal to ~, . Table II gives this amplitude independ-

ent changes of static modulus.
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Table IIX

Strain Amplitude Independent Changes
of Static lModulus

Formula ' X ’ (a G/G)static
I 5 - 0.098
I 10 = 0.060
I 50 - 0.'056
II | 5 - 0.056
II é 10 | - 0.056
11 50 f - 0.056

Results in the above Table wecre obtained as follows:
For a certain stress, the total strain is given by

Etotal = Eo] + Edis = (6;+Q’)('

where Q' is the dlope of the straight portion of the hystere-

sis looyp
! : T a
= + A = = - —
@ G . 9 E total +a’
PPO _ e a9 (3 1)
ST takic a (+ad
Taking 0 = 4.5 X n' a‘jne)/;,.."
' =13 em?,
and Q= R o= /. XD /dy..":’;
one obtains
a <
(—u—/ﬁaf-‘c = =-o0.05x

as given in.rows 3 to 6. Results in the first two rows were
obtained in a similar way.
The change of static modulus for strains greater

than ., ,' but still in the early nonlinear range, is given
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in Table III. Points chosen are those with strzins equal
to 2éw, 2cn, and 4 cwv, the czlculations technique is si-

milar to thnat described above.

7

Table III

Change of Static Modulus in the Early
Nonlinear Range

( a G/G)static a8t caax =

Fomllla. X e N ' e on ! ~ - ' e~ “w~
; i : '
I . 5 = 0.098 =~ 0.182 = 0.226' = 0.262 8.6x 10
I 10 - 0.060 - 0.112' = 0.146. = 0.177 2.5% 10 "

I.:© 50 - 0.056 = 0,113 = 0.153 = 0.188 1.5x 107
I 5 - 0.05 = 0.169 - 0.213 - 0.244 3.4%10
II 10 | - 0.056 - 0.197! - 0.246 | - 0.2902 1.8%10
I 50 % - 0.056 = 0.194] - 0.251| - 0.300| 2.5% 10"

The change of dynamic modulus,as explained in Chapter
II, is given in Table IV at _ smax = 2zcw~ > and 4 .
The results were obtained by dividing the area of the hys-
teresis loop by ten times ¢ ..., T.ax o In tiis way, a

factor of -~ = 5 ( r being the ratio of the intermnal fric-

tion to the change of dynamic modulus) has been used.
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Table IV

Change of Dynamic Modulus in the Early
] Nonlinear Range |

' - ( A G/G)dynamic at Emax=
Formula Yy | |

&N e &y | den | ze. o~
I s oo - 0.0291 - 0.057 = 0.041 8.6 10
I 10 ¢ 0 =-0.031 - 0.043) = 0.050 2.5 10
1 50 | 0 - 0.028 - 0.045' = 0.055 1.5 10
II 5 | 0 | -0.019| - 0.036 - 0.040| 3.4 10
II 10 0 | - 0.029| - 0.039 1 - 0.045| 1.8 10
II 50 | © | - 0.029| - 0.044 | = 0.053| 2.5 10

Results given in Table I thro.gh IV will be discu-

ssed in the next chapter.
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CEAFTER IV

DISCUSJION Al COLCLUSIONLS

Results obtained in Chapter III will be discussed
first. It is seen from Table I tiat the two theories pre-
dict aifferent orders of magnitude of stress. Whereas the
Granato and Lucke theory predicts that the stress-disloca-
tion strain relation starts to be nonlinear at stresses of

es
0 ", the theory suggested is this paper

the order |
gives results of the order 10 A9 . for low
values (low concentration of impurities) and of even lower
order for high & values. Also, results obtained by the
present theory are seen to be more sensitive to the value
assigned to ¥ than those obtained by the Granato and Lucke
theory. It must be left to experiments to determine which
theory gives the best rcsults.

