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A THEOKLTICAL STUDY OF DISLOCATIOR EEJECTS

.ON Th3 STATIC AND DYQAMIC MODULI OF CRYSTALS

by David H. Y. Yen

The relation between the static and dynamic moduli

of a perfect crystal is derived from the laws of thermody-

namics. However, if a crystal contains impurities, this

relation is much more complicated. In this paper, the ef-

fects due to dislocations are studied.

The nonlinear stress-dislocation strain law derived

by Granato and Lucke to account for a strain amplitude de-

pendent internal friction is used to define the change of

effective static modulus. The stress-dislocation strain

law depends on the distribution function of dislocation

loop lengths. A different distribution function is suggest-

ed and a different stress-dislocation strain law derived.

Numerical results of the changes of static and dynamic mo-

duli are obtained by using both stress-dislocation laws.

The results are also compared and discussed.
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CHAPTER I

INTRODUCTION

In the study of theory of elasticity, the general-

ized Hooke's Law is postulated after the concepts of stress

and strain are introduced and formalized. It is well known

that this generalized Hooke's Law, being the starting point

of traditional elasticity, has the form of a 6 by 6 square

matrix for a completely anisotropic medium, i.e., the con-

stants CU between stress and strain components in the fol-

lowing system of equations

(9

6‘: 2m; e,- (;=.,2.----é) (I—l)

'3!

take up 36 independent valuesm However, depending upon the

existence of a strain-energy function and the symmetry pro-

perties of a specific material, this number of independent

elastic constants is. greatly reduced. In the simplest case

for a material whiCh possesses complete isotropy, there are

only two independent elastic constants.

Because in engineering design the values of these

elastic constants are at least equally as important as the

mathematical theory of the strength of materials itself, the

measurement of elastic constants of materials has had a long

history. Results of such measurements on various materials

by previous researchers have been reviewed and summarized in

)1,2
the papers by Hearmon (1946:1956 and by Huntington (1958).3

According to the ways these measurements are made,



 

 

the elastic constants have the names of static and dynamic

constants. In the former case the modllus is obtained by

directly measuring the stresses and strains, while in the

latter case measurements may be made, for example, by using

resonance techniques to obtain the velocity of stress wave

propagation through the material; therefrom the elastic con-

stants are calculated.

Static methods give the isothermal co stants, in

the sense that the temperature is kept constant during the

measurement; while dynamic methods give the adiabatic cons-

tants, implying that during the measurement heat neither

flows in nor flows out. For a perfect crystal, these two

constants are related by the following equatiOA

 

- '7 . . ' " M I -‘—

[bo'.J -15....41 '2: 0‘ fi—J‘—- (1-2)

j Sfafic dynamm I“ LP

where (5’j] , the elastic compliances matrix is defined

as the inverse of the elastic constants matrix, i.e.,

aim-5,, = 1 (1-5)

Equation (1-3) can therefore be written as

I ”I / _'_‘ C\.""1/‘ /.

w —Uw -—-— ———..%—,—-—— (1-4)
nyfl‘C

Glann:C
)‘vl'D

Herecfi;aj are the changes of strainseqtu with temperature T,

‘f is the density, and czp the Specific heat capacity.

It is seen from equation (1-4) that the staticaand dynamic

constants are directly related by the thermodynamic proper-

ties of the material.

For a crystd. which is other than perfect, it is

eXpected that the imperfections will affect the relationship
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between static and dynamic constants in equation (led).

While the meaning of the expression "imperfections in cry-

stals" has many implications, namely the following six pri-

mary types of imperfections:

(a) phonons

(b) electrons and holes

(0) excitons

(d) vacant lattice sites and interstitial atoms

(e) foreign atoms in either interstitial or substitu-

tional positions

(f) dislocations

and the following three transient imperfections

(g) light quanta

(h) changed radiations

(i) unchanged radiations,

it is only the effects of dislocations and those which inter-

act with dislocations during their motions under the action

of stresses that will be studied in what follows.

In 1941, Read4 first suggested that dislocation mo-

tion under applied stress might contribute to the observed

strain and give rise to that portion of the internal friction

in metals which cannot be explained by other mechanisms.

There have been a great number of theoretical as tell as

experimental investigations since Head's suggestion on the

effects of impurities, and of cold work and annealing of the

Specimens. Among them, Koehler (1952) made a theoretical

study of the influence of dislocatiOns and impurities on



the damping and the elastic conSEants of metal single crys-

tals by using the idea that the motion of a dislocation un-

der an oscillating stress can be considered analogous to the

motion of a damped vibrating string. By the method of suc-

cessive approximations KOehler solved the differential equa-

tions of motion and was thereby able to express the internal

frition loss and change of elastic modulus as a function of

frequency. He also derived eXpressions for the strain-

amplitude dependent internal friction loss and change of

elastic modulus by using the idea that the dislocation line

would break away from the impurity atoms at large strain

amplitudes.

Koehler's vibrating string model was further deve-

lOped by Granato and Lucke (1956)6, who solved the differ-

ential equations of motion in a much more general way, making

it possible to consider the dependence of the internal fric-

tion loss and change of BlaSLlC modulus on the loop length

for all frequencies.

The vibrating-string model, as develOped by Granato

and Lhcke, leads to two types of loss and change of modulus.

The first type is a dynamic one due to the damping of the

vibrating dislocation segments, and is strain-amplitude in-

dependent. The second type is due to the Tact that during

the loading and unloading parts of the stress cycle, points

on the stress-dislocation strain diagram do not follow the

same path, thus giving rise to a hysteresis loop. For low

frequencies, the kilocycle range, the stress-dislocation



strain relationship is independent of frequency, and so are

the internal friction loss and change of elastic modulus.

As this paper is not primarily concerned with the

internal friction and change of elastfl: modulus in various

materials as functions of frequency, amplitude, and the de-

gree of impurity, but rather with the static and dynamic

elastic constants in a dislocation-containing crystal, a

review of the various theories on the internal friction and

change of elastic constants will not given here. However,

it is interesting to note that in order to account for a

strain-amplitude dependent internal friction loss and change

of elastic modulus, a hysteresis loop in the stress-dislo-

cation strain diagram was suggested in the Granato and Lucke

deve10pment by extending the idea of breakaway first used by

Koehler. It was found that both the internal friction and

the change of dynamic constant are directly proportional

to the area of the hysteresis loop on the stress-dislocation

strain diagram, with the two proportionality constants being

of the same order of magnitude.

The static modulus of a crystal is obtained from the

stress-strain curve under static loading. Theoretically, the

load is applied to the Specimen in a time of length infinity.

Under this type of loading one can not expect to have the

same stress-dislocation strain relation as obtained before,

as judged from a theoretical point of view, since the impu-

rities will not pin the dislocations in the way suggested,

but follow the applied stress in a diffusion process.



However, as the diffusion process is an extremely slow one,

while in actual practice the static loading and unloading

is always accomplished in a finite length of time, it is

reasonable to assume that diffusion of impurities will not

occur in actual cases. Under this assumption, the string

model and idea of breakaway can still be applied.

The stress-dislocation strain loop is dependent on

the magnitude of the maximum stress. The path of a point

on the loop is non-linear during the increasing-stress por-

tion of the cycle due to successive breakaways of the dis-

location line from impurities. But the path during decreas-

ing stress is linear since the entire bowed-out dislocations

come back to their original position as single loops. This

linear portion occurring during unloading will be used to

define the effective static modulus, Which is dependent on

the maximum stress as mentioned above.

In the following chapter, both the effective static

modulus and the dynamic modulus as a function of the maxi-

mum stress, and,hence a function of the hysteresis loop,

will be studied and compared numerically. Furthermore, as

the hysteresis loop in the stress-dislocation strain diagram

also depends on the distribution function of dislocation

loops (i.e., the number of loops for a given length C as

a function of () under each stress, it is expected that a

different distribution of dislocation lines from the one

used by Granato and Lucke will affect the hysteresis 100p

and hence the relationships between tne static and dynamic



modulus. In the Granato and Lucke theory, the initial dis-

tribution of loop lengths Lc(the lengths determined by im-

purity atoms) is an exponential function, while in the final

stage the lengths have a delta function distribution with

Ln, the network length, equal to a constant. There remains

the contradiction that in the initial distribution of LC

there are lengths greater than Ln. For this reason, an

alternate assumption is made about the distribution of loop

lengths after the breakaway from impurities occurs, and the

consequent results are studied and compared.



CHAPTER II

THEORY

In this chapter, a brief summary of the vibrating

string model of dislocation movement under stress, as deve-

lOped by Granato and Lucke, will be given in Section 1.

Section 2 covers the derivations of the functional depend-

encies of the distribution of dislocation 100p lengths on

stress Suggested by Granato and Lficke, as well as those

suggested by the author of this paper. In Section 3, the

stress-dislocation strain laws as consequences of the deri-

vations of Section 2will be given. The definition of sta-

tic effective modulus and its relation to the dynamic modu-

lus as a result of the stress-dislocation strain hysteresrs

loop will be given and discussed in Section 4.