The numerical results given in .Table II and III
are left uncompared, since no experimental results are
available. However, as one sees that some of the parameters
involved in the equations are not well established, the
values assigned to them are also questicnable. In faé%, the
stress-dislocation strain law depends on two pafameters,
namely Q and [ . Q in turn depends on L , [, , and
on f and L. . Therefore, a series of static measurements,
with soue of these parameters properly controlled, might
yield information about their exact values, For instance,

one might use neutron irradiation to produce interstitial
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atoms and lattice vacancies, which would pin the dislocations
and thus reduce the average value of Lcs .

As an example of the dependence of the results on
the parameters, one can see that if a value for Q one tenth
that previously assigned is used, results in Tables II and

III will also be reduced by approximately a factor of 10.

Results given in Table IV are too large as compared
with experimental resultsf since the latter are in the order
of 10 "’ t0 107 . The results given in Table IV are inde-
pendent of Q when only the relation between change of dyna-
mic modulus and stress amplitude is considered. However,
these results depend on r , the ratio of internal friction
and change of dynamic modulus, and the choice of r = 5 in
the present case is rather arbitrary. Granato and Licke
concluded that r is of the order of wiity in a detailed
analysis, but experimental results indicate that r ranges
from the order of uwuity to the order of ten.5 The purer
a specimen is, the greater the value r takes.

The significance of the suggested theory of the dis-
tribution of dislocation lengths will now be discussed. As
indicated in Chapter II, the broken-away portion of the loop
lengths has an exponential distribution e_l/"" for L ¢(¢<®
This means that for network lengths not less than £ , the
probability of finding two adjoining loops, separated by
an impurity on a particular network loop, with a sun equal
to or greater than X , is one. Obviously this is a very

good approximation for low ¥ values. This is because
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¢ 1is equal to the ratio of the average value of Lsx to that
of L. . On the other rand, the Granato ana Licke theory will
be a good approximation for high ¥ values,since then L. is
much larger than L¢yand in the initial distribution lengths
¢reater than L, can be neglected. In the‘prcsent investi-
gation, numerical results are compared for the cases ¥ = 5,

¥ = 10, and y = 50; but just how good an approximation
each theory gives is still in questiou.

Several other points should at least be mentioned.
Throughout this paper, the terms "elastic constant" and
"elastic mod.Jlus" have been used interchangeably; because
in the present case only one shearing stress and shearing
strain are used, the latter means the elastic shear
mnodulus G and ihe former means 044, with G = 044. However,
in general, though they are directly related, tnese two
do not egqual to each other.

If normal stress is used instead of shearing siress,
i.e., the longitudinal wave instead of the transverse wave,
an orientation factor taking accow:t of the orientation re-
lations between the direction of propageation or the longi-
tudinel wave cnd the slip plane and slip direction nas to
be introduced. The efiect of tuis orientation factor will
not be discussed Lere, but can be found in keference 6 in
the Bibliograrhy.

The use of the vitrating string model to account

for the internal friction and change of elastic modulus in

crystals due to dislocutions is but one or several existing
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theories in the study of dislocation damging in crystals.
However, as indicated by Niblett and Wilks® recently (1960),
the vibrating string model generally gives a fairly satis-
factory account of both the frequency dependent and ampli-
tude dependent internal friction loss and change of dynamic
modulus. It was also indicated that this theory enables

one to take account of the erfects on internal friction and
change of dynamic modulus due to temperature, cold work or
annealing, and impurities. The strain amplitudé dependent
part of the theory consists in the use of a nonlinear stress-
-dislocation strain law. This nonlinear relationship can
be used to define the change of static modulus, which can
be measured experimentally. Therefore, a combination of
static and dynamic measurements furnishes a method of check-
ing the current theories. Furthermore, the stress-disloca-
tion strain law depends on several parameters such as /1 ’
the dislocation density, and /., the average length of
dislocations between impurities, in different ways. 3y
properly changing and controlling such parameters, and
making both static and dynamic measuvrements, more informa-
tion about the internal structure of a crystal can be ob-

tained.
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