Section I The Vibrating String Model

It is known that a crystal contains dislocations in

the form of a three-dimensional network. If the crystal

contains a large enough concentration of impurity atoms,

which interact with the dislocation lines through the so-

called Cottrell mechanism, there are two characteristic

dislocation lengths in the model. They are : The network

length Ln’ and the Length LC which is caused by the pinning

action of the 100ps by the impurities. In general, both

Ln and LC have distribution functions which again are



functions of the applied load and other work conditions.

When a shearing stress d‘is applied to the crystal,

two kinds of strain will occur: The elastic strain £2! ,

which would be the only strain we could have if the crystal

were "perfect"; and a dislocation Strain Edu due to the re-

coverable motion of the dislocations under the acti0n of

stress 0‘ , i.e.,

E '3 Eel+ 8.1:. (2-1)

The shearing stress er and shearing strains are

related by the wave equation,

a. ‘4

a f a -

v“ ‘ “L— = 0 (2-2)
ax‘ at‘

Where x is the direction of stress amplitude, and [p the

density.

We also have the Hooke's Law

r __L.

5"" = ‘6;— (= ‘44 0') (2—3)

where C: is the true shear modulus.

The dislocation strain, £,fi, , caused by a loop

of length L in a cube of edge L is given by

8d“:- if;
(2_4)

where f is the average diSplacement of a dislocation of

length l, and a the Burger's vector.



lO

} is given by:

.. I I

z -—;/ Wyn/y (2-5)

with y being the coordinate in the dislocation line as

shown in Figure l.

“’7

Fig. l A bowed-out dislocation

Now, if .A. is the total length of moveable dis-

location line in a unit cube, then

6w: = i110 = 7—) é'wdy (2-6)
0

The equation of the vibrating string model for the

diSplaoement of the dislocation under stress is

a i a5 a j

A ‘ 5 9‘4 ‘ C y? ‘ or (2-7)
tr

 

 

where 3‘ 3'(x,7,t)
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effective mass per unit length = 71/701

damping force per unit length

tension in the string = a C: az/'1T(I-U)

, Poisson's ratio

"
\
J
O
t
U
t
D

I
I

II
II

I!

and the boundary conditions as shown in Figure l are

,|§(‘o0otl - O

[3C)L, L, t) = o (2-8)

To summarize, we have the following system of two

simultaneous partial differential equations:

 
 

 

d5..- 5’ a,” _ Afa i -d'

.1» ‘3 w __ “'7‘ am , >
,

(2-9)

\ L. A ‘1 _‘)l~ -

A :15 V 555-- I :73 ._.. a
,

 

   

are

x

“A K I ) (f‘ V)

(— = (a - - (2-10)

and

‘3‘
_ 4;}.

4aF‘ ~'.‘ I (. (Mung t.

2.;
an») —— ..... A..- ‘-

} FA Z an“) A ((0:.-_,-:2)‘+;':-Jd)1,'"’z (2 11)

330
n

_ ,. I

8 _". .1 /z ;_ + "’ Jig.—

Where d z t-Q-"J'= (2n 1! A l K A) I é" .Qn a)"; v.1“

with

Z

M0 “1593':
9'36!

“W ‘ I (2-12)
 

 

.2 V H [ll/0.,az—u‘l/It4éwdjlj
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44-41 _.-_-.‘_ft’:é_‘_“.°7_
2. n [(AIf—Jj‘mwdflj

viw) = v00- (2-13)

if only the first term of the above series for f is used,

i.e.

.. -'.‘a

9 - 4““ 5' ’7 3-— ---_.__. an -— _...

"14’ I [(u),‘- v‘j‘flwd/‘J
(2-10)’

in which ./ = A; A $.85i9f gil "19

a f 0 w’c’- ’~ A .

Using the notations D =<#/d and fl = Q/Jb, the

change of dynamic modulus is given by

 

AC: ____ deg _ A.1l__z[ (I— L27“] (2 14)

L31 Va 7’ (1,- 11))”4 2711)).

2 1 v1

as L:=.Z = - . This gives the dependence of the 

9'). 2

change of dynamic modulus on frequency.

Section II Distribution of Loop Length as a Function of

Stress

It can be shown that for frequencies in the kilo-

cycle range, the expression e-—£J,

['(wf- «0‘2" + (a 00‘] "'1

 

 is essentially ‘ ‘ = - ‘C. as u: << w, and ()0 a o ,

A» if

therefore,
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fl "’

V ('00) == V°["' :Ldfii __-.__ I, _ (2'13)

if only the first term of the above series for f is used,

i.e.

é —-fi°r . F9 e‘d°

11,, 5" T [(a.»,t.e*/‘+:e}:}3] <2-10>'

in which u, efé. A ”8519‘. 9-‘2 7’15:

f 0 IT’C' / ’ A .

Using the notations D =<M/d and 11 = Q/wb, the

change of dynamic modulus is given by

 

AC? _ lit/Vary _ A. 251' ("“ 1-2,}

5., I V, ' «n (I-- 11.))... 372:] (2-14)

2 2 Tl
as L:= Z = ~——— . This gives the dependence of the

change of dynamic modulus on frequency.

Section II Distribution of Loop Length as a Function of

Stress

It can be shown that for frequencies in the kilo-

cycle range, the expression e.-JJ,

 

[(W01“W‘)l + (>0 60‘] y,

L

. . I L A
is essentially ‘ . = -- t as u) << w, and a —. a ,

A: if C. o

  

therefore,



13

J

.TFTA_ .'”9

573.; SM, L

g 2. (2-10)"

The force exerted by the dislocation line at any

instant is

3‘ '2 “INT-v) (2-15)

where

a} 40.;L

¢ := pf“: 'LLCIC” :2

Therefore,

' 4arLL+El

In... a L (T. , 4.)...“ = (2-15)We

By Cottrell's theory,7 breakaway occurs when

A”, = ,5 2 4—95-94 (2-17)

where e’ is the difference in atomic radii divided by the

atomic radius of the solvent atom, and Z the distance

between the impurity atom and the dislocation line.

So breakaway occurs when

.; (2-18)

Granato and Lfioke assumed that the initial distri-

bution of 100p lengths is exponential, i.e.

1

Le.

Q

 

dL

L

‘ L

LL

where Lc here means the average value of the Lc's. When

N;LU)==-

the strain becomes very large, the loop lengths were assumed

to have a delta function distribution. For intermediate
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strains,they assumedthat the distribution function, denoted

by N'(()d£, consists of two parts, i.e., (1) an exponential

part due to 100ps in networks which have not yet broken

away; and (2) a delta function part due to the already bro-

ken away part,

L

 

 

1 J11 e—Ao 1: (irtL,Lfl) dl OéZ‘ i

”QM: (2-19)

té(L'1~)MdL ,{e(<oo

Niere Ln means the average of the Ln's and M is the fraction

of network lengths in wnich the breakaway process has occur-

red; Jl is determined by the condition that the length of

line lost from the exponential distribution is gained by

the delta function distribution.

Based on the idea of Koehler's statistical analysis

concerning the breakaway of two adjoining lengths of a cer-

tain sum, and also considering the fact that the breakaway

process is a catostrOphic one within the network length, I

Granato and Lucke found M, for the early stages of the

breakaway process, to be

-fl.

M=(1_.;(q+.)e (2-20)

(i=afi/L‘)

and J. is therefore

J.= I-M - n-(zr-l)(g+«)e‘q (2-21)

Equations (2-19), together with (2-20) and (2-21),

will be used in the next section for the derivation of the



 

l5

stress-dislocation strain law.

It is seen that in the above theory, the initial

distribution of 100p lengths is exponential, and ranges

from zero to infinity,-but in the final stage, all lengths

have the same value Ln. As no 100p reduces its length in

the breakaway process, the loops which initially have len-

gths greater than Ln will always be greater than Ln. So

the assumption made about the distribution in the final

stage is doubtful. For this reasonznialternate assumption

is made below and the consequent results studied.

It is assumed that in the intermediate stage, the

distribution N'(l)d£ is

L

 {fi,e-/L°L£i.u.t~)dl ash-fl

~Y{)d(= ( L (2'22)

-%E,e'{w at iechw
fl

It is obvious from (2-22) that the author has

assumed the same initial distribution as Granato and Lficke;

but, different from them,the broken-away part is taken to

be an exponential function in the Ln's. Physically this

means that for each network length Ln which is greater than

or equal to¢£, the characteristic length, and which has

several impurities distributed randomly along its length,

there is always a chance to find two adjoining loops with

a sum which is at least;(. The significance of this assump-

tion will be further discussed later.



 

By requiring that I ~’(()JL = JL,

J2 is fo nd to be

(2-2'5)

9 3"
l— (I + 5—) ‘3'

(- Ll+ (1)8-

-.

.—

_.-

3

Equations (2-22) and (2-23) will also be used in

the derivation of the stress-dislocation strain law.

Section III The Stresstislocation Strain Law

By (2-6) and (2-10)“

A. a l

 

(16135 =-= ' Ujldj’

L J.

and

L

- 515:E__ ; 121

3 U’L, L

performing the integration, one obtains

JLa .4aC‘Ll it

 

edofi '3

.152,“ :‘T

41:30‘tz5‘

n4 L

.041 tactic-3:7)
, the in-phase part
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.' g0

By requiring that r (MUM = A,

J2 is fo nd to be

(2-23)

.3/

l—(fv' 37-)‘3'

‘— L 1+ 9 ) a

- -

i“

h—

-3

Equations (2-22) and (2-23) will also be used in

the derivation of the stress-dislocation strain law.

Section III The StresseDislocation Strain Law

By (2-6) and (2-10)"

 

l
b a

eons: f ’ ujjdj

L J.

and

4 "LL
-w -_1L___ 5..fli

3 U3L/ S L

performing the integration, one obtains

z .

__ jLa .4aC‘L z;

6 dig -° L hit—3. ;‘—— E:

 

, the in-phase part
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Of 6 d3, is

-AK 3, l

a L ' .

561:5 = C0. 6' A 8 "‘ COS CW: “ h ‘) (2-24)

r4'C .» '

:1where k: v and is the wave number. From the above

equation‘bne sees that the dislocation strain is directly

prOportional to the applied stress and is also a function

of the 100p length.

Neglecting the variation of stress over x, one

obtains for the contribution of a single loop of length L

to the dislocation strain

( 39‘ V7 3
—- USO/C ‘ L, =‘“.9 J H

The dislocation strain from the contribution of

all lOOpS is therefore

e as (ti/=1 m’ MW at (2-25)

0

It has to be noted that the distribution function

N'(() given by (2-19) and (2-22).is determined by the ins-

tantaneous value of the stress for the quarter cycle of

increasing stress. For the quarter cycle of decreasing

stress, the loops collapse elastically with no change in

the distribution function. Denoting by Ni(t) and N2'(L)

for the increasing and decreasing quarter cycles of stress,

reapectively, and remembering that

54' - vii. .1. _ 1".
3 Z "L?“ 4314., o“ ‘2

equation (2-19) can be written as

W
-

L
3
‘
:
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p __L

P '5’" L“,
”D” Lf-l)(;:4t)e ]a db

! 0£L453

, /
N. (Udl " , r,

ll
K A , h, r F o—t’.‘ ,

'EéLL‘Lfl)13-l)t7-H)— 0“

C.._‘-‘-L<°"

I _ 3 ,

.v(£)dl.- ‘ r’ L (2”,?)

i L ’9‘; "‘

i JeLLl-Lr-lM—(g-4I)» J: ‘ at
1. [If LC. “0 .

i 4.’ < ;

K N:(L}dt 3 [K
a b ‘

' f 4 -FC

,-:, j M ‘,- P ‘9 5', .

L 'T' ALL-L.;(z-—UL r. «W - a,
u Ls‘L-L‘ at)

L -

Wllere r, :; n ~+-——- 311d 5.“ : 6‘0 (.05 «J +

Aral-c,

Substituting (2-l9) into (2-25), one obtains

2. -i' 31({-:)(fiu)

. Mum” a { -—-—----,-, —— -

i3 q‘ (2-26)

-[ 31+ :—+ Q.+I +(Jaq(g+u]}j

This simplifies to

~
.
3

t
.
\
"
J

\
‘
—
—
—
J

c
;

tf i‘ 2,” ‘ ,.,.

an“, =uLa+ 35‘ "7+ )" (2-27)
(Formula I)

since q is taken ithhe range 04:3 53" and no breakaway

occurs for q ) K.

For the quarter cycle of decroasing stress,
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(3 {’ 5‘33: _
6 ; ;; :1-‘7 (—t--+') 9 ° (2'27)zds OK 3. o. J (Formula I)

g 1.

8.14. L. 3!
where =d ri'c

Similarly, (2-22) can be written as
r

F’ _/"’~" L

4-7 "(’+I'u’:) 2' ' ‘ -L-¢ H
", ' _,,—- g, («L

. LLL l‘('+'CZ-‘)a 30')

NIH/fl I ‘ o£L<V§

x L ‘i; n H 4:.

i U" View“

/ I

NIH) dt "" (z -z.2.)

P .

‘ 1 , ' .r’. -’u"’- L

“L ‘.,(,4._9)., ,5“;

[I m“ - n} -. do

f ° (' (l+'5)~"- ’0 .
I .' - (I f.

\H"({)dt .1: I Out/st

L.t Lu at 5L (

Substituting (2-22) into (2-25) and performing the inte-

gration , one obtains

_ -‘1 c," ‘2’.

._ '11": ': 'fn.,f.+_f_)°

5, dis ‘ 7511.0 “Li" U l 2 52;

-3 '

( 2)n 7?. .

f !- If“: .,,. ’

.; ‘ . --; + (2-28)
2.” <5";

I (l\;) 3

o'- ‘1',
J» , ,1 u

+k ”*1 '.— +094 / V J
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y}. ‘13 :,_

6 ; a; tr--(-—:--+t) v 0 (2-27)

“'5 Q[ 3! 0 J (Formula I)

I Q 8021. L: 3!

were - 1'" L
5?"

Similarly, (2-22) can be written as r g

F, _' a" ’ I

4‘: ._, (,4 Fig) 3.. /r I -f-‘c : f

—' -- - at

L:L I-(l'f'CVT'IQ
—C‘u'

NIH/dle'
¢5L<c\

{ i -é

‘ >3 ~ “ d:

‘l U"
{:L(*

I , q ,

I

N(()dL -

(2-22.)

F ,
i 4 / r r, ) -10."- “’L.

-L l— ([4 9 _ 5 “

[it "—
-uJ 4w db

,. .1 b (“(14'4'0)’. ’0 ‘ .

\Hz.l({)d( 3'- ’]
offi/ (1.!

f A, P

'i. v L" M .51 4
bN

..

Substituting (2-22) into (2-25) and

gration, one obtains

,. -‘i

‘ “i"“l‘i-"I-"’
n+9.é,d,5 "‘fJJo 3.“. o.

q -3.
.> (‘7‘

.r s—(I+~:)+:. ' r

x v I
O

-:l ‘r‘f

Z {-(HZ); ' )

ii 9‘ V.
.t - >‘-:- +

+ k 3! c l-

"? 4» 5’3 4.. z. j w J

(2-28)
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In the early stages 3‘37; >2 «9:9 '3 0 , so a

first simplification gives

1 x ’ Q‘

,Lds=jWAl.NLr+(fl7f 2—+

53- ‘ (249)
+3 3 + 3") , 'J'

For cases where q is much larger than r, a further

simplication is given by

éndu == 0 Ll't -, —-n “ j r
3’9 0-3

(2-30)

’5 - F or

i 5 3.,~ (Formula II)
Laid/‘5 =- £21 ‘-+- "‘35“:- ‘3- J“

Some numerical results of the stress-dislocation

strain laws, equations (2-27) and (2-30) will be given in

the next chapter.

Section IV The Dependence of Changes in the Static and

Dynamic Modulus on the Stress Amplitude

It is readily seen that both the stress-dislocation

strain laws as given by equations (2-27) and (2-30) (refer-

red to as Formula I and Formula II in the following analysis)

have the following prOperties.
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Fig. 2 A qualitative snetch of the stress—

dislocation strain relationship

(1) When af is small .:.w; is linearly proportional

to g” , the prOportionality constant being Q for Formula II.

For Formula I, this linearity holds until q = r.

(2) c4555 increases rapidly (and nonlinearly) as 6'

increases. However, when. f‘beoomes sufficiently large, the

curve approaches the asymptote c.ns a le+ KIEZSZir+ti~J

or en” '= Q.Lrli<'respectively for the two theories.

(3) When the maximum stress CT, (the point B) is rea-

ched, and the quarter cycle of decreasing stress starts, the

path will then be a straight line BO, determined by 6} .

The slepe of this straight line will be used to define the

change of the effective static modulus.

(4) The area OABO has been shown by Granato and Lucke

to be proportional to the amplitude - dependent internal

friction loss and the change of dynamic modulus. They also

showed that the ratio of the internal frictial to the change

of dynamic modulus, called r by them, is a constant.
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As the internal friction is given by the quotient of the

area OABO divided by twice the area of the triangle OBB',

the change of dynamic modulus can be obtained once r is

XIIOWIIO
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CHAPTER III

NUMERICAL RESULTS

In order to plot the stress-dislocation strain curves

given by Formula (I) and Formula (II), the following numeri-

I

cal'values were chosen for the parameters appeared in, the

equations. They apply to a 99.999% pure copper crystal,

5
and are essentially the same as those used by Koehler in

his investigation.

= 2.55 A = 2.55' 10"8 cm

  

a.

A = 1.4 . 1016a .-.-. 3.5x 105.3 cal/cm}

LC: “LI—2" 1030 = 2.12:: 10"5 am

f.= 8.93 gram/cm3

V = 3.49

G = 4.53:21011 dynes/cm2

A = 2.5111'10'14 gram/cm

c = 3.90 x 10"4 gram cm/se02

Q = -éi‘f}é:__3i = L; “0‘” "“z/dyne

7? = 4 «10"6 dynes

f" = 4": 1,: = 1.8 X lO7 dynes/cm’2

Three different values of 3’, i.e., 2; = 5, 3’ = 10

and 5’ r. 50 are used; and six curves are plotted up to the

range of strains which is several times 2,, a, being defined

as the point where the stress-dislocation strain curves

start to be nonlinear. On curves where no abrupt changes

from "linear" to "nonlinear" can be found, the point (6., t...)
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is defined as the point at which the nonlinear effect con-

tributes 1 % to the total strain. Values of’(£~,cv)are given

in Table I.

Table I

Values of(£..a',)on the 2d,, - a’ Curves

 

Formula 3 K I r” dynfjg’,’ u, 92;“

I 5 ' , 3.6 . 106 8.6 x 10‘7

I I 10 1.8 .106 2.5 e 10‘7

I , 50 . 1.1 x 106 1.5 x 10’7

II E 5 2.6 . 105 5.4 . 10'Q

II J" 10 1.5 . 105 f 1.8 . 10"8

II I 50 1.9 x 104 i 2.5 x 10"9

It is seen from the above table that the ('3N‘,r;)

points fall in ranges of different order. '

For cases in which 5:3. is smaller than r; , there

is no amplitude-dependent change of dynamic modulus because

the hysteresis loop has zero area. However, there is a

change of static modulus determined by the s10pe of the

straight portion and the true elastic modulus. This change

is amplitude independent and has a constant value until";m

is equal to f} .' Table II gives this amplitude independ-

ent changes ofstatic modulus.
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Table II

Strain Amplitude Independent Changes

of Static Modulus

 

Formula I K' I ( A G/G)static

I 5 ‘y - 0.098

'I ‘ 10 I. - 0.060

I - 50 ‘ - 03056

H I 5 - 0.056

II E 10 ; - 0.056

I

Results in the above Table Were obtained as follows:

For a certain stress, the total strain is given by

E+o+ao = as] + 84:; =- («é—+6.“)?

where Q' is the slope of the straight portion of the hystere-

 

 

sis 100p

I .
0'

(.1
(J = a + A = ‘

— I --._I

, q tfofal (+016?

(-91) _ -_E:'.T.‘i’__ ._ .. u a’ (3 1)
‘ usfoh‘c UT [4’ ‘3 Q,

.
' (.5 1

Taking or = 4.53 x In" “7" an}

I "J 9M”,

and u? = ‘3 = "J "0 /""7.""‘

one obtains

(———““' — -
or Jfaffc — 0‘ o 53

as given in rows 3 to 6. Results in the first two rows were

obtained in a similar way.

The change of static modulus for strains greater

than 4%” ,‘but still in the early nonlinear range, is given
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in Table III. Points chosen are those with strains equal

to 22..., $¢~ , and 4.... , the calculations technique is si-

milar to that described above.

2

Table III

Change of Static Modulus in the Early

Nonlinear Range

( A G/G)static at 2,4, =

 

Ebrmula; 3’ ON ' .22” I )9” l 4.9” a”

I § 5 ' - 0.098 - 0.182: - 0.226i - 0.262 8.6»10'7

I i 10 - 0.060 - 0.112? - 0.146: - 0.177- 2.5. 10‘1

1.. . 50 ‘ - 0.056 - 0.115§ - 0.155) - 0.188 1.51 10"

II 5 - 0.056 - 0.169: - 0.213; - 0.244‘ 3.4110"3

II . 10 i - 0.0565 - 0.197g - 0.246i - 0.290; 1.8-rlO-8

11 50 g - 0.056 - 0.194% - 0.251 - 0.300; 2,5. lo'q

The change of dynamic modulus,as eXplained in Chapter

II, is given in Table IV at ;,Ma, =.;.~, 5.e~ and‘4ey

The results were obtained by dividing the area of the hys-

teresis 100p by ten times a.m%,.'ffia, . In this way, a

factor of re = 5 ( r being the ratio 0f the internal fric-

tion to the change of dynamic modulus) has been used.
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Table IV

Change of Dynamic Modulus in the Early

.' Nonlinear Range '

( 4 G/G)dynamic at a...=~

 

Formula; 3’ ‘gl ‘45“ I 5a,. 1 4,“ c».

I § 5 E 0 f - 0.029: - 0.057 ; 0.041? 8.6 10 _

I i 10 g 0 - 0.051i - 0.043l - 0.050‘ 2.5 10

I 50 E 0 g - 0.028! - 0.045% - 0.055: 1.5 10

II .5 0 E - 0.019 - 0.056; - 0.040 3.4 10

III “10 o z - 0.029 - 0.039! - 0.045 1.8 10

II _ 50 0 - 0.029, - 0.044 - 0.053 2.5 10    

Results given in Table I through IV will be discu-

ssed in the next chapter.
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CHAPTER IV

DISCUSJION AND COLCLUSIORS

Results obtained in Chapter III will be discussed

first. It is seen from Table I that the two theories pre-

dict different orders of magnitude of stress. Whereas the

Granato and Lucke theory predicts that the stress-disloca-

tion strain relation starts to be nonlinear at stresses of

n?é: d9 jémz, the theory suggested is this paper
the order 10

gives results of the order [0 5 ‘J""e‘/,,,...tl for low

values (low concentration of impurities) and of even lower

order for high 6’ values. Also, results obtained by the

present theory are seen to be more sensitive to the value

assigned to r than those obtained by the Granato and Lucke'

theory. It must be left to experimenms to determine which

theory gives the best results.

The numerical results given in .Table II and III

are left uncompared, since no exPerimental results are

available. However, as one sees that some of the parameters

involved in the equations are not well established, the

values assigned to them are also questionable. In fact, the

stress-dislocation strain law depends on two parameters,

namely Q and {7 . ‘Q in turn depends on J , Lc , and f"

on f. and Lw_ . Therefore, a series of static measurements,

with some of these parameters properly controlled, might

yield information about their exact values. For instance,

one might use neutron irradiation to produce interstitial
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atoms and lattice vacancies, which would pin the dislocations

and thus reduce the average value of L2; .

As an example of the dependence of the results on

the parameters, one can see that if a value for Q one tenth

that previously assigned is used, results in Tables II and

III will also be reduced by approximately a factor of 10.

Results given in Table IV are too large as compared

with experimental results? since the latter are in the order

of lO'J to 10-5 . The results given in Table IV are inde-

pendent of Q when only the relation between change of dyna-

mic modulus and stress amplitude is considered. However,

these results depend on r , the ratio of internal friction

and change of dynamic modulus, and the choice of r" = 5 in

the present case is rather arbitrary. Granato and Lucke

concluded that r is of the order of unity in a detailed

analysis, but experimental results indicate that r ranges

from the order of unity to the order of ten.5 The purer

a specimen is, the greater the value r takes.

The significance of the suggested theory of the dis-

tribution of dislocation lengths will now be discussed. As

indicated in Chapter II, the broken-away portion of the 100p

lengths has an exponential distribution 64/“ for I 51‘ °°

This means that for network lengths not less than ii, the

probability of finding two adjoining 100ps, separated by

an impurity on a particular network 100p, with a sum equal

to or greater than J: , is one. Obviously this is a very

good approximation for low 3’ values. This is because
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r' is equal to the ratio of the average value of L” to that

of L, . On the other hand, the Granato and Lucke theory will

be a good approximation for high 3’ values,since then LN is

much larger than L,,and in the initial distribution lengths

greater than L” can be neglected. In the present investi-

gation, numerical results are compared for the cases I = 5,

3' = 10, and 5': 50; but just how good an approximation

each theory gives is still in question.

Several other points should at least be mentioned.

Throughout this paper, the terms "elaStic constant" and

"elastic modulus" have been used interchangeably; because

in the present case only one shearing stress and shearing

strain are used, the latter means the elastic shear

modulus G and the former means c44, with G = c44. However,

in general, though they are directly related, these two

do not equal to each other.

If normal stress is used instead of shearing stress,

i.e., the longitudinal wave instead of the transverse wave,

an orientation factor taking account of the orientation re-

lations between the direction of propagation of the longi-

tudinal wave and the slip plane and slip direction has to

be introduced. The effect of this orientation factor will

not be discussed here, but can be found in Reference 6 in

the Bibliography.

The use of the vibrating string model to account

for the internal friction and change of elastic modulus in

crystals due to dislocations is but one of several existing
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theories in the study of dislocation damping in crystals.

However, as indicated by Niblett and Wilks8 recently (1960),

the vibrating string model generally gives a fairly satis-

factory account of both the frequency dependent and ampli-

tude dependent internal friction loss and change of dynamic

modulus. It was also indicated that this theory enables

one to take account of the effects on internal friction and

change of dynamic modulus due to temperature, cold work or

annealing, and impurities. The strain amplitude dependent

part of the theory consists in the use of a nonlinear stress-

-dislocation strain law. This nonlinear relationship can

be used to define the change of static modulus, which can

be measured eXperimentally. Therefore, a combination of

static and dynamic measurements furnishes a method of check-

ing the current theories. Furthermore, the stress-disloca—

tion strain law depends on several parameters such as 11.,

the dislocation density, and.£c, the average length of

dislocations between impurities, in different ways. By

pr0perly changing and controlling such parameters, and

making both static and dynamic measurements, more informa-

tion abdut the internal structure of a crystal can be ob-

tained.
